
A Unifying Framework for Iteration Reordering TransformationsWayne Kelly and William PughDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742fwak,pughg@cs.umd.eduFebruary 27, 1995AbstractWe present a framework for unifying iteration re-ordering transformations such as loop interchange,loop distribution, skewing, tiling, index set splittingand statement reordering. The framework is basedon the idea that a transformation can be representedas a mapping from the original iteration space to anew iteration space. The framework is designed toprovide a uniform way to represent and reason abouttransformations. We also provide algorithms to testthe legality of mappings, and to generate optimizedcode for mappings.1 IntroductionOptimizing compilers reorder iterations of state-ments to improve instruction scheduling, registeruse, and cache utilization, and to expose parallelism.Many di�erent reordering transformations have beendeveloped and studied, such as loop interchange, loopdistribution, skewing, tiling, index set splitting andstatement reordering [AK87, Wol89b, Wol90, CK92].Each of these transformations has its own special le-gality checks and transformation rules. These checksand rules make it hard to analyze or predict the ef-fects of compositions of these transformations, with-out performing the transformations and analyzingthe resulting code.Unimodular transformations [Ban90, WL91] gosome way towards solving this problem. Unimodulartransformations is a uni�ed framework that is ableto describe any transformation that can be obtainedby composing loop interchange, loop skewing, andloop reversal. Such a transformation is described bya unimodular linear mapping from the original iter-ation space to a new iteration space. For example,loop interchange in a doubly nested loop maps itera-tion [i; j] to iteration [j; i]. This transformation can

be described using a unimodular matrix:� 0 11 0 � � ij �Unfortunately, unimodular transformations are lim-ited in two ways: they can only be applied to per-fectly nested loops and all statements in the loop nestare transformed in the same way. They therefore can-not represent some important transformations suchas loop fusion, loop distribution and statement re-ordering.1.1 MappingsA mapping has the following general form:f [i1; : : : ; im]! [f1; : : : ; fn]gwhere:� The iteration variables i1; : : : ; im represent theloops nested around the statement(s).� The f j 's are functions of the iteration variables.This mapping represents the fact that iteration[i1; : : : ; im] in the original iteration space is mappedto iteration [f1; : : : ; fn] in the new iteration space.The implicit assumption is that the iterations in thenew iteration space will be executed in lexicographicorder. So, by specifying a mapping, we are reallyspecifying a reordering of the iterations.For example the above unimodular transformationwould be represented by the mapping f [i; j]! [j; i] gIn the case of unimodular transformations:� All statements are mapped by the same map-ping.� The f j 's are linear functions.� The mapping is invertable and unimodular.

� The dimensionality of the old and new iterationspaces are the same (i.e., m = n).In our framework we generalize unimodular transfor-mations in the following ways:� We specify a separate mapping for each state-ment� We allow the f j to be psuedo a�ne rather thanjust linear. A�ne means that they can includea (possibly symbolic) constant term. Pseudoa�ne means that they can also involve integerdivision and modulo operations (provided thedenominator is a known integer constant).� We require the mapping to be invertable, butnot necessarily unimodular.� We allow the dimensionality of the old and newiteration spaces to be di�erent.� We allow the mapping to be piecewise (as sug-gested by [Lu91]): we can specify a mappingTp as Si TpijCpi where the Cpi's are disjointsets which together contain all points in theiteration space of statement sp. This mappingspeci�es that iteration i is mapped to the pointTpi(i) i� i 2 Cpi.By generalizing in these ways, we can represent amuch broader set of reordering transformations, in-cluding any transformation that can be obtained bysome combination of loop interchange, loop rever-sal, loop skewing, statement reordering, loop distri-bution, loop fusion, loop blocking1 (or tiling) [AK87]and index set splitting1 [Ban79].Figure 1 gives some interesting examples of map-pings.1.2 OverviewOur framework is designed to provide a uniform wayto represent and reason about reordering transfor-mations. The framework itself is not designed todecide which transformation should be applied. Theframework should be used within some larger system,such as an interactive programming environment oran optimizing compiler. It is this surrounding systemthat is �nally responsible for deciding which trans-formation should be applied. The framework doeshowever provide some algorithms that would aid thesurrounding system in its task. [KP94a] is an exam-ple of a surrounding system that uses our framework.1Our current implementation cannot handle all cases ofthese transformations.

