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ABSTRACT

Let A be a matrix of order n. The properties of the powers A* of A have
been extensively studied in the literature. This paper concerns the perturbed
powers

Py= (A4 Ep)(A+ Epy)--(A+ Ey),

where the F} are perturbation matrices. We will treat three problems con-
cerning the asymptotic behavior of the perturbed powers. First, determine
conditions under which P, — 0. Second, determine the limiting structure of
Pp. Third, investigate the convergence of the power method with error: that
is, given uq, determine the behavior of uy = vy Pruy, where vy is a suitable
scaling factor.

1. Introduction
Let A be a matrix of order » with eigenvalues Aq,..., A, ordered so that
(Al = Ao 2 = A

and let p(A) = |A;| denote the spectral radius of A. We will be concerned with extending
the following three results about the behavior of the powers A¥ of A. (These results
are easily proved by exploiting the relations between norms and spectral radii; see [9,
Sections 1.2, II.1]. For earlier work on powers of a matrix see [2, 3, 5, 7].)

e The first result is classic. If p(A) < 1, then limg_ ., A* = 0. Moreover, in any norm
| A¥||Y/* — p(A), or equivalently the convergence of A* to zero is faster than than that
of [p(A) + n]* for any 1 > 0. We say that the root convergence index of A* is p(A).

o The second result concerns the asymptotic form of A*. Let |A1| > [A2], and let the
right and left eigenvectors corresponding to Ay be z and y, normalized so that y™z = 1.

Then

/\l_kAk — zyt.

Moreover, the root convergence index is |Ag/Aq].
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¢ The third result concerns the convergence of the power method. Specifically, let uy
be given and define

Up1 = Vi Aug, k=1,2,...,

where vy is a normalizing factor (e.g., ||Aug||™'). In the above notation, if |A1] > |3
and yMu; # 0, then uy converges to a multiple of . The root index of convergence is

| A2/ Al

Now let Fq, F5,... be a sequence of perturbation matrices and let
P, = (A + Ek)(A + Ek—l) .. (A + El).

The purpose of this paper is to extend the three results above to the perturbed powers
P! Regarding the first result, we will show that if p(A) < 1 then for sufficiently small
FEy, the Py approach zero. Moreover, by making the F}; small enough we can bring the
convergence ratio arbitrarily near p(A). Regarding the second result, we will show that

if

D B < oo (1.1)
k

in any norm then the P, converge to zzH for some z (which may be zero), and we
will investigate the convergence rate. Finally, a finite-precision implementation of the
power method results in perturbations F} are of the order of the rounding unit and
therefore do not satisfy (1.1). Thus, we cannot use the second result to analyze the
convergence (actually nonconvergence) of the power method in the presence of rounding
error. However, using other techniques we can show that in the presence of rounding
error the power method will converge up to a point and then stagnate.

This paper is organized as follows. In establishing our extensions it will prove conve-
nient to transform our matrices by certain similarity transformations, and any conditions
placed on the transformed perturbations must be translated back to the original prob-
lem. Since the transformations can be ill conditioned, it is important to understand
the source of the ill-conditioning. Accordingly, the next section is devoted to describing
the two transformations we will use. In Section 3 we will establish our extension of the
first result, and in Section 4 the extension of the second. In Section 5 we will give an
analysis of the power method. It is worth noting that the last two sections end with
a little hook: each provides a new result about the problem treated in the preceding
section.

'The phrase “perturbed powers” is, strictly speaking, a misnomer, since it is the factors, not the
powers that are perturbed.
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Throughout this paper the jth column of the identity matrix will be denoted by e;.
In addition, || - || will denote a consistent family of norms such that that [|A|| bounds
the norm of any submatrix of A and ||diag(dy,...,d,)|| = max; |d;|. This class includes
the 1-, 2-, oo- norms but excludes the Frobenious norm [4, 8].

We will use the root convergence index to measure speed of convergence. Specifically,
if ar is a sequence converging to zero, and p = limsup, |a|1/k < 1 we say that «a
converges with root index p.

