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While much natural language processing work focuses on analyzing language

content, language style also conveys important information about the situational

context and purpose of communication. When editing an article, professional editors

take into account the target audience to select appropriate word choice and grammar.

Similarly, professional translators translate documents for a specific audience and

often ask what is the expected tone of the content when taking a translation job.

Computational models of natural language should consider both their meaning

and style. Controlling style is an emerging research area in text rewriting and is

under-investigated in machine translation. In this dissertation, we present a new

perspective which closely connects formality transfer and machine translation: we

aim to control style in language generation with a focus on rewriting English or

translating French to English with a desired formality. These are challenging tasks

because annotated examples of style transfer are only available in limited quantities.

We first address this problem by inducing a lexical formality model based on

word embeddings and a small number of representative formal and informal words.



This enables us to assign sentential formality scores and rerank translation hypothe-

ses whose formality scores are closer to user-provided formality level. To capture

broader formality changes, we then turn to neural sequence to sequence models.

Joint modeling of formality transfer and machine translation enables formality con-

trol in machine translation without dedicated training examples. Along the way, we

also improve low-resource neural machine translation.
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Chapter 1: Introduction

Written and spoken language carry information beyond their literal mean-

ing, such as the situation in which they might be used. For instance, while one

can start a conversation with a friend on WhatsApp by saying “Hey Dude”, a for-

mal letter is more likely to start with “Dear Sir or Madam”. Speakers’ choice of

words and grammar conveys important information about the situational context

and speaker purpose that listeners can interpret and respond to (Hovy, 1987; Biber,

1995). The resulting language variations are named register variations, or more

broadly, stylistic variations — the latter also interprets linguistic differences that

are not directly functional, such as dialect variations (Schilling-Estes, 2002; Biber

and Conrad, 2009).

Computational models of natural language should consider both its meaning

and style. We aim to control style in applications that generate language, with a

focus on two common tasks in our daily life. The first task is text rewriting. Pro-

fessional editors tailor or rewrite the text, and this procedure involves polishing and

catering it to the target audience with proper stylistic features, besides correcting

errors and improving readability. The second task is translation. Translations do

not necessarily obey the conventions of the source language, such as register profiles

1



of the source (Lapshinova-Koltunski and Vela, 2015). Human translators translate

a document for a specific audience (Nida and Taber, 2003), and often ask what the

expected tone of the content is when taking a new translation job.1 However, this

type of style information is not taken into account in modern machine translation.

Among the many dimensions of stylistic variations, this dissertation focuses on

textual formality. While textual style is also reflected along other dimensions of vari-

ations, including complexity or specificity, formality is considered a key dimension

of style (Heylighen and Dewaele, 1999) and register variations (Biber, 2014), and

it encompasses a range of finer-grained dimensions including politeness, seriousness

and respect distinctions (Irvine, 1979; Brown and Fraser, 1979).

Incorporating stylistic aspects in natural language generation has been dis-

cussed for decades, but many early works proposed rule-based generation systems,

which are not scalable (e.g., McDonald and Pustejovsky, 1985; Hovy, 1987; Power

et al., 2003; Reiter and Williams, 2010; Mairesse and Walker, 2011). More recent

work starts to leverage neural models, but style annotations are still acquired using

rules (e.g., Ficler and Goldberg, 2017).

Automatic stylistic text rewriting (a.k.a. textual style transfer) is an emerging

research area. A machine translation model is usually used if parallel texts with

diverse styles are accessible for training (e.g., Xu et al., 2012; Zhang and Lapata,

2017; Rao and Tetreault, 2018; Carlson et al., 2018). Text rewriting models often

fail by altering meaning in addition to style, especially when parallel texts are not

1A web-based human translation platform, Gengo, gives an example in the tutorial: https:

//support.gengo.com/hc/en-us/articles/231438047.
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available. Research on unsupervised text rewriting is still in its infancy (e.g., Mueller

et al., 2017; Hu et al., 2017; Shen et al., 2017; Fu et al., 2018).

Controlling the style of machine translation (MT) output, which can be viewed

as cross-lingual style transfer, is under-investigated. The pioneering work by Di-

Marco and Mah (1994) and Mima et al. (1997) improves rule-based MT by analyz-

ing syntactic stylistics or the speaker’s role and gender. In data-driven MT frame-

works, style is not modeled explicitly. When a style is considered, it is equated

with a domain or a provenance. For example, Lewis et al. (2015) and van der

Wees et al. (2016) build conversational MT systems by selecting conversation-like

training data; Michel and Neubig (2018) build personalized MT systems by using

speaker-annotated TED talks. Prior work has also focused on narrow realizations

of stylistic variations, such as T-V pronoun selection for translation into German

(Brown and Gilman, 1960; Sennrich et al., 2016a), or controlling the active/passive

voice (Yamagishi et al., 2016).

1.1 Research Problems

This dissertation addresses formality style transfer within and across languages

and shows that jointly modeling these two tasks helps address the limited availability

of training data.

Formality style transfer within languages refers to the task of monolingual

formality transfer (Figure 1.1), e.g., converting the informal sentence “What’s up?”

to a formal one: “How are you doing?” It models the transformation from sentence
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How are you doing?

What's up?

Desired formality level (   )

Target (      )

Source (      )

Figure 1.1: Formality Transfer (FT). It models the transformation from sentence Y¯̀

to sentence Y` of the same language but at the opposite formality level `.

or

How are you doing?

What's up?

Comment ça va?

Desired formality level (   )

Translation-1 ( )

Translation-2 (       )

Source (      )

Figure 1.2: Formality-Sensitive Machine Translation (FSMT). Given a sentence X
and a desired formality level `, it outputs a translation Y` of the desired formality.

Y¯̀ to sentence Y` of the same language but at the opposite formality level `:

Ŷ = arg max
Y`

P (Y` |Y¯̀, `). (1.1)

Formality transfer models are trained with monolingual sentence pairs that express

the same meaning at different formality levels. These examples rarely occur natu-

rally and are therefore only available in small quantities.

To study formality transfer across languages, we introduce a new task of

controlling output formality in machine translation. For example, the French sen-

tence “Comment ça va?” could be translated formally to “How are you doing?”,

but we could also produce an informal equivalent “What’s up?” We define the task

of Formality-Sensitive Machine Translation (FSMT, Figure 1.2), which takes two

inputs, a sentence X and a desired formality level `, and outputs a translation Y`

of the desired formality. It can be modeled as follows:

Ŷ = arg max
Y`

P (Y` |X, `). (1.2)
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The ideal training data for this task consists of translations of the same input in

different styles, e.g., (X,Y`1,Y`2). Unfortunately, such data is not available.

We take a unified view of these two tasks: given a sentence expressed in

English or a foreign language as the input, we generate an English sentence at the

desired formality level automatically. The generated sentence should be fluent and

preserve the meaning of the input. Controlling style requires being able to detect

stylistic variations in text, such as annotating training examples for MT systems.

The annotation could be either classification (e.g., informal vs. formal) or scoring

(e.g., continuous formality level). Unlike politeness in German (i.e., T-V pronoun

distinction) and active/passive voice in English, formality and many other styles

cannot easily be labeled using rules.

We design systems to address this task based on the following hypotheses:

• Formality variations for language generation can be learned/modeled from

examples, such as a pool of formal and informal words or sentence pairs.

• Joint modeling of formality transfer and machine translation improves for-

mality transfer within and across languages, despite the limited nature and

quantity of annotated style data. In particular, joint modeling enables FSMT

without dedicated FSMT training examples.

1.2 Roadmap

This dissertation is organized into eight chapters. We discuss relevant back-

ground work on machine translation and style transfer in Chapter 2. Then, Chapters
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3 to 7 describe our contributions. The final Chapter 8 concludes with a discussion

of limitations and future work. We summarize each chapter below.

1.2.1 Modeling Lexical Stylistic Variations

We model lexical stylistic variations by placing words on a continuous formality

scale. We hypothesize that differences between distributional representations of

words that share the same meaning are indicative of style differences. To test this

hypothesis, we identify salient dimensions of variations (i.e., a stylistic subspace)

between word representations of lexical paraphrases. Evaluation on a formality

prediction task demonstrates the benefits of using induced stylistic subspaces. We

describe this method in Chapter 3.

1.2.2 Controlling Formality in Phrase-Based MT

Given formality annotations derived from modeling stylistic variations, we are

now able to control the formality of machine translation output. We implement

the initial FSMT system based on a standard phrase-based MT architecture. We

first adapt our lexical style model to quantitatively measure formality levels of sen-

tences. The resulting formality model provides the most accurate scores on intrinsic

formality datasets. We then implement FSMT by n-best reranking. The rerank-

ing module promotes translation hypotheses whose formality levels are closer to the

user-provided formality level (i.e., desired formality level).

Automatic and human evaluation suggest the effectiveness of our system in
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controlling language formality without loss in translation quality. However, the

space of possible outputs is limited to n-best translation hypotheses. We introduce

the reranking-based FSMT in Chapter 4.

1.2.3 Low-Resource Neural Machine Translation

While lexical formality models estimate sentential formality by aggregating

local information, neural models provide a more promising approach to model for-

mality of sentences. Neural Machine Translation (NMT) has become the new stan-

dard of MT as it consistently outperforms previous methods across domains and

language pairs (Bojar et al., 2017; Cettolo et al., 2017). The success of controlling

politeness in NMT (Sennrich et al., 2016a) and using NMT for style transfer (Jham-

tani et al., 2017; Zhang and Lapata, 2017; Rao and Tetreault, 2018) suggests that

neural models are also well suited to our tasks.

Formality style transfer can be viewed as a low-resource MT problem given a

limited number of parallel examples with diverse formality styles. We first research

how to improve the translation quality of low-resource NMT independently of style

by making better use of limited training data. (1) We first propose a bi-directional

NMT framework inspired by multi-task learning. It trains both directions of a

language pair jointly with a single model. Joint training can leverage limited train-

ing data effectively via duplication. The bi-directional model consistently achieves

improved translation quality, particularly in low-resource scenarios. (2) We further

introduce a differentiable input reconstruction loss to bi-directional NMT, aiming at
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exploiting the source side of parallel samples. This loss compares original inputs to

reconstructed inputs, which is obtained by back-translating translation hypotheses

into the input language. This approach achieves small but consistent improvements

on translating low-resource language pairs. Detailed description of the bi-directional

NMT and the differentiable input reconstruction loss are presented in Chapter 5.

1.2.4 Joint Model of Neural Formality Transfer and FSMT

We apply the bi-directional model from our low-resource NMT research to

formality transfer tasks. Using the idea of bi-directional models yields an elegant

and unified model that transfers between formal and informal language. The re-

sulting models outperform uni-directional models, which matches the behavior of

bi-directional NMT in low-resource settings.

We further adapt the idea of multi-task training to the FSMT task by jointly

training bi-directional formality transfer and machine translation. The training

shares information from two distinct types of supervision we can provide: sentence

pairs in the same language that capture formality difference, and translation pairs

drawn from corpora of diverse formality.

Experimental results show that the integrated neural model is able to perform

FSMT without being explicitly trained on style-annotated translation examples.

The joint model also achieves state-of-the-art performance for formality transfer. We

present the neural formality transfer and FSMT via multi-task learning in Chapter 6.
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1.2.5 Neural FSMT with Synthetic Supervision

Building an FSMT system ideally requires training triplets consisting of a

bilingual sentence pair labeled with target language formality. The multi-task FSMT

model, however, is presented with samples where one element of the triplet is always

missing. Therefore, it sometimes produces translations without expected formality

properties or formality-controlled outputs disobeying the source meaning.

We hypothesize that exposing the models to complete training triplets should

further help formality-sensitive language generation: formal and informal outputs

differ from each other and formality rewrites do not introduce translation errors.

To this end, we introduce a new training scheme for multi-task FSMT models that

automatically generates synthetic training triplets by inferring the target formality

for a given parallel sentence pair during training.

Comprehensive automatic and human assessments show that our best model

trained with synthetic supervision outperforms prior neural FSMT models. It pro-

duces translations that better match desired formality levels while preserving source

meaning. We introduce our approaches to generate synthetic training triplets and

analyze outputs qualitatively to illustrate how formality is marked in model outputs

in Chapter 7.
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1.3 Contributions

This dissertation makes the following contributions:

• We model lexical formality by learning style dimensions in word embedding

spaces based on variations between embeddings of paraphrases. The induced

style subspace better distinguishes more formal from less formal words than

the original space (Niu and Carpuat, 2017).

• We introduce a new task, Formality-Sensitive Machine Translation, and design

a statistical and reranking-based system to perform French-English FSMT

using lexical formality scores (Niu et al., 2017).

• We design neural systems using multi-task learning that address formality

transfer and FSMT jointly. They achieve state-of-the-art performance on En-

glish formality transfer and perform French to English FSMT without being

explicitly trained on style-annotated translation examples (Niu et al., 2018b).

• We further improve the zero-shot multi-task learning approach with synthetic

supervision. After being trained with complete training triplets, this FSMT

system produces translations that better match desired formality levels while

preserving the source meaning (Niu and Carpuat, 2019).

• We improve low-resource neural machine translation by introducing (1) a bi-

directional model which performs iterative back-translation without auxiliary

models (Niu et al., 2018a), and (2) a differentiable input reconstruction loss
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which exploits the source side of parallel samples without additional parame-

ters (Niu et al., 2019).

• We release training scripts for aforementioned systems and implementations

of our new training objectives at https://github.com/xingniu.
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Chapter 2: Background

This work focuses on machine translation and style transfer tasks that can

both be framed as sequence-to-sequence transformations. Machine translation is the

fundamental framework we build on and we review related concepts and techniques

in Section 2.1. Controlling style in machine translation output or any other language

generation task requires modeling stylistic variations. We introduce related work in

modeling styles with a focus on formality in Section 2.2 and review how stylistic

variations are incorporated with language generation models in Section 2.3.

2.1 Machine Translation

Machine Translation (MT) is the task of using computers to translate from

one natural language into another. Data-driven approaches to MT have dominated

both research and commercial market by learning translation patterns from large

parallel corpora, which are bilingual corpora containing original documents and their

translations produced by humans. Statistical Machine Translation (SMT) provided

the first family of architectures (Brown et al., 1993; Berger et al., 1994; Lopez, 2008;

Koehn, 2010), while neural models have recently gained traction (Bahdanau et al.,

2015; Wu et al., 2016; Hassan et al., 2018).
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Mathematically, we formulate the translation probability for translating a

sentence of the source language X = (x1, . . . , xn) into the target language Y =

(y1, . . . , ym) as P (Y |X). Given an MT model with parameters θ, and an input

sentence X, the MT task consists in finding the most probable translation, i.e.

Ŷ = arg max
Y

P (Y |X;θ). (2.1)

Among a taxonomy of various MT approaches, phrase-based models and neural

models draw most attention. We implement cross-lingual and monolingual formality

transfer systems based on these two models.

2.1.1 Phrase-Based Machine Translation

Phrase-Based Machine Translation (PBMT) models translations at the gran-

ularity of contiguous sequences of words, called phrases, between source and target

languages using statistical methods (Och et al., 1999; Marcu and Wong, 2002; Koehn

et al., 2003; Och and Ney, 2004). PBMT is usually formulated as a log-linear model

(Och and Ney, 2002),

P (Y |X;θ) =
exp

∑
k λkhk(X,Y )∑

Y ′ exp
∑

k λkhk(X,Y ′)
, (2.2)

where hk(X,Y ) are feature functions while λk are feature weights. Some core

features are defined over decompositions of sentences X and Y into phrases, which

are learned from word-level alignments (Brown et al., 1993).

Training PBMT models is a combination of generating features on the train-

ing set and estimating feature weights on the tuning sets. Generating features
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involves training multiple preliminary models independently. For example, phrase

translation probabilities are aggregated from word-level alignments, which are also

automatically learned from bitext (Marcu and Wong, 2002; Och and Ney, 2003);

target language models are built from monolingual corpora to encourage generating

fluent output. Other crucial features include word reordering that captures lan-

guage differences in word order (Koehn et al., 2005; Galley and Manning, 2008) and

word penalty that calibrates the output length (Koehn et al., 2003), etc. Estimating

feature weights in Equation 2.2 is intractable, because computing the denominator

involves getting all possible translations. Therefore, this sum is usually approxi-

mated over the n-best output (Och and Ney, 2002). Practically, PBMT models are

trained by maximizing a translation quality measurement, e.g., BiLingual Evalua-

tion Understudy (BLEU, Papineni et al., 2002), by using optimization algorithms

such as Minimum Error Rate Training (MERT, Och, 2003), Margin Infused Re-

laxed Algorithm (MIRA, Crammer and Singer, 2003) and batch MIRA (Cherry and

Foster, 2012).

Generating translations, called decoding, is a search procedure that aims to

find a sequence of phrases with maximum probability estimated by PBMT mod-

els. Collecting all combinations of phrases is intractable, so beam search is usually

employed as an approximation and helps balance efficiency with exploring multiple

translation options beyond greedy search (Koehn et al., 2003; Koehn, 2004a).

In order to incorporate features that target specific model errors but may not

be efficiently computed in the decoder, Och et al. (2004) and Shen et al. (2004)

propose to rerank n-best translation hypotheses by inputting them to an auxiliary
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model with access to additional feature functions, such as alternative alignment

scores, language models and rules. We leverage this technique to re-select transla-

tions matching expected formality levels.

2.1.2 Neural Machine Translation

Neural Machine Translation (NMT) parameterizes the probability P (Y |X)

as a single large neural network with parameters θ, that can be trained end-to-end.

NMT can be viewed as a conditional language model, where the probability of the

target word yt at step t is conditioned on the target history Y<t = (y1, . . . , yt−1) and

the source sentence X. So the probability of the target sequence in Equation 2.1 is

factorized as

P (Y |X;θ) =
∏
t

P (yt|Y<t,X;θ). (2.3)

The right-hand side probability of Equation 2.3 is parameterized via an encoder-

decoder neural network (Kalchbrenner and Blunsom, 2013; Cho et al., 2014; Sutskever

et al., 2014). Words in a sentence are first mapped to vector representations (a.k.a.

embeddings). We reuse X or Y to represent a sentence as a sequence of embed-

dings for simplicity’s sake. The encoder transforms a source sentence to a sequence

of hidden states S = (s1, . . . , sn):

S = Encoder(X). (2.4)

The decoder produces an hidden state ht at each step t, given previous hidden

state ht−1 and/or target word embeddings Y<t, and a context vector ct:

ht = Decoder(ht−1,Y<t, ct). (2.5)
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The encoder and decoder can be implemented by various neural network architec-

tures, such as Recurrent Neural Networks (RNNs), to handle variable-length se-

quences. Cho et al. (2014) and Sutskever et al. (2014) use Gated Recurrent Units

(GRUs) and Long Short-Term Memory cells (LSTMs, Hochreiter and Schmidhuber,

1997) respectively to realize RNNs.

The context vector ct is calculated via an attention mechanism (Bahdanau

et al., 2015; Luong et al., 2015) by querying an intermediate hidden state h̃t to

source hidden states S and computing a weighted sum of source hidden states:

ct = Attention(ht,S) (2.6)

= softmax(α(h̃t,S)) · S, (2.7)

where α produces a similarity matrix, such as using dot product.

Finally, the probability per token is estimated by a softmax output layer over

a linear transformation that transforms ht to a distribution over the vocabulary:

P (·|Y<t,X;θ) = softmax(Wht + b), (2.8)

where W and b are the weight matrix and bias vector respectively.

RNN-based sequence to sequence models have some disadvantages. On one

hand, contextual information fades along the long sequential process. On the other

hand, the representation at each time step is dependent upon its precursor, which

limits parallelization. Recently, Gehring et al. (2017) replace RNNs with Convo-

lutional Neural Networks (CNNs): a convolutional layer combines the context in a

limited window into a single representation. The effective window size grows when
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stacking multiple layers. Vaswani et al. (2017) model all dependencies by the at-

tention mechanism, which is time-independent. Besides attentions between decoder

states and encoder states, they propose self-attention that computes the associa-

tion between any word and any other word (or any previously produced word for

decoder) in the same sequence.

Regardless of the specific architecture chosen, the standard training objective

for NMT is to maximize the log-likelihood of the training data:

LMT =
∑

(X,Y )

logP (Y |X;θ) (2.9)

=
∑

(X,Y )

∑
t

logP (yt|Y<t,X;θ). (2.10)

Maximizing LMT is equivalent to minimizing the cross-entropy between the pre-

dicted softmax distribution (Equation 2.8) for ŷt and the ground truth one-hot

distribution for yt. Popular optimization algorithms for NMT are Stochastic Gra-

dient Descent (SGD, Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952) and

Adam (Kingma and Ba, 2015).

Calculating the conditional probability in Equation 2.10 during training is

realized by using the teacher forcing strategy (Williams and Zipser, 1989), which

always feeds in the ground truth previous tokens Y<t when predicting the current

token. During the test time, the model relies on its own predictions to generate

translations. It aims to find a sequence of tokens with maximum probability and

also uses beam search as an approximation, which is the same as PBMT.
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2.1.3 Multilingual and Zero-Shot Neural Machine Translation

The designs of our cross-lingual and monolingual formality transfer systems

are inspired by Multi-Task Learning (MTL), which is used for transferring domain

knowledge between related tasks (Caruana, 1997). MTL has been found to be

beneficial for several natural language processing tasks in past work, ranging from

part-of-speech tagging and parsing to query classification and document ranking

(Collobert and Weston, 2008; Liu et al., 2015; Luong et al., 2016). Approaches

based on neural networks can leverage cross-task data (e.g., datasets of multiple

sequence tagging tasks) by learning shared representations or layers to improve

generalization.

