
Hashing Technique: A New Index Method for HighDimensional DataZhexuan Song Nick RoussopoulosDepartment of Computer Science Department of Computer Science &University of Maryland Institute For Advanced Computer StudiesCollege Park, Maryland 20742 University of Marylandzsong@cs.umd.edu College Park, Maryland 20742nick@cs.umd.eduSeptember 24, 1999CS-TR-4059AbstractAs showed in [17], when dimension goes high, sequential scan processing becomesmore e�cient than most index-based query. In this paper, we propose a new indexmethod for high-dimensional data spaces. This method is based on hashing technique.The basic idea is: First �nd a hashing function which puts the given d-dimensionalspace data into a �d-dimensional buckets where �d � d. Then, we use existing indextechniques to manage those buckets. We later de�ne some properties of a good hash-ing function and give four hashing functions. To demonstrate the e�ciency of ouridea, we experimentally compared our algorithms with sequential scan and Pyramid-Techniques. The results demonstrate that this method outperforms others for skeweddata set. It always beats the sequential scan by using only half of elapsed time for1

range query. However if the data has uniform distribution, Pyramid-Technique is stillthe best method.1 IntroductionMore and more high dimensional data now appear in a variety of new database applications.For example, new database applications such as Cubetree [9] create high dimensional datawhen store and retrieve data warehousing views. In other area such as multimedia, content-based search [10] is an attractive new idea which is based on feature vectors. In order tosupport those applications, database system must be able to handle high dimensional data.The low-dimensional case (when dimensionality equals to 2 or 3) is well solved [3]. However,recent researches [11, 12] show that basically none of the querying and indexing techniquesprovide good results on both low-dimensional and high-dimensional data for large queriesbecause of the so-called \curse of dimensionality".The approach taken now is to �nd methods to lower the dimensionality of data and uselow-dimensional index structure. For example, we have no method to handle 50-dimensionaldata, if we can transform those data into 2-dimensional data, we have a bunch of methodsto store to retrieve them. However, as we do such transformation, some information of theoriginal data set is lost. We have to sacri�ce some query e�ciency to compensate for the lostinformation. The cost we paid is either the inaccuracy of the result such as in SVD method,or many useless \false alarms" in the query result such as in Pyramid-technique.In this paper, we developed a hashing based techniques. The basic idea is to �nd ahashing function which puts the high-dimensional data into low-dimensional buckets. Whenprocessing high-dimensional range queries, we �rst �nd the corresponding low-dimensionalqueries. Then we retrieve all the buckets which are inside the transformed query ranges.Finally, we check all the data in those buckets and discard the \false alarms". As showedin our experiment, like sequential scan, this method performs very well not matter how the2

data set is distributed. And it always outperforms sequential scan by using only half of thetime. Some state-of-art methods work better when the data has uniform distribution. Webelieve that our method is the best choice on very skewed data set. Furthermore, our indexstructure does not need to be re-adjusted when the data is dynamically added.Another advantage of our method is the fact that we can use any existing low-dimensionalindex structures to store the data items and take advantage of all the nice properties of thosestructures. The hashing based technique can easily be implemented on top of any existingDBMS.The rest of the paper is organized as following: In section 2, we give a brief descriptionof related work in high-dimensional indexing. Section 3 describes our algorithm and givessome discussion. Section 4 presents our experimental results. Section 5 gives the conclusionsand directions for future research.2 Related WordRecently, many high-dimensional index structures have been proposed.Berchtold, Keim, and Kriegel presented the X-tree [11] which is trying to adapting thealgorithms of R*-trees to high-dimensional data. The basic idea of their algorithm is thatthey try to �nd an overlap-free split. If that split leads to an unbalanced split, then second,they omit that split and construct a supernode. The major drawback of the X-tree is thatin order to guarantee the storage utilization, it must use the 50%-quantile when splitting adata page. As showed in [14], this is the worst case in high-dimensional indexing, becausethe resulting pages have an access probability close to 100%. The same thing will happenon R*-tree [4], KD-tree [2], SS-tree [12] and TV-tree [8].The pyramid-technique [14] is a solution for the above drawback. It �rst splits the d-dimensional space into 2d parts. Then, the algorithm creates a mapping from the given3

