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ABSTRACT
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and Ingtitute of Systems Research

A manufacturing system characterized by its stochastic nature, is defined by both
qualitative and quantitative variables. Often there exists a situation when a performance
measure such as throughput, work-in-process or cycle time of the system needs to be
optimized with respect to some decision variables. It is generally convenient to express a
manufacturing system in the form of an analytical model, to get the solutions as quickly
as possible. However, as the complexity of the system increases, it gets more and more
difficult to accommodate that complexity into the analytical model due to the uncertainty
involved. In such situations, we resort to simulation modeling as an effective alternative.

Equipment selection forms a separate class of problems in the domain of

manufacturing systems. It assumes a high significance for capital-intensive industry,



especially the semiconductor industry whose equipment cost comprises a significant
amount of the total budget spent. For semiconductor wafer fabs that incorporate complex
product flows of multiple product families, a reduction in the cycle time through the
choice of appropriate equipment could result in significant profits.

This thesis focuses on the equipment selection problem, which selects tools for
the workstations with a choice of different tool types at each workstation. The objective
isto minimize the average cycle time of awafer lot in a semiconductor fab, subject to
throughput and budget constraints. To solve the problem, we implement five simulation-
based algorithms and an analytical algorithm. The simulation-based algorithmsinclude
the hill climbing algorithm, two gradient-based a gorithms — biggest |eap and safer leap,
and two versions of the nested partitions algorithm.

We compare the performance of the simulation-based al gorithms against that of
the analytical algorithm and discuss the advantages of prior knowledge of the problem

structure for the selection of a suitable agorithm.
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1. INTRODUCTION

This chapter provides an insight into the simulation-based optimization for
discrete event manufacturing systems. We a so define the research objective. In Section
1.1, we discuss what the decision variables in a manufacturing system can be. In Section
1.2, we discuss the complexity of a manufacturing system with respect to its stochastic
nature. Section 1.3 provides examples of different objective functions we could optimize
in such asystem. In Section 1.4, we present a classification of simulation-based
optimization techniques. Section 1.5 discusses the use of those techniques for optimizing
amanufacturing system. Section 1.6 presents the equipment selection problem as a
separate class of problems in the manufacturing system design. The objectives of this
research are defined in Section 1.7, followed by a brief description about each of the
subsequent chapters, in Section 1.8. Whenever we mention optimization problems, we

will be referring to single objective problems.

1.1 Decision variables in a manufacturing system

A manufacturing system has alot of decision variables that define it. There could
be quantitative decision variables like the number of tools and operators at each
workstation, number of forklifts or other vehicles used for transportation between
workstations and buffer allocation at each workstation, to name afew. Or there could be
gualitative decision variables like the dispatching, routing or scheduling policies, layout
of the manufacturing system, maintenance schedule, and so on and so forth. Depending

upon the kind of questions that a decision-maker would ask in order to design a



manufacturing system, the decision variables that play akey role to answer those

guestions would vary. Section 1.3 provides examples of such kind of questions.

1.2 Complexity of a manufacturing system

Absence of uncertainty would make the design of a manufacturing system utterly
simple. If the arrival times, processing times, breakdown schedules of the machines,
operator-handling time were deterministic, one could easily determine the values of the
decision variables without much difficulty. Analytical solutions to the problems that a
decision-maker would look for answers to would be quick and accurate. However, the
real life scenario is very different. There exists uncertainty in the arrival times,
processing times, tool breakdowns and machine set-up times for instance. The
complexity of manufacturing systems arises due to this stochastic nature of the processes
in the system and the continual changes that need to be made in the manufacturing line
in the form of addition of new tools to increase capacity, scrapping of old product
families to keep up pace with the market, automating the production line to decrease the
cycle time and the like. Certain properties of the system related to the product or the
process flow when coupled with this uncertainty could increase the complexity
manifold. For instance, semiconductor wafer manufacturing requires repeated layers of
viaformation and metalization that necessitate a re-entrant flow routing. The lots of
wafers being routed comprise different product families and yet go through the same
manufacturing line. To add to the complexity, there are constraints on the system. We

mention some of the constraints in the next section.



1.3 Optimization of a manufacturing system

There could be several objectives one would like to meet while designing such a
system. For instance, one could find an optimal allocation of resources such as buffers,
to each workstation so as to maximize the throughput of the system. An important
constraint here would be the limited quantity of buffers at each workstation. Another
problem could be to design the layout of the manufacturing line in such away, so asto
minimize the travel times of the work-in-process (WIP) between workstations. The
constraints could include the shape and the area available for the layout or the number of
resources available to transport the WIP. Another interesting problem could be figuring
out the number of times a defective job should be reworked to maximize theyield. The
obvious constraint here would be that the overall cost of reworking, should never exceed
or be equal to the benefit we reap out of the improved yield. The optimization problem

that we study is the equipment selection problem, discussed in Section 1.6.

1.4 Simulation optimization

Simulation modeling is an effective tool to model, analyze and optimize systems.
It is particularly useful in predicting the behavior of systems with an inherent stochastic
nature, hence the term simulation-based stochastic optimization. Based on the nature of
the decision space, such optimization problems could be categorized as continuous or
discrete.

The decision variables for continuous optimization problems are continuous in
nature. Such problems are solved using techniques such as stochastic approximation

methods, response surface methodology and sample path optimization, besides the



gradient estimation techniques that include finite difference estimation, perturbation
analysis, likelihood ratio method and frequency domain analysis.

The decision variables for discrete optimization problems are discrete in nature.
Although the gradient estimation techniques mentioned above, have been applied to
discrete optimization problems, there also exist discrete random and non-random search
methods that are applicable to such problems. Stochastic comparison agorithm,
simulated annealing algorithm, stochastic ruler method, multistart algorithm, ordinal
optimization method, nested partitions algorithm, simulated entropy algorithm,
screening, selection and multiple comparison procedures, genetic algorithm, generalized
and ordina hill climbing agorithms and Andradottir’ s agorithms are techniques based
on random search. There are non-random search methods too, like the branch and bound
algorithm and the low dispersion point set method.

We discuss these methodologies in Chapter 2.

1.5 Simulation optimization of a manufacturing system

Manufacturing systems are analyzed as queueing systems, where the entity being
manufactured or processed is considered as a customer and the machine or the operator
handling the entity is considered as the server. The most important characteristic of such
systems is their event-based nature. The state of the system changes only at the
occurrence of an event such as an arrival or departure of an entity, failure of amachine,
completion of inspection by an operator, or other actions. Since the occurrence of such
events takes place at separated pointsin time, we generally refer to manufacturing

systems as discrete event manufacturing systems.



Though there do exist analytical models to analyze manufacturing systems given
their inherent stochastic nature, it becomes increasingly difficult to adjust them or
develop new analytical models to accommodate complex features and enhanced
variability in the system. These could be in the form of a new routing policy or a
preventive maintenance schedule based on uncertain breakdowns of machines. In such
situations it becomes imperative to use simulation-based models with higher flexibility
to get a more accurate picture.

The decision variables in a manufacturing system discussed earlier in Section
1.2, are generally discrete in nature (unless we are trying to optimize a particular process
along the manufacturing line that is dependent on a continuous parameter such as
temperature or the rate of deposition of athin-film material). Hence the techniques used
for optimizing a manufacturing system are based on simulation-based discrete stochastic
optimization methodol ogies, due to the discrete solution space over which we try to

optimize the performance of the system.

1.6 Equipment selection problem

Equipment selection and resource allocation problems form a separate class of
problems in the domain of manufacturing systems design. They dea with the optimal
allocation of machines to workstations in a manufacturing system. Allocation and
selection of tools in manufacturing systemsis a widespread problem in manufacturing
plants, especialy for sub-systems like Flexible Manufacturing Systems (FMS) and
cellular manufacturing systems. These problems have been addressed using analytical

models, queueing theory and deterministic programming techniques like integer



programming. The machine allocations were done with specific objectiveslike
minimizing WIP, maximizing throughput and minimizing cost. The complexity of the
models was not high enough to necessitate the use of simulation models. For instance,
the serversto be allocated were assumed to be identical. Another classic example of such
types of problems is the buffer allocation problem where afixed number of buffers must
be allocated over afixed number of servers to optimize some performance metric. We
discuss how these problems have been addressed in greater detail in Chapter 2. In
semiconductor wafer fabrication plants, equipment selection is extremely important
because of the high cost of purchasing and operating the equipment. In addition,
reducing cycletime (and WIP) is an important objective that is affected by the
equipment selection decision. Our problem deals with the selection of tools for the
workstations in a manufacturing system given a choice of different tool types at each
workstation. Our objective isto minimize the average cycle time subject to the

constraints on the throughput and the budget available.

1.7 Objectives of the research

This research considers the equipment selection problem with our goal being the
minimization of the average cycle time. We present five different simulation-based
stochastic optimization agorithms and observe their behavior with respect to the quality
of solution and the number of simulations each algorithm requires. Their performance is
then compared with that of an analytical algorithm, which we developed as a benchmark.

Thefirst algorithm is similar to the generalized hill climbing (GHC) agorithm

described by Sullivan and Jacobson [1]. We search the neighboring discrete space and



estimate the function value at the selected points. However, our approach enumerates all
the neighboring points whereas GHC selects one neighboring point at random. Further,
we do not accept any bad moves whereas GHC could.

The next two agorithms are based on gradient-estimation methods. The gradient
values are estimated using finite differences asin the Kiefer and Wolfowitz [2]
approach. However, the perturbation size in our case is taken as one due to the discrete
nature of the problem whereas Kiefer and Wolfowitz take it to be infinitesimally small.

We also developed two simulation-based stochastic algorithms, which are
different implementations of the nested partitions algorithm, proposed by Shi and
Olafsson [3]. The difference in the two implementations lies in the way we partition the
solution space, to narrow it down through the selection of the most promising region at
the end of each iteration.

The analytical algorithm that we developed is based on the queueing theory. It
makes use of the M/M/m queueing model to find out the average cycle time value. We
use the results of this algorithm as a benchmark to compare the performance of the

simulation-based a gorithms that we implemented.

1.8 Outline of the thesis

Thethesisis organized as follows. Chapter 2 presents a literature survey and
discusses the equipment selection problem and the simulation-based stochastic
optimization algorithms, applied to discrete event manufacturing systems. Chapter 3
formulates the equipment selection problem, specifying the objective function,

constraints and the decision variables. A sample problem is also defined at the end of the



chapter to explain the implementation of our algorithms. Chapter 4 defines a heuristic
(whose result is used as the starting point for the hill climbing, and the gradient-based
algorithms) along with the simulation-based al gorithms and the analytical agorithm.
Their implementation is described through the sample problem defined in Chapter 3.
Chapter 5 describes our smulation model and the set-up of our experiments. It defines
the performance metrics based on which we compare the behavior of all the simulation-
based algorithms with the performance of the analytical algorithm. We discuss the
results we obtained. Chapter 6 concludes the thesis, summarizing the results and
discussing the contributions, limitations and the future work, pertaining to the research

we conducted.



2. LITERATURE REVIEW

This chapter reviews the research work that has been conducted so far, in the
field of equipment selection and simulation optimization as applied to the discrete event
manufacturing systems. Section 2.1 provides a general review of the equipment selection
and other related problems. Section 2.2 reviews simulation optimization for both the
continuous and discrete state space. We specifically mention the research that has been

done, related to hill climbing, gradient-based and nested partitions methods.

2.1 Equipment selection problem

In the domain of discrete event manufacturing systems, many types of
optimization problems have been discussed, where the performance measures generally
include the mean cycle time, average work-in-process (WIP) at the tool groups,
throughput and tool utilization levels. Equipment selection and resource allocation

problems form a separate class under this domain.

2.1.1 Methods for equipment selection

Compared to the resource alocation class of problems, the problems related to
equipment selection have received | ess attention. Bretthauer [4] addresses capacity
planning in manufacturing systems by modeling them as a network of queues. Assuming
asingle server at each node, a branch-and-bound algorithm is presented to find a
minimum cost selection of capacity levels from a discrete set of choices, given a

constraint on the WIP. Swaminathan [5] provides an analytical model for procurement of



toolsfor awafer fab incorporating uncertainties in the demand forecasts. The problem is
modeled as a stochastic integer programming with recourse, and the objective isto
minimize the expected stock-out costs due to lost sales across all demand scenarios.
Considering only one tool type per workstation, the first stage variables - the number of
tools procured, are decided before the demand occurs. The second stage variables
determine the allocation of different wafer typesto different toolsin each demand
scenario, after the demand is realized. Swaminathan [6] presents a more generalized
model where one can model the allocations of each wafer type to the different tools.
Further, amulti-period model is considered to capture changes in demand during the life
of aproduct. Connors, Feigin and Y ao [7] perform tool planning for awafer fab using a
gueueing model, based on amarginal alocation procedure to determine the number of
tools needed to achieve atarget cycle time with the objective of minimizing overall
equipment cost. Assuming identical tools at each tool group, their model incorporates
detailed analysis of scrap and rework to capture the effects of variable job sizes on the
workload and on the utilization of tool groups, and careful treatment of “incapacitation”
events that disrupt the normal process at tools.

In the equipment selection problem that we consider, there exist a number of tool

types from which one could select the tools, for a particular workstation.

2.1.2 Related applications

We now review, some of the problems pertaining to the allocation of buffers and

resources, and the methods applied to solve them.
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Bulgak and Sanders [8] consider the buffer size allocation problem in an
asynchronous assembly system (AAS). They use an extension of the simulated annealing
algorithm to determine the buffer configuration that maximizes the number of
assemblies produced by the last workstation of an AAS per unit time. Haddock and
Mittenthal [9] apply simulated annealing to the problem of maximizing the total
expected profit for an automated manufacturing system. The decision variables include
the size of the arrival batches, the proportion of products within the arrival batches and
the size of the output buffers at each machine. Ho, Sreenivas and Vakili [10] apply the
ordinal optimization technique to the buffer allocation problem for atransfer line to
maximize the steady state throughput, and to the cyclic server problem to find a service
policy for asingle cyclic server serving buffers in around-robin fashion. Choon [11]
designs a flexible manufacturing system (FMS) through an adaptive random search
procedure coupled with discrete event simulation, by determining the number of
machines of each type as well as the number of automated guided vehicles (AGVS),
speed of AGVs and the capacity of buffers before and after each machine. The
performance measure is the productivity of the system, defined as the ratio between the
throughput and the cost.

Cassandras and Panayiotou [12] propose an ordinal optimization algorithm for a
resource allocation problem where no closed-form expression is available for the cost
function. Lin [13] applies ordinal optimization to a resource allocation problem to decide
whether al transportation should be done through continuous transportation system or
via discrete transportation units. The performance is measured by the average delay of a

test product. Cassandras and Gokbayrak [14] too, apply the ordinal optimization

11



technique for the resource allocation problem, to minimize the average cycletime.
Hillier and So [15] address the server and work allocation problem for production line
systems through the classical model for a system of finite queues in series, to maximize
the throughput. Andradottir and Ayhan [16] determine the optimal dynamic server
assignment policy for tandem systems with a generalized number of servers and stations,
to obtain optimal long-run average throughput. Palmeri and Collins [17] address the
minimum inventory variability policy as one aternative to optimizing resource
scheduling, which focuses on line balancing to reduce the WIP variability resulting in a
reduction in the mean cycle time. Dumbrava [18] attempts to emphasi ze the benefit of
simulation in resource alocation and capacity design of FMS. The number of machines
in each group is determined to minimize the capacity of the group buffers, minimize the
WIP, and obtain a good compromise between the number of machines and the
productivity obtained. Shanthikumar and Y ao [19] address the problem of allocating a
given number of identical servers among the work centers of a manufacturing system by
formulating it as a non-linear integer program. The objective is to maximize the
throughput. Frenk et al. [20] present improved versions of a greedy algorithm for the
machine allocation problem, to achieve a minimum-cost configuration while minimizing
the WIP. Bermon, Feigin and Hood [21] formulate the capacity allocation problem asa
simple, linear programming based method to optimize product mix, subject to capacity
constraints. The objective isto maximize the profit. Bhatnagar et al. [22] formulate fab-
level decision making as a Markov decision problem and address the issues as when to
add additional capacity and when to convert from one production type to another based

on the changing demand. He, Fu and Marcus [23] apply a simulation-based approach to

12



that fab-level decision making problem to deal with the large state and control spaces.
Liu, Makis and Jardine [24] determine the optimal maintenance time to minimize the
average time spent by ajob in an M/G/1-type production system. Govil and Fu [25]
provide a comprehensive review of the design, production and control optimization
problems in job shop systems, FM 'S, assembly/disassembly networks and manufacturing
flow lines, modeled as queueing systems.

The minimization of cycletime has also been addressed specifically, for
semiconductor fabs. Geiger et al. [26] examine the effects of alternative facility layouts
on the semiconductor fab cycle time through simulation experiments, with respect to
machine breakdowns, utilization, transfer time between stations and set-up times.
Sivakumar [27] designs and develops an on-line near-real-time dynamic scheduling and
optimization system to optimize the cycle time and machine utilization for the
semiconductor-manufacturing environment, by addressing the scheduling of constraint
machines. Collins, Lakshman and Collins [28] present two dynamic tools called FAB
Simulator and Capacity Planner to determine the optimal WIP based on the production
mix, in order to maximize the throughput, while achieving shortest cycle times possible,
dynamically. Hung and Leachman [29] introduce a production planning methodology for
semiconductor manufacturing based on iterative linear programming optimization and
discrete event smulation cal culations to develop a production plan correctly

characterizing future flow times as a function of factory load and product mix.
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2.2 Simulation-based optimization techniques

Detailed reviews on simulation optimization methodol ogies have been provided
by Azadivar [30], Fu [31], Andradottir [32], Carson and Maria[33], Swisher et al. [34],
Merkuryev, Rastrigin and Visipkov [35] and Merkuryev and Visipkov [36]. Much of the
literature in the field of simulation-based optimization discusses the optimization
problems involving continuous variables, while less describes those involving discrete
variables. We discuss the continuous and discrete simul ation-based optimization in the

following subsections.

