A Unifying Framework for Iteration Reordering Transformations

Wayne Kelly and William Pugh
Department of Computer Science
University of Maryland, College Park, MD 20742
{wak,pugh}@cs.umd.edu

February 27, 1995

Abstract

We present a framework for unifying iteration re-
ordering transformations such as loop interchange,
loop distribution, skewing, tiling, index set splitting
and statement reordering. The framework is based
on the idea that a transformation can be represented
as a mapping from the original iteration space to a
new iteration space. The framework is designed to
provide a uniform way to represent and reason about
transformations. We also provide algorithms to test
the legality of mappings, and to generate optimized
code for mappings.

1 Introduction

Optimizing compilers reorder iterations of state-
ments to improve instruction scheduling, register
use, and cache utilization, and to expose parallelism.
Many different reordering transformations have been
developed and studied, such as loop interchange, loop
distribution, skewing, tiling, index set splitting and
statement reordering [AK87, Wol89b, Wol90, CK92].
Each of these transformations has its own special le-
gality checks and transformation rules. These checks
and rules make it hard to analyze or predict the ef-
fects of compositions of these transformations, with-
out performing the transformations and analyzing
the resulting code.

Unimodular transformations [Ban90, WL91] go
some way towards solving this problem. Unimodular
transformations is a unified framework that is able
to describe any transformation that can be obtained
by composing loop interchange, loop skewing, and
loop reversal. Such a transformation is described by
a unimodular linear mapping from the original iter-
ation space to a new iteration space. For example,
loop interchange in a doubly nested loop maps itera-
tion [¢,] to iteration [j,¢]. This transformation can

be described using a unimodular matrix:

0 1 i
ol
Unfortunately, unimodular transformations are lim-
ited in two ways: they can only be applied to per-
fectly nested loops and all statements in the loop nest
are transformed in the same way. They therefore can-
not represent some important transformations such

as loop fusion, loop distribution and statement re-
ordering.

1.1 Mappings

A mapping has the following general form:

AR L I N i
where:

e The iteration variables i, ...,i™ represent the
loops nested around the statement(s).

e The f7’s are functions of the iteration variables.

This mapping represents the fact that iteration
[i1,...,i™] in the original iteration space is mapped
to iteration [f!,...,f"] in the new iteration space.
The implicit assumption is that the iterations in the
new iteration space will be executed in lexicographic
order. So, by specifying a mapping, we are really
specifying a reordering of the iterations.

For example the above unimodular transformation
would be represented by the mapping { [¢, j] — [4,7] }
In the case of unimodular transformations:

e All statements are mapped by the same map-
ping.

e The f7’s are linear functions.

e The mapping is invertable and unimodular.

e The dimensionality of the old and new iteration
spaces are the same (i.e., m = n).

In our framework we generalize unimodular transfor-
mations in the following ways:

e We specify a separate mapping for each state-
ment

o We allow the f7 to be psuedo affine rather than
just linear. Affine means that they can include
a (possibly symbolic) constant term. Pseudo
affine means that they can also involve integer
division and modulo operations (provided the
denominator is a known integer constant).

o We require the mapping to be invertable, but
not necessarily unimodular.

e We allow the dimensionality of the old and new
iteration spaces to be different.

e We allow the mapping to be piecewise (as sug-
gested by [Lu91]): we can specify a mapping
T, as |J; 7,;|Cpi where the C;’s are disjoint
sets which together contain all points in the
iteration space of statement s,. This mapping
specifies that iteration ¢ is mapped to the point
Ty (3) iff i € Cp.

By generalizing in these ways, we can represent a
much broader set of reordering transformations, in-
cluding any transformation that can be obtained by
some combination of loop interchange, loop rever-
sal, loop skewing, statement reordering, loop distri-
bution, loop fusion, loop blocking! (or tiling) [AKS87]
and index set splitting! [Ban79].

Figure 1 gives some interesting examples of map-

pings.

1.2 Overview

Our framework is designed to provide a uniform way
to represent and reason about reordering transfor-
mations. The framework itself is not designed to
decide which transformation should be applied. The
framework should be used within some larger system,
such as an interactive programming environment or
an optimizing compiler. It is this surrounding system
that is finally responsible for deciding which trans-
formation should be applied. The framework does
however provide some algorithms that would aid the
surrounding system in its task. [KP94a] is an exam-
ple of a surrounding system that uses our framework.

LOur current implementation cannot handle all cases of
these transformations.

The rest of this paper is organized as follows. In
Section 2 we describe how dependences and map-
pings are represented. In Section 3 we demonstrate
that a large class of traditional transformations can
be represented using mappings. In Section 4 we de-
scribe an algorithm that tests whether a mapping is
legal. In Section 5 we describe our code generation
algorithm. This algorithm takes a mapping and pro-
duces optimized code corresponding to the transfor-
mation represented by that mapping. By making use
of the gist operation [PW92] we are able to produce
code with a smaller number of conditionals and loop
bounds than would otherwise be necessary. Finally
we discuss related work, give our implementation sta-
tus and state our conclusions.