Multi-task learning has been successfully used to build multilingual translation

models, in which parallel training corpora of various language pairs are concatenated

and certain components are shared. A one-to-many translation system can be built

by sharing both the encoder and the attention mechanism (Dong et al., 2015).

A many-to-many translation system can be built by sharing only the attention

(Firat et al., 2016). Surprisingly, Johnson et al. (2017) enable a standard NMT

framework to support many-to-many translation directions by simply attaching a

special token (indicating the target language) to each source sentence. They also

report promising results for translation between languages that have zero parallel

data (a.k.a. zero-shot translation). We investigate a special case of multilingual

translation, bi-directional translation and transfer, in low-resource settings.

We build formality transfer and machine translation jointly to perform zero-
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shot FSMT without training on bilingual parallel data with formality annotations.

The resulting model is similar to zero-shot multilingual NMT and they both face

the challenge that, for example, the zero-shot translation usually performs worse

than supervised models and even the simple pivoting approach which leverages an

intermediary language as the bridge (Johnson et al., 2017). There have been ef-

forts to improve this vanilla strategy by filtering out vocabulary entries of incorrect

languages prior to translation (Ha et al., 2017), using a dedicated attention mod-

ule per target language (Blackwood et al., 2018), contextually generating dedicated

encoder-decoder parameters for any language pair (Platanios et al., 2018), using

an auxiliary loss to encourage encoding sentences into source-language invariant

representations (Arivazhagan et al., 2019), and encouraging the model to produce

equivalent translations of parallel sentences into an auxiliary language (Al-Shedivat

and Parikh, 2019). From a different angle, we tackle this problem by automatically

inferring labels.

2.1.4 Round-Trip Neural Machine Translation

Optimizing NMT models by maximizing the log-likelihood (Equation 2.9)

works well when abundant training data is available, but it is still an open question

how to best train deep neural models from limited parallel data. As alternatives to

combining parallel data of multiple language pairs with standard training, we will

discuss training strategies inspired by the idea of round-trip translation: suppose

input sentence X is translated forward to Ŷ and then translated back to X̂, then
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Ŷ is more likely to be a good translation if the distance between X̂ and X is small

(Brislin, 1970).

Using the round-trip translation (also called input reconstruction) as a train-

ing signal for NMT usually requires a complex training process with reinforcement

learning and auxiliary models to perform back-translation. For instance, Cheng

et al. (2016) add a reconstruction loss for monolingual examples to the training ob-

jective. He et al. (2016) in addition evaluate the quality of Ŷ by a language model.

Both approaches have symmetric forward and backward translation models which

are updated alternatively. This requires policy gradient algorithms for training,

which are not always stable.

Back-translation (Sennrich et al., 2016b) is a simpler yet effective strategy,

which performs only half of the reconstruction process: it generates a synthetic

source side for monolingual target language examples Y → X̂. It uses an auxiliary

backward model to generate the synthetic data but only updates the parameters of

the primary forward model. Wang et al. (2018c) extend this method by generat-

ing K synthetic source sentences and minimizing the difference between P (Y ) and

EX̂P (Y |X̂;θ). Iteratively updating forward and backward models (Zhang et al.,

2018; Hoang et al., 2018; Cotterell and Kreutzer, 2018) is an expensive solution as

back-translations are regenerated at each iteration.

Aforementioned methods produce intermediate (synthetic) translations using

beam search, but beam search is not differentiable which prevents back-propagating

reconstruction errors. Prior work has sought to simplify the optimization of recon-

struction losses by side-stepping beam search. Tu et al. (2017) first propose to re-
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construct NMT input from the decoder’s hidden states while Wang et al. (2018a,b)

suggest to use both encoder and decoder hidden states to improve translation of

dropped pronouns. However, these models may achieve low reconstruction errors

by learning to copy the input to hidden states. To avoid copying the input, Artetxe

et al. (2018) and Lample et al. (2018a) use denoising autoencoders (Vincent et al.,

2008) in unsupervised NMT. We will introduce a simple and effective alternative in

Chapter 5.

2.2 Stylistic Variations

Stylistic variations reflect differences in language (such as changes of vocabu-

lary and syntactic structures) associated with situational contexts or purposes. We

first discuss formality, the prime dimension of stylistic variation we investigate. We

then review how stylistic variations are computationally modeled.

2.2.1 Formality: Definition and Discussion

People can make intuitive distinction between formal language (e.g., an essay)

and informal language (e.g., an instant massage) without referring to a conceptual

definition of “formality”. Based on extrinsic characteristics, Richards et al. (1997)

define “formal speech” in a dictionary as “the type of speech used in situations when

the speaker is very careful about pronunciation and choice of words and sentence

structure.” Heylighen and Dewaele (1999) hypothesize that people invest more than

the normal attention in the form of expressions because they want to make sure
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that their expressions are not misunderstood, and define “formal” as “attention to

form for the sake of unequivocal understanding of the precise meaning of the expres-

sion.” However, neither of these definitions can be interpreted into comprehensive

guidelines without introducing subjective opinions, let alone used for computational

assessments. In the present dissertation, we define “formality” by aggregating a

significant amount of examples, which are collected from human-annotated datasets

or corpora.

Recent research shows factors affecting formality via crowdsourcing. Pavlick

and Tetreault (2016) and Rao and Tetreault (2018) ask annotators to rewrite infor-

mal sentences (from Yahoo Answers) in order to make them more formal. Common

types of edits made in rewriting include capitalization, punctuation, phrasal para-

phrasing, deletion of fillers, completion, expansion of contractions, spelling correc-

tion, normalization, etc.

People use various formality levels when addressing different audiences be-

cause using the formal language is not always superior. Despite having less chance

to be misinterpreted by others who do not share the same context as the sender,

formal speech bears the disadvantages of being more static or rigid, and structurally

complex.

2.2.2 Modeling Stylistic Variations

Modeling stylistic variations is important for building style-aware systems. By

scoring text in terms of styles, we are able to annotate training data and perform

22



automatic evaluations.

Many studies of stylistic variations have focused on the corpus or sentence

level. For instance, multidimensional corpus analysis (Biber, 1995) relies on statis-

tical analysis to identify the salient linguistic co-occurrence patterns that underlie

register variations. Heylighen and Dewaele (1999, 2002) define the characteristics

of formality and quantitatively represent formality levels by word frequencies per

part-of-speech tags. More recently, richer combinations of features have been used

to measure formality. Li et al. (2013) leverage lexicons, part-of-speech classifiers,

syntactic parsers, templates, etc. to capture formality features such as narrativity,

cohesion, syntactic simplicity and word correctness. Pavlick and Tetreault (2016)

provide a thorough study of sentence-level formality and show that classifiers based

on features including part-of-speech tags and dependency parses can predict formal-

ity as defined by the collective intuition of human annotators.

We focus on identifying dimensions of lexical stylistic variations. Prior work

on evaluation of style factors at the word level has used standard word embeddings

as features, and relied on external supervised methods to identify style relevant

information in these embeddings. Brooke et al. (2010) propose to score the formality

of a word by comparing its meaning to that of seed words of known formality

using cosine similarity (Turney and Littman, 2003). Rothe and Schütze (2016)

and Rothe et al. (2016) show that meaningful ultradense subspaces that capture

dimensions such as polarity and concreteness can be induced from word embeddings

in a supervised fashion.

Other approaches include work by Pavlick and Nenkova (2015) who uses a un-
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igram language model to capture the difference between lexical distributions across

genres. Preotiuc-Pietro et al. (2016) isolate stylistic differences associated with user

attributes (e.g., gender and age) by using paraphrase pairs and word distributions

similar to Pavlick and Nenkova (2015). Analysis of stylistic variations from the

point of view of the lexicon also includes predicting term complexity, as annotated

by non-native speakers (Paetzold and Specia, 2016).

2.3 Stylistic Variations in Language Generation

Out ultimate goal is generating language with specified target style (formality).

We first review techniques used for related tasks of language generation conditioned

on certain properties or semantics of interests. Then, we introduce related work

on how to model stylistic variations jointly with our focused task, which is text

generation within and across languages. Finally, we briefly overview the evaluation

methodology for these tasks.

2.3.1 Conditional Language Generation

Language generation can be controlled by various aspects, including styles.

Most recently, RNN models demonstrate their potential. In order to generate dia-

logues conditioned on semantic information, Wen et al. (2015) introduce a control

cell into LSTM to gate the dialogue act. Li et al. (2016) propose persona-based

neural conversation models in which speaker (or speaker-addressee) embeddings are

learned jointly with word embeddings and generated conversation responses are
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conditioned on the speakers’ identities. Similarly, Ficler and Goldberg (2017) use

a conditional neural language model to control linguistic style aspects in language

generation, by appending a pre-defined style vector to each predicted word embed-

ding vector in the target sequence. Kikuchi et al. (2016) focus on controlling the

output length and propose either appending the remaining length to the LSTM in-

put at each step, or multiplying the desired length to initial LSTM cell state. These

approaches point out possible strategies (i.e., manipulating decoders’ RNN states

or embeddings) in injecting formality information when generating languages.

2.3.2 Textual Style Transfer or Rewriting

Monolingual textual style transfer or rewriting is a sub-area of conditional

language generation — new text is generated via paraphrasing while conditioned on

style changing. Style transfer includes two essentials: (1) The input and stylized

output must share identical semantic (non-stylistic) content; (2) The transformation

must produce desired stylistic shifts.

Style transfer can naturally be framed as a sequence to sequence translation

problem given sentence pairs that are paraphrases in two distinct styles. These par-

allel style corpora are constructed by creatively collecting existing texts of varying

styles, and are therefore rare and much smaller than machine translation parallel

corpora. For instance, Xu et al. (2012) scrape modern translations of Shakespeare’s

plays and use a PBMT system to paraphrase Shakespearean English into/from mod-

ern English. Jhamtani et al. (2017) improve performance on this dataset using NMT
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with pointers to enable copy actions. The availability of parallel standard and sim-

ple Wikipedia (and sometimes additional human rewrites) makes text simplification

a popular style transfer task, typically addressed using MT models ranging from

syntax-based MT (Zhu et al., 2010; Xu et al., 2016), phrase-based MT (Coster and

Kauchak, 2011; Wubben et al., 2012) to neural MT (Wang et al., 2016) trained via

reinforcement learning (Zhang and Lapata, 2017). Another relatively easy-to-collect

parallel style corpus is the Bible with various versions. Carlson et al. (2018) treat

paraphrasing between Bible versions as monolingual translation and use the ap-

proach of multilingual NMT with side constraints (Johnson et al., 2017) to perform

zero-shot bible style transfer.

Naturally occurring examples of parallel formal-informal sentences are harder

to find. Prior work relied on synthetic examples generated based on lists of words of

known formality (Sheikha and Inkpen, 2011). This state of affairs recently changed,

with the introduction of the first large scale parallel corpus for formality transfer,

Grammarly’s Yahoo Answers Formality Corpus (GYAFC, Rao and Tetreault, 2018).

They collected over one hundred thousand informal sentences from Yahoo Answers

and their formal rewrites via crowd-sourcing. They also presented benchmark style

transfer systems based on both PBMT and NMT models. We leverage this corpus

to enable multi-task monolingual and cross-lingual style transfer.

Another thread of research dealing with the lack of training data is unsu-

pervised style transfer and it first achieves promising progress in computer vision.

Gatys et al. (2016b,a) make pioneering work on migrating the semantic content of

one image to different styles. They use CNNs to obtain both the source content
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representation and the target style representation independently, and then generate

style-transferred images by matching both representations. Neural style transfer

for text is naturally more challenging than images. Unlike image pixels, words are

discrete — a subtle shift in the continuous vector space could lead to another word

being selected and might result in an unstable change in style and meaning.

Exploratory approaches for unsupervised textual style transfer or rewriting1

have been proposed recently and many of them are based on autoencoders. Mueller

et al. (2017) use a Variational Auto-Encoder (VAE, Kingma and Welling, 2014) to

encode a sequence to a latent representation z. They optimize z until an expected

stylistic score can be inferred from it. The transferred sequence is obtained by

decoding optimized z. Hu et al. (2017) use the same topology yet with several

differences. First, they separate the latent representations into sequence embedding

z and stylistic code c. Second, a discriminator is optimized to infer c from a sequence

instead of z. Shen et al. (2017) use a VAE to encode sequences with different style

labels into a shared latent space. Discriminators for different styles are optimized

to distinguish real and transferred sequence. Fu et al. (2018) train two adversarial

networks to enforce the meaning representations to be independent of style. The

meaning representation is decoded in two ways: using multiple decoders or adding

style-embeddings similar to Hu et al. (2017). The NMT framework is also borrowed

by unsupervised style transfer. Prabhumoye et al. (2018) reduce stylistic properties

of a sentence by translating it into another language. Lample et al. (2019) argue that

1Text rewriting includes tasks that change properties coupled with the meaning, such as senti-
ment transfer.
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disentangling style from meaning is not necessary nor easily achievable in practice.

They leverage back-translation to construct synthetic transfer pairs and use style

embeddings as the initial state of the decoder for conditional language generation.

We do not perform unsupervised textual style transfer in the present dissertation,

but these explorations share inspiring ideas such as the importance of reconstruction

accuracy in meaning preservation.

2.3.3 Controlling the Output Style in Machine Translation

Controlling the output style in machine translation has received sparse at-

tention. The pioneering work by DiMarco and Mah (1994) and Mima et al. (1997)

improves rule-based MT using linguistic features or extra-linguistic information such

as speaker’s role and gender.

With the success of data-driven MT frameworks, people usually define styles

by leveraging representative sub-data. For example, after selecting or annotating

data of interest beforehand, Lewis et al. (2015) and van der Wees et al. (2016)

build conversational MT systems, Rabinovich et al. (2017) build gender-specific MT

systems. One of our baseline FSMT system is built with data selection.

Multiple-style annotated data further facilitates building a single NMT sys-

tems supporting translations of various styles. For example, Michel and Neubig

(2018) build personalized NMT systems that optimize translation accuracy per each

speaker. They achieve this by assigning a dedicated bias for each speaker trait in the

output layer. Korotkova et al. (2018) train an NMT system with multiple sources of
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data together and distinguish data sources by concatenating style vectors to source

word embeddings (Sennrich and Haddow, 2016). The resulting system is able to

translate the same input to various styles represented by the data source.

Sennrich et al. (2016a) show the first effort in controlling opposite styles for

NMT. Specifically, they append a side constraint, <T> or <V> (i.e., T-V pronoun

distinction), to the source text to indicate which pronoun is preferred in the German

output (e.g., translating to polite Sie instead of informal du/ihr from the English

word you). The T-V pronoun distinction only reflects one narrow dimension of

the formality variation. Yamagishi et al. (2016) use the same method to control

the active/passive voice of the translation. We employ this simple yet effective

strategy to build our style-constrained neural language generation models. But the

difference is that formality is difficult to be unambiguously annotated by artificial

rules. Effectively modeling the formality variation for language generation is the

challenge we face with.

2.3.4 Evaluation of Style-Constrained Language Generation

We evaluate both formality transfer and machine translation models by com-

paring the output against the human reference rewrites or translations and using

BiLingual Evaluation Understudy (BLEU, Papineni et al., 2002). It is a precision-

oriented metric in that it measures how much of the system output is correct, in

terms of exact matches of n-grams. Formally, the most used BLEU with up to
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4-gram matching is defined as

BLEU = BP · exp

(
4∑

n=1

1

4
log pn

)
, (2.11)

where pn is the geometric mean of the test corpus’ n-grams precision,2 and BP is

the brevity penalty that penalizes scores if the system output is shorter than the

references. BLEU is the de facto standard for automatic MT evaluation since it is

easy to use and correlates highly with human evaluation.

However, BLEU is not an ideal automatic metric for FSMT because the refer-

ence translation given both an input sentence and a formality level is not available.

Using translations with arbitrary style in standard MT test sets, BLEU may conflate

mismatches due to translation errors and due to correct stylistic rewrites.

Despite being expensive, human evaluation is more reliable for language gen-

eration tasks (Hashimoto et al., 2019). Transfer intensity, content preservation and

naturalness (fluency) are three key dimensions measured in text rewriting tasks

(Mir et al., 2019). We follow this convention to evaluate both formality transfer and

FSMT models.

2Precisely, it is a modified precision. Please refer to the original paper for details.
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Chapter 3: Discovering Lexical Stylistic Variations in Distributional

Vector Space Models

Controlling style requires being able to detect stylistic variations in text, such

as annotating training examples for MT systems. The annotation could be either

classification (e.g., informal vs. formal) or scoring (e.g., continuous formality level).

Unlike politeness in German (i.e., T-V pronoun distinction, Brown and Gilman,

1960) and active/passive voice in English, formality and many other styles cannot

easily be labeled using rules.

In this chapter, we first investigate how stylistic variations are embedded in

the topology of distributional vector space models and then use the produced style

dimensions to place words on a continuous formality scale. Words are represented

as dense vectors (i.e., word embeddings), and they have been showed to capture

semantic similarity and other lexical semantic relations (Mikolov et al., 2013; Baroni

et al., 2014; Levy and Goldberg, 2014).

We hypothesize that differences between embeddings of words that share the

same meaning are indicative of style differences. For example, “watch” and “ob-

serve” are synonyms, but the latter is more formal. In order to test this hypothesis,

we introduce a method based on Principal Component Analysis (PCA, Pearson,
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1901; Hotelling, 1933) to identify salient dimensions of variations between word em-

beddings of lexical paraphrases. Applying this method to word embeddings learned

from two large corpora representing distinct genres, we conduct a qualitative analysis

of the principal components discovered. It suggests that the principal components

indeed discover variations that are relevant to style.

Next, we evaluate the produced style dimensions (i.e., principal components)

more directly, using them to distinguish more formal from less formal words. The

formality prediction task lets us evaluate empirically the impact of different factors in

identifying style-relevant dimensions, including dimensionality of the subspace and

the nature of the prediction method. We also conduct an error analysis revealing

the limitation of predicting formality based on vector space models.1

3.1 Approach

Our approach to discovering stylistic variations in vector space models is based

on the assumption that these variations cannot be explained by differences in mean-

ing, and they can be captured by salient dimensions of variation in the distributional

spaces.

Lexical paraphrases should have the same meaning, and therefore their em-

beddings should be close to each other. When lexical paraphrases are not in the

same location in the vector space, distances between them might be indicative of

latent style variations. We discover such latent directions using PCA.2

1Code is available at https://github.com/xingniu/computational-stylistic-variations.
2Other algorithms for dimensionality reduction could also be used to discover latent variations,

e.g., multidimensional scaling (MDS) and t-distributed stochastic neighbor embedding (t-SNE).
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Concretely, suppose ei is the word embedding in the vector space for word

wi. Given pairs of word embeddings (e1, e2) for lexical paraphrases (w1, w2), we

subtracted them to get the relative direction d = e1 − e2.

For a given word pair, the difference vector might capture many things besides

style variations. We hypothesize that the regularities among these differences for a

large number of examples will reveal stylistic variations. Therefore, we then trained

a PCA model on all directional vectors to get principal components (pck) capturing

latent variations.

3.2 Qualitative Analysis of Latent Style Dimensions

3.2.1 Models Settings

The approach outlined above requires two types of inputs: (1) a word embed-

ding space, and (2) a set of lexical paraphrases.

Word Embeddings We use word2vec (Mikolov et al., 2013) to build 300-dimensional

vector space models for two corpora representing different genres. As suggested by

Brooke et al. (2010), we select the ICWSM 2009 Spinn3r dataset (English tier-1) as

the training corpus (Burton et al., 2009). It consists of about 1.6 billion words in 7.5

million English blogs and is expected to have wide variety of language genres. We

also compare it with the pre-trained 300-dimensional model of Google News,3 which

represents an even larger training corpus but in a narrower register. By working

3https://code.google.com/archive/p/word2vec/
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with two different corpora, we aim to discover whether they share some common

stylistic variations even though they have distinct word distributions.

Lexical Paraphrases PPDB 2.0 (Pavlick et al., 2015) provides automatically

extracted lexical paraphrases with entailment annotations. We use the S-size pack

and extract word pairs with Equivalence entailment relation, which represent a

cleaner subset of the original PPDB. This process yields 9,427 paraphrase pairs found

in the vocabulary of the blogs embeddings and 6,988 pairs found in the vocabulary

of the Google news embeddings.

3.2.2 Analysis

We illustrate the principal components discovered in Table 3.1. For each of

the top principal components, we can identify the most representative word pairs

for that component by projecting all word pairs on pck and ranking pairs based on

d · pck.

The first observation is that the first principal components for both blogs

and news corpora capture the pattern of American/British-English variations (grey-

boxed in the Table). These might also be related to the formality dimension of

style, as British-English can be regarded to be more formal than American-English

(Hurtig, 2006). However, not all representative word pairs fall in that category, and

the nature of the variation between e.g., “annulling” and “canceling” is harder to

characterize.