2.2.1 Continuous state space

Fu [31] reviews response surface methodology (RSM) and stochastic
approximation as methods for solving optimization problemsin the continuous state
space. RSM attempts to fit a polynomial, generally quadratic, to the response of a
system. It is a black-box approach and hence, it is difficult to perform factor screening to
identify important parameters a priori. Metamodels provide one method to fit a*“global”
response curve to define a complete functional relationship between the performance
measure and the parameters of interest. However, much smulation effort is required to
characterize the response curve over the entire domain of feasibility. Sequential
procedures provide the second method that has two phases. In the first phase, which is
performed iteratively, first order experimental designs are used to obtain aleast square
fit. The steepest descent direction is chosen, and the new sub region is explored. In the
second phase, which is performed only once, a quadratic response curve isfitted. The

other technique, stochastic approximation, is a gradient-based algorithm where the “ best
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guess’ of the optimal parameter is updated iteratively based on the estimate of the
gradient of the performance measure, with respect to the parameter. When an unbiased
estimator is used for gradient estimation, the algorithm is referred to as Robbins-Monro
algorithm and when finite difference estimate is used, it is called Kiefer-Wolfowitz
algorithm.

Andradottir [32] focuses on the review of gradient-based techniques for
continuous optimization. Perturbation analysis (PA) and the likelihood ratio (LR)
methods require only a single simulation run to obtain an estimate of the gradient, unlike
the finite difference technique. PA involves tracing the effects of small changesin the
parameter on the sample path. Fu [31] states that wherever infinitessimal perturbation
analysis (IPA, the best known variant of PA) fails, the LR method (also known as the
score function method) works. Azadivar [30] reviews frequency domain anaysis as
another method for gradient estimation, where gradients are calculated by noting the
effect of sinusoidal oscillations in the input, on the simulation output function.
Andradottir [32] also reviews sample path optimization, where the expected value of the
objective function is estimated by taking the average of lots of observations. The
objective function is expressed as a deterministic function, based on the sample path
observed on the ssimulation model, and then the IPA or the LR method is applied.

Swisher et al. [34] classify the continuous parameter case into gradient and non-
gradient-based optimization procedures. The non-gradient-based procedures include the
Nelder-Mead (simplex) method and the Hooke-Jeeves method. Merkuryev and Visipkov
[36] review these two methods. In the Nelder-Mead method, if the objective functionis

dependent on k parameters, then k+1 points (a simplex) are generated and the function is
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evaluated at those points. The simplex then moves towards the optimum by reflecting a
point with the worst function value through the center of the remaining k points. The
Hooke-Jeeves method involves the hill climbing strategy through a combination of
exploratory searches and pattern moves. Merkuryev, Rastrigin and Visipkov [35]
describe two stages for an optimization procedure. The first stage finds an initial point
for the second stage through fast and simple optimization methods like steepest ascent
and Gauss-Zaidel methods. The second stage finds the optimal solution by precise

optimization methods like Hooke-Jeeves pattern search.

2.2.2 Discrete state space

Merkuryev and Visipkov [36] perform a survey of optimization methodsin
discrete systems simulation. They review the finite difference estimation as gradient-
based search technique and methods without derivatives including the Gauss-Zaidel,
Hooke-Jeeves and Nelder-Mead methods, for discrete parameter case. Fu [31] classifies
the discrete state space into finite and infinite parameter space and reviews the
methodologies for both cases. For optimization over afinite set, a number of statistical
procedures can be applied that fall into two groups: ranking and selection (R& S), and
multiple comparison procedures (MCPs). R& S procedures include the indifference zone
and subset selection procedures. When the decision involves selecting the best system
design, technique of indifference-zone ranking is applied, where the objective function at
the selected system configuration will be within dof the optimal value of the objective
function with a probability at least P". Here drepresents the “indifference zone” and P’

represents the user-specified probability. When the decision involves selecting a subset
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of system designs that contain the best solution, the technique of subset selection is
applied, where the selected subset of a specified number of system configurations, will
contain at least one system configuration, such that the objective function at that
configuration will be within dof the optimal value of the objective function, with a
probability at least P". The second group of statistical procedures, MCPs, makes
inferences on the performance measure of interest by way of confidence intervals. If the
confidence intervals are not tight enough to make conclusive statements, then an
estimate is made of the number of further replications that would be required so asto
obtain confidence widths at the desired level. Swisher et al. [34] review three main
classes of MCPs: all pairwise multiple comparisons, multiple comparisons with the best
and multiple comparisons with a control. Nelson et al. [37] develop procedures by
combining screening and indifference-zone selection procedures for problems where
R& S would require too much computation to be practical. Such problems arise when the
number of aternative designsis large. Goldsman and Nelson [38] review the screening,
selection and MCPs. Goldsman and Nelson [39] also review various statistical
procedures for selecting the best of a number of competing systems and comment on
how to apply those procedures for use in simulations.

For optimization over an infinite set, there exist random search algorithms.
Carson and Maria[33] review the various heuristic methods, employed for the search.
These include genetic algorithms (GA), evolutionary strategies (ES), simulated
annealing (SA) and Tabu search (TS). Pardalos, Romeijn and Tuy [40] also review these
methods while focusing on the recent developments and trends in global optimization.

GA are noted for robustness in searching complex spaces and are best suited for
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combinatoria problems. The search starts from an initial population and uses a mixture
of reproduction, crossovers and mutations to create new and hopefully better population.
ES are similar to GA, in that they imitate the principles of natural evolution as a method
to solve parameter optimization problems. The strategy involves the mutation-selection
scheme where one or more parents mutate to produce an offspring and the more
promising candidate becomes the parent for the next iteration. SA is analogous to the
physical annealing process where an alloy is cooled gradually so that a minimal energy
state is achieved. This method can accept bad moves to avoid getting trapped in local
optima. The probability of accepting such bad moves is high when the temperature is
high, and decreases as the temperature reduces. To ensure convergence to a global
optimum, the temperature must be decreased slowly. However, this resultsin the
evaluation of the objective function at many points. Haddock and Mittenthal [9] deal
with thisissue. Gelfand and Mitter [41] modify the SA agorithm to allow for random or
deterministic errors in measurements of the objective function values. Alrefael and
Andradottir [42] propose a new search algorithm that resembles SA. It uses constant
temperature instead of the decreasing cooling temperature used by SA. Further, it uses
the number of visitsto the different states, as the criterion to estimate the optimal
solution. Alrefaei and Andradottir [43] make another modification to SA by using
constant temperature, and selecting the state with the best average estimated objective
function value, obtained from all previous estimates of the objective function values, as
the optimal. TS, also suited for combinatorial problems, maintains a fixed-length list of

explored moves, which represents the Tabu moves. These moves are not alowed at the
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present iteration, in order to exclude backtracking moves. On the addition of a move to
the Tabu list, the oldest move is removed.

Andradottir [44] proposes a new iterative method to solve discrete stochastic
optimization. The proposed method generates a random walk over the set of feasible
alternatives, and the point visited most often, is shown to be alocal optimizer, almost
surely. Yan and Mukai [45] describe the stochastic ruler (SR) method that is related to,
but different from the SA method. While the objective value at a new solution candidate
is compared with that of the current solution candidate in SA, the objective value at a
new solution candidate is compared against a probabilistic ruler in the SR method, where
the ruler’ s range covers the range of the observed objective function values. The
convergence is shown to be global. Alrefaei and Andradottir [46] propose another
method based on a modification of the SR method. The new algorithm uses afinite
number of observations for each iteration whereas the SR method uses an increasing
sequence of observations per iteration. The method is shown to converge almost surely,
to the global optimum. Gong, Ho and Zhai [47] propose a method called stochastic
comparison (SC) method that overcomes the limitations of the SA and SR methods. For
SA to work well, it needs a good neighborhood structure. For SR method, if theruler is
too big, it reduces the sensitivity of the algorithm, whereas if it istoo small, it may not
be able to distinguish best solutions from other good solutions. SC, with itsrootsin the
R& S procedures, eliminates the use of the neighborhood structure and directly compares
the current configuration to a candidate configuration. While comparing the SR and SC
methods, they emphasize that when a good neighborhood structure is available, SR

outperforms the SC algorithm.
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Other recent developmentsin the field of discrete parameter ssmulation
optimization include a new method based on the selection procedures by Futschik and
Pflug [48], in which they construct confidence intervals based on statistical estimates to
select promising subsets with a pre-specified probability of correct selection. Norkin,
Ermoliev and Ruszczynski [49] propose a stochastic version of the branch-and-bound
algorithm in which the search areais divided into subsets. Random upper and lower
bounds for the subsets are calculated with an accuracy depending upon the size of the
subset and the previous values of the objective function estimates. Based on the values
of the bounds, the most promising subset is divided further, while others are neglected.
Ho, Sreenivas and Vakili [10] aim towards finding the good, better or best designs
instead of accurately estimating the performance values of the designs. In other words,
they are interested in the ordinal optimization that isinsensitive to noise, rather than the
cardinal optimization. Garai, Ho and Sreenivas [50] propose a hybrid optimization
algorithm that combines adaptive ordinal optimization using GA, with hill climbing. GA
is used to choose the next set of search points from the current set of search points,
which makes the ordinal optimization method adaptive. Hill climbing is used to locate
the best point amongst the points not discarded by the adaptive ordinal optimization
method. Shi and Olafsson [3] describe the nested partitions algorithm (NPA) for
combinatoria problems. The method can be extended to problems where the feasible
region is either countable infinite or uncountable and bounded. The algorithm
concentrates on dividing the search space into sub regions and finding the most
promising region at each iteration, which is then divided further. A nice property of the

algorithm is the ability to backtrack to alarger region. The algorithm is shown to
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converge globally, with probability one. Shi, Olafsson and Chen [51] propose a new
hybrid optimization algorithm that combines the global perspective of NPA and the local
search capabilities of the GA. It uses the GA search to be able to backtrack quickly from
aregion containing a solution better than most, but not all of the other solutions. The
original NPA would take a much longer time to backtrack in such a case. Shi and Chen
[52] combine NPA, ordinal optimization and an efficient simulation control technique
called optimal computing budget allocation (OCBA) to produce a hybrid algorithm for
discrete optimization. OCBA is aranking and selection method that ensures alarger
allocation of simulation effort amongst the potentially good designs. Sullivan and
Jacobson [1] propose an ordinal hill climbing method based on ordinal optimization and
the generalized hill climbing (GHC) agorithms. GHC seeks to find the optimal design
by allowing the algorithm to visit inferior designs enroute to a globally optimal design.
The ordinal hill climbing algorithm incorporates the design space reduction feature of
ordinal optimization and the globa optimization hill climbing feature of GHC
algorithms. Abspoel et al. [53] develop an optimization strategy based on sequential
linearization. In each cycle, alinear approximate sub problem is created and solved. If
the design improves the objective function value, it forms the next cycle' s starting point.
A D-optimal design is used to plan the simulation experiments so that the number of
simulation experimentsis kept at a manageable level for increasing number of design
variables. Laguna and Marti [54] describe atraining procedure wherein a neural network
filters the solutions likely to perform poorly when the simulations are executed. In other
words, aneural network acts as a prediction model for smulations just as a ssimulation

acts as a prediction model for a stochastic system.
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2.2.3 Applications of hill climbing, gradient-based and nested partitions algorithms

We review below, the kind of problems to which hill climbing, gradient-based
and nested partitions algorithms (NPAS) have been applied.

Sullivan and Jacobson [1] apply the ordinal hill climbing to adiscrete
manufacturing process design for an integrated blade and rotor geometric shape
component. It considers three manufacturing process design sequences, where each
process has controllable and uncontrollable input parameters associated with it. The cost
function includes the cost of manufacturing, cost penalties for violating process
constraints and cost penalties for not meeting certain geometric and microstructural
specifications. The objectiveisto identify the best process design sequence, along with
the values of the controllable input parameters so as to minimize the total cost.

Gerencser, Hill and Vago [55] apply aversion of stochastic approximation
method for optimizing over discrete sets. They consider the resource allocation problem.
The objective function is the sum of the cost in the form of an expectation incurred by
each user class that depends upon the resources that are allocated to each class.
Cassandras and Gokbayrak [14] convert a discrete resource alocation problem into a
continuous variable surrogate problem in order to be able to obtain sensitivity estimates
viagradient information. The resulting solution after each iteration is mapped back to
the discrete domain. Fu and Healy [56] address the (s,S) inventory control problem using
different methods including a gradient-based algorithm. Whenever the inventory
position falls below the level s, a quantity equal to the difference between Sand the
current inventory position is ordered. The objective is to minimize the long-run average

cost per period, which includes the ordering, holding and shortage costs.
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Shi and Chen [52] develop a new agorithm taking advantage of the global
perspective of NPA and apply it to the buffer allocation problem. Shi, Olafsson and
Chen [51] develop a new algorithm combining NPA and the genetic algorithm for the
product design problem. They maximize the market share by determining the optimal
levels of the attributes of a product. Shi, Chen and Y ucesan [57] apply NPA to solve a
buffer allocation problem in supply chain management. Shi, Olafsson and Sun [58]
apply NPA to the traveling salesman problem and emphasize the “ parallel” nature of

NPA, suitable for the emerging parallel processing capabilities.

2.3 Summary

This chapter provided a detailed review of the simulation-based optimization
techniques that are used for both continuous and discrete state space. We aso provided a
review of the equipment selection and the related problems that have been addressed,
using either queueing models or simulation models for optimization. Law and McComas
[59] mention that one of the disadvantages of simulation historicaly, isthat it was not an
optimization technique. Out of a small number of system configurations that were
simulated, a decision-maker would choose the one that appeared to give the best
performance. Based on the availability of faster computationa environments and various
optimization approaches, the situation has changed. Today, simulation software
combined with optimization routines form a powerful tool for many applications. The
goal of such packagesisto orchestrate the simulation of a sequence of system
configurations to reach a system configuration that provides an optimal or near optimal

solution.
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Although there exist many approaches to solve the simulation-based optimization
problems in discrete event manufacturing systems, it is difficult at timesto choose
amongst the various available techniques. In other words, it is not easy to identify an
algorithm in advance, with high confidence that it will be the best approach for the
problem at hand. At times, a different implementation of the same algorithm provides
better results. L’ Ecuyer, Giroux and Glynn [60] apply different variants of the stochastic
approximation technigue to an analytical M/M/1 queueing model to compare them. They
conclude that the gradient estimators through infinitesimal perturbation analysis and
finite differences derivative estimation techniques perform better than likelihood ratio
derivative estimators. Alrefael and Andradottir [43] compare different variants of the
simulated annealing algorithm through their application on M/M/1 queueing systems.
Based on their choice of values for parameters such as the annealing sequence, the
simulated annealing version they propose gives a better overall performance for a
particular example considered, compared to other versions of the algorithm proposed by
other authors. Sometimes, the structure of the problem might suggest the suitability of
certain algorithms. Gong, Ho and Zhai [47] develop a numerical testbed system and
show that the simulated annealing and stochastic ruler methods outperform the stochastic
comparison method when the search space has a good neighborhood structure. Garai, Ho
and Sreenivas [50] compare adaptive ordinal optimization using genetic algorithm
against hill climbing using the gradient method, through their application on different
gueueing models. The comparison is based on the sensitivity to simulation noise. They
show that the adaptive ordinal optimization works better than the pure gradient method

due to itsinsensitivity to simulation noise. Lagunaand Marti [54] compare their scatter
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search implementation to train a neural network against various training procedures
based on the simulated annealing algorithm. They find that their scatter search
implementation provides solutions comparable to the best methods, but with much less
computational effort. Fu and Healy [56] compare gradient-based, retrospective and
hybrid algorithms while addressing the (s,S) inventory control problem. Their hybrid
algorithm combines the fast convergence of the pure retrospective approach with the low
computational requirement for the gradient search scheme.

This thesis addresses the problem of equipment selection, formulated in the next
chapter, and compares the performance of hill climbing, gradient-based and the nested
partitions algorithms. The suitability of the approaches is discussed at the end, with

respect to the special structure the equipment selection problem has.
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3. PROBLEM FORMULATION

This chapter defines the equipment selection problem. In section 3.1, we
mathematically formul ate the optimization problem, specifying the objective function,
the decision variables and the constraints involved. Section 3.2 proves that our
equipment selection problem is NP-complete. In section 3.3, we define a sample

problem, which is used to describe the heuristic and the algorithms in Chapter 4.

3.1 Problem definition

The problem studied hereis one of vital importance, especialy to the
semiconductor industry, which invests a great deal of money in equipment. Selecting the
proper set of toolsisimportant for satisfying throughput and budget requirements, and
minimizing average cycle time. We formulate the problem as follows.

The objectiveisto minimize E[T], the average cycle time of alot of wafers
through the factory, which is measured using discrete event simulation runs. The
uncertainty in the system liesin the inter-arrival time of the lots and the processing time
of thetools. The factory is aflow shop. Each job (or lot) must visit each workstation in
the same sequence. The travel times between workstations are constant regardless of tool
selection.

The factory has n workstations. Each workstation can have tools of one or more
types. If at i™ workstation there are z types of tools available, then Xij, the number of

tools of typej purchased at each workstation i wherei = 1,...,nandj =1,..., z form the
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decision variables. X;; must be a non-negative integer. The total number of decision
varigblesispwhere p=3"" z.

The cost of onetool of type]j at workstation i is C;; (dollars) and the capacity of
one such tool is 4 (wafers per unit time). The decision-maker has a fixed budget of M
(dollars) for purchasing the tools so that the total tool cost cannot exceed M. Also, the
manufacturing system must achieve athroughput of A (wafers per unit time). If £ isthe
capacity at workstation i, then w, = Z?zl X;; 4; . The constraints can be written as
follows.

z
D> Xy >A  forali,and
j=1

Note that for n = 1, our problem reduces to the integer knapsack problem, which we

define later in this chapter.

