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While humans can easily segregate and track a speaker’s voice in a loud noisy

environment, most modern speech recognition systems still perform poorly in loud

background noise. The computational principles behind auditory source segregation

in humans is not yet fully understood. In this dissertation, we develop a compu-

tational model for source segregation inspired by auditory processing in the brain.

To support the key principles behind the computational model, we conduct a series

of electro-encephalography experiments using both simple tone-based stimuli and

more natural speech stimulus.

Most source segregation algorithms utilize some form of prior information

about the target speaker or use more than one simultaneous recording of the noisy

speech mixtures. Other methods develop models on the noise characteristics. Source

segregation of simultaneous speech mixtures with a single microphone recording and

no knowledge of the target speaker is still a challenge.

Using the principle of temporal coherence, we develop a novel computational

model that exploits the difference in the temporal evolution of features that belong to



different sources to perform unsupervised monaural source segregation. While using

no prior information about the target speaker, this method can gracefully incorpo-

rate knowledge about the target speaker to further enhance the segregation.Through

a series of EEG experiments we collect neurological evidence to support the principle

behind the model.

Aside from its unusual structure and computational innovations, the proposed

model provides testable hypotheses of the physiological mechanisms of the remark-

able perceptual ability of humans to segregate acoustic sources, and of its psy-

chophysical manifestations in navigating complex sensory environments. Results

from EEG experiments provide further insights into the assumptions behind the

model and provide motivation for future single unit studies that can provide more

direct evidence for the principle of temporal coherence.
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Chapter 1: Introduction

Humans and many animals have the remarkable ability to segregate a target

talker from a noisy mixture of sound sources. Although the brain can segregate

sound sources effortlessly, the performance of modern speech recognition systems

degrades considerably in noisy environments. Understanding the fundamental neu-

ral mechanisms behind this remarkable perceptual phenomenon can enable better

machine audition.

Auditory objects are the computational result of the auditory system’s ability

to extract, segregate and group spectro-temporal regularities in the acoustic envi-

ronment [1,2]. Resolving the component objects within the auditory scene depends

on their temporal configuration [3]. Auditory objects have many general charac-

teristics such as, they unfold over time i.e a single auditory object is comprised of

a series of acoustic events, they possess spectro-temporal features that are separa-

ble from other auditory objects [4], possess invariance to changes in context of the

spectro-temporal features [5] and the representations lend themselves to prediction

of missing parts of the object [6–8].

Auditory objects are formed by means of simultaneous and sequential grouping

principles that organize acoustic features into stable spectro-temporal entities [2].
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Although attention is not necessary for auditory object formation, attention can

influence the formation of auditory objects [9, 10].

Computational models of auditory scene analysis (CASA) have been proposed

in the past to disentangle source mixtures and hence capture the functionality of this

perceptual process. CASA methods for signal separation try to mimic the processing

of human auditory system. Using low level features and bottom up segmentation

and grouping techniques the spectrogram of a single source is extracted from the

spectrogram of a mixture. Pitch, amplitude modulation and temporal continuity

are used as cues to guide the segregation [11]. These algorithms can generalize

to many types of signals while model based approaches [12, 13] may only work

well with speakers or noise scenarios on which they have been trained. In related

methods, segregation is coupled with a task such as recognition thus allowing a

second stage of processing on top of the global segmentation that optimizes for the

specific application scenario. While these techniques take inspiration from auditory

processing in the brain, they don’t seek to investigate the mechanisms behind source

segregation in the brain. A different class of approaches emphasizes the biological

mechanisms underlying this process and assesses both their plausibility and ability

to replicate faithfully human psychoacoustics. Examples of such approaches range

from models of the auditory periphery that explain how simple tone sequences may

stream [14], to models that handle more elaborate sound sequences and bistable

perceptual phenomena [15]. In this work, a novel computational architecture for

unsupervised monaural source segregation is proposed based on the principle of

extracting and grouping temporally coherent spectro-temporal features of sound
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sources. The key hypothesis behind the design of this model is tested through EEG

experiments on human subjects. Electroencephalography(EEG) serves as a method

to study perception and neural activity simultaneously. Recent MEG and EcoG

studies [16–19] have shown that the envelope of the attended speech in a multi-

talker scenario has higher correlation with the measured neural signal than the

unattended speech. The computational principles that lead to enhancement of the

neural representation of the attended speech is not yet well known. In the present

work, we probe the enabling computational principles that can lead to enhanced

representations of the target acoustic stimulus through systematic variation of the

acoustic stimulus. In the first set of EEG experiments we use a two-tone stimulus, a

classic stimulus paradigm studied in auditory streaming experiments [20,21]. While

keeping the complexity of the task low, these initial studies aim at deconstructing

the role of synchrony in the perception of auditory stimuli into streams or auditory

objects. We then use more natural stimuli such as speech and build decoders in

sensor space for estimating the attentional focus of a subject.

In the Chapter 2, the computational framework for monaural unsupervised

source segregation is presented. In Chapter 3, the series of EEG experiments with

tone stimulus is described. In Chapter 4, a technique to decode attention of human

subjects while they listen to a speech mixture is presented. Chapter 5 concludes the

thesis and presents future directions.
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Chapter 2: Computational model for segmenting cluttered auditory

scenes.

2.1 Introduction

Humans and many animals can effortlessly navigate complex sensory environ-

ments, segregating and attending to one desired target source while suppressing

distracting and interfering others. In this chapter we present an algorithmic model

that can accomplish this task with no prior information or training on complex sig-

nals such as speech mixtures, and speech in noise and music. The model accounts

for this ability relying solely on the temporal coherence principle, the notion that

perceived sources emit coherently modulated features that evoke coincident cortical

response patterns. It further demonstrates how basic cortical mechanisms common

to all sensory systems can implement the necessary representations and adaptive

computations.

Humans and animals can attend to a sound source and segregate it rapidly

from a background of many other sources, with no learning or prior exposure to

the specific sounds. For humans, this is the essence of the well-known cocktail

party problem in which a person can effortlessly conduct a conversation with a new
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acquaintance in a crowded and noisy environment [2, 22]. For frogs, songbirds, and

penguins, this ability is vital for locating a mate or an offspring in the midst of

a loud chorus [23, 24]. This capacity is matched by comparable object segregation

feats in vision and other senses [25, 26], and hence understanding it will shed light

on the neural mechanisms that are fundamental and ubiquitous across all sensory

systems.

Computational models of auditory scene analysis have been proposed in the

past to disentangle source mixtures and hence capture the functionality of this per-

ceptual process. The models differ substantially in flavor and complexity depending

on their overall objectives. For instance, some rely on prior information to segregate

a specific target source or voice, and are usually able to reconstruct it with excellent

quality [27]. Another class of algorithms relies on the availability of multiple micro-

phones and the statistical independence among the sources to separate them, using

for example ICA approaches or beam-forming principles [28]. Others are constrained

by a single microphone and have instead opted to compute the spectrogram of the

mixture, and then to decompose it into separate sources relying on heuristics, train-

ing, mild constraints on matrix factorizations [29–31], spectrotemporal masks [32],

and gestalt rules [2,33,34]. A different class of approaches emphasizes the biological

mechanisms underlying this process, and assesses both their plausibility and abil-

ity to replicate faithfully the psychoacoustics of stream segregation (with all their

strengths and weaknesses). Examples of the latter approaches include models of the

auditory periphery that explain how simple tone sequences may stream [14, 35, 36],

how pitch modulations can be extracted and used to segregate sources of different
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pitch [37–39], and models that handle more elaborate sound sequences and bistable

perceptual phenomena [30, 40–42]. Finally, of particular relevance here are algo-

rithms that rely on the notion that features extracted from a given sound source

can be bound together by correlations of intrinsic coupled oscillators in neural net-

works that form their connectivity online [42,43]. It is fair to say, however, that the

diversity of approaches and the continued strong interest in this problem suggest

that no algorithm has yet achieved sufficient success to render the “cocktail party

problem” solved from a theoretical, physiological, or applications point of view.

While our approach echoes some of the implicit or explicit ideas in the above-

mentioned algorithms, it differs fundamentally in its overall framework and im-

plementation. It is based on the notion that perceived sources (sound streams or

objects) emit features , that are modulated in strength in a largely temporally co-

herent manner and that they evoke highly correlated response patterns in the brain.

By clustering (or grouping) these responses one can reconstruct their underlying

source, and also segregate it from other simultaneously interfering signals that are

uncorrelated with it.

This simple principle of temporal coherence has already been shown to ac-

count experimentally for the perception of sources (or streams) in complex back-

grounds [44–48]. However, this is the first detailed computational implementation

of this idea that demonstrates how it works, and why it is so effective as a strategy

to segregate spectrotemporally complex stimuli such as speech and music. Further-

more, it should be emphasized that despite apparent similarities, the idea of tempo-

ral coherence differs fundamentally from previous efforts that invoked correlations
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and synchronization in the following ways [49–53]: (1) coincidence here refers to that

among modulated feature channels due to slow stimulus power (envelope) fluctua-

tions, and not to any intrinsic brain oscillations; (2) coincidences are strictly done

at cortical time-scales of a few hertz, and not at the fast pitch or acoustic frequency

rates often considered; (3) coincidences are measured among modulated cortical fea-

tures and perceptual attributes that usually occupy well-separated channels, unlike

the crowded frequency channels of the auditory spectrogram; (4) coincidence must

be measured over multiple time-scales and not just over a single time-window that

is bound to be too long or too short for a subset of modulations; and finally (5) the

details we describe later for how the coincidence matrices are exploited to segregate

the sources are new and are critical for the success of this effort. For all these reasons,

the simple principle of temporal coherence is not easily implementable. Our goal

here is to show how to do so using plausible cortical mechanisms able to segregate

realistic mixtures of complex signals.