2 Dependences and Mappings

Most of the previous work on program transfor-
mations uses data dependence directions and dis-
tances to summarize dependences between array ref-
erences. These abstractions are sufficient for sim-
ple transformations such as unimodular transforma-
tions, but they are not precise enough to determine
the legality of loop fusion and a number of other
transformations without actually applying the trans-
formation and re-evaluating dependences. Since our
framework includes loop fusion, they are not suffi-
cient for our purposes either. We evaluate and rep-
resent dependences exactly using affine constraints
over integer variables. We use the Omega Library
[Pug92, PW92] to manipulate and simplify these con-
straints.

The following is a brief description of integer tu-
ple relations and dependence relations.

2.1 Integer tuple relations and sets

An integer k-tuple is simply a point in Z*. A tuple
relation is a mapping from tuples to tuples. A single
tuple may be mapped to zero, one or more tuples.
A relation can be thought of as a set of pairs, each
pair consisting of an input tuple and its associated
output tuple. All the relations we consider map from
k-tuples to k'-tuples for some fixed k and k'. The
relations may involve free variables such as n in the
following example: { [i] — [i+1] |1 <i <n }. These
free variables correspond to symbolic constants or
parameters in the source program. We use Sym to
represent the set of all symbolic constants. A relation
is represented as the union of a set of simple relations:
relations that can be described by the conjunction of
a set of affine constraints. We can represent simple
relations containing certain non-convex constraints

Code adapted from OLDA in Perfect club (TI)
Original code
do 20 mp = 1, np

do 20 mq = 1, mp
do 20 mi = 1, morb

10 xrsig(mi,mq)=xrsiq(mi,mq)+
xrspq((mp-1)*mp/24+mq)*v(mp,mi)
20 xrsiq(mi,mp)=xrsiq(mi,mp)+

xrspq((mp-1)*mp/2+mq)*v(mq,mi)
Mapping (to expose parallelism)
Tyg: {[mp, mg, mi] —[mi mg, mp, O]}
b t[mp, mg, mi] —[mi, mp, mg, 1]}
Transformed code

do 20 mi = 1,morb /* parallelizable */
do 20 t2 = 1,np /* parallelizable */
do 10 t3 = 1,t2-1
10 xrsiq(mi,t2)=xrsiq(mi,t2) +

$ xrspq((t3-1)*t3/24t2)*v(t3,mi)
xrsig(mi,t2)=xrsiq(mi,t2) +

$ xrspq((62-1)*t2/24t2)*v(t2,mi)
xrsiq(mi,t2)=xrsiq(mi,t2) +

$ xrspq((62-1)*t2/24+t2)*v(t2,mi)
do 20 t3 = t241,np

20 xrsig(mi,t2)=xrsiq(mi,t2) +
$ xrspq((t2-1)*t2/24t3)*v(t3,mi)

Transformations required normally

index set splitting

loop distribution
triangular loop interchange
loop fusion

LU Decomposition without pivoting
Original code

do20k =1,n
do 10i = k+1,n
10 a(i,k) = a(i,k) / a(k,k)
do20j=k+1,n
20 a(i,j) = a(ij) - a(ik) * a(k,j)

Mapping (for locality)

Tyo: {[k,i] — [64((k—1) div 64)+1,64(i div 64), k, k, i|}
Ty = {[k, i, 5] — [64((k—1) div 64)+1,64(i div 64),7, k,]}

Transformed code

do 30 kB =1, n-1, 64
do 30 iB = kB-1, n, 64
do 20 kj = kB, min(kB+63, n)
do 10 k = kB, kj-1
do 10 i = max(k+1,iB), min(iB+63,n)

10 a(i k) =a(i,ki)-a (k) Fa(k k)
do 20 i = max(iB,kj+1), min(iB+63,n)
20 a(i ki) =a(i,kj)/a(ki,k})

do 30 kj = kB+64, n
do 30 k = kB to kB+64
do 30 i = max(k+1,iB), min(iB+63,n)
30 ali,kj) =ai kg)-a(i,k) Fa k)

Transformations required normally

strip mining

index set splitting

loop distribution

imperfectly nested triangular loop interchange

Code adapted from CHOSOL in the Perfect club (SD)

Original code

do 30 i=2,n
10 sum(i) = 0.
do 20 j=1,i-1
20 sum(i) = sum(i) + a(j,i)*b(j)

30 b(i) = b(i) - sum(i)

Mapping (to expose parallelism)

Tyg: {[¢1 =10, 4 0, 0]}
Ty : i, il = [1, Js 0, 4]}
Tag: {[7] - [1, -1, 1, 0]}

Transformed code

do 10 i = 2,n /* parallelizable */
10 sum(i) = 0.
do 30 t2 =1, n-1
do 20 i = t24+1,n /* parallelizable */
20 sum(i) = sum(i) + a(t2,i)*b(t2)

