Hashing Technique: A New Index Method for High

Dimensional Data

Zhexuan Song Nick Roussopoulos
Department of Computer Science Department of Computer Science &
University of Maryland Institute For Advanced Computer Studies
College Park, Maryland 20742 University of Maryland
zsong@cs.umd. edu College Park, Maryland 20742

nick@cs.umd.edu

September 24, 1999

CS-TR-4059

Abstract

As showed in [17], when dimension goes high, sequential scan processing becomes
more efficient than most index-based query. In this paper, we propose a new index
method for high-dimensional data spaces. This method is based on hashing technique.
The basic idea is: First find a hashing function which puts the given d-dimensional
space data into a d-dimensional buckets where d < d. Then, we use existing index
techniques to manage those buckets. We later define some properties of a good hash-
ing function and give four hashing functions. To demonstrate the efficiency of our
idea, we experimentally compared our algorithms with sequential scan and Pyramid-
Techniques. The results demonstrate that this method outperforms others for skewed

data set. It always beats the sequential scan by using only half of elapsed time for

range query. However if the data has uniform distribution, Pyramid-Technique is still

the best method.

1 Introduction

More and more high dimensional data now appear in a variety of new database applications.
For example, new database applications such as Cubetree [9] create high dimensional data
when store and retrieve data warehousing views. In other area such as multimedia, content-
based search [10] is an attractive new idea which is based on feature vectors. In order to
support those applications, database system must be able to handle high dimensional data.
The low-dimensional case (when dimensionality equals to 2 or 3) is well solved [3]. However,
recent researches [11, 12] show that basically none of the querying and indexing techniques
provide good results on both low-dimensional and high-dimensional data for large queries

because of the so-called “curse of dimensionality”.

The approach taken now is to find methods to lower the dimensionality of data and use
low-dimensional index structure. For example, we have no method to handle 50-dimensional
data, if we can transform those data into 2-dimensional data, we have a bunch of methods
to store to retrieve them. However, as we do such transformation, some information of the
original data set is lost. We have to sacrifice some query efficiency to compensate for the lost
information. The cost we paid is either the inaccuracy of the result such as in SVD method,

or many useless “false alarms” in the query result such as in Pyramid-technique.

In this paper, we developed a hashing based techniques. The basic idea is to find a
hashing function which puts the high-dimensional data into low-dimensional buckets. When
processing high-dimensional range queries, we first find the corresponding low-dimensional
queries. Then we retrieve all the buckets which are inside the transformed query ranges.
Finally, we check all the data in those buckets and discard the “false alarms”. As showed

in our experiment, like sequential scan, this method performs very well not matter how the

data set is distributed. And it always outperforms sequential scan by using only half of the
time. Some state-of-art methods work better when the data has uniform distribution. We
believe that our method is the best choice on very skewed data set. Furthermore, our index

structure does not need to be re-adjusted when the data is dynamically added.

Another advantage of our method is the fact that we can use any existing low-dimensional
index structures to store the data items and take advantage of all the nice properties of those
structures. The hashing based technique can easily be implemented on top of any existing

DBMS.

The rest of the paper is organized as following: In section 2, we give a brief description
of related work in high-dimensional indexing. Section 3 describes our algorithm and gives
some discussion. Section 4 presents our experimental results. Section 5 gives the conclusions

and directions for future research.

2 Related Word

Recently, many high-dimensional index structures have been proposed.

Berchtold, Keim, and Kriegel presented the X-tree [11] which is trying to adapting the
algorithms of R*-trees to high-dimensional data. The basic idea of their algorithm is that
they try to find an overlap-free split. If that split leads to an unbalanced split, then second,
they omit that split and construct a supernode. The major drawback of the X-tree is that
in order to guarantee the storage utilization, it must use the 50%-quantile when splitting a
data page. As showed in [14], this is the worst case in high-dimensional indexing, because
the resulting pages have an access probability close to 100%. The same thing will happen
on R*-tree [4], KD-tree [2], SS-tree [12] and TV-tree [8].