As we shall demonstrate, the proposed framework mimics human and animal

strategies to segregate sources with no prior information or knowledge of their prop-

erties. The model can also gracefully utilize available cognitive influences such as

attention to, or memory of specific attributes of a source (e.g., its pitch or timbre)

to segregate it from its background. We begin with a sketch of the model stages,

with emphasis on the unique aspects critical for its function. We then explore how

separation of feature channel responses and their temporal continuity contribute to

source segregation, and the potential helpful role of perceptual attributes like pitch

and location in this process. Finally, we extend the results to the segregation of
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complex natural signals such as speech mixtures, and speech in noise or music.

2.2 Results

The temporal coherence algorithm consists of an auditory model that trans-

forms the acoustic stimulus to its cortical representation (Figure 1A). A subsequent

stage computes a coincidence matrix (C-matrices in Figure 1B) that summarizes

the pair-wise coincidences (or correlations at zero-lag) between all pairs of responses

making up the cortical representation. A final auto-encoder network is then used to

decompose the coincidence matrix into its different streams. The use of the cortical

representation here is extremely important as it provides a multiresolution view of

the signal’s spectral and temporal features, and these in turn endow the process

with its robust character. Details of these auditory transformations are described

elsewhere [54], and summarized in Methods below for completeness.

Extracting streams from the coincidence matrices

The critical information for identifying the perceived sources is contained in

the instantaneous coincidence among the feature channel pairs as depicted in the

C-matrices (Figure 1B). At each modulation rate ωi, the coincidence matrix at time

t is computed by taking the outer product of all cortical frequency-scale (f,Ω) out-

puts (X(t, f ; Ω, ωi)). Such a computation effectively estimates simultaneously the

”average coincidence” over the time window implicit in each ωi rate, i.e., at dif-

ferent temporal resolutions, thus retaining both short- and long-term coincidence

8



Auditory Spectrogram

Time

F
re

q
u

e
n

c
y

Cortical representation X(t,x;Ω,ω)A

B

Pitch

Freq- 

scale
Rate ω

1

Rate ω
n

Freq- 

scale

Pitch

Non-linear PCACoincidence Computation Auto-encoder input

mask
1

mask
2

Time

C
1

C
n

batch inputs batch outputsC
1

C
n

Frequency

S
c
a

le

Scale filters
narrow

band

wide

band

Scalogram s(t,x;Ω)
Rate filters

fast

slow

S
c
a

le

Freq. Rate Time

ω
1

ω
n

t
n-2

t
n-1

t
n

Figure 2.1: The temporal coherence model consists of two stages(A) Trans-

formation of sound into a cortical representation [54]: It begins with a computation

of the auditory spectrogram (left panel), followed by an analysis of its spectral and

temporal modulations in two steps (middle and right panels, respectively): a multi-

scale (or a multi-bandwidth) wavelet analysis along the spectral dimension to create

the frequency-scale responses, s(t, x; Ω), followed by a wavelet analysis of the mod-

ulus of these outputs to create the final cortical outputs X(t, x; Ω, ω) (right panel).

(B) Coincidence and clustering: The cortical outputs at each time-step are used

to compute a family of coincidence matrices (left panel). Each matrix (Ci) is the

outer product of the cortical outputs X(t, x; Ω, ωi) (i.e., separately for each modu-

lation rate ωi). The C-matrices are then stacked (middle panel) and simultaneously

decomposed by a nonlinear auto-encoder network (right panel) into two principal

components corresponding to the foreground and background masks which are used

to segregate the cortical response.
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desynchronized by more than 40 ms (top panel), they segregate into different streams
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Figure 2.5: Segregation of speech utterances based on auxiliary functions.

(A) Mixture of two sample utterances (right panel) spoken by a female (left panel)

and male (middle panel) speakers; (B) The inter-lip distance of the female saying

“twice each day”used as the anchor to segregate the mixture into its target female

(middle panel) and the remaining male speech (bottom panel); (C) The envelope

of the female speech “twice each day” used as anchor to segregate the mixture into

its target female speaker (middle panel) and the remaining male speech (bottom

speech).
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measures crucial for segregation. Intuitively, the idea is that responses from pairs of

channels that are strongly positively correlated should belong to the same stream,

while channels that are uncorrelated or anti-correlated should belong to different

streams. This decomposition need not be all-or-none, but rather responses of a

given channel can be parceled to different streams in proportion to the degree of

the average coincidence it exhibits with the two streams. This intuitive reasoning is

captured by a factorization of the coincidence matrix into two uncorrelated streams

by determining the direction of maximal incoherence between the incoming stimu-

lus patterns. One such factorization algorithm is a nonlinear principal component

analysis (nPCA) of the C-matrices [55], where the principal eigenvectors correspond

to masks that select the channels that are positively correlated within a stream,

and parcel out the others to a different stream. This procedure is implemented by

an auto-encoder network with two rectifying linear hidden units corresponding to

foreground and background streams as shown in Fig.1B (right panel). The weights

computed in the output branches of each unit are associated with each of the two

sources in the input mixture, and the number of hidden units can be automati-

cally increased if more than two segregated streams are anticipated. The nPCA

is preferred over a linear PCA because the former assigns the channels of the two

(often anti-correlated) sources to different eigenvectors, instead of combining them

on opposite directions of a single eigenvector [56].

Another key innovation in the model implementation is that the nPCA decom-

position is performed not directly on the input data from the cortical model (which

are modulated at ωi rates), but rather on the columns of the C-matrices whose en-

16



tries are either stationary or vary slowly regardless of the ωi rates of the coincident

channels. These common and slow dynamics enables stacking all C-matrices into

one large matrix decomposition (Fig.1B). Specifically, the columns of the stacked

matrices are applied (as a batch) to the auto-encoder network at each instant t with

the aim of computing weights that can reconstruct them while minimizing the mean-

square reconstruction error. Linking these matrices has two critical advantages: It

ensures that the pair of eigenvectors from each matrix decomposition is consistently

labeled across all matrices (e.g., source 1 is associated with eigenvector 1 in all

matrices); It also couples the eigenvectors and balances their contributions to the

minimization of the MSE in the auto-encoder. The weight vectors thus computed

are then applied as masks on the cortical outputs X(t, f ; Ω, ω). This procedure is

repeated at each time step as the coincidence matrices evolve with the changing

inputs.

Role of feature separation, temporal continuity, and pitch in source

segregation

The separation of feature responses on different channels and their temporal

continuity are two important properties of the model that allow temporal coherence

to segregate sources. Several additional perceptual attributes can play a significant

role including pitch, spatial location, and timbre. Here we shall focus on pitch as

an example of such attributes.

Feature separation: This refers to the notion that for two sounds to be segre-
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gated, it is necessary (but insufficient) that their features induce responses in mostly

different auditory channels. Temporal coherence then serves to bind the coincident

channels and segregate them as one source. For example, the tone sequences of

Figure 2A,B are well separated at the start, and are alternating and hence non-

coincident. The sequences therefore quickly stream apart perceptually and become

two segregated streams of high and low tones [2]. When the tones approach each

other and their responses interact (as in Fig.2B), the channels become more coherent

and the segregation fails, as is evident by the middle tones becoming momentarily

attenuated in the two segregated sequences [44].

Temporal Continuity: The relatively slow dynamics of the cortical rate-filters

(tuned at 2-16 Hz) confer this important property on streams. Specifically, the C-

matrix entries inherit the dynamics of their rate-filters and hence change only as fast

as the rate of their inputs, exhibiting an inertia or continuity. This explains why a

tone sequence of rapidly alternating tones across two frequency channels splits into

two streams each composed of slowly changing or stationary tones. By contrast,

when a tone sequence changes its frequencies slowly, a stream can track the slow

change and maintain the ongoing organization (as demonstrated by the slowly vary-

ing upper and lower frequency streams of the “bouncing-tone” sequence in Fig.2B).

Another example is when a new distant-frequency tone suddenly appears in a se-

quence, the C-matrix entries cannot track it rapidly enough causing the sequence to

segregate and form a new stream that perceptually pops-out of the ongoing back-

ground (Fig.2C). Finally, the bandpass character of cortical rate-filtering enhances

the response to tone onsets (relative to their sustained portions), and hence repeated
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desynchronization of onsets is sufficient to segregate tone sequences despite exten-

sive overlap as seen in Fig.2D. These same phenomena are commonly seen with

mixtures of more complex signals such as speech and music where the continuity of

different streams is maintained despite transient synchronization and overlap.

How pitch contributes to segregation: Harmonic complexes evoke pitch per-

cepts at their fundamental and are commonly found in speech and music (seeMeth-

ods for details). Fig. 3A illustrates how two such alternating complexes with differ-

ent pitches (500 Hz and 630 Hz) form two streams. Aside from the spectral channels,

we also plot the pitch of the complexes alternating below the spectrograms. These

pitch-grams contribute to the coincidence matrices much the same way any spec-

tral channel does, i.e., as part of the feature vector that defines the emissions of

each source, Thus, despite having some closely spaced harmonics (1890, 2000 Hz),

the two complexes are sufficiently different (both in pitch and spectral components)

that they remain largely uncorrelated and hence are readily segregated. The C-

matrices in this simulation utilize all spectral and pitch channels. However, not all

these channels are necessary as comparable segregation is achieved based only on

the spectral scale-frequency inputs. Since the pitch channels are correlated with

their own spectral harmonics, it is sufficient to compute the nPCA decomposition

only on the columns of the pitch channels in the C-matrices (see Methods for more

details) to segregate the two complex sequences. Using coincidences between spec-

tral scale-frequency inputs or coincidences with respect to pitch channels alone also

yield similar segregation.In fact, if the pitch range of one harmonic complex is known

(e.g., the pitch of the first complex is in the range 450 to 550 Hz), then its stream can
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be readily extracted by iterating the auto-encoder on the columns of the C-matrix

that lie only in this pitch range. All these variations illustrate that the C-matrices

can be exploited in various ways to segregate sources depending on availability of

the different sound attributes, and that even partial information is often sufficient

to form the streams and bind all their correlated components together. For exam-

ple, if the location information is extracted and is available to the C-matrices (as

with the pitch-grams), then they can be exploited in parallel with, and in a manner

exactly analogous to the pitch. Temporal coherence can similarly help segregate

speech using co-modulated signals of other modalities as in lip-reading.