2. Two transformations

In deriving our results we will have to transform A into A = X 1AX, for some X
appropriate to the problem at hand. In this case, we must also transform the pertur-
bation matrices: Ej = X 'EX. Now ||Ex|| < s(X)||E||, where x(X) = || X]|||I XY
is the condition number of X. Hence in order to insure that a bound like || E|| < v
holds we have to require that ||Eg|| < v/k(X). Thus it is appropriate to examine the
conditions under which x(X) is large — that is, under which the transformations are ill
conditioned. There are two classes of transformations.

The first transformation is described in the following classic theorem (see, e.g., [9,
Theorem 1.2.8]).

Theorem 2.1. For any n > 0 there is a matrix X such that
IXLAX] < p(A) + 1. (2.1)

The theorem is proved by first transforming A to Schur form; i.e.,

vHAU =T,
where U is unitary and 7T is upper triangular. If we then set D, = diag(1, a,...,a" 1),
the superdiagonal elements of D='TD are aj_inj. If we define X, = UD,, then as
a — 0 we have || X 'AX,|| — ||diag(711, ..., Tun)|| = p(A). Consequently, we may set

X = X, where a is chosen so that (2.1) is satisfied.

As a decreases, X! becomes large. If the off-diagonal elements of T are nonzero,
a becomes small along with €, the more so in proportion as the off diagonal elements
of T are large. Large diagonal elements in T’ are associated with Henrici’s measure of
nonnormality [5]. Hence, nonnormality in A may weaken our theorems. However, it
should be stressed, that the above construction of X is designed to accommodate the
worst possible case, and in particular situations there may be a better way to construct
T. For example, if A has a complete, well-conditioned system of eigenvectors, then the
matrix X of eigenvectors reduces A to diagonal form, so that (2.1) is satisfied for n = 0.

The following useful theorem describes second of our transformations.
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Theorem 2.2. Let A\ be a simple eigenvalue of A with right and left eigenvectors x
and y; normalized so that ||z1||z = ||y1]]2 = 1 and v = y'a is positive. Let o = /1 —~2.
Then there is a matrix U with

K(U) = (2.2)

in the 2-norm such that

UTTAU = (Aol g) : (2.3)

Proof. By appealing to the CS decomposition [4, 8], we can find orthonormal matrices
(z1 @2 X3)and (y1 y2 Ys) such that

0
T
(r1 72 X3) (y1 y2 Ya) = 0
I

e S
o2 9

Let U = (’y_%wl »y—%yQ X3)and V = (’7_%3/1 7‘%952 Y3). Then it is easily verified that
VH = =1, Moreover,

1/gamma oy 0
Ut = oy 1/gamma 0
0 0 I

Thus |U||2 = [[UTU]|2 = (1 +0)/7. Similarly ||V]|2 = (1 +0)/7, which establishes (2.2).
The fact that (2.3) is satisfied follows immediately from the fact that the first column
of U is the right eigenvector 7 and the first column of V' is the left eigenvector y;. m

1 1

The matrix U will be ill conditioned when v~ is small. But v~ —the secant of

the angle between z; and y; —is a condition number for the eigenvalue Ay [4, Section
7.2.2], [9, Section 1.3.2]. Thus Uy will be ill conditioned precisely when Ay is.

3. Convergence to zero

We are now in the position to state and prove our extension of the first result. In fact,
thanks to results of the last section, it is trivial to establish the following theorem.

Theorem 3.1. Let p(A) < 1 and consider the perturbed products

Pe=(A+ E)(A+ Ex_q)-(A+ Ey). (3.1)



Perturbed Matrix Powers 5

For every n > 0 there is an € > 0 such that if || E|| < € then

lim sup || By[|"/* < p(A) + 9. (3.2)
k

Hence if p(A)+n < 1 then Py converges to zero with root convergence index at greatest

p(A) + 1.