3.2 NP-complete nature of the problem

Let the number of workstations be 1. We now define an instance of our problem.
Consider aset of tools T at the workstation, comprising different tool types T; with a cost
C;, and capacity 14, associated with each tool; a set X specifying the quantity of different
tool types X; ; a budget constraint M; and a throughput constraint A. The decision

problem ESP that would correspond to the feasibility of the instance can be stated as

follows.
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Isthereasubset X' X such that
D XC <M and > X u >A?
jar jar
In the following subsections we prove that ESP is NP-complete. Given an
instance of the integer knapsack problem, we will reduce it to ESP so that a solution to
ESP will exist if and only if there would exist a solution to the integer knapsack

problem.

3.21ESP NP
Given a solution to the problem ESP, we can easily verify in polynomial time
whether the capacity of the system is greater than A, and that the total money spent is
lessthan M. If the solution given to usis { X } ={ X, X,,..., X}, wherezisthe total
number of tool types at the workstation, then the calculations > X.C, and > X havea
i i
complexity of 6(z), which is polynomial time. | |

Hence, ESP belongsto the NP class.

3.2.2 Integer knapsack problem

We pose an instance of the integer knapsack problem below.
A thief robbing a store finds certain items denoted by U. An item u weighs s(u) pounds
and isworth v(u)dollars and exists in multiple quantities. He wants to take at least K
dollars worth of items, but can carry at most B pounds in his knapsack. Mathematically,
it can be expressed as follows (Garey and Johnson [61]).

Consider afiniteset U, a“size’ s(u)JZ" and a“value’ BOZ" for each uOU

(where Z denotes the set of integers), asize constraint v(u)JZ" and avalue goal KOZ".
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The decision problem can be stated in the following way.

Is there an assignment of a non-negative integer c(u) to each uOU such that

Dcusw=B and > cuvu)=K?

3.2.3 Transforming the integer knapsack problem to ESP

Given an instance of the integer knapsack problem, we now create an instance of
ESP. Let C, = s(u) and 14, = v(u), for eachlU. Further, let M = B, and A = K-1. ISthere
an assignment of a non-negative integer X, to each tool of typg T,  such that

D XG <M and D X4, >A?
T T

Therefore, we find a 1-1 correspondence between the integer knapsack problem
and ESP. If there exists a solution to the integer knapsack problem, then clearly, there
would exist asolution to ESP. And if there exists a solution to ESP, then clearly there
would exist a solution to the integer knapsack problem.

Since the integer knapsack problem has been shown to be NP-compl ete (Garey
and Johnson [61]), the arguments presented in section 3.2 prove that finding a solution to
ESP is NP-complete too. Hence, we conclude that since the decision version of the
equipment selection problem is NP-complete, the optimization version is at least as hard

as the decision version. Hence our equipment selection problem is NP-complete.

3.3 Sample problem definition

Consider a manufacturing system with n = 2 workstations, with each workstation

i, having z = 3 types of tools available. The total number of decision variablesisp, so

tha p=Y7=33=6
= -1
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The cost of onetool of typej for workstation i is Cjj, and the capacity of one such
tool is 4. Tables 3.1 and 3.2 list these costs and capacities respectively. The decision-
maker has afixed budget of M = $18,000 for purchasing the tools. The manufacturing

system must achieve athroughput of A = 100 wafers per hour.

Workstation
Tool Type = >
j=1 $550 $750
j=2 $900 $900
j=3 $600 $600

Table 3.1: Tool costs C;;

Workstation
Tool Type =1 =5
j=1 115 16
j=2 18 19.5
j=3 12.75 12
Required throughput = 100
All numbers in wafers/hour

Table 3.2: Tool capacities L4

Thelot inter-arrival times and the |ot processing times are exponentially
distributed. The mean inter-arrival time for the lots that comprise 25 wafers each is 0.25
hours. The mean lot processing time for tool Tj; is 25/ hours. The number of lots that
visit each tool at aworkstation is proportional to the tool’ s capacity, irrespective of
whether atool with higher capacity at that workstation isidle or not. The travel times are

ignored.
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3.4 Summary

This chapter described the equipment selection problem. The next chapter
describes the heuristic and the algorithms that are applied to the sample problem defined

in this chapter.
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4. SOLUTION APPROACH

This chapter provides a detailed description of the heuristic and all the algorithms
that we have implemented to tackle the problem defined in Chapter 3. Section 4.1
provides an introduction to the heuristic and the algorithms, which are later described in
Sections 4.2 - 4.8. Section 4.2 describes the heuristic. Sections 4.3 - 4.8 describe the hill
climbing, biggest leap, safer leap, nested partitions-I, nested partitions-I1 and the
analytical algorithms respectively. We aso show how the heuristic and the algorithms
are implemented on the sample problem defined in Chapter 3. Section 4.9 reports the

results for that sample problem.

4.1 Introduction to the heuristic and the algorithms

The budget and throughput constraints bound the set of feasible solutions.
Purchasing too few tools will give insufficient capacity. Purchasing too many tools will
violate the budget constraint. Hence the tools must be selected carefully.

For the gradient-based search algorithms, namely hill climbing, biggest leap and
safer leap algorithms, a heuristic is employed as the first step to find alow-cost, feasible
solution by meeting the throughput requirements. Then the gradient-based search
procedure is applied to find better solutions. The gradient gives us the information about
what tools to add in order to reduce the cycle time the most. The search al gorithms that
have been developed, use gradient information to direct the search through the discrete
solution space, aways moving to a nearby integer point that isfeasible. The gradient

provides the search direction.
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The gradient estimation uses forward differences to avoid violating the
throughput constraints. For example, if X;; represents the number of tools of type] at the
i™ workstation, and X;; = 0 at some point in the iteration, then central differences cannot
be used as cycle time values will have to be estimated at X;; = -1 and X;; = 1. However,
the gradient can always be estimated through forward differences, where cycle time
values are estimated at X;; = x and X;; = x+1, x =2 0. The three a gorithms proposed for this
type of search are:

Hill climbing algorithm: The search consists of taking very small steps, buying
only onetool at atime, till such point that the average cycle time has been minimized or
the budget has been exhausted.

Biggest leap algorithm: The search consists of taking biggest possible leaps,
buying lots of tools when feasible, till such point that the average cycle time has been
minimized or the budget has been exhausted as in Mellacheruvu [62].

Safer leap agorithm: Thisisacombination of the hill climbing and the biggest
leap algorithms. The search consists of taking large, but cautious steps, till such point
that the average cycle time has been minimized or the budget has been exhausted.

In all cases, the algorithms consider the average cycle time to be minimized if no

step improves it further, within the precision of the simulation tool.
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FICTORIAL REPRESENTATION OF THE THREE ALGORITHRS
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Figure 4.1: Behavior of hill climbing, biggest leap and safer leap algorithms

Consider a manufacturing system with two workstations, having one tool type
per workstation. Figure 4.1 describes one of the ways in which the three algorithms
could behave if there was enough money to buy at least five more tools, having aready
bought 3 tools, assuming that there is enough scope for improvement in the cycle time.
The hill climbing agorithm buys one tool at atime. The biggest |eap algorithm buys all
the toolsin asingle move. The safer leap agorithm takes big, but cautious steps. The
solution in the end may differ as can be seen.

The other kind of search procedure used is the nested partitions agorithm (NPA),
which employs a random search. This procedure does not build up on the low-cost,

feasible solution provided by the heuristic.



The solution space is partitioned into several regions, and solution points are
sampled from each region using a random sampling scheme. The best estimated
objective function value forms the criterion for selecting the most promising region,
which isthen, partitioned further. Sampling from the region that surrounds the most
promising region allows escaping local optimums by backtracking to a larger region that
would include the current most promising region. Two versions of NPA (NPA-I and
NPA-II) were developed for our problem. They differ in the way the solution spaceis
partitioned.

NPA-I: The search partitions the sol ution space based on the tool values of each
and every existing tool type. Therefore the depth of partitioning (or the number of times
the solution space will have to be partitioned) will be equal to the sum of the different
tool types at each workstation. As we go deeper and deeper in the partitioning process,
we keep on fixing the tool values for those tools that have been partitioned on. These
tool values will be the final ones, unless the procedure backtracks at some later stagein
the partitioning process.

NPA-II: This search deals with a solution space that consists of only one tool
type per workstation. It partitions the solution space in two steps. In the first phase of
partitioning (primary phase), it fixes the tool type that is found to be the most promising,
for each workstation. In the second phase of partitioning (secondary phase), it fixes the
tool values for those chosen tool types. The secondary phase is similar to NPA-I, except
that the input to NPA-I would consist of only one tool type for each workstation. The
depth of partitioning in NPA-11 equal s twice the number of workstations (for each phase

of partitioning, the depth equals the number of workstations). There could exist a
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possibility of backtracking from a secondary depth level (secondary node) to a primary
depth level (primary node).

Consider the same manufacturing system with two workstations, having one tool
type per workstation. Figure 4.2 describes the way NPA would work. To begin with, we
would partition the solution space on the tool values for the first workstation. The lines
L1,L2,...,L5in Figure 4.2(a) represent the solution subspace for which the tool values
for the first workstation are 1,2,...,5 respectively. The bold line L4 indicates the most

promising region after the sampling has been done.

PICTORIAL REFRESEMTATION OF THE MP ALGORITHR: Partitioning
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Tools bought for workstation 1

Figure 4.2(a): NPA — partitioning on tool values for workstation 1

Now, with tool value at first workstation as 4, we partition on the tool values of

the second workstation. The points on the line L4 in Figure 4.2(b) indicate the solution
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subspace at the second depth level. All possible solutions that do not lie on the line L4
form the surrounding region. If the best solution is found on the line L4, the procedure
terminates, returning that solution as the final result, otherwise we backtrack and

partition on the tool values for the first workstation.

MF &LGORITHR: Partitioning
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Tools bought for workstation 1

Figure 4.2(b): NPA — partitioning on tool values for workstation 2

If the first workstation had two tool types, then NPA-I would partition on the tool
values of both the tool types at first workstation, and on the tool type at the second
workstation in a similar manner as shown above. NPA-I1 however, would first partition
to select the most promising tool type, before partitioning to select the tool values. The
partitioning for primary phase would look for the solution subspaces on the X and Y

axes only, as shown in Figure 4.3 (solutions with single tool type per workstation).
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Figure 4.3: Solution space for the NPA-II

Once the most promising tool type has been determined by sampling on the X
and Y axes, we would start with the secondary phase of partitioning to determine the

tool values, as explained earlier.

4.2 Description of the heuristic
4.2.1 Notation

The following notation is used:
A desired throughput
M budget available

n number of workstations
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Z total number of different tool types at workstationi;i=1,...,n
Tij tool of type| at workstationi;j=1,...,%

Hi capacity of Tj; tool

Gi cost of Tj; tool

Uij capacity per unit cost of Tj; tool

k iteration number

X number of T;; tools at the k™iteration

6  solution after the K" iteration: G ={X{,..., X}; ;weeus X5
BX  budget available after the K" iteration

|x|  greatest integer less than or equal to X

[x]  smallest integer greater than or equal to x

4.2.2 Description

For each workstationi = 1,...,n:
For each tool type, calculate Ujj = 4 / Cj
Let U =max{U,,...,U,}

Letyi equal the number of Tj; tools such that U, =U,

For these y; tool types, let X;;° = A
Yi K

For the other z —y; tool types, let X;°=0
Set g, :{Xlol,...,Xr?zn}
n 3
It > X,°C; >M, then the heuristic solution isinfeasible; stop

i=L j=

Else perform the search
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Note that at the end of the heuristic, remaining budget is given as

B’ =M _Zn:ixijocij

i=1 j=1

4.2.3 Heuristic applied to the sample problem

First, the capacities per unit cost (U;;) are calculated for each tool. Table 4.1 lists

these.
Workstation
Tool Type =1 =5
j=1 8.36 8.53
j=2 8.00 8.67
j=3 8.50 8.00
All numbersin 10 wafers’hour/dollar

Table 4.1: Tool capacity per tool cost Uj;

Table 4.2 lists the U;s and the y;s for the two workstations.

Workstation
i=1 i=2
Ui U13 U22
Vi 1 1

Table4.2: Ui andy,

For thetools T13 and Toy,

Table 4.3 lists the number of tools bought (X;;) so as to meet the throughput

reguirements.
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Workstation
Tool Type = >
j=1 0 0
j=2 0 6
j=3 8 0

Table 4.3: Number of Tj;s bought by the heuristic (X;;°)

Finally, we check whether the heuristic solution satisfies the budget constraint or not.

n_ .z
33 X, C, = (8* 600) +(6* 900) =10,200 < M =18,000

ij i
i=1 j=1

Hence g, ={ X, X3, X2 X3, X5,, X2} ={0,0,8;0,6,C} .
The average cycle time with this configuration of toolsis estimated to be 21.09
hours. Having met the throughput and the budget constraints, the search will be

performed next in order to reduce the cycle time as much as possible, utilizing the

remaining budget B° where  B® = M — 10,200 = $7,800.

4.3 Description of the hill climbing algorithm
4.3.1 Notation
The following notation is used in addition to that of the heuristic:
N number of replications
p total number of tool types= >"" z,
erk) average cycle time at point V;; obtained by the r' simulation run at the k™

iteration

4.3.2 Description

If thereisnoC; < B°, then return & asthe final solution

41



Elseinitialize k = 0; perform the search

Step 1: Neighborhood Search (This step evaluates all the feasible neighbors of the
current solution)
Step 1.1: Increment k by 1
Step 1.2: For each workstationi = 1,...,n:
For each tool typej =1,...,z:
Specify neighbor Vi as
Vi S {OX e Xyt X X 4L, X X, X )
For each neighbor where C; < B~ estimate the cycle time of Vi as
follows:

POV D=2 T

v

Note that thiswill require at most (Np) simulation runs.

Step2:1f (f (Vi) = (f(6,4))y foralTj, then return Ges; stop

Else continue

Step 3: Solution update
Step 3.1: Choose V;j* that has the minimum ( f VN
Step 3.2: Update the values of X;*s
Step 3.3: Let 4= V¢
Step 3.4: Set gk = gkt _Cij

Step 3.5: If thereisno Tj; that has C,; < B, then return 4; stop
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Elsegoto Step 1

4.3.3 Hill climbing algorithm applied to the sample problem
Since Cy; = 550 < B’ = 7800, there is at least one T;; such that G; <B° Hence,
perform the search. Initiadlizek = 0.
Step 1:
Step 1.1: Increment k; k=1

Step 1.2: Table 4.4 liststhe cycletimes ( f (V')  of the corresponding Vijl

Tool | f (V') & &
T 5.77 0 0
T, 4.86 0 1
T3 5.42 8 8
T 20.42 0 0
To 20.34 6 6
Tos 20.56 0 0

Cycle Time valuesin hours

Table 4.4: Hill climbing algorithm: cycle time values and the
tool configuration before and after the iteration

Step 2: Sincethereisat least one Tj; such that  ( f Vi) w < ( f (V%) y s we

continue with the search

Step 3:
Step 3.1: V! hasthe minimum ( f V)
Step 3.2: Table 4.6 shows the updated val ues of Xijl

Step 3.3: 6= Vi, ={0,1,8;0,6,0}
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Step 3.4: B! = B® - C,, = 7800 - 900 = 6900
Step 3.5: Since Cy; = 550 < B' = 6900, there s at least one T;j such that C, < BY;

hencegoto Step 1

4.4 Description of the biggest leap algorithm
4.4.1 Notation
The following notation is used in addition to that of the heuristic:
N number of replications
p total number of tool types = i;
C size of the perturbation = 1 i
fAr (6,) average cycletimeat point & obtained by the r' simulation run
8j unit vector in direction ij
gAij (6,) gradient vector at point & normal to the direction ij

ax step size at iteration k

4.4.2 Description
If thereisno C; < B then return & asthefinal solution

Elseinitialize k = 0; perform the search

Step 1: Gradient estimation
Step 1.1: Increment k by 1
Step 1.2: For each workstationi = 1,...,n:

For each tool typej = 1,...,z:



LEt\/iik:Bk—1+06 _{Xn’ ’Xk1+l' Xkl}

Estimate E;”. 6,) asfollows:

n

’ _ 13 fr(gk—l+ceij)_ ]:r(gk—l)
(9 (6)) _WZ:: c
S AR AR RO
- N r |J r k-1

q
1
iy

Note that thiswill require N(p+1) simulation runs.

Step 2: Solution update
Step 2.1: For each workstationi = 1,...,n:
For each tool typej =1,...,z:
Letdi= g,(8,)
If di* > 0, then set d* = 0; this avoids reducing any X;;*
If C;; > B*?, then set d;;* = 0; this avoids buying any tools that are too
expensive
Step 2.2: If d;= 0 for all T;j, then return @.4; stop
Else continue

—_ Bk_l
Step2.3: Let a, =

n Z;

Z Z di;(CiJ

i=1 j=1

Step 2.4: If all [-ad | =0, then
Set X;*=X**+1  for Tj; where d;* is the smallest (most negative)
= X otherwise;

B*=B"!-C;

Else
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Set Xijk = xijk-1 + L_akdiH
Bk = BX* —Zn:i(t‘ akdi:'(J)Cij
i=1 )=
Step 3: Let 6, ={Xyj,..., Xy, }

@ is feasible with respect to the constraints since
z n z n 2
> (X7 +| -adi )C; <373 X{7C; -a > 3 diC,

n oz
i=1 j=1 izl j=l i=j4

where all C < B“tand al df<0

Step 4: If thereisno C; < B¥, then return 4. stop

Elsegoto Step 1

4.4.3 Biggest leap algorithm applied to the sample problem

Zn:ixi;(_lcu' +B" =M

i1 j4

Since Cy; = 550 < B’ = 7800, thereis at least one T;j such that G; < B Hence,

continue with the search. Initialize k = 0.