Segregating speech from mixtures

Speech mixtures share many of the same characteristics already seen in the

examples of Fig.2 and Fig.3. For instance, they contain harmonic complexes with

different pitches (e.g., males versus females) that often have closely spaced or tem-

porally overlapped components. Speech also possesses other features such as broad

bursts of noise immediately followed or preceded by voiced segments (as in various

consonant-vowel combinations), or even accompanied by voicing (voiced consonants

and fricatives). In all these cases, the syllabic onsets of one speaker synchronize a

host of channels driven by the harmonics of the voicing, and that are desynchronized

(or uncorrelated) with the channels driven by the other speaker. Fig. 4A depicts the

clean spectra of two speech utterances (middle and right panels) and their mixture

(left panel) illustrating the harmonic spectra and the temporal fluctuations in the
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speech signal at 3-7 Hz that make speech resemble the earlier harmonic sequences.

The pitch tracks associated with each of these panels are shown below them.

Fig. 4B illustrates the segregation of the two speech streams from the mix-

ture using all available coincidence among the spectral (frequency-scale) and pitch

channels in the C-matrices. The reconstructed spectrograms are not identical to the

originals (Fig.4A), an inevitable consequence of the energetic masking among the

crisscrossing components of the two speakers. Nevertheless, with two speakers there

are sufficient gaps between the syllables of each speaker to provide clean, unmasked

views of the other speaker’s signal [57]. If more speakers are added to the mix, such

gaps become sparser and the amount of energetic masking increases, and that is

why it is harder to segregate one speaker in a crowd if they are not distinguished

by unique features or a louder signal. An interesting aspect of speech is that the

relative amplitudes of its harmonics vary widely over time reflecting the changing

formants of different phonemes. Consequently, the saliency of the harmonic compo-

nents changes continually, with weaker ones dropping out of the mixture as they be-

come completely masked by the stronger components. Despite these changes, speech

syllables of one speaker maintain a stable representation of a sufficient number of

features from one time instant to the next, and thus can maintain the continuity

of their stream. This is especially true of the pitch (which changes only slowly and

relatively little during normal speech). The same is true of the spectral region of

maximum energy which reflects the average formant locations of a given speaker,

reflecting partially the timbre and length of their vocal tract. Humans utilize either

of these cues alone or in conjunction with additional cues to segregate mixtures.
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For instance, to segregate speech with overlapping pitch ranges (a mixture of male

speakers), one may rely on the different spectral envelopes (timbres), or on other

potentially different features such as location or loudness. Humans can also exploit

more complex factors such as higher-level linguistic knowledge and memory as we

discuss later.

In the example of Fig.4C, the two speakers of Fig.4A are segregated based

on the coincidence of only the spectral components conveyed by the frequency-

scale channels. The extracted speech streams of the two speakers resemble the

original unmixed signals, and their reconstructions exhibit significantly less mutual

interference than the mixture as quantified later. Finally, as we discuss in more

detail below, it is possible to segregate the speech mixture based on the pattern of

correlations computed with one “anchor ” feature such as the pitch channels of the

female, i.e., using only the columns of the C-matrix near the female pitch channels

as illustrated in Fig.4D.

Exactly the same logic can be applied to any auxiliary function that is co-

modulated in the same manner as the rest of the speech signal. For instance, one

may “look” at the lip movements of a speaker which open and close in a man-

ner that closely reflects the instantaneous power in the signal (or its envelope) as

demonstrated in [58]. These two functions (inter-lip distance and the acoustic en-

velope) can then be exploited to segregate the target speech much as with the pitch

channels earlier. Thus, by simply computing the correlation between the lip func-

tion (Fig.5B) or the acoustic envelope (Fig.5C) with all the remaining channels, an

effective mask can be readily computed to extract the target female speech (and
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the background male speech too). This example thus illustrates how in general any

other co-modulated features of the speech signal (e.g., location, loudness, timbre,

and visual signals such as lip movements can contribute to segregation of complex

mixtures.

The performance of the model is quantified with a database of 100 mix-

tures formed from pairs of male-female speech randomly sampled from the TIMIT

database (Fig.6) where the spectra of the clean speech are compared to those of the

corresponding segregated versions. The signal-to-noise ratio is computed as

SNR segregated speech = max(10 ∗ log( |S1 ∗O1|2

|S1 ∗O2|2
), 10 ∗ log( |S2 ∗O1|2

|S2 ∗O2|2
)) (2.1)

SNR mixture = 10 ∗ log( |M ∗O1|2

|M ∗O2|2
) (2.2)

where S1, S2 are the cortical representations of the segregated sentences and O1, O2

are the cortical representations of the original sentences andM is the cortical repre-

sentation of the mixture. Average SNR improvement was 6dB for mixture waveforms

mixed at 0dB.

Another way to demonstrate the effectiveness of the segregation is to compare

the match between the segregated samples and their corresponding originals. This is

evidenced by the minimal overlap in Fig.6B (middle panel) across the distributions of

the coincidences computed between each segregated sentence and its original version

versus the interfering speech. To compare directly these coincidences for each pair

of mixed sentences, the difference between coincidences in each mixture are scatter-

plotted in the bottom panel. Effective pairwise segregation (e.g., not extracting only
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one of the mixed sentences) places the scatter points along the diagonal.

Segregating speech from music and noise In principle, segregating mixtures

does not depend on them being speech or music, but rather that the signals have

different spectrotemporal patterns and exhibit a continuity of features. Fig. 7A

illustrates the extraction of a speech signal from a highly overlapping temporally

modulated street noise background. The same speech sample is extracted from a

mixture with music in Fig. 7B. As explained earlier, this segregation (psychoacous-

tically and in the model) becomes more challenging in the absence of “clean looks”,

as when the background is an unmodulated white noise or babble that energetically

masks the target speech.

Attention and memory in streaming

So far, attention and memory have played no direct role in the segregation,

but adding them is relatively straightforward. From a computational point of view,

attention can be interpreted as a focus directed to one or a few features or feature

subspaces of the cortical model which enhances their amplitudes relative to other

unattended features. For instance, in segregating speech mixtures, one might choose

to attend specifically to the high female pitch in a group of male speakers (Fig.4D),

or to attend to the location cues or the lip movements (Fig.5C) and rely on them

to segregate the speakers. In these cases, only the appropriate subset of columns of

the C-matrices are needed to compute the nPCA decomposition (Fig.1B). This is

in fact also the interpretation of the simulations discussed in Fig. 3 for harmonic
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complexes. In all these cases, the segregation exploited only the C-matrix columns

marking coincidences of the attended anchor channels (pitch, lip, loudness) with the

remaining channels.

Memory can also be strongly implicated in stream segregation in that it con-

stitutes priors about the sources which can be effectively utilized to process the

C-matrices and perform the segregation. For example, in extracting the melody

of the violins in a large orchestra, it is necessary to know first what the timbre of

a violin is before one can turn the attentional focus to its unique spectral shape

features and pitch range. One conceptually simple way (among many) of exploiting

such information is to use as ‘template’ the average auto-encoder weights (masks)

computed from iterating on clean patterns of a particular voice or instrument, and

use the resulting weights to perform an initial segregation of the desired source by

applying the mixture to the stored mask directly.

2.3 Discussion

A biologically plausible model of auditory cortical processing can be used to

implement the perceptual organization of auditory scenes into distinct auditory

objects (streams). Two key ingredients are essential: (1) a multidimensional cortical

representation of sound that explicitly encodes various acoustic features along which

streaming can be induced; (2) clustering of the temporally coherent features into

different streams. Temporal coherence is quantified by the coincidence between all

pairs of cortical channels, slowly integrated at cortical time-scales as described in
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Fig. 1. An auto-encoder network mimicking Hebbian synaptic rules implements the

clustering through nonlinear PCA to segregate the sound mixture into a foreground

and a background.

The temporal coherence model segregates novel sounds based exclusively on

the ongoing temporal coherence of their perceptual attributes. Previous efforts

at exploiting explicitly or implicitly the correlations among stimulus features dif-

fered fundamentally in the details of their implementation. For example, some

algorithms attempted to decompose directly the channels of the spectrogram repre-

sentations [59] rather than the more distributed multi-scale cortical representations.

They either used the fast phase-locked responses available in the early auditory sys-

tem [60], or relied exclusively on the pitch-rate responses induced by interactions

among the unresolved harmonics of a voiced sound [61]. Both these temporal cues,

however, are much faster than cortical dynamics (> 100 Hz) and are highly volatile

to the phase-shifts induced in different spectral regions by mildly reverberant envi-

ronments. The cortical model instead naturally exploits multi-scale dynamics and

spectral analyses to define the structure of all these computations as well as their

parameters. For instance, the product of the wavelet coefficients (entries of the

C-matrices) naturally compute the running-coincidence between the channel pairs,

integrated over a time-interval determined by the time-constants of the cortical rate-

filters (Fig.1 and Methods). This insures that all coincidences are integrated over

time intervals that are commensurate with the dynamics of the underlying signals

and that a balanced range of these windows are included to process slowly varying

(2 Hz) up to rapidly changing (16 Hz) features.
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The biological plausibility of this model rests on physiological and anatomical

support for the two postulates of the model: a cortical multidimensional representa-

tion of sound and coherence-dependent computations. The cortical representation

is the end-result of a sequence of transformations in the early and central auditory

system with experimental support discussed in detail in [54]. The version used here

incorporates only a frequency (tonotopic) axis, spectrotemporal analysis (scales and

rates), and pitch analysis [62]. However, other features that are pre-cortically ex-

tracted can be readily added as inputs to the model such as spatial location (from

interaural differences and elevation cues) and pitch of unresolved harmonics [63].

