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On the Powers of a Matrix withPerturbationsG. W. StewartABSTRACTLet A be a matrix of order n. The properties of the powers Ak of A havebeen extensively studied in the literature. This paper concerns the perturbedpowers Pk = (A+ Ek)(A+ Ek�1) � � �(A+ E1);where the Ek are perturbation matrices. We will treat three problems con-cerning the asymptotic behavior of the perturbed powers. First, determineconditions under which Pk ! 0. Second, determine the limiting structure ofPk . Third, investigate the convergence of the power method with error: thatis, given u1, determine the behavior of uk = �kPku1, where �k is a suitablescaling factor.1. IntroductionLet A be a matrix of order n with eigenvalues �1; : : : ; �n ordered so thatj�1j � j�2j � � � � � j�njand let �(A) = j�1j denote the spectral radius of A. We will be concerned with extendingthe following three results about the behavior of the powers Ak of A. (These resultsare easily proved by exploiting the relations between norms and spectral radii; see [9,Sections I.2, II.1]. For earlier work on powers of a matrix see [2, 3, 5, 7].)� The �rst result is classic. If �(A) < 1, then limk!1 Ak = 0. Moreover, in any normkAkk1=k ! �(A), or equivalently the convergence of Ak to zero is faster than than thatof [�(A) + �]k for any � > 0. We say that the root convergence index of Ak is �(A).� The second result concerns the asymptotic form of Ak. Let j�1j > j�2j, and let theright and left eigenvectors corresponding to �1 be x and y, normalized so that yHx = 1.Then ��k1 Ak ! xyH:Moreover, the root convergence index is j�2=�1j.1



2 Perturbed Matrix Powers� The third result concerns the convergence of the power method. Speci�cally, let u1be given and de�ne uk+1 = �kAuk; k = 1; 2; : : : ;where �k is a normalizing factor (e.g., kAukk�1). In the above notation, if j�1j > j�2jand yHu1 6= 0, then uk converges to a multiple of x. The root index of convergence isj�2=�1j.Now let E1; E2; : : : be a sequence of perturbation matrices and letPk = (A+ Ek)(A+ Ek�1) : : :(A+ E1):The purpose of this paper is to extend the three results above to the perturbed powersPk .1 Regarding the �rst result, we will show that if �(A) < 1 then for su�ciently smallEk, the Pk approach zero. Moreover, by making the Ek small enough we can bring theconvergence ratio arbitrarily near �(A). Regarding the second result, we will show thatif Xk kEkk <1 (1.1)in any norm then the Pk converge to xzH for some z (which may be zero), and wewill investigate the convergence rate. Finally, a �nite-precision implementation of thepower method results in perturbations Ek are of the order of the rounding unit andtherefore do not satisfy (1.1). Thus, we cannot use the second result to analyze theconvergence (actually nonconvergence) of the power method in the presence of roundingerror. However, using other techniques we can show that in the presence of roundingerror the power method will converge up to a point and then stagnate.This paper is organized as follows. In establishing our extensions it will prove conve-nient to transform our matrices by certain similarity transformations, and any conditionsplaced on the transformed perturbations must be translated back to the original prob-lem. Since the transformations can be ill conditioned, it is important to understandthe source of the ill-conditioning. Accordingly, the next section is devoted to describingthe two transformations we will use. In Section 3 we will establish our extension of the�rst result, and in Section 4 the extension of the second. In Section 5 we will give ananalysis of the power method. It is worth noting that the last two sections end witha little hook: each provides a new result about the problem treated in the precedingsection.1The phrase \perturbed powers" is, strictly speaking, a misnomer, since it is the factors, not thepowers that are perturbed.