30 b(t241) = b(t2+41) - sum(t2+1)
Transformations required normally

e loop distribution
e imperfectly nested triangular loop interchange

Banded SYR2K adapted from BLAS
Original code

do10i=1,n
do 10 j = i, min(i+2%*b-2,n)
do 10 k = max(i-b+1,j-b+1,1),min(i+b-1,j4+b-1,n)
10 C(i,j-i+1) = C(i,j-i+1) +
$ alpha*A(k,i-k+b)*B(k,j-k+b) +
$ alpha*A(k,j-k+b)*B(k,i-k+b)

Mapping (for locality and to expose parallelism)

Tyo: {04 4, k] — [i—i+l, k—3, k]}

Transformed code

do 10 t1 = 1, min(n,2*b-1) /* parallelizable */
do 10 t2 = max(1-b,1-n), min(b-t1, n-t1)
do 10 k = max(1,t1+t2), min(n+t2,n) /* parallelizable */
10 C(-t1-t24k+1,t1) = C(-t1-t24+k+1,t1) +
$ alpha*A(k,-t1-t2+b+1)*B(k,-t2+b) +
$ alpha*A(k,-t24+b)*B(k,-t1-t2+b+1)

Transformations required normally

e loop skewing
e triangular loop interchange

Figure 1: Example Codes, Mappings, and Resulting Transformations

operation Description Definition

FT The inverse of F r—y€EF loy—sawcF

sSNT The intersection of S and T zeSNTsxzeSANxzeT

range(F) The range of F y € range(F) < v st. e —y € F
restrict_domain(F,S) | F with domain restricted to S x—y € restrict.domain(F,S) > c—yec FAxz e S
T S The projection of S onto 1,..., xEM, oS |el=vATyst.aye s

satis fiable(S) True if S is not empty satis fiable(S) < dx € S

Table 1: Operations on tuple sets and relations, where F' and G are tuple relations and S and T are tuple sets

such as { [¢] — [i] | ¢ even } by introducing wildcard
variables (denoted by Greek letters):

{[i] =[] |Jast.i=2a}

Table 1 gives a brief description of the operations on
integer tuple sets and relations that we use in this
paper. See [Pug9l] for a more thorough description.

2.2 Control dependence

We require that any if-then-else constructs be con-
verted into guarded assignment statements or that
they be treated as atomic statements. We also re-
quire that all loop bounds be affine functions of sur-
rounding loop variables and symbolic constants. All
control dependences can therefore be implicitly rep-
resented by describing the iteration space using a set
of affine inequalities on the loop variables and sym-
bolic constants.

2.3 Data dependence

From now on, when we refer to dependences, we will
be implicitly referring to data dependences. We use
tuple relations to represent dependences. If there is
a dependence from s, [i] (i.e., iteration ¢ of statement
s,) to s,[j] then the tuple relation d,, representing
the dependences from s, to s, will map [i] to [j] (¢
and j are tuples). We do not distinguish between
different kinds of dependences (i.e., flow, output and
anti-dependences) because they all impose ordering
constraints on the iterations in the same way. It is
possible to remove output and anti-dependences us-
ing techniques such as array and scalar expansion;
we assume that this has already been done if it is
desirable, and that the dependences have been up-
dated. An alternative approach is to annotate the
dependence information in such a way that certain
dependences are ignored under the presumption that
they can be removed if necessary.

2.4 gist, approx and hull

We make use of the gist operation that was orig-
inally developed in [PW92]. The gist operation is

designed to operate on two relations, each of which
is represented by a single conjunction of constraints.
Intuitively, (gist p given ¢) is defined as the new
information contained in p, given that we already
know ¢g. More formally, if p A ¢ is satisfiable then
(gist p given ¢) is a minimal conjunction such that

((gist p given q) Aq) = (p A q))

For example gist 1 <¢ <10 given: < 5is1 <. If
pAq is not satisfiable then (gist p given ¢) is False.

The approx operation is designed to operate on
a relation that is represented by a single conjunc-
tion of constraints. The approx operation is defined
so that approx(p) 2O p and approx(p) is convex.
Within these constraints, approx(p) is made as tight
as possible; if p is convex, approx(p) = p. The orig-
inal set of constraints p may involve wildcard vari-
ables which may cause the region described by p to
be non-convex. The approx(p) operation works by
simplifying the constraints in p under the assump-
tion that the wildcard variables can take on rational
values. This allows us to eliminate all wildcard vari-
ables.

The hull operation is designed to operate on a set
of relations, each of which is represented by a single
conjunction of convex constraints. The hull of a set
of relations {Ry,...,R,,} is a new relation R’ that
is a superset of each of the R; relations. R must
also have the property that it can be represented by
a single conjunction of convex constraints. We try
to make R’ tight, but it is not necessarily what is
commonly referred to as “The convex hull” of these
relations.