Proof. By Theorem 2.1 there is a nonsingular matrix X such that if A = X 1AX then
IA|| < p(A)+n/2. Let By = X 'E X, P, = X 'P.X, and ¢ = /2. Then if ||Ey|| < &
we have ||+ Eyll < p(4) + 5, and [ Bo] < [o(4) + )"

Transforming back to the original problem, we see that if ||Ey|| < € = €/k(X) then
| Pe]| < w(X)[p(A) + n]*. The inequality (3.2) now follows on taking kth roots. m

There is little to add to this theorem. The price we pay for the perturbations is that
to make the root convergence index approach p(A) we must increasingly restrict the
size of the perturbations. This is unavoidable. For if we fix the size of the error at ¢ we
can always find F such that the largest eigenvalue of A 4+ F has magnitude p(A)+ €. If
we set B = F, then P, = (A + E)k, and the best root convergence index we can hope
for is p(A) + e.

4. Convergence with a simple dominant eigenvalue

In this section we will treat the behavior of the perturbed powers when A has a single,
simple dominant eigenvalue A; i.e., when [A{| > |Az]. By dividing by A by Ay, we may
assume that Ay = 1. The basic result is given in the following theorem.

Theorem 4.1. Let 1 = Ay > |Ay| and let the right eigenvector corresponding to Ay be
x. Let Py be defined as in (3.1). If

D 1B < oo, (4.1)
=1

then for some (possibly zero) vector =z we have

lim P, = z2t.
k—oco

The root convergence index is not greater than
max{p, o},
where p is the largest of the magnitudes of the subdominant eigenvalues of A and

o = lim sup || Ex|)"/*. (4.2)
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Proof. By Theorem 2.2, we may transform A so that it has the form diag(1, B), where
p(B) < 1. By Theorem 2.1, we may assume that ||B|| < § < 1. Note that the right
eigenvector of the transformed matrix is ey.

The theorem is best established in a vectorized form. First write

Pop1 = (A4 Ep) Py = APy + Ep P
Let u # 0 be given and let p = Pru. Then
Pr1 = Api + Expi. (4.3)

We will use this recurrence to show that the p; approach a multiple of e;.
Our first job is to find a condition that insures that the py remain bounded. To this
end, partition (4.3) in the form

( ) 1_|_€() o(FH (k)
1 11 12 4 ‘ (4.4)
() = (1 5) (O

Now let € = || F%|| and let 7r£k) and ng) be upper bounds on Hpgk)H and Hp(zk)H Then
by taking norms in (4.4) we see that the components of

(h+1) Lte (k)
1 k €k T
( (41 )) ( . ﬂ_|_€k) (ﬂgk)) (4.5)

are upper bounds on le H and HkaH ||. Thus if we write
1+ ¢ €L T €& €\ _ .
(Fre ) = amen+ (F0) = diag+

then the p, will be bounded provided the product

[T ldiag(1, 8) + Hyll < oc.
k=1

Now
T dins(1,5) + #l < T (Idiag(1, )] + 17l < [[a -+,
k=1 k=1 k=1

It is well known that the product on the right is finite if and only if the series ), €
converges [1, Section 5.2.2]. Hence a sufficient condition for the pj to remain bounded
is for (4.1) to be satisfied.
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(%)

The next step is to show that p,” converges to zero. Let 7 be a uniform upper

bound on Hpgk)H and Hp(zk)H From (4.5) we have
ﬂék-l_l) < (2e,m + ﬁﬂ'gk)).
Hence if we set # = 71 and define 75 by the recurrence
Thy1 = BTk + 2,
we have that Hp(zk)H < #). But it is easy to see that if we define ¢o = 3 then
frpr = 27(BRe + e + o+ Bl + €. (4.6)
It follows that
Fit it =2n(1+B+8°+ ) eotea +e+--) (4.7)

But the geometric series in 3 on the right is absolutely convergent, and by (4.1) the
series in € is also. Thus the series on the left is absolutely convergent, and its terms 7y
must converge to zero.

(%)

We must next show that p;’ converges. From the first row of (4.4) we have

k+1 k k k
Pg ) _ Pg ) = 651)1)1(16) + €§2)P2(k)a (4'8)
whence
k k
|p§ ) _ pg )| < 2¢. (4.9)
Since ), €, converges, if we set pgo) = 0, the telescoping series Zfzo(pgjﬂ) - pgj)) =
pgkﬂ) converges.
By taking v = e;, we find that the ¢th column of P, converges to w;e; for some w;.
Consequently, if we set wH = (w; --- w,), then Py converges to e;w'.