Perturbed Matrix Powers 3Throughout this paper the jth column of the identity matrix will be denoted by ej .In addition, k � k will denote a consistent family of norms such that that kAk boundsthe norm of any submatrix of A and kdiag(d1; : : : ; dn)k = maxi jdij. This class includesthe 1-, 2-, 1- norms but excludes the Frobenious norm [4, 8].We will use the root convergence index to measure speed of convergence. Speci�cally,if ak is a sequence converging to zero, and � = lim supk jaj1=k < 1 we say that akconverges with root index �.2. Two transformationsIn deriving our results we will have to transform A into Â = X�1AX , for some Xappropriate to the problem at hand. In this case, we must also transform the pertur-bation matrices: Êk = X�1EkX . Now kÊkk � �(X)kEkk, where �(X) = kXkkX�1kis the condition number of X . Hence in order to insure that a bound like kÊkk � 
holds we have to require that kEkk � 
=�(X). Thus it is appropriate to examine theconditions under which �(X) is large| that is, under which the transformations are illconditioned. There are two classes of transformations.The �rst transformation is described in the following classic theorem (see, e.g., [9,Theorem I.2.8]).Theorem 2.1. For any � > 0 there is a matrix X such thatkX�1AXk � �(A) + �: (2.1)The theorem is proved by �rst transforming A to Schur form; i.e.,UHAU = T;where U is unitary and T is upper triangular. If we then set D� = diag(1; �; : : : ; �n�1),the superdiagonal elements of D�1TD are �j�i�ij . If we de�ne X� = UD�, then as� ! 0 we have kX�1� AX�k ! kdiag(�11; : : : ; �nn)k = �(A). Consequently, we may setX = X�, where � is chosen so that (2.1) is satis�ed.As � decreases, X�1� becomes large. If the o�-diagonal elements of T are nonzero,� becomes small along with �, the more so in proportion as the o� diagonal elementsof T are large. Large diagonal elements in T are associated with Henrici's measure ofnonnormality [5]. Hence, nonnormality in A may weaken our theorems. However, itshould be stressed, that the above construction of X is designed to accommodate theworst possible case, and in particular situations there may be a better way to constructT . For example, if A has a complete, well-conditioned system of eigenvectors, then thematrix X of eigenvectors reduces A to diagonal form, so that (2.1) is satis�ed for � = 0.The following useful theorem describes second of our transformations.



4 Perturbed Matrix PowersTheorem 2.2. Let �1 be a simple eigenvalue of A with right and left eigenvectors x1and y1 normalized so that kx1k2 = ky1k2 = 1 and 
 = yHx is positive. Let � =p1� 
2.Then there is a matrix U with �(U) = 1 + �
 (2.2)in the 2-norm such that U�1AU = ��1 00 B� : (2.3)Proof. By appealing to the CS decomposition [4, 8], we can �nd orthonormal matrices(x1 x2 X3) and (y1 y2 Y3) such that(x1 x2 X3)T(y1 y2 Y3) = 0@
 � 0� 
 00 0 I1A :Let U = (
� 12x1 
� 12 y2 X3) and V = (
� 12 y1 
� 12 x2 Y3). Then it is easily veri�ed thatV H = U�1. Moreover, UTU = 0@1=gamma �=
 0�=
 1=gamma 00 0 I1AThus kUk22 = kUTUk2 = (1+�)=
. Similarly kV k22 = (1+�)=
, which establishes (2.2).The fact that (2.3) is satis�ed follows immediately from the fact that the �rst columnof U is the right eigenvector x1 and the �rst column of V is the left eigenvector y1.The matrix U will be ill conditioned when 
�1 is small. But 
�1|the secant ofthe angle between x1 and y1|is a condition number for the eigenvalue �1 [4, Section7.2.2], [9, Section I.3.2]. Thus U1 will be ill conditioned precisely when �1 is.3. Convergence to zeroWe are now in the position to state and prove our extension of the �rst result. In fact,thanks to results of the last section, it is trivial to establish the following theorem.Theorem 3.1. Let �(A) < 1 and consider the perturbed productsPk = (A+ Ek)(A+ Ek�1) � � �(A+ E1): (3.1)