2.5 Mappings

We associate a separate mapping with each state-
ment. We therefore need a way to refer to the map-
pings of individual statements. We represent the
mapping associated with statement s, as

Ty fips--vip 1 = [fp - 711 C,

The f; expressions are called mapping components.

For simplicity but without loss of generality we re-

Original_order (S, [i1,...,%;] = [f1,--s fa])
case S of

“for ip4; =...to...do S;":

return Original_order (Sy, [iy,..

[. . . ”.
Sy Sy:... 8,7

. aikaik+1] - [fla' . 'afaailc+1])

return U::1 Original_order (S,, [i1,... %) = [f1,---, fa,P])

“assignment #p”:

return T, : { [iy,...,%]) — [f1,..., fa] }

Figure 2: Function to compute mapping that corresponds to the original execution order

quire that all of the mappings have n components.
We refer to each of the positions 1,...,n as levels.

We will use the term mapping to refer to both
the mappings of individual statements and the set of
mappings associated with all statements.

3 Traditional Transformations

In this section we demonstrate how mappings can
be used to represent all transformations that can be
obtained by applying any sequence of the traditional
transformations listed in Section 1.

We will describe how to construct mappings to
represent traditional transformations by describing
how to modify mappings that correspond to the
original execution order of programs. The mapping
that corresponds to the original execution order of
a program, can be constructed by a recursive de-
scent of the abstract syntax tree (AST). Nodes in
the AST have three forms: loops, statement lists
and guarded assignment statements. The function
Original_order (see Figure 2), when called with ar-
guments of S and [] — [], returns a mapping for
each of the assignment statements in .S.

For example, the mapping that corresponds to
the original execution order of the following program
is:

Tl : {[17]] - [1717]] }
Ty {[i k] — [i,2,k] }
for i = 1 to 10 do

for j =1 to 5 do

s1(i,j) =1
for k = 0 to 100 do
s2(i,j) = 2

When constructing these mappings we categorize
mapping components as being either syntactic com-
ponents (always an integer constant) or loop compo-
nents (a function of the loop variables of that state-
ment). syntactic(f}) is a boolean function which is

true iff f; is a symbolic component (loop(f;) is de-
fined analogously). The common syntactic level (csl)
of two statements s, and s, is defined as:

csl(s,,s,) =min{i —1] 1<iA f; + f;/\
syntactic(f})A
syntactic(f})}

Intuitively, the common syntactic level of two
statements is the deepest loop which surrounds both
statements. Figure 3 describes how to construct
mappings to represent traditional transformations by
describing how to modify the mappings we have just
described. Since these rules can be applied repeat-
edly, we can represent not only standard transforma-
tions but also any sequence of standard transforma-
tions.

4 Mapping Legality Test

In this section we describe an algorithm that tests
whether a mapping is legal. A mapping is legal if the
transformation it describes preserves the semantics of
the original code. This is true if the new ordering of
the iterations respects all of the dependences in the
original code. In order words, if ¢ is an iteration of
statement s, and j an iteration of statement s , and
the dependence relation d,, indicates that there is a
dependence from i to j then T, (i) must be executed
before T, (j). More formally,

Vivjvpqu Sym 7’_)] € dpq = Tp(l) = Tq(])

where Sym is the set of all symbolic constants in the
equation, and < is the lexicographic ordering oper-
ator. We verify this by using the Omega library to
evaluate:

=3, 5,p,¢,Sym s.t.i—j€d,, NT,(i) = T,(j)
We also require that the mapping be 1-1:

vp,q,i,5,Sym (p=qAi=j) < T,(i)=T,(0)

Distribution Distribute loop at depth L over the statements D, with statement s, going into rpth loop.
Requirements: Vs,,s, s, € DAs, € D= loop(pr) AL < csl(sy, sq)

Transformation: Vs, € D, replace T}, by [f;, e

»JP

L
7Tp’fp7""f;]

Statement Reordering Reorder statements D at level L so that new position of statement s, is r

p*

Requirements: Vs,,s, s, € DAs, € D= syntactic(f) A L < csl(s,,s,) + 1A

(L <esl(sp,sq) &1 =1g)

Transformation: Vs, € D, replace T, by [f;, o fp

yipyJp

D

Fusion Fuse the loops at level L for the statements D with statement s, going into the rpth loop.

Requirements: Vs,,s, s, € D As, € D = syntactic(

P Tq

(L—2<esl(sy,s4)+2=1,=1y)

Transformation: Vs, € D, replace T, by [f;, o fp

Y Aloop(fE) AL —2 < esl(s,, s,) + 2 A

L L-1 L+1 n
7Tp)f15) () (+))7fp]

»JP 1 JP

Unimodular Transformation Apply a k£ x k unimodular transformation U to a perfectly nested loop containing
statements D at depth L...L + k. Note: Unimodular transformations include loop interchange, skewing and

reversal [Ban90, WL91].