Step 1:

Step 1.1: Increment k; k=1

Step 1.2: Table 4.5 liststhe gradientséij (8,) of the corresponding V;*
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Tool | f(v) | f(v0) | g;(6,)
T 5.77 21.09 -15.32
T 4.86 21.09 -16.23
Tia 5.42 21.09 -15.67
To1 20.42 21.09 -0.67
T 20.34 21.09 -0.75
Tos 20.56 21.09 -0.53

All numbersin hours

Table 4.5: Biggest leap algorithm: cycle time and the
corresponding gradient values for the first iteration

Step 2:
Step 2.1: Values of d;* are shown in Table 4.6
Step 2.2: Since at least one d;;* is < 0, we continue with the search
Step 2.3: Calculate a; as:
-B’
2 3 .
224G,

i=1j=1

81:

~7800 _29c
(-1532* 550 +(~1632* 900 +(—1567* 600 +(-067* 750 +(-0.75: 900 +(-053 600

Step 2.4: Table 4.6 shows the values for |_— aldi” . Since at least one such valueis> 0,

X;;* are updated as shown in Table 4.6

Tool g (6,) dijl -aldijl L—aidﬂ & 6
T -15.32 -15.32 3.51 3 0 3
Tio -16.23 -16.23 3.72 3 0 3
Ti3 -15.67 -15.67 3.59 3 8 11
Ty -0.67 -0.67 0.15 0 0 0
To -0.75 -0.75 0.17 0 6 6
Tos -0.53 -0.53 0.12 0 0 0

Cycle Time gradients in hours
Table 4.6: Biggest leap algorithm: data for calculating the new tool configuration
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B! = B° — (3*550 + 3*900 + 3*600) = 7800 — 6150 = 1650
Step 3: 6, ={ X;;,..-, X35} ={3,3,11,0,6,0}

Step 4: Since Cy; = 550 < B = 1650, there is at least one Tjj suchthat C; < B hence

gotoStep 1

4.5 Description of the safer leap algorithm
4.5.1 Notation
The following notation is used in addition to that of the heuristic:
N number of replications
p total number of tool types = Zn:z
C size of the perturbation = 1 N
fAr (6,) averagecycletime at point 4 obtained by the r'" simulation run
8j unit vector in direction ij
gA”. (6,) gradient vector at point & normal to the direction ij
a step size at iteration k

DX  amount spent at the K" iteration

4.5.2 Description
If thereisno C; < B then return & as the final solution

Elseinitialize k = 0; perform the search
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Step 1: Gradient estimation
Step 1.1: Increment k by 1
Step 1.2: For each workstationi = 1,...,n:
For each tool typej =1,...,z:
Let Vi =6, +ce ={X ., Xi ™ +1.., Xoh
Estimate é”. (6,) asfollows:

A

A 18 (G tce) - T, (6,.)
(gij(gk))N _WrZ:l = (]: =
1 ’
sz - (6)

r=1

Note that thiswill require N(p+1) simulation runs.

Step 2: Solution update
Step 2.1: For each workstationi = 1,...,n:
For each tool typej =1,...,z:
Letdi*= g, ()
If di* > 0, then set d;* = 0; this avoids reducing any X;;*
If C;; > B*?, then set d;;* = 0; this avoids buying any tools that are too
expensive

Step 2.2: If d; = 0 for all T;j, then return 4.4; stop

Else continue
- Bk
Step2.3:Let a, = -
2 2 diC
i=1 j=1
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Step 2.4: If all |-a,d¥| =0, then
Set X = X'+ 1 for Tj; where di* is the smallest (most negative)
= X otherwise;
B<=B“l.¢;
Else

Initialize D=0

For each workstationi = 1,...,n:
Compare dij* for those Tj; where | -a,d | >0
Let X*=X;“'+1 for T; where d;*isthe smallest (most negative)

= X! for the rest of the T;; at workstation i;

D*=D*+C; whereC; isthe cost of the T; that is bought

BK = g1 _ pk

Step 3: Let G, ={X/\,... XX }

nz,

@ is feasible with respect to the constraints since

Zn:i(xi;"lﬂ—akdﬂ)c” Siixi:'(_lcij -akiidukcu :Zn:ixi;(_lcu +B =

i=1 j= i=l j=l i=lj4 idj4

whereall C; < B“*anddl djf <0

Step 4: If thereisno C; < B¥, then return 4; stop

Elsegoto Step 1
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4.5.3 Safer leap algorithm applied to the sample problem

Since Cy; = 550 < B® = 7800, there is at least one Tj; such that C; <B’ Hence,

continue with the search. Initialize k = 0.

Step 1:

Step 1.1: Increment k; k=1

Step 1.2: Table 4.7 lists the gradients éij (6,) of the corresponding V;j*

Step 2:

Tool | f(v) | f(v°) | g9,(6)
T11 5.77 21.09 -15.32
T 4.86 21.09 -16.23
Tia 5.42 21.09 -15.67
To1 20.42 21.09 -0.67
Too 20.34 21.09 -0.75
Tos 20.56 21.09 -0.53

All numbersin hours

Step 2.1: Values of d;* are shown in table 4.8

Step 2.2: Since at least one ;" is < 0, we continue with the search

Step 2.3: Calculate a; as:

&

-B

2>dG

i=1 j=1

—7800

Table 4.7: Safer leap algorithm: cycle time and the
corresponding gradient values for the first iteration

_ =02
(<1532 550 +(~1632+ 90 +(~1567* 600 +(-0.67* 750 +(~0.75* 900 +(-0.53* 600
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Step 2.4: Table 4.8 shows the values for \_— ald“ . Since at least one such valueis> 0,

X;i* are updated as shown in table 4.8. Note that dy," is the most negative.

Tool g; (6,) dijl -aldijl \_—aidH & &
T -15.32 -15.32 3.51 3 0 0
Tio -16.23 -16.23 3.72 3 0 1
Ti3 -15.67 -15.67 3.59 3 8 8
Ty -0.67 -0.67 0.15 0 0 0
Ton -0.75 -0.75 0.17 0 6 6
Tos -0.53 -0.53 0.12 0 0 0

Cycle Time gradients in hours

Table 4.8: Safer leap agorithm: information for calculating the new tool configuration

B! = B®— Cy, = 7800 — 900 = 6900

Step 3: G, ={X{,,..., X3} ={0,1,8,0,6,0} . Note that no tool is added to the second

CERRLLE

workstation because all |- alde =0

Step 4: Since Cy; = 550 < B! = 6900, thereis at least one Tjj suchthat C; < B hence,

gotoStep 1

4.6 Description of NPA-I
4.6.1 Notation
The following notation is used in addition to that of the heuristic:
B remaining budget at the I™ partition depth
y7; capacity of workstation i, at the current partition depth

F set of those Tj; whose X;; are fixed at the current partition depth
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N set of those Tj; whose X;; are not fixed at the current partition depth

Ui n{Q‘} for T; O N at workstation i

U C;‘} for all T at workstation i

Ky j hi gh&st capacity out of the n workstations

4.6.2 Description
Renumber Tj; at each workstation i so that 14, >y, >..2 4,
InitializeF ={}; N ={(1,2) (21 ... (n,1) (1,2) (2,2) ...... (n,z,)} where(i,j) denotes

the tool Ti;.

Step 1: Partitioning
Wewill assumez =2z =...=2,=2
The depth in the partitioning scheme is governed by the following order:

T Topyees T, T T

11 "210 0 Yy 120 T2

T J P P

P IRLLLE y lizr bogyeen |y

Caculate B =M- > X.G; 4= D Xk

(i,j)F (i,j)F

The lower and upper bounds on the width at each level of depth are given as:

Xpp~ = 0if Oj>p: (hj) ON

= {MW otherwise;
;uhp
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N n ~H
U B - Z mex{0, (1 _:uk)Uk} ZU;
th - mi k=Lkzh Cm ! p )
p

Add (h,p) toF

Step 2: Random Sampling
Let X; =0, O (i,j) ON
FOr Xnp = Xnp-seees Xip- -
Perform steps 2.1 and 2.2
Step 2.1: Check feasibility:
For each workstationi = 1,...,n:
While (14 < A\), repeat the following loop:
From those (i,j)) ' N, pick arandom (i,j) and increment its X;;
Set B'=B'-Cj; ph=+ 4
If B' < 0, repeat this step again, choosing different random (i j)s. If after repeating
anumber of times, feasibility is still not obtained, skip the current partition
(represented by the current value of Xp,) as well as the subsequent remaining
partitions (represented by the remaining values of Xy, at the current depth 1.
Step 2.2: Sample a point in the partitioned space:
Pick a uniformly distributed random number R between 0 and B

Let P(R)={(ij) : (i) UN, Cj < R}



While P(R) is not empty, repesat the following loop:
Consider those q workstations that have at least one (i,j) 0 P(R)
Arrange these q workstations according to their capacity, such that
Ko 2 b, 22
Pick aworkstation i at rank j, with probability O|(§|—J+J) ; let k be the

sdl ected workstation

However, for special cases where capacities of some workstations are
equal, the probability of picking any of these workstations would be the
same. For ex., if (4 >4, = =, >H >.. >L then the probability of

picking workstations
2*(2+3+4) 1

o@9+) 3
Note that this scheme makes the workstation with lower capacity, more

Xo, X3 O X4 =
likely to be selected.

From those (k,j) U P(R), randomly pick a (k,j)

Set Xg=Xg+LR=R-Cy; k= L

Step 2.3: Sample a point in the surrounding space:
Let Y;; be the number of T;; tools for the surrounding region
Initialize Y;; =0 O (i,])
Pick a uniformly distributed random number R between /]anuk' and M

k=1

Let Q(R) ={(i,)) : Cj <R}
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While Q(R) is not empty, repeat the following loop:
Consider those g workstations that have at least one (i,j) 0 Q(R)
Arrange these q workstations according to their capacity, such that
M 2 b, 22
Pick aworkstation i at rank j, with probability 2 ; let k be the
a(q+D)
selected workstation
From those (k,j) in Q(R), randomly pick a (k,j)
Set X =Xg+1, R=R-Cy ; fh= fh T+ [
If, for any workstation i, ¢4 < A, then discard the sample
Further, if O (i,)) OF , X;j =;;, discard the sample because it does not
belong to the surrounding region

Note that at depth level = 1, there exists no surrounding region.

Step 3: Calculating the promising index

For each sample point in every partitioned region, the value of the objective
function is estimated. The promising index (P.I.), for regionr (=1,...# of partitions) is
givenby (P.1.), =min{ f(x,)},
where f( X, ) isthe average cycletime at the i™ sample point X belonging to regionr.

The most promising region is taken as the one that has the minimum (P.I.), .
Step 4: Further partitioning or backtracking
If one of the subregions has the best promising index value, that subregionis

partitioned further using the same scheme. However, if the surrounding region looks to
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be the most promising region, then we backtrack to alarger region, using the scheme

described by Shi and Chen [52].

If the fixed components of the best design at the current depth level | are denoted as:
Bt =X Xets Xogs ooy Kigsvevess Xigs Koo X ol =N(Q 1) +p 41

and the fixed components of the best design at the previous depth level |-1 are denoted

as: Gt ={ X, X s X X, , X'} when p=1,

ni )" 2agn) T Tnggy

(X X X s X X X} Othenwise

then we backtrack to the level that Gixeq and & fixeq have the same components at that

level and above. Hence after backtracking, the fixed components would have the form:

G LXK s X s X X, X
wherev<g,or,v=gandu<p-1
Note that in the implementation of NPAS, the best solution at each iteration

always forms a candidate solution for the next iteration, even if we backtrack.

The flow of NPA-I can be described as follows:

While at least one tool LIN , repeat the following loop:
For width (at each level of depth) = Xpp",..., Xnp" :
For desired number of samples (=5, in our implementation):
Randomly sample a point (as described in Steps 2.1 and 2.2)
Estimate the objective function value for the sampled point
For desired number of samples (= 50, in our implementation):
Randomly sample a point in the surrounding region (as described in Step

2.3)
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Estimate the objective function value for the sampled point

If the sample point having minimum objective function value is not in the

surrounding region, then

Remove atool from N, add it to F, and continue

Else

Backtrack, adjusting the sets F and N accordingly (as described in

Step 4)

4.6.3 NPA-| applied to the sample problem

Workstation
Tool Type =1 >
j=1 $900 $900
j=2 $600 $750
j=3 $550 $600

Table 4.9: Tool costs Cj;

Workstation
Tool Type =1 >
j=1 18 19.5
j=2 12.75 16
j=3 11.5 12

Required throughput = 100

All numbersin wafers/hour

Table 4.10: Tool capacities 4

Tables 4.9 and 4.10 are obtained after renumbering the tools, according to their

capacities. The depth in the partitioning scheme will be governed by the following order:

T T, Ty Ts Ty

58



Step 1:
Let F ={T, T, T} adN ={T,T, T} and say Xi1= 4, X1 = 5and X12=5
The current partition depth, | = 4; the total budget available, M = 18000
B'=M- > X,G,; henceB*=6900
(.i)F
The range of width at thislevel of depth is given by

Xy = X, X5 Where xL =0 (asTsON)and

)

F ={Tu T T T and N ={T,,T,5}

Step 2: Random sampling for X, =0

Step 2.1: Wefind that 4> A ; however, 4 <A . The only choice that can be made, isto
pick Tos. Hence Xp3 = 1; B* = B* — 600 = 6300; 1, =97.5+12>

Step 2.2: Suppose R = 1157
P(R) ={(1.3) (23)}
The workstation 1 has a higher capacity than workstation 2. Hence workstation 1
will be picked with a probability 1/3 and workstation 2 with a probability 2/3.
Say Tos ispicked first.
Xo3=2; R=R—Cy =557, 1,=1095+12=1215
P(R) ={(1,3)}. The only tool that can be picked is T;3
X13=1;, R=R-Cy3=7; 14 =13575+11.5=147.25

P(R) = {}; therefore, the sampled pointisx = {X;} ={4,5150,2
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We stop here, and continue this procedure to get more samples for this partition.
Thereafter, random sampling for subsequent partitionsis performed.
Step 2.3: Surrounding region for the current depth is sampled as follows:
Azn:uk' =9321.27 and M = 18000; Suppose R = 12700
ke

QR ={(1.1) (1.2) (1,3) (2.1) (2.2) (2.3)}

Table 4.11 gives the sequence of random selection for this sample

Seq. Capacity Prob. of Selection | Resulting Choice | Remaining

4 (wafers/ hr) Budget (R)
WS1 | WS2 | WS1 WS 2 WS Tool

1 0 0 0.5 0.5 2 Tx 11800
2 0 19.5 0.667 | 0.333 2 Tx 10900
3 0 39 0.667 | 0.333 1 T 10000
4 18 39 0.667 | 0.333 1 T2 9400
5 | 30.75 39 0.667 | 0.333 1 T11 8500
6 | 48.75 39 0.333 | 0.667 1 T 7600
7 | 66.75 39 0.333 | 0.667 2 Tx 6700
8 | 66.75 | 585 0.333 | 0.667 2 Tos 6100
9 | 66.75 | 705 0.667 | 0.333 1 T2 5500
10 | 795 70.5 0.333 | 0.667 1 T11 4600
11 | 975 70.5 0.333 | 0.667 2 Tx 3700
12 | 975 90 0.333 | 0.667 2 Tx 2800
13 | 975 | 1095 | 0.667 | 0.333 1 T2 2200
14 | 110.25| 109.5 | 0.333 | 0.667 1 T2 1600
15 123 | 1095 | 0.333 | 0.667 1 T2 1000
16 | 135.75| 1095 | 0.333 | 0.667 2 T 250
17 | 13575 | 1255 | 0.333 0.667

Table 4.11: NPA-I: sequence in which the tools are bought

The set Q(R) does not change till the seq. # 16, after which it becomes empty.

The sampled point y = {Y;} ={4,5,0,51%. From the table, we can see that
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capacity-feasible solution is obtained. However, the corresponding values of X;;
and Y;; O (i,j) U F arefound to be the same. Therefore this sampled point does

not belong to the surrounding region, and hence is discarded.

Step 3: The cycle time values are calculated for each point sampled in Step 2.

Step 4: Let us say, the best sampled point (with least estimated cycle time value) is
found in the surrounding region: y = {4,8,0,4,3 4 .We find that

g ={ Xuas X, X0 X0} ={4,483 and G, ={ Xy, X5, X} ={4,55
Therefore, after backtracking, we get &, ={X’} ={4; the partition depth is now set to

2, and the procedure is repeated.

4.7 Description of NPA-I11

The tree structure in our NPA-I1 implementation consists of two kinds of nodes:
primary and secondary. The primary nodes occupy the first few levels of depth of the
tree, and are associated with the identification of the most promising tool types at each
workstation. Secondary nodes are associated with searching for the optimal quantities of
those tool types identified through primary nodes.

The tree structure in the NPA-1 implementation involved only the secondary

nodes (the number of such nodes was (nz), the total number of tool types).

4.7.1 Notation

The following notation is used in addition to that of the heuristic:
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T

X

selected tool type at workstation i

number of tools for workstation i

T, and X; are the decision variables, whose properties C; and £4 can be defined as:

C=Cyif Ti =j;

= p it T =]

Z capacity of the workstation i; Z = Xi* 14

Z, j™ highest workstation capacity, amongst those under consideration

O set of most promising tools that have been estimated so far:
{T.T,,..T.},ksn

Ui ]rjl"lnz{%'j} at workstation i

7 set of the values of the number of tools corresponding to T;
{X,, Xy X 3, KN

X { Xy eees Kigy 3 oveeess Koo X }

R Uniformly distributed random number between )liui and M

i=1

4.7.2 Description

Renumber Tj; at each workstationi sothat #4124, 22, . InitidizeO0={}; 6={}.