The second postulate concerns the crucial role of temporal coherence in stream-

ing. It is a relatively recent hypothesis and hence direct tests remain scant. Nev-

ertheless, targeted psychoacoustic studies have already provided perceptual sup-

port of the idea that coherence of stimulus-features is necessary for perception of

streams [46–48,64]. Parallel physiological experiments have also demonstrated that

coherence is a critical ingredient in streaming and have provided indirect evidence

of its mechanisms through rapidly adapting cooperative and competitive interac-

tions between coherent and incoherent responses [45, 65]. Nevertheless, much more

remains uncertain. For instance, where are these computations performed? How

exactly are the (auto-encoder) clustering analyses implemented? And what exactly

is the role of attentive listening (versus pre-attentive processing) in facilitating the

various computations? All these uncertainties, however, invoke coincidence-based

computations and adaptive mechanisms that have been widely studied or postulated

such as coincidence detection and Hebbian associations [66,67].
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Dimensionality-reduction of the coincidence matrix (through nonlinear PCA)

allows us effectively to cluster all correlated channels apart from others, thus group-

ing and designating them as belonging to distinct sources. This view bears a close

relationship to the predictive clustering-based algorithm by [68] in which input fea-

ture vectors are gradually clustered (or routed) into distinct streams. In both the

coherence and clustering algorithms, cortical dynamics play a crucial role in inte-

grating incoming data into the appropriate streams, and therefore are expected to

exhibit for the most part similar results. In some sense, the distinction between

the two approaches is one of implementation rather than fundamental concepts.

Clustering patterns and reducing their features are often (but not always) two sides

of the same coin, and can be shown under certain conditions to be largely equiv-

alent and yield similar clusters [69]. Nevertheless, from a biological perspective, it

is important to adopt the correlation view as it suggests concrete mechanisms to

explore.

Our emphasis thus far has been on demonstrating the ability of the model to

perform unsupervised (automatic) source segregation, much like a listener that has

no specific objectives. In reality, of course, humans and animals utilize intentions

and attention to selectively segregate one source as the foreground against the re-

maining background. This operational mode would similarly apply in applications

in which the user of a technology identifies a target voice to enhance and isolate

from among several based on the pitch, timbre, location, or other attributes. The

temporal coherence algorithm can be readily and gracefully adapted to incorpo-

rate such information and task objectives, as when specific subsets of the C-matrix
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columns are used to segregate a targeted stream (e.g., Fig.3 and Fig.4). In fact, our

experience with the model suggests that segregation is usually of better quality and

faster to compute with attentional priors.

2.4 Methods

The auditory representation

Sound is first transformed into its auditory spectrogram, followed by a cortical

spectrotemporal analysis of the modulations of the spectrogram (Fig.2.1A) [54].

Pitch is an additional perceptual attribute that is derived from the resolved (low-

order) harmonics and used in the model [62]. It is represented as a ‘pitch-gram’

of additional channels that are simply augmented to the cortical spectral channels

prior to subsequent rate analysis (see below). Other perceptual attributes such as

location and unresolved harmonic pitch can also be computed and represented by

an array of channels analogously to the pitch estimates.

The auditory spectrogram, denoted by y(t, f), is generated by a model of

early auditory processing [70], which begins with an affine wavelet transform of

the acoustic signal, followed by nonlinear rectification and compression, and lateral

inhibition to sharpen features. This results in F = 128 frequency channels that are

equally spaced on a logarithmic frequency axis over 5.2 octaves.

Cortical spectro-temporal analysis of the spectrogram is effectively performed

in two steps [54]: a spectral wavelet decomposition followed by a temporal wavelet

decomposition, as depicted in Fig.1A. The first analysis provides multi-scale (multi-
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bandwidth) views of each spectral slice y(t, :), resulting in a 2D frequency-scale

representation s(t, f ; Ω). It is implemented by convolving the spectral slice with S

complex-valued spectral receptive fields hi similar to Gabor functions, parametrized

by spectral tuning Ωi, i.e., s(t, f,Ωi) = h(t, f,Ωi) ∗f y(t, f).

The outcome of this step is an array of FxS frequency-scale channels indexed

by frequency f and local spectral bandwidth Ωi at each time instant t. We typically

used S = 2 to 5 scales in our simulations (e.g., Ωi = 1, 2, 4, ... cyc/oct), producing

S copies of the spectrogram channels with different degrees of spectral smoothing.

In addition, the pitch of each spectrogram frame is also computed (if desired) using

a harmonic template-matching algorithm [62]. Pitch values and saliency were then

expressed as a pitch-gram (P ) channels that are appended to the frequency-scale

channels (Fig.1B).

The cortical rate-analysis is then applied to the modulus of each of the chan-

nel outputs in the freq-scale-pitch array by passing them through an array R of

modulation-selective filters (Q = 1 ), each indexed by its center rate ωi which range

over 2− 32 Hz in 1/2 octave steps (Fig.1B). This temporal wavelet analysis of the

response of each channel is described in detail in [54]. Therefore, the final represen-

tation of the cortical outputs (features) is along four axes denoted by X(t, f,Ω, ω).

It consists of R coincidence matrices per time frame, each of size (FS+P )x(FS+P )

(Fig.1B).
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Coherence computations and nonlinear principal component analysis

The decomposition of the C-matrices is carried out as described earlier in

Fig.1B. The iterative procedure to learn the auto-encoder weights employs Limited-

memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) method as implemented in

[71]. The output weight vectors (Fig.1B) thus computed are subsequently applied

as masks on the input channels X(t, f,Ω, ω). This procedure that is repeated every

time step using the weights learned in the previous time step as initial conditions to

ensure that the assignment of the learned eigenvectors remains consistent over time.

Note that the C matrices do not change rapidly, but rather slowly, as fast as the

time-constants of their corresponding rate analyses allow (≈ 1/ωi). For example, for

the ωi = 4 Hz filters, the cortical outputs change slowly reflecting a time-constant

of approximately 250 ms. More often, however, the C-matrix entries change much

slower reflecting the sustained coincidence patterns between different channels. For

example, in the simple case of two alternating tones (Fig.2A), the C-matrix entries

reach a steady state after a fraction of a second, and then remain constant reflecting

the unchanging coincidence pattern between the two tones. Similarly, if the pitch

of a speaker remains relatively constant, then the correlation between the harmonic

channels remains approximately constant since the partials are modulated similarly

in time. This aspect of the model explains the source of the continuity in the streams.

The final step in the model is to invert the masked cortical outputs Xm(t, f,Ω, ω)

back to the sound [54].
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2.5 Conclusions

In summary, we have described a model for segregating complex sound mix-

tures based on the temporal coherence principle. The model computes the coinci-

dence of multi-scale cortical features and clusters the coherent responses as ema-

nating from one source. It requires no prior information, statistics, or knowledge

of source properties, but can gracefully incorporate them along with cognitive in-

fluences such as attention to, or memory of specific attributes of a target source

to segregate it from its background. The model provides a testable framework of

the physiological bases and psychophysical manifestations of this remarkable ability.

Finally, the relevance of these ideas transcends the auditory modality to elucidate

the robust visual perception of cluttered scenes [72,73].
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Chapter 3: Role of temporal coherence, attention and feature bind-

ing in parsing a complex auditory scene.

3.1 Overview

Humans and many animals can selectively attend to a target source and seg-

regate it from competing sounds with remarkable ease [74–76]. The mechanism

underlying this perceptual feat is not yet clearly understood. Recent studies have

proposed that the principle of temporal coherence governs this process and orga-

nizes its many interrelated components [77,78]. The temporal coherence hypothesis

postulates that all features emanating from a single source fluctuate coherently in

power over time, and that the listener tracks and utilizes this coherence to extract

them from others that are temporally incoherent with them.

Several recent psychoacoustic, neuro-imaging and computational studies have

demonstrated the relevance of temporal coherence in sound segregation and stream-

ing. A series of psychoacoustic experiments demonstrated that it is far easier to

segregate sequences of alternating tones than sequences of synchronous tones, even

with large frequency separations [77, 79] or when one of the sequences is stationary

while the other fluctuated slightly in frequencies [80]. The effects of temporal coher-
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ence and harmonicity in grouping auditory streams was studied in [81]. Temporal

coherence also explained why a few synchronous tone sequences perceptually pop-

out even in the midst of a dense background of random tones [82]. More recently,

temporal coherence has also been demonstrated to play a role in co-modulation

masking release [83].

The model presented in the previous chapter [84] has demonstrated in detail

how temporal coherence can be exploited to segregate tone sequences as well as

complex sound mixtures such as speech and music. Two key ingredients of the

model provide the rationale for the experiments described in this chapter. The first

is the coincidence measurements between pairs of neural channels encoding various

acoustic features. The second basic ingredient of temporal coherence is the bind-

ing of coincident channels into one group representing a source. One conception

of this associative process is inspired by Hebb’s principle of fire together, wire to-

gether , illustrated by the schematic of Figure 3.1. It postulates that neurons with

highly correlated responses form cooperative connectivity that can mutually enhance

their responses. By contrast, highly uncorrelated activity leads to competitive (in-

hibitory) connectivity that suppresses the overall responses while emphasizing the

differences between them. Since natural sounds are non-stationary in character,

their perceptual features (pitch, timbre, location, and loudness) constantly evolve

over time, and hence any correlative interactions (enhancement or suppressive) must

be highly and rapidly adaptive in character so as to track the ongoing properties of

stimuli.