We can observe clues of stylistic variations in the subsequent (second+) prin-
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k Representative word pairs

ICWSM 2009 Spinn3r Blogs

1
annulling • canceling ‖ abolished • canceled ‖ centre • center ‖ emphasise • highlight

programme • program ‖ imperatives • essentials ‖ motorway • freeway ‖ labour • labor

organised • organize ‖ six-party • six-way ‖ tranquility • serenity ‖ tripartite • three-way

2
spendings • expenditures ‖ summons • subpoenas ‖ anti-malaria • antimalarial
doctor • physician ‖ falls • decreases ‖ banned • prohibiting ‖ fallen • decreased

3 decreased • receded ‖ decreased • fallen ‖ decreased • declined ‖ decreased • shrank

4
agreements • understandings ‖ unlimited • unbounded ‖ disruptions • perturbations
discriminatory • discriminative ‖ timetable • time-scale ‖ amended • altered ‖ ban • forbidden

5
underscored • underline ‖ eliminated • delete ‖ highlights • underline ‖ widened • expand
widened • broaden ‖ emphasises • underline ‖ decreased • reduce ‖ performed • fulfil

6
co-operate • collaborating ‖ interdomain • cross-domain ‖ cooperate • collaborating
origin • sourcing ‖ executions • implementations ‖ multifunctional • cross-functional

7
refusing • rebuffs ‖ stopped • halts ‖ stress • underlines ‖ inspected • reviewed
withdrawals • withdraws ‖ supervising • oversees ‖ stress • emphasises ‖ refused • rejects

8
restarting • revitalising ‖ co-operation • collaborations ‖ cooperation • collaborations
restart • resumes ‖ cleric • clergymen ‖ cooperates • collaborates ‖ expel • expulsions

9
obtain • gain ‖ multi-factor • multifactorial ‖ restricts • hampers ‖ retrieves • recovers
obstructs • hampers ‖ revoking • canceling ‖ contravened • breaches ‖ invalidated • canceled

10
delete • eliminate ‖ underline • stresses ‖ underline • emphasises ‖ schema • schemes
restarting • revitalising ‖ decreased • reduce ‖ underline • highlight ‖ permissions • permits

Google News

1
educator • educationist ‖ ousts • deposes ‖ exemptions • derogations ‖ educator • educationalist

legal • juridical ‖ truck • lorry ‖ exceptions • derogations ‖ accomplishments • attainments

roadway • carriageway ‖ prohibit • proscribe ‖ freeway • motorway ‖ lucrative • remunerative

2 standardize • standardizing ‖ intercept • intercepting ‖ evacuate • evacuating ‖ isolate • isolating
3 destroys • demolishing ‖ solves • resolving ‖ impedes • obstructing ‖ examines • investigating
4 falls • decreases ‖ widens • increases ‖ spends • expenditures ‖ shrinks • decreases

5
infeasible • impracticable ‖ impossible • impracticable ‖ earmarks • allocates
unworkable • impracticable ‖ confines • restricts ‖ impractical • impracticable

Table 3.1: Representative word pairs for top principal components (indexed by
k) are listed for both blogs and news corpora. A mixed variation of formality and
American-British English (grey-boxed) can be characterized by the first principal
component, but the following principal components seem vaguer in terms of inter-
preting stylistic variations.
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cipal components, but in general it is difficult to interpret each group. Several

word pairs illustrate formality variations (e.g., “falls” ↔ “decrease”, “delete” ↔

“eliminate”). Many word pairs are literally exchangeable, but one in the pair is pre-

ferred under a specific context, such as “summons” vs. “subpoenas”, “decreased”

vs. “fallen”, etc. Some principal components simply capture groups of words having

semantic correlations, such as the third PC of blogs and the fourth PC of news (all

contain “decrease/increase”), due to the biased word distribution of PPDB.

Although blogs and news corpora are expected to have different word distribu-

tions, they share the stylistic variation patterns mentioned above. One key difference

between the principal components discovered in these two embedding spaces can be

found in the second and third principal components of the news corpus, where “base

(verb) ↔ present participle” is a dominant pattern, while it cannot be found in the

top principal components of the blogs corpus.

Overall, this manual inspection suggests that the principal components do

capture information that is relevant to style variations, even if they do not directly

align to clear-cut style dimensions. Identifying how many top PCs are style-related

(i.e., form a style subspace) is subjective and difficult. Therefore, we now turn to a

quantitative evaluation.

3.3 Extrinsic Evaluation: Lexical Formality Scoring

We evaluate the usefulness of the latent dimensions discovered in Section 3.2

on a lexical formality prediction task. If the dimensions discovered are relevant to
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style, they should help predict formality.

3.3.1 Identifying a Style Subspace

3.3.1.1 Experimental Set-Up

Task Following Brooke et al. (2010), we use a list of 399 synonym pairs from a

writing manual — Choose the Right Word (CTRW) (Hayakawa, 1994) — to evaluate

the formality model. Given a pair of words, such as “hurry” vs. “expedite”, the

task is to predict which is the more formal of the two.

Ranking method The predictions are made by linear Support Vector Machine

(SVM, Cortes and Vapnik, 1995) classifiers (similar to the method proposed by

Brooke and Hirst (2014)). They are trained on 105 formal seed words and 138

informal seed words used by Brooke et al. (2010). Each word is represented by a

feature vector in word2vec spaces or their subspaces. When ranking two words, we

actually compare their distances to the separating hyperplane, i.e., w · e− b, where

w, e and b are weight, embedding and bias.

Embedding spaces We first train word2vec (W2V) models on the blogs corpus

with different vector space sizes (dimensionality=1–10, 15, 20, 25, 30, 35, 40, 45,

50, 100, 150, 200, 250, 300, 350, 400, 450, 500). We then fix the vector space size of

word2vec models to 300 since it provides a large enough original vector space and

is a routinely used setting. All subspaces are extracted from these 300-dimensional

original spaces.
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Figure 3.1: Train accuracy of formal/informal words classification and test accuracy
of CTRW word-pair ranking vs. the (sub)space dimensionality. An SVM-based
formality model achieved the best test performance on subspaces identified by PCA
on PPDB data.

Style subspaces Next, we identify style subspaces (i.e., top PCs) using the PCA

method introduced in Section 3.1. We examine every possible subspace size in the

range of [1, 300] and denote this method as PCA-PPDB.

For comparison, we also train PCA subspaces using the seed words (PCA-seeds).

Since seed words are not paraphrases, the PCA model is simply applied on word

vectors. This method is based on the assumption that representative formal and

informal words principally vary along the direction of formality.

3.3.1.2 Results

As illustrated in Figure 3.1, *** train indicates the training accuracy of SVM

classifiers while *** test indicates the CTRW-pairs test accuracy.

The test accuracy of the W2V curve has two peaks when dimensionality=10

(accuracy=0.798) and dimensionality=300 (accuracy=0.792). Considering the near-
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monotonicity of the training accuracy curve, we attribute the trough around dimen-

sionality=45 to over-fitting (increasing number of features) while we attribute the

rebound after that to more formality-related dimensions introduced.

Recall that we fix the original spaces to 300 dimensions. The accuracy curve

provides another reason to choose this number: 300-dimensional original spaces can

model formality well by itself and the performance converges when dim ≥ 300.

Comparing PCA-PPDB test and W2V test, we can observe a clear advantage

of using subspaces that capture latent lexical variations. Even a single first prin-

cipal dimension surpassed original word2vec models of any size, including the full

300-dimensional space which yielded a test accuracy of 0.792. Further improve-

ments were achieved when 9th-21st principal dimensions were introduced (max ac-

curacy=0.826) — go back to Table 3.1, we can notice additional clues of formality

variations from the 9th PC.

The accuracy curves of PCA-seeds indicate that this model can fit the train-

ing set better with fewer dimensions than the PPDB-based model but does not

generalize as well to unseen test data. However, PCA-seeds still surpassed original

word2vec models of any size.

3.3.2 SVM-Based Ranking vs. Other Formality Models

We have discussed the effectiveness of modeling formality using a subspace of

small size (one for good performance and ∼20 for best performance). All analyses

so far are based on a linear SVM, but can other sophisticated methods perform even

39



better on the style-embedded subspaces?

3.3.2.1 Formality Models

We compare SVM with state-of-the-art lexical formality models based on vector

space models, such as SimDiff (Brooke et al., 2010) and Densifier (Rothe et al.,

2016). Suppose each word w is represented as a k-dimensional vector ew.

SimDiff scores the formality of a word w by comparing its meaning to that of

seed words of known formality using cosine similarity (Turney and Littman, 2003).

Intuitively, w is more likely formal if it is semantically closer to formal seed words

than to informal seed words.

Formally, given a formal word set SF and an informal word set SI , SimDiff

scores a word w by calculating the difference between the similarity of w and each

of these sets:

score(w) =
1

|SF |
∑
v∈SF

cos(ew, ev)−
1

|SI |
∑
v∈SI

cos(ew, ev). (3.1)

While Brooke et al. (2010) use cosine to measure the similarity in Latent Semantic

Analysis (LSA, Dumais et al., 1988; Deerwester et al., 1990) spaces, we replace

it with dot product (i.e., ew · ev) because it yields better results with word2vec

embeddings on our test set.

Further manipulations such as score de-biasing and normalization are also in-

troduced by Brooke et al. (2010), but they do not affect formality rankings examined

by our evaluation.
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Densifier is a supervised learning algorithm that transforms word embeddings

into pre-defined dense orthogonal dimensions such as sentiment and concreteness.

Under the formality ranking scenario, it optimizes a formality dimension d (transi-

tion vector) that aims at separating words in SF and words in SI (i.e., SF × SI),

and grouping words in the same set (i.e., S2
F ∪ S2

I ):

arg min
d

∑
(u,v)∈S2

F∪S
2
I

‖d · (eu − ev)‖ −
∑

(u,v)∈SF×SI

d · (eu − ev). (3.2)

Note that the second term in this objective is equivalent to arg maxd
∑

(u,v)∈SF×SI
d ·

eu + |d · ev|, which is similar to the objective of acquiring the first component d

from all data using PCA: arg maxd
∑

v∈SF∪SI
(d · ev)2.

The word formality can be simply assigned as the dot product of d and ew:

score(w) = d · ew. (3.3)

3.3.2.2 Results

All three formality scoring models (i.e., linear SVM, SimDiff and Densifier)

are applied to subspaces extracted from 300-dimensional word2vec spaces using PCA

on PPDB data. Figure 3.2 shows that these three models achieve nearly identical

accuracy on subspaces with size smaller than 28.4 Furthermore, we also compare

the formality directions discovered by a linear SVM (coefficient w) and a Densifier

(transition vector d). For any dimensionality, the cosine similarity between them

is larger than 0.8. It is even larger than 0.9 when dim ≥ 21. These suggest that

the choice of ranking models has marginal impact, therefore identifying the style

4SVM could also have similar accuracy curve after dimension=28 if an RBF kernel was used.
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Figure 3.2: Test accuracy of CTRW word-pair ranking vs. the subspace dimension-
ality. All formality models achieved similar performance on subspaces of size 9-21
identified by PCA-PPDB.

subspace plays a more critical role in modeling formality.

3.3.3 Error Analysis

Identified subspaces capture formality decently in terms of ranking lexical

formality — as high as 0.826 accuracy in the CTRW dataset (based on the best

performing model, i.e., a linear SVM trained on a 20-dimensional subspace identified

by PCA-PPDB). The question then arises: what types of errors contribute to the

incorrect predictions?

Top (mis-)predicted CTRW word pairs are listed in Table 3.2, where si is the

SVM (formality) score for word wi. w2 is supposed to be more formal than w1.

One category of errors roots in the mechanism of vector space models such

as word2vec: they are all based on word co-occurrence patterns, which sometimes

introduce unwanted biases. For example, “crony” itself is an informal synonym of
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w1 w2 s1 s2 s2 − s1

Incorrect Examples
crony friend ‡† 0.667 -1.414 -2.081
conceit vanity ‡ 1.107 -0.697 -1.804
present † gift 1.017 -0.732 -1.749
shiv knife ‡ 0.681 -0.863 -1.543
quotation quote ‡ 0.910 -0.594 -1.504
frighten scare ‡ 0.157 -1.244 -1.400
phony fake † 0.237 -1.100 -1.337
parched dehydrated † 0.173 -1.035 -1.209
punish ‡ chasen 0.260 -0.697 -0.956
penetrating ‡ perspicacious 1.527 0.644 -0.883

Correct Examples
grill ‡ interrogate -1.370 1.212 2.581
excuse ‡ remit -0.608 2.001 2.609
gardening ‡† tillage -0.846 1.795 2.641
get ‡† obtain -1.435 1.296 2.731
hurry ‡ expedite -1.632 1.174 2.806
catch ‡† apprehend -1.443 1.381 2.824
watch ‡ observe -1.628 1.264 2.892
loud ‡† clamorous -1.304 1.819 3.123
quote ‡‡ adduce -0.594 2.529 3.123
beach ‡† littoral -1.116 2.143 3.259

Table 3.2: Top (mis-)predicted CTRW word pairs, where si is the SVM (formality)
score for word wi. w2 is supposed to be more formal than w1. † This word is more
frequent than the other in a pair according to the blogs corpus. (‡/ ‡ †/ ‡ ‡ means
at least 10/100/1000 times more.)

“friend” in our dataset. However, “crony capitalism” is a tightly glued economy

term. For comparison, the formality score of “capitalism” is 0.966, which is very

close to 0.667 of “crony”.

Ambiguity is another key factor that influences the formality scoring based on

vector space models. Arora et al. (2018) pointed out that in the vector space, a word

having multiple meanings lies in middle of its senses. Consequently, its formality

score is also controlled by all its senses. We can find many ambiguous words in
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the list of incorrect examples, such as “vanity” (clothing store, singer), “present”,

“shiv” (Hindu god), “parched” (film), “chasen” (surname, band), etc.

Last but not least, word frequency is a strong signal of predicting formality,

but it also sometimes misleads predictions. We use word frequencies in the blogs

corpus to rank CTRW word pairs and got an accuracy as high as 0.771 (by arguably

treating more frequent as less formal). Frequency information is not designed to be

embedded into word2vec models, but it still can be partially reconstructed (Rothe

et al., 2016). Projecting to the top (in)correct examples, a † symbol is placed

behind the more frequent word in a pair. We can observe that top correctly ranked

pairs follow the more-frequent-less-formal rule. However, this rule also biases the

prediction to some incorrectly ranked pairs.

In a nutshell, formality models based on vector space models suffer from the

limitation that a word representation is affected by word association, word sense

and word frequency.

3.4 Summary

We presented an approach to discovering stylistic variations in distributional

vector spaces using lexical paraphrases. Qualitative analysis suggested that the

principal components discovered by PCA indeed captured variations related to style.

Evaluation of a formality prediction task demonstrated the benefits of the induced

subspace to detect style variations. We also compared the impact of different factors

in identifying style-relevant dimensions such as the training data for PCA, the di-
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mensionality of subspaces, and the nature of prediction methods. Finally, the error

analysis indicated some intrinsic limitation of comparing style (formality) based on

vector space models.
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Chapter 4: Reranking-Based Formality-Sensitive Machine Transla-

tion

Given formality annotations derived from modeling stylistic variations (Chap-

ter 3), we are now able to control the formality of machine translation output. We

introduce a new task for this purpose: Formality-Sensitive Machine Translation

(FSMT). In addition to the input text in the source language, an FSMT system

takes the desired formality for the output as input. This formality can be seen as

approximating the intended audience of the translation. For example, the French

sentence “Bonne idée, mais elle ne convient pas ici.” could be translated to “Good

idea but it doesn’t fit here.”, which is informal because it elides the subject and

uses contractions and chained clauses. It could also be translated more formally

to “This is a helpful idea. However, it is not suitable for this purpose.”, which is

grammatically complete and uses more formal and precise terms.

Our goal is to obtain a single MT system trained on diverse data which can

adaptively produce output for a range of styles. By contrast, building multiple

formality-specific systems is less flexible. To this end, we implement the initial

FSMT system by n-best reranking — translation hypotheses matching desired for-

mality level are promoted. This model is based on a standard PBMT architecture.
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We first select a lexical formality model providing the most accurate scores

on intrinsic sentential formality datasets. We then turn to machine translation

and show that a lexical formality model can have a positive impact when used to

control the formality of machine translation output. When the expected formality

matches the reference, we obtain improvement of translation quality evaluated by

an automatic metric (i.e., BLEU). A human assessment also verifies the effectiveness

of our system in generating translations at diverse levels of formality.

4.1 Formality Modeling

The FSMT system requires quantifying the formality level of a sentence. Fol-

lowing prior work, we define sentence-level formality based on lexical formality scores

(Brooke et al., 2010; Pavlick and Nenkova, 2015). We conduct an empirical com-

parison of existing techniques that can be adapted as lexical formality models, and

introduce a sentence-level formality scheme based on the weighted average.1

4.1.1 Lexical Formality

4.1.1.1 Models Based on Word Representations

We have discussed some prominent existing lexical formality models in Chap-

ter 3 (Section 3.3), such as SVM (Brooke and Hirst, 2014), SimDiff (Brooke et al.,

2010) and Densifier (Rothe et al., 2016).

Turning scores generated by different models into a unified scale requires fur-

1Code is available at https://github.com/xingniu/computational-stylistic-variations.
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ther manipulation. A neutral word r has to be manually selected to anchor the

midpoint of the formality score range. In other words, the final formality score for

r is enforced to be zero:

Formality(w) =
score(w)− score(r)

normalizer(w, r)
. (4.1)

The neutral word is typically selected from function words. We select “at” because it

appears in nearly every document and appears with nearly equivalent probabilities in

formal and informal corpora (SF and SI). Finally, a normalizer which is maximized

among the whole vocabulary ensures that scores cover the entire [−1, 1] range:

normalizer(w) =


maxv∈SF

(score(v)− score(r)), if score(w)− score(r) ≥ 0

maxv∈SI
| score(v)− score(r)|, if score(w)− score(r) < 0

.

(4.2)

In addition to Densifier which identifies a one-dimensional subspace that

captures formality within the original vector space, we also directly train a PCA

model on word representations of all seeds and chose the top principle component

as the formality dimension.

4.1.1.2 Models Based on Word Statistics

We also compare above models to a baseline that relies on unigram models to

compare word statistics in corpora representative of formal vs. informal language

(Pavlick and Nenkova, 2015). This model requires examples of formal and informal

language and maps a word w to a continuous score:

Formality(w) = log
P (w |FM)

P (w |FM + IFM)
, (4.3)
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where FM is the formal language corpus such as government documents, and IFM

is the informal text such as telephone conversation transcripts. Word probabilities

are estimated by unigram language models.

We modify this ratio to obtain scores that can be interpreted and used more

easily. First, an adjusted ratio is defined as

r(w) = sign(c) ·

[(
P (w |FM)

P (w | IFM)

)sign(c)

− 1

]
, (4.4)

where sign(c) extracts the sign of c = P (w |FM) − P (w | IFM) and makes this

function rotationally symmetric. The −1 term aims at centering neutral words

which have the same probabilities in both stylistic directions. The word count of w

is smoothed to 0.1 if w is not in FM or IFM. Then, a simple sigmoid function with

parameter α can normalize the ratio to [−1, 1]:

Formality(w) =
r(w)

α + |r(w)|
. (4.5)

The normalization function is monotone so that the rankings obtained with the

original formality score (in Equation 4.3) are retained, but it can distort the score

density by tuning α.2 This model is denoted as ProbRatio.

4.1.2 From Word to Sentence Formality

While previous work scored longer text by averaging word scores (Brooke and

Hirst, 2014; Pavlick and Nenkova, 2015), we propose a weighted average scheme for

word sequences W to downgrade the formality contribution of neutral words:

Formality(W ) =

∑
wi∈W |Formality(wi)| · Formality(wi)∑

wi∈W |Formality(wi)|
, (4.6)

2α is set to 0.5 in our experiments.
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where Formality(w) can be any of the lexical formality scores defined above.3

4.1.3 Evaluation

In order to chose an appropriate method for annotating MT data, we evaluate

the formality models at the sentence level. Lahiri (2015) and Pavlick and Tetreault

(2016) collect 5-way human scores for 11,263 sentences in the genres of blog, email,

answers and news. Following Pavlick and Tetreault (2016), we average human scores

for each sentence as the gold standard. We evaluate according to the root-mean-

square error (RMSE) after re-scaling manual scores to [−1, 1]. RMSE takes into

account the actual value of the formality score (cf. the correlation) and magnifies

large errors (cf. the mean absolute error). It is arguably a more useful indicator of

performance given our goal of using the formality score in downstream applications.

A large mixed-topic corpus is required to train vector space models. As in

Chapter 3, we use the ICWSM 2009 Spinn3r dataset (English tier-1) which consists

of 1.6 billion words in 7.5 million English blogs (Burton et al., 2009). We also com-

pare the term-document association model Latent Semantic Analysis (LSA, Dumais

et al., 1988; Deerwester et al., 1990) and the term-term association model word2vec

(W2V, Mikolov et al., 2013). We use the same 105 formal seeds and 138 informal

seeds as Brooke et al. (2010).

Following Brooke et al. (2010), to achieve best performance, we use a small

dimensionality (i.e., 10) for training LSA and W2V. To achieve better performance,

we normalize the LSA word vectors to make them have a unit length.

3The weighted average performs better than the standard average in preliminary experiments.
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LSA W2V
SimDiff 0.353 0.404
SVM 0.361 0.424
PCA 0.352 0.390
Densifier 0.350 0.413
ProbRatio 0.395

Table 4.1: Sentence-level formality quantifying evaluation (RMSE) among different
models with different vector spaces.

ProbRatio requires language examples of diverse formality. Conversational

transcripts are generally considered as casual text, so we concatenate corpora such

as Fisher (Cieri et al., 2004), Switchboard (Godfrey et al., 1992), SBCSAE,4 Call-

Home,5 CallFriend,6 BOLT SMS/Chat (Song et al., 2014) and NPS Chatroom

(Forsythand and Martell, 2007). As the formal counterpart, we extract compa-

rable size of English text from Europarl (Koehn, 2005). This results in 30 Million

tokens of formal corpora (1.1M segments) and 29 Million tokens of informal corpora

(2.7M segments).