Requirements: Vi, s,,s;, s, € DAs, € DAL <i<L+k=loop(fi)AL+k<csl(s, s,))
Transformation: Vs, € D, replace 1}, by [f,,..., fZSL_l), U[fZEL), e fZSL+k)]T, fZEL+k+1), N

Strip-mining Strip-mine the loop at level L for statements D with block size B

Requirements: Vs,,s, s, € DAs, €D = loop(ff)AL <esl(sy,s,)) AB is a known integer constant

Transformation: Vs, € D, replace T}, by [f;, ey

SV B div B, £57, L £

Index Set Splitting Split the index set of statements D using condition C'

Requirements: C' is affine expression of symbolic constants and indexes common to statements D.
Transformation: Vs, € D, replace 1), by (1, | C) U (1, | =C)

Figure 3: Representing Traditional Transformations

so that the new program performs exactly the same
set of computations as the original program. This
can be similarly verified using the Omega library.
We have also developed techniques [KP94b] to give a
closed form characterization of the set of legal map-

pings.

5 Optimized Code Generation

In this section we describe an algorithm to generate
efficient source code for a mapping. As an example,
consider changing the KIJ version of Gaussian Elim-
ination (without pivoting) into the IJK version (the
version refers to the nesting of the loops around the
inner most statement).

do 20k =1, n

do 10 i k+1, n
10 a(i,k) = a(i,k)/ak,k)
do 20 j = k+1, n
20 a(i,j) = a(i,j)-a(k,j)*a(i,k)

Michael Wolfe notes that this transformation re-
quires imperfect triangular loop interchange, distri-
bution, and index set splitting [Wol91]. We can pro-
duce the IJK ordering using the following mapping:

130 : {[kv ? .] [" kv 17 0]}
150 : {[kv 1,]] [z, 75 07 k]}
A naive code generation strategy would produce
the following code:

~.

—
—

do 20 t0 = 2, n

do 20 t1 =1, n
do 20 t2 = 0, 1
do 20 t3 =0, n

10 if (t1<t0.and.t2=1.and.t3=0)
$ a(t0,t1) = a(t0,t1)/a(tl,tl1)
if (t3<t0.and.t3<tl.and.t2=0)
20 $ a(t0,t1) = a(tO,t1)-a(t3,t1)*a(t0,t3)

This is, of course, undesirable, because it results
in about 6n3 unnecessary comparisions. This section
explains how we produce the following more efficient
code:

do 40 i = 2,n
a(i,1) = a(i,1)/a(1,1)
do 30 t2 = 2,i-1

do 20 k = 1,t2-1
20 a(i,t2) = a(i,t2)-a(k,t2)*a(i,k)
30 a(i,t2) = a(i,t2)/a(t2,t2)
do 40 j = 1i,n
do 40 k = 1,i-1

[SIY

i
40 a(i,j) = a(i,j)-ak,j)*a(i,k)

To simplify the discussion we do not consider
piecewise mappings in this section (they can be han-
dled by considering each piece of the mapping as a
separate statement).

5.1 Old and new iteration spaces

We are currently able to transform programs that
consist of guarded assignment statements surrounded
by an arbitrary number of possibly imperfectly
nested loops. For each statement s, we combine in-
formation from the loop bounds and steps into a tu-
ple set I, that describes the original iteration space
of that statement. If the mapping associated with
statement s, is T, then the statement’s new iter-
ation space I', is given by restrict_domain(T,,I,).
This new iteration space is represented internally as
a set of affine constraints and is the starting point
for the rest of this section.

In the example above, the original iteration space
is:

nAk+1<i<n}
<nAk+1<i<nAk+1<j<n}

and the new iteration space is:

'y {lik,1,0] [T<Ek<nAk+1<i<n}

L

Iy i {[6,3,0,k] [1<k <nAk+1<i<nAk+1<j<n}

5.2 Code generation for a single level

We need to generate code that will iterate over
all and only those points [t1,...,t,] in the new itera-
tion space. The new code must execute the iterations
in lexicographical order based on the new coordinate
system. In the new code, each statement will be
surrounded by n (possibly trivial) loops — one loop
for each dimension of the new iteration space. The
outermost loops iterates over values of the first in-
dex variable ¢;, the next to outer most loops iterates
over values of the second index variable t5, and so
on. This produces the desired result of having the it-
erations in the new iteration space execute in lexico-
graphic order. Our code generation algorithm builds
the transformed code recursively, level by level, start-
ing at the first /outermost level (see Figure 4). In this
sub-section we describe how code is generated for a
single level L.