In summary, the hypothesis behind the design of the experiments in this chap-
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Figure 3.1: Hebbian principle. Schematic of coincidence computa-
tions between pairs of channels encoding acoustic features.

ter is that, when populations of neurons are driven synchronously or asynchronously,

correspondingly facilitative or suppressive connectivity rapidly forms, and that tem-

porarily persists providing the effective context for subsequent stimuli. It is further

postulated that such adaptive effects require attention, a conjecture based on previ-

ous findings that cortical responses and tuning properties remain unchanged during

passive listening [85,86].

We design a series of EEG experiments to test this hypothesis. EEG provides

for a high temporal resolution measurement of the neural activity. In the first experi-

ment, we test this hypothesis in its simplest form, using alternating and synchronous

tone sequences. The neural populations encoding the frequency of these tones fire

coherently(anti-coherent) when the tones are synchronous (alternating). To facili-

tate stream segregation and to improve task understanding, one of these tones is

amplitude modulated at 40 Hz. The 40 Hz steady state response power is compared
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across attention conditions for alternating and synchronous tone sequences. When

the stimulus is alternating, we expect to see a modulation in the 40Hz steady state

response power reflecting the attentional state of the subject. Thus, if the subject is

selectively attending to the amplitude modulated sequence, the 40Hz aSSR should

be enhanced, while if the subject is attending to the pure tone sequence, the 40Hz

aSSR should be suppressed. More importantly, during the global attention con-

dition, when the subject is attending to the auditory scene as one whole, the 40

Hz aSSR should still be suppressed since the two tone sequences are anti-coherent.

On the contrary, if the tones are synchronous, we predict a weaker modulation in

power in the selective attention condition since synchrony limits the ability of the

listeners to segregate the tone sequences. The aSSR power in the global attention

condition should be comparable to the selective attention condition because the two

tone sequences perceptually fuse into one stream due to their coherence.

To directly contrast the alternating and synchronous conditions, in the second

experiment we compare the response to a probe tone (AM tone) played at the end

of each trial, while the subject is performing the global attention task. This ensures

that stimulus induced differences in the response power are eliminated. Since the

alternating stimulus facilitates stream segregation through competitive interactions

between neural populations, we expect to see a reduction in the 40Hz aSSR of the

probe tone, as these interactions leave the neural population that encodes the ampli-

tude modulated tone in a suppressed state. In contrast, during the synchronous tri-

als, facilitative interactions between the neural populations should produce a strong

40Hz aSSR of the probe tones. The timing of the probe tone was jittered (delay
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after end of trial - uniformly distributed between 200-250 ms) to avoid formation

of an expectation of end of trial. Three different frequency separations between the

tones were tested. Thus, in this experiment we seek to understand the effects of

temporal coherence in a global attention task.

In the next experiment, we study the effects of temporal coherence and selec-

tive attention in a stream segregation task on alternating pure tones. We use an

amplitude modulated sequence concurrent with the alternating pure tone sequence

and compare the response of the AM tone during selective attention to one of the

pure tone sequences. In particular, we study if the AM tone response is modulated

during the task. Since the AM tone is only partially coherent with each of the pure

tone sequences, we examine whether the aSSR at 40Hz is modulated based on at-

tention to the pure tone sequence or unmodulated because of its partial coherence

to the attended stream.

In the final experiment, we use alternating harmonic sequences to study the

influence of temporal coherence in feature binding. Subjects were asked to pay

attention to a target pitch in an alternating harmonic sequence. At the end of each

trial, we measure the response to probe tones centered at harmonics of the attended

pitch and the unattended pitch. We then compare the response to the probe tones

under the two attention conditions (attend to pitch A and attend to pitch B).
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3.2 Participants

A total of 45 subjects participated in the study. The study was divided into

a series of four experiments. Ten subjects participated in each of the first three

experiments involving pure tones and AM tones. Fifteen subjects participated in

the fourth experiment involving harmonic complexes. All subjects reported normal

hearing. Written informed consent was obtained from each participant and subjects

were paid for their participation. The experimental protocol was approved by the

Institutional Review Board of the University of Maryland.

3.3 Experiment 1: Selective attention vs. global attention

3.3.1 Stimulus design

Attention plays an important role in the parsing of complex auditory scenes.

In this experiment, the neural signature of selective attention on a target stream

is contrasted against the neural signature of global attention on the same auditory

scene. During the selective attention task, the subject is focusing on a part of the

auditory scene (target), ignoring all other competing sources (distractors). During

the global attention task, the subject is experiencing the entire auditory scene as

one whole, actively listening to the auditory scene. The observed neural signature

is hypothesized to depend upon the degree of temporal coherence in the stimulus

and the attentive state of the subject. The stimulus (Figure 3.2) consists of a

sequence of pure tones (tone A at 420 Hz) and AM tones (tone B centered at 1000
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Hz, amplitude modulated at 40 Hz), either alternating or synchronous with each

other. Each tone is 225 msecs long. The inter-tone interval in both the streams is

225 msecs, with 20 tone repetitions in each stream resulting in 11 sec long trials.

During the selective attention condition, subjects were asked to pay attention to

either the pure tone sequence or AM tone sequence and report if they heard a 4dB

intensity deviant in the attended tone stream. To ensure that the subject was not

reporting overall changes in intensity level during a trial, distractor deviants were

introduced in the competing stream. The deviants were randomly spaced in the 4th-

20th tone positions. Approximately 50% of the trials had deviants in the attended

stream. During the global attention condition, subjects were asked to report if

they heard a deviant in both tone A and tone B. For each stimulus, three different

attention conditions were tested namely, attend to pure tone sequence, attend to AM

tone sequence and attend to both the tone sequences (global attention condition).

Overall, this resulted in six different conditions (2 types of stimulus X 3 attention

conditions).

3.3.2 Experimental procedure

Subjects were seated in a sound proof room and EEG data was acquired

using a 64 channel Brainvision acti-Champ system at 1000Hz. Stimuli were pre-

sented through Etymotics Research ER-2 insert earphones at a comfortable loud-

ness level( 70dB). A short training module was presented before each experimental

block. Subjects received feedback after each trial. The main experiment was split
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Figure 3.2: (A) Alternating stimulus. Two tones 15 semi-tones
apart(tone B at 1000Hz and tone A at 420Hz ), alternating with each
other. Tone B is amplitude modulated at 40 Hz.(B) Synchronous
stimulus. The same two tones, concurrent with each other. During
the selective attention condition, subjects were asked to pay attention
to either pure tone A or AM tone B and report if they heard an intensity
deviant (4dB) in the attended tone stream. During the global attention
condition subjects were asked to report if they heard a deviant in both
tone A and tone B.
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into three blocks. In the first block, subjects were asked to pay attention to the AM

tone. During this block, the first 25 trials consisted of only the target stream to help

familiarize the subject with the target stream. After 25 trials, a distractor stream

(pure tone stream, in this case), alternating with the AM tone sequence was intro-

duced. Subjects were still instructed to selectively attend to the AM stream. In the

last 25 trials of the first block, the two tone streams were presented synchronously

and the subject was asked to selectively attend to the target AM tone sequence and

report if they heard an intensity deviant in the AM tone sequence. In the next block,

the first 25 trials consisted of only the pure tone sequence followed by 25 trials of

alternating tones and then 25 trials of synchronous tones, with the subject paying

attention to the pure tone sequence throughout the block and report if they heard

an intensity deviant in the pure tone sequence. The last block consisted of 25 trials

of the alternating tones followed by 25 trials of synchronous tones during which the

subject was asked to pay attention to both the streams and report if they heard

an intensity deviant in both the streams. The stimuli were designed in Matlab and

presented using the Psychtoolbox extension [87].

3.3.3 Data Analysis

Noisy channels were removed from the raw EEG data and the data was re-

referenced to the average of the remaining channels. Data was then band-pass

filtered between 1-70 Hz. The data was epoched into 9 second long trials and the

leading and trailing 1.35 secs of the trial were chopped from these epochs. After
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removing outlier epochs, denoising source separation [88] was used to extract the

most repeatable EEG component in each block. Each trial was folded into mini-

epochs comprising of the response to a single AM tone, pure tone pair. The 40 Hz

aSSR power was estimated from the power in the 125-200 msec region of averaged

(evoked) AM tone mini-epoch.

3.3.4 Results

Subjects are given three separate tasks of attending to the AM tone sequence,

attending to the pure tone sequence and globally attending to both the sequences,

for the same stimuli comprising of either alternating or synchronous tone sequences.

In each task, subjects are instructed to detect a 4dB intensity deviant in the at-

tended stream. After an initial training block, all subjects were able to perform the

task at a hit rate of more than 80%. The neural representation of the two tone

sequence depends on the attentional focus of the subject. The 40Hz aSSR power is

compared across attention conditions for the alternating and synchronous stimuli.

The 40 Hz aSSR power is strongest during the attend AM task (Figure 3.4). For

the alternating trials, the power at 40Hz is considerably weakened when the sub-

ject is paying attention to the pure tone reflecting the change in attentional focus.