Table 4.1 shows that LSA-based methods perform best on sentence-level eval-

uations. LSA captures term-document associations. At the sentence-level, such

associations might help capture topic words that are effective indicators of formal-

ity even if they do not represent stylistic variations. W2V co-occurence is based on

a narrow context window, and thus might not capture topic information as term-

document co-occurrence can. So we select Densifier-LSA as a representative for

our FSMT system.

4https://www.linguistics.ucsb.edu/research/santa-barbara-corpus

5https://catalog.ldc.upenn.edu/LDC97S42

6https://talkbank.org/access/CABank/CallFriend/
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4.2 Formality-Sensitive Machine Translation

FSMT takes two inputs: text in the source language to be translated (i.e. X)

and a desired formality level capturing the intended audience of the translation

(i.e., `). An FSMT model with parameters θ aims at finding the most probable

translation Ŷ , i.e.

Ŷ = arg max
Y`

P (Y`|X, `;θ). (4.7)

We propose to implement FSMT as n-best reranking within a standard PBMT

architecture and therefore introduce a formality-scoring feature for reranking. For

each English translation hypothesis Y , given the formality level ` as a parameter:

h(e; `) = |Formality(Y )− `| (4.8)

where Formality(Y ) is the sentence-level formality score for Y .

This formality feature h(Y ; `), along with standard model features, is fed into

a standard reranking model. When training the reranking model, the parameter `

is set to the actual formality score of the reference translation for each instance. At

test time, ` is provided by the user. The re-scoring weights help promote candidate

sentences whose formality scores approach the expected level.

4.2.1 Experimental Set-Up

Task and Data We evaluate this approach on a French to English translation

task. Two parallel French-English corpora are used: (1) MultiUN (Eisele and Chen,

2010), which is extracted from the United Nations website, and can be considered
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to be formal text; (2) OpenSubtitles2016 (Lison and Tiedemann, 2016), which is

extracted from movie and television subtitles, covers a wider spectrum of styles, but

overall tends to be informal since it primarily contains transcripts of conversations.

Each parallel corpus is split into a training set (100M English tokens), a tuning set

(2.5K segments) and a test set (5K segments). Two corpora are then concatenated,

such that training, tuning and test sets all contain a diversity of styles.

MT Set-Up The Moses (Koehn et al., 2007) toolkit is used to build our PBMT

system. We follow the standard training pipeline with default parameters.7 Word

alignments are generated using fast align (Dyer et al., 2013), and symmetrized

using the grow-diag-final-and heuristic. We use 4-gram language models, trained

using KenLM (Heafield, 2011). Model weights are tuned using batch MIRA (Cherry

and Foster, 2012).

We use constant size n=1000 for n-best lists in all experiments. The reranking

is a log-linear model trained using batch MIRA.8 We report results averaged over

five random tuning re-starts to compensate for tuning noise (Clark et al., 2011).

FSMT In order to evaluate the impact of different input formality (e.g., low/neutral

/high) on translation quality, ideally, we would like to have three human reference

translations with different formality for each source sentence. Since such references

are not available, we construct three sets of test data where instances are divided

according to the formality level of the available reference translation. The sentential

7http://www.statmt.org/moses/?n=Moses.Baseline

8https://github.com/moses-smt/mosesdecoder/tree/master/scripts/nbest-rescore
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Informal Neutral Formal
Desired Formality test set test set test set

None (baseline) 39.74 40.17 47.97
low 40.27 39.65 47.76

neutral 38.70 40.46 47.84
high 37.58 39.53 47.97

Table 4.2: Translation quality (BLEU scores) on informal/neutral/formal sentence
sets given different desired formality levels (−0.4, 0.0, 0.4). Best results with statis-
tical significance are highlighted.

formality distribution in the tuning set shows that 97% of the reference translations

fall into the range of [−0.6, 0.6]. We therefore set three formality bins — informal

[−1,−0.2), neutral formality [−0.2, 0.2], and formal (0.2, 1] — and split the test set

into these bins. We use Densifier-LSA and the training setting described above

to translate the entire test set three times, with three different formality levels: low

(−0.4), neutral (0) and high (0.4).9

4.2.2 Automatic Evaluation

We first report standard automatic evaluation results using the BLEU score

to compare FSMT output given different desired formality level on each bin (see

Table 4.2).

The best BLEU scores for each formality level are obtained when the level of

formality given as input to the MT system matches the nature of the text being

translated, as can be seen in the scores along the diagonal in Table 4.2. Comparing

with the baseline system, which produces the top translation from each n-best list,

translation quality improves by +0.5 BLEU on informal text, +0.3 BLEU on neutral

9±0.4 yields best BLEU on the tuning set.
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text, and remains constant on formal text. The impact increases with the distance to

formal language. This can be explained by the fact that more formal sentences tend

to be longer, and the impact of alternate lexical choice for a small number of words

per sentence is smaller in longer sentences. In addition, the formal sentences are

mostly drawn from UN data which is sufficiently different from the other registers in

the heterogeneous training corpus that the informal examples do not affect baseline

performance on formal data.

4.2.3 Human Assessment

Automatic evaluation is limited to comparing output to a single reference:

lower BLEU scores conflate translation errors and stylistic mismatch. Therefore, we

conduct a human study of the formality vs. the quality.

We conduct a manual evaluation of the output of our FSMT system taking

low/high formality levels (-0.4/0.4) as parameters. 42 non-identical translation pairs

are randomly selected and are annotated by 15 volunteers. For each pair of segments,

an average of seven volunteers are asked to select the segment that would be more

appropriate in a formal setting (e.g., a job interview) than in a casual setting (e.g.,

chatting with friends). A default option of “N: neither of them is more formal or

hard to say” is also available to annotators.

By majority voting, 20 pairs are annotated as “N”, indicating the two transla-

tions has no distinctions with respect to formality. For example, “A: how can they

do this” vs. “B: how can they do that”. Given that the translations are restricted
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to the n-best list, not all sentences could be translated into stylistically different

language.

Of the remaining 21 pairs where annotators judge one output more formal than

the other, in all but one case the translation produced by our FSMT system with

high formality level parameter is judged to be more formal. Overall this indicates

that our formality scoring and ranking procedure are effective.

To determine whether reranking based on formality might have a detrimental

effect on quality, we also have annotators rate the fluency and adequacy of the seg-

ments. Inspired by Graham et al. (2013), annotators are first asked to assess fluency

without a reference and separately adequacy with a reference. Both assessments use

a sliding scale. Each segment is evaluated by an average of seven annotators. After

rescaling the ratings into the [0, 1] range, we observe a 0.75 level of fluency for infor-

mal translations and 0.70 for formal ones. This slight difference fits our expectation

that more casual language may feel more fluent while more formal language may feel

more stilted. The adequacy ratings are 0.65 and 0.64 for informal and translations

respectively, indicating that adjusting the level of formality had minimal effect on

the adequacy of the result.

Some interesting examples are listed in Table 4.3. Occasionally, the n-best list

has no translation hypotheses with diverse formality, so the FSMT system drops

necessary words, appends inessential words, or selects improper or even incorrect

words to fit the target formality level. In the case of “how do you do”, the translation

that is meant to be more casual is rated more formal. Because the system measures

formality on the lexical level, it is not able to recognize this idiomatically formal
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` Examples Comments
-0.4 ... and then he ran away . –
0.4 ... and then he escaped . annotated as more formal

-0.4 anybody hurt ? –
0.4 is someone wounded ? annotated as more formal

-0.4 he shot himself in the middle of it . –
0.4 he committed suicide in the middle of it . annotated as more formal

-0.4 to move things forward . –
0.4 in order to move the process forward. annotated as more formal

-0.4 i’m a police officer for about 40 years . –
0.4 i’m in the police force of approximately 40 years . annotated as more formal

-0.4 how do you do ? annotated as more formal
0.4 how are you? –

-0.4 oh , val , you should get the phone . missing words
0.4 oh , val , you should have the phone (of pete) . –

-0.4 i believe you’ve solved the case , lieutenant . additive words
0.4 you solved the case , lieutenant . –

REF right by checkout .
-0.4 right next to the body . incorrect word choice
0.4 right next to the fund . incorrect word choice

Table 4.3: Examples of variant translations to the same French source segment using
low/high output formality levels (-0.4/0.4) as parameters. In general the variations
lie on the direction of formality as expected, but occasionally translation errors
occur.

phrase made up of words that are not inherently formal. Despite these issues, most

of the output are formality-variant translations of the same French source segment,

as expected.

4.3 Summary

We presented a PBMT-based framework for formality-sensitive machine trans-

lation, where a system produces translations at the desired formality level. Auto-

matic and human evaluation showed the effectiveness of this system in controlling

language formality without loss in translation quality. However, the space of possi-

ble outputs is limited to lexical changes and n-best translation hypotheses. We will
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turn to using neural models to capture more context in the following chapters.
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Chapter 5: Bi-Directional Low-Resource Neural Machine Translation

Lexical formality models provide useful but imperfect estimation of sentential

formality — lexical formality scores could be biased by word association, word sense

and word frequency (as discussed in Section 3.3.3), and they are not able to charac-

terize idiomatic phrases (as discussed in Section 4.2.3). By contrast, neural models

provide a more promising approach to model formality of sentences.

Formality style transfer can be viewed as a low-resource MT problem given a

limited number of parallel examples with diverse formality styles. NMT has become

the new standard of MT as it consistently outperforms previous methods across

domains and language pairs (Bojar et al., 2017; Cettolo et al., 2017). However,

NMT systems still struggle compared to PBMT in low-resource or out-of-domain

scenarios (Koehn and Knowles, 2017).

In this chapter, we research how to improve the translation quality of low-

resource NMT independently of style by making better use of various sources of

training data. In Section 5.1, we first propose a bi-directional NMT framework

inspired by multi-task learning. It trains both directions of a language pair jointly

with a single model. Joint training can leverage limited training data effectively via

duplication. In Section 5.2, we further introduce a differentiable input reconstruction
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loss to bi-directional NMT, aiming at exploiting the source side of parallel samples.

This loss compares original inputs to reconstructed inputs, which are obtained by

back-translating translation hypotheses into the input language.

5.1 Bi-Directional Models with Synthetic Parallel Data

A technique for overcoming a lack of data is multi-task learning, in which do-

main knowledge can be transferred between related tasks (Caruana, 1997). Johnson

et al. (2017) apply the idea to multilingual NMT by concatenating parallel data of

various language pairs and marking the source with the desired output language.

The authors report promising results for translation between languages that have

zero parallel data. This approach also dramatically reduces the complexity of de-

ployment by packing multiple language pairs into a single model.

In many low-resource scenarios, parallel data is prohibitively expensive or oth-

erwise impractical to collect, whereas monolingual data may be more abundant.

NMT systems consist of one large neural network that performs full sequence-to-

sequence translation. Trained end-to-end on parallel data, these models lack a direct

avenue for incorporating monolingual data. Sennrich et al. (2016b) overcome this

challenge by back-translating target monolingual data to produce synthetic paral-

lel data that can be added to the training pool. While effective, back-translation

introduces the significant cost of first building a reverse system.

We propose a novel combination of multilingual NMT and back-translation

that trains both directions of a language pair jointly with a single model. Specifically,
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Figure 5.1: The framework of bi-directional NMT with synthetic parallel data. A
bi-directional model (Model-1) is initialized on parallel data, and it translates select
source and target monolingual data. Training is then continued on the augmented
parallel data, leading to a cycle of improvement (→ Model-2 → Model-3).

we initialize a bi-directional model on parallel data and then use it to translate select

source and target monolingual data. Training is then continued on the augmented

parallel data, leading to a cycle of improvement. This approach (Figure 5.1) has

several advantages:

• A single NMT model with standard architecture that performs all forward and

backward translation during training.

• Training costs reduced significantly compared to uni-directional systems.

• Improvements in translating quality for low-resource languages, even over uni-

directional systems with back-translation.

• Effectiveness in domain adaptation.

Via comprehensive experiments, we also contribute to best practices in select-

ing most suitable combinations of synthetic parallel data and choosing appropriate

amount of monolingual data.
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5.1.1 Approach

We introduce building bi-directional NMT with synthetic parallel data and

present a strategy for selecting suitable monolingual data for back-translation.

5.1.1.1 Bi-Directional NMT with Synthetic Parallel Data

We use the techniques described by Johnson et al. (2017) to build a multilin-

gual model that combines forward and backward directions of a single language pair.

To begin, we construct training data by swapping the source and target sentences

of a parallel corpus and appending the swapped version to the original. We then

add an artificial token to the beginning of each source sentence to mark the desired

target language, such as <2en> for English. A standard NMT system can then be

trained on the augmented dataset, which is naturally balanced between language

directions.1 A shared Byte-Pair Encoding (BPE) model is built on source and tar-

get data, alleviating the issue of unknown words and reducing the vocabulary to a

smaller set of items shared across languages (Sennrich et al., 2016c; Johnson et al.,

2017). We further reduce model complexity by tying source and target word em-

beddings. The full training process significantly saves the total computing resources

compared to training an individual model for each language direction.

Generating synthetic parallel data is straightforward with a bi-directional

model: sentences from both source and target monolingual data can be translated

to produce synthetic sentence pairs. Synthetic parallel data of the form synthetic

1Johnson et al. (2017) report the need to oversample when data is significantly unbalanced
between language pairs.
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→ monolingual can then be used in the forward direction, the backward direction,

or both. Crucially, this approach leverages both source and target monolingual

data while always placing the real data on the target side, eliminating the need for

work-arounds such as freezing certain model parameters to avoid degradation from

training on MT output (Zhang and Zong, 2016).

5.1.1.2 Monolingual Data Selection

Given the goal of improving a base bi-directional model, selecting ideal mono-

lingual data for back-translation presents a significant challenge. Data too close to

the original training data may not provide sufficient new information for the model.

Conversely, data too far from the original data may be translated too poorly by the

base model to be useful. We manage these risks by leveraging a standard pseudo in-

domain data selection technique, cross-entropy difference (Moore and Lewis, 2010),

to rank sentences from a general domain. Smaller cross-entropy difference indicates

a sentence that is simultaneously more similar to the in-domain corpus (e.g., real

parallel data) and less similar to the average of the general-domain monolingual

corpus. This allows us to begin with “safe” monolingual data and incrementally

expand to higher risk but potentially more informative data.

5.1.2 Experiments

In this section, we describe data, settings, and experimental methodology.

We then present the results of comprehensive experiments designed to answer the
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following questions: (1) How can synthetic data be most effectively used to improve

translation quality? (2) Does the reduction in training time for bi-directional NMT

come at the cost of lower translation quality? (3) Can we further improve training

speed and translation quality training with incremental training and re-decoding?

(4) How can we effectively choose monolingual training data? (5) How well does

bi-directional NMT perform on domain adaptation?

5.1.2.1 Data

Diverse Language Pairs: We evaluate our approach on both high and low-

resource data sets: German↔English (DE↔EN), Tagalog↔English TL↔EN, and

Swahili↔English (SW↔EN). Parallel and monolingual DE↔EN data are provided by

the WMT17 news translation task (Bojar et al., 2017). Parallel data for TL↔EN and

SW↔EN contains a mixture of domains such as news and weblogs, and is provided

as part of the IARPA MATERIAL program.2 We split the shuffled original corpora

into training, dev, and test sets, therefore they share a homogeneous n-gram distri-

bution. For these low-resource pairs, TL and SW monolingual data are provided by

the Common Crawl (Buck et al., 2014) while EN monolingual data is provided by

the ICWSM 2009 Spinn3r blog dataset (tier-1, Burton et al., 2009).

Diverse Domain Settings: For WMT17 DE↔EN, we choose news articles from

2016 (the closest year to the test set) as in-domain data for back-translation. For

TL↔EN and SW↔EN, we identify in-domain and out-of-domain monolingual data and

2https://www.iarpa.gov/index.php/research-programs/material
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apply data selection to choose pseudo in-domain data (see Section 5.1.1.2). We use

the training data as in-domain and either Common Crawl or ICWSM as out-of-

domain. We also include a low-resource, long-distance domain adaptation task for

these languages: training on News/Blog data and testing on Bible data. We split

a parallel Bible corpus (Christodoulopoulos and Steedman, 2015) into sample, dev,

and test sets, using the sample data as the in-domain seed for data selection.

Preprocessing: Following Hieber et al. (2017), we apply four pre-processing steps

to parallel data: normalization, tokenization, sentence-filtering (length 80 cutoff),

and joint source-target BPE with 50,000 operations (Sennrich et al., 2016c). Low-

resource language pairs are also true-cased to reduce sparsity. BPE and true-casing

models are rebuilt whenever the training data changes. Monolingual data for low-

resource settings is filtered by retaining sentences longer than nine tokens. Itemized

data statistics after preprocessing can be found in Table 5.1.

5.1.2.2 NMT Configuration

We use the attentional RNN encoder-decoder architecture implemented in the

Sockeye toolkit (Hieber et al., 2017). Our translation model uses a bi-directional

encoder with a single LSTM layer of size 512, multilayer perceptron attention with

a layer size of 512, and word representations of size 512 (Bahdanau et al., 2015).

We apply layer normalization (Ba et al., 2016) and tie source and target embedding

parameters. We train using the Adam optimizer with a batch size of 64 sentences

and checkpoint the model every 1000 updates (10,000 for DE↔EN) (Kingma and Ba,
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Type Dataset # Sentences
High-resource: German↔English
Training Common Crawl +

Europarl v7 +
News Comm. v12 4,356,324

Dev Newstest 2015+2016 5,168
Test Newstest 2017 3,004
Mono-DE News Crawl 2016 26,982,051
Mono-EN News Crawl 2016 18,238,848
Low-resource: Tagalog↔English
Training News/Blog 50,705
Dev/Test News/Blog 491/508
Dev/Test Bible 500/500
Sample Bible 61,195
Mono-TL Common Crawl 26,788,048
Mono-EN ICWSM 2009 blog 48,219,743
Low-resource: Swahili↔English
Training News/Blog 23,900
Dev/Test News/Blog 491/509
Dev/Test Bible 500/500
Sample Bible 14,699
Mono-SW Common Crawl 12,158,524
Mono-EN ICWSM 2009 blog 48,219,743

Table 5.1: Data sizes of training, development, test, sample and monolingual sets.
Sample data serves as the in-domain seed for data selection.

2015). Training stops after 8 checkpoints without improvement of perplexity on the

development set. We decode with a beam size of 5.

For TL↔EN and SW↔EN, we add dropout to embeddings and RNNs of the

encoder and decoder with probability 0.2. We also tie the output layer’s weight

matrix with the source and target embeddings to reduce model size (Press and

Wolf, 2017). The effectiveness of tying input and output target embeddings has

been verified on several low-resource language pairs (Nguyen and Chiang, 2018).

For TL↔EN and SW↔EN, we train four randomly seeded models for each experi-
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Uni-directional models
ID Training Data TL→EN EN→TL SW→EN EN→SW DE→EN EN→DE

U-1 L1→L2 31.99 31.28 32.60 39.98 29.51 23.01
U-2 L1→L2 + L1*→L2 24.21 29.68 25.84 38.29 33.20 25.41
U-3 L1→L2 + L1→L2* 22.13 27.14 24.89 36.53 30.89 23.72
U-4 L1→L2 + L1*→L2 + L1→L2* 23.38 29.31 25.33 37.46 33.01 25.05
Bi-directional models
ID L1=EN L2=TL L2=SW L2=DE

B-1 L1↔L2 32.72 31.66 33.59 39.12 28.84 22.45
B-2 L1↔L2 + L1*↔L2 32.90 32.33 33.70 39.68 29.17 24.45
B-3 L1↔L2 + L2*↔L1 32.71 31.10 33.70 39.17 31.71 21.71
B-4 L1↔L2 + L1*↔L2 + L2*↔L1 33.25 32.46 34.23 38.97 30.43 22.54
B-5 L1↔L2 + L1*→L2 + L2*→L1 33.41 33.21 34.11 40.24 31.83 24.61
B-5f L1↔L2 + L1*→L2 + L2*→L1 33.79 32.97 34.15 40.61 31.94 24.45
B-6f L1↔L2 + L1*→L2 + L2*→L1 34.50 33.73 34.88 41.53 32.49 25.20

Table 5.2: BLEU scores for uni-directional models (ID=U-k) and bi-directional
NMT models (ID=B-k) trained on different combinations of real and synthetic par-
allel data. Models in B-5f are fine-tuned from base models in B-1. Best models
in B-6f are fine-tuned from precedent models in B-5f and underscored synthetic
data is re-decoded using precedent models. The highest score within each box is
highlighted.

ment and combine them in a linear ensemble for decoding. For DE↔EN experiments,

we train a single model and average the parameters of the best four checkpoints for

decoding (Junczys-Dowmunt et al., 2016). We report case-insensitive BLEU with

standard WMT tokenization.3

5.1.2.3 Uni-Directional NMT

We first evaluate the impact of synthetic parallel data on standard uni-directional

NMT. Baseline systems trained on real parallel data are shown in row U-1 of Ta-

ble 5.2.4 In all tables, we use L1→L2 to indicate real parallel data where the source

language is L1 and the target language is L2. Synthetic data is annotated by aster-

3We use the script https://github.com/EdinburghNLP/nematus/blob/master/data/

multi-bleu-detok.perl
4Baseline BLEU scores are higher than expected on low-resource language pairs. We hypothesize

that the data is homogeneous and easier to translate.
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isks, such as L1*→L2 indicating that L1* is the synthetic back-translation of real

monolingual data L2.

We always select monolingual data as an integer multiple of the amount of real

parallel data n, i.e., |L1→L2*| = |L1*→L2| = kn. For DE↔EN models, we simply

choose the top-n sentences from shuffled News Crawl corpus. For all models of low-

resource languages, we select the top-3n sentences ranked by cross-entropy difference

as described in Section 5.1.1.2. The choice of k is discussed in Section 5.1.2.6.