Finally, in assuming that A = diag(1, B) we transformed the original matrix A by a
similarity transformation X whose first column was the dominant eigenvector of A. It
follows that the original Py converge to

Xegwl X1 = wzH,

where 2 = X1t

We now turn to the rates of convergence. The inequality (4.9) shows that pgk)
converges as fast as || || approaches zero; i.e., its root convergence index is not greater
than o defined by (4.2).
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(%)

To analyze the convergence of p;” we make the observation that the reciprocal of
the radius of convergence of any function f(z) that is analytic at the origin is @ =
lim supy, |ax|'/*, where ay, is the kth coefficient in the power series of f [1, Secton I1.2.4].
We also note that in the expression (4.6) for 7441 we can replace 3 by || B¥|| and still have
an upper bound on Hp(QkH)H. Now let 7(¢) = >, [|B¥||¢F and s(¢) = X, | Fk||¢F. Since
| B¥||*/* — p(B) = p, we know that the radius of convergence of 7 is p~'. By definition

the radius of convergence of s is =1, But by (4.7), lim sup fr;/k is the reciprocal of the
radius of convergence of the function p(¢) = 7({)s(¢). Since the radius of convergence
of p is at least as great as the smaller of p~!

(%)

ps  is not greater than max{p,c}. m

and o~!, the root index of convergence of

There are four comments to be made about this theorem.

® By the equivalence of norms, if the condition (4.1) on the Ej holds for one norm, it
holds for any norm. Thus, the condition on the errors does not depend on the similarity
transformation we used to bring A into the form diag(1l, B). But this happy state of
affairs obtains only because (4.1) is an asymptotic statement. In practice, the sizes of
the initial errors, which do depend on the transformation, may be important.

® Since Py converges to z21, if » # 0, at least one column of P, contains an increasingly
accurate approximation to z. In the error free case, z is equal to the left eigenvector of
A, which is by definition nonzero. In general, however, we cannot guarantee that z # 0,
and indeed it is easy to contrive examples for which z is zero.

However, it follows from (4.8) that

P > pP] = 276 > 0] = 2n(ek 4 -+ 1),

Hence if 273, ¢ < Hpgl)H, then limg pf # 0, and hence limy, P # 0.

e The proof can be extended to the case where A has more than one dominant eigen-
value, provided they are all simple. The key is to use a generalization of Theorem 2.2
that uses bases for the left and right dominant eigenspaces of A, to reduce A to the form
diag(D, B), where | D| = I. The quantities pgk) and pgkﬂ) in (4.4) are no longer scalars,
but the recursion (4.5) for upper bounds remains the same, as does the subsequent
analysis.

¢ We have been interested in the case where A has a simple dominant eigenvalue of one.
However, the proof of the theorem can easily be adapted to the case where p(A) < 1 with
(k)

no hypothesis of simplicity (it is essentially the analysis of p;~ without the contributions

(%)

from p;"’). The result is the following corollary.

Corollary 4.2. Let p(A) < 1 and let Ly, satisty (4.1). Then P, — 0 and the root
convergence index is not greater than max{p,c}.
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5. The power method

The power method starts with a vector uy and generates a sequence of vectors according
to the formula

Upy1 = VpAuy,

where vy, is a normalizing factor. If A has a simple dominant eigenvalue (which we
may assume to be one), under mild restrictions on uy, the u; converge to the dominant
eigenvector of A.

A backward rounding-error analysis shows that in the presence of rounding error we
actually compute

Ukl = l/k(A + Ek)uk = (l/k e Vl)Pkul.

where ||Eg||/||Ax|| is of the order of the rounding unit [6, 8]. Theorem 4.1 is not well
suited to analyzing this method for two reasons. First the Fp will all be roughly the
same size, so that the condition (4.1) is not satisfied. But even if it were, it is possible
for the Py to approach zero while at the same time the normalized vectors uy converge
to a nonzero limit, in which case Theorem 4.1 says nothing useful. Accordingly, in this
section we give a different convergence analysis for the power method.