We introduce a new index variable ¢; to be used
for this level. For each statement s, we need to
generate a set of constraints J, that represents the
values of ¢, for which statement s, should be exe-
cuted. We cannot simply project I’p onto t;, be-
cause this will only give us absolute upper and lower

bounds on ¢; . Expressing the tightest possible upper
and lower bounds on ¢; may require using expres-
sions that involve index variables from earlier levels.
So we instead calculate the projection Hl,,,,7L(I’p).
The result contains constraints on ¢;, on index vari-
ables from earlier levels (¢;,...,¢;), and on sym-
bolic constants. Many of these constraints are re-
dundant because the code we generated at earlier
levels enforce them. We remove these redundant con-
straints and simplify others by making use of the
information that is known about the values of in-
dex variables from earlier levels. So we have J, =
gist Hly,_”L(I’p) given known.

The J, sets for different statements may, in gen-
eral, overlap. If J, and J, overlap over some range,
then the ¢ loop that iterates over that overlap range
must contain both statements s, and s, (otherwise
the iterations will not be executed in lexicographic
order as required). In general, it is not possible to
generate a loop containing more than one statement
that iterates over exactly the J, sets of the state-
ments in the loop. The problem is that, in gen-
eral, the J, sets will have incompatible stride con-
straints. Stride constraints are constraints of the
form da s.t. t; = ca + s, where a is a wildcard vari-
able. These sorts of constraints can appear in J, if
the coefficients of the mapping components are not
+1, or if the original program contains steps which
are not £1.

We solve this problem by removing all stride con-
straints from the J, sets, and worry about adding
them later. To remove the stride constraints, we use
Al, = approx (J,).

The constraints in AI, now describe a continuous
range of values for ¢;. For purposes of explanation
we define (but do not compute) E' = J, AI,,. Having
removed the stride constraints, we can now put more
than one statement into a loop, but there is still one
problem remaining: If we were to generate a single ¢,
loop iterating over all points in £ and containing all
statements, then we would possibly still execute some
statements with values of ¢; not in their A/, ranges.
We could overcome this problem by adding guards
around the elementary assignment statements. How-
ever, we prefer a more efficient solution.

We partition the range of values of the current in-
dex variable ¢; such that within each partition, each
statement is either not executed at all or is executed
at every iteration within that partition. Instead of
generating a single loop, we generate a sequence of
loops, one for each partition.

We form these partitions as follows. We choose
an arbitrary constraint ¢ from some A, that is not

GenerateCode (T,1)
for each (stmt)

I'[stmt] = range (restrict_.domain (T[stmt], I[stmt]))

return gen_recursive (I', 1, True , True)

en_recursive (I', level, known, constraints
b 7)

active = { s | (I'[s] N known N constraints) is satisfiable}

for each (stmt) € active

J[stmt] = gist project (I'[stmt], 1..level+1) given known

Allstmt] = approx (J[stmt])
Hull = hull ({ Al[stmt] | stmt € active })

if (3 constraint c, stmt s s.t. ¢ part of Al[s] A s € active A ¢ is not part of Hull)
sl = gen_recursive (I’, level, known, constraints::{not c})
s2 = gen_recursive (I’, level, known, constraints::{c})

if (cis lower bound) then return (sl,

W@

s2)

elseif (c is upper bound) then return (s2, “;”, sl)

else return (“if” ¢ “then” sl “else” s2);
else

loop = constraints N Hull N greatest_common_step (active))

loop = gist loop given known

loopCode = generate_loop (level, loop)
new_known = known N loop

if (level < last_level) then

loopBody = gen_recursive (I', level+1, new_known, True)

return (loopCode loopBody)
else

not_represented = gist I’[only active stmt] given new_known
statement = generate_statement (only active stmt)
return (loopCode “if” not_represented “then” statement)

Figure 4: Code Generation Algorithm

part of the hull of the A/ ’s. For example, if
AL ={[t1] |1 <t <15}

and
Al,={[t1]]10<# <20}

then we would choose either t; < 15 or 10 < t;. This
constraint can be used to split the iteration space
into two disjoint iteration spaces — the interval of
the iteration space that satisfies the constraint ¢ and
the interval that satisfies the constraint —c. If ¢ is
an upper bound on the current index variable, then
the interval of the iteration space that satisfies ¢ will
be entirely executed before the interval that does not
satisfy c; if ¢ is a lower bound, then the required order
is reversed. If ¢ does not involve the current index
variable, then on any given execution, only one of the
two intervals will be executed. In that case, instead
of a loop, we generate an if-then-else construct, where
the condition is ¢, the then clause iterates over those
points satisfying ¢, and the else clause iterates over
those points satisfying —c.

Since we always choose a constraint that is not
part of the hull, we can be sure that both sections
will contain some iterations. The interval satisfying

—¢ will not contain any iterations belonging to state-
ment s. There are likely to be other statements s’
whose iterations are entirely confined either to the
interval satisfying ¢ or the interval satisfying —¢. We
detect these cases by intersecting the iteration space
of each statement with both ¢ and —¢ to determine if
they are empty. If an intersection is non-empty then
we say that the statement is active in that interval.