The rest of this paper is organized as follows. InSection 2 we describe how dependences and map-pings are represented. In Section 3 we demonstratethat a large class of traditional transformations canbe represented using mappings. In Section 4 we de-scribe an algorithm that tests whether a mapping islegal. In Section 5 we describe our code generationalgorithm. This algorithm takes a mapping and pro-duces optimized code corresponding to the transfor-mation represented by that mapping. By making useof the gist operation [PW92] we are able to producecode with a smaller number of conditionals and loopbounds than would otherwise be necessary. Finallywe discuss related work, give our implementation sta-tus and state our conclusions.2 Dependences and MappingsMost of the previous work on program transfor-mations uses data dependence directions and dis-tances to summarize dependences between array ref-erences. These abstractions are su�cient for sim-ple transformations such as unimodular transforma-tions, but they are not precise enough to determinethe legality of loop fusion and a number of othertransformations without actually applying the trans-formation and re-evaluating dependences. Since ourframework includes loop fusion, they are not su�-cient for our purposes either. We evaluate and rep-resent dependences exactly using a�ne constraintsover integer variables. We use the Omega Library[Pug92, PW92] to manipulate and simplify these con-straints.The following is a brief description of integer tu-ple relations and dependence relations.2.1 Integer tuple relations and setsAn integer k-tuple is simply a point in Zk. A tuplerelation is a mapping from tuples to tuples. A singletuple may be mapped to zero, one or more tuples.A relation can be thought of as a set of pairs, eachpair consisting of an input tuple and its associatedoutput tuple. All the relations we consider map fromk-tuples to k0-tuples for some �xed k and k0. Therelations may involve free variables such as n in thefollowing example: f [i]! [i+1] j 1 � i < n g. Thesefree variables correspond to symbolic constants orparameters in the source program. We use Sym torepresent the set of all symbolic constants. A relationis represented as the union of a set of simple relations:relations that can be described by the conjunction ofa set of a�ne constraints. We can represent simplerelations containing certain non-convex constraints

Code adapted from OLDA in Perfect club (TI) LU Decomposition without pivotingOriginal codedo 20 mp = 1, npdo 20 mq = 1, mpdo 20 mi = 1, morb10 xrsiq(mi,mq)=xrsiq(mi,mq)+$ xrspq((mp-1)*mp/2+mq)*v(mp,mi)20 xrsiq(mi,mp)=xrsiq(mi,mp)+$ xrspq((mp-1)*mp/2+mq)*v(mq,mi)
Original codedo 20 k = 1, ndo 10 i = k+1, n10 a(i,k) = a(i,k) / a(k,k)do 20 j = k+1, n20 a(i,j) = a(i,j) - a(i,k) * a(k,j)Mapping (to expose parallelism)T10 : f [mp; mq; mi] ! [mi; mq; mp; 0]gT20 : f [mp; mq; mi] ! [mi; mp; mq; 1]g Mapping (for locality)T10 : f[k; i] ! [64((k�1) div 64)+1; 64(i div 64); k; k; i]gT20 : f[k; i; j] ! [64((k�1) div 64)+1; 64(i div 64); j; k; i]gTransformed codedo 20 mi = 1,morb /* parallelizable */do 20 t2 = 1,np /* parallelizable */do 10 t3 = 1,t2-110 xrsiq(mi,t2)=xrsiq(mi,t2) +$ xrspq((t3-1)*t3/2+t2)*v(t3,mi)xrsiq(mi,t2)=xrsiq(mi,t2) +$ xrspq((t2-1)*t2/2+t2)*v(t2,mi)xrsiq(mi,t2)=xrsiq(mi,t2) +$ xrspq((t2-1)*t2/2+t2)*v(t2,mi)do 20 t3 = t2+1,np20 xrsiq(mi,t2)=xrsiq(mi,t2) +$ xrspq((t2-1)*t2/2+t3)*v(t3,mi)
Transformed codedo 30 kB = 1, n-1, 64do 30 iB = kB-1, n, 64do 20 kj = kB, min(kB+63, n)do 10 k = kB, kj-1do 10 i = max(k+1,iB), min(iB+63,n)10 a(i,kj)=a(i,kj)-a(i,k)*a(k,kj)do 20 i = max(iB,kj+1), min(iB+63,n)20 a(i,kj)=a(i,kj)/a(kj,kj)do 30 kj = kB+64, ndo 30 k = kB to kB+64do 30 i = max(k+1,iB), min(iB+63,n)30 a(i,kj)=a(i,kj)-a(i,k)*a(k,kj)Transformations required normally� index set splitting� loop distribution� triangular loop interchange� loop fusion Transformations required normally� strip mining� index set splitting� loop distribution� imperfectly nested triangular loop interchangeCode adapted from CHOSOL in the Perfect club (SD) Banded SYR2K adapted from BLASOriginal codedo 30 i=2,n10 sum(i) = 0.do 20 j=1,i-120 sum(i) = sum(i) + a(j,i)*b(j)30 b(i) = b(i) - sum(i) Original codedo 10 i = 1, ndo 10 j = i, min(i+2*b-2,n)do 10 k = max(i-b+1,j-b+1,1),min(i+b-1,j+b-1,n)10 C(i,j-i+1) = C(i,j-i+1) +$ alpha*A(k,i-k+b)*B(k,j-k+b) +$ alpha*A(k,j-k+b)*B(k,i-k+b)Mapping (to expose parallelism)T10 : f [i] ! [0; i; 0; 0] gT20 : f [i; j] ! [1; j; 0; i] gT30 : f [i] ! [1; i� 1; 1; 0] g Mapping (for locality and to expose parallelism)T10 : f [i; j; k] ! [j � i + 1; k � j; k] gTransformed codedo 10 i = 2,n /* parallelizable */10 sum(i) = 0.do 30 t2 = 1, n-1do 20 i = t2+1,n /* parallelizable */20 sum(i) = sum(i) + a(t2,i)*b(t2)30 b(t2+1) = b(t2+1) - sum(t2+1) Transformed codedo 10 t1 = 1, min(n,2*b-1) /* parallelizable */do 10 t2 = max(1-b,1-n), min(b-t1, n-t1)do 10 k = max(1,t1+t2), min(n+t2,n) /* parallelizable */10 C(-t1-t2+k+1,t1) = C(-t1-t2+k+1,t1) +$ alpha*A(k,-t1-t2+b+1)*B(k,-t2+b) +$ alpha*A(k,-t2+b)*B(k,-t1-t2+b+1)Transformations required normally� loop distribution� imperfectly nested triangular loop interchange Transformations required normally� loop skewing� triangular loop interchangeFigure 1: Example Codes, Mappings, and Resulting Transformations