Step 1: Partitioning

Step 1.1: Partitioning a primary node: At depth p, p< n, O ={T,, T, Toa}. The

partitioning is done over z, tool typesto identify T,. Note thet there are n levels

of depth for primary nodes.

Step 1.2: Partitioning a secondary node: At depth level n+p, thesets U = {T,,T,,,..., T.}
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and 6= {X;,X,,...X,,} havebeenidentified. The partitioning is done over the

values of X, in the range:

Xp- = A1 and
Hy
p-1 n [}
gl
X U - mn{ i=1 i=p+| M M
p Cp ! n Q
Hol,

izlﬁ

Step 2: Random sampling
Step 2.1: Sampling a sub region at primary node (at depth level p):
Fori=p+l,...,n,
Randomly select T; from the set { 1,...,z}
SetC,=Cjand pt= 1 if T =}
Set Tp =15 Cp = Cons th= ot
Step 2.1.1: Check feasibility:

Fori=1,..,n,

st

&iB:M—iXQ
If B<O, startgltep 2 again by picking anew set of T;s
Step 2.1.2: Sample a point in the partitioned space:
Pick auniformly distributed random number R between 0 and B

Let P(R)={i:C <R}
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While P(R) isnot empty, repesat the following loop:
Consider those q workstations that belong to P(R)

Arrange these q workstations according to their capacity, such that

2,22,2..22,

Pick aworkstation i at rank j, with probability 2 ; let k be the
aq+)

selected workstation

However, for specia cases where capacities of some workstations
are equal, the probability of picking any of these workstations
would bethe same. For ex., if Z >7Z =7 =7 >Z >.. >Z,

then the probability of picking workstations x;, X3 or X4 equals
2*(2+3+4) 1

q@q+) 3
Note that this scheme makes the workstation with lower capacity,

more likely to be selected.

Set Xy =X+l R=R-Cy, Z; = Z + U4
Let X =X, C =G,
Fori=2,..,z:

Set Tp =1; Cp = Cyi; L= b
X'C
=)

Cp

Hence we get z, samples whose T; and X; are the same for all i2p, but X, may be

Set X, =Roud

different as Ty, are different.

Step 2.2: Sampling a sub region at secondary node (at depth level n+p):



At the depth level n+p, we have:

O={T,T,..T}

6 = { Xy, Xgpee X 1}
For Xp = Xp5,.., Xp
Perform steps 2.2.1 and 2.2.2
Step 2.2.1: Check feasibility:

Fori=p+l,..,n:
Set X, M
:ui

Set B=M —Zn: X,C,
If B<O, ski pI;\e current partition (represented by the current value of Xp)
as well as the subsequent remaining partitions (represented by the
remaining values of X;) at the current depth n+p.

Step 2.2.2: Sample apoint in the partitioned space:

Pick auniformly distributed random number R between 0 and B

Let P(R)={i:i>p,C <R

While P(R) is not empty, repeat the following loop:
Consider those q workstations that belong to P(R)

Arrange these q workstations according to their capacity, such that

2,22, .22,
"
Pick aworkstation i at rank j, with probability ——— ; et k be
a@g+)
the selected workstation
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Set Xy = X+1, R=R-C; Zi:Zi+,U|

Step 2.3: Surrounding region is sampled as follows:
Step 2.3.1: Check feasibility:
Fori=1,..,n:
Randomly select T; from the set { 1,...,z}

Set Ci=Cjjand ph = if Ti =]
o [
/'Ii

Set B=M —Zn: X.C,
If B<O, start;ain by picking a new set of T;s

Step 2.3.2: Sample a point in the surrounding space:
Pick auniformly distributed random number R between 0 and B

Let P(R)={i:C <R

While P(R) is not empty, repeat the following loop:
Consider those q workstations that belong to P(R)
Arrange these q workstations according to their capacity, such that
2,272, 2.27,
Pick aworkstation i at rank j, with probability q((j—i]) let k be the
selected workstation

Set Xy = X+1;, R=R-C; Zk:Zk+,L4<
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Step 2.3.3: Check whether sample belongs to the surrounding region:
For primary region at depth level p, if T;, for all i <p, arethe sameasin [,

discard the sample because it does not belong to the surrounding region.

For secondary region at depth level n+p, if T;, for al i < n, arethe same asin [,
and X;, for all i <p, arethe same asin 6, discard the sample because it does not

belong to the surrounding region.

Step 3: Calculating the promising index

For each sample point in every partitioned region, the value of the objective
function is estimated. The promising index (P.l.), for regionr (r =1,...,# of partitions) is
givenby (P.1.), =min{ f(x,)},
where f ( X, ) isthe average cycletime at the i™ sample point x belonging to region .
The most promising region is taken as the one that contains the sample point with the

minimum (P..), .

Step 4: Further partitioning or backtracking
If one of the sub regions of a node has the best promising index value, that sub
region is partitioned further using the same scheme. However, if the surrounding region
looks to be the most promising region, then we backtrack to alarger region using the
scheme described by Shi and Chen [52]:
Step 4.1: Backtracking for the primary node:

At the depth level p (where p < n), we have:
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0= {1, T T}
Let the tool types for the workstations 1,...,p for the best sample in the surrounding
region be represented as:
O ={T.T...T}
If 0" # [, then we backtrack to the level k where 0" and [ would have the same
components at that level and above. After backtracking, we would have
0= {T"T",.. T k<p-1,
Notethat for al j <k, T, =T, =T
Step 4.2: Backtracking for the secondary node:
At depth level n+p (where p < n), we have:
0= {TLT...T}
6 = { Xy, Xgpeer X 1}
Let the best sample in the surrounding region be represented as:
O={T.T,.T}
g ={X,X,.X }
If O # O, we backtrack using the same scheme asin Step 4.1.
Elseif O = O, then we backtrack to the level where § and @ have the same components
at that level and above. After backtracking, we would have
6= {X'X",.. X} ,k<p-1

Notethat for all j <k, X, :xJT =X
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The flow of NPA-II can be described as follows:
Whilethe set fisincomplete, repeat the following loop:
If the node is primary, then
For the desired number of samples (= 5, in our implementation):
Randomly sample a point (as described in Step 2.1)

Estimate the objective function value for the sampled point

For the desired number of samples (= 50, in our implementation):
Randomly sample a point in the surrounding region (as described
in Step 2.3)
Estimate the objective function value for the sampled point
If the sample point having minimum objective function valueis not in the
surrounding region, then
Add the chosen tool for the workstation that is being partitioned
on, to U
Else
Backtrack, adjusting the set [J accordingly (as described in Step 4)
Elseif the node is secondary, then
For width (at each level of depth) = X, to X, :
For the desired number of samples (= 5, in our implementation):
Randomly sample a point (as described in Step 2.2)
Estimate the objective function value for the sampled point

For the desired number of samples (= 50, in our implementation):
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Randomly sample a point in the surrounding region (as described
in Step 2.3)
Estimate the objective function value for the sampled point
If the sample point having minimum objective function value is not in the
surrounding region, then
Add X, (tool value corresponding to the tool Ty, for the best
sample found) to &
Else
Backtrack, adjusting the sets [ and &accordingly (as described in
Step 4)

Adjust the type of node depending on the new depth level

4.7.3 NPA-II applied to the sample problem

Workstation
Tool Type = =5
j=1 18 19.5
j=2 12.75 16
j=3 115 12
Required throughput = 100
All numbersin wafers/hour

Table 4.12: Tool costs C;;
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Workstation
Tool Type =1 >
j=1 $900 $900
j=2 $600 $750
j=3 $550 $600

Table 4.13: Tool capacities 4

Tables4.12 and 4.13 are obtained after renumbering the tools, according to their

capacities. There will be two primary nodes, and two secondary nodes as there are two

workstations.

Consider a primary node first.

Let O ={Ty} (equivalent to saying [ ={T1} where T, =1) and ={}. The current

partition depth is p = 2. The total budget available, M = 18000.

Step 1:

The partitioning will be done over the three tool types at workstation 2, namely To1, T2

and Tos.

Step 2: Random sampling for the most promising tool type at the 2™ workstation:

Step 2.1: Since there are no more than 2 workstations, wegoontoset T,=1, C, =Cy;

and (b= Lb1
100

Step 2.1.1: Set X, ={§J =6, and X, :[

2
B=M - X,C =7200

i=1

10
195

|=s

Step 2.1.2:  Suppose R=2010. Hence, P(R) ={1,2}
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The workstation 2 has a higher capacity than workstation 1. Hence,
workstation 1 will be picked with a probability 2/3 and workstation 2
with aprobability 1/3. Say T is picked first.
Xo=7,R=R-C;=1110; Z,=Z,+ 19.5=136.5
P(R) ={1,2}; The probabilities remain the same; Say T; is picked next;
X1=7,R=R-C; =210, Z,=2Z;+ 18 =126
P(R) ={}; Therefore, the sampled pointisx ={X;} ={7,0,0,7,0,G
X =X%;=7,C =C; =900
Ati=2,T,=2,Cy=Cy, 1b= Ly and hence, X, = R)und(@) =8
M —Z X,C, =5700 >0

i1

Hence the next sampleisx ={X;}={7,0,0,0,8C

Ati = 3, T,=3,C= ng, o= b3 and hence X R:)Urﬂ(—) =11

M —Z X,C, =5100 >0

i=1

Hence the next sampleisx ={7,0,0,0,0,11

Step 2.3: Surrounding region is sampled as follows:

Step 2.3.1: Say the selected toolsare T; =2and T, =3
Set X, = {100J =8 and X, {KDJ =9
12.75 12
2
B=M -) X,C =7800

Step 2.3.2:  Suppose R = 4005; Hence, P(R) ={1,2};

Table 4.14 gives the sequence of random selection for this sample.
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Seq. Capacity Prob. of Selection | Resulting Choice | Remaining
" (wafers/ hr) Budget (R)
WS1 | WS2 | WS1 WS 2 WS Tool
1 102 108 0.667 | 0.333 1 T2 3405
2 |11475| 108 0.333 | 0.667 2 Tos 2805
3 [11475| 120 0.667 | 0.333 1 T 2205
4 | 1275 | 120 0.333 | 0.667 1 T2 1605
5 [140.25| 120 0.333 | 0.667 2 Tos 1005
6 |140.25| 132 0.333 | 0.667 2 Tos 405
7 |14025| 144 0.667 | 0.333

Table 4.14: NPA-II: sequence in which the tools are bought

The set P(R) does not changetill the seq. # 6, after which it becomes empty.
The sampled point x = {0,11,0,0,0,12.
Step 2.3.3:  Since for the sampled point, T; = 2, it isdifferent from the Ty in (.

Hence the sample qualifies as a surrounding sample.

Step 3: The cycle time values are calculated for each point sampled in Step 2.

Step 4: Let us say, the best sampled point (with least estimated cycle time value) is
found in one of the sub-partitions: x ={9,0,0,90,G. disset to{T11,T21}, and fto{}.

Now we start with the secondary nodes.

Consider a secondary node at depth n+p =4 (wherep = 2); 00 ={T11,T21}, and 8={10}.

Step 1:
The partitioning will be done on the values of X;;. The range of width is given by

X, = X5, X5 Where
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2 o o 2 )
Step 2: Random sampling for X; = 6:
Step 2.2.1: Since there are only 2 workstations, we go on and cal cul ate B:
B=M —Zzl X,C. =3600 >0
i1
Step 2.2.2: Wefind that P(R) = {} asthere are only 2 workstations. Therefore, the
sampled pointisx = {9,0,0,6,0,G
Step 2.3: Surrounding region is sampled as follows:
Step 2.3.1: Say the selected toolsare T; =1and T, =3

s x -2, |2

2
B=M - XC =7200

i1
Step 2.3.2:  Suppose R =1100; Hence, P(R) ={1,2}
Both workstations 1 and 2 have the same capacity (108 wafers/hr). Hence,
both workstations will be picked with a probability of 0.5. Say T, is picked first.
X1=7,R=R-C;=200; Z,=Z;+ 18 =126
P(R) = {}; Therefore the sampled point isx ={7,0,0,0,0,9
Step 2.3.3:  Since for the sampled point, T, = 3, it isdifferent from the T, in [.

Hence the sample qualifies as a surrounding sample.

Step 3: The cycle time values are calculated for each point sampled in Step 2.
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Step 4: Let us say, the best sampled point (with least estimated cycle time value) is
found in the surrounding region: x ={0,15010,0,34. We find that

O = (T, T} #0={T.T}
Therefore, after backtracking, we get 0" = {Tu} and &= {}; the partition depth is now set

to 2, (the node type is primary now) and the procedure is repeated.

4.8 Description of the analytical algorithm

This algorithm deals with a solution space that consists of only one tool type per
workstation, asin NPA-II. Like NPAs, it does not build up on the low-cost, feasible
solution provided by the heuristic. We implemented two analytical algorithms and the
one that was chosen as the benchmark, is described below. The comparison of results for

the two analytical algorithmsis given in the appendix.

4.8.1 Notation
The following notation is used in addition to that of the heuristic:
Ti selected tool type at workstation i
Xi number of tools for workstation i
T; and X; are the decision variables, whose properties C; and 4 can be defined as:
C=Cyif Ti =];
=it Ti=];
Z capacity of the workstation i; (Z = Xi* 14)
Z, j™ highest workstation capacity, amongst those under consideration

j

7 set of the values of the number of tools corresponding to Ti: { X, X,,..., X}
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f(&)

f(&)

cycle time evaluated using the analytical formulafor M/M/m queues, at the
current iteration
cycle time evaluated using the analytical formulafor M/M/m queues, at the

previous iteration

4.8.2 Description

Let T; =, such that 14 > 4 for al k< z and k 2 j. If 14 = £4x, then choose the less

expensive tool type. Set C; = Cj; 14 = L.

Step 1: Check feasibility

Fori=1,.n:
Set X M
H

Set B=M —Zn: X,C,

If B<O, thenI:1
Return the solution as infeasible (even though the heuristic solution
might be feasible for the problem instance)

Else

Perform Step 2

Step 2: Return the solution

Initialize f(@) = oo
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Set & as{X,, Xy, X}

Caculate f(&.) as.

1 (Xp)im
()= 2 i) e

; Xi
. Z "(Xp) | (XA)" yaand 5= A (Hal [63])
o k! Xi A-p) Xil
Let P(B) ={i:C <B}
While P(B) is not empty, and f(&) < f(&,), repeat the following loop:
Consider those g workstations that belong to P(B)

Arrange these q workstations according to their capacity, such that

Z,27 .2

Let i be the workstation with the capacity Z,
Set =&, (&) =1(&)
SetXi=X+1;,B=B-C;; Z =2+ i
Update &
Cdculate f(&)

If f(&) < (&), then
Return ¥ asthefinal solution

Else

Return x as the final solution
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4.8.3 Analytical agorithm applied to the sample problem

Set Ty =2, Ci=C12=900, = L2 = 18:; and

T,=2,Co=C5 =900, o= b2 = 19.5

100

100

Step 1: Set Xl:{EJ =g and X, :{ESJ =6

2
B=M - X,C =7200>0

Step 2: P(B) ={1.2}; & ={6,6}

i=1

Table 4.15 gives the sequence in which we buy the tools:

Capacity

w hour
S (et 1o | bt o | g | o | @
1 | 108 | 117 T 6300 {1,2} | {66} | {7,6} |6.12]| 4.06
2 | 126 | 117 T, 5400 {12} | {76} | {7, 7} |4.06| 3.37
3 | 126 | 136.5 T 4500 {12} | {7,7} | {87 |3.37]3.06
4 | 144 | 136.5 T, 3600 {1,2} | {8,7} | {88} |3.06]| 290
5 | 144 | 156 T 2700 {1,2} | {88 | {98} |290| 281
6 | 162 | 156 T, 1800 {12} | {98 | {99} |281]|276
7 | 162 | 1755 T, 900 {1,2} | {9,9} | {10,9} | 2.76 | 2.72
8 | 180 | 1755 T, 0 {} 1{10,9 | {10,10} | 2.72 | 2.70

9 | 180 | 195

Table 4.15: Analytical algorithm: sequence in which the tools are bought

The final solution returned is . = {0,10,0,0,10,G.
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4.9 Results for the sample problem

The final values of the tool types, given by our implementation for the heuristic and the

simulation-based algorithms, are shown in Table 4.16.

Tool valuesfor
Tool types | oy vistic | HIll | Biggest | Safer | ypn | Npadll
climbing| Leap Leap
Ti 0 0 3 0 0 0
Ti 0 5 3 5 9 10
Ti3 8 8 11 8 0 0
To 0 0 1 0 0 0
T2 6 9 7 9 9 9
Tos 0 0 0 0 0 0
Cycle 21.09 3.02 3.27 3.02 2.76 2.72
Time (hrs)

Table 4.16: Results of the heuristic and the simulation-based al gorithms applied
to the sample problem

4.10 Summary

This chapter provided the description of the heuristic and the a gorithms that we
implement to solve the equipment selection problem. They were explained with the help
of a sample problem we defined in Chapter 3. The next chapter describes the set-up of

the experiments we conducted, to compare the performances of these algorithms.
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5. RESULTS AND DISCUSSION

This chapter reports and discusses the results that we obtained by conducting
experiments for the equipment selection problem, and compares the hill climbing,
biggest leap, safer leap and nested partitions algorithms against the analytical algorithm.
Section 5.1 describes the experimental set-up comprising the administrator, the problem
sets, the simulation model and the output metrics based on which we compare the
algorithms. Section 5.2 lists the results we obtained for the problem sets when the cost
and capacity are not correlated, and when they are correlated respectively. In Section

5.3, we summarize those results.