We repeat this splitting process recursively on
both intervals. In each interval, we consider only
those constraints that represent bounds on active
statements. The recursion terminates when all of
the constraints left to consider are part of the hull of
the active statements.

Now that we know exactly which statements are
active in each particular interval, we may be able to
add some of the stride constraints that we removed
earlier. Within a given interval, each statement s,
that is active in that interval may contribute a single
stride constraint 33 s.t. t; = a8 + b, that was re-
moved earlier (where a, is an integer coeflicient and
b, is an affine function of symbolic constants and
outer level index variables).

We calculate the greatest common step of that

interval as follows:

ges = ged({apls, is active} U
{ged(by — by)|s, is active A s, is active})

The ged (greatest common divisor) of an expression
is defined to be the ged of the coefficients in the ex-
pression.

We can now add to that interval, the constraint
33 s.t. t; = ges B + by, where s, is an arbitrary ac-
tive statement. We can safely add this constraint
since if t; satisfies the stride constraint of any active
statement then it will also satisfy this constraint.

The greatest common step will be extracted from
these constraints and used as the step for the loop
corresponding to that interval. The step may not
enforce all of the stride constraints on active state-
ments, but we cannot add anything stronger without
excluding required iterations. Any remaining stride
constraints will be enforced at later levels.

For each interval, we generate a do loop to iter-
ate over the appropriate values of ¢;. Each of these
intervals may contain a stride constraint of the form
33 s.t. t; = g B+c. If this is the case we enforce the
stride constraint by using a non-unit step in the loop.
In order to do this however, we must ensure that the
loop’s lower bound satisfies the stride constraint.

The loop’s lower bounds come from constraints of
the form lower < m ;. Such a constraint produces
a lower bound expression of:

[lower—cmw
g |—— | +¢
mg

This expression can often be simplified once we know
the values of g, m, ¢ and lower. The loop’s upper
bounds come from constraints of the form n ¢; <
upper. It is sufficient to use upper/n as an upper
bound of the loop. The loop we generate at depth L,
corresponding to interval ¢ has the form:

dot; = max(z1,...,%p), min(yi,...,Yq), ¢

where the x;’s and y;’s are the loop bounds described
above. If we can determine that the loop contains
at most a single iteration, we perform the obvious
simplifications to the code.

Within each interval i, we recursively generate
code for level L + 1. At level L + 1 we only cousider
statements that were active at level L. This process
continues until we reach level n, at which time we
generate the elementary assignment statements.

5.3 Elementary statements

Once we have generated code for all levels, only a
single statement will be active. We generate code to

guard the statement from any conditions not already
handled in loop bounds. If not all of the stride con-
straints could be expressed as loop steps, then these
guards will contain mod expressions.

Finally, we output the transformed assignment
statement. The statement has the same form as
in the original code, except that the original index
variables are replaced by expressions involving the
new index variables. We determine these replace-
ment expressions by using the Omega library to in-
vert the mapping relation and extract expressions
corresponding to each of the original index variables.
For example, if the mapping is [i1,42] — [i1 + @2, 1]
then ¢; is replaced by 75 and 5 is replaced by 71 —Jjs.

6 Related Work

The framework of Unimodular transformations
[Ban90, WL9I1] has the same goal as our work, in
that it attempts to provide a unified framework for
describing loop transformations. It is limited by
the facts that it can only be applied to perfectly
nested loops, and that all statements in the loop
nest are transformed in the same way. It there-
fore cannot represent some important transforma-
tions such as loop fusion, loop distribution and state-
ment reordering. Unimodular transformations are
generalized in [LP92, Ram92| to include mappings
that are invertible but not unimodular. This allows
the resulting programs to have steps in their loops,
which can be useful for optimizing locality. Uni-
modular transformations are combined with block-
ing in [WL91, ST92]. A similar approach, although
not using a unimodular framework, is described in
[Wol89a).

Pugh [Pug91] gives techniques to represent loop
fusion, loop distribution and statement reordering in
addition to the transformations representable by uni-
modular transformations. Because it uses only sin-
gle level affine schedules and requires that all depen-
dences be carried by the outer loop, it can only be
applied to programs that can be executed in linear
time on a parallel machine. Methods to generate ef-
ficient code were not given.

Paul Feautrier [Fea92] generates schedules that
are similar in form to our mappings but have slightly
different semantics. His methods are designed to gen-
erate a schedule that produces code with a “max-
imal” amount of parallelism. These schedules will
often not be optimal in practice because of issues
such as granularity, data locality and code complex-
ity. Our framework attempts to provide a setting in
which multiple performance issues can be traded-off.

7 Implementation Status

The algorithms described in this paper are imple-
mented in our extension of Michael Wolfe’s tiny
tool which is available via anonymous ftp from
ftp.cs.umd.edu in the directory pub/omega.

