
The Institute for Systems Research

ISR develops, applies and teaches advanced methodologies of design and
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the
A. James Clark School of Engineering. It is a graduated National Science

Foundation Engineering Research Center.

www.isr.umd.edu

Scheduling Perfectly Periodic Services
Quickly with Aggregation

Jeffrey W. Herrmann

ISR Technical Report 2013-08

 1

Scheduling Perfectly Periodic Services Quickly with Aggregation

Jeffrey W. Herrmann
A. James Clark School of Engineering

2181 Martin Hall
University of Maryland

College Park, MD 20742
301-405-5433

jwh2@umd.edu

Abstract

The problem of scheduling periodic services that have different period lengths seeks to

find a schedule in which the workload is nearly the same in every time unit. A time unit’s

workload is the sum of the workloads of the services scheduled for that time unit. A level

workload minimizes the variability in the resources required and simplifies capacity and

production planning. This paper considers the problem in which the schedule for each service

must be perfectly periodic, and the schedule length is a multiple of the services’ period lengths.

The objective is to minimize the maximum workload. The problem is strongly NP-hard, but

there exist heuristics that perform well when the number of services is large. Because many

services will have the same period length, we developed a new aggregation approach that

separates the problem into subproblems for each period length, uses the subproblem solutions to

form aggregate services, schedules these, and then creates a solution to the original instance. We

also developed an approach that separates the problem into subproblems based on a partition of

the period lengths. Computational experiments show that using aggregation generates high-

quality solutions and reduces computational effort. The quality of the partition approach

depended upon the partition used.

 2

Introduction

The problem of scheduling periodic services that have different period lengths is an

important problem that occurs in production, maintenance, and other applications. Typically, a

firm has agreed to provide a periodic service to a customer by performing a specific task at a

specific frequency. Different customers have different requirements, which creates an

interesting scheduling problem. The period length (the time between consecutive tasks) varies

based on the customer’s preferences, and the workload associated with each customer varies

based on the task that needs to be accomplished each time. The time unit could be a week, so a

period length equals a number of weeks, while the workload is in man-hours.

For example, a firm that maintains and sells access to a database of commercial real

estate properties must verify and update the status of the information on each property so that

they have accurate information. For each property, one of the firm’s researchers periodically

calls a knowledgeable source to determine what information, if any, has changed since the last

update. Different types of properties require different amounts of time for updating the

information, and the firm has set a frequency for each property (for instance, check every 2

months). Kazan et al. (2012) discuss the problem of planning industrial waste management

services that has similar characteristics.

This paper, like Kazan et al. (2012), focuses on the problem of minimizing the maximum

workload when the tasks associated with each service must be completed on a perfectly periodic

schedule. A time unit’s workload is the sum of the workloads of the services scheduled for that

time unit. A level workload minimizes the variability in the resources required and simplifies

capacity and production planning. This is known as the Perfectly Periodic Service Scheduling

(PPSS) problem. This paper is not concerned with how the tasks scheduled for the same time

 3

unit will be performed. We assume that the workload associated with a service is independent of

when it is scheduled and is independent of which other services are scheduled for the same time

unit.

This paper presents an aggregation approach that (1) separates an instance by formulating

and solving a set of subproblems, (2) creates aggregate services from the solutions to these

subproblems, (3) schedules the aggregate services, and (4) disaggregates that solution to form a

feasible solution to the original instance. The objective of this paper is to show that aggregation

is a computationally efficient method for generating high-quality policies. The paper precisely

defines the aggregation approach, presents performance bounds, and discusses computational

results that demonstrate its performance.

This paper also presents an approach that separates the problem into subproblems by

partitioning the set of period lengths, which partitions the set of services. After each subproblem

is solved, either the solutions are combined directly or the solutions are used to form aggregate

services that are scheduled as in the aggregation approach.

The remainder of the paper proceeds as follows: we will discuss related work, formulate

the PPSS problem, and then present a schedule construction heuristic. Then, we discuss the

algorithms for aggregating an instance and disaggregating a solution for an aggregate instance

and present performance bounds and a lower bound that will be used to evaluate the quality of

the solutions. We then discuss the results of computational experiments designed to evaluate the

effectiveness of the heuristics, the aggregation approach, and the partition approach.

Related Work

Motivated by the problem of planning industrial waste management services, Kazan et al.

(2012) proved that the PPSS problem is strongly NP-hard and introduced a heuristic approach

 4

(the BestFit algorithm) for generating good schedules. They used the BestFit algorithm to

generate schedules to real-world instances that ranged in size from 264 services to 4274 services.

They provided a worst-case performance bound for the BestFit algorithm.

Park and Yun (1985) presented an integer linear programming model and separated it

into subproblems using the Chinese Remainder Theorem, with one subproblem for each set of

period lengths. As Kazan et al. (2012) point out, this approach would not reduce the size of

instances (like those used here) in which the period lengths are {2, 3, 4, 6, 8, 12, 16, 24, 48}.