space to a 1-dimensional space. Finally, a B+-tree is used to manage the transformed data.Once a range query arrives, it checks 2d parts separately and �nds the result. The pyramid-technique outperforms the X-tree by a factor up to 2500 for range queries. The authorsalso extend the method for skewed data set. But in order to maintain the e�ciency, thealgorithm must �nd the median point before splitting the space. In a dynamic environment,the median is not always the same. Their solution is to re-build the whole index if themedian point goes too far which is very expensive.Another approach is called Singular Value Decomposition (SVD) method [6, 7]. Thebasic idea is to condenses most of the information in a data set to a few dimensions byapplying SVD. The data in the few condensed dimensions are then indexed to support fastretrieval. The major drawback to this approach is that SVD is very expensive to compute,once new data are added into the dataset, the whole transformation must be re-computed.Therefore, it is not readily applicable to dynamic databases either. The other thing is thatSVD method can not give the 100% correct result, because some information is lost due tothe dimensionality reduction.To overcome the �rst drawback, Kanth, Agrawal and Singh recently proposed an e�-cient way to incorporate the recomputed SVD-transform in the existing index structure [15].However, their method is based on SVD, the second drawback can not be overcome.3 The Hashing TechniqueThe basic idea of the Hashing Technique is to put the d-dimensional data points into �d-dimensional buckets by using a hashing function H where �d � d. Then use an e�cientindex structure such as B+-tree [1] (when �d = 1) and R*-tree [4] (when �d > 1) to store andaccess the buckets. Basically, any e�cient low-dimensional index methods can be used. Inthis paper, we use R*-tree and B+-tree. Figure 1 gives the overview of the method:4

d-dimensional dataset d-dimensional bucketsH

d-dimensional range query H d-dimensional range query

insert, delete

query

low-dimensional index structureFigure 1: Overview of the Hashing TechniqueIn the leaf of the low-dimensional index structure, we store the d-dimensional informationalong with the �d-dimensional key so we do not need to provide an inversed transformation.Now the problem remained is how to �nd a good hashing function.3.1 Hashing FunctionsIn order to �nd a good hashing function H, some criteria must be met.First of all, in order to guarantee the correctness, if point p is in the range R, aftertransformation, H(p) must be in transformed range H(R).Property 3.1 To any point p and range R, p is in R, then H(p) is in H(R).We do not need the inversed side to be satis�ed. Actually, if we want to lower thedimension, it is impossible to guarantee the inverse to be true.The second property is set to guarantee the e�ciency of the hashing function. If twopoint p1 and p2 which are close in d-dimensional space, H(p1) and H(p2) should be close in�d-dimensional space. Otherwise, suppose we have a range query R which contains p1 andp2, after transformation, in order to satisfy the �rst property, H(R) must contain H(p1) and5

H(p2). If H(p1) and H(p2) are very far away in �d-dimensional space, H(R) now becomes avery large query range. This will decrease the e�ciency of the method.Property 3.2 To any " > 0, 9�, to any p1; p2, if jp1p2j < ", then jH(p1)H(p2)j < �.If we can not �nd such a small � for ", that means we can not give an upper bound ofsize of the transformed query range. Of course, the lower � is, the more e�cient the functionis. Here \lower" means the size of � comparing to the whole low-dimensional data space.We called the hashing functions which satisfy the above properties good hashing functions.3.2 Distance mappingFirst, we use distance function as our hashing function. The idea is that �rst �nd a pointp in d-dimensional space. To any data point p0, �nd the distance between p and p0. De�neH(p0) = jpp0j. Use H(p0) as a key and save the data into a B+-tree. Here the point p can berandomly selected. It is not necessary to pick a data point.Once we have a query range R. The remaining problem is to �nd H(R). De�ne Dminand Dmax as the minimum and maximum distance of any point in the range R to p. ThenH(R) = [Dmin;Dmax]. Dmin and Dmax can be easily found from the following lemma:Lemma 3.3 Given a hyper-rectangle R = [x1low ; x1high]; : : : ; [xdlow ; xdhigh] and p = fy1; : : : ; ydg,Dmin = qPdi=1D2i whereDi = 8>>>>><>>>>>: 0 : xilow � yi � xihighxilow � yi : yi < xilowyi � xihigh : xihigh < yiand Dmax = qPdi=1D2i where Di = maxfjxilow � yij; jyi � xihighjg6