8 Conclusions

We have presented a framework for unifying reorder-
ing transformations such as loop interchange, distri-
bution, skewing, tiling, index set splitting and state-
ment reordering. The framework is based on the idea
that a transformation can be represented as a map-
ping from the original iteration space to a new iter-
ation space. We have demonstrated that mappings
are able to represent traditional reordering transfor-
mations, such as those above. We believe that using
mappings is the purest or most fundamental way to
describe arbitrary reordering transformations.

The framework is designed to provide a uniform
way to represent and reason about transformations.
The framework does not solve the fundamental prob-
lem of deciding which transformation to apply, but it
does provide a simpler setting in which to solve this
problem. We therefore believe that production sys-
tems would benefit from using our framework, rather
than an arbitrary set of unrelated traditional trans-
formations.

We have provided algorithms to test the legal-
ity of mappings, and to generate optimized code for
mappings. Our code generation algorithm can be
used to produce code that avoids and/or eliminates
many of the guards that can occur around state-
ments when performing reordering transformations.
This makes our code generation algorithm useful for
other applications such as the generation of code for
distributed memory machines and the generation of
code for traditional transformations.

References

J. R. Allen and K. Kennedy. Automatic translation
of Fortran programs to vector form. ACM Trans-
actions on Programming Languages and Systems,

9(4):491-542, October 1987.

U. Banerjee. Speedup of Ordinary Programs. PhD
thesis, Dept. of Computer Science, U. of Illinois at
Urbana-Champaign, October 1979.

[AK8T]

[BanT79]

[Ban90] U. Banerjee. Unimodular transformations of double
loops. In Proc. of the 3rd Workshop on Program-
mang Languages and Compilers for Parallel Com-

puting, pages 192-219, Irvine, CA, August 1990.

[CK92] Steve Carr and Ken Kennedy. Compiler blockability

of numerical algorithms. In Proceedings Supercom-

[Fea92]

[KP94a)]

[KP94b]

[LP92]

[Lu9l]

[Pug9l]

[Pug92]

[PW92]

[Ram92]

[ST92]

[WL91]

[Wol89al
[Wol89b]

[Wol90]

[Wol91]

puting’92, pages 114-125, Minneapolis, Minnesota,
Nov 1992.

Paul Feautrier. Some efficient solutions to the affine
scheduling problem, Part II, Multidimensional time.
Int. J. of Parallel Programming, 21(6), Dec 1992.

Wayne Kelly and William Pugh. Determining sched-
ules based on performance estimation. Parallel Pro-
cessing Letters, 4(3):205-219, September 1994.

Wayne Kelly and William Pugh. Finding legal re-
ordering transformations using mappings. In Lec-
ture Notes tn Computer Science 892: Seventh In-
ternational Workshop on Languages and Compilers
for Parallel Computing, Ithaca, NY, August 1994.
Springer-Verlag.

Wei Li and Keshav Pingali. A singular loop transfor-
mation framework based on non-singular matrices.
In 5th Workshop on Languages and Compilers for
Parallel Computing, pages 249-260, Yale University,
August 1992.

Lee-Chung Lu. A unified framework for system-
atic loop transformations. In Proc. of the 3rd ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programmang, pages 28-38, April 1991.

William Pugh. Uniform techniques for loop opti-
mization. In 1991 International Conference on Su-
percomputing, pages 341-352, Cologne, Germany,
June 1991.

William Pugh. The Omega test: a fast and practi-
cal integer programming algorithm for dependence
analysis. Communications of the ACM, 8:102-114,
August 1992.

William Pugh and David Wonnacott. Going beyond
integer programming with the Omega test to elimi-
nate false data dependences. Technical Report CS-
TR-3191, Dept. of Computer Science, University of
Maryland, College Park, December 1992.

J. Ramanujam. Non-unimodular transformations of
nested loops. In Supercomputing ‘92, pages 214-223,
November 1992.

Vivek Sarkar and Radhika Thekkath. A general
framework for iteration-reordering loop transforma-
tions. In ACM SIGPLAN’92 Conference on Pro-
grammang Language Design and Implementation,
pages 175-187, San Francisco, California, Jun 1992.

Michael E. Wolf and Monica S. Lam. A data lo-
cality optimizing algorithm. In ACM SIGPLAN’91
Conference on Programming Language Design and
Implementation, 1991.

Michael Wolfe. More iteration space tiling. In Proc.
Supercomputing 89, pages 655664, November 1989.

Michael Wolfe. Optimizing Supercompilers for Su-
percomputers. Pitman Publishing, London, 1989.

Michael Wolfe. Massive parallelism through pro-
gram restructuring. In Symposium on Frontiers
on Massively Parallel Computation, pages 407-415,
October 1990.

Michael Wolfe. The tiny loop restructuring research
tool. In Proc of 1991 International Conference on
Parallel Processing, pages 11-46 — II-53, 1991.