The Periodic Maintenance Scheduling Problem, discussed by Wei and Liu (1983), is a

version of the PPSS problem in which all of the services have the same workload, and there is a

constraint that limits the workload that can be scheduled in any time unit. The problem is to

determine if any feasible schedule exists. Bar-Noy et al. (2002a) discussed a generalized

maintenance scheduling problem that seeks to minimize the total cost of maintaining and

operating a set of machines.

Herrmann (2009) considered the response time variability (RTV) problem when multiple

servers, working in parallel, are available, and presented a specific aggregation approach. The

results showed that, in most cases, combining aggregation with other heuristics does dramatically

reduce both RTV and computation time compared to using the heuristics without aggregation.

Other work has considered problem in which a single resource must perform certain tasks

perfectly periodically or as close to the ideal as possible. This include Bar-Noy et al. (2002b),

Campbell and Hardin (2005), Corominas et al. (2007), Waldspurger and Weihl (1995), Hajek

(1985), Altman et al. (2000), Sano et al. (2004). Kubiak (2004) provided a good overview of the

need for fair sequences in different domains and presented results for multiple related problems,

including the product rate variation problem, generalized pinwheel scheduling, the hard real-time

 5

periodic scheduling problem, the periodic maintenance scheduling problem, stride scheduling,

minimizing response time variability (RTV), and peer-to-peer fair scheduling. See also Kubiak

(2009) and Kazan et al. (2012) for additional references to other work on cyclic scheduling.

Aggregation is a well-known and valuable technique for solving optimization problems,

especially large-scale mathematical programming problems. Model aggregation replaces a large

optimization problem with a smaller, auxiliary problem that is easier to solve (Rogers et al.,

1991). The solution to the auxiliary model is then disaggregated to form a solution to the

original problem. Model aggregation has been applied to a variety of production and distribution

problems, including machine scheduling problems. For example, Rock and Schmidt (1983) and

Nowicki and Smutnicki (1989) aggregated the machines in a flow shop scheduling problem to

form a two-machine problem. Previous work has developed and studied aggregation approaches

for the RTV problem, the waiting time problem (WTP), and the balanced word problem (BWP)

(Herrmann, 2007, 2008, 2009, 2010, 2011a, b, 2012). Those problems seek to minimize the

deviation of the schedule from a perfectly periodic one, whereas the PPSS problem considered

here seeks to minimize the variability of workload in a perfectly periodic schedule.

PPSS Problem Formulation

We are given a set of n services that require scheduling. A service may correspond to a

particular customer or location or equipment that needs periodic service like cleaning or

maintenance. Thus, each service generates a set of tasks that must be done periodically. Service

i has a period length ip and workload iw . A task must be scheduled every ip time units, and the

task adds iw to the workload for the time unit in which it is scheduled. The schedule length

equals J time units, where J is the least common multiple of 1, , np p… . Thus, service i will

require tasks in / iJ p time units and will add iw to the workload for the time units in which its

 6

tasks are scheduled. The first occurrence of a task for service i must be in one of the first ip

time units. Once this is determined, the schedule for the remaining tasks for this service follows.

Note that any services with 1ip = are trivial to schedule. Thus, we will consider only services

with 2ip ≥ .

Let is be the time unit in which the first task of service i is scheduled. A schedule is

completely specified when all of the is are determined. Clearly, 1 i is p≤ ≤ . Let jS be the set of

services that have tasks scheduled in time unit j, and let jW be the total workload of time unit j,

for 1, ,j J= … . Then, ji S∈ if and only if (mod)i ij s p= .
j

j i
i S

W w
∈

= ∑ .

The objective function is to minimize max { 1W , …, JW }.

Thus, we can describe the PPSS problem as follows: Given an instance { (),i ip w ,

1, ,i n= … }, find a schedule of length J that minimizes max { 1W , …, JW } subject to the

constraints that 1 i is p≤ ≤ for 1, ,i n= … .

Kazan et al. (2012) presented an integer programming formulation of the PPSS problem

and proved that the PPSS problem is strongly NP-hard.

Given an instance, let *W be the optimal value of max { 1W , …, JW }. Then, because the

total workload over all J time units equals
1

/
n

i i
i

w J p
=
∑ , it is easy to see that *

1
/

n

i i
i

W w p
=

≥∑ . We

denote this lower bound as LB.

It will be convenient to define the following for an instance of the PPSS problem: let PLN

be the number of distinct values of the period length, let kp′ be the k-th value, with 1,..., PLk N= ,

and let kA be the set of services that have i kp p′= .

 7

Consider the following special case: if each and every set kA had exactly kp′ services and

the workloads of all of the services in kA were equal, then an optimal schedule can be found

easily by assigning each of the services in kA to a different time period. This would create a

schedule in which every time period has the same total workload. The aggregation approach

described later attempts to create such an instance.