Proof: We will only prove the correctness of Dmin because Dmax is almost the same.In each dimension, Di is the minimum possible value of distance of any points in R to p ondimension i, so Dmin is the minimum value. The important thing here is that we can �ndsuch a p0 = fy01; : : : ; y0dg in R which satis�es H(p0) = Dmin.De�ne y0i = 8>>>>><>>>>>: yi : xilow � yi � xihighxilow : yi < xilowxihigh : xihigh < yiIt is very obvious that p0 is in R. 2Now, we can transform a d-dimensional hyper-rectangle query to a 1-dimensional rangequery. For each query range R, �rst we �nd Dmin and Dmax, then retrieve all the buckets inthe range from B+-tree. Check the points in the buckets and �lter the \false alarms", wehave the �nal result.Theorem 3.4 Distance mapping is a good hashing function. Here we de�ne H(p0) = jpp0j.Proof: First of all, if p0 is in R, from the lemma above we know that Dmin � jpp0j �Dmax, that means H(p0) 2 [Dmin;Dmax]. Secondly, to any " > 0, de�ne � = ", to any p1; p2,if jp1p2j < ", then according to triangular inequality, jH(p1)�H(p2)j � �. 2The detail algorithm is listed in �gure 2.3.3 Multi-distance mappingSince there are many great index methods for low-dimensional data, we further extend ourmethod in order to increase the e�ciency. 7

// p is the base point in d-dimensional spacePoint_Set rangeQuery_1 (range R, Point p) {Point_Set res;find Dmin and Dmax using p; // using Lemmacs = btreeQuery (Dmin, Dmax);for (c = cs.first; cs.end; cs.next) {if (inside (R, c))res.add (c);}} Figure 2: Range query algorithm 1This time we select a set of points fp1; p2; : : : ; p �dg, for each point p in the d-dimensionalspace, �nd the distance from p to each point of the set. Now we have a �d-dimensional vector< d1; d2; : : : ; d �d >. Obviously, �d must be a small number, otherwise, we do not have anyimprovement here. Use that �d-dimensional vector as a key and save the point into a R*-tree.The insert, delete and update operations are quite easy.For any range query R, we �nd Dimin and Dimax for each of �d dimensions using the samemethod in section 3.2. Now we have a new range R0 in our low-dimensional space. Run thequery and �lter the \false alarm", we have the result.Theorem 3.5 Multi-distance mapping is a good hashing function. Here we de�ne H(p0) =<jp1pj; jp2pj; : : : ; jp �dpj >.Proof: First of all, if p is in R, we know that Dimin � jppij � Dimax , that meansH(p)i 2 [Dimin ;Dimax] for each i 2 [1; : : : ; �d]. So H(p) is in H(R). Secondly, to any " >0, de�ne � = �dp �d", to any p1; p2, if jp1p2j < ", then according to triangular inequality,8

jH(p1)i �H(p2)ij � " for each i 2 [1; : : : ; �d]. So jH(p1)H(p2)j � �. 2The detail algorithm is listed in �gure 3.// d_bar is the number of points we selected// p is the array of base point in d-dimensional spacePoint_Set rangeQuery_2 (range R, int d_bar, Point p[]){ Point_Set res;// transform the range queryfor (i = 0; i < d_bar; i++)find Dmin[i] and Dmax[i] using p[i];cs = rtreeQuery (Dmin, Dmax, d_bar);for (c = cs.first; cs.end; cs.next) {if (inside (R, c))res.add (c);}} Figure 3: Range query algorithm 23.4 Max-dimension and Multi max-dimension functionsThe distance function is not very e�cient. Look at the following example in a 2-dimensionalspace (Figure 4).Here p is a point we selected as the base point. For range R, Dmin and Dmax are showedas the minimum and maximum distance of points in R to p. All the points between Dminand Dmax will be retrieved. Since R is a rectangle, Dmin and Dmax are two circles. WhereverR is, there is always some waste space. 9