The pyramid-technique [14] is a solution for the above drawback. It first splits the d-

dimensional space into 2d parts. Then, the algorithm creates a mapping from the given

space to a 1-dimensional space. Finally, a B+-tree is used to manage the transformed data.
Once a range query arrives, it checks 2d parts separately and finds the result. The pyramid-
technique outperforms the X-tree by a factor up to 2500 for range queries. The authors
also extend the method for skewed data set. But in order to maintain the efficiency, the
algorithm must find the median point before splitting the space. In a dynamic environment,
the median is not always the same. Their solution is to re-build the whole index if the

median point goes too far which is very expensive.

Another approach is called Singular Value Decomposition (SVD) method [6, 7]. The
basic idea is to condenses most of the information in a data set to a few dimensions by
applying SVD. The data in the few condensed dimensions are then indexed to support fast
retrieval. The major drawback to this approach is that SVD is very expensive to compute,
once new data are added into the dataset, the whole transformation must be re-computed.
Therefore, it is not readily applicable to dynamic databases either. The other thing is that
SVD method can not give the 100% correct result, because some information is lost due to

the dimensionality reduction.

To overcome the first drawback, Kanth, Agrawal and Singh recently proposed an effi-
cient way to incorporate the recomputed SVD-transform in the existing index structure [15].

However, their method is based on SVD, the second drawback can not be overcome.

3 The Hashing Technique

The basic idea of the Hashing Technique is to put the d-dimensional data points into d-
dimensional buckets by using a hashing function H where d < d. Then use an efficient
index structure such as B+-tree [1] (when d = 1) and R*-tree [4] (when d > 1) to store and
access the buckets. Basically, any efficient low-dimensional index methods can be used. In

this paper, we use R*-tree and B+-tree. Figure 1 gives the overview of the method:

d-dimensional datasst ——=| H |—— d-dimensional buckets
|

insert, delete
query

[

low-dimensional index structure

d-dimensiona rangequery ——=| H |——= d-dimensional range query

Figure 1: Overview of the Hashing Technique

In the leaf of the low-dimensional index structure, we store the d-dimensional information
along with the d-dimensional key so we do not need to provide an inversed transformation.

Now the problem remained is how to find a good hashing function.

3.1 Hashing Functions

In order to find a good hashing function H, some criteria must be met.

First of all, in order to guarantee the correctness, if point p is in the range R, after

transformation, H(p) must be in transformed range H(R).

Property 3.1 To any point p and range R, p is in R, then H(p) is in H(R).

We do not need the inversed side to be satisfied. Actually, if we want to lower the

dimension, it is impossible to guarantee the inverse to be true.

The second property is set to guarantee the efficiency of the hashing function. If two
point p; and py which are close in d-dimensional space, H(p;) and H(ps) should be close in
d-dimensional space. Otherwise, suppose we have a range query R which contains p; and

p2, after transformation, in order to satisfy the first property, H(R) must contain H(p;) and

H(py). If H(p1) and H(py) are very far away in d-dimensional space, H(R) now becomes a

very large query range. This will decrease the efficiency of the method.
Property 3.2 To any ¢ > 0, 38, to any py,pa, if |pip2| < &, then |H(p1)H(p2)| < 6.

It we can not find such a small é for e, that means we can not give an upper bound of
size of the transformed query range. Of course, the lower ¢ is, the more efficient the function

is. Here “lower” means the size of 6 comparing to the whole low-dimensional data space.

We called the hashing functions which satisty the above properties good hashing functions.

3.2 Distance mapping

First, we use distance function as our hashing function. The idea is that first find a point
p in d-dimensional space. To any data point p’, find the distance between p and p’. Define
H(p') = |pp'|. Use H(p') as a key and save the data into a B+-tree. Here the point p can be

randomly selected. It is not necessary to pick a data point.

Once we have a query range R. The remaining problem is to find H(R). Define D,,;,
and D4, as the minimum and maximum distance of any point in the range R to p. Then

H(R) = [Duin, Dinaz)- Dmin and Dy4 can be easily found from the following lemma:

Lemma 3.3 Given a hyper-rectangle R = [21,,,, 1,,0,]5 - - 5 [Tdiow > Tdpign) and p = {y1,...,ya},

Dmin - \/2?21 D22 where

0 : xilow S yZ S xihigh
DZ - xilow - yZ : yZ < xilow
Yi = Tinign * Tiggn < Yi

and D, = \/Zle D? where D; = max{|z;,,, — yil, |yi — l’ihigh|}

Proof: We will only prove the correctness of D,,;, because D,, ., 1s almost the same.
In each dimension, D; is the minimum possible value of distance of any points in R to p on

dimension ¢, so D,,;, 1s the minimum value. The important thing here is that we can find

such a p’ = {y},...,y;} in R which satisfies H(p') = Dpin.