BestFit Heuristic

Kazan et al. (2012) presented the BestFit heuristic and showed that it can generate high-

quality solutions, especially when the number of services is large (over 1000). The worst-case

computational effort is ()logO n n nJ+ .

BestFit algorithm

The BestFit algorithm can be described as follows. The input is an instance { (),i ip w ,

1, ,i n= … }. Let J be the least common multiple of 1, , np p… .

1. Sort the services and renumber so that 1 2 nw w w≥ ≥ ≥" .

2. Set 0jW = for 1, ,j J= … .

3. For 1, ,i n= … , perform the following steps:

a. Set { }max : , , ,j k i iW W k j p j J p j′ = = + − +… for 1, , ij p= … .

b. Find j* such that { }* 1min , ,
ij pW W W′ ′ ′= … .

c. Set *is j= and add iw to * *, ,
ij J p jW W − +… .

4. Return 1,..., ns s as the schedule.

Note that Kazan et al. (2012) considered other ways to sort the services; our results

showed that sorting by workload had the best performance.

 8

Let *W be the optimal maximum workload, let H be the maximum workload of the PPSS

schedule generated by the BestFit heuristic, and let p be the period length of the service that

determines the maximum workload. Then, if 2p J≤ , */ /H W J p≤ . Otherwise,

* 2/ 1 (1) /H W J p p≤ + − (Kazan et al., 2012).

Aggregation Approach

To improve the performance of this heuristic, we developed and tested an aggregation

approach that (1) separates an instance by formulating and solving a set of subproblems, (2)

creates aggregate services from the solutions to these subproblems, (3) schedules the aggregate

services, and (4) disaggregates that solution to form a feasible solution to the original instance.

Before giving the details of the approach, we will consider some of the ideas that motivated and

justify the approach.

First, if, for period length kp′ , one could find a schedule for the services in kA in which

the total workload was the same in every time period, the total workload in every time period

that schedule would equal 1
k

k

ip
i A

w′
∈
∑ . (As Kazan et al. (2012) remarked, when all period lengths

are equal, then the PPSS problem is equivalent to the problem of minimizing the makespan of a

schedule for parallel machines.) If such a schedule could be found for every period length

(1,..., PLk N=), then these schedules, when combined, would form a complete, feasible schedule

for the entire set of services, and the total workload in every time period would equal

1

1 1

/
PL

k
k

N n

i i ip
k i A i

w w p′
= ∈ =

=∑ ∑ ∑ , which is the lower bound LB, so this ideal schedule must be optimal.

In addition, we note that, in any feasible solution to the PPSS problem, a time period may

have multiple tasks that are generated by services that have the same period length (say p). The

 9

tasks generated by this set of services will occur in J/p (evenly spaced) time periods. Thus, in

this schedule, these services are equivalent to one (aggregate) service that has a workload equal

to the sum of these corresponding workloads and the same period length.

Thus, the ideal schedule mentioned in the previous paragraph is equivalent to a schedule

in which there are kp′ (aggregate) services that have period length kp′ and all of the (aggregate)

services with the same period length have the same workload. Thus, we have the special case

that was identified earlier.

These ideas motivated the aggregation approach, which transforms any instance into

another instance that nearly fits the conditions of the special case. The aggregation approach

first separates an instance of the PPSS problem into subproblems. There is one subproblem for

each distinct period length in the instance, and each subproblem has all of the services with that

period length. Each of the subproblems is a parallel machine scheduling problem in which the

number of machines equals p, the associated period length. A solution to any subproblem can be

viewed as p aggregate services, one for each machine, where the workload of each aggregate

service is the total processing time on the corresponding machine. Note that each aggregate

service has the workload of one or more services from the original PPSS instance.

An aggregate instance of the PPSS problem can be created with all the aggregate services

from all of the subproblems. The total workload of the aggregate instance equals the total

workload of the original instance, but the total number of services has been reduced. Any

solution for the aggregate instance can be transformed into a solution for the original instance by

starting each service in the time unit in which its aggregate service starts.

More precisely, the aggregation algorithm proposed here involves separation (splitting

the PPSS problem into subproblems), aggregation (combining services into aggregate services),

 10

and disaggregation (constructing a solution for the original instance from a solution for the

aggregate instance).

The notation used in the algorithm that follows enables us to keep track of the services in

order to describe the disaggregation of a schedule precisely. Let 0I be the original instance, let

PLN be the number of distinct values of the period length, and let kp′ be the k-th value, with

1,..., PLk N= . For 1,..., PLk N= , let kI be the k-th subproblem generated from 0I and let kn′ be

the number of services with i kp p′= . Let AI be the aggregate instance. Let khB be the set of

services that form an aggregate service, 1,..., PLk N= , 1,..., kh p′= .