However, the most striking contrast between the alternating and synchronous trials

is when the subject is paying global attention. During the global attention task, the

power at 40Hz is considerably lower than the attend to AM condition if the stimulus

is alternating. However, for the synchronous trials, the global attention power is not
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Figure 3.3: DSS component for one exemplar subject. (A) The
most repeatable DSS component is plotted for the various attention con-
ditions on alternating stimulus. Between 125-200 msecs the 40Hz aSSR
is prominent. (B) The most repeatable DSS component is plotted for
the various attention conditions on synchronous stimulus.

significantly different from the power during attend to AM tone condition.

3.4 Experiment 2: Effects of temporal coherence in the stimulus dur-

ing a global attention task

3.4.1 Stimulus design

The stimulus (Figure 3.5) consists of the same alternating and synchronous

tones as Experiment 1 with an additional test tone B at the end of each trial. The

timing of the test tone was jittered to avoid formation of an expectation of end of

trial. Subjects were asked to pay attention to both the tones. The test tone response

was compared when the tones were preceded by alternating vs. synchronous tones
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Figure 3.4: Auditory steady state response power. (Top) The
aSSR power is compared under different attention conditions on the al-
ternating stimulus. The aSSR power is strongest in the absence of any
distractor tones. When a competing pure-tone sequence is alternating
with the AM tone sequence, the aSSR is strongest when the subject is
attending to the AM tone sequence. When the subject is attending to
the pure tone sequence, the aSSR is suppressed, reflecting competing in-
teractions between the two streams. Even when the subject is attending
to both the streams, the aSSR at 40 Hz is suppressed and is comparable
to the attend pure power. (Bottom) During the synchronous trials, the
40Hz aSSR is comparable across attention conditions.
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for three different frequency separations between the two tones corresponding to 15,

9 and 6 semi-tones.

3.4.2 Experimental procedure

Subjects were seated in a sound proof room and EEG data was acquired

using a 64 channel Brainvision acti-Champ system at 1000Hz. Stimuli were pre-

sented through Etymotics Research ER-2 insert earphones at a comfortable loudness

level( 70dB). A short training module was presented before each experimental block.

Subjects received feedback after each trial. The main experiment was split into two

repetitions of three blocks corresponding to three different frequency separation (15,

9, 6 semi-tones). In all the blocks, subjects were asked to pay global attention to

both streams. During each block, the first 15 trials consisted of alternating trials

and the next 15 trials consisted of synchronous trials. Subjects were instructed to

report if they heard intensity deviants in both streams. The stimuli were designed

in Matlab and presented using the Psychtoolbox extension [87].

3.4.3 Data Analysis

The raw EEG waveform was filtered between 0.1-70 Hz using a zero-phase 8th

order Butterworth filter. The EEG waveform was then epoched into 9.475 sec long

trials (9 sec long stimulus followed by the test tone). Outlier channels and outlier

trials were rejected using a threshold criterion on total power. Power line noise was

removed using DSS. The de-noised data was then analyzed using DSS to obtain the
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Figure 3.5: Stimulus for experiment #2. (A) Alternating stim-
ulus. Two tones 15, 9 or 6 semi-tones apart(tone B at 1000Hz and tone
A at 420 Hz, 595 Hz and 707Hz), alternating with each other. Tone B is
amplitude modulated at 40 Hz. Each tone is 225 ms long and the inter-
tone-interval for both the tones is 225 ms. After 20 tone-pair repeats,
a test tone at tone B is played after a random jitter between 220-225
ms.(B) Synchronous stimulus. The same two tones, concurrent with
each other. A test tone B is introduced at the end of each trail. Subjects
were asked to report if they heard a deviant in both tone A and tone
B and the test tone response was compared under different preceding
context of alternating or synchronous stimuli.
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Figure 3.6: Probe tone response. The strength of the probe tone
response is compared when the trials are alternating vs. synchronous.
The probe tone response is much stronger when the preceding stimulus
is synchronous than when the preceding stimulus is alternating.

most repeatable auditory component across trials.

3.4.4 Results

The test tone response was compared between alternating and synchronous

trials, for three different frequency separations between the AM tone and pure tone.

For all the frequency separation conditions, the test tone response is stronger when

the preceding stimulus consists of synchronous tones Figure 3.6. Further, a latency

trend is observed across frequency separations Figure 3.6. When the tones are 6

semi-tones apart, the test tone peak response is delayed more when the preceding

stimulus is alternating, than when the preceding stimulus is synchronous. This delay

is reduced as the frequency separation between the tones is increased. The probe

tone neural response difference between the alternating and synchronous trials were

averaged across 10 subjects.
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Figure 3.7: Stimulus for experiment #3. A sequence of two alter-
nating pure tones 9 semi-tones apart(tone B at 600Hz and tone A at
357Hz ) and an amplitude modulated tone concurrent with both the
pure tones(centered at 1009 Hz, am rate = 40Hz).Subjects were asked
to pay attention to either tone A or tone B and report if they heard an
intensity deviant (4dB) in the attended tone stream. Each tone is 225
ms long and the inter-tone-interval between the A tones is 225 ms and
B tones is 225 ms.. Modulation in the 40Hz aSSR was studied under
different attention conditions.

3.5 Experiment 3: Effects of temporal coherence in the stimulus dur-

ing a selective attention task

3.5.1 Stimulus design

The stimulus (Figure 3.7) consists of a sequence of two alternating pure tones

9 semi-tones apart(tone B at 600Hz and tone A at 357Hz ) and an amplitude mod-

ulated tone concurrent with both the pure tones(centered at 1009 Hz, am rate =

40Hz). Subjects were asked to pay attention to either tone A or tone B and report

if they heard an intensity deviant (4dB) in the attended tone stream. Modulation

in the 40Hz aSSR was studied under different attention conditions.
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3.5.2 Experimental procedure

Subjects were seated in a sound proof room and sounds were played through

Etymotics research ER-2 insert earphones at a comfortable loudness level. EEG data

was acquired using a 64-channel Brainvision acti-Champ system at 1000 Hz. The

experiment was conducted in two blocks of 30 trials each. In the first block subjects

were asked to pay attention to the tone at 600Hz and in the second block subjects

were asked to pay attention to the tone at 357 Hz. To improve task understanding,

first 15 trials of each block consisted only of the target frequency tone and the

AM tone sequence. Before neural data collection, a training module was provided.

Subjects received feedback after each trial during the experiment.

3.5.3 Data Analysis

Raw EEG data from the clean sensors was filtered between 1-48 Hz using

zero-phase shift fft filters. Eye blink artifacts were removed from the data using

the data collected in the HEOG and VEOG sensors as reference. The clean trials

were split into mini-epochs consisting of the response to one low frequency tone -

high frequency tone pair. The most repeatable EEG response during these mini-

epochs was computed using a denoising source separation algorithm with a Ledoit

Wolf covariance estimator. Figure 3.8 shows the spatial distribution of the most

repeatable neural response for one subject. Figure 3.10 shows the neural response

for the same subject. Data from 10 subjects were averaged to compute the grand

average response. The 40 Hz power in the mini-epochs was compared under attend
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Figure 3.8: Spatial distribution of neural response for one representative subject.

to low frequency and attend to high frequency conditions.

3.5.4 Results

The 40Hz aSSR was compared during the tone A epochs and tone B epochs

for two different attention conditions, namely attend to tone A and attend to tone

B. The neural representation of the three tone sequence showed modulation in the

40Hz aSSR reflecting the attentional state of the subject. In general, the 40Hz aSSR

was stronger during the tone A epochs ( ttest, p¡¡0.01). During the attend to tone A

task, the difference in the 40Hz aSSR between the tone A epochs and tone B epochs

was much larger than during attend to tone B task (Figure 3.10).
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Figure 3.9: The bar plots represent the RMS power at 40Hz during
different attention conditions in the A tone epoch and B tone epoch.
The 40 Hz power during the A tone epochs is always larger than the
40 Hz power during the B tone epochs. However, when the subject is
attending to tone B, the difference between the power in the A tone
epochs and B tone epochs is smaller.

Figure 3.10: The wavelet component at a scale corresponding to 40 Hz
is plotted during the attend to tone A and attend to tone B conditions.
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3.6 Experiment 4: Temporal coherence and feature binding in the

streaming of complex tones

3.6.1 Stimulus Design

To discern the mechanism of binding unique and shared features of two streams

during selective attention, we use two recurring complex tone sequences (7 harmonics

in each) as stimulus, with pitch at fa = 150Hz and fb = 225 Hz (Figure 3.11). This

results in two shared frequency components (450 Hz and 900 Hz) in the competing

streams. During the first 1 second of each trial, a prime tone sequence consisting

of only the target tone complex is played. During the next two seconds of the trial,

both the target and the distractor tone complex are played. In the last one second

of the trial, only the probe tone sequence is played.The total stimulus duration is

4.625 secs if the prime tone is at pitch 125 Hz and 4.5 secs if the prime tone pitch is

225 Hz. In each trial, subjects were asked to pay attention to the leading sequence

of tone complexes (prime tones) and report if they heard an intensity deviant in the

attended stream. After each trial, we measure the neural response to a sequence of

pure tones centered at frequencies that are either shared between the two complexes

(450 Hz and 900 Hz) or are unique to tone complex A (150 Hz and 300 Hz) or unique

to tone complex B (225Hz and 675Hz). The neural response to the probe tones is

compared under different attention conditions.
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Figure 3.11: The stimulus consists of two harmonic complex sequences
with pitches fa = 150Hz and fb = 225 Hz. In each task, subjects are
instructed to selectively attend to either tone complex A or tone complex
B and detect intensity deviants in the target stream. (A) Attend to
tone complex A, test tone frequency = a0. For the first 1 second
of the trial, only tone complex A is played (prime tones), followed by 2.5
seconds of both the harmonic complexes (task tones). During the last 1
second of the trial, test tones are played at 4 Hz. The frequency of these
test tones were varied to probe the response at frequencies unique to tone
complex A, unique to tone complex B and shared between both tone
complexes. (B) Attend to tone complex B, test tone frequency
= a0. For the first 1 second of the trial, only tone complex B is played
(prime tones), followed by 2.5 seconds of both the harmonic complexes
(task tones). During the last 1 second of the trial, test tones are played
at 4 Hz.
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3.6.2 Experimental procedure

Subjects were seated in a sound proof room and sounds were played through

Etymotics research ER-2 insert earphones at a comfortable loudness level. EEG

data was acquired using a 64-channel Brainvision acti-Champ system at 1000 Hz.