Define
Yi 1 T, S YL S T,
r_
yZ - xilow : yZ < xilow
Linign + Lipign <Y
It is very obvious that p’ is in R. O

Now, we can transform a d-dimensional hyper-rectangle query to a 1-dimensional range
query. For each query range R, first we find D,,;, and D,,,., then retrieve all the buckets in
the range from B+-tree. Check the points in the buckets and filter the “false alarms”, we

have the final result.

Theorem 3.4 Distance mapping is a good hashing function. Here we define H(p") = |pp'|.

Proof: First of all, if p’ is in R, from the lemma above we know that D,,;,, < |pp'| <
Doz, that means H(p') € [Dpin, Dimaz). Secondly, to any ¢ > 0, define 6 = ¢, to any p1, pa2,

if |p1p2] < €, then according to triangular inequality, |H(p1) — H(p2)| < 6. O

The detail algorithm is listed in figure 2.

3.3 Multi-distance mapping

Since there are many great index methods for low-dimensional data, we further extend our

method in order to increase the efficiency.

// p is the base point in d-dimensional space
Point_Set rangeQuery_1 (range R, Point p) {
Point_Set res;
find Dmin and Dmax using p; // using Lemma
cs = btreeQuery (Dmin, Dmax);
for (c = cs.first; cs.end; cs.next) {

if (inside (R, c))

res.add (c);
}
}
Figure 2: Range query algorithm 1
This time we select a set of points {p1, p2,...,pz}, for each point p in the d-dimensional

space, find the distance from p to each point of the set. Now we have a d-dimensional vector
< dy,dy,...,d; >. Obviously, d must be a small number, otherwise, we do not have any
improvement here. Use that d-dimensional vector as a key and save the point into a R*-tree.

The insert, delete and update operations are quite easy.

For any range query R, we find D; . and D for each of d dimensions using the same

tmax

method in section 3.2. Now we have a new range R’ in our low-dimensional space. Run the

query and filter the “false alarm”, we have the result.

Theorem 3.5 Multi-distance mapping is a good hashing function. Here we define H(p') =<

p1pl, [p2pls - Ipap] >
Proof: First of all, if p is in R, we know that D; . < |pp;| < D;,..., that means
H(p): € [Ds,,.,D:,..] for each i € [1,...,d]. So H(p) is in H(R). Secondly, to any & >

0, define 6 = %@, to any pi,ps, if |pip2| < e, then according to triangular inequality,

|H(p1)2» - H(pZ)i| < ¢ for each : € [17 .- '7d]' So |H(P1)H(p2)| <. O

The detail algorithm is listed in figure 3.
// d_bar is the number of points we selected
// p is the array of base point in d-dimensional space

Point_Set rangeQuery_2 (range R, int d_bar, Point p[])

{
Point_Set res;
// transform the range query
for (1 = 0; 1 < d_bar; i++)
find Dmin[i] and Dmax[i] using pl[il;
cs = rtreeQuery (Dmin, Dmax, d_bar);
for (c = cs.first; cs.end; cs.next) {
if (inside (R, c))
res.add (c);
}
}

Figure 3: Range query algorithm 2

3.4 Max-dimension and Multi max-dimension functions

The distance function is not very efficient. Look at the following example in a 2-dimensional

space (Figure 4).

Here p is a point we selected as the base point. For range R, D,,;, and D,,,, are showed
as the minimum and maximum distance of points in R to p. All the points between D,,;,
and D, will be retrieved. Since R is a rectangle, D,,;, and D,,,, are two circles. Wherever

R is, there is always some waste space.

Dmax

Dmin

T e

Figure 4: Example of a distance mapping

In order to solve the problem, we define the following function.

Definition 3.6 Suppose p; = {1,292, ...,24} and p2 = {y1,y2,...,ya} are two d-dimensional

points. Define: Dist(py,ps) = max{|x; — y;|}, where i € [1,...,d].