As the aggregation algorithm is presented, we describe its operation on the following

nine-service example: 0I = {(2, 6), (2, 4), (2, 3), (2, 2), (2, 2), (3, 8), (3, 6), (3, 5), (3, 2)}, n = 9,

2PLN = , and J = 6.

Aggregation. Given: an instance 0I with { (),i ip w , 1, ,i n= … }.

1. For 1,..., PLk N= , perform the following steps:

a. If k kn p′ ′≤ , go to the next value of k.

b. Create an instance kI of P//Cmax as follows: the number of machines equals kp′ . There are

kn′ jobs, with one job for every service i with i kp p′= ; the processing time of that job equals

iw .

c. Generate a solution to the instance of P//Cmax. For 1,..., kh p′= , let khB be services whose

jobs are scheduled on machine h.

Example. With k = 1, kp′ = 2, kn′ = 5. If the solution to the two-machine problem

schedules services 1 and 5 on machine 1 and services 2, 3, and 4 on machine 2, then

 11

11 {1,5}B = and 12 {2,3,4}B = . With k = 2, kp′ = 3, kn′ = 4. If the solution to the

three-machine problem schedules service 6 on machine 1, service 7 on machine 2,

and services 8 and 9 on machine 3, then 21 {6}B = , 22 {7}B = , and 23 {8,9}B = .

2. For 1,..., PLk N= , perform the following steps:

a. If k kn p′ ′≤ , then create kn′ aggregate services as follows: for 1,..., kh n′= , khB = {[h]}, the

period length equals kp′ , and the workload of the aggregate service is []kh hw w′ = , where [h]

is the index of the h-th service with a period length equal to kp′ . Go to the next value of k.

b. Consider the solution to instance kI . For 1,..., kh p′= , create an aggregate service, set the

period length to kp′ , and set the workload
kh

kh i
i B

w w
∈

′ = ∑ .

Example. With k = 1, kp′ = 2. Create two aggregate services with workloads

11 1 5 8w w w′ = + = and 12 2 3 4 9w w w w′ = + + = . With k = 2, kp′ = 3. Create three

aggregate services with workloads 21 6 8w w′ = = , 22 7 6w w′ = = , and 23 8 9 7w w w′ = + = .

3. Create an aggregate instance AI = { (),k khp w′ ′ , 1,..., PLk N= , { }1,..., min ,k kh n p′ ′= } of the

PPSS problem. The total number of aggregate services { }
1
min ,

PLN

AS k k
k

N n p
=

′ ′= ∑ . Generate a

schedule for the aggregate instance that specifies the start time khs′ of each aggregate service.

Example. The aggregate instance has 5 aggregate services: {(2, 8), (2, 9), (3, 8), (3,

6), (3, 7)} Note that J still equals 6. A feasible schedule for this aggregate instance

has 11 2s′ = , 12 1s′ = , 21 1s′ = , 22 3s′ = , and 23 2s′ = . The workloads are 17, 15, 15, 16,

16, and 14.

 12

4. Generate a schedule for the original instance as follows: for 1,..., PLk N= ,

{ }1,..., min ,k kh n p′ ′= , and khi B∈ , set i khs s′= .

Example. 11 {1,5}B = , so 1 5 11 2s s s′= = = . 12 {2,3,4}B = , so 2 3 4 12 1s s s s′= = = = .

21 {6}B = , so 6 21 1s s′= = . 22 {7}B = , so 7 22 3s s′= = . 23 {8,9}B = , so 8 9 23 2s s s′= = = .

The worst-case computational effort of the aggregation procedure depends upon the

algorithms used to solve the subproblems (which are parallel machine scheduling problems) and

the aggregate instance. If a list scheduling procedure is used for the parallel machine scheduling

problems, then, although the worst-case computational effort of each one is ()logk kO n n′ ′ , the

worst-case computational effort required for all of them is
1

log
PLN

k k
k

O n n
=

⎛ ⎞
′ ′⎜ ⎟

⎝ ⎠
∑ , which is less than

()logO n n .

If BestFit is used to create a schedule for the aggregate instance, the worst-case

computational effort of that procedure is ()logAS AS ASO N N N J+ . Because
1

PLN

AS k
k

N p
=

′≤∑ , then

the computational effort of solving the aggregate problem remains constant as the number of

services increases beyond
1

PLN

k
k

p
=

′∑ if the set of period lengths remains constant. The

disaggregation of the schedule for the aggregate instance requires ()O n time. Thus, if list

scheduling and BestFit are used, the worst-case computational effort of the aggregation

procedure is not worse than that worst-case computational effort of BestFit. (We also note that

the parallel machine subproblems could be solved in parallel.) This fact and the small increase

(at most 1/3) in the worst-case relative performance (discussed in the next section) indicate that

 13

the aggregation procedure should, in general, be faster than the BestFit procedure but may

possibly generate slightly lower-quality solutions.