Perturbed Matrix Powers 5For every � > 0 there is an � > 0 such that if kEkk � � thenlim supk kPkk1=k � �(A) + �: (3.2)Hence if �(A)+� < 1 then Pk converges to zero with root convergence index at greatest�(A) + �.Proof. By Theorem 2.1 there is a nonsingular matrix X such that if Â = X�1AX thenkÂk � �(A) + �=2. Let Êk = X�1EkX , P̂k = X�1PkX , and �̂ = �=2. Then if kÊkk � �̂we have kÂ+ Êkk � �(A) + �, and kP̂kk � [�(A) + �]k.Transforming back to the original problem, we see that if kEkk � � � �̂=�(X) thenkPkk � �(X)[�(A) + �]k. The inequality (3.2) now follows on taking kth roots.There is little to add to this theorem. The price we pay for the perturbations is thatto make the root convergence index approach �(A) we must increasingly restrict thesize of the perturbations. This is unavoidable. For if we �x the size of the error at � wecan always �nd E such that the largest eigenvalue of A+E has magnitude �(A)+ �. Ifwe set Ek = E, then Pk = (A+E)k, and the best root convergence index we can hopefor is �(A) + �.4. Convergence with a simple dominant eigenvalueIn this section we will treat the behavior of the perturbed powers when A has a single,simple dominant eigenvalue �; i.e., when j�1j > j�2j. By dividing by A by �1, we mayassume that �1 = 1. The basic result is given in the following theorem.Theorem 4.1. Let 1 = �1 > j�2j and let the right eigenvector corresponding to �1 bex. Let Pk be de�ned as in (3.1). If 1Xi=1 kEkk <1; (4.1)then for some (possibly zero) vector z we havelimk!1Pk = xzH:The root convergence index is not greater thanmaxf�; �g;where � is the largest of the magnitudes of the subdominant eigenvalues of A and� = lim sup kEkk1=k: (4.2)



6 Perturbed Matrix PowersProof. By Theorem 2.2, we may transform A so that it has the form diag(1; B), where�(B) < 1. By Theorem 2.1, we may assume that kBk � � < 1. Note that the righteigenvector of the transformed matrix is e1.The theorem is best established in a vectorized form. First writePk+1 = (A+Ek)Pk = APk +EkPkLet u 6= 0 be given and let pk = Pku. Thenpk+1 = Apk +Ekpk: (4.3)We will use this recurrence to show that the pk approach a multiple of e1.Our �rst job is to �nd a condition that insures that the pk remain bounded. To thisend, partition (4.3) in the form p(k+1)1p(k+1)2 ! =  1 + e(k)11 e(k)H12e(k)21 B + E(k)22 ! p(k)1p(k)2 ! : (4.4)Now let �k = kEkk and let �(k)1 and �(k)2 be upper bounds on kp(k)1 k and kp(k)2 k. Thenby taking norms in (4.4) we see that the components of �(k+1)1�(k+1)2 ! = �1 + �k �k�k � + �k� �(k)1�(k)2 ! (4.5)are upper bounds on kp(k+1)1 k and kp(k+1)2 k. Thus if we write�1 + �k �k�k � + �k� = diag(1; �) + ��k �k�k �k� � diag(1; �) +Hk;then the pk will be bounded provided the product1Yk=1 kdiag(1; �) +Hkk <1:Now 1Yk=1 kdiag(1; �) +Hkk � 1Yk=1(kdiag(1; �)k+ kHkk) � 1Yk=1(1 + 4�k):It is well known that the product on the right is �nite if and only if the series Pk �kconverges [1, Section 5.2.2]. Hence a su�cient condition for the pk to remain boundedis for (4.1) to be satis�ed.



Perturbed Matrix Powers 7The next step is to show that p(k)2 converges to zero. Let � be a uniform upperbound on kp(k)1 k and kp(k)2 k. From (4.5) we have�(k+1)2 � (2�k� + ��(k)2 ):Hence if we set � = �̂1 and de�ne �̂k by the recurrence�̂k+1 = ��̂k + 2�k�;we have that kp(k)2 k � �̂k . But it is easy to see that if we de�ne �0 = 12 then�̂k+1 = 2�(�k�0 + �k�1�1 + � � �+ �1�k�1 + �k): (4.6)It follows that �̂1 + �̂2 + � � � = 2�(1+ � + �2 + � � � )(�0 + �1 + �2 + � � � ) (4.7)But the geometric series in � on the right is absolutely convergent, and by (4.1) theseries in �k is also. Thus the series on the left is absolutely convergent, and its terms �̂kmust converge to zero.We must next show that p(k)1 converges. From the �rst row of (4.4) we havep(k+1)1 � p(k)1 = e(k)11 p1(k) + e(k)12 p2(k); (4.8)whence jp(k+1)1 � p(k)1 j � 2�k�: (4.9)Since Pk �k converges, if we set p(0)1 = 0, the telescoping series Pkj=0(p(j+1)1 � p(j)1 ) =p(k+1)1 converges.By taking u = ei, we �nd that the ith column of Pk converges to �wie1 for some wi.Consequently, if we set wH = ( �w1 � � � �wn), then Pk converges to e1wH.Finally, in assuming that A = diag(1; B) we transformed the original matrix A by asimilarity transformation X whose �rst column was the dominant eigenvector of A. Itfollows that the original Pk converge toXe1wHX�1 = xzH;where zH = X�1wH.We now turn to the rates of convergence. The inequality (4.9) shows that p(k)1converges as fast as kEkk approaches zero; i.e., its root convergence index is not greaterthan � de�ned by (4.2).