operation Description De�nitionF�1 The inverse of F x!y 2 F�1 , y!x 2 FS \ T The intersection of S and T x 2 S \ T , x 2 S ^ x 2 Trange(F) The range of F y 2 range(F), 9x s:t: x!y 2 Frestrict domain(F; S) F with domain restricted to S x!y 2 restrict domain(F; S), x!y 2 F ^ x 2 S�1;:::;v S The projection of S onto 1; : : : ; v x 2 �1;:::;v S , jxj = v ^ 9y s:t: xy 2 Ssatisfiable(S) True if S is not empty satisfiable(S), 9x 2 STable 1: Operations on tuple sets and relations, where F and G are tuple relations and S and T are tuple setssuch as f [i]! [i] j i even g by introducing wildcardvariables (denoted by Greek letters):f [i]! [i] j 9� s:t: i = 2� gTable 1 gives a brief description of the operations oninteger tuple sets and relations that we use in thispaper. See [Pug91] for a more thorough description.2.2 Control dependenceWe require that any if-then-else constructs be con-verted into guarded assignment statements or thatthey be treated as atomic statements. We also re-quire that all loop bounds be a�ne functions of sur-rounding loop variables and symbolic constants. Allcontrol dependences can therefore be implicitly rep-resented by describing the iteration space using a setof a�ne inequalities on the loop variables and sym-bolic constants.2.3 Data dependenceFrom now on, when we refer to dependences, we willbe implicitly referring to data dependences. We usetuple relations to represent dependences. If there isa dependence from sp[i] (i.e., iteration i of statementsp) to sq [j] then the tuple relation dpq representingthe dependences from sp to sq will map [i] to [j] (iand j are tuples). We do not distinguish betweendi�erent kinds of dependences (i.e.,
ow, output andanti-dependences) because they all impose orderingconstraints on the iterations in the same way. It ispossible to remove output and anti-dependences us-ing techniques such as array and scalar expansion;we assume that this has already been done if it isdesirable, and that the dependences have been up-dated. An alternative approach is to annotate thedependence information in such a way that certaindependences are ignored under the presumption thatthey can be removed if necessary.2.4 gist, approx and hullWe make use of the gist operation that was orig-inally developed in [PW92]. The gist operation is

designed to operate on two relations, each of whichis represented by a single conjunction of constraints.Intuitively, (gist p given q) is de�ned as the newinformation contained in p, given that we alreadyknow q. More formally, if p ^ q is satis�able then(gist p given q) is a minimal conjunction such that((gist p given q) ^ q) = (p ^ q))For example gist 1 � i � 10 given i � 5 is 1 � i. Ifp^q is not satis�able then (gist p given q) is False.The approx operation is designed to operate ona relation that is represented by a single conjunc-tion of constraints. The approx operation is de�nedso that approx(p) � p and approx(p) is convex.Within these constraints, approx(p) is made as tightas possible; if p is convex, approx(p) = p. The orig-inal set of constraints p may involve wildcard vari-ables which may cause the region described by p tobe non-convex. The approx(p) operation works bysimplifying the constraints in p under the assump-tion that the wildcard variables can take on rationalvalues. This allows us to eliminate all wildcard vari-ables.The hull operation is designed to operate on a setof relations, each of which is represented by a singleconjunction of convex constraints. The hull of a setof relations fR1; : : : ; Rmg is a new relation R0 thatis a superset of each of the Ri relations. R mustalso have the property that it can be represented bya single conjunction of convex constraints. We tryto make R0 tight, but it is not necessarily what iscommonly referred to as \The convex hull" of theserelations.2.5 MappingsWe associate a separate mapping with each state-ment. We therefore need a way to refer to the map-pings of individual statements. We represent themapping associated with statement sp asTp : [i1p; : : : ; impp]! [f1p ; : : : ; fnp] j CpThe f ip expressions are called mapping components.For simplicity but without loss of generality we re-