The meaning of function Dist(p,p’) can be view as following: Generate a series of hyper-
cubes and p is their center. There must exist a hypercube C' which passes p’. The distance

between p and any side of C' equals to Dist(p,p’). Here Dist(p,p’) = Duist(p', p).

Select a point p in a d-dimensional space, for each data point p’ in the space, find

Dist(p,p’) and use it as a key to save p’ into a B+-tree.

Like the distance mapping, for any range R, we need to find D,,;, and D,,,,. The method

is almost the same:

Lemma 3.7 Given a hyper-rectangle R = [21,,,,%1,,0]5 - - 5 [Tdiow > Tdpign) and p = {y1,...,ya},

Dyin = mazx{D;} where

0 : xilow S yZ S xihigh
DZ - xilow - yZ : yZ < xilow
Yi = Tinign + Tipign <Y

and Dyop = max{D;} where D; = max{|x;,, — vil, |yi — wihigh”

10

We omit the proof here because it is almost the same as the previous one. Next we want

to show that Dzist is a good hashing function.

Theorem 3.8 Function Dist is a good hashing function. Here H(p') = Dist(p,p’).

Proof: First of all, if p’ is in R, we know that Dy, < Dist(p,p’) < Dyas by the

definition of Dist. So H(p) is in H(R).

o —— Iy
B

H(B) - H(A)
Figure 5: Max-dimension mapping is a good hashing function

Secondly, to any € > 0, define 6 = ¢, to any A, B, if |[AB]| < ¢, then we want to show that
|H(A) — H(B)| < 6. Look at Figure 5, p is the selected point and A and B are two random
data points. There are two hypercubes C and (5 centered with p which pass A and B. The
distance between two cubes are |H(B)— H(A)| which the nearest possible distance between

any point on Cy and Cy. That means |H(B) — H(A)| < |[AB| < e =¢. 0

The query algorithm is the same as distance mapping. So we do not list the detail here.

Like distance mapping, we can also select a set of points instead of one. The basic idea

is almost the same. And it is not hard to prove that it is a good hashing function too.

11

3.5 Discussion

We present four hashing functions in the previous parts. The remain two problems is about

the location of the base points and the number of dimensions after transformation.

Definition 3.9 The degree of a hashing function is the dimensionality of the transformed

data.

The degree selection is very important in the hashing method. In most cases, as the
degree increases, the query becomes more efficient. That is, the data in the buckets which
are in the transformed query region are more likely to be the data we need. However, at the

same time, we need to use more complicated index structure which creates more overhead.

According to [17, 14], when the degree is bigger than 10, most index methods become
inefficient. So to any hashing functions, the degree should be no more than 10. According
to our experiment, if the selectivity of the query is very low, degree can be big, otherwise,

degree should be no more than 3. The details can be found in the next section.

The other thing is about the selection of the base points. The object of base points
selection is to decrease the “false alarm” to any queries. Theoretically, any positions are
acceptable, even outside the data space. However as the degree is bigger than 1, things are

a little different.

For example, we use multi max-dimensional function as our hashing function and choose
degree to be 2. First of all, we need to select two base points. If those two points (A and B)
are very close, to any data point p in the space, Dist(A,p) and Dist(B,p) are very close.
Now we can say these two values have some relations. The object of selecting more than
one base point is to include more information. However, in the above example, we gain very

little benefit by introduction the second base point.

This example shows us that when we select more than one base point, those points should

be far away enough to generate different information for any data points. If all the data

12

points are in a hypercube. Corner points can be a very good selection.

4 Experimental evaluation

To access the merit of our algorithm, we implemented the algorithm and performed some
experimental evaluation of Hashing Technique. The following competitive techniques are

used:

e Pyramid-Technique

e Sequential Scan.

The Pyramid-Technique has been chosen for comparison, because it is the best high
dimensional techniques ever designed. According to [14], Pyramid-Technique outperforms
the X-tree by a factor of up to 2500 (total elapsed time) for range queries, which is an

amazing result.

Sequential scan processing is inefficient in low-dimensional data space. However, ac-
cording to recent research [17], it yields better performance in high-dimensional data spaces
than most index-based query processing. Therefore, we included the sequential scan in our

experiment.