Shown in rows U-2 through U-4 of Table 5.2, we compare the results of incor-

porating different combinations of real and synthetic parallel data. Models trained

on only real data of target language (i.e., in U-2) achieve better performance in

BLEU than using other combinations. This is an expected result since translation

quality is highly correlated with target language models. By contrast, standard

back-translation is not effective for our low-resource scenarios. A significant drop

(∼7 BLEU points comparing U-1 and U-2 for TL/SW→EN) is observed when back-

translating English. One possible reason is that the quality of the selected monolin-

gual data, especially English, is not ideal. We will encounter this issue again when

using bi-directional models with the same data in Section 5.1.2.4.

5.1.2.4 Bi-Directional NMT

We map the same synthetic data combinations to bi-directional NMT, com-

paring against uni-directional models with respect to both translation quality and

training time. Training bi-directional models requires doubling the training data
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by adding a second copy of the parallel corpus where the source and target are

swapped. We use the notation L1↔L2 to represent the concatenation of L1→L2

and its swapped copy L2→L1 in Table 5.2.

Compared to independent models (i.e., U-1), the bi-directional DE↔EN model

in B-1 is slightly worse (by ∼0.6 BLEU). These losses match observations by John-

son et al. (2017) on many-to-many multilingual NMT models. By contrast, most

bi-directional low-resource models slightly outperform independent models. We hy-

pothesize that in low-resource scenarios the neural model’s capacity is far from

exhausted due to the redundancy in neural network parameters (Denil et al., 2013),

and the benefit of training on twice as much data surpasses the detriment of con-

fusing the model by mixing two languages.

We generate synthetic parallel data from the same monolingual data as in the

uni-directional experiments. If we build training data symmetrically (i.e., B-2,3,4),

back-translated sentences are distributed equally on the source and target sides,

forcing the model to train on some amount of synthetic target data (i.e., MT out-

put). For DE↔EN models, the best BLEU scores are achieved when synthetic training

data is only present on the source side, while for low-resource models, the results are

mixed. We see a particularly counter-intuitive result when using monolingual En-

glish data — no significant improvement (see B-3 for TL/SW→EN). As bi-directional

models are able to leverage monolingual data of both languages, better results are

achieved when combining all synthetic parallel data (see B-4 for TL/SW→EN). By

further excluding potentially harmful target-side synthetic data (i.e., B-4 → B-5),

the most unified and slim models achieve the best overall performance.
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Model TL→EN EN→TL SW→EN EN→SW DE→EN EN→DE

Baseline 76 78 63 66 41 48
Uni-directional Synthetic 177 176 137 104 88 75

TOTAL 507 371 252

Baseline 125 93 61
Bi-directional Synthetic 285 218 113

TOTAL ↓ 19% 410 ↓ 14% 311 ↓ 31% 174
(fine-tuning) Synthetic ↓ 23% 219 ↓ 44% 122 ↓ 24% 86

Table 5.3: Number of checkpoints (= |updates|/1000 for TL/SW↔EN or
|updates|/10,000 for DE↔EN) used by various NMT models. Bi-directional mod-
els (with fine-tuning) reduce training time significantly.

While the best bi-directional NMT models thus far (B-5) outperform the best

uni-directional models (U-1) for low-resource language pairs, it is a struggle to match

performance (U-2) in the high-resource DE↔EN scenario.

In terms of efficiency, bi-directional models consistently reduce the training

time by 15-30% as shown in Table 5.3. Note that checkpoints are summed over all

independent runs when ensemble decoding is used.5

5.1.2.5 Fine-Tuning and Re-Decoding

Training new NMT models from scratch after generating synthetic data is

incredibly expensive, working against our goal of reducing the overall cost of de-

ploying strong translation systems. Therefore, we continue training baseline models

on augmented data as shown in B-5f of Table 5.2. These models achieve com-

parable translation quality to those trained from scratch (B-5) at a significantly

reduced cost, i.e., 20-40% computing time reduction in the experiments illustrated

in Table 5.3.

5The training time is proportional to the number of checkpoints.
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Figure 5.2: BLEU scores for four translation directions vs. the size of selected
monolingual data. n in x-axis equals to the size of real parallel data. EN→SW models
use BLEU in parentheses in y-axis. Both language pairs tend to reach the plateau
with more synthetic parallel data.

We also explore re-decoding the same monolingual data using improved models

(Sennrich et al., 2016b). Underscored synthetic data in B-6f is re-decoded by models

in B-5f , leading to the best results for all low-resource scenarios.

5.1.2.6 Size of Selected Monolingual Data

In our experiments, the optimal amount of monolingual data for construct-

ing synthetic parallel data is task-dependent. Factors such as size and linguistic

distribution of data and overlap between real parallel data, monolingual data, and

test data can influence the effectiveness curve of synthetic data. We illustrate the

impact of varying the size of selected monolingual data in our low-resource scenario.

Shown in Figure 5.2, both language pairs tend to reach the plateau with more syn-

thetic parallel data. The optimal point is a hyper-parameter that can be empirically

determined on a tuning set.
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L2=TL L2=SW

ID Training Data (L1=EN) TL→EN EN→TL SW→EN EN→SW

B-1 L1↔L2 11.03 10.17 6.56 3.80
B-5f L1↔L2 + L1*→L2 + L2*→L1 16.49 22.33 8.70 7.47
B-6f L1↔L2 + L1*→L2 + L2*→L1 18.91 23.41 11.01 8.06

Table 5.4: BLEU scores for bi-directional NMT models on Bible data. Models in
B-5f are fine-tuned from baseline models in B-1. Highlighted best models in B-6f
are fine-tuned from precedent models in B-5f and underscored synthetic data is
re-decoded using precedent models. Baseline models are significantly improved in
terms of BLEU.

5.1.2.7 Domain Adaptation

We evaluate the performance of using the same bi-directional NMT framework

on a long-distance domain adaptation task: News/Blog to Bible. This task is par-

ticularly challenging because out-of-vocabulary (word type) rates of Bible test sets

are as high as 30-45% when training on News/Blog. Significant linguistic differences

also exist between modern and Biblical language use. The impact of this domain

mismatch is demonstrated by the incredibly low BLEU scores of baseline News/Blog

systems (Table 5.4, B-1). After fine-tuning baseline models on augmented parallel

data (B-5f) and re-decoding (B-6f),6 we see BLEU scores increase by 70-130%.

Despite being based on extremely weak baseline performance, they still show the

promise of our approach for domain adaptation.

6The concatenation of development sets from both News/Blog and Bible serves for validation.

72



5.2 Bi-Directional Differentiable Input Reconstruction

In Section 5.1, we improve low-resource NMT by duplicating parallel data and

leveraging monolingual data. We hypothesize that the traditional training can be

complemented by better leveraging limited training data. To this end, we propose a

new training objective for this model by augmenting the standard translation cross-

entropy loss with a differentiable input reconstruction loss to further exploit

the source side of parallel samples.7

Input reconstruction is motivated by the idea of round-trip translation. Sup-

pose sentence X is translated forward to Ŷ using model θXY and then translated

back to X̂ using model θY X , then Ŷ is more likely to be a good translation if

the distance between X̂ and X is small (Brislin, 1970). Prior work applied round-

trip translation to monolingual examples and sampled the intermediate translation

Ŷ from a n-best list generated by model θXY using beam search (Cheng et al.,

2016; He et al., 2016). However, beam search is not differentiable which prevents

back-propagating reconstruction errors to θXY . As a result, reinforcement learning

algorithms, or independent updates to θXY and θY X were required.

In this section, we focus on the problem of making input reconstruction dif-

ferentiable to simplify training. In past work, Tu et al. (2017) addressed this issue

by reconstructing source sentences from the decoder’s hidden states. However, this

reconstruction task can be artificially easy if hidden states over-memorize the input.

This approach also requires a separate auxiliary reconstructor, which introduces

7Implementation is available at https://github.com/xingniu/sockeye/tree/naacl2019.

73

https://github.com/xingniu/sockeye/tree/naacl2019


additional parameters.

We propose instead to combine benefits from differentiable sampling and bi-

directional NMT to obtain a compact model that can be trained end-to-end with

back-propagation. Specifically,

• Translations are sampled using the Straight-Through Gumbel Softmax (STGS)

estimator (Jang et al., 2017; Bengio et al., 2013), which allows back-propagating

reconstruction errors.

• Our approach builds on the bi-directional NMT model, which improves low-

resource translation by jointly modeling translation in both directions (e.g.,

Swahili ↔ English). A single bi-directional model is used as a translator and

a reconstructor (i.e., θXY = θY X) without introducing more parameters.

Experiments show that our approach outperforms reconstruction from hidden

states. It achieves consistent improvements across various low-resource language

pairs and directions, showing its effectiveness in making better use of limited parallel

data.

5.2.1 Approach

Recall that in our bi-directional model, the source sentence can be either X

or Y and is respectively translated to Y or X. The language is marked by a

tag (e.g., <2en>) at the beginning of each source sentence. To facilitate symmetric

reconstruction, we also add language tags to target sentences. The training data

corpus is then built by swapping the source and target sentences of a parallel corpus
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and appending the swapped version to the original.

5.2.1.1 Bi-Directional Reconstruction

Our bi-directional model performs both forward translation and backward re-

construction. By contrast, uni-directional models require an auxiliary reconstruc-

tion module, which introduces additional parameters. This module can be either

a decoder-based reconstructor (Tu et al., 2017; Wang et al., 2018a,b) or a reversed

dual NMT model (Cheng et al., 2016; He et al., 2016; Wang et al., 2018c; Zhang

et al., 2018).

Here the reconstructor, which shares the same parameter with the translator

MT(·), can also be trained end-to-end by maximizing the log-likelihood of recon-

structing X:

LRC =
∑
X

logP (X | MT(X;θ);θ). (5.1)

Combining with the forward translation likelihood LMT in Equation 2.9, we use

LMT + LRC as the final training objective for X → Y . The dual Y →X model is

trained simultaneously by swapping the language direction in bi-directional NMT.

Reconstruction is reliable only with a model that produces reasonable base

translations. Following prior work (Tu et al., 2017; He et al., 2016; Cheng et al.,

2016), we pre-train a base model with LMT and fine-tune it with LMT + LRC .
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5.2.1.2 Differentiable Sampling

We use differentiable sampling to side-step beam search and back-propagate

error signals. We use the Gumbel-Max reparameterization trick (Maddison et al.,

2014) to sample a translation token at each time step from the softmax distribution

in Equation 2.8:

yt = one-hot
(

arg max
k

(
a(ht)k +Gk

))
(5.2)

where a(ht) = Wht + b and Gk is i.i.d. and drawn from Gumbel(0, 1).8 We use

scaled Gumbel with parameter β, i.e., Gumbel(0, β), to control the randomness.

The sampling becomes deterministic (which is equivalent to greedy search) as β

approaches 0.

Since arg max is not a differentiable operation, we approximate its gradient

with the Straight-Through Gumbel Softmax (STGS) (Jang et al., 2017; Bengio et al.,

2013): ∇θyt ≈ ∇θỹt, where

ỹt = softmax
(
(a(ht) +G)/τ

)
(5.3)

As τ approaches 0, softmax is closer to arg max but training might be more unstable.

While the STGS estimator is biased when τ is large, it performs well in practice

(Gu et al., 2018; Choi et al., 2018) and is sometimes faster and more effective than

reinforcement learning (Havrylov and Titov, 2017).

To generate coherent intermediate translations, the decoder used for sampling

only consumes its previously predicted Ŷ<t. This contrasts with the usual teacher

8i.e., Gk = − log(− log(uk)) and uk ∼ Uniform(0, 1).
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forcing strategy (Williams and Zipser, 1989), which always feeds in the ground-truth

previous tokens Y<t when predicting the current token ŷt. With teacher forcing, the

sequence concatenation [Y<t; ŷt] is probably coherent at each time step, but the

actual predicted sequence [Ŷ<t; ŷt] would break the continuity.9

5.2.2 Experiments

5.2.2.1 Tasks and Data

We evaluate our approach on four low-resource language pairs. Parallel data

for Swahili↔English (SW↔EN), Tagalog↔English (TL↔EN) and Somali↔English

(SO↔EN) contains a mixture of domains such as news and weblogs and is collected

from the IARPA MATERIAL program, the Global Voices parallel corpus10, Com-

mon Crawl (Smith et al., 2013), and the LORELEI Somali representative language

pack (LDC2018T11). The test samples are extracted from the held-out ANALY-

SIS set of MATERIAL. Parallel Turkish↔English (TR↔EN) data is provided by the

WMT news translation task (Bojar et al., 2018). We use pre-processed “corpus”,

“newsdev2016”, “newstest2017” as training, development and test sets.11

As in Section 5.1, we apply normalization, tokenization, true-casing, joint

source-target BPE with 32,000 operations (Sennrich et al., 2016c) and sentence-

filtering (length 80 cutoff) to parallel data.12 Itemized data statistics after prepro-

9Sampling with teacher forcing yielded consistently worse BLEU than baselines in preliminary
experiments.

10http://casmacat.eu/corpus/global-voices.html

11http://data.statmt.org/wmt18/translation-task/preprocessed/

12Less BPE operations are used in this section because a smaller vocabulary yields better low-
resource performance.
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# sent. Training Dev. Test
SW↔EN 60,570 500 3,000
TL↔EN 70,703 704 3,000
SO↔EN 68,550 844 3,000
TR↔EN 207,021 1,001 3,007

Table 5.5: Experiments are conducted on four low-resource language pairs, in both
translation directions.

cessing can be found in Table 5.5. We report case-insensitive BLEU with the WMT

standard ‘13a’ tokenization using SacreBLEU (Post, 2018).

5.2.2.2 Model Configuration and Baseline

We build NMT models upon the attentional RNN encoder-decoder architec-

ture (Bahdanau et al., 2015) implemented in the Sockeye toolkit (Hieber et al.,

2017) with the same settings introduced in Section 5.1. Our translation model uses

a bi-directional encoder with a single LSTM layer of size 512, multilayer perceptron

attention with a layer size of 512, and word representations of size 512. We apply

layer normalization (Ba et al., 2016) and add dropout to embeddings and RNNs

(Gal and Ghahramani, 2016) with probability 0.2. We train using the Adam opti-

mizer (Kingma and Ba, 2015) with a batch size of 48 sentences and we checkpoint

the model every 1000 updates.13 The learning rate for baseline models is initialized

to 0.001 and reduced by 30% after 4 checkpoints without improvement of perplexity

on the development set. Training stops after 10 checkpoints without improvement.

The bi-directional NMT model ties source and target embeddings to yield a

13Smaller batch size is used in this section to fit the GPU memory since the new loss enlarges
the computational graph.
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bilingual vector space. It also ties the output layer’s weights and embeddings to

achieve better performance in low-resource scenarios (Press and Wolf, 2017; Nguyen

and Chiang, 2018).

We train five randomly seeded bi-directional baseline models by optimizing

the forward translation objective LMT and report the mean and standard deviation

of test BLEU. We fine-tune baseline models with objective LMT + LRC , inheriting

all settings except the learning rate which is re-initialized to 0.0001. Each randomly

seeded model is fine-tuned independently, so we are able to report the standard

deviation of ∆BLEU.

5.2.2.3 Contrastive Reconstruction Model

We compare our approach with reconstruction from hidden states (Hidden).

Following the best practice of Wang et al. (2018a), two reconstructors are used to

take hidden states from both the encoder and the decoder. The corresponding two

reconstruction losses and the canonical translation loss were originally uniformly

weighted (i.e., 1, 1, 1), but we found that balancing the reconstruction and transla-

tion losses yields better results (i.e., 0.5, 0.5, 1) in preliminary experiments.14

We use the reconstructor exclusively to compute the reconstruction training

loss. It has also been used to re-rank translation hypotheses in prior work, but Tu

et al. (2017) showed in ablation studies that the gains from re-ranking are small

compared to those from training.

14We observed around 0.2 BLEU gains for TR↔EN tasks.
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Model EN→SW SW→EN EN→TL TL→EN

Baseline 33.60 ± 0.14 30.70 ± 0.19 27.23 ± 0.11 32.15 ± 0.21

Hidden 33.41 ± 0.15 30.91 ± 0.19 27.43 ± 0.14 32.20 ± 0.35

∆ -0.19 ± 0.24 0.21 ± 0.14 0.19 ± 0.13 0.04 ± 0.17

β = 0 33.92 ± 0.10 31.37 ± 0.18 27.65 ± 0.09 32.75 ± 0.32

∆ 0.32 ± 0.12 0.66 ± 0.11 0.42 ± 0.16 0.59 ± 0.13

β = 0.5 33.97 ± 0.08 31.39 ± 0.09 27.65 ± 0.10 32.65 ± 0.24

∆ 0.37 ± 0.09 0.69 ± 0.11 0.42 ± 0.11 0.50 ± 0.08

Model EN→SO SO→EN EN→TR TR→EN

Baseline 12.25 ± 0.08 20.80 ± 0.12 12.90 ± 0.04 15.32 ± 0.11

Hidden 12.30 ± 0.11 20.72 ± 0.16 12.77 ± 0.11 15.34 ± 0.10

∆ 0.05 ± 0.11 -0.08 ± 0.12 -0.13 ± 0.13 0.01 ± 0.07

β = 0 12.47 ± 0.08 21.14 ± 0.19 13.26 ± 0.07 15.60 ± 0.19

∆ 0.22 ± 0.04 0.35 ± 0.15 0.36 ± 0.09 0.28 ± 0.11

β = 0.5 12.48 ± 0.09 21.20 ± 0.14 13.16 ± 0.08 15.52 ± 0.07

∆ 0.23 ± 0.03 0.41 ± 0.13 0.25 ± 0.09 0.19 ± 0.05

Table 5.6: BLEU scores on eight translation directions. The numbers before and
after ‘±’ are the mean and standard deviation over five randomly seeded models.
Our proposed methods (β = 0/0.5) achieve small but consistent improvements.
∆BLEU scores are in bold if mean−std is above zero while in red if the mean is
below zero.

5.2.2.4 Results

Table 5.6 shows that our reconstruction approach achieves small but consistent

BLEU improvements over the baseline on all eight tasks.15

We evaluate the impact of the Gumbel Softmax hyperparameters on the devel-

opment set. We select τ = 2 and β = 0/0.5 based on training stability and BLEU.

Greedy search (i.e., β = 0) performs similarly as sampling with increased Gumbel

noise (i.e., more random translation selection when β = 0.5): increased randomness

15The improvements are significant with p < 0.01.
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in sampling does not have a strong impact on BLEU, even though random sampling

may approximate the data distribution better (Ott et al., 2018). We hypothesize

that more random translation selection introduces lower quality samples and there-

fore noisier training signals. This is consistent with the observation that random

sampling is less effective for back-translation in low-resource settings (Edunov et al.,

2018).

Sampling-based reconstruction is effective even if there is moderate domain

mismatch between the training and the test data, such as in the case that the

word type out-of-vocabulary (OOV) rate of TR→EN is larger than 20%. Larger

improvements can be achieved when the test data is closer to training examples. For

example, the OOV rate of SW→EN is much smaller than the OOV rate of TR→EN

and the former obtains higher ∆BLEU.

Our approach yields more consistent results than reconstructing from hidden

states. The latter fails to improve BLEU in more difficult cases, such as TR↔EN

with high OOV rates. We observe extremely low training perplexity for Hidden

compared with our proposed approach (Figure 5.3a). This suggests that Hidden

yields representations that memorize the input rather than improve output repre-

sentations.

Another advantage of our approach is that all parameters were jointly pre-

trained, which results in more stable training behavior. By contrast, reconstructing

from hidden states requires to initialize the reconstructors independently and suffers

from unstable early training behavior (Figure 5.3).
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Figure 5.3: Training curves of perplexity on the training and the development sets
for TR↔EN. Reconstructing from hidden states (Hidden) and reconstructing from
sampled translations (β = 0) are compared. Hidden achieves extremely low training
perplexity and suffers from unstable training during the early stage.

5.3 Summary

We introduced novel approaches to improve the translation quality of low-

resource NMT by making better use of various sources of training data. We first

presented the bi-directional NMT. This single model with a standard NMT architec-

ture performs both forward and backward translation, allowing it to back-translate

and incorporate any source or target monolingual data. By continuing training
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on augmented parallel data, bi-directional NMT models consistently achieved im-

proved translation quality, particularly in low-resource scenarios and cross-domain

tasks. These models also reduced training and deployment costs significantly com-

pared to standard uni-directional models used in iterative back-translation (Zhang

et al., 2018; Hoang et al., 2018; Cotterell and Kreutzer, 2018). On top of the

bi-directional NMT, we then studied reconstructing the input of NMT from its in-

termediate translations to better exploit training samples in low-resource settings.

We used the Straight-Through Gumbel Softmax to build a fully differentiable recon-

struction model that does not require any additional parameters. We empirically

demonstrated that our approach is effective in low-resource scenarios.
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Chapter 6: Multi-Task Neural Formality Transfer and FSMT

Formality Transfer (FT) and Formality-Sensitive Machine Translation (FSMT)

can both be framed as machine translation, but appropriate training examples are

much harder to obtain than for traditional machine translation tasks. We hypothe-

size that FT and FSMT can benefit from being addressed jointly, by sharing infor-

mation learned from two different types of supervision: sentence pairs in the same

language that capture style difference, and translation pairs drawn from corpora of

various styles.