Original order (S, [i1; :::; ik]! [f1; :::; fa])case S of\for ik+1 = : : : to : : : do S1":return Original order (S1; [i1; : : : ; ik; ik+1]! [f1; : : : ; fa; ik+1])\S1;S2; : : : ;Sm":return Smp=1 Original order (Sp; [i1; : : : ; ik]! [f1; : : : ; fa; p])\assignment #p":return Tp : f [i1; : : : ; ik]! [f1; : : : ; fa] gFigure 2: Function to compute mapping that corresponds to the original execution orderquire that all of the mappings have n components.We refer to each of the positions 1; : : : ; n as levels.We will use the term mapping to refer to boththe mappings of individual statements and the set ofmappings associated with all statements.3 Traditional TransformationsIn this section we demonstrate how mappings canbe used to represent all transformations that can beobtained by applying any sequence of the traditionaltransformations listed in Section 1.We will describe how to construct mappings torepresent traditional transformations by describinghow to modify mappings that correspond to theoriginal execution order of programs. The mappingthat corresponds to the original execution order ofa program, can be constructed by a recursive de-scent of the abstract syntax tree (AST). Nodes inthe AST have three forms: loops, statement listsand guarded assignment statements. The functionOriginal order (see Figure 2), when called with ar-guments of S and [] ! [], returns a mapping foreach of the assignment statements in S.For example, the mapping that corresponds tothe original execution order of the following programis: T1 : f[i; j]! [i; 1; j] gT2 : f[i; k]! [i; 2; k] gfor i = 1 to 10 dofor j = 1 to 5 dos1(i,j) = 1for k = 0 to 100 dos2(i,j) = 2When constructing these mappings we categorizemapping components as being either syntactic com-ponents (always an integer constant) or loop compo-nents (a function of the loop variables of that state-ment). syntactic(f ip) is a boolean function which is

true i� f ip is a symbolic component (loop(f ip) is de-�ned analogously). The common syntactic level (csl)of two statements sp and sq is de�ned as:csl(sp; sq) � minfi� 1 j 1 � i ^ f ip 6= f iq^syntactic(f ip)^syntactic(f iq)gIntuitively, the common syntactic level of twostatements is the deepest loop which surrounds bothstatements. Figure 3 describes how to constructmappings to represent traditional transformations bydescribing how to modify the mappings we have justdescribed. Since these rules can be applied repeat-edly, we can represent not only standard transforma-tions but also any sequence of standard transforma-tions.4 Mapping Legality TestIn this section we describe an algorithm that testswhether a mapping is legal. A mapping is legal if thetransformation it describes preserves the semantics ofthe original code. This is true if the new ordering ofthe iterations respects all of the dependences in theoriginal code. In order words, if i is an iteration ofstatement sp and j an iteration of statement sq, andthe dependence relation dpq indicates that there is adependence from i to j then Tp(i) must be executedbefore Tq(j). More formally,8i; j; p; q; Sym i!j 2 dpq) Tp(i) � Tq(j)where Sym is the set of all symbolic constants in theequation, and � is the lexicographic ordering oper-ator. We verify this by using the Omega library toevaluate::9i; j; p; q; Sym s:t: i!j 2 dpq ^ Tp(i) � Tq(j)We also require that the mapping be 1-1:8p; q; i; j; Sym (p = q ^ i = j), Tp(i) = Tq(j)