In Pyramid-technique and our method, the index key is transformed data. We stored
all the relevant information in the leat node. Therefore, no additional object fetchings are

needed. This made the comparison more fair.
The experiments are run on a Sun Ultra 1 machine with 128 M memory.

In the first part, we compared the performance of four different hashing functions. Then
in the second part, we used the best hashing function to perform the comparison with the

other two techniques. In both part, range queries are used since range query is a basic

13

operation for other queries. The queries are hypercubes selected randomly from the data
space. But each hypercube has same volume. This volume can be viewed as the selectivity

of a query if the data points are uniformly distributed.

4.1 Evaluation of different hashing functions

In the last section, we introduced four hashing functions, in this part, we compared the per-
formance of those functions. The data set we used contains 1,000,000 uniformly distributed

points in a 40-dimensional data space.

We chose distance mapping, degree 2 multi-distance mapping, max-dimension mapping,
degree 2 and 3 multi max-dimension mapping functions. Since the data points are uniformly
distributed, the selectivity is the volume of the query hypercube to the total volume of the

data space. The result is showed in Figure 6.

- 1.2 [® Distance Mapping Function "
[OXERTIR © Degree 2 Multi-Distance Mapping Function %
- 1.1 Koo - Max-Dimension Mapping Function
Degree 2 Multi
S < Max-Dimension Mapping Function
Degree 3 Multi
- 1.0 Herneenes * Max-Dimension Mapping Function
ye
- 0.9
T -
1 2
m (.8 K
(s) o o 2 .
0.7 e R
. .- "--."
T L &
- 0.6 &Il ok ‘
LT
Y VR 1 1 1 1 1
10~ 10~° 1074 10-3 0.01 0.1
Selectivity

Figure 6: Performance Behavior over Different Hashing Functions

14

In our first experiment, we measured the performance of five functions on a given set
of data points. The selectivity varied from 107> to 0.1. The page size is 4096 bytes, which
leads to an effective page capacity of 25 objects per page. Three methods use R*-tree whose
minimum number of entries in a page is 10 objects per page. All multi degree functions use

corner points as base points.

We observed that in these five results, Degree 2 multi max-dimension mapping is the
most efficient. Especially when the selectivity is low. And degree 2 multi-distance mapping
is the worst. The max-dimension mapping is always better than distance mapping. As the

selectivity becomes close to 1, all five functions seems to have no big difference.

Now look at three max-dimension mapping functions. When the degree increases from
one to two. The decrease of the “false alarms” makes the method more efficient. However at
the same time, we must spend more overhead on the two-dimensional index structure. Here
the gain is more than loss, so the total elapsed time becomes low. As the degree increases
again from two to three, the gain is no longer more than loss. Then the total time increases.
We can claim that the multi max-dimension method will become even more inefficient as the

degree is greater than 3.

4.2 Evaluation of different techniques

In this part, we want to compare our method with sequential scan and Pyramid-Technique.
In the last part, we found that degree 2 max-dimension mapping is the best hashing function.
So we use that function in this part along with Pyramid Technique and Sequential Scan. We
used two data sets. Both contains 500,000 50-dimensional data points. In the first set, all

the data are uniformly distributed and in the second set, they are very skewed.

In the first experiment (Figure 7) we find that Pyramid-Technique is the best method
in uniformly distributed data set. Our method is better than Sequential Scan (use about

1/2 total elapsed time) but worse than Pyramid-Technique, especially when the selectivity

15

- 1.4 LR * E/[ngr—%il%nlg/llig}gn Mapping *
[© Pyramid Technique
- 1.2 Feoeeeenes * Sequential Scan
1.0
."*‘
T [0.8
1 * .
m }
. 0.6 -)
(S) * * o
o4 - .
I -
@ P
0.2 o
g g A o ,
10— 10-5 10-4 1073 0.01 0.1
Selectivity

Figure 7: Performace of three techniques on uniformly distributed data

is low.

In the second experiment, we use a skewed data set. It is a d-dimensional data but only
k dimensions are independent. The rest d — k dimensions have some relation with those &
dimensions. This time, we varied k and set d = 50. The number of data points is 500,000
and the volume of query range is 0.01% of the total volume. The result is displayed in Figure
8.