5.1 Experimental design

The administrator (designed in Delphi 5®1), the input template files (Microsoft
Excel®?), the simulation engine (Factory Explorer 2.5®°) along with the simulation
model file (Microsoft Excel) that it interacts with, and the output file (Microsoft Excel),
are the four components of the experimental architecture. The administrator controls all
other components. The purpose of these experimentsis to compare the performance of
the algorithms over arange of problem sets and determine how the characteristics of the
problem instances affect the algorithms’ performance. The instances are not based on
any specific problems from industrial applications. The input template files contain the

input data for the simulation models. The administrator reads the input data from these

! Registered trademark of Borland Software Corporation
2 Registered trademark of Microsoft Inc.
® Registered trademark of Wright, Williams and Kelley Inc.
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filesand runsthe heuristic to find the initial feasible solution. Then it populates the
simulation model file that the simulation engine interacts with and runs one of the search
algorithms under consideration. During the run, it updates the simulation mode! file,
executes the simulation engine and at the end of the search, records the output datain the

output file.

5.1.1 Input template files

There are two input template files, each containing a different problem set. Each
problem set contains 16 data sets with 10 data instances per data set. Hence there are a
total of 160 problem instances in one input template file. The difference between the two
problem setsis the correlation between the cost and capacity. Idedlly, the cost of atool
would increase with an increase in its capacity. In Problem Set 1, the cost and capacity
are not correlated, whilein Problem Set 2, they are.

The input for the Problem Set 1 isasfollows.

P = cost factor for tool types = $1000

A = desired throughput = 100 wafers per hour

n = number of workstations =5

r = expected number of tools per workstation = 2 or 10

z = number of tool types per workstation =2 or 5

a = lower bound of cost range= 0.5 or 0.8

£ =multiplier for budget =1 or 3

L4 = capacity of thej™ tool at thei™ workstation

C;j = cost of thej" tool at thei™ workstation
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The parametersr, z, a, and £ can take two values. Each combination of the

parametric values forms a data set and 10 instances for each data set are generated as

follows:
Fori=1ton
Forj=1toz

Choose g; [1 [0,2] (uniform distribution)
Let 44 = aj(Alr)
Choose by; O [a,1] (uniform distribution)
Let Cj = by;P

M = SBnrP

The input for Problem Set 2 isasfollows:
P = cost factor for tool types = $1000
A = desired throughput = 100 wafers per hour
n = number of workstations=5
r = expected number of tools per workstation = 2 or 10
z = number of tool types per workstation =2 or 5
e = shape of correlation=0.50r 1
a = lower bound of cost range = 0.5
£ =multiplier for budget =1 or 3
L = capacity of thej™ tool at thei™ workstation

C;j = cost of thej" tool at thei™ workstation
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The parametersr, z, e, and £ can each take two values. Each combination of the

parametric values forms a data set and 10 instances for every data set are generated as

follows:
Fori=1ton
Forj=1toz

Choose by; [ [a,1] (uniform distribution)
Let a; = 2(by)°
Let 44 = aj(Alr)
Let C; = b;P

M = gnrP

Thelink to the data sets can be found at the following website:

http://www.isr.umd.edu/L abs/CIM/projects/mfgsys/index.html

5.1.2 Simulation model

There is one product, Wafer, which enters the system as one lot of 25 wafers
every 0.25 hours. The lot inter-arrival times and the lot processing times are
exponentially distributed. The mean processing time on atool of type | at workstation i
is 25/u4;. The factory is aflow shop. Each lot must visit each workstation in the same
sequence. The number of lots that visit each tool type at a workstation is proportional to
the tool’ s capacity. In other words, even if ahigh capacity tool isidle at a workstation,
the lot coming out of the queue might get routed to another idle tool at the same
workstation with a much lower capacity. It is assumed that there are no travel times for

the lots, from one workstation to the next. Therefore, the layout of the factory is not
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taken into consideration. Further, re-entrant flow and rework are not considered, and
none of the tools breaks down during operation or otherwise.

M and C;; are obtained from the input template files. While the initial number of
tools at each workstation is obtained from the heuristic (for the hill climbing and
gradient-based algorithms), the updated number of toolsis obtained from the search
algorithm. Each lot will visit each workstation starting with workstation 1 and ending
with workstation 5. Each replication in asimulation run is conducted for one year, which
means that approximately 35,000 lots are processed in every replication. In al cases, 2

replications are performed. The warm-up period is taken as zero.

5.1.3 Output file

The output file records four metrics after the administrator solves each data
instance. The statistics gathered after the heuristic constructs an initial solution, are Costy
and Capacityy. The statistics gathered after the search agorithm constructs the final
solution, are Costy, Capacityy, CycleTime, and Smulations,. From these statistics the
following performance metrics are calculated to estimate the performance of the various

algorithms:
Cost, - Cost,
M

Cost Metric =

Capacity, — Capacity,

Capacity Metric = y

Smulation Metric = Smulations,



For Problem Set 1 where capacity and cost are not related,

) . cleTime
Cycle Time Metric = b whenr =2
cleTime
= b whenr =10
12.5

The denominators for the cycle time metric cal culation are the expected tota
mean |ot processing times for the corresponding data sets.

For Problem Set 2, where capacity and cost are related,

cleTi
Cycle Time Metric = Cy—mey whene=05andr =2
1.450
cleTi
= Cy—mey whene=05andr =10
7.246
|eTi
= M whene=1.0andr =2
1.667
|eTi
o OydeTimg, - ene=10andr = 10
8.333

Note that if b has a uniform distribution over [I,u], then the expected value of b>° can be
calculated asfollows:

2 Uk — |18

(

EbT= 30T

)
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5.2 Resaults

The results for the output metrics for the algorithms we implemented are shown
in Tables5.1 and 5.2, in subsections 5.2.1 and 5.2.2 respectively. Table 5.1 corresponds
to the case when the cost and capacity of the tools are not correlated. Table 5.2
corresponds to the case when the cost and capacity are correlated.

The nested partitions algorithm-I (NPA-I) was first applied to data set 16, for the
case when the cost and capacity are correlated. It was found that it required unreasonable
computational effort compared to the hill climbing and the gradient-based algorithms,
without producing much improvement in the output metrics. Hence, we discontinued its
application to the other data sets and devel oped another implementation of the nested
partitions algorithm, that we called NPA-11. Note that NPA-I and NPA-II were used only
once to solve each data instance.

The number of feasible data instances for a particular data set indicates the
number of datainstancesin that data set for which all the algorithms generated results.
The output metrics were averaged over the number of feasible datainstances. All the
datainstances for all data sets are found to be feasible when the cost and capacity are
correlated. However, it isnot so in the other case. From the data instances that we
declared infeasible, the following deserve a special mention:

« 4" datainstancein the 1% data set: only NPA-I| generated a solution

« 4" datainstancein the 9" data set: only the hill climbing and the gradient-based
algorithms generated a solution

« 1% and 6™ datainstances in the 11™ data set: only the hill climbing, gradient-based

and analytical algorithms generated a solution
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5.2.1 Cost and capacity are not correlated
Based on Table 5.1, we plotted the results for the output metrics for all the

algorithms, which we discuss next.

87



eonkeue 1INV

wiyoB e suonied pasau (VAN Wlobje des|-ofes 1vIS  wiylobfe des|-1sabbiq (v 1g  wiyobe Buiquip (1Y 'vOH

88

Pa12 1100 10U 3. Al1Jeded pue 1500 UBYM S1nsay :T'S a|gqe.L

6TTT | LO0C | ¥8 | S69 | S999°0 | 0S9°0 | ¢S9'0 | S06°0 | €990 | 869'0 | 8B06'0 | €280 | 920'T | €LL°0 | 8YT'0 | 9€C'0 | 98T°0 | €920 | ¢9T0 | OT 80| OT 9T
€19 | OV | 64T | SIS | 6€90 | 9¥9°0 | ¥¥9'0 | 9¢L°0 | €90 | 890 | 0ES0 | 6T9°0 | O0V'0 | G€9°0 | 9/€0 | €9€°0 | €.€0 | 9/€0 | ¥.€0 | OT 80 | 0T qT
v/t | 8¢ | GL | 8FL | G€9'0 | 6¢90 | L¥9°0 | ¢860 | V90 | €SL0 | TS6'0 | ¥€6'0 | SBT'T | L¢80 | 9¢T'0 | ¢0C’0 | S9T0 | ¢€8'0 | OVT'0 | OT S0 | 0T VT
099 | 6ET | 6ET | 929 | €/9°0 | 0490 | 9690 | TT80 | 690 | €990 | LLL'0 | 9220 | L6V'0O | OOL0 | L9€°0 | 620 | Scv'0 | G870 | 68€°0 | OT S0 | 0T €T
299 | SOT | 66 | OT€ | 8190 | SO9'0 | ¢T90 | T¢L'0 | OT90 | 6SST | ¢9¢'¢ | 69LT | 080°C | €I8'T | 90€0 | SO0 | ¢v€0 | L¥9'0 | ¥¥E'O | OT 80| ¢ 49
v6 LT | LT | LT | G/80 | 9980 | ¥98°0 | ¥98°0 | ¥98°0 | STT'O | £80°0 | STT0 | STT'O | STT'0O | S900 | 900 | £L0°0 | LLO0 | 2200 | 8 80| ¢ T
0cL | 06 | 06 | SIE | ¢¥9'0 | 0E9'0 | V90 | 0080 | L¥9'0 | ¥9ST | SS¥'¢ | €€0°C | TE0'C | 9¢8'T | 00E'0 | 09¥'0 | LEEO | G¢L'0 | ¥8¢'0 | OT S0 ¢ oT
oS | 16 | T6 | T6 | 9€L°0 | 6€L0 | 6TL0 | 6TL0 | 6TL0 | Sev'0O | Tev'0 | 090 | 09%'0 | 09¥'0 | 64¢'0 | 92¢'0 | ¢8C'0 | ¢820 | ¢8¢0 | 6 S0 ¢ 6
¢56 | 06 | S¢ | L6¢ | 0SL°0 | €vL0 | L¥L'O | 606°0 | VL0 | 8790 | €080 | 9220 | EVO'T | €690 | 6¥T0 | G¥C'0 | ¥8T'0 | G#2'0 | 0OLT°0 | OT 80| OT 8
/8¢ | TL | 9€ | /ZT | ¢56°0 | 0660 | 8¥6'0 | ¢80T | 8¥6'0 | EVE0 | 98¢0 | 1820 | LLT'0 | 08C'0 | 8¢¢'0 | LT¢0 | 0EC0 | 9¢¢0 | TECO | 8 80 | 0T L
€6 | ¥WT | 9¢ | v.€ | 9TE€T | 6/¢'T | 88¢T | LGG'T | 88C'T | L¢v'0O | 6690 | TOSO | OV8°0 | 8.0 | 8¢T0 | 9T€E0 | ¥IC0 | 6,90 | 08T°0 | OT S0 | 0T 9
ooy | ¥8 | Oy | OS¢ | Y160 | ¢€6'0 | ET6'0 | 866°0 | ¢I60 | T9Y'0 | ¥SK'0 | 880 | ¥EE'O | L6V'0 | 6/¢'0 | 6TE0 | OEE0 | G¥E0 | G¢E'0 | OT S0 | 0T S
8y | €5 | ¢€ | T¥T | G¢6'0 | 9160 | LT60 | ¥90'T | 8160 | LVET | 66S'T | ¥9ST | OCET | 6VE'T | T8E0 | ¥8Y'0 | ¢vv'0 | 909°0 | 66E°0 | OT 80| ¢ 14
v6T L L L | 08LT | €66T | 6V8T | 6V8'T | 68T | G€¢'0 | TTC'0 | G€C'0 | G€C'0 | G€C'0 | 680°0 | T8O'O | 680°0 | 6800 | 6800 | € 80| ¢ €
6¢5 | /G | O | 6VT | G80T | OSO'T | ¢90T | 68C°T | ¥90T | 6¥YTT | TVO'T | GeV'T | TLET | G¢C'T | 86¢'0 | 8EV'0 | 66E0 | €990 | 6¥E0 | OT S0 ¢ [4
8/¢c | €€ | 9¢ | €€ | ¢60T | cOO'T | 686°0 | BIT'T | 6860 | E0¥'0 | OOV'0 | ¥EV'O | 68¢°0 | ¥EV'O | 95¢°0 | ¢€C0 | L¥C'0 | €G¢0 | L¥CO | S S0 ¢ T
IIF'VdN| VIS | V19 | VOH | 1INV |IIF'VAN| VIS | V19 | VOH | 1INV [II-VdN| VIS | V19 | VOH | LINV [II-'VdN | VIS | V19 | VOH o.._mmow o |y S
# eredq
SNOILVINNIS Jo # OIJIIW INILITOAD OId1IN ALIDVAVYO OI413 N 1SOD

88



Figure 5.1 shows the comparison of the cost metric. When the budget islow (5=
1), wefind that for data sets 3 and 11 (a = 0.8), the cost metric for al algorithmsisvery
low. For these data sets, the cost of each tool is very high. Hence, the heuristic itself
requires amajor chunk of the budget, not leaving enough money for further purchase of
tools. The argument is also supported by the fact that the number of feasible instances
for these data setsis 3 and 8 respectively. The cost metric for data sets 13 and 15 (z=5)
isvery high. With alarge number of tools available at each workstation for these data
sets, and no correlation between the cost and capacity, it ismore likely that a high
capacity tool isavailable at alow price. Hence at the end of the heuristic, more money is
available for further purchase. At low budget, it can be seen that on an average all the
algorithms behave in asimilar manner, except for the biggest |eap algorithm (BLA) that
spends more money after the heuristic due to its inherent greedy nature.

When the budget is high (8= 3), we find that the trend for BLA is opposite to
that for the other algorithms. For data sets 6, 8, 14 and 16 (r = 10), the budget available
isthe highest. Hence at each iteration, BLA spends alot of money buying tools with low
capacities too, and runs out of the available budget with further improvement in the
cycle time still possible. When the available budget islow, as for the other data sets, it is
not able to spend as much and hence the cost metric islow. The other algorithms
however, are most likely to buy only tools having the highest capacity and hence do not
end up spending the whole budget available, whenever possible. Since the cost metricis
inherently normalized with respect to the total budget available, it islower whenr = 10
compared to when r = 2. Thisis because when r = 10, the capacity of the toolsisvery

low and alot of tools are purchased. But after a certain stage, it does not help in reducing
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the cycle time. In other words, the addition of afast tool to afew similar fast tools will
have more impact on the cycle time compared to the addition of a slow tool to alot of
similar slow tools. Hence, even though the capacity is 80% smaller when r = 10, it does
not imply that 5 times the money should be spent in further purchasing the tools, as there
will be no reduction in the cycle time after a certain stage. We shall refer to thislogic as
quick sand reasoning. The hill climbing algorithm (HCA) performs closest to the
analytical algorithm (ANLT), whose cost metric turns out to be the lowest amongst all
the algorithms. The cost metric for the safer leap algorithm (SLA) is slightly higher than
that for HCA, but lower than that for the nested partitions a gorithm-I1 (NPA-I1).

It can aso be seen that the cost metric for data sets 6, 8, 14 and 16 (5= 3, r = 10)
islower for al algorithms except BLA, than that for datasets 5, 7, 13and 15 (f=1,r =
10) respectively. The reason is the high budget with respect to which the metric is
normalized. The increase in the cost metric from data set 7 to 8, and the approximate

equality for data sets 5 and 6 for NPA-II are exceptions.
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Figure 5.1: Comparison of the cost metric at =1 and 5= 3 respectively
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Figure 5.2 shows the comparison of the capacity metric. When the budget islow
(B8=1), wefind that for data sets 3 and 11, the capacity metric for all the algorithmsis
very low. For these data sets, the cost metric is low too. Since not enough money was
available to purchase the tools after the heuristic, the system could not gain much
capacity. On asimilar basis, the high values of the capacity metric for data sets 13 and
15 can be explained, where the cost metric was high as well. When the available budget
islow, and only one tool is bought at each iteration for BLA, the behavior of HCA, BLA
and SLA isthe same. When the available budget is high, BLA tends to increase the
capacity of the workstations in a highly skewed manner, so that the overall capacity of
the system remains low, as can be seen from the Figure 5.2. All other algorithms
perform more or lessin asimilar manner, except for data sets 13 and 15. For data set 13,
the capacity metric for SLA and NPA-II is higher than that for the other algorithms. For
these algorithms the cost metric is higher too, for the corresponding data set. However
for data set 15, even though the cost metric was approximately the same, the capacity
metric of NPA-II islow. Thisimplies a skewed distribution of capacity amongst the
workstations.

When the budget is high (8= 3), it is seen that for all algorithms, the capacity
metric for data sets 6, 8, 14 and 16 (r = 10) islower than that for data sets 2, 4, 10 and 12
(r = 2) respectively. Thisis dueto quick sand reasoning. It is interesting to note that
BLA has a higher capacity metric, yet alower cost metric when r = 2, compared to when
r = 10. Thisis because when r = 2, the capacity of each tool is high, but the available
budget islow. Hence, the whole budget is not squandered in a skewed manner, asisthe

tendency of BLA. ANLT has the lowest capacity metric. HCA performs closest to
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ANLT, barring data sets 10 and 12. The capacity metric is highest for BLA whenr =10
and for NPA-Il when r = 2. The behavior of SLA issimilar to that of HCA only when r
=10.