In this Chapter, we first apply the bi-directional model from our low-resource

NMT research (e.g., Chapter 5) to English FT tasks. It yields an elegant and unified

model that transfers between formal and informal language. We then adopt the

idea of multi-task learning by jointly training bi-directional formality transfer and

machine translation. Training our model shares information from two distinct types

of supervision: sentence pairs in the same language that capture formality difference,

and translation pairs drawn from corpora of diverse formality. Designing this model

requires addressing several questions: How can we effectively combine monolingual

examples of formality transfer and bilingual examples of translation? What kind of

bilingual examples are most useful for the joint task? Can our joint model learn
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Formal-EN

Informal-EN

or

How are you doing?

What's up?
To formal or informal?

Source

FR-EN ParallelStyle Transfer Training Data+

How are you doing?

What's up?

Comment ça va?

EN

FR

or

Figure 6.1: System overview: Our multi-task learning model can perform both bi-
directional English formality transfer and translate French to English with desired
formality. It is trained jointly on monolingual formality transfer data and bilingual
translation data.

to perform FSMT without being explicitly trained on style-annotated translation

examples? We explore these questions by conducting an empirical study on English

FT and French-English FSMT, using both automatic and human evaluation.

The joint training yields a single model that performs both FT and FSMT

(see Figure 6.1). The same model improves the state-of-the-art on the FT task

and achieves competitive performance on FSMT without being explicitly trained on

style-annotated translation examples.1

6.1 Approach

We describe our unified model for performing FT in both directions (Sec-

tion 6.1.1), our FSMT model with side constraints (Section 6.1.2) and finally our

multi-task learning model that jointly learns to perform FT and FSMT (Section 6.1.3).

All models rely on the same NMT architecture: attentional recurrent sequence-to-

sequence models.

1Data and scripts are available at https://github.com/xingniu/multitask-ft-fsmt.
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6.1.1 Bi-Directional Formality Transfer

Rao and Tetreault (2018) used independent neural machine translation models

for each formality transfer direction (informal→formal and formal→informal).

Inspired by the bi-directional NMT for low-resource languages, we propose a unified

model that can handle either direction — we concatenate the parallel data from

the two directions of formality transfer and attach a tag to the beginning of each

source sentence denoting the desired target formality level i.e., <F> for transferring

to formal and <I> for transferring to informal. This enables our FT model to learn

to transfer to the correct style via attending to the tag in the source embedding. We

train an NMT model on this combined dataset. Since both the source and target

sentences come from the same language, we encourage their representations to lie in

the same distributional vector space by (1) building a shared Byte-Pair Encoding

(BPE) model on source and target data (Sennrich et al., 2016c) and (2) tying source

and target word embeddings (Press and Wolf, 2017).

6.1.2 Formality-Sensitive Machine Translation with Side Constraints

Inspired by Sennrich et al. (2016a), we use side constraints on parallel trans-

lation examples to control the output formality. At training time, this requires a

tag that captures the formality of the target sentence for every sentence pair. Given

the vast range of text variations that influence style, we cannot obtain tags using

rules as for T-V pronoun distinctions (Sennrich et al., 2016a). Instead, we categorize

French-English parallel data into formal vs. informal categories by comparing them
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to the informal and formal English from the GYAFC corpus (Rao and Tetreault,

2018).

We adopt a data selection technique, Cross-Entropy Difference (CED, Moore

and Lewis, 2010), to rank English sentences in the bilingual corpus by their relative

distance to each style. First, we consider formal English as the target style and define

CED(s) = Hformal(s)−Hinformal(s), where Hformal(s) is the cross-entropy between

a sentence s and the formal language model. Smaller CED indicates an English

sentence that is more similar to the formal English corpus and less similar to the

informal English corpus. We rank English sentences by their CED scores and select

the top N sentences (the choice of N is discussed in Section 6.4). Pairing these N

English sentences with their parallel French source, we get the formal sample of our

bilingual data. Similarly, we construct the informal sample using informal English

as the target style. Finally, we combine the formal and the informal samples, attach

the <F> and <I> tags to corresponding source French sentences (i.e., the bottom

two rows of data in Figure 6.2a) and train an NMT model for our FSMT task.

6.1.3 Multi-Task Learning

We propose a multi-task learning model to jointly perform FT and FSMT using

a many-to-one (i.e., multi-language to English) sequence to sequence model (Luong

et al., 2016). Following Johnson et al. (2017), we implement this approach using

shared encoders and decoders. This approach can use existing NMT architectures

without modifications. To best incorporate side constraints at training time and the
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Informal-EN Formal-EN<F>

Formal-EN Informal-EN<I>

FR Formal-EN<F>

FR Informal-EN<I>

Informal-EN Formal-EN<F>

Formal-EN Informal-EN<I>

FR Formal-EN

FR Informal-EN

Informal-EN Formal-EN<F>

Formal-EN Informal-EN<I>

FR EN

(a) MultiTask-tag-style: formality tags on
bilingual data + 2-style selection

Informal-EN Formal-EN<F>

Formal-EN Informal-EN<I>

FR Formal-EN<F>

FR Informal-EN<I>

Informal-EN Formal-EN<F>

Formal-EN Informal-EN<I>

FR Formal-EN

FR Informal-EN

Informal-EN Formal-EN<F>

Formal-EN Informal-EN<I>

FR EN

(b) MultiTask-style: no formality tags on
bilingual data + 2-style selection

Informal-EN Formal-EN<F>

Formal-EN Informal-EN<I>

FR Formal-EN<F>

FR Informal-EN<I>

Informal-EN Formal-EN<F>

Formal-EN Informal-EN<I>

FR Formal-EN

FR Informal-EN

Informal-EN Formal-EN<F>

Formal-EN Informal-EN<I>

FR EN

(c) MultiTask-random: no formality tags on
bilingual data + random selection

Figure 6.2: The training data used for multi-task learning models. The bi-directional
formality transfer data and the bilingual data (e.g., FR-EN) of equivalent size are
always concatenated.

benefits of sharing representations for style and language, we explore three model

designs.

MultiTask-tag-style is a straightforward combination of the transfer and trans-

lation models above. We hypothesize that using the bilingual parallel data where

English is the target could enhance English FT in terms of target language model-

ing, especially when the bilingual data has similar topics and styles. We therefore

combine equal sizes of formality tagged training data (selected as described in Sec-

tion 6.1.2) from our FT and FSMT tasks in this configuration (Figure 6.2a).

MultiTask-style is designed to test whether formality tags for bilingual examples

are necessary. We hypothesize that the knowledge of controlling the target formality

for the FSMT task can be learned from the FT data since the source embeddings

of formality tags are shared between the FT and the FSMT tasks. We therefore
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combine the formality tagged FT data with the MT data without their tags (Fig-

ure 6.2b).

MultiTask-random investigates the impact of the similarity between formality

transfer and bilingual examples. Selecting bilingual data which is similar to the

GYAFC corpus is not necessarily beneficial for the FSMT task especially when

French-English bilingual examples are drawn from a domain distant from the GYAFC

corpus. In this configuration, we test how well our model performs FSMT if bilingual

examples are randomly selected instead (Figure 6.2c).

6.2 Experimental Set-Up

FT data: We use the GYAFC corpus introduced by Rao and Tetreault (2018) as

our FT data. This corpus consists of informal sentences from two domains of Ya-

hoo Answers (i.e., Entertainment and Music (E&M) and Family and Relationships

(F&R)) paired with their formal rewrites by humans. The train split consists of 105K

informal-formal sentence pairs whereas the dev/test sets consist of roughly 10K/5K

source-style sentences paired with four reference target-style human rewrites for

both transfer directions.

FSMT data: We evaluate the FSMT models on a large-scale French to English

(FR-EN) translation task. Examples are drawn from OpenSubtitles2016 (Lison and

Tiedemann, 2016) which consists of movie and television subtitles and is thus more

similar to the GYAFC corpus compared to news or parliament proceedings (e.g.,

MultiUN used by the reranking-based FSMT in Chapter 4). This is a noisy dataset

89



where aligned French and English sentences often do not have the same meaning, so

we use a bilingual semantic similarity detector to select 20,005,000 least divergent

examples from ∼27.5M deduplicated sentence pairs in the original set (Vyas et al.,

2018). Selected examples are then randomly split into a 20M training pool, a 2.5K

dev set and a 2.5K test set.

Preprocessing: We apply the same pre-processing steps for bi-directional NMT

systems (Chapter 5) to both FT and MT data: normalization, tokenization, true-

casing, joint source-target BPE with 32,000 operations for NMT (Sennrich et al.,

2016c), and sentence-filtering (length 50 cutoff) to parallel training data.

NMT Configuration: We use the standard attentional encoder-decoder architec-

ture implemented in the Sockeye toolkit (Hieber et al., 2017) with the same settings

introduced in Chapter 5. Our translation model uses a bi-directional encoder with

a single LSTM layer (Bahdanau et al., 2015) of size 512, multilayer perceptron at-

tention with a layer size of 512, and word representations of size 512. We apply

layer normalization and tie the source and target embeddings as well as the output

layer’s weight matrix. We add dropout to embeddings and RNNs of the encoder

and decoder with probability 0.2. We train using the Adam optimizer with a batch

size of 64 sentences and checkpoint the model every 1000 updates (Kingma and Ba,

2015). Training stops after 8 checkpoints without improvement of validation per-

plexity. We decode with a beam size of 5. We train four randomly seeded models

for each experiment and combine them in a linear ensemble for decoding.
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6.3 Evaluation Protocol

6.3.1 Automatic Evaluation

We evaluate both FT and FSMT tasks using BLEU (Papineni et al., 2002),

which compares the model output with four reference target-style rewrites for FT

and a single reference translation for FSMT. We select case-sensitive BLEU with

standard WMT tokenization as our evaluation metric.2 For FT, Rao and Tetreault

(2018) show that BLEU correlates well with the overall system ranking assigned

by humans. For FSMT, as explained earlier in Chapter 4, BLEU is an imperfect

metric as it conflates mismatches due to translation errors and due to correct style

variations. We therefore turn to human evaluation to isolate formality differences

from translation quality.

6.3.2 Human Evaluation

Following the human evaluation protocol for the reranking-based FSMT (Chap-

ter 4) and Rao and Tetreault (2018), we assess model outputs on three criteria:

formality, fluency and meaning preservation. Since the goal of our evaluation is to

compare models, our evaluation scheme asks workers to compare sentence pairs on

these three criteria instead of rating each sentence in isolation. For FT, we compare

the top performing NMT benchmark model in Rao and Tetreault (2018) with our

best FT model. For FSMT, we compare outputs from three representative models:

2We use the script https://github.com/EdinburghNLP/nematus/blob/master/data/

multi-bleu-detok.perl
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NMT-constraint, MultiTask-random and PBMT-random.3

We collect human judgments using CrowdFlower.4 Since we want native En-

glish speakers to perform this task, we restrict our set of annotators only to these

three native English speaking countries: United States, United Kingdom, and Aus-

tralia. We create a sample of 51 gold questions for each of the three criteria. Annota-

tors have to continually maintain the accuracy of above 70% on these gold questions

to be able to contribute to the task.

We collect judgments on 300 samples of each model output and we collect

three judgments per sample (i.e., sentence pair). Given the three judgments per

sample, we calculate the aggregate score using the weighted average:

∑3
i=1 scorei × trusti∑3

i=1 trusti
,

where scorei is the score given by an annotator and trusti is our trust on that

annotator. This trust is the accuracy of the annotator on the gold questions.

Formality: For FT, we want to measure the amount of style variation introduced

by a model. Hence, we ask workers to compare the source-style sentence with its

target-style model output. For FSMT, we want to measure the amount of style

variation between two different translations by the same model. Hence, we ask

workers to compare the “informal” English translation and the “formal” English

translation of the same source sentence in French.5

3Note that we also compare with the English reference translation in Chapter 7.
4http://www.crowdflower.com

5Evaluating which systems produces the most (in)formal output is an independent question,
and we will discuss it in Chapter 7.
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Given two sentences, we ask workers to compare their formality using one of

the following categories, regardless of fluency and meaning. We do not enumerate

specific rules (e.g., typos or contractions) and encourage workers to use their own

judgment.

Score Category
2 Sentence 1 is much more formal than Sentence 2
1 Sentence 1 is more formal than Sentence 2
0 No difference or hard to say
-1 Sentence 2 is more formal than Sentence 1
-2 Sentence 2 is much more formal than Sentence 1

These categories are assigned scores in a symmetric range of [-2,2]. We ran-

domly swap the two items in the pair so that annotators cannot guess which one is

supposed to be more formal. When aggregating these scores, we recover the order,

and sentence pairs with incorrect formality (e.g., the system’s informal output is

actually annotated as more formal than its formal output) get negative scores.

Fluency: For both FT and FSMT tasks, we want to understand how fluent are

the different model outputs. Hence, we ask workers to compare the fluency of two

model outputs of the same target style. Similar to formality evaluation, we design a

five point scale for comparing the fluency of two sentences, giving us a value between

0 and 2 for each sentence pair.

Given two sentences, we ask workers to compare their fluency using one of the

following categories, regardless of style and meaning. We suggest that a sentence

is fluent if it has a meaning and is coherent and grammatical well-formed. Fluency

scores are aggregated in the same way as for formality scores.
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Score Category
2 Sentence 1 is much more fluent than Sentence 2
1 Sentence 1 is more fluent than Sentence 2
0 No difference or hard to say
-1 Sentence 2 is more fluent than Sentence 1
-2 Sentence 2 is much more fluent than Sentence 1

Meaning Preservation: For FT, we want to measure the amount of meaning

preserved during formality transfer. Hence, we ask workers to compare the source-

style sentence and the target-style model output. For FSMT, we want to measure

the amount of meaning preserved between two different translations by the same

model. Hence, we ask workers to compare the “informal” English translation and

the “formal” English translation of the same source sentence in French. We design a

four point scale to compare the meaning of two sentences ranging from the two being

completely equivalent to the two being not equivalent, giving us a value between 0

and 3 for each sentence pair.

Given two sentences, we ask workers to answer “how much of the first sen-

tence’s meaning is preserved in the second sentence”, regardless of style.

Score Category
3 Equivalent since they convey the same key idea
2 Mostly equivalent since they convey the same key idea

but differ in some unimportant details
1 Roughly equivalent since they share some ideas

but differ in important details
0 Not equivalent since they convey different ideas
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6.4 Formality Transfer Experiments

6.4.1 Baseline Models

We first compare baseline models from Rao and Tetreault (2018).

PBMT is a phrase-based machine translation model trained on the GYAFC corpus

using a training regime consisting of self-training, data sub-selection and a large

language model.

NMT Baseline uses OpenNMT-py (Klein et al., 2017). Rao and Tetreault (2018)

use a pre-processing step to make source informal sentences more formal and source

formal sentences more informal by rules such as re-casing. Word embeddings pre-

trained on Yahoo Answers are also used.

NMT Combined is Rao and Tetreault’s best performing NMT model trained on

the rule-processed GYAFC corpus, with additional forward and backward transla-

tions produced by the PBMT model.

6.4.2 Our Models

NMT Baseline: Our NMT baseline uses Sockeye instead of OpenNMT-py and is

trained on raw datasets of two domains and two transfer directions.

Bi-Directional FT: Our initial bi-directional model is trained on bi-directional

data from both domains with formality tags. It is incrementally augmented with

three modifications to get the final multi-task model (i.e., MultiTask-tag-style as

described in Section 6.1.3): (1) We combine training sets of two GYAFC domains
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Informal→Formal Formal→Informal

Model E&M F&R E&M F&R
Rao and Tetreault (2018)
PBMT 68.22 72.94 33.54 32.64
NMT Baseline 58.80 68.28 30.57 36.71
NMT Combined 68.41 74.22 33.56 35.03
Ours
NMT Baseline 65.34 71.28 32.36 36.23
Bi-directional FT 66.30 71.97 34.00 36.33

+ training on E&M + F&R 69.20 73.52 35.44 37.72
+ ensemble decoding (×4) 71.36 74.49 36.18 38.34
+ multi-task learning (MultiTask-tag-style) 72.13 75.37 38.04 39.09

Table 6.1: Automatic evaluation of Formality Transfer with BLEU scores. The
bi-directional model with three stacked improvements achieves the best overall per-
formance. The improvement over the second best system is statistically significant
at p < 0.05 using bootstrap resampling (Koehn, 2004b).

(E&M+F&R) together and train a single model on the combination. (2) We use

ensemble decoding by training four randomly seeded models on the combined data.

(3) We add formality-tagged bilingual data and train the model using multi-task

learning to jointly learn FT and FSMT. Suppose the amount of original bi-directional

FT data is n, we always select kn bilingual data where k is an integer. We also

upsample FT data to make it match the size of selected bilingual data.

6.4.3 Results

Automatic Evaluation. As shown in Table 6.1, our NMT baselines yield surpris-

ingly better BLEU scores than those of Rao and Tetreault (2018) in most cases, even

without using rule-processed source training data and pre-trained word embeddings.

We attribute the difference to the more optimized NMT toolkit we use.

Initial bi-directional models outperform uni-directional models. This matches
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Formality Diff Meaning Prsv.
Model A Model B Range = [-2,2] Range = [0,3]

I→F F→I

FT Source NMT Combined 0.54 0.45 2.94
Source MultiTask-tag-style 0.59 0.64 2.92
NMT-constraint I NMT-constraint F 0.35 2.95

FSMT MultiTask-random I MultiTask-random F 0.32 2.90
PBMT-random I PBMT-random F 0.05 2.97

Table 6.2: Human evaluation of formality difference and meaning preservation.
MultiTask-tag-style generates significantly more informal (F→I) English than NMT
Combined (p<0.05 using the t-test, see Section 6.4.3). PBMT-random does not
control formality effectively when comparing its informal (I) and formal (F) output
(Section 6.5.2). Formality scores are relatively low because workers rarely choose
“much more (in)formal”. All models preserve meaning equally well.

the behavior of bi-directional NMT in low-resource settings studied in Chapter 5 —

we work with a relatively small amount of training data (∼50K), and FT models

benefit from doubling the size of training data without being confused by mixing

two transfer directions. For the same reason, increasing the training data by com-

bining two domains together improves performance further. Ensemble decoding is a

consistently effective technique used by NMT and it enhances our NMT-based FT

models as expected.

Incorporating the bilingual parallel data by multi-task learning yields further

improvement. The target side of bilingual data is selected based on the closeness

to the GYAFC corpus, so we hypothesize that the higher quality comes from better

target language modeling by training on more English text.

Human Evaluation. The superior performance of the best FT model (i.e., MultiTask-

tag-style) is also reflected in our human evaluation (see Table 6.2). It generates

slightly more formal English (0.59 vs 0.54) and significantly more informal English
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Figure 6.3: BLEU improvements or scores for four transfer/translation directions
vs. the size of FR-EN parallel data. n in x-axis equals to the original size of bi-
directional style transfer training data. Formality transfer improves with bilingual
data and the performance reaches the plateau quickly. The translation quality
increases monotonically with the size of training data.

(0.64 vs 0.45) than NMT Combined. This is consistent with BLEU differences in

Table 6.1 which show that MultiTask-tag-style yields bigger improvements when

transferring formal language to informal. Both models have good quality with re-

spect to meaning preservation (2.94 vs 2.92) and workers can hardly find any fluency

difference between outputs of these two models by assigning 0.03 in average in the

fluency test (0 means no difference).
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Impact of Bilingual Data Size. We evaluate the impact of selected bilingual

data size on the combination of development sets from two domains in GYAFC

and show the results in Figure 6.3. The quality of formality transfer improves

instantly when using bilingual data and it soon reaches the plateau when more data

is used. Meanwhile, the translation quality increases monotonically with the size of

training data. The optimal point is a hyper-parameter that can be determined on

the development set. We empirically choose n = 12 since it works best for formality

transfer and yields reasonable translation quality.

6.4.4 Qualitative Analysis

We manually inspect 100 randomly selected samples from our evaluation set

and compare the target-style output of our best model (MultiTask-tag-style) with

that of the best baseline model (NMT-Combined) from Rao and Tetreault (2018).

Table 6.3 shows some samples representative of the trends we find for informal→formal

(6.3a) and formal→informal (6.3b) tasks.

In majority of the cases, the two models produce similar outputs as can be

expected since they use similar NMT architectures. In cases where the two outputs

differ, in the I→F task, we find that our model produces a more formal output by

introducing phrasal level changes (first sample in Table 6.3a) or by moving phrases

around (second sample in Table 6.3a), both of which happen frequently during

machine translation, thus showcasing the benefit of our multi-task approach. Our

model very often makes the output sentence more complete (and thereby more
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formal) by inserting pronouns like ‘it’ or ‘they’ at the start of the sentence or by

removing conjunctions like ‘usually’, ‘and’, ‘but’, ‘however’ from the beginning of

a sentence (sample three in Table 6.3a). Likewise, in the F→I task, our model

produces more informal sentences compared to the baseline by introducing more

phrasal level changes (first and second sample in Table 6.3b).

Error analysis: In the I→F task, our model performs worse than the baseline

when the original informal sentence consists of all uppercased words (fourth sample

in Table 6.3a). This is primarily because the baseline model pre-lowercases them

using rules, whereas, we rely on the model to learn this transformation, and it fails

to do so for less frequent words. In the F→I task, in trying to produce more informal

outputs, our model sometimes fails to preserve the original meaning of the sentence

(third sample in Table 6.3b). In both tasks, very often our model fails to make

transformations for some pairs like (‘girls’,‘women’), which the baseline model is very

good at. We hypothesize that this could be because for these pairs, human rewriters

do not always agree on one of the words in the pair being more informal/formal. This

makes our model more conservative in making changes because our bi-directional

model combines FT data from both directions and when the original data contains

instances where these words are not changed, we double that and learn to copy the

word more often than change it.
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6.5 Formality-Sensitive Machine Translation Experiments

6.5.1 Models

NMT-constraint: We first evaluate the standard NMT model with side con-

straints introduced in Section 6.1.2 and then compare it with three variants of FSMT

models using multi-task learning as described in Section 6.1.3 (i.e., MultiTask-tag-

style, MultiTask-style and MultiTask-random). The best performing system

for FT is MultiTask-tag-style with 12n (∼2.5M) bilingual pairs. For fair comparison,

we select this size of bilingual data for all FSMT models either by data selection or

randomly.