8 Perturbed Matrix PowersTo analyze the convergence of p(k)2 we make the observation that the reciprocal ofthe radius of convergence of any function f(z) that is analytic at the origin is � =lim supk jakj1=k, where ak is the kth coe�cient in the power series of f [1, Secton II.2.4].We also note that in the expression (4.6) for �̂k+1 we can replace � by kBkk and still havean upper bound on kp(k+1)2 k. Now let r(�) =Pk kBkk�k and s(�) =Pk kEkk�k. SincekBkk1=k ! �(B) = �, we know that the radius of convergence of r is ��1. By de�nitionthe radius of convergence of s is ��1. But by (4.7), lim sup �̂1=kk is the reciprocal of theradius of convergence of the function p(�) = r(�)s(�). Since the radius of convergenceof p is at least as great as the smaller of ��1 and ��1, the root index of convergence ofp(k)2 is not greater than maxf�; �g.There are four comments to be made about this theorem.� By the equivalence of norms, if the condition (4.1) on the Ek holds for one norm, itholds for any norm. Thus, the condition on the errors does not depend on the similaritytransformation we used to bring A into the form diag(1; B). But this happy state ofa�airs obtains only because (4.1) is an asymptotic statement. In practice, the sizes ofthe initial errors, which do depend on the transformation, may be important.� Since Pk converges to xzH, if z 6= 0, at least one column of Pk contains an increasinglyaccurate approximation to x. In the error free case, z is equal to the left eigenvector ofA, which is by de�nition nonzero. In general, however, we cannot guarantee that z 6= 0,and indeed it is easy to contrive examples for which z is zero.However, it follows from (4.8) thatjp(k+1)1 j � jp(k)1 j � 2��k � jp(1)k j � 2�(�k + � � �+ �1):Hence if 2�Pk �k < kp(1)1 k, then limk pk1 6= 0, and hence limk Pk 6= 0.� The proof can be extended to the case where A has more than one dominant eigen-value, provided they are all simple. The key is to use a generalization of Theorem 2.2that uses bases for the left and right dominant eigenspaces of A, to reduce A to the formdiag(D;B), where jDj = I . The quantities p(k)1 and p(k+1)1 in (4.4) are no longer scalars,but the recursion (4.5) for upper bounds remains the same, as does the subsequentanalysis.� We have been interested in the case where A has a simple dominant eigenvalue of one.However, the proof of the theorem can easily be adapted to the case where �(A) < 1 withno hypothesis of simplicity (it is essentially the analysis of p(k)2 without the contributionsfrom p(k)1 ). The result is the following corollary.Corollary 4.2. Let �(A) < 1 and let Ek satisfy (4.1). Then Pk ! 0 and the rootconvergence index is not greater than maxf�; �g.



Perturbed Matrix Powers 95. The power methodThe power method starts with a vector u1 and generates a sequence of vectors accordingto the formula uk+1 = �kAuk ;where �k is a normalizing factor. If A has a simple dominant eigenvalue (which wemay assume to be one), under mild restrictions on u1, the uk converge to the dominanteigenvector of A.A backward rounding-error analysis shows that in the presence of rounding error weactually compute uk+1 = �k(A+ Ek)uk = (�k � � ��1)Pku1:where kEkk=kAkk is of the order of the rounding unit [6, 8]. Theorem 4.1 is not wellsuited to analyzing this method for two reasons. First the Ek will all be roughly thesame size, so that the condition (4.1) is not satis�ed. But even if it were, it is possiblefor the Pk to approach zero while at the same time the normalized vectors uk convergeto a nonzero limit, in which case Theorem 4.1 says nothing useful. Accordingly, in thissection we give a di�erent convergence analysis for the power method.As in the last section we will assume that A = diag(1; B), where kBk = �. Let�k = kEkk. We will normalize the uk so that the �rst component is one and writeuk = � 1hk� :In is important to have some appreciation of the magnitudes of the quantities in-volved. If the computations are being done in IEEE double precision, � will aroundpn�10�16; e.g., 10�14 if n = 10;000. If u1 is a random vector, we can expect kh1k to beof order pn; e.g., 100, if n = 10;000. Finally, since the ratio of convergence of the powermethod is approximately �, � must not be too near one; e.g., 0:99 gives unacceptablyslow convergence. Thus we may assume that �kh1k and �=(1� �) are small.Let �k be an upper bound for khkk. We will derive an upper bound �k+1 for khk+1k,in the form of the quotient of a lower bound on the �rst component of (A+Ek)uk andand upper bound on the rest of the vector. We have(A+ Ek)uk =  1 + e(k)11 e(k)H12e(k)21 B +E(k)22 !� 1hk� :A lower bound on the �rst component of this vector is1� (1 + �k)�k