It can also be seen that the magnitude of increase in the capacity metric from data
sets5, 7, 13and 15 (=1, r = 10), to data sets 6, 8, 14 and 16 (=3, r = 10)
respectively, is lower than that for the corresponding data setswhen r = 2, for al the

algorithms except BLA. Thisis due to quick sand reasoning.
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Comparison of the Capacity Metric when the Budget is Low
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Figure 5.2: Comparison of the capacity metric at =1 and = 3 respectively
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Figure 5.3 shows the comparison of the cycle time metric. When the budget is
low (8= 1), wefind that for data sets 9, 13 and 15, the cycletime metricislow. The
capacity metric for these data setsis high too. Although capacity metric for dataset 3 is
higher than that for 11, the cycle time metric indicates otherwise. Out of the eight
feasible instances that were taken into consideration for data set 11, two had no addition
to capacity after the heuristic and two others had insignificant addition to the capacity.
For data set 3, only three instances were feasible. Hence the data was insufficient for
concrete comparison, asit resulted in skewed metrics. The performance of all algorithms
except BLA appears to be similar for the cycle time metric. For BLA, it is always higher
than the rest, when it is not equal to that for HCA and SLA.

When the budget is high (8= 3), we notice that the cycle time metric for data sets
10, 12, 14 and 16 (z=5) is lower as compared to others (z = 2). For data sets 10 and 12,
the capacity metric was highest too. For data sets 14 and 16, a greater choice of tools at a
workstation implies greater probability for at |east one tool to have a very high capacity.
Thistranslates as alower cycle time value, and hence as alower cycle time metric
despite the capacity metric not being among the highest. The performance of all the
algorithms but BLA matches closely. The cycle time metric for BLA is aways higher,
despite a higher capacity metric for afew data sets. Thisis due to the purchase of low
capacity tools. Wafer lots at these low capacity tools would take more time to get
processed. It is unlikely however, for the other algorithms to buy tools that would not

have the highest capacity at a workstation.
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Comparison of the Cycle Time Metric when the Budget is Low
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Figure 5.4 shows the comparison of the simulation metric. When the budget is
low (5= 1), wefind that the number of smulationsfor datasets 1, 3, 9and 11 (r = 2) is
equal and very small for HCA, BLA and SLA. Thisis dueto less money available at the
end of the heuristic to purchase more tools. For NPA-1I however, the number of
simulationsis higher due to the search process, asit has no initial solution to work with.
For data sets 13 and 15 (r = 10, z=5), since the available budget is high and there are
many tool types with low capacity (compared to when r = 2) to choose from, the number
of simulationsis higher for HCA. For NPA-II also, the number of primary and
secondary nodes is more when z = 5, resulting in a higher simulation metric. BLA and
SLA have the lowest values for the simulation metric.

When the budget is high (8= 3), we find that the number of simulations for data
sets2and 4 (r = 2, z=2) issmall. Thisis due to less money being available (compared
towhenr = 10) and few tool types to choose from. For similar reasons, data sets 14 and
16 (r = 10, z=5) have the highest simulation metric. It is seen that NPA-II requires alot
of simulation runs compared to the other algorithms. This is because when the budget
available is high, NPA-II has a broader width to cover at each depth level for the

secondary nodes. BLA and SLA require fewer simulation runs compared to HCA.
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Figures 5.5 and 5.6 give an idea about how effectively the budget that is spent,
reduces the cycle time. A higher capacity to cost ratio implies that the system gained
more capacity by spending the same amount of money. A high ratio along with alow
cycle time metric provides an ideal combination. Figure 5.5 shows the comparison when
the budget islow (8= 1). HCA performsthe best for datasets1and 9 (r =2, a=0.5),
and relatively well for data sets 3, 5 and 13 and 15. BLA performs well only when the
available budget is very low, so that its behavior tends to that of HCA. This can be seen
for data sets 3 and 9. For data sets 5, 7, 13 and 15 (r = 10), it performstheworst. SLA’s
performance is aways very close to that of HCA. NPA-II performs the best for data set
13 and relatively well for all other data sets except for 11 (r = 2, a = 0.8) whereit
performs the worst. It has atendency to spend alittle more money for the same amount
of capacity, achieving ailmost the same reduction in the cycle time. ANLT performs the
best for data sets 3, 5, 7, 11 and 15, and relatively well for 9 and 13.

Figure 5.6 shows the comparison when the budget is high (8= 3). HCA performs
relatively well, while BLA performsthe worst for all data sets. SLA’s performanceis
close to that of HCA, although it spends more money for the same capacity. NPA-II and
ANLT also perform relatively well for all the data sets. NPA-1I, again has a tendency to
spend more money for the same capacity, though it achieves the minimum cycle time for

al data sets.
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Comparison of Cycle Time Metric vs the Ratio of Capacity Metric and Cost Metric
when the Budget is Low
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Figure 5.5: Comparison of cycle time metric vs. the ratio of capacity and cost metrics at

p=1
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Comparison of Cycle Time Metric vs the Ratio of Capacity Metric and Cost Metric
when the Budget is High

analytical algorithm
hill climbing algorithm
O biggest leap algorithm
= safer leap algorithm
O nested partitions || alganthm

2.0 20
data set =2 data set =4
1.5 : 1.5 :
[
1.0 = : 1.0 2 o
0.5 . . . . . 0.5 . . . . .
1.0 20 30 40 50 6O 7.0 1.0 20 30 40 50 B0 70O
2.0 20
data set =6 data set =18
1.5 ] 15 ]
o &
= 1.0 : 1.0
£ “ O e
E 0.5 . . . . . 05 . . . . .
S 10 20 30 40 50 6O 70 10 20 30 40 50 6O 70
LU 2.0
= data set = 10 data et =12
218 - 15 -
1.0 a . 1.0
. 9] o
ngb— O ! ngl——— . Oo .
1.0 20 30 40 50 6O 7.0 1.0 20 30 40 50 B0 70O
2.0 20
data set = 14 data set =16
1.5 . 1.5 .
1010 . 1.0 o
D - |:| -

0.4 : : : : . 0.4 : : . . :
1.0 20 30 40 50 BO 70 1.0 20 30 40 50 60O 70
capacity metric / cost metric
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B=3
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5.2.2 Cost and capacity are correlated
Based on Table 5.2, we plotted the results for the output metrics for all the

algorithms, which we discuss next.
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Figure 5.7 shows the comparison of the cost metric. When the budget islow (£ =
1), wefind that for datasets 3 and 11 (r = 2, e = 1.0), the cost metricisvery low. Thisis
because the available budget is very low, and compared to datasets1and 9 (r =2, e=
0.5), the capacity of the toolsislower. Hence the heuristic itself eats up a major chunk of
the budget, not leaving enough money to purchase more tools. We aso notice that the
cost metric for datasets 5 and 13 (r = 10, e = 0.5) is very high. The capacity of the tools
is higher compared to data sets 7 and 15 (r = 10, e = 1.0) and hence the heuristic does
not spend much money, thereby leaving a huge sum to be spent to purchase more tools.
For datasets 1, 3, 9 and 11 (r = 2) the performance of all the algorithmsis nearly the
same. For the others however, the cost metric for ANLT and NPA-II is generally lower.
Barring data set 5 where BLA has the highest cost metric, HCA, SLA and BLA behave
inasimilar manner.

When the budget is high (8= 3), we find that the trend for BLA is opposite to
that for the other algorithms, asin the first problem set. It has the highest cost metric for
all data sets. For data sets 6, 8, 14 and 16 (r = 10), the cost metric is very low compared
to other data setswherer = 2. Thisis due to the huge budget available, with respect to
which the metric is normalized, and quick sand reasoning. BLA, unlike the other
algorithms, ends up spending the whole budget. HCA has the lowest cost metric for data
sets2 and 10 (r = 2, e=0.5) and ANLT for the rest. The nested paritions-| (NPA-I)
algorithm has a very high cost metric for data set 16, but it is still lower than that for
BLA. SLA performs worse than HCA, but better than NPA-I1, whose cost metric is

generally high, and especially whenr = 2.
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It can also be seen that the cost metric for data sets 6, 8, 14 and 16 (=3, r =
10), islower for al algorithms except BLA, than that for 5, 7, 13 and 15 (£=1, r = 10),
respectively. The reason is the high budget with respect to which the metricis

normalized and quick sand reasoning.
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Comparison of the Cost Metric when the Budget is Low
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Figure 5.7: Comparison of the cost metric at =1 and 5= 3 respectively
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Figure 5.8 shows the comparison of the capacity metric. When the budget islow
(B8=1), wefind that the capacity metric for datasets 1 and 9 (e = 0.5) isless than that for
data sets 3 and 11 (e = 1.0) respectively, despite the opposite trend in the cost metric.
Thisis explained as follows. When e = 0.5, tools have a higher capacity. The capacity
after the heuristic was implemented, turned out to be higher compared to when e = 1.0,
and the remaining budget was higher too. However it was not enough to purchase tools
for each and every workstation, and hence the system capacity could not be increased by
a huge amount. When e = 1.0, it was found that the capacity of one or two workstations
was close to the required throughput, implying that the system capacity was low. After
the heuristic was implemented, a higher gain in capacity resulted after purchasing tools
for those couple of workstations, which explains the opposite trend in the cost and the
capacity metrics. For datasets 5 and 13 (r = 10, e = 0.5), the capacity metric isthe
highest for al algorithms except BLA and the cost metric was the highest too. BLA has
the lowest capacity metric, despite its cost metric being the highest among all the
algorithms. For data sets 1, 3, 9 and 11 (r = 2), NPA-II has the highest capacity metric.
The performance of HCA, BLA and SLA issimilar for these data sets. For the rest,
SLA’s performanceis close to that of HCA. On average, the capacity metric for ANLT
issimilar to that for HCA.

When the budget is high (8= 3), it is seen that for all the algorithms, the capacity
metric for data sets 6, 8, 14 and 16 (r = 10) islower than that for data sets 2, 4, 10 and 12
(r = 2) respectively. The reason is the same as in the case when the cost and capacity are
not correlated. Again, for the same reason as in Problem Set 1, BLA has a higher

capacity metric, yet alower cost metric whenr = 2, compared to whenr = 10. ANLT
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has the lowest capacity metric for most data sets. HCA performs closest to ANLT,
barring data set 14. The capacity metric is highest for BLA when r = 10 and for data sets
2and 10 (r = 2, e= 0.5). NPA-II has the highest capacity metric for datasets4 and 12 (r
=2, e=1.0). The capacity metric for SLA isaways higher than that for HCA. For data
set 16, NPA-I has the lowest capacity metric even though its cost metric is very high.

It can also be seen that the magnitude of increase in the capacity metric from data
sets5, 7, 13and 15 (=1, r = 10), to data sets 6, 8, 14 and 16 (=3, r = 10)
respectively, islower than that for the corresponding data setswhen r = 2, for al the
algorithms except BLA. Thisis due to the fact that the capacity of each tool is much
higher whenr = 2, compared to when r = 10, and that the amount of money spent to gain
further capacity will not be proportional to the ratio between these two values of r, as
there will be no reduction in the cycle time on addition of a quick sand tool to alot of

similar quick sand tools after a certain stage, as explained earlier.
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Comparizon of the Capacity Metric when the Budget is Low

-2 : : : : :
numbers:indicate the data sets : '
n : : : ;o :
c ! | !
£ 10p-mmmmeees A A R R A Promoeenees 7]
_g-' 1 1 1 E I@ E
[ 1 1 1 : T :
I O—— S S S #Li&[ ...... e _
g 1 1 1 z,"’/EI - 1
E 1 1 : zf:Ff-' :15 1
= ! ! o A C
E I:I E """"""" F-========== r=-===-== 3 ".;*H;ﬂ-'i: """""" T"'? """" T-TTTEsTTsEs ]
= ! = T L 2 !
E 1 .-: 1 v d:' 1
E 1 E 11 |:3_ - = — s % 5 1
2 04 p-aaamee- e i SEREEE T ReEEEt deeeooos e —
D g9 :
£ : : : : :
i—\, 1 1 1 1
= ] O o o hill lirbing algarithim |
= . . —2+  higgest leap algorithm
- ' ' --«- safer leap algarithm
: : —8 nested paditions || algorithm
0.0 | | I I I
0.0 0.z 0.4 06 0.8 1.0 12
capacity metric for analytical algaorithm
Comparison of the Capacity Metric when the Budget is High
40 ! ! ! ! ! ! !
numbers indicate the data sets ' ' '
] N iibE
_E 1 1 1 ? 1 1 1 1
= : : A : : :
F30pe R Sl Sl S N S
E 1 1 : T I'| : 1 1 1
w 1 1 : ' : 1 1 1
_g 25 _________'_________'_________E__/?_?:;\\*é_______'_________'_________'_ _______ -]
5 ! ! A {-}T ) : : !
L) — ANCE Sl A I SN SN S SO
E d Lo e Mp a2
@ R NS ! ! ! !
E """"" r-=--=--= I ::; """" r"':'z""r """" r======-=- r==-===-=--=- r=-===-=-=-= -
o 2 : & i ' : : : :
‘uE? ; 1%/1;4 ; : : : :
31-':' Y= S A hill climbing algarithm i
E ' g £ E: ! — biggest leap algorithm
e ] P S |- S S S --+- safer leap algorithm |
= : : £+ nested paritions | algorithm
: —& nested partitions Il algarithm
on | | ]

I I I I
o.n 0& 1.0 1.5 20 245 an 345 4.0
capacity metric for analytical algorithm

Figure 5.8: Comparison of the capacity metric at =1 and = 3 respectively
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Figure 5.9 shows the comparison of the cycle time metric. When the budget is
low (£ =1), wefind that for data sets 5, 7, 13 and 15 (r = 10), the cycle time metricis
low. The capacity metric for these data setsis high too. Although data sets 3 and 11 (r =
2, e=1.0) have ahigher capacity metric than datasets1 and 9 (r = 2, e=0.5), it does
not trandate into alower cycle time. The reason is that when the budget availableislow,
and e = 1.0, the capacity of toolsis not as high compared to when e = 0.5. Hence the
heuristic spends alot more money comparatively, and buys the tool with the highest
capacity to cost ratio, even though that capacity might be much below that of the highest
capacity tool at that workstation. After the heuristic isimplemented, not enough money
isleft to purchase the highest capacity tools. Hence the cycle time metric is high. The
performance of NPA-Il and ANLT is approximately the same, and they have the lowest
cycletime metric. Whenr = 2, HCA, BLA and SLA perform similarly, and have the
highest cycle time metric. However whenr = 10, BLA has the highest cycle time metric,
while the performance of SLA is close to that of HCA.

When the budget is high (8= 3), we notice that the cycle time metric for data set
12 is minimum. For this data set, the capacity metric was the highest. For data sets 6, 8,
14 and 16 (r = 10), the capacity metric is low. For these data sets with 16 being an
exception, the cycle time metric is among the highest. But surprisingly for 16 (r = 10), it
isamong the lowest. NPA-Il and ANLT have the lowest cycle time metric, while BLA
has the highest. The performance of SLA isamost similar to that of HCA. NPA-I hasa

low cycle time metric too, but it is higher than that for NPA-II.
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Comparison of Cycle Time Metric when the Budget is Low
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Figure 5.9: Comparison of the cycletime metric at S=1 and 5= 3 respectively
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Figure 5.10 shows the comparison of the simulation metric. We find the analysis
exactly similar to that for the case when the cost and capacity are not correlated. When
the budget islow (£ = 1), we find that the number of simulations for datasets 1, 3, 9 and
11 (r = 2) isequal, and very small for HCA, BLA and SLA. Thisis due to less money
being available at the end of the heuristic, to purchase more tools. For NPA-11 however,
the number of simulationsis higher due to the search process, asit has no initial solution
to work with. For data sets 13 and 15 (r = 10, z=5), since the available budget is high
and there are many tool types with low capacity (compared to when r = 2) to choose
from, the number of smulationsis higher for HCA. For NPA-II also, the number of
primary and secondary nodes is more when z = 5, resulting in a higher simulation metric.
BLA and SLA have the lowest values for the simulation metric.

When the budget is high (8= 3), we find that the number of simulations for data
sets2and 4 (r = 2, z=2) issmall. Thisis due to less money being available (compared
towhenr = 10) and few tool types to choose from. For similar reasons, data sets 14 and
16 (r = 10, z=5) have the highest simulation metric. It is seen that NPA-II requires alot
of simulation runs compared to the other algorithms. BLA and SLA require much less
simulation runs compared to HCA. For data set 16, NPA-I requires a prohibitive amount

of simulation effort.

112



Comparison of the Simulation Metric when the Budget is Low
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Figure 5.10: Comparison of the simulation metric at S=1 and = 3 respectively
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Figures 5.11 and 5.12 show the comparison between the cycle time metric and
the ratio of the capacity to cost metrics. Figure 5.11 shows the comparison when the
budget islow (£ = 1). NPA-II performs the best for datasets 1, 3and 9 (r = 2) and
relatively well for datasets 7, 11 and 15. ANLT performs the best for data sets 7 and 15
(r =10, e=1.0), and relatively well for data set 11. Performance of HCA and SLA is
similar, and relatively good for data sets 5, 7 and 13 (r = 10). BLA performs the worst.