Distribution Distribute loop at depth L over the statements D, with statement sp going into rpth loop.Requirements: 8sp; sq sp 2 D ^ sq 2 D) loop(fLp) ^ L � csl(sp; sq)Transformation: 8sp 2 D, replace Tp by [f1p ; : : : ; f (L�1)p ; rp; fLp ; : : : ; fnp]Statement Reordering Reorder statements D at level L so that new position of statement sp is rp.Requirements: 8sp; sq sp 2 D ^ sq 2 D) syntactic(fLp) ^ L � csl(sp; sq) + 1 ^(L � csl(sp; sq), rp = rq)Transformation: 8sp 2 D, replace Tp by [f1p ; : : : ; f (L�1)p ; rp; f (L+1)p ; : : : ; fnp]Fusion Fuse the loops at level L for the statements D with statement sp going into the rpth loop.Requirements: 8sp; sq sp 2 D ^ sq 2 D) syntactic(f (L�1)p) ^ loop(fLp) ^ L� 2 � csl(sp; sq) + 2 ^(L� 2 < csl(sp; sq) + 2) rp = rq)Transformation: 8sp 2 D, replace Tp by [f1p ; : : : ; f (L�2)p ; rp; f (L)p ; f (L�1)p ; f (L+1)p ; : : : ; fnp]Unimodular Transformation Apply a k � k unimodular transformation U to a perfectly nested loop containingstatements D at depth L : : : L + k. Note: Unimodular transformations include loop interchange, skewing andreversal [Ban90, WL91].Requirements: 8i; sp; sq sp 2 D ^ sq 2 D ^ L � i � L+ k) loop(f ip) ^ L+ k � csl(sp; sq))Transformation: 8sp 2 D, replace Tp by [f1p ; : : : ; f (L�1)p ; U [f (L)p ; : : : f (L+k)p]>; f (L+k+1)p ; : : : ; fnp]Strip-mining Strip-mine the loop at level L for statements D with block size BRequirements: 8sp; sq sp 2 D ^ sq 2 D) loop(fLp) ^ L � csl(sp; sq)) ^B is a known integer constantTransformation: 8sp 2 D, replace Tp by [f1p ; : : : ; f (L�1)p ; B(f (L)p div B); f (L)p ; : : : ; fnp]Index Set Splitting Split the index set of statements D using condition CRequirements: C is a�ne expression of symbolic constants and indexes common to statements D.Transformation: 8sp 2 D, replace Tp by (Tp j C) [(Tp j :C)Figure 3: Representing Traditional Transformationsso that the new program performs exactly the sameset of computations as the original program. Thiscan be similarly veri�ed using the Omega library.We have also developed techniques [KP94b] to give aclosed form characterization of the set of legal map-pings.5 Optimized Code GenerationIn this section we describe an algorithm to generatee�cient source code for a mapping. As an example,consider changing the KIJ version of Gaussian Elim-ination (without pivoting) into the IJK version (theversion refers to the nesting of the loops around theinner most statement).do 20 k = 1, ndo 10 i = k+1, n10 a(i,k) = a(i,k)/a(k,k)do 20 j = k+1, n20 a(i,j) = a(i,j)-a(k,j)*a(i,k)Michael Wolfe notes that this transformation re-quires imperfect triangular loop interchange, distri-bution, and index set splitting [Wol91]. We can pro-duce the IJK ordering using the following mapping:

T10 : f[k; i] ! [i; k; 1; 0]gT20 : f[k; i; j] ! [i; j; 0; k]gA naive code generation strategy would producethe following code:do 20 t0 = 2, ndo 20 t1 = 1, ndo 20 t2 = 0, 1do 20 t3 = 0, n10 if (t1<t0.and.t2=1.and.t3=0)$ a(t0,t1) = a(t0,t1)/a(t1,t1)if (t3<t0.and.t3<t1.and.t2=0)20 $ a(t0,t1) = a(t0,t1)-a(t3,t1)*a(t0,t3)This is, of course, undesirable, because it resultsin about 6n3 unnecessary comparisions. This sectionexplains how we produce the following more e�cientcode: do 40 i = 2,na(i,1) = a(i,1)/a(1,1)do 30 t2 = 2,i-1do 20 k = 1,t2-120 a(i,t2) = a(i,t2)-a(k,t2)*a(i,k)30 a(i,t2) = a(i,t2)/a(t2,t2)do 40 j = i,ndo 40 k = 1,i-140 a(i,j) = a(i,j)-a(k,j)*a(i,k)

To simplify the discussion we do not considerpiecewise mappings in this section (they can be han-dled by considering each piece of the mapping as aseparate statement).5.1 Old and new iteration spacesWe are currently able to transform programs thatconsist of guarded assignment statements surroundedby an arbitrary number of possibly imperfectlynested loops. For each statement sp we combine in-formation from the loop bounds and steps into a tu-ple set Ip that describes the original iteration spaceof that statement. If the mapping associated withstatement sp is Tp, then the statement's new iter-ation space I 0p is given by restrict domain(Tp; Ip).This new iteration space is represented internally asa set of a�ne constraints and is the starting pointfor the rest of this section.In the example above, the original iteration spaceis:I10 : f[k; i] j 1 � k � n ^ k + 1 � i � ngI20 : f[k; i; j] j 1 � k � n ^ k + 1 � i � n ^ k + 1 � j � ngand the new iteration space is:I010 : f[i; k; 1; 0] j 1 � k � n ^ k + 1 � i � ngI020 : f[i; j; 0; k] j 1 � k � n ^ k + 1 � i � n ^ k + 1 � j � ng5.2 Code generation for a single levelWe need to generate code that will iterate overall and only those points [t1; : : : ; tn] in the new itera-tion space. The new code must execute the iterationsin lexicographical order based on the new coordinatesystem. In the new code, each statement will besurrounded by n (possibly trivial) loops { one loopfor each dimension of the new iteration space. Theoutermost loops iterates over values of the �rst in-dex variable t1, the next to outer most loops iteratesover values of the second index variable t2, and soon. This produces the desired result of having the it-erations in the new iteration space execute in lexico-graphic order. Our code generation algorithm buildsthe transformed code recursively, level by level, start-ing at the �rst/outermost level (see Figure 4). In thissub-section we describe how code is generated for asingle level L.We introduce a new index variable tL to be usedfor this level. For each statement sp, we need togenerate a set of constraints Jp that represents thevalues of tL for which statement sp should be exe-cuted. We cannot simply project I 0p onto tL, be-cause this will only give us absolute upper and lower