As in the last section we will assume that A = diag(1l, B), where ||B|| = 5. Let
€ = || k||. We will normalize the uy so that the first component is one and write

(1)

In is important to have some appreciation of the magnitudes of the quantities in-
volved. If the computations are being done in IEEE double precision, ¢ will around
V10715 eg, 10714 if n = 10,000. If uy is a random vector, we can expect ||hq]| to be
of order v/n; e.g., 100, if n = 10,000. Finally, since the ratio of convergence of the power
method is approximately 3, S must not be too near one; e.g., 0.99 gives unacceptably
slow convergence. Thus we may assume that €||h1|| and €/(1 — ) are small.

Let n; be an upper bound for ||hg||. We will derive an upper bound 74y for ||hry1]|,
in the form of the quotient of a lower bound on the first component of (A + Fj)uy and
and upper bound on the rest of the vector. We have

(k) (k)H
_ 14y €12 1
(A + Ek)Uk = ( 6(211) B n Eé’;) hk .

A lower bound on the first component of this vector is

L— (14 nx)er
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and an upper bound on the lower part is

Bk 4 (1 + np)-

Hence
Bk + (1 + nx)
h < =
H k+1H > k41 1 _ (1 + 77k)€k
Let
_ Bnt+el+n)
995(77)_ 1— (1_|_77)€ °
so that 7541 = @, (). It is easily verified that ¢, has a fixed point
B 2
= c+VeZ— 4’
where
1—73—2¢
c= .
€
Moreover,
g pn+el+n
eeln) = + Ut (5.1)

S l=(I4me L= (L+n)e?

Given our assumptions on the magnitudes of the quantities involved, ¢.(n) is ap-
proximately a straight line with slope 4 and fixed point 7. = ¢/(1 — 3). Thus we see
that ||hg]| — 1., must decrease by a factor of about § with each iteration. Since 7. is
of order ¢, this means that the 7 initially appear to converge toward zero as 3%; but
this convergence stagnates as 7y approaches n,. To the extent that the bounds reflect
reality, the power method converges with ratio at greatest 5 until the error is reduced
to a multiple of the rounding unit divided by 1 — 5. Thus the power method can be
expected to give good accuracy in the presence of rounding error.

We can use this analysis to show that if ¢, = || Fk|| converges monotonically to zero
and € is suitably small, then the power method converges. Specifically, we have the
following theorem.

Theorem 5.1. In the above notation, let 0 < 3 < 1. For any ny, there is an €, such
that if the sequence €y, €9, ... approaches zero monotonically then the sequence defined

by
Mht1 = Pei. (M), E=1,2,...,

converges monotonically to zero.
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Proof. From (5.1) it is clear that if ¢ is sufficiently small then ¢.(7) < a < 1 for any
€ < € and n < n;. It then follows from the theory of fixed point iterations that the
sequence 1,13, ... is monotonic decreasing. Let its limit be 7.

We must show that 77 = 0. Let 6 > 0 be given. Now lim._o ¢.(17) = /7 uniformly
on [0,7;]. Hence there is an integer K > 0 such that

, 6
k2 K = o) = Al < 3

We may also assume that K is so large that

i . )
k> K = |8 — pB1q] < 3
Then for k > K

k1 = B0 = lpe, (k) = B0l < e, () = Bl + |5 — Bijw| < &
It follows that n; — B7. But since 5y — 7 and 3 # 0, we must have 7 = 0. m

This theorem has an important implication for the behavior of the perturbed powers
P, which was treated in the previous section. The jth column of Py, suitably scaled,
is just the result of applying the unscaled power method with error to e;. Now suppose
that yHej # 0, where y is the dominant left eigenvector. Then if ¢4 > €3 > -+ and ¢
is sufficiently small, the jth column of Pj, suitably scaled, approximates the dominant
eigenvector of A, even if P, converges to zero. Thus if we are interested only in the
behavior of the columns of P, we can relax the condition that ), € < oco. However,
the price we pay is a less clean estimate of the asymptotic convergence rate.
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