Figure 5.12 shows the comparison when the budget is high (8= 3). HCA
performsrelatively well, while BLA performsthe worst for all the data sets. SLA’s
performanceis close to that of HCA. NPA-II has the lowest cycle time metric but
generally spends more money for the same capacity. ANLT performsrelatively well for
datasets 4, 8, 12 and 16 (e = 1.0). For data set 16, NPA-I spends relatively much more

for the same amount of capacity, yet does not have the lowest cycle time metric.
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Comparizon of Cycle Time Metric vs the Ratio of Capacity Metric and Cost Metric
when the Budget is Low
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Figure 5.11: Comparison of cycle time metric vs. the ratio of capacity and cost metrics at

£=1
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Comparison of Cyele Time Metric vs the Ratio of Capacity Metric and Cost Metric
when the Budget is High
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Figure 5.12: Comparison of cycle time metric vs. the ratio of capacity and cost metrics at

B=3

116



5.2.3 Comparison between Problem Sets 1 and 2

It isfound that the cost and capacity metrics are higher, when the cost and
capacity are correlated (Problem Set 2), compared to when they are not (Problem Set 1).
Thisis because the average capacity of atool is higher in Problem Set 2, and since the
cost and capacity are correlated, we end up spending more money. The cycle time metric
for Problem Set 2 though, is higher than that for Problem Set 1. This can be explained as
follows. The cycle time metric is normalized with respect to the average total processing
time. Hence a higher value for the metric for a particular data instance would imply a
longer waiting time. Since the search algorithms continue buying tools even though there
would be only asmall improvement in the cycle time, the average total waiting timein
the queue is very less at the end, compared to the average total processing time. Hence,
as afraction of the total processing time, the waiting time will be more when the total
processing time is less, which corresponds to the case when the average capacity of tools
is higher, asin Problem Set 2. The simulation metric is also higher for Problem Set 2.
For HCA, BLA and SLA, there will be more iterations in the search process when the
capacity of the toolsis higher. Thisis because addition of a higher capacity tool would
be more likely to improve the cycle time, than the addition of alower capacity tool. For
NPA-II, the range of tool values over which the partitioning is done for a secondary
node, will be higher when the cost and capacity are correlated. Section 4.7.2 in Chapter 4
provides the description on partitioning the nodes for NPA-I1. The upper bound for the
tool value isinversely proportional to the sum of the ratios of the cost to the capacity of
the tools chosen, which will be higher for Problem Set 1. Hence there will be fewer total

simulation runs for the secondary nodes when the cost and capacity are not correlated.
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5.3 Summary of the results

Based on the results and explanations, we summarize as follows. The
performance of the algorithms was compared through cost, capacity, cycle time and
simulation metrics. A higher cost metric implies that a greater portion of the budget was
spent in purchasing the tools. A higher capacity metric implies a greater capacity in the
system. A higher cycle time metric implies that awafer lot spends alonger timein the
system. A higher simulation metric implies that alarge number of simulation runs are
needed to reach the final solution.

HCA and ANLT tend to have the lowest cost metric, followed by SLA, NPA-II
and NPA-I respectively. BLA has the highest cost metric.

HCA and ANLT have arelatively high capacity metric when the budget is low,
but have avery low capacity metric at high values of budget. BLA has the lowest
capacity metric at low values of budget and the highest capacity metric at high values of
budget. At high values of budget, SLA has a higher capacity metric compared to HCA.
NPA-I has the lowest capacity metric. NPA-II in general, has a high capacity metric.

ANLT and NPA-Il almost always have the lowest cycle time metric, followed by
HCA and SLA that have similar values of the cycle time metric. NPA-I performs slightly
better than HCA and SLA. BLA amost aways has the highest cycle time metric.

BLA has the lowest ssimulation metric, followed by SLA. HCA requires more
simulation runs than SLA, but fewer than NPA-11. NPA-I requires an exorbitant amount

of simulation effort.
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Table 5.3 summarizes the performance of the algorithms with respect to the

output metrics. The number of stars reflects the relative performance of each algorithm

on that metric.

Algorithm Cost Capacity Cycle Time Simulation
HCA * % % % % * % % * % % * % %
BLA * * % % * * k k k%
SLA * % % % * % % % * % % * % % %
NPA_l * % * * * % % *

NPA_” * % % * k k% k% * k k% k % * *
ANLT * % % % % * % % * % * % % -

* worst performance * * % % % hegt performance

Table 5.3: Performance of the algorithms under consideration

5.4 Summary

This chapter discussed the experimental set-up and the results that we obtai ned.
Each of the six algorithms was used to find solutions to the 320 instances of the problem.
After describing the results in detail, this chapter summarized the results and discussed
the performance of the algorithms on each metric. The next chapter summarizes the

conclusions and lists the limitations, contributions and the future work.
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6. SUMMARY AND CONCLUSIONS

This chapter summarizes the research work that we performed and draws the
conclusions. Section 6.1 discusses the suitability of the algorithms that we implemented,
with respect to the specia structure of the equipment selection problem. Section 6.2 lists
the contributions of our research. Section 6.3 mentions some of the limitations of our

implementation. Finally, in Section 6.4 we discuss the future work.

6.1 Conclusions

An equipment selection problem was formulated with minimization of the
average cycle time as the objective, along with constraints on the budget and minimum
throughput on the system. We devel oped and implemented five simul ation-based
algorithms, namely hill climbing, biggest leap, safer leap, nested partitions-1 and nested
partitions-11, and an analytical algorithm for the problem. After testing them on two
different problem sets characterized by the presence or absence of a correlation between
the cost and capacity of tools, we found that there are trade-offs associated with the
performance of the simulation-based algorithms. The hill climbing algorithm spends the
least amount of money to achieve a very low cycle time but requires alarge amount of
simulation effort. The biggest leap algorithm spends an unreasonable amount of money
and yet is not able to reduce the cycle time appreciably. The quality of solutionsisthe
worst, but the simulation effort required is the least. The safer leap agorithm
incorporates the best features of the hill climbing and the biggest leap agorithms,

providing good quality solutions with reasonable simulation effort. NPA-II requires a
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tremendous amount of simulation effort, but provides good quality solutions, athough at
adlightly higher cost. NPA-I requires the most amount of simulation effort, but spends a
lot of money to achieve alow cycle time value. It performs better than the biggest leap
algorithm, but is dominated by NPA-II. The analytical algorithm turns out to be the best
amongst al, asit spends the least amount of money to achieve avery low cycletime
without any simulation effort at all. This benchmark algorithm was chosen after
implementing and comparing two searches (described in the appendix) over awide
range of problem instances.

It isworth noting that the equipment selection problem we considered has a
special structureto it. It seemsintuitive that given a choice between avariety of tools,
the addition of a higher capacity tool will serve to reduce the cycle time more. Moreover,
aproportionate distribution of the capacity of workstations tends to avoid serious
bottlenecks that occur when the capacity distribution is skewed. Although the hill
climbing algorithm (explained in Chapter 4, Section 4.3) invariably selects the tool with
the highest capacity at the end of each iteration, it does so without making use of any
knowledge about the problem structure. The biggest leap algorithm (explained in
Chapter 4, Section 4.4) tends to select the tool with the highest capacity, though it ends
up buying the other tools with lower capacity at that workstation aswell. It is oblivious
of the problem structure too. The safer |eap algorithm (explained in Chapter 4, Section
4.5) exploits the problem structure, as it buys tools with the highest capacity for at least
one workstation at the end of each iteration, thereby trying to increase the capacity of all
the workstations uniformly. NPA-I (explained in Chapter 4, Section 4.6) also triesto buy

tools with the highest capacity, although, due to its random search, it also buys tools
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with lower capacities. The modifications made to develop NPA-II (explained in Chapter
4, Section 4.7) not only reduce the simulation runs involved but aso direct the efforts of
the algorithm towards selecting the highest capacity tool to help it utilize the special
structure of the problem that NPA-I did not. The analytical algorithm (explained in
Chapter 4, Section 4.8) we presented is completely based on the special structure that the
equipment selection problem has. However, it may be inappropriate for more complex
manufacturing systems such as job shops where different workstations have different
throughput requirements. If the interarrival and processing times have other probability
distributions, a more general GI/G/m approximation would be required to estimate
manufacturing cycle times. See Herrmann and Chincholkar [64] for instance.

Therefore, when selecting a simulation-based stochastic algorithm for any given
problem, it is beneficial to have prior knowledge about any special properties that might
be inherent in the structure of the problem. This helpsto fine tune the algorithm to direct

the search for the optimum solution in the most efficient manner.

6.2 Contributions

We presented five simulation-based algorithms and two analytical searchesto
solve the equipment selection problem. Unlike other manufacturing system design
problems, this novel formulation requires selection amongst various tool types at a given
workstation. Combining the cycle time objective with a budget constraint is another
unique feature that addresses the trade-off between initial investment and system
performance. The hill climbing algorithm was based on the generalized hill climbing

algorithm described by Sullivan and Jacobson [1]. The biggest leap agorithm was based
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on the gradient-based method described by Mellacheruvu [62]. We designed the new
safer leap agorithm by combining the salient features of the hill climbing and the
biggest leap agorithms. The nested partitions agorithm proposed by Shi and Olafsson
[3], formed the basis for our novel implementation of NPA-I and NPA-II.

When a manufacturing system incorporating complexities such as break down of
tools, maintenance schedules or re-entrant flows is to be designed, it is difficult to
develop analytical algorithms to solve an associated optimization problem. Sometimes, a
rough estimate is needed to get a quick idea about what the optimal solution might ook
like, and on other occasions, an accurate solution might be required, which may take
time. We discussed the performance of the algorithms we implemented for our problem,
with respect to such trade-offs between the quality of solution and the time and effort
involved. No systematic comparison of these algorithms has been done before.

We also showed the importance of the knowledge of the problem structure,
through the implementation of the safer leap algorithm, two different versions of the
nested partitions agorithm, and the analytical algorithm. In general, the black box
approach that assumes no knowledge about the system that is being ssimulated performs
well for problems that do not reveal much information about their structure. However,
those methods that utilize the knowledge of the problem structure, whenever such
information is available, dominate the black box approach. In Chapter 2, we mentioned
the research work, such as that of Gong, Ho and Zhai [47], pertaining to the simulation-
based algorithms that utilize the special structure of the problem under consideration.
We also referred to the research that has been conducted to compare the performance of

variants of a particular algorithm on a specific problem, such as that by Alrefaei and
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Andradottir [43]. Similar to the literature related to the combination of salient features of
two or more algorithms, such as that by Shi, Olafsson and Chen [51], our safer leap
algorithm combines the salient features of the hill climbing algorithm and the biggest
leap algorithm, which by themselves, do not utilize the special problem structure of our
equipment selection problem. NPA-I1 exploits the structure better by purchasing only
one tool type per workstation. Further, itsimplementation suggests a greater probability
of selecting the tool type with the highest capacity. Compared to the simulation-based
algorithms, the analytical algorithm that is completely based on utilizing the special
problem structure provides the best results at no simulation cost. Our research work
therefore, emphasi zes the importance of the knowledge of the problem structure as well
asthe algorithms, so as to enable a customized implementation of the algorithms

utilizing the special properties that the problem might have.

6.3 Limitations

We made afew basic assumptions for our ssmulation model. These were
described in Section 5.1.2 of Chapter 5. Ours was a simple manufacturing system,
without any tool breakdowns, multiple product flows, rework, maintenance or re-entrant
flow. Improvement in cycle time of a magnitude greater than or equal to 0.01 hours
(precision of Factory Explorer 2.5) was accepted as sufficient reason to purchase another
tool, if the budget permitted so. The same value of 0.01 hours was also used for the
analytical algorithms, as the lowest acceptable improvement in the cycletime. The
simulation model also assumed that the number of wafer lots that visit each tool type a a

workstation is proportional to the tool’ s capacity.
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Although in literature, the nested partitions a gorithm has been combined with a
technique called optimal computing budget allocation (OCBA) to ensure alarger
allocation of simulation effort amongst the potentially good designs, we did not
implement OCBA. Further, the selection of the number of samples for the partitioned
and the surrounding regions did not have any strong basis due to lack of any concrete

guidelines.

6.4 Future work

The scope of the problem we considered could be extended to sharing equipment
between workstations, which is common in practical situations with re-entrant flow.
Further complexities could be modeled in the form of breakdown of tools, maintenance
schedules and multiple product families.

For the hill climbing, biggest leap and safer |eap algorithms, a better heuristic
could be employed to obtain a different starting point for these search algorithms.
Techniques to help the nested partitions algorithm focus on potentially good
configurations and reduce the simulation effort involved could also be employed.

Another approach would be to add the cost of equipment purchase with economic
measures related to cycle time such as the cost of holding work-in-process, to determine
the system design that minimizes the system life cycle costs.

Finally, we could study the performance of the analytical algorithm on systems

with more general probability distributions for processing time and inter-arrival time.
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APPENDIX

This appendix presents the two analytical algorithms that were considered to
decide the benchmark-algorithm for the simulation-based algorithms and discusses the

experimental results.

1. Description of the algorithms

The algorithms search a solution space that consists of only one tool type per
workstation.
1.1 Notation
The notation used is as follows:
A desired throughput
M budget available
n number of workstations
Z total number of different tool types at workstationi; i =1, ..., n
Tjj tool of type| at workstationi;j =1, ..., z
Hi capacity of Tj; tool
Gi cost of Tj; tool 4
Uij capacity per unit cost of Tj; tool = G
k iteration number
|x|  greatest integer less than or equal to x
[x]  smallestinteger greater than or equal to x

Ti selected tool type at workstation i

X number of tools for workstation i
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T; and X; are the decision variables. If T; = j, C; = Cjj and 14 = 14;.
[ the number of tools: { X1, X, ..., Xn}
f(d4) the manufacturing cycle time of the system given a solution &

X {X111 X121 sy Xl,Zl; L 1 an; Xl’l21 sy Xn,zn}

1.2 Description
The two search algorithms are called Algorithm | (A-I) and Algorithm 11 (A-I1).

The only difference in the agorithmsis the selection of T,.

For Algorithm | (A-1), let T; =, such that 24 > 4 for al k< z and k zj. If 14 =
Mk, then choose the tool type with lower cost. Set C; = Cjj; 14 = 14;.

For Algorithm 1l (A-I1), let T; = j, such that U;; > U for all k< z and k # j. If Uj;
= Uik, then choose the tool type with higher capacity. Set C; = Cjj; 14 = 14;.

After T; are selected, each algorithm proceeds as follows:

Step 1: Check feasibility

Fori=1,..,n:
s = 2
H;

Set B=M - X,C
i=1
If B< O, then
Return the solution asinfeasible

Else

Initializek=0
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@:{Xl, X21 sy Xn}
Fori=1,..,n,

=2
X

7Ti:(1+Xiz_l(Xipi)l + (xiloi)Xi )—1

1=1 I Xi!(l_pi)
w11 (Xp)'m
M) 2 % amay”

Output Cost; = X;C; + ... + X,C, and Cycle Timg =1(4)
Step 2: Perform the search
Let f(8c1) = 0.
Let £be asmall positive number (in our experiments, €= 0.01 hours).
Define P(B) ={i: C; < B} asthe set of workstations with “affordable” tools (that is, the
cost of atool at any of these workstations is not greater than the unspent budget).
While P(B) is not empty and f(&) < f(&4.1) - & repeat the following loop:
Let i bethe workstation in P(B) that currently has the least capacity (the smallest
value of X;u).
Update X;, B, and k asfollows: X; = X; +1;B=B-C;; k=k+1
6= { X1, Xz, ..., Xn}
Calculate f(4,)
Update P(B)
If f(8) > f(8-1) - & thenrevise X, B, and kasfollows: Xi =X;-1;B=B+Cj; k=k-1

Construct the solution x from & asfollows:
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For al i andj, Xij =X if Ti :j, and O otherwise

Output Costg = X;C; + ... + X,C, and Cycle Timer = f(4)

2. Experiments

The algorithms were run on the Problem Set 2 described in Section 5.1.1 of
Chapter 5. Each search algorithm (A-1 and A-11) was run on each instance. The output
of each run included five performance measures. The performance measures of the
initial solution are Cost; and Cycle Time. The performance measures of the final
solution are Costr and Cycle Time:. Since each data set is different, we normalized
these statistics by comparing the cost performance to the total budget for that data set
and comparing the cycle time performance to the expected total processing time of that
dataset. If b hasauniform distribution over [I,u], then the expected value of b>° can be

caculated asfollows:

15 _ |15

u

E[b%] :g( )

From these statistics, the following performance metrics are calculated to
estimate the performance of each algorithm on each instance:
Cost Metric; = Costi/M. Cost Metrice = Coste/M.
Cycle Time Metric, = Cycle Time/1.450 and Cycle Time Metrice = Cycle Time:/1.450
ife=05andr =2 (Datasets 1, 2, 9, and 10).
Cycle Time Metric, = Cycle Time/7.246 and Cycle Time Metrice = Cycle Time:/7.246
ife=0.5andr =10 (Datasets 5, 6, 13, and 14).
Cycle Time Metric, = Cycle Time/1.667 and Cycle Time Metrice = Cycle Time:/1.667

ife=1.0andr =2 (Datasets 3, 4, 11, and 12).
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Cycle Time Metric, = Cycle Time/8.333 and Cycle Time Metrice = Cycle Time:/8.333
ife=1.0andr =10 (Datasets 7, 8, 15, and 16).

The fifth performance measure was the number of iterations that the algorithm
performed before stopping. All of the metrics were averaged over all ten problem
instances. Table 1 shows the results for each algorithm on each data set. Figures 1 and 2
also display the cost and cycle time metrics. A larger cost metric implies that more of
the budget was spent purchasing tools. A larger cycle time metric implies that jobs spent

more time in the system.

3. Results

The last two columnsin Table A1 show that the number of iterations for both
algorithms is approximately the same in most data sets. A-1l does require more
iterations in some data sets. The most significant increases occur in datasets 9 and 11
because A-I selects, in general, more expensive tools and spends the budget more
quickly than A-II.

Asshownin Table Al and Figures Al and A2, A-1 constructsinitial solutions
that have, in general, alarger cost metric and a smaller cycle time metric than the initial
solutions that A-1l constructs. This results from A-I’s selection of large capacity tools,
which are expensive. But theinitia solution islikely to have more than enough
capacity, which reduces congestion and cycletime. A-ll selects, in general, smaller
tools, so the capacity of the initial solution will exceed the throughput constraint by a

smaller margin. Higher utilization will lead to larger cycle times.
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At the end of the search, A-I finds solutions that have alarger cost metric than
the final solutionsthat A-I1 finds, but the performance on the cycle time metric is very
close. Compared to theinitial solutions, the final solutions found have much larger cost
metrics and much smaller cycle time metrics. Thus, it is clear that the search algorithms
are useful for finding feasible, high-quality solutions.

Algorithm A-1 was selected as the benchmark-al gorithm based on its lower cycle

time values compared to A-Il, for all the 16 data sets.
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