bounds on tL. Expressing the tightest possible upperand lower bounds on tL may require using expres-sions that involve index variables from earlier levels.So we instead calculate the projection �1;:::;L(I 0p).The result contains constraints on tL, on index vari-ables from earlier levels (t1; : : : ; tL�1), and on sym-bolic constants. Many of these constraints are re-dundant because the code we generated at earlierlevels enforce them. We remove these redundant con-straints and simplify others by making use of theinformation that is known about the values of in-dex variables from earlier levels. So we have Jp =gist �1;:::;L(I 0p) given known.The Jp sets for di�erent statements may, in gen-eral, overlap. If Jp and Jq overlap over some range,then the tL loop that iterates over that overlap rangemust contain both statements sp and sq (otherwisethe iterations will not be executed in lexicographicorder as required). In general, it is not possible togenerate a loop containing more than one statementthat iterates over exactly the Jp sets of the state-ments in the loop. The problem is that, in gen-eral, the Jp sets will have incompatible stride con-straints. Stride constraints are constraints of theform 9� s:t: tL = c�+ s, where � is a wildcard vari-able. These sorts of constraints can appear in Jp ifthe coe�cients of the mapping components are not�1, or if the original program contains steps whichare not �1.We solve this problem by removing all stride con-straints from the Jp sets, and worry about addingthem later. To remove the stride constraints, we useAIp = approx (Jp).The constraints in AIp now describe a continuousrange of values for tL. For purposes of explanationwe de�ne (but do not compute) E = SpAIp. Havingremoved the stride constraints, we can now put morethan one statement into a loop, but there is still oneproblem remaining: If we were to generate a single tLloop iterating over all points in E and containing allstatements, then we would possibly still execute somestatements with values of tL not in their AIp ranges.We could overcome this problem by adding guardsaround the elementary assignment statements. How-ever, we prefer a more e�cient solution.We partition the range of values of the current in-dex variable tL such that within each partition, eachstatement is either not executed at all or is executedat every iteration within that partition. Instead ofgenerating a single loop, we generate a sequence ofloops, one for each partition.We form these partitions as follows. We choosean arbitrary constraint c from some AIq, that is not

GenerateCode (T, I)for each (stmt)I0[stmt] = range (restrict domain (T[stmt], I[stmt]))return gen recursive (I0, 1, True , True)gen recursive (I0, level, known, constraints)active = f s j (I0[s] \ known \ constraints) is satis�ablegfor each (stmt) 2 activeJ[stmt] = gist project (I0[stmt], 1..level+1) given knownAI[stmt] = approx (J[stmt])Hull = hull (f AI[stmt] j stmt 2 active g)if (9 constraint c, stmt s s:t: c part of AI[s] ^ s 2 active ^ c is not part of Hull)s1 = gen recursive (I0, level, known, constraints::fnot cg)s2 = gen recursive (I0, level, known, constraints::fcg)if (c is lower bound) then return (s1, \;", s2)elseif (c is upper bound) then return (s2, \;", s1)else return (\if" c \then" s1 \else" s2);else loop = constraints \ Hull \ greatest common step (active))loop = gist loop given knownloopCode = generate loop (level, loop)new known = known \ loopif (level < last level) thenloopBody = gen recursive (I0, level+1, new known, True)return (loopCode loopBody)else not represented = gist I0[only active stmt] given new knownstatement = generate statement (only active stmt)return (loopCode \if" not represented \then" statement)Figure 4: Code Generation Algorithmpart of the hull of the AIp's. For example, ifAI1 = f [t1] j 1 � t1 � 15 gand AI2 = f [t1] j 10 � t1 � 20 gthen we would choose either t1 � 15 or 10 � t1. Thisconstraint can be used to split the iteration spaceinto two disjoint iteration spaces { the interval ofthe iteration space that satis�es the constraint c andthe interval that satis�es the constraint :c. If c isan upper bound on the current index variable, thenthe interval of the iteration space that satis�es c willbe entirely executed before the interval that does notsatisfy c; if c is a lower bound, then the required orderis reversed. If c does not involve the current indexvariable, then on any given execution, only one of thetwo intervals will be executed. In that case, insteadof a loop, we generate an if-then-else construct, wherethe condition is c, the then clause iterates over thosepoints satisfying c, and the else clause iterates overthose points satisfying :c.Since we always choose a constraint that is notpart of the hull, we can be sure that both sectionswill contain some iterations. The interval satisfying