10 Perturbed Matrix Powersand an upper bound on the lower part is��k + �k(1 + �k):Hence khk+1k � �k+1 � ��k + �k(1 + �k)1� (1 + �k)�kLet '�(�) = �� + �(1 + �)1� (1 + �)� :so that �k+1 = '�k (�k). It is easily veri�ed that '� has a �xed point�� = 2c+pc2 � 4 ;where c = 1� � � 2�� :Moreover, '0�(�) = �1� (1 + �)� + �� + �(1 + �)[1� (1 + �)�]2�: (5.1)Given our assumptions on the magnitudes of the quantities involved, '�(�) is ap-proximately a straight line with slope � and �xed point �� = �=(1 � �). Thus we seethat khkk � ��, must decrease by a factor of about � with each iteration. Since �� isof order �, this means that the �k initially appear to converge toward zero as �k; butthis convergence stagnates as �k approaches ��. To the extent that the bounds re
ectreality, the power method converges with ratio at greatest � until the error is reducedto a multiple of the rounding unit divided by 1 � �. Thus the power method can beexpected to give good accuracy in the presence of rounding error.We can use this analysis to show that if �k = kEkk converges monotonically to zeroand �1 is suitably small, then the power method converges. Speci�cally, we have thefollowing theorem.Theorem 5.1. In the above notation, let 0 < � < 1. For any �1, there is an �1 suchthat if the sequence �1; �2; : : : approaches zero monotonically then the sequence de�nedby �k+1 = '�k(�k); k = 1; 2; : : : ;converges monotonically to zero.



Perturbed Matrix Powers 11Proof. From (5.1) it is clear that if �1 is su�ciently small then '0�(�) � � < 1 for any� < �1 and � < �1. It then follows from the theory of �xed point iterations that thesequence �1; �2; : : : is monotonic decreasing. Let its limit be �̂.We must show that �̂ = 0. Let � > 0 be given. Now lim�!0 '�(�) = �� uniformlyon [0; �1]. Hence there is an integer K > 0 such thatk � K =) j'�k(�k)� ��kj < �2 :We may also assume that K is so large thatk � K =) j��k � ��̂j < �2 :Then for k � Kj�k+1 � ��̂j = j'�k(�k)� ��̂j � j'�k(�k)� ��kj+ j��k � ��̂kj < �:It follows that �k ! ��̂. But since �k ! �̂ and � 6= 0, we must have �̂ = 0.This theorem has an important implication for the behavior of the perturbed powersPk , which was treated in the previous section. The jth column of Pk , suitably scaled,is just the result of applying the unscaled power method with error to ej . Now supposethat yHej 6= 0, where y is the dominant left eigenvector. Then if �1 � �2 � � � � and �1is su�ciently small, the jth column of Pk , suitably scaled, approximates the dominanteigenvector of A, even if Pk converges to zero. Thus if we are interested only in thebehavior of the columns of Pk , we can relax the condition that Pk �k < 1. However,the price we pay is a less clean estimate of the asymptotic convergence rate.AcknowledgementsI would like to thank Donald Estep and Sean Eastman for their comments on this paper,and especially Sean Eastman for the elegant proof of Theorem 5.1. I am indebted tothe Mathematical and Computational Sciences Division of the National Institute ofStandards and Technology for the use of their research facilities.References[1] L. V. Ahlfors. Complex Analysis. McGraw{Hill, New York, 1966.[2] W. Gautschi. The asymptotic behavior of powers of a matrix. Duke MathematicalJournal, 20:127{140, 1953.[3] W. Gautschi. The asymptotic behavior of powers of a matrix. II. Duke MathematicalJournal, 20:275{279, 1953.
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