As Figure 8 shows, our method outperforms Pyramid-Technique when £ is low. How-
ever, as k increases, i.e. the data become less skewed, Pyramid-Technique shows its power.

Sequential scan couldn’t compete with our method for any of these queries.

Summarize the results of our experiments, we make the following observations:

1. For all our hashing functions, degree 2 multi max-dimension mapping function is the

best one.

16

* 0.7 Sequential Scan
Rl e @ @ e NP @ errreeeer s o)
ek
- 0.6
Degree 2 Multi
0.5 S ‘I\/IaX—Dimension Mapping
IUUUREIORSRSREEE o B
LN T e
o[04 K ek
. Pyraimid Technique
1 e
m ¢0.9
“ N
S
- 0.2
- 0.1
1 3) 7 9 11 13

Number of attributes specified

Figure 8: Performace of three techniques on uniformly distributed data

2. For uniformly distributed data set, Pyramid-Technique is the best method. However
if the data set is very skewed, both sequential scan and our method is faster. Our

method can beat sequential scan in all cases.

5 Conclusions

In this paper, we proposed a new indexing method, the Hashing-based index method. The
basic idea of this method is to select a hashing function. Then put the high dimensional
data into low dimensional buckets, and use the existing method to store and retrieve those
buckets. The most important thing in this method is the selection of the hashing function.

We gave some properties of a good hashing function and presented 4 different functions.

The concepts of Hashing Technique are designed for hypercube range query in a high-

17

dimensional space. For skewed data set, our method performs better than other index

structures. However, if the data has uniform distribution, Pyramid-Technique is still the

best choice.

We plan to find more hashing functions in our future work.

References

[10]

Comer D. The Ubiquitous B-tree ACM Computing Surveys, 1979.

Robinson J. T. The K-D-B-tree: A Search Structure for Large Multidimensional Dy-
namic Inderes Proc. ACM SIGMOD, 1981.

H. Edelsbrunner. Algorithms in Combinatorial Geometry Springer-Verlag, 1987.

Bechmann N., Kriegel H.P., Schneider R., Seeger B.. The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles Proc. ACM SIGMOD, 1990.

Tzi_cker Chiueh. Content-Based Image Indexing Proc. of VLDB | 1994.

Hull, D. Improving text retrieval for the routing problem using latent semantic indexing

Proc. ACM SIGMOD, 1994.

R. Ng, A. Sedighian. Evaluating multi-dimensional indexing structures for images trans-

formed by principle component analysis Proc. ACM SPIE, 1994.

Lin K, Jagadish H. V., Faloutsos C. The TV-Tree: An Index Structure for High-
Dimensional Data VLDB, 1995

Nick Roussopoulos, Yannis Kotidis, Mema Roussopoulos. Cubetree: Organization of and

Bulk Incremental Updates on the Data Cube

Philip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot Siegel, Zenon Protopapas
Fast Nearest-Neighbor Search in Medical image Databases Cont. on VLDB, 1996

18

[11]

[15]

[16]

[17]

Stefan Berchtold, Daniel A. Keim, Hans-peter Kriegel. The X-tree: An Index Structure
for High-Dimensional Data Proc. of VLDB, 1996.

David White, Ramesh Jain. Similarity Indexing with the SS-tree Proc. of ICDE, 1996.
Sergey Brin. Nearest Neighbor Search in Large Metric Spaces Proc. of VLDB, 1997.

Stefan Berchtold, Christian Bhon, Hans-Peter Kriegel. The Pyramid-Technique: Toward
Breaking the Curse of Dimenstonality Proc. of the ACM SIGMOD, 1998.

K. V. Rave Kanth, Divyakant Agrawal, Ambuj Singh. Dimensionality Reduction for
Stmilarity Search in Dynamic Database Proc. of ACM SIGMOD, 1998.

Stefan Berchold, Bernhard Ertl, Kaniel Keim, Hans-Peter Kriegel, Thomas Seidl. Fast
Nearest Neighbor Search in High Dimensional Space Proc. of ACM SIGMOD, 1998.

Beyer K., Goldstein J., Ramakrishnan R., Shaft U. When s “Nearest neighbor” Mean-

ingful? submitted for publication, 1998.

19