:c will not contain any iterations belonging to state-ment s. There are likely to be other statements s0whose iterations are entirely con�ned either to theinterval satisfying c or the interval satisfying :c. Wedetect these cases by intersecting the iteration spaceof each statement with both c and :c to determine ifthey are empty. If an intersection is non-empty thenwe say that the statement is active in that interval.We repeat this splitting process recursively onboth intervals. In each interval, we consider onlythose constraints that represent bounds on activestatements. The recursion terminates when all ofthe constraints left to consider are part of the hull ofthe active statements.Now that we know exactly which statements areactive in each particular interval, we may be able toadd some of the stride constraints that we removedearlier. Within a given interval, each statement spthat is active in that interval may contribute a singlestride constraint 9� s:t: ti = ap� + bp that was re-moved earlier (where ap is an integer coe�cient andbp is an a�ne function of symbolic constants andouter level index variables).We calculate the greatest common step of that

interval as follows:gcs = gcd(fapjsp is activeg [fgcd(bq � bp)jsq is active ^ sp is activeg)The gcd (greatest common divisor) of an expressionis de�ned to be the gcd of the coe�cients in the ex-pression.We can now add to that interval, the constraint9� s:t: ti = gcs � + bp, where sp is an arbitrary ac-tive statement. We can safely add this constraintsince if ti satis�es the stride constraint of any activestatement then it will also satisfy this constraint.The greatest common step will be extracted fromthese constraints and used as the step for the loopcorresponding to that interval. The step may notenforce all of the stride constraints on active state-ments, but we cannot add anything stronger withoutexcluding required iterations. Any remaining strideconstraints will be enforced at later levels.For each interval, we generate a do loop to iter-ate over the appropriate values of tL. Each of theseintervals may contain a stride constraint of the form9� s:t: tL = g �+ c. If this is the case we enforce thestride constraint by using a non-unit step in the loop.In order to do this however, we must ensure that theloop's lower bound satis�es the stride constraint.The loop's lower bounds come from constraints ofthe form lower � m tL. Such a constraint producesa lower bound expression of:g � lower � c mm g �+ cThis expression can often be simpli�ed once we knowthe values of g, m, c and lower. The loop's upperbounds come from constraints of the form n tL �upper. It is su�cient to use upper=n as an upperbound of the loop. The loop we generate at depth L,corresponding to interval i has the form:dotL = max(x1; : : : ; xp); min(y1; : : : ; yq); gwhere the xi's and yi's are the loop bounds describedabove. If we can determine that the loop containsat most a single iteration, we perform the obvioussimpli�cations to the code.Within each interval i, we recursively generatecode for level L+ 1. At level L+1 we only considerstatements that were active at level L. This processcontinues until we reach level n, at which time wegenerate the elementary assignment statements.5.3 Elementary statementsOnce we have generated code for all levels, only asingle statement will be active. We generate code to

guard the statement from any conditions not alreadyhandled in loop bounds. If not all of the stride con-straints could be expressed as loop steps, then theseguards will contain mod expressions.Finally, we output the transformed assignmentstatement. The statement has the same form asin the original code, except that the original indexvariables are replaced by expressions involving thenew index variables. We determine these replace-ment expressions by using the Omega library to in-vert the mapping relation and extract expressionscorresponding to each of the original index variables.For example, if the mapping is [i1; i2] ! [i1 + i2; i1]then i1 is replaced by j2 and i2 is replaced by j1�j2.6 Related WorkThe framework of Unimodular transformations[Ban90, WL91] has the same goal as our work, inthat it attempts to provide a uni�ed framework fordescribing loop transformations. It is limited bythe facts that it can only be applied to perfectlynested loops, and that all statements in the loopnest are transformed in the same way. It there-fore cannot represent some important transforma-tions such as loop fusion, loop distribution and state-ment reordering. Unimodular transformations aregeneralized in [LP92, Ram92] to include mappingsthat are invertible but not unimodular. This allowsthe resulting programs to have steps in their loops,which can be useful for optimizing locality. Uni-modular transformations are combined with block-ing in [WL91, ST92]. A similar approach, althoughnot using a unimodular framework, is described in[Wol89a].Pugh [Pug91] gives techniques to represent loopfusion, loop distribution and statement reordering inaddition to the transformations representable by uni-modular transformations. Because it uses only sin-gle level a�ne schedules and requires that all depen-dences be carried by the outer loop, it can only beapplied to programs that can be executed in lineartime on a parallel machine. Methods to generate ef-�cient code were not given.Paul Feautrier [Fea92] generates schedules thatare similar in form to our mappings but have slightlydi�erent semantics. His methods are designed to gen-erate a schedule that produces code with a \max-imal" amount of parallelism. These schedules willoften not be optimal in practice because of issuessuch as granularity, data locality and code complex-ity. Our framework attempts to provide a setting inwhich multiple performance issues can be traded-o�.