Performance Bounds

This section will present bounds on the worst-case performance of the aggregation

procedure. First, we consider the parallel machine scheduling problem max||P C . Let m be the

number of machines, let *
maxC be the optimal makespan for an instance, and let max

LPTC be the

makespan of the schedule found using the longest processing time (LPT) first list scheduling

rule. The worst case performance of the LPT first list scheduling rule is * 4 1
max max 3 3/LPT

mC C ≤ −

(Graham, 1969).

Now, consider an instance of PPSS. Let *W be the optimal maximum workload, let AW

be the maximum workload of the schedule generated by the aggregation procedure, and let p and

w′ be the period length and workload of the aggregate service that determines the maximum

workload of this schedule (the deciding aggregate service). (Note that the following proof

follows the ideas of Graham, 1969, and Kazan et al., 2012.)

Theorem 1. The worst-case performance guarantee of the aggregation procedure is

*/ /AW W J p≤ if 2p J≤ , and ()()2
* 4 1

3 3/ 1A J J
p pp

W W ≤ + − − if 2p J> .

Proof. The aggregate service was determined by solving a parallel machine scheduling

problem using the LPT first list scheduling rule. The scheduling problem had p machines, and

the workload w′ of the aggregate service is the total processing time of the jobs on one machine.

Thus, if we let *
maxC be the optimal makespan for this problem, () *4 1

max max3 3
LPT

mw C C′ ≤ ≤ − .

Moreover, because all of the jobs in the parallel machine scheduling problem are services in the

PPSS instance, it is clear that * *
maxC W≤ . Thus, () *4 1

3 3mw W′ ≤ − .

 14

Recall that, when the deciding aggregate service is added, { }* 1min , ,j pW W W′ ′ ′= … . Thus,

there are at least p time periods that have a workload of at least *jW ′ . Thus,

()*
* /J

j pW pW w J′ ′≥ + , which implies that ()* 1
*

J
j p pW W w′ ′≤ − . Because *

A
jW W w′ ′= + ,

()2
* 1A J J

p p
W W w′≤ + − .

If 2p J≤ , then */ /AW W J p≤ .

If 2p J> , then because () *4 1
3 3mw W′ ≤ − , ()()2

* 4 1
3 3/ 1A J J

p pp
W W ≤ + − − . Q.E.D.

This performance guarantee allows one to bound the relative error by considering the

worst-case value of p. For the cases considered in this paper, the bound decreases as p increases.

When J = 48 and the smallest value of p = 2, then we know only that */ / 24.AW W J p≤ = For

instances with no small period lengths, the bound will decrease. If, for instance, the set of period

lengths is {8, 12, 16, 24, 48}, then J = 48, the smallest value of p = 8, and this performance

guarantee shows that ()()2
* 314 1

3 3 96/ 1 6A J J
p pp

W W ≤ + − − = . If the set of period lengths is only

{24, 48}, then this performance guarantee shows that ()()2
* 1814 1

3 3 864/ 1 3A J J
p pp

W W ≤ + − − = .

Partitioning Approach

We also considered a partitioning approach that generalizes the aggregation approach.

Instead of considering one period length at a time, this partitioning approach considered multiple

period lengths simultaneously. Given a partition of the set of period lengths into multiple subsets

so that the period lengths in any one subset were multiples of each other, the first step of the

aggregation approach created one instance of the PPSS problem for each subset. This instance

contained only the services with the period lengths in that subset. The schedule length was the

 15

least common multiple of the period lengths in that subset. The partition approach used the

BestFit heuristic to construct a schedule for that instance (subproblem).

Two versions of combining the solutions to the subproblems were considered. The first,

which we call partition-aggregation, formed aggregate services from each solution. The number

of aggregate services (and each one’s period length) was the smallest period length of any

service in that subproblem. The workload of the aggregate service was the maximum workload

of the time units separated by the period length. For example, if the period lengths were 2, 4,

and 8, a schedule has 8 time units. The first aggregate service corresponds to time units 1, 3, 5,

and 7, so its workload is the maximum workload of these time units, and the aggregate service

represents all of the services scheduled in these time units; likewise, the second aggregate service

corresponds to time units 2, 4, 6, and 8 and the services scheduled in these time units.

Then, like the aggregation approach, this approach used the BestFit heuristic to construct

a schedule for the aggregate instance and disaggregated the schedule to create a solution for the

original instance. Note that using the aggregation approach is equivalent to using the partition-

aggregation approach with a partition in which each period length is its own subset.

Partition-Aggregation. Given: an instance 0I with { (),i ip w , 1, ,i n= … } and a partition

of the period lengths into PTN subsets such that period length k is in subset kP , where

{ }1, ,k PTP N∈ … for 1,..., PLk N= .