The left mastoid was used as the reference for the recording. The experiment was

conducted in three blocks of 60 trials each. The prime tone was tone complex B

during the first 30 trials of each block, and tone complex A during the last 30 trials.

During the first block, the probe tone frequency alternated between 150 Hz and 225

Hz every trial. During the second block, the probe tone frequencies were 450 Hz and

675 Hz, in the last block the probe tone frequencies were 300Hz and 900 Hz. Before

neural data collection, a training module was provided. Subjects received feedback

after each trial.

3.6.3 Data analysis

Data from corrupt sensors were removed using a threshold criterion on the

variance of each sensor. Data from the clean sensors was filtered between 2-10 Hz

using a zero-phase fft filter with transition bandwidth of 0.5 Hz. Eye-blink artifacts

were regressed out of the data using the data recorded on HEOG and VEOG sensors.

Data was then epoched and baseline corrected (using 200 msecs before the start of

each trial). Figure 3.12 shows data from one representative subject after the removal

of eye-blink artifacts.The most repeatable EEG response across trials was computed

using an improved de-noising source separation algorithm, that uses a Ledoit Wolf
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covariance estimator [89]. The neural response was averaged across 15 subjects. The

average neural response across 15 subjects is plotted in Figure 3.13. All the data

analysis was done in python using the mne-python package [90,91].

3.6.4 Results

Figure 3.13 shows the average neural response across 15 subjects. When the

subject is paying attention to tone complex A(tone complex B), response to probe

tones which are unique harmonics of tone complex A(tone complex B) are enhanced,

while the response to unique harmonics of tone complex B(tone complex A) don’t

show such enhancement. The response to the shared harmonics of tone complex A

and tone complex B are comparable in both attention conditions. The average RMS

probe tone response across different attention conditions is summarized in Figure

3.14.

3.7 Discussion

This study explores the mechanisms of temporal coherence and attention in

the binding of features that belong to one auditory source and its segregation from

features that belong to other sources in a cluttered auditory scene. Subjects were

performing an intensity deviance detection task while their EEG was simultaneously

recorded. In the first experiment subjects performed two types of tasks. In the first

task, listeners judged whether they heard an oddball intensity deviant at a given

target frequency in the presence of an alternating/synchronous distractor (selective
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Figure 3.12: Raw data from one representative subject. (A)
Response across trials on channel FCz. (B) Topoplot of evoked response
as function of time.
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Figure 3.13: Grand average neural response. (A) Unique A channel
probe tones. Average DSS component when probe tones are unique to
tone complex A, under attend to tone complex A (top) and attend to
tone complex B (bottom) condition. (B) Unique B channel probe tones.
Average DSS component when probe tones are unique to tone complex
B, under attend to tone complex A (top) and attend to tone complex B
(bottom) condition. (C) Shared probe tones. Average DSS component
when probe tones are shared between tone complex A and tone complex
B, under attend to tone complex A (top) and attend to tone complex B
(bottom) condition.

attention task). In the second task, subjects were asked to report whether they

heard oddballs in both the frequencies (global attention task). Thus, the subjects

would perform well in the first task if the streams are segregated perceptually while

during the global attention task they are at an advantage if the streams are fused

perceptually. The neural representation of one of these tone sequences compared

across attention and stimulus conditions, revealed that stream segregation is facili-

tated when the tones alternate, whereas synchronous tones promote the grouping of

the tone sequences. These results are consistent with the predictions of the temporal

coherence model for stream segregation.

To eliminate stimulus induced differences in the neural response, in the sec-

ond experiment, response to an isolated probe tone preceded by alternating and

synchronous distractor tones was compared, while the subject was attending to the
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Figure 3.14: RMS probe tone response. The root-mean square
response strength is compared when the subject is attending to tone
complex A vs. tone complex B. The response to the test tones unique to
tone complex A is stronger when the subject is attending to tone complex
A. Similarly, the response to unique B tones is stronger when subject
is attending to complex B than when attending to tone complex A. No
significant difference was observed in the response to shared channels
when the subject was attending to tone complex A or tone complex B.
Results were obtained by averaging data across n = 15 subjects.
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entire stimulus (global attention). For the identical probe tone stimulus, the re-

sponse was stronger when it was preceded by a synchronous sequence, than when

it was preceded by an alternating sequence reflecting the facilitative interactions

between the tone sequences when they are synchronous. Significant differences be-

tween the alternating and synchronous presentation modes were observed even for

large frequency separation (15 semi-tones) between the tones. For such large separa-

tions, it is unlikely that such an effect can be explained due to peripheral (cochlear)

interactions.

While the previous two experiments used alternating or synchronous tone se-

quences that were anti-coherent and perfectly coherent respectively, in the third

experiment, we introduce an additional amplitude modulated tone sequence con-

current with an alternating sequence. Thus, the AM tone sequence is only partially

coherent with either tone sequence in the alternating stream. We then investigate

modulation in the response to the AM sequence based on the attentive state of the

subject. The RMS power in the 40 Hz aSSR showed modulation on a per epoch ba-

sis, consistent with the hypothesis of facilitative interactions between the attended

sequence(or attended feature) and all features of the auditory scene temporally co-

herent with it. The findings of this experiment are conforming with results from

human studies using speech stimuli [92] that show on individual electrode sites sen-

sitive to a particular high frequency range, the neural response to the same mixture

sound in two attention conditions were enhanced only for the target, with responses

for similar sounds in the masker speaker suppressed.

The temporal coherence model predicts that interactions between neural pop-
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ulations with coherent activation are facilitative and that these facilitative inter-

actions evolve at a rate dictated by the dynamics of the sound stimulus. These

interactions set up an expectation for oncoming sounds and aid their segregation.

Previous studies [?, 5] have shown that response to an attended stream is stronger

than the response to unattended streams in a mixture. However, it is unclear if

individual features that belong to the attended stream are also enhanced. In the

final experiment, we use alternating harmonic complexes with overlapping harmonic

components and test the response to individual harmonics after the task, using a

probe tone. Harmonic components unique to the attended stream remain in an en-

hanced state at the end of the task and show a stronger response than components

that belong to the unattended stream. Even though the subjects were instructed

to pay attention to the harmonic complex sequence and had no access to track in-

dividual harmonic components, individual features ( harmonic components ) that

belong to the attended sequence also show enhancement supporting the premise of

the temporal coherence model. Moreover, the response to the shared components

were comparable for both attention conditions, reflecting their contribution to the

perception of the attended stream.

The results of these experiments are in agreement with the predictions of

the computational model described in the previous chapter - in which temporal

coherence between the response of neural populations activated by sounds mediates

stream segregation through the formation of facilitative or suppressive connectivity

between neural populations.
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3.8 Conclusions

The present findings provide insights into the mechanism of temporal coher-

ence for stream segregation. The results establish a strong influence of attention

modulated, stimulus driven coherence in the perception of distinct auditory streams.

Using simple tone based stimuli we were able to test the temporal coherence model

in its most direct form. In the next chapter, we extend the study to include complex

natural stimuli such as speech mixtures. While EEG provides a window to observe

the overall neural activity of large neural populations, more direct physiological

studies are required to probe the existence of coincidence detectors and to test the

formation of facilitative/depressive connections.
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Chapter 4: Decoding auditory attention to competing speech using

EEG spatial patterns.

Recent efforts to decode the attentional focus of human subjects while listen-

ing to competing speech stimuli have focussed on exploiting the differences in the

temporal structure of the speech sentences. Most efforts have pursued a stimulus re-

construction approach, whereby using the envelope of the clean speech as the output

and the time series data on multiple channels as input, a regression model is learnt

whose prediction shows a stronger correlation with the attended speech envelope

when the model is trained using the attended speech than the unattended speech.

In this work, we build a classifier that uses the EEG spatial patterns exclusively, to

predict the attentional focus of the subject. The classifier is trained on the EEG

data of a group of trials where the subject is paying attention to one of two speakers

in a mixture. We then make predictions on the attentional focus of the subject on a

separate set of test trials using this classifier. We use common spatial patterns [93]

to generate features that can discriminate between the two attentional conditions.
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4.1 Introduction

Attention plays a key role in helping humans segregate a target speaker’s

speech from other competing background speech or noise. Most recent methods

to decode the focus of attention of a subject while they listen to competing speech

utterances are based on using the changes in cortical activity that track the dynamic

temporal modulations in speech [5, 92, 94–98]. The attentional focus is decoded

by modeling a single input, multi-output linear system with the speech envelope

as input and the measured EEG waveforms as output. It has been shown that

attending to one of the speech streams produces a modulation in the measured

impulse response around 200 ms after stimulus onset in the left hemisphere [97].

Other MEG studies [5] have shown that there exists separate neural represen-

tations for the speech of the two speakers, with each being selectively phase locked

to the rhythm of the corresponding speech stream. Another study showed that

reconstructed spectrograms from surface ECoG recordings contained spectral and

temporal characteristics that resembled the attended speech more than the unat-

tended speech [92]. Another method uses the clean speech waveform and measured

neural response to build a statistical model whose parameters are predicted using

methods such as the expectation maximization algorithm [99].