7 Implementation StatusThe algorithms described in this paper are imple-mented in our extension of Michael Wolfe's tinytool which is available via anonymous ftp fromftp.cs.umd.edu in the directory pub/omega.8 ConclusionsWe have presented a framework for unifying reorder-ing transformations such as loop interchange, distri-bution, skewing, tiling, index set splitting and state-ment reordering. The framework is based on the ideathat a transformation can be represented as a map-ping from the original iteration space to a new iter-ation space. We have demonstrated that mappingsare able to represent traditional reordering transfor-mations, such as those above. We believe that usingmappings is the purest or most fundamental way todescribe arbitrary reordering transformations.The framework is designed to provide a uniformway to represent and reason about transformations.The framework does not solve the fundamental prob-lem of deciding which transformation to apply, but itdoes provide a simpler setting in which to solve thisproblem. We therefore believe that production sys-tems would bene�t from using our framework, ratherthan an arbitrary set of unrelated traditional trans-formations.We have provided algorithms to test the legal-ity of mappings, and to generate optimized code formappings. Our code generation algorithm can beused to produce code that avoids and/or eliminatesmany of the guards that can occur around state-ments when performing reordering transformations.This makes our code generation algorithm useful forother applications such as the generation of code fordistributed memory machines and the generation ofcode for traditional transformations.References[AK87] J. R. Allen and K. Kennedy. Automatic translationof Fortran programs to vector form. ACM Trans-actions on Programming Languages and Systems,9(4):491{542, October 1987.[Ban79] U. Banerjee. Speedup of Ordinary Programs. PhDthesis, Dept. of Computer Science, U. of Illinois atUrbana-Champaign, October 1979.[Ban90] U. Banerjee. Unimodular transformations of doubleloops. In Proc. of the 3rd Workshop on Program-ming Languages and Compilers for Parallel Com-puting, pages 192{219, Irvine, CA, August 1990.[CK92] Steve Carr and Ken Kennedy. Compiler blockabilityof numerical algorithms. In Proceedings Supercom-

puting'92, pages 114{125, Minneapolis, Minnesota,Nov 1992.[Fea92] Paul Feautrier. Some e�cient solutions to the a�nescheduling problem, Part II, Multidimensional time.Int. J. of Parallel Programming, 21(6), Dec 1992.[KP94a] Wayne Kelly andWilliam Pugh. Determining sched-ules based on performance estimation. Parallel Pro-cessing Letters, 4(3):205{219, September 1994.[KP94b] Wayne Kelly and William Pugh. Finding legal re-ordering transformations using mappings. In Lec-ture Notes in Computer Science 892: Seventh In-ternational Workshop on Languages and Compilersfor Parallel Computing, Ithaca, NY, August 1994.Springer-Verlag.[LP92] Wei Li and Keshav Pingali. A singular loop transfor-mation framework based on non-singular matrices.In 5th Workshop on Languages and Compilers forParallel Computing, pages 249{260, Yale University,August 1992.[Lu91] Lee-Chung Lu. A uni�ed framework for system-atic loop transformations. In Proc. of the 3rd ACMSIGPLAN Symposium on Principles and Practiceof Parallel Programming, pages 28{38, April 1991.[Pug91] William Pugh. Uniform techniques for loop opti-mization. In 1991 International Conference on Su-percomputing, pages 341{352, Cologne, Germany,June 1991.[Pug92] William Pugh. The Omega test: a fast and practi-cal integer programming algorithm for dependenceanalysis. Communications of the ACM, 8:102{114,August 1992.[PW92] William Pugh and David Wonnacott. Going beyondinteger programming with the Omega test to elimi-nate false data dependences. Technical Report CS-TR-3191, Dept. of Computer Science, University ofMaryland, College Park, December 1992.[Ram92] J. Ramanujam. Non-unimodular transformations ofnested loops. In Supercomputing `92, pages 214{223,November 1992.[ST92] Vivek Sarkar and Radhika Thekkath. A generalframework for iteration-reordering loop transforma-tions. In ACM SIGPLAN'92 Conference on Pro-gramming Language Design and Implementation,pages 175{187, San Francisco, California, Jun 1992.[WL91] Michael E. Wolf and Monica S. Lam. A data lo-cality optimizing algorithm. In ACM SIGPLAN'91Conference on Programming Language Design andImplementation, 1991.[Wol89a] Michael Wolfe. More iteration space tiling. In Proc.Supercomputing 89, pages 655{664, November 1989.[Wol89b] Michael Wolfe. Optimizing Supercompilers for Su-percomputers. Pitman Publishing, London, 1989.[Wol90] Michael Wolfe. Massive parallelism through pro-gram restructuring. In Symposium on Frontierson Massively Parallel Computation, pages 407{415,October 1990.[Wol91] Michael Wolfe. The tiny loop restructuring researchtool. In Proc of 1991 International Conference onParallel Processing, pages II{46 { II{53, 1991.