p

R

D

D

max

minFigure 4: Example of a distance mappingIn order to solve the problem, we de�ne the following function.De�nition 3.6 Suppose p1 = fx1; x2; : : : ; xdg and p2 = fy1; y2; : : : ; ydg are two d-dimensionalpoints. De�ne: Dist(p1; p2) = maxfjxi� yijg, where i 2 [1; : : : ; d].The meaning of function Dist(p; p0) can be view as following: Generate a series of hyper-cubes and p is their center. There must exist a hypercube C which passes p0. The distancebetween p and any side of C equals to Dist(p; p0). Here Dist(p; p0) = Dist(p0; p).Select a point p in a d-dimensional space, for each data point p0 in the space, �ndDist(p; p0) and use it as a key to save p0 into a B+-tree.Like the distance mapping, for any range R, we need to �nd Dmin and Dmax. The methodis almost the same:Lemma 3.7 Given a hyper-rectangle R = [x1low ; x1high]; : : : ; [xdlow ; xdhigh] and p = fy1; : : : ; ydg,Dmin = maxfDig where Di = 8>>>>><>>>>>: 0 : xilow � yi � xihighxilow � yi : yi < xilowyi � xihigh : xihigh < yiand Dmax = maxfDig where Di = maxfjxilow � yij; jyi � xihighjg10

We omit the proof here because it is almost the same as the previous one. Next we wantto show that Dist is a good hashing function.Theorem 3.8 Function Dist is a good hashing function. Here H(p0) = Dist(p; p0).Proof: First of all, if p0 is in R, we know that Dmin � Dist(p; p0) � Dmax by thede�nition of Dist. So H(p) is in H(R).
A

B
H(B) - H(A)

|AB|

p

C
1 2C

Figure 5: Max-dimension mapping is a good hashing functionSecondly, to any " > 0, de�ne � = ", to any A;B, if jABj < ", then we want to show thatjH(A)�H(B)j < �. Look at Figure 5, p is the selected point and A and B are two randomdata points. There are two hypercubes C1 and C2 centered with p which pass A and B. Thedistance between two cubes are jH(B)�H(A)j which the nearest possible distance betweenany point on C1 and C2. That means jH(B)�H(A)j � jABj < " = �. 2The query algorithm is the same as distance mapping. So we do not list the detail here.Like distance mapping, we can also select a set of points instead of one. The basic ideais almost the same. And it is not hard to prove that it is a good hashing function too.11

3.5 DiscussionWe present four hashing functions in the previous parts. The remain two problems is aboutthe location of the base points and the number of dimensions after transformation.De�nition 3.9 The degree of a hashing function is the dimensionality of the transformeddata.The degree selection is very important in the hashing method. In most cases, as thedegree increases, the query becomes more e�cient. That is, the data in the buckets whichare in the transformed query region are more likely to be the data we need. However, at thesame time, we need to use more complicated index structure which creates more overhead.According to [17, 14], when the degree is bigger than 10, most index methods becomeine�cient. So to any hashing functions, the degree should be no more than 10. Accordingto our experiment, if the selectivity of the query is very low, degree can be big, otherwise,degree should be no more than 3. The details can be found in the next section.The other thing is about the selection of the base points. The object of base pointsselection is to decrease the \false alarm" to any queries. Theoretically, any positions areacceptable, even outside the data space. However as the degree is bigger than 1, things area little di�erent.For example, we use multi max-dimensional function as our hashing function and choosedegree to be 2. First of all, we need to select two base points. If those two points (A and B)are very close, to any data point p in the space, Dist(A; p) and Dist(B; p) are very close.Now we can say these two values have some relations. The object of selecting more thanone base point is to include more information. However, in the above example, we gain verylittle bene�t by introduction the second base point.This example shows us that when we select more than one base point, those points shouldbe far away enough to generate di�erent information for any data points. If all the data12