1. For 1,..., PTr N= , perform the following steps:

a. Create an instance rI of PPSS: rI = { (),i ip w : ki S∈ and kP r= }. This instance

will have
: k

k
k P r

n
=

′∑ services. Set rJ ′ to be the least common multiple of

{ }:k kp P r′ = and set { }min, min :r k kp p P r′= = .

 16

b. Generate a solution to this instance. Let rjW denote the scheduled workload for

time unit j for 1,..., rj J ′= . For service i in rI , let ris denote the time unit of

the first scheduled task, and set ()min, min,1 /ri r ri rp s pδ ⎢ ⎥= −⎣ ⎦ , where x⎢ ⎥⎣ ⎦ is the

greatest integer less than or equal to x. This value is the interval between the

scheduled start time and the time unit for the corresponding aggregate service.

Note that min,1 ri ri rs pδ≤ − ≤ .

2. For 1,..., PTr N= , perform the following step:

a. Consider the solution to instance rI . For min,1,..., rh p= , create an aggregate

service, set the period length to min,rp , and set the workload

{ }min, min,max : , , ,rh rj r r rw W j h p h J p h′ ′= = + − +… .

3. Create an aggregate instance AI = { ()min, ,r rhp w′ , 1,..., PTr N= , min,1,..., rh p= }

of the PPSS problem. The total number of aggregate services equals

min,
1

PTN

r
r

p
=
∑ . The schedule length AJ ′ is the least common multiple of

{ }min, : 1, ,r PTp r N= … . Generate a schedule for the aggregate instance that

specifies the start time rhs′ of each aggregate service.

4. For 1,..., PTr N= , perform the following step:

a. For every service i in rI , set ri rih s δ′ = − and then i rh ris s δ′′= + .

Example. To demonstrate this algorithm, we describe its operation on the following

eleven-service example: 0I = {(4, 5), (2, 6), (2, 1), (2, 4), (6, 1), (2, 2), (4, 1), (6, 2), (3, 5), (3, 4),

(3, 3)}, n = 11, 4PLN = , and J = 12. The partition is {2, 4} and {3, 6}, so 2PTN = .

 17

Step 1. The first subproblem corresponds to the first subset in the partition: 1I = {(4, 5),

(2, 6), (2, 1), (2, 4), (2, 2), (4, 1)}, 1 4J ′ = , and min,1 2p = . A feasible solution to this subproblem

has the following start times: 11 2s = , 12 1s = , 13 1s = , 14 2s = , 16 1s = , 17 4s = . 1 0iδ = for all

services except ()17 2 4 1 / 2 2δ = − =⎢ ⎥⎣ ⎦ because service 7 starts in time unit 4 but will be part of

the second aggregate service from this subproblem. The time unit workloads are (9, 9, 9, 5).

The second subproblem corresponds to the second subset in the partition: 1I = {(6, 1), (6,

2), (3, 5), (3, 4), (3, 3)}, 2 6J ′ = , and min,2 3p = . A feasible solution to this subproblem has the

following start times: 25 6s = , 28 3s = , 29 1s = , 2,10 2s = , 2,11 3s = . 2 0iδ = for all services except

()25 3 6 1 / 3 3δ = − =⎢ ⎥⎣ ⎦ because service 5 starts in time unit 6 but will be part of the third

aggregate service from this subproblem. The time unit workloads are (5, 4, 5, 5, 4, 4).

Step 2. With r = 1, min,1p = 2. Create two aggregate services with workloads

11 11 13max{ , } 9w W W′ = = and 12 12 14max{ , } 9w W W′ = = . Their period length equals 2.

With r = 2, min,2p = 3. Create three aggregate services with workloads

21 21 24max{ , } 5w W W′ = = and 22 22 25max{ , } 4w W W′ = = , and 23 23 26max{ , } 5w W W′ = = . Their

period length equals 3.

Step 3. The aggregate instance has 5 aggregate services: {(2, 9), (2, 9), (3, 5), (3, 4), (3,

5)} Note that AJ ′ equals 12 (which is shorter than the actual schedule length). A feasible

schedule for this aggregate instance has 11 1s′ = , 12 2s′ = , 21 1s′ = , 22 3s′ = , and 23 2s′ = .

Step 4. With r = 1, 1 4 12 2s s s′= = = , 2 3 6 11 1s s s s′= = = = , 7 12 17 4s s δ′= + = .

With r = 2, 5 23 25 5s s δ′= + = , 8 11 13 2s s s′= = = , 9 31 1s s′= = , 10 22 3s s′= = .

The time unit workloads are (14, 14, 13, 10, 13, 13, 14, 10, 13, 14, 13, 9).

 18

Partition-Stacking. The second version of the partition approach, which we call

partition-stacking, does not create aggregate services or solve an aggregate instance. Instead,

after Step 1, this algorithm simply “stacks” the schedules for each subproblem to construct a

complete solution for the original instance. Each service’s start time in its subproblem solution

becomes the start time in the complete solution. The workload in each time unit is the sum of the

workloads from the subproblem solutions (after repeating their schedules to fill the entire

schedule length).