Most EEG methods for understanding the neural mechanisms that allow the

human brain to solve the cocktail party problem with such remarkable robustness

rely on trial averaging. Other methods such as [99,100] rely explicitly on the acoustic

waveforms to generate a measure of correlation between the measured EEG wave-
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forms and acoustic stimulus. In some of this work, a repeatable neural response is

obtained through some de-noising technique such as DSS and the resulting single

waveform is used to build decoders. In this work, the feature extraction stage is

combined with the decoding problem to build a model that exploits only the spatial

distribution of the EEG response to generate a decoder. Subjects were asked to

attend to either a male or female voice in a mixture. Feature vectors were extracted

from the measured EEG waveform using the method of common spatial patterns

and classified into attend male or attend female conditions using linear discriminant

analysis. This method lends itself to BCI applications because of its simplicity and

its reliance only on the measured EEG waveforms without utilizing the raw stimulus

waveforms.

4.2 Results

Classification accuracy The classification accuracy of the decoder is shown

in Figure 4.4 for all subjects. The attentional orientation could be decoded at a mean

accuracy of approx. 85%. The accuracy was measured using 4-fold cross-validation

across trials.

Spatial distribution of decoder weights Figure 4.2 shows the projection

of common spatial patterns on the sensor space for each subject, averaged across

trial length. The spatial patterns show a distribution centered at the top of the head

and along the temporal areas, consistent with observed spatial patterns in EEG for

auditory related tasks [100].
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Figure 4.1: Classification accuracy across individual subjects .

Decoding attention over time Figure 4.3 depicts the classifier accuracy

as a function of time during the trial for one subject. At t = 0 the target speech

sentence is played. At t = 0.5 the distractor speech is introduced. The classification

accuracy starts increasing at sound onset and then reduces when the distractor

speech is introduced. About 0.5s after distractor speech onset the classification

accuracy increases again reflecting the attentional state of the subject.

Correlation of features with attended and unattended speech The

extracted common spatial pattern features are correlated with the speech envelope

of the two competing speech sentences. Figure 4.4 plots the difference in correlation

between female speech and male speech averaged across all subjects. During the

trials where the subjects were paying attention to the male speech this difference is

negative, while during the attend female trials, this difference is positive. In both
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Figure 4.2: Visualisation of common spatial patterns across subjects .
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Figure 4.3: Performance of the decoder over time. Classifier
performance over time for an exemplar subject.
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speaker - grouped results .
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cases, the magnitude of difference was 0.02, with a p < 0.05.

4.3 Discussion

Traditional methods of processing EEG data rely on trial averaging to elim-

inate the effects of large background neural activity. An auditory evoked response

obtained by averaging over several trials is a common analysis technique used to

obtain the evoked response to discrete stimulus onset events. [101, 102]. Recently,

regression methods have been used to quantify the relationship between the audi-

tory stimulus and the neural response [5, 92,94,100]. These methods require access

to the clean, un-mixed stimulus waveforms to derive decoders that depend on the

second order statistics of the input stimulus, output neural response and their cross-

correlations. In this work, we seek to utilize only the information from the spatial

sensors to decode auditory attention without relying on any temporal features of the

recordings or the stimulus waveforms. We derive spatial filters in sensor space that

optimize the classification accuracy of a classifier that predicts whether the subject

was paying attention to male or female speech.

Using the method of common spatial patterns for feature extraction and linear

discriminant analysis for classification, we achieve an average accuracy of 85% across

ten subjects. Projection of the extracted features back in the sensor space shows a

distribution that matches expected EEG spatial activation for auditory tasks. This

method also provides a mechanism to perform online decoding, since the decoder

does not use the temporal information in the stimulus. Although the decoder was
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built without explicitly relying on the temporal features of the acoustic stimulus,

the extracted common spatial pattern features can be correlated with the acoustic

waveforms to obtain an additional metric for decoding the trials.

4.4 Methods

4.4.1 Participants

Fifteen human subjects participated in the experiment. All subjects reported

normal hearing. Written informed consent was obtained from each participant. The

Institutional Review Board of the University of Maryland approved the experimental

protocol.

4.4.2 Stimuli and Experimental Setup

The stimulus consisted of speech sentences from the GRID corpus [103]. Speech

from a male speaker and a female speaker were mixed at equal power. To facilitate

speech segregation, the distractor speaker’s speech was introduced after a 500 ms

delay from start of each trial. The experiment consisted of 240 trials split into 4

blocks of 60 trials. In the first and third blocks the subject was asked to pay atten-

tion to the female voice, while in the second and fourth blocks the subject was asked

to pay attention to the male voice. Each sentence in the GRID corpus consisted of

a six word sequence of the form command color preposition letter digit adverb.

Subjects were asked to report the color and digit combination that the target

speaker uttered. EEG data was acquired at a sampling rate of 500Hz using a
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BrainVision actiChamp system of 64 electrodes and 4 peripheral sensors.

4.4.3 Data Analysis

Data from faulty sensors were removed from the raw data and then filtered

in the range of 1-10 Hz. Eye blink artifacts were removed from the data through

regression. The raw data was segmented into epochs. Epochs were sorted based

on attend male and attend female conditions. Outlier trials were removed from the

data set using a threshold criterion on maximum power across all channels. Data

from the two classes were then segregated into training(∼150) and testing(∼50)

trials. Using the method of common spatial patterns, feature vectors were learnt

from the training trials to maximize classification accuracy. The learnt features were

then classified using linear discriminant analysis. All the data analysis was done in

python using mne-python [90].

Decoding in sensor space using common spatial patterns

Common spatial patterns [93] is a linear transformation technique that trans-

forms the data into a basis that maximally separates two classes.

The EEG data is represented by a N × T matrix X, where N is the number

of electrodes and T is the length of time samples in each epoch. For each epoch, an

estimate of the spatial covariance in the EEG during the epoch is obtained as:

R = XXT/tr(XXT ) (4.1)

The normalization in equation 4.1 eliminates magnitude variations in the EEG be-

tween epochs. The covariance matrix was then averaged over epochs per condition
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to obtain Ca and Cb.

Ca =
∑

i∈classa Ri

Cb =
∑

i∈classb Ri (4.2)

To determine if the two classes possess spatial patterns that allow to be dis-

criminated, a composite covariance matrix is constructed.

C = 0.5 ∗ (Ca + Cb) (4.3)

The matrix C is then factored as:

C = UλcU
T (4.4)

The covariance matrices Ca and Cb are then whitened to form Sa and Sb using P

formed as:

P =

√
1

λc
UT (4.5)

Sa = PCaP
T

Sb = PCbP
T (4.6)

Sa and Sb share the same eigenvectors and the sum of the corresponding eigen-

values will be 1[ [104]].

Sa and Sb can be decomposed as:

Sa = DψaD
T

Sb = DψbD
T (4.7)
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where ψa + ψb = I

Since the eigenvectors which span a measurement space are known to be opti-

mal in the least squares sense, for the amount of variance in the measurements they

can account for, projection of whitened EEG epochs on DT will yield feature vectors

which are optimal for discriminating between two populations. Thus, in order to

discriminate two classes based on their spatial features, each epoch in the EEG is

first normalized the trace of its own covariance matrix.

Xnorm = X/tr(XXT ) (4.8)

The normalized data is then whitened using P obtained from the composite covari-

ance matrix and then projected along the eigenvectors of its own whitened popula-

tion covariance. The overall transformation applied to the data is:

X̄ = DTPXnorm (4.9)

4.5 Conclusions

In this work, we have implemented a fast binary classifier to decode the at-

tentional focus of human subjects while they listen to competing speakers. While

being fast and computationally simple, this method lends itself to online decoding

of individual trials, since it only exploits the differences in the spatial signatures

of neural activation between the two conditions, without relying on the acoustic

waveform for guiding the decoding. However, the learnt features can be correlated

with the acoustic waveforms to obtain additional metrics for classifying each trial.

This method can have potential applications in fast BCI applications.
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Chapter 5: Conclusions and Future Work.

In summary, we have described a model for segregating complex sound mix-

tures based on the temporal coherence principle. The model computes the coinci-

dence of multi-scale cortical features and clusters the coherent responses as ema-

nating from one source. It requires no prior information, statistics, or knowledge

of source properties, but can gracefully incorporate them along with cognitive in-

fluences such as attention to, or memory of specific attributes of a target source to

segregate it from its background. The model provides a testable framework of the

physiological bases and psychophysical manifestations of this remarkable ability.

Future work can aim to exploit the power of training multiple hidden lay-

ers in the auto-encoder architecture. Our computational algorithm lends itself to

easy extension into a deep neural network framework. Better signal reconstruction

techniques can be employed to improve the quality of reconstruction.

The findings from EEG experiments provide insights into the mechanism of

temporal coherence for stream segregation. The results establish a strong influence

of attention modulated, stimulus driven coherence in the perception of distinct au-

ditory streams. Using simple tone based stimuli we were able to test the temporal

coherence model in its most direct form. We have also implemented a fast binary
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classifier to decode the attentional focus of human subjects while they listen to com-

peting speakers. The sensor space decoder exploits the second order statistics of the

sensors. While being fast and computationally simple, this method lends itself to

online decoding of individual trials, since it only exploits the differences in the spa-

tial signatures of neural activation between the two conditions, without relying on

the acoustic waveform for guiding the decoding. However, the learnt features can be

correlated with the acoustic waveforms to obtain additional metrics for classifying

each trial. This method can have potential applications in fast BCI applications.

Although the results from our EEG experiments strongly support the tempo-

ral coherence hypothesis for auditory source segregation, more direct physiological

experiments are required to further confirm the exact nature of these neural com-

putations, how correlation can be represented through spiking activity and where

these computations are performed.
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