points are in a hypercube. Corner points can be a very good selection.4 Experimental evaluationTo access the merit of our algorithm, we implemented the algorithm and performed someexperimental evaluation of Hashing Technique. The following competitive techniques areused:� Pyramid-Technique� Sequential Scan.The Pyramid-Technique has been chosen for comparison, because it is the best highdimensional techniques ever designed. According to [14], Pyramid-Technique outperformsthe X-tree by a factor of up to 2500 (total elapsed time) for range queries, which is anamazing result.Sequential scan processing is ine�cient in low-dimensional data space. However, ac-cording to recent research [17], it yields better performance in high-dimensional data spacesthan most index-based query processing. Therefore, we included the sequential scan in ourexperiment.In Pyramid-technique and our method, the index key is transformed data. We storedall the relevant information in the leaf node. Therefore, no additional object fetchings areneeded. This made the comparison more fair.The experiments are run on a Sun Ultra 1 machine with 128 M memory.In the �rst part, we compared the performance of four di�erent hashing functions. Thenin the second part, we used the best hashing function to perform the comparison with theother two techniques. In both part, range queries are used since range query is a basic13

operation for other queries. The queries are hypercubes selected randomly from the dataspace. But each hypercube has same volume. This volume can be viewed as the selectivityof a query if the data points are uniformly distributed.4.1 Evaluation of di�erent hashing functionsIn the last section, we introduced four hashing functions, in this part, we compared the per-formance of those functions. The data set we used contains 1,000,000 uniformly distributedpoints in a 40-dimensional data space.We chose distance mapping, degree 2 multi-distance mapping, max-dimension mapping,degree 2 and 3 multi max-dimension mapping functions. Since the data points are uniformlydistributed, the selectivity is the volume of the query hypercube to the total volume of thedata space. The result is showed in Figure 6.
-

6
10�6 10�5 10�4 10�3 0:01 0:10.60.70.80.91.0

1.11.2
Selectivity

Time(s) � � � � � �
� � � � � �
? ? ? ? ? ?
� � � � � �
� � � � � �� � Distance Mapping Function� � Degree 2 Multi-Distance Mapping Function? ? Max-Dimension Mapping Function� � Degree 2 MultiMax-Dimension Mapping Function� � Degree 3 MultiMax-Dimension Mapping Function

Figure 6: Performance Behavior over Di�erent Hashing Functions14

In our �rst experiment, we measured the performance of �ve functions on a given setof data points. The selectivity varied from 10�5 to 0.1. The page size is 4096 bytes, whichleads to an e�ective page capacity of 25 objects per page. Three methods use R*-tree whoseminimum number of entries in a page is 10 objects per page. All multi degree functions usecorner points as base points.We observed that in these �ve results, Degree 2 multi max-dimension mapping is themost e�cient. Especially when the selectivity is low. And degree 2 multi-distance mappingis the worst. The max-dimension mapping is always better than distance mapping. As theselectivity becomes close to 1, all �ve functions seems to have no big di�erence.Now look at three max-dimension mapping functions. When the degree increases fromone to two. The decrease of the \false alarms" makes the method more e�cient. However atthe same time, we must spend more overhead on the two-dimensional index structure. Herethe gain is more than loss, so the total elapsed time becomes low. As the degree increasesagain from two to three, the gain is no longer more than loss. Then the total time increases.We can claim that the multi max-dimension method will become even more ine�cient as thedegree is greater than 3.4.2 Evaluation of di�erent techniquesIn this part, we want to compare our method with sequential scan and Pyramid-Technique.In the last part, we found that degree 2 max-dimensionmapping is the best hashing function.So we use that function in this part along with Pyramid Technique and Sequential Scan. Weused two data sets. Both contains 500,000 50-dimensional data points. In the �rst set, allthe data are uniformly distributed and in the second set, they are very skewed.In the �rst experiment (Figure 7) we �nd that Pyramid-Technique is the best methodin uniformly distributed data set. Our method is better than Sequential Scan (use about1/2 total elapsed time) but worse than Pyramid-Technique, especially when the selectivity15

-
6

10�6 10�5 10�4 10�3 0:01 0:10.20.40.60.81.0
1.21.4

Selectivity
Time(s) � � � � � �� � � � � �? ? ? ? ? ?� � Degree 2 MultiMax-Dimension Mapping� � Pyramid Technique? ? Sequential Scan