Consider the eleven-service example again. The solution to the first subproblem

specifies feasible start times for services 1, 2, 3, 4, 6, and 7. The solution to the second

subproblem specifies feasible start times for services 5, 8, 9, 10, and 11. These two solutions

form a solution to the original instance, and the time unit workloads are (14, 13, 14, 10, 13, 13,

14, 9, 14, 14, 13, 9). Table 1 shows how the schedules are “stacked.”

Table 1. “Stacking” solutions to two subproblems. The entries show the workload in each time
period for the solutions to both subproblems and the combined schedule for the original eleven-

service example.
Time Unit: 1 2 3 4 5 6 7 8 9 10 11 12

Schedule 1: 9 9 9 5 9 9 9 5 9 9 9 5
Schedule 2: 5 4 5 5 4 4 5 4 5 5 4 4
Combined
Schedule 14 13 14 10 13 13 14 9 14 14 13 9

Computational Experiments

The purpose of the computational experiments was to compare the performance of the

aggregation approach, the partition approaching, and the BestFit heuristic. All of the algorithms

were implemented in Matlab and executed using Matlab R2006b on a Dell Optiplex GX745 with

Intel Core2Duo CPU 6600 @ 2.40 GHz and 2.00 GB RAM running Microsoft Windows XP

Professional Version 2002 Service Pack 3.

 19

We slightly modified the scheme of Kazan et al. (2012) and generated 81 new instances

as follows.

We used nine values of n: 100, 250, 500, 1,000, 2,000, 3,000, 4,000, 5,000, and 10,000.

The period lengths were chosen from the set {2, 3, 4, 6, 8, 12, 16, 24, 48}. J = 48 in all

instances.

For each value of n, we generated nine instances with that many services, one instance of

each of nine types. Each type had different distributions for period length and workload.

In types 1, 2, 3, 4, 8, and 9, all of the period lengths were equally likely. In type 5,

smaller period lengths were more likely. In type 6, larger period lengths were more likely. In

type 7, period lengths of 6, 8, and 12 were more likely. Table 2 lists the probability of each

period length by instance type.

Table 2. Probability of each period length by instance type.
Period Instance Type
Length 1, 2, 3, 4, 8, 9 5 6 7

2 1/9 1/6 1/18 1/12
3 1/9 1/6 1/18 1/12
4 1/9 1/6 1/18 1/12
6 1/9 1/9 1/9 1/6
8 1/9 1/9 1/9 1/6

12 1/9 1/9 1/9 1/6
16 1/9 1/18 1/6 1/12
24 1/9 1/18 1/6 1/12
48 1/9 1/18 1/6 1/12

In addition, different probability distributions were used for the workloads. For types 1,

5, 6, and 7, the distribution was a uniform distribution on the range 0 to 200. For type 2, the

distribution was a triangular distribution with a minimum of 0, a mode of 0, and a maximum of

200. For type 3, the distribution was a triangular distribution with a minimum of 0, a mode of

200, and a maximum of 200. For type 4, the distribution was a uniform distribution on the range

0 to 1000. For type 8 and 9, the distribution depended upon the period length of the service. For

 20

type 8, the distribution was a uniform distribution on the range 0 to 100 ip− (so services with

longer period lengths have smaller workloads). For type 9, the distribution was a uniform

distribution on the range ip to 50ip + (so services with shorter period lengths have smaller

workloads).

For each combination of n and the instance type, we generated an instance by generating

n random period lengths using the period length distribution for that type and n random

workloads using the workload distribution for that type.

For testing the partitioning approach, nine partitions were considered:

A: {2, 4}, {3, 6}, {8, 16}, {12, 24}, and {48};

B: {2, 4}, {3, 6}, {8, 16}, and {12, 24, 48};

C: {2, 4, 8}, {3, 6, 12, 24}, {16, 48};

D: {2, 4, 8, 16}, {3, 6, 12}, and {24, 48};

E: {2, 4, 8, 16} and {3, 6, 12, 24, 48};

F: {2, 4, 8, 16, 48} and {3, 6, 12, 24};

G: {2, 4, 12}, {3, 6}, {8, 16}, and {24, 48};

H: {2, 4, 12, 24}, {3, 6}, and {8, 16, 48}; and

I: {2, 4, 12, 24, 48}, {3, 6}, and {8, 16}.

For each instance, we evaluated the lower bound LB, used the BestFit heuristic to

construct a schedule, and used the aggregation algorithm to construct a schedule. We used LPT

list scheduling to generate solutions to the parallel machine scheduling subproblems and the

BestFit heuristic to construct a solution for the aggregate instance.

 21

Table 3. Average number of aggregate services for the instances.