PBMT-random: We also compare these models with the PBMT-based FSMT

system described in Chapter 4. Instead of tagging sentences in a binary fashion, this

system scores each sentence using a lexical formality model. It requests a desired

formality score for translation output and re-ranks n-best translation hypotheses by

their closeness to the desired formality level. We adapt this system to our evaluation

scenario — we calculate median scores for informal and formal data (i.e., −0.41 and

−0.27 respectively) in GYAFC respectively by a PCA-LSA-based formality model

and use them as desired formality levels.6 The bilingual training data is randomly

selected.

6The PCA-LSA-based formality model achieves lowest root-mean-square error on
a scoring task of sentential formality as listed on https://github.com/xingniu/

computational-stylistic-variations.
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Model +Tag? Random? FR→Formal-EN FR→Informal-EN

NMT-constraint X 27.15 26.70
MultiTask-tag-style X 25.02 25.20
MultiTask-style 23.25 23.41
MultiTask-random X 25.24 25.14
PBMT-random X 29.12 29.02

Table 6.4: BLEU scores of various FSMT models. “+Tag” indicates using formality
tags for bilingual data. “Random” indicates using randomly selected bilingual data.

6.5.2 Results

Automatic Evaluation. We compute BLEU scores on the FSMT test set for all

models as a sanity check on translation quality. Because there is only one reference

translation of unknown style for each input sentence, these BLEU scores conflate

translation errors and stylistic mismatch, and are therefore not sufficient to evaluate

FSMT performance. We include them for completeness here, as indicators of general

translation quality, and will rely on human evaluation as primary evaluation method.

As can be seen in Table 6.4, changing the formality level for a given system yields

only small differences in BLEU. We select MultiTask-random as the representative

of multi-task FSMT since it achieves competitive BLEU scores among multi-task

models and contains more in-domain translation data. We compare MultiTask-

random with NMT-constraint and PBMT-random during our human evaluation.

Human Evaluation. Table 6.2 shows that neural models control formality signif-

icantly better than PBMT-random (0.35/0.32 vs. 0.05). They also introduce more

changes in translation: with NMT models, ∼80% of outputs change when only the

input formality changes, while that is only the case for∼30% of outputs with PBMT-
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random. Among neural models, MultiTask-random and NMT-constraint have simi-

lar quality in controlling the output formality (0.32 vs. 0.35) and preserving meaning

(2.90 vs. 2.95). They are also equally fluent as judged by humans. Interestingly,

multi-task learning helps MultiTask-random perform similarly as NMT-constraint

with simpler examples that do not require the additional step of data selection to

generate formality tags.

6.5.3 Qualitative Analysis

We randomly sample 100 examples from our test set and manually compare

the formal and the informal translations of the French source by MultiTask-random,

NMT-constraint and PBMT-random. Table 6.5 shows representative examples of

the observed trends.

We find that in most cases, the difference between the formal and informal

style translations is very minor in PBMT-random model, better in NMT-constraint

model and the best in our MultiTask-random model (first sample in the table). In

general, our MultiTask-random model does a good job of making very large changes

while transferring the style, especially into informal (second sample in the table).

We hypothesize that this is because our joint model is trained on the GYAFC corpus

which consists of parallel sentences that differ heavily in style.

Error analysis: All FSMT models perform well in terms of meaning preservation,

yet the human scores are not perfect (Table 6.2). They occasionally change not only

the style but also the meaning of the input (e.g., the third sample of MultiTask-
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random in Table 6.5). This motivates future work that penalizes meaning changes

more explicitly during training. In general, none of the models do a good job

of changing the style when the source sentence is not skewed in one style. For

example, consider the French sentence “Combien de fois vous l’ai-je dit?” and its

English reference translation “How many times have I told you, right?”. All models

produce the same translation “How many times did I tell you?”. In such cases,

changing style requires heavier editing or paraphrasing of the source sentence that

our current models are unable to produce.

6.6 Summary

We explored the use of multi-task learning to perform monolingual FT and

bilingual FSMT jointly. Using French-English translation and English style transfer

data, we showed that the joint model is able to learn from both style transfer par-

allel examples and translation parallel examples. On the FT task, the joint model

significantly improved the quality of transfer between formal and informal styles in

both directions, compared to prior work (Rao and Tetreault, 2018). This also rep-

resents a strong baseline for follow up work in formality transfer: other results show

that using more sophisticated approaches, such as post-editing (Ge et al., 2019) and

constrained decoding (Kajiwara, 2019), do not help as much as the parallel data

introduced via multi-task learning. The joint model interestingly also learned to

perform FSMT without being explicitly trained on style-annotated translation ex-

amples. On the FSMT task, our model outperformed previously proposed PBMT
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model and performed on par with a neural model with side-constraints, which re-

quires more involved data selection. However, neural FSMT models sometimes

produced translations disobeying the source meaning, and the formality-control in-

tensity could further be improved.
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Chapter 7: Neural FSMT with Synthetic Supervision

Building an FSMT system ideally requires training triplets consisting of a

bilingual sentence pair labeled with target language formality. However, bilingual

parallel corpora do not come with formality annotations, and parallel corpora of a

given provenance do not have a uniform style. The multi-task FSMT models intro-

duced in Chapter 6 are presented with samples where one element of the triplet is

always missing. Therefore, it is trained to perform FSMT in a zero-shot fashion, and

it sometimes produces translations that are inappropriate for the desired formality,

or that match the formality level but do not preserve the source meaning.

We hypothesize that exposing multi-task models to complete training triplets

should improve the quality of formality-sensitive language generation, so that formal

and informal outputs differ from each other more and formality rewrites do not

introduce translation errors. To this end, we introduce an approach to predict the

target formality for a given parallel sentence pair. This approach simulates direct

supervision on the fly for end-to-end training. We also explore the possibility of

generating a synthetic ground truth translation given an input language sentence

and the desired formality and present a variant of side constraints (Sennrich et al.,
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2016a) that improves formality control.1

We conduct a comprehensive automatic and human evaluation of the result-

ing FSMT systems: (1) We measure translation quality and quantify differences

between translations at opposite formality using automatic metrics. (2) We rely on

human judgments to assess the performance of meaning preservation and formality

control between a strong multi-task baseline and the most promising of the pro-

posed models. (3) We analyze outputs qualitatively to illustrate how formality is

marked in model outputs. Results show that our best model trained with synthetic

supervision outperforms prior neural FSMT models. It produces translations that

better match desired formality levels while preserving the source meaning.

7.1 Approach

Recall that FSMT requires producing the most likely translation at the given

formality level `:

Ŷ = arg max
Y`

P (Y` |X, `;θ). (7.1)

Ideally, the FSMT model should be trained on triplets (X, `,Y`)1...N , but in practice,

such training data is not easy to acquire. In Chapter 6, we tackle this problem by

training a cross-lingual machine translation model (French→English) and a mono-

lingual bidirectional formality transfer model (Formal-English↔Informal-English)

jointly. Specifically, the model is trained on the combination of (X,Y )1...N1 and

(Y¯̀, `,Y`)1...N2 , where Y¯̀ and Y` have opposite formality levels. The joint model is

1Data and code are available at https://github.com/xingniu/multitask-ft-fsmt.
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able to perform zero-shot FSMT by optimizing LMT + LFT , where

LMT =
∑

(X,Y )

logP (Y |X;θ), (7.2)

LFT =
∑

(Y¯̀,`,Y`)

logP (Y` |Y¯̀, `;θ). (7.3)

7.1.1 Controlling the Output Language Formality

FSMT shares the goal of producing output sentences of a given formality with

monolingual formality style transfer tasks. In both cases, the source sentence usually

carries its own style and the model should be able to override it with the independent

style `. This is achieved by using an attentional sequence-to-sequence model with

side constraints (Sennrich et al., 2016a), i.e., attaching a style tag (e.g., <2Formal>)

to the beginning of each source example. Here, we attach style tags to both source

and target sequences.

Sennrich et al. (2016a) hypothesize that source-side tags control the target

style because the model “learns to pay attention to the side constraints”, but it has

not been verified empirically. We hypothesize that the source style tag also influences

the encoder hidden states, and providing a target-side tag lets the decoder benefit

from encoding style more directly. This method is analogous to replacing begin-of-

sequence (<BOS>) embeddings in the target with style embeddings (Lample et al.,

2019), but requires zero-modification to the architecture: the model easily learns to

predict the target tag by training on tagged data with a standard architecture.
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7.1.2 Synthetic Supervision

Prior work on multilingual NMT shows that the translation quality on zero-

shot tasks often significantly lags behind when supervision is provided (Johnson

et al., 2017). We address this problem by simulating the supervision, i.e., generating

synthetic training triplets (X, `,Y ) by using the FSMT model itself to predict the

missing element of the triplet from parallel sentence pairs (X,Y ). We introduce

two novel approaches to generate synthetic triplets, namely Online Style Inference

and Online Target Inference.

7.1.2.1 Online Style Inference (OSI)

Given a translation example (X,Y ), we view predicting the formality of Y ,

i.e., `Y , as unsupervised classification using only the pre-trained FSMT model.

As illustrated in Figure 7.1, we use FSMT to produce both informal and

formal translations of the same input, YI = FSMT(X, `I) and YF = FSMT(X, `F)

respectively.2 We hypothesize that the style of the reference translation Y can be

predicted based on its distance from these two translations. For example, if Y is

formal, it should be closer to YF than YI. We measure the closeness by cross-entropy

difference (CED, Moore and Lewis, 2010), i.e., we calculate the difference of their

per-token cross-entropy scores, CED(YI,YF) = HY (YI)−HY (YF). The larger it is,

the closer Y is to YF.

2YI and YF are generated with the teacher forcing strategy (Williams and Zipser, 1989) given
the ground-truth Y .
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How are you doing?

What's up?

Formal (      )

Informal (      )

EN

EN

Source (      )Comment ça va? FR

<2Formal>

Target (      ) How are you?EN

closer 

<2Informal>

Figure 7.1: Online Style Inference. Given a translation example (X,Y ), FSMT
produces both informal and formal translations of X, i.e., YI = FSMT(X, `I) and
YF = FSMT(X, `F). Y is labeled as formal since it is closer to YF than YI.

Given a positive threshold τ , we label `Y = <2Informal> if CED(YI,YF) <

−τ , label `Y = <2Formal> if CED(YI,YF) > τ , and label `Y = <2Unknown> other-

wise. The threshold τ is chosen dynamically for each mini-batch, and it is equal to

the mean of absolute token-level CED of all tokens within a mini-batch. Finally, we

are able to generate a synthetic training sample, (X, `Y ,Y ), on the fly and optimize

LFT + LOSI , where

LOSI =
∑

(X,`Y ,Y )

logP (Y |X, `Y ;θ). (7.4)

7.1.2.2 Online Target Inference (OTI)

Given the bilingual parallel sentence pair (X, Y ) and a randomly selected

target formality ` from {<2Informal>, <2Formal>}, we can use the FSMT model

to produce a formality-constrained translation Y 1
` = FSMT(X, `). We exploit

the multi-task nature of the FSMT model to estimate the quality of Y 1
` indirectly

without supervision: the FSMT model can also manipulate the formality level of

the target side Y via monolingual formality transfer to produce Y 2
` = FT(Y , `).

We hypothesize that the predictions made by these two different paths should be
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consistent.

The quality of Y 2
` is presumably more reliable than Y 1

` , because the transfer

model (which is embedded in the joint model) is trained with direct supervision.

We empirically get Y 2
` via greedy search on the fly during the training and use it

as the label. Finally, we optimize LMT + LFT + αLOTI , where

LOTI =
∑

(X,`,Y 2
` )

logP (Y 2
` |X, `;θ). (7.5)

Online Target Inference is a harder task than Online Style Inference since it requires

generating language as opposed to making a formality prediction.

7.2 Auxiliary English Formality Control Evaluation

Before investigating how to improve FSMT with synthetic supervision, we

investigate whether alternatives to side constraints would be beneficial to formality

control. Our goal is to determine a solid approach for formality control before

adding synthetic supervision. For simplicity, we conduct this auxiliary evaluation

of formality control on the monolingual style transfer task.

Task Our task aims to test systems ability to produce a formal or an informal

paraphrase for a given English sentence of arbitrary style. It is derived from for-

mality transfer (Rao and Tetreault, 2018), where models transfer sentences from

informal to formal (I→F) or from formal to informal (F→I). The tests of flipping

the formality levels, as we have done so far in Chapter 6, only evaluate a model’s

ability in learning mappings between informal and formal languages. We addition-
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ally evaluate the ability of systems to preserve formality on informal to informal

(I→I) and formal to formal (F→F) tasks. This four-way formality rewriting set-

ting is particularly relevant to the FSMT task, where the style of the source

sentence is arbitrary.

We also use the GYAFC corpus (Rao and Tetreault, 2018) as in Chapter 6 for

this evaluation. This corpus consists of informal sentences from Yahoo Answers

paired with their formal rewrites by humans. The train split consists of 105K

informal-formal sentence pairs whereas the dev/test sets consist of roughly 10K/5K

source-style sentences paired with four reference target-style human rewrites for both

transfer directions, i.e., I→F and F→I. For formality preserving tasks, the output

is compared with the input sentence in the test set.

Models All models are trained on bidirectional data, which is constructed by

swapping the informal and formal sentences of the parallel GYAFC corpus and

appending the swapped version to the original (the model configuration and training

set-up are exactly the same as for the FSMT experiments and will be described in

detail in Section 7.3.3). The formality of each target sentence represents the desired

input style.

We first implement a baseline method which is trained only on the bidirectional

data without showing the target formality (denoted as None). Next, we conduct

an ablation study on the side constraint method to examine the hypothesis that

model learns to pay attention to the tags by comparing Tag-Src, Tag-Src-Block,

and our proposed variant Tag-Src-Tgt. Tag-Src is the standard method that
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Model Formality Transfer
I→F F→I

None 70.63 ± 0.23 37.00 ± 0.18

Tag-Src 72.16 ± 0.34 ∆ 37.67 ± 0.11 ∆
Tag-Src-Block 72.00 ± 0.05 -0.16 37.38 ± 0.12 -0.29
Tag-Src-Tgt 72.29 ± 0.23 +0.13 37.62 ± 0.37 -0.05

Formality Preservation
I→I F→F

None 54.54 ± 0.44 58.98 ± 0.93

Tag-Src 66.87 ± 0.58 ∆ 78.78 ± 0.37 ∆
Tag-Src-Block 65.46 ± 0.29 -1.41 76.72 ± 0.39 -2.06
Tag-Src-Tgt 67.81 ± 0.41 +0.94 79.34 ± 0.55 +0.56

Table 7.1: BLEU scores for variants of side constraint in controlling style on all
formality transfer and preservation directions. We report mean and standard de-
viation over five randomly seeded models. ∆BLEU between each model and the
widely used Tag-Src methods show that (1) blocking the visibility of source tags
from the encoder (Tag-Src-Block) limits its formality control ability; (2) using
style tags on both source and target sides (Tag-Src-Tgt) helps control formality
better, especially for formality preservation tasks.

attaches tags to the source, while Tag-Src-Block blocks the visibility of the

tag embeddings from the encoder but retains their connections to the decoder via

the attention mechanism. Tag-Src-Tgt attaches tags to both sides. We train

five randomly seeded models for each method and report the mean and standard

deviation of test BLEU (Table 7.1).

Results Comparing with methods acknowledging the target formality (i.e., Tag-

Src*), the baseline method gets slightly lower BLEU scores when it learns to flip

the formality on I→F and F→I tasks. However, it performs much worse (10-20

BLEU points lower) on I→I and F→F tasks since flipping the formality is harmful.

Tag-Src-Block lags behind Tag-Src, especially for formality preservation
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tasks (1-2 BLEU points lower). This discrepancy indicates that the attention mech-

anism only contributes a portion of the control ability. On the other hand, our

proposed variant Tag-Src-Tgt performs better than Tag-Src on 3/4 tasks (i.e.,

I→F, I→I, and F→F).

Taken together, these observations show that the impact of tags is not limited

to the attention model, and their embeddings influence the hidden representations

of encoders and decoders positively. The auxiliary evaluation thus confirms that

adding style tags to both source and target sequences is a good approach to model

monolingual formality transfer, and therefore motivates using it in our FSMT models

as well.

7.3 FSMT Evaluation Set-Up

As mentioned in Chapter 4 and 6, evaluating FSMT systems requires evaluat-

ing whether their outputs correctly convey the meaning of the source, and whether

the differences between their formal and informal outputs are indicative of formality.

Since translations of the same text into formal and informal versions are not readily

available, we use single reference translation of source sentences from diverse prove-

nances to automatically evaluate the translation quality and output diversity of our

systems. This automatic evaluation is imperfect as comparing against a single

reference translation of arbitrary style does not let us separate translation errors

from correct formal or informal paraphrases. We use the automatic evaluation dur-

ing system development and to select a subset of models for manual evaluation.
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We enhance the evaluation protocol in Chapter 6 by providing more accurate and

explicit assessments.

7.3.1 Tasks and Data

Test Sets We still evaluate FSMT approaches on the French-English translation

task as in previous chapters, but we choose two standard test sets for their higher

quality than the held-out data from noisy training corpora. WMT newstest20143

and MSLT conversation test set4 we use capture both formal and informal language.

Each test set contains different formality levels, but the written language used in

news stories is typically more formal than the spoken language used in conversa-

tions. As a result, for the first pass automatic evaluation, we assume that reference

translations from newstest2014 are overall more formal, while references from MSLT

are overall more informal. Human evaluation is then conducted without making this

assumption.

Training Sets Following Chapter 6, we use OpenSubtitles2016 (Lison and Tiede-

mann, 2016), which consists of movie and television subtitles, covers a wider spec-

trum of styles, but overall tends to be informal since it primarily contains con-

versations. Again, we use a bilingual semantic similarity detector to select 16M

least divergent examples from ∼27.5M deduplicated sentence pairs in the original

set (Vyas et al., 2018).5 Since we focus on FSMT in this chapter, we continue the

3http://www.statmt.org/wmt14/test-full.tgz

4https://www.microsoft.com/en-us/download/details.aspx?id=54689

5We select slightly less examples (16M here vs. 20M in Chapter 6) but use all 16M examples
for training.
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Corpus # sentences # EN tokens
OpenSubtitles2016 16,000,000 171,034,255
Europarl.v7 1,670,324 39,789,959
News-Commentary.v14 276,358 6,386,435
WMT newstest2014 3,003 72,435
MSLT test 3,543 31,338

Table 7.2: Statistics of French-English corpora.

routine of building a reranking-based FSMT system (Chapter 4) and train models

on two more parallel corpora with diverse formality: (1) Europarl.v7 (Koehn, 2005),

which is extracted from the proceedings of the European Parliament, and tends to

be more formal text; (2) News-Commentary.v14 (Bojar et al., 2018). The GYAFC

corpus is also used to train multi-task models.

Preprocessing We apply the same pre-processing steps for the multi-task FSMT

models (Chapter 6) here: normalization, tokenization, true-casing, joint source-

target BPE with 50,000 operations (Sennrich et al., 2016c) and sentence-filtering

(length 50 cutoff) to parallel training data.6 Itemized data statistics after prepro-

cessing can be found in Table 7.2. The MSLT data is pre-processed by removing

duplicated and ill-encoded sentences.7

7.3.2 Baseline Models

We start with building two MT-only baseline models. The first is a standard

NMT model which is trained with non-tagged French-English parallel data. The

6More BPE operations are used in this chapter because a larger vocabulary yields better high-
resource performance.

727% of the sentence pairs are duplicated, and the pre-processing script is released along with
the source code.
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second is NMT DS-Tag introduced in Chapter 6. It performs data selection on

French-English training examples (X,Y ) using CED in a standard way: it pre-

trains language models for informal and formal English in the formality transfer

training data and calculates CED(Y ) = Hinformal(Y )−Hformal(Y ). Since we aim

at using all parallel data, for fair comparison, we also conduct three-way tagging as

introduced in Section 7.1.2.1. An NMT model is then trained with the formality-

tagged training pairs.

Next, we use the multi-task FSMT models in Chapter 6 as stronger baselines.8

The first version is Multi-Task. It performs zero-shot FSMT by training trans-

lation and formality transfer jointly. The second is Multi-Task DS-Tag, which

is the combination of Multi-Task and NMT DS-Tag and is trained on both tagged

translation pairs and formality transfer pairs. This method is similar to Online Style

Inference in terms of tagging training examples using CED. However, Multi-Task

DS-Tag uses standard offline language models while Online Style Inference can be

interpreted as using source-conditioned online language models.