Figure 7: Performace of three techniques on uniformly distributed datais low.In the second experiment, we use a skewed data set. It is a d-dimensional data but onlyk dimensions are independent. The rest d � k dimensions have some relation with those kdimensions. This time, we varied k and set d = 50. The number of data points is 500,000and the volume of query range is 0.01% of the total volume. The result is displayed in Figure8. As Figure 8 shows, our method outperforms Pyramid-Technique when k is low. How-ever, as k increases, i.e. the data become less skewed, Pyramid-Technique shows its power.Sequential scan couldn't compete with our method for any of these queries.Summarize the results of our experiments, we make the following observations:1. For all our hashing functions, degree 2 multi max-dimension mapping function is thebest one. 16

-
6
1 3 5 7 9 11 130.10.20.30.40.5
0.60.7

Number of attributes speci�ed
Time(s) � � � � � � � �Degree 2 MultiMax-Dimension Mapping� � � � � � � �Sequential Scan? ? ? ? ? ? ? ?Pyramid Technique

Figure 8: Performace of three techniques on uniformly distributed data2. For uniformly distributed data set, Pyramid-Technique is the best method. Howeverif the data set is very skewed, both sequential scan and our method is faster. Ourmethod can beat sequential scan in all cases.5 ConclusionsIn this paper, we proposed a new indexing method, the Hashing-based index method. Thebasic idea of this method is to select a hashing function. Then put the high dimensionaldata into low dimensional buckets, and use the existing method to store and retrieve thosebuckets. The most important thing in this method is the selection of the hashing function.We gave some properties of a good hashing function and presented 4 di�erent functions.The concepts of Hashing Technique are designed for hypercube range query in a high-17

dimensional space. For skewed data set, our method performs better than other indexstructures. However, if the data has uniform distribution, Pyramid-Technique is still thebest choice.We plan to �nd more hashing functions in our future work.References[1] Comer D. The Ubiquitous B-tree ACM Computing Surveys, 1979.[2] Robinson J. T. The K-D-B-tree: A Search Structure for Large Multidimensional Dy-namic Indexes Proc. ACM SIGMOD, 1981.[3] H. Edelsbrunner. Algorithms in Combinatorial Geometry Springer-Verlag, 1987.[4] Bechmann N., Kriegel H.P., Schneider R., Seeger B.. The R*-tree: An E�cient andRobust Access Method for Points and Rectangles Proc. ACM SIGMOD, 1990.[5] Tzi cker Chiueh. Content-Based Image Indexing Proc. of VLDB , 1994.[6] Hull, D. Improving text retrieval for the routing problem using latent semantic indexingProc. ACM SIGMOD, 1994.[7] R. Ng, A. Sedighian. Evaluating multi-dimensional indexing structures for images trans-formed by principle component analysis Proc. ACM SPIE, 1994.[8] Lin K, Jagadish H. V., Faloutsos C. The TV-Tree: An Index Structure for High-Dimensional Data VLDB, 1995[9] Nick Roussopoulos, Yannis Kotidis, Mema Roussopoulos. Cubetree: Organization of andBulk Incremental Updates on the Data Cube[10] Philip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot Siegel, Zenon ProtopapasFast Nearest-Neighbor Search in Medical image Databases Conf. on VLDB, 199618

[11] Stefan Berchtold, Daniel A. Keim, Hans-peter Kriegel. The X-tree: An Index Structurefor High-Dimensional Data Proc. of VLDB, 1996.[12] David White, Ramesh Jain. Similarity Indexing with the SS-tree Proc. of ICDE, 1996.[13] Sergey Brin. Nearest Neighbor Search in Large Metric Spaces Proc. of VLDB, 1997.[14] Stefan Berchtold, Christian Bhon, Hans-Peter Kriegel.The Pyramid-Technique: TowardBreaking the Curse of Dimensionality Proc. of the ACM SIGMOD, 1998.[15] K. V. Rave Kanth, Divyakant Agrawal, Ambuj Singh. Dimensionality Reduction forSimilarity Search in Dynamic Database Proc. of ACM SIGMOD, 1998.[16] Stefan Berchold, Bernhard Ertl, Kaniel Keim, Hans-Peter Kriegel, Thomas Seidl. FastNearest Neighbor Search in High Dimensional Space Proc. of ACM SIGMOD, 1998.[17] Beyer K., Goldstein J., Ramakrishnan R., Shaft U. When is \Nearest neighbor" Mean-ingful? submitted for publication, 1998.

19