7.3.3 Implementation Details

We build NMT models upon the attentional RNN encoder-decoder architec-

ture (Bahdanau et al., 2015) implemented in the Sockeye toolkit (Hieber et al.,

2017) with the same settings introduced in Chapter 6. Our translation model uses

a bi-directional encoder with a single LSTM layer of size 512, multilayer perceptron

8We considered a pivoting approach (i.e., machine translation followed by formality transfer)
in preliminary experiments, but it consistently underperforms multi-task baselines.
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attention with a layer size of 512, and word representations of size 512. We apply

layer normalization (Ba et al., 2016), add dropout to embeddings and RNNs (Gal

and Ghahramani, 2016) with probability 0.2, and tie the source and target embed-

dings as well as the output layer’s weight matrix (Press and Wolf, 2017). We train

using the Adam optimizer (Kingma and Ba, 2015) with a batch size of 64 sentences

and we checkpoint the model every 1000 updates. The learning rate for baseline

models is initialized to 0.001 and reduced by 30% after 4 checkpoints without im-

provement of perplexity on the development set. Training stops after 10 checkpoints

without improvement.

We build our models by fine-tuning Multi-Task with the dedicated syntheti-

cally supervised objectives described in Section 7.1.2, inheriting all settings except

the learning rate which is re-initialized to 0.0001.

7.4 Automatic Evaluation of FSMT

7.4.1 Lessons from BLEU

We evaluate our systems by producing formal and informal translations for

both the WMT and MSLT test sets, and we compare outputs against the single

reference translation using BLEU.9 As explained earlier in Chapter 4 and 6, this is

an incomplete evaluation of FSMT, but it nevertheless provides simple sanity checks

during system development: (1) Do BLEU scores of FSMT models remain close to

that of formality-agnostic baselines, indicating that translation quality is roughly

9We report case-insensitive BLEU with the WMT standard ‘13a’ tokenization using SacreBLEU
(Post, 2018).
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maintained? (2) Do FSMT models obtain higher BLEU scores for formal outputs

on WMT (where we expect references to be more formal) and higher BLEU scores

for informal outputs on MSLT (where we expect references to be more informal)?

In Table 7.3, we first compare BLEU scores horizontally for each model. All

FSMT systems achieve better scores when the formality level given as input to

the system matches the nature of the text being translated. For example, formal

translations are better for WMT news while informal translations are better for

MSLT conversations.

∆BLEU scores between informal and formal outputs show that multi-task

models generate more dissimilar translations. However, ∆BLEU does not show

consistent trends across techniques and test sets, because it is a roundabout evidence

of the sequence dissimilarity: it uses the reference as a proxy. We therefore quantify

the differences between formal and informal outputs for each system more directly

in Section 7.4.2.

Next, we compare BLEU scores vertically among models. Our proposed sys-

tems get relatively lower scores than baselines, which indicates that their outputs

are more different from the reference translations.

7.4.2 Quantifying Differences Between Formal and Informal Outputs

Metrics We introduce the Lexical and Positional Differences (LePoD) score to

quantify the surface differences between the formal and informal outputs of a given

system.
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WMT MSLT

Informal Formal ∆ Informal Formal ∆
BLEU BLEU BLEU LeD PoD BLEU BLEU BLEU LeD PoD

MT-only Baselines
NMT 28.63 28.63 0 0 0 47.83 47.83 0 0 0
NMT DS-Tag 28.24 28.95 0.71 9.27 6.44 47.60 47.24 0.36 8.18 1.10

Multi-task Baselines
Multi-Task 27.75 28.39 0.64 10.89 7.76 47.55 45.08 2.47 11.97 1.41
Multi-Task DS-Tag 27.65 29.12 1.47 11.51 8.35 47.46 46.66 0.80 10.29 1.54

Multi-task w/ Synthetic Supervision
Target Inference 27.70 28.53 0.83 10.97 7.25 46.64 43.23 3.41 12.40 1.63
Style Inference 26.67 28.65 1.98 14.53 12.58 45.46 44.16 1.30 14.52 2.19

Table 7.3: All FSMT systems achieve better BLEU scores when the intended for-
mality matches the nature of the text being translated (scores are grayed otherwise).
LePoD scores (all scores are percentages) show that synthetic supervision intro-
duces more changes between formal and informal outputs than baselines, and Online
Style Inference produces the most diverse informal/formal translations.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

+10 +1 +1 -3 +2 +2 -2 -2 0

index1

index2

index2-index1

|S1|=15

|S2|=12

Figure 7.2: Comparing S1 and S2 with LePoD: hollow circles represent non-exact
matched tokens, yielding a LeD score of ( 7

15
+ 4

12
)× 1

2
= 0.4. Given the alignment

illustrated above, the PoD score is 0+3+2+0
10

= 0.5.

We first compute the pairwise Lexical Difference (LeD) based on the percent-

ages of tokens that are not found in both outputs. Formally,

LeD =
1

2

(
|S1\S2|
|S1|

+
|S2\S1|
|S2|

)
, (7.6)

where S1 and S2 is a pair of sequences and S1\S2 indicates tokens appearing in S1

but not in S2.

We then compute the pairwise Positional Difference (PoD) by identifying

aligned partitions within the compared segments, and computing the maximum

distortion within each partition. Word alignments are obtained using the latest
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METEOR software (Denkowski and Lavie, 2014), which supports stem, synonym and

paraphrase matches in addition to exact matches. In order to find noncrossing

partitions that represent linear ordered paraphrases, we first re-index N aligned

units (words or phrase) and calculate distortions as the position differences (i.e.,

index2 - index1 in Figure 7.2). Then we keep a running total of the distortion array

(d1, d2, . . . ), and cut off a partition p = (di, . . . , dj) ∈ P whenever the accumulation

is zero (i.e.,
∑
p = 0). Now we can define

PoD =
1

N

∑
p∈P

max(abs(p)). (7.7)

In extreme cases, when the first unit in S1 is reordered to the last position in S2,

PoD score approaches 1. When units are aligned without any reordering, each

alignment constitutes a partition and PoD equals 0.

Findings LePoD scores measuring the discrepancy between informal and formal

outputs of each model in Table 7.3 show that Multi-Task DS-Tag and Multi-Task

get similar lexical and positional variability. The benefit of adding formality tags via

offline data selection is unclear, which is also suggested in Chapter 6. Online Target

Inference gets slightly larger discrepancy on MSLT, while Online Style Inference

performs notably differently. Particularly, the latter has much larger positional dis-

crepancy scores, which indicates that it produces more structural diverse sentences.

However, larger surface changes are more likely to alter the meaning, and the changes

are not guaranteed to be formality-oriented. We therefore use this study to select

the most promising models for human evaluation: BLEU and LePoD scores in-

dicate that Online Style Inference produces the most diverse formal and informal
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outputs while roughly preserving BLEU. We select this model for further human

evaluation and compare it against Multi-Task.

7.5 Human Evaluation of FSMT

Methodology We want to directly measure the improvement of Online Style In-

ference over Multi-Task, so a different human evaluation protocol from Chapter 6

is used here. Our evaluation scheme asks annotators to directly compare sentence

pairs on two criteria, meaning preservation and formality difference, and obtains

win:tie:loss ratios.10

Meaning Preservation We ask annotators to compare outputs of two systems

against the reference translation, and decide which one better preserves the

meaning of the reference. The following instruction is provided to annotators.

For each task, you will be presented with an English sentence and two

rewrites of that sentence. Your task is to judge which rewrite better preserves

the meaning of the original and choose from:

• Rewrite 1 is much better

• Rewrite 1 is better

• No preference between Rewrite 1 and Rewrite 2

(no difference in meaning or hard to say)

• Rewrite 2 is better

• Rewrite 2 is much better

10We do not evaluate fluency in this chapter because both Rao and Tetreault (2018) and in
Chapter 6 we show various automatic systems achieve an almost identical fluency level. Annotators
also have systematically biased feeling in fluency when comparing formal and informal sentences
as suggested in Chapter 4 and by Rao and Tetreault (2018).
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Note that this task focuses on differences in content, so differences in

style (such as formality) between the original and rewrites are considered

okay. [Some examples with explanations are provided.]

Formality Difference We ask annotators to compare outputs of two systems and

decide which is more formal. The following instruction is displayed.

People use different varieties of language depending on the situation:

formal language is required in news articles, official speeches or academic

assignments, while informal language is more appropriate in instant messages

or spoken conversations between friends.

You will be presented with two English sentences, and your task is to

decide which one is more formal and choose from:

• Sentence 1 is much more formal

• Sentence 1 is more formal

• No preference between Sentence 1 and Sentence 2

(no difference in formality or hard to say)

• Sentence 2 is more formal

• Sentence 2 is much more formal

Keep in mind:

• Language formality can be affected by many factors, such as the choices

of grammar, vocabulary, and punctuation.

• The sentences in the pair could have different meanings. Please rate

the formality of the sentences independent of their meaning.

• The sentences in the pair could be nonsensical. Please rate the for-

mality of the sentences independent of their quality.
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Generally, a sentence with small formality changes such as fewer contrac-

tions, proper punctuation or some formal terms is considered “more formal”.

A sentence is considered “much more formal” if it contains multiple indica-

tors of formality, or if the sentence construction itself reflects a more formal

style. That said, feel free to use your own judgment for doing the task

if what you see is not covered by these examples. [Some examples with

explanations are provided.]

We randomly sample ∼150 examples from WMT and MSLT respectively, and

obtain judgments for informal and formal translations of each example. We collect

these judgments from 30 volunteers who are native or near-native English speakers.

Annotators only compare translations of the same (intended) formality generated

by different systems. Identical translation pairs are excluded. Each comparison

receives five independent judgments, unless the first three judgments are identical.

The inter-rater agreement using Krippendorff’s alpha is ∼0.5. It indicates that

there is some variation in annotators’ assessment of language formality. We therefore

follow the majority and take the competence of annotators into consideration. In

Figure 7.3, independent judgments are aggregated using MACE (Hovy et al., 2013),

which estimates the competence for annotators.

Findings Overall, the human evaluation shows that synthetic supervision success-

fully improves desired formality of the output while preserving translation quality,

compared to a strong multi-task baseline. Figure 7.3a and 7.3b show that informal

translations generated by Online Style Inference are annotated as more informal
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Figure 7.3: Win/Tie/Loss counts when comparing Online Style Inference to Multi-
Task. Informal translations generated by OSI are annotated as more informal than
Multi-Task, while formal translations are annotated as more formal. The OSI model
also gets more instances that better preserve the meaning.

than the baseline model (win:tie:loss=151:80:52), while formal translations are

annotated as more formal (win:tie:loss=153:84:61). For both cases, the win-

loss differences are significant with p < 0.001 using the sign test, where ties are

evenly distributed to wins and losses as suggested by Demsar (2006). The results

confirm that synthetic supervision lets the model better tailor its outputs to the

desired formality, and suggest that the differences between formal and informal out-

puts detected by the LePoD scores are indeed representative of formality changes.

Online Style Inference preserves the meaning of the source better than Multi-Task

(win:tie:loss=205:217:155), as shown in Figure 7.3c. The win-loss difference for

meaning preservation is still significant with p < 0.02, but less stronger than for-
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mality difference.

7.6 Qualitative Analysis

We conduct further analysis semi-automatically to better understand how for-

mal and informal translations differ from each other. Most types of changes made

by human rewriters (Pavlick and Tetreault, 2016; Rao and Tetreault, 2018) are also

observed in our system outputs (examples can be found in Table 7.4).

We first check how often the systems output the same translation for formal

and informal style. As can be seen in Table 7.5, both synthetic supervision methods

improve over the baseline multi-task system, and the best Online Style Inference

system introduces changes between formal and informal translations 12% more often

in 6,546 test examples compared to the baseline.

Manual inspection reveals simple patterns indicative of formality changes. We

implement rules to check how often these patterns are found in FSMT output (Ta-

ble 7.5). A sentence can be made more formal by expanding contractions (contr.)

and removing unnecessary fillers such as conjunctions (so/and/but) and interjections

(well) at the beginning of a sentence (filler). Online Target Inference performs these

changes more frequently. We also examine the introduction of quotation marks in

formal translations (quot.); using possessive of instead of possessive ’s (poss.); and

rewrites of informal use of declarative form for yes-no questions (y/n). Online Style

Inference output matches these patterns better than other systems.

Finally, we conduct a manual analysis to understand the nature of differences
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Model identical contr. filler quot. poss. y/n ∆length
Multi-Task 2,140 (33%) 915 530 146 46 13 1.30
Online Target Inference 1,868 (29%) 1,370 635 145 41 21 1.58
Online Style Inference 1,385 (21%) 1,347 530 252 86 33 4.57

Table 7.5: Heuristic analysis of the differences between informal and formal transla-
tions. Both synthetic supervision methods introduce more changes between formal
and informal translations. Online Target Inference usually performs simple substitu-
tions while Online Style Inference performs more less-deterministic changes. Online
Style Inference also generates more complete and longer formal translations.

between formal and informal translations of Online Style Inference that are not

represented by the simple patterns. We observe that ellipsis is frequent in informal

outputs, while formal sentences are more complete, using complement subjects,

proper articles, conjunctions, relative pronouns, etc. This is reflected in their longer

length (∆length in Table 7.5 is the average length difference in characters). Lexical

or phrasal paraphrases are frequently used to convey formality, substituting familiar

terms with more formal variants (e.g., “grandma” vs. “grandmother”). Examining

translations with large PoD scores shows that Online Style Inference is more likely

to reorder adverbs based on formality: e.g., “I told you already” (I) vs. “I already

told you” (F).

A few types of human rewrites categorized by Pavlick and Tetreault (2016) and

Rao and Tetreault (2018) are not observed here. For example, our models almost

always produce words with correct casing and standard spelling for both informal

and formal languages. This matches the characteristics of the translation data we

used for training.

We manually inspect system outputs that fail to preserve the source meaning

and reveal some limitations of using synthetic supervision. (1) Inaccurate synthetic
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labels introduce noise. Online Target Inference sometimes generates “I am not sure”

as the formal translation, regardless of the source. We hypothesize that this is due to

the imperfect synthetic translations generated by the formality transfer sub-model

reinforce this error pattern. (2) Synthetic data may not reflect the true distribu-

tion. Occasionally, Online Style Inference drops the first word in a formal sentence

even if it is not a filler, e.g. “On Thursday, ...” We hypothesize that labeling too

many formal/informal examples of similar patterns could lead to ignoring context.

While Online Style Inference improves meaning preservation comparatively, it still

bears the challenge of altering meaning when fitting to a certain formality, such as

generating “there will be no longer than the hill of Runyonyi” when the reference is

“then only Rumyoni hill will be left”.

7.7 Summary

We explored acquiring synthetic supervision for formality-sensitive machine

translation. We introduced two novel approaches that automatically generate syn-

thetic training triples by either inferring the translation from the source sentence

and desired formality or inferring the target formality from a given translation pair.

Comprehensive automatic and human assessments demonstrated the effectiveness

of using synthetic supervision. Our best model outperformed strong baselines by

producing translations that better match desired formality levels while preserving

the source meaning.
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Chapter 8: Conclusion and Future Work

8.1 Summary

This dissertation addressed the problem of automatic formality transfer within

and across languages. By modeling style transfer within a language and machine

translation jointly, we designed models that are able to generate language for a

desired formality level despite limited training data.

We first confirmed a research hypothesis that formality variations for language

generation could be modeled from examples, such as a pool of formal and informal

words or sentence pairs. We presented an approach to inducing a stylistic subspace

using lexical paraphrases and building a formality scorer using representative words.

This approach better distinguished more formal from less formal words than using

the original space and enabled us to place sentences on a continuous formality scale

based on lexical scores (Niu and Carpuat, 2017). We brought the formality model

to real-world scenarios and introduced a new task — Formality-Sensitive Machine

Translation (FSMT). Given the formality score of sentences, we realized the first

formality-constrained language generation system to perform French-English FSMT.

It was built based on a standard PBMT architecture and trained only with trans-

lation pairs. For each input sentence, the resulting system produces translation
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hypotheses of different formality levels and promotes hypotheses whose formality

scores are closer to the desired formality level. This system can effectively control

language formality (Niu et al., 2017).

The space of possible outputs of the PBMT-based system is limited to lexical

changes and n-best translation hypotheses, so we turned to using neural models

to capture more context. We started by using neural sequence-to-sequence models

for directly modeling the formality variation at the sentence level, i.e., formality

transfer. Since informal-formal sentence pairs are only available in limited quantity,

we took a detour and researched a related problem — improving NMT quality in

low-resource settings. We designed a bi-directional NMT framework that jointly

translates in both translation directions with a single model. It can be used for

efficient iterative back-translation since no auxiliary models are required (Niu et al.,

2018a). We also introduced a differentiable input reconstruction loss for it to exploit

the source side of parallel samples without additional parameters (Niu et al., 2019).

The bi-directional NMT framework was then successfully applied to monolingual

formality transfer tasks (Niu et al., 2018b).

Afterward, we handled tasks of formality style transfer within and across lan-

guages altogether and confirmed that models of these two tasks could help each

other. We built a neural system by jointly training on both formality transfer and

machine translation data. The joint training yielded a single model that not only

significantly improves the quality of formality transfer for English in both direc-

tions but also performs FSMT without being explicitly trained on style-annotated

translation examples (Niu et al., 2018b). This neural FSMT system provides higher
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formality-control intensity than the PBMT-based system, but sometimes produces

translations disobeying the source meaning. Finally, we introduced training with

synthetic supervision to further improved the performance of the neural FSMT sys-

tem. A formality transfer submodule embedded in the joint model was used to infer

the target formality from a given translation pair. After being trained with complete

training triplets, the FSMT system produces translations that better match desired

formality levels while preserving the source meaning (Niu and Carpuat, 2019).

8.2 Future Work

To wrap up this dissertation, we discuss limitations and directions for future

research.

8.2.1 Modeling Formality in the Neural Architecture

While effective, neural formality transfer models are opaque. When working

with PBMT, we explicitly modeled lexical formality. That enabled us to identify

which words make a sentence more informal or more informal. However, after tuning

to the neural architecture, we relied on the heavily parameterized neural network

to contextually make appropriate word choices when generating a sentence at the

desired formality level. We would like to reveal the underlying mechanism of how

these choices were made. For example, we could discover what contextual words

were indicative of style by analyzing model decisions using the attention (e.g., Xu

et al., 2015; Ghaeini et al., 2018) or gradients (e.g., Feng et al., 2018; Jain and
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Wallace, 2019).

Our neural FSMT model only takes a binary view of formal-informal distinc-

tions, which limits the granularity of formality control. By contrast, the PBMT-

based system is capable of promoting translations of different formality levels as it

can take numerical formality scores as input. In future work, we would like to relax

the constraint of using only opposite styles. We could start from using interpolation

for formality tags’ representations, i.e., creating a new target formality embedding

by a linear combination w · <2Formal> + (1 − w) · <2Informal> (Johnson et al.,

2017).

8.2.2 A Broader Range of Tasks

We focused on controlling the target formality in two language generation

tasks — monolingual formality transfer and FSMT. There are other interesting

tasks worth exploring.

(1) In the FSMT task, instead of providing desired formality, we would also like

to infer the source formality to preserve the formality level. This scenario is helpful

if the user is interested in the source style. However, a challenge of achieving this lies

in the difficulty of aligning formality levels between two languages: one sentence may

not have an equivalent preserving the formality in the other language. For example,

the French sentence “vous êtes arrivé” could be translated into English “you have

arrived”, but the information that “vous” is a formal second person singular pronoun

has lost. Alternatively, from English to French, it is unclear whether “vous” or “tu”
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(i.e., an informal second person singular pronoun) preserves the formality level of

“you”.

(2) Although formality is considered a key dimension of style, modeling other

styles (e.g., complexity and specificity) is also desired in practice (Chandrasekar

et al., 1996; Enç, 1991). We would like to investigate whether our proposed methods

are also effective on other styles and address potential issues not revealed when

dealing with the formality. For example, text written for a higher reading grade

level often includes more details than a simpler version aimed at a lower reading

grade level. As a result, making a simple sentence more complex might require

adding content that was not present in the input sentence.

(3) We would like to broaden our horizon to a variety of language generation

tasks that will benefit from constraining certain styles, such as dialog generation (Li

et al., 2016) and poetry generation (Zhang and Lapata, 2014). In these scenarios,

the input is not iterated in other words or languages, so how to make use of the

style transfer data (i.e., paraphrasing data) remains challenging.

8.2.3 Challenges of Joint Training

We would like to further relax the assumptions on the nature of data avail-

able to build FSMT systems. We built the neural FSMT system by training on a

concatenation of the formality transfer and machine translation data. There is a do-

main mismatch between these two datasets since the formality transfer data comes

from Yahoo Answers while the machine translation data mostly comes from Open-
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Subtitles. We attribute a portion of inaccurate formality-controlled translations to

this issue. Selecting a subset of formality transfer examples that are closer to the

MT data is not advised because they are intrinsically insufficient. We would like to

borrow or explore techniques for unsupervised style transfer or unsupervised NMT

(Artetxe et al., 2018; Lample et al., 2018a,b; Wu et al., 2019) to adapt formality

transfer models to the domain of MT by leveraging unpaired data. This research

direction would make it possible to model other types of style variations and target

languages where transfer examples are not readily available.

We only considered French to English for the FSMT task, and the joint model

uses a shared encoder for both French and English input. French and English are

from the same language family (i.e., Indo-European), which makes vocabulary and

embedding space sharing relatively easy. We would like to experiment with more

language pairs that are more distant and draw from advances in multilingual NMT

literature to handle potential issues.

8.2.4 Differentiable Sampling for Unsupervised and Semi-Supervised

Training

We briefly stepped into low-resource NMT and introduced differentiable recon-

struction from sampled sequences. This technique has the potential to be useful for

many unsupervised and semi-supervised sequence generation tasks. For example, we

could apply the round-trip translation to monolingual corpora in addition to parallel

corpora for NMT. We would also like to bring this technique to style-constrained lan-
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guage generation tasks. For example, we could target a specific property that needs

to be improved (e.g., style intensity and output fluency) and design a differentiable

loss that evaluates sampled sequences.
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