N

Average
number of
aggregate
services

100 64
250 101
500 119

1,000 123
2,000 123
3,000 123
4,000 123
5,000 123

10,000 123

Before discussing the results of the heuristics, we consider first how many aggregate

services were generated. Table 3 shows that, as n increases, the average number of aggregate

services increases. For all instances with at least 1000 services, the number of aggregate services

123ASN = , the sum of the period lengths, which is at least an order of magnitude less than n.

Recall that all of these instances shared the same nine distinct values of period length (9PLN =).

To compare the schedule quality, for each instance, we report the relative deviation

between the max workload of each schedule constructed and the lower bound (see Table 4).

Table 4. Average values of the relative deviation between the max workload and the lower bound
for the schedules generated by the BestFit heuristic, the aggregation algorithm, and the partition
approach using Partition E.

n BestFit Aggregation Partition E-
Stacking

Partition E-
Aggregation

100 2.9% 3.6% 3.8% 3.8%
250 0.7% 0.9% 0.7% 0.7%
500 0.2% 0.6% 0.2% 0.2%

1,000 0.1% 0.2% 0.1% 0.1%
2,000 0.0% 0.0% 0.0% 0.0%
3,000 0.0% 0.0% 0.0% 0.0%
4,000 0.0% 0.0% 0.0% 0.0%
5,000 0.0% 0.0% 0.0% 0.0%

10,000 0.0% 0.0% 0.0% 0.0%

 22

1.00 1.01 1.02 1.03 1.04 1.05

Aggregate‐A

Stack‐A

Aggregate‐B

Stack‐B

Aggregate‐C

Stack‐C

Aggregate‐D

Stack‐D

Aggregate‐E

Stack‐E

Aggregate‐F

Stack‐F

Aggregate‐G

Stack‐G

Aggregate‐H

Stack‐H

Aggregate‐I

Stack‐I

BestFit3

Agg + Bestfit3

Pa
rt
it
io
n

Average Relative Max Workload
Figure 1. Schedule quality of the aggregation approach, the BestFit heuristic, the partition-

aggregation approach, and the partition-stacking approach on instances with 100, 250, 500, and
1,000 services.

For the BestFit heuristic, the aggregation algorithm, and the partition approach, the gap

from the lower bound decreases as the number of services increases. All of the algorithms

generate near-optimal solutions for instances with at least 1,000 services.

For the smaller instances, the BestFit heuristic generates better schedules on average.

In a smaller instance, a large period length is unlikely to have enough services; that is, it

is likely that k kn p′ ′< for larger kp′ . Thus, in any schedule, these services will cause great

variability in the workloads. Because the aggregate instance has fewer services than the original

instance, the BestFit heuristic has less flexibility to smooth this variability.

As shown in Figure 1, for the instances with 100, 250, 500, and 1,000 services, the

partitioning approach generated the best schedules using Partition E. Partitions E and F (which

also generated better schedules) have only two subsets. Using Partitions A, B, and G (which

 23

have four or five subsets) on these instances generated schedules that were not as good. In

general, for these instances, the partitioning approach generated schedules that were not as good

on average as those generated by the aggregation approach and the BestFit heuristic.

The BestFit heuristic corresponds to a partition with only one subset, and the aggregation

approach corresponds to a partition in which each period length has its own subproblem. These

two special cases generated better schedules. Partitions A to I all involved forming aggregate

services that approximated (indeed, overestimated) the actual workload, whereas the aggregate

services in the aggregate approach did not use such approximations.

The various types of instances had little impact on the performance of the procedures.

Not surprisingly, the quality of the schedules (measured as the gap from the lower bound) was

better for type 8 instances (services with longer period lengths have smaller workloads) than for

type 9 instances (services with shorter period lengths have smaller workloads), however. For

type 8 instances, the average relative deviation between the max workload and the lower bound

was 0.8% for the schedules generated by the BestFit heuristic and 0.6% for the schedules

generated by the aggregation algorithm. For type 9 instances, the average relative deviation

between the max workload and the lower bound was 2.1% for the schedules generated by the

BestFit heuristic and 2.0% for the schedules generated by the aggregation algorithm.

Interestingly, the aggregation algorithm performed better than the BestFit heuristic and

the partitioning approach on type 9 instances with fewer services. In particular, for type 9

instances with 100, 250, and 500 services, the average relative gap between the max workload

and the lower bound was 3.0% for the schedules constructed by aggregation, 3.7% for the

schedules constructed by the BestFit heuristic, 5.5% for the schedules constructed using partition

E and stacking, and 5.6% for the schedules constructed using partition E and aggregation. In the

 24

type 9 instances, the services with long period lengths have greater workloads. Aggregation

combines many services with short period lengths (but smaller workloads) into services with

much greater workloads that can be used to create balanced schedules.

We also measured the clock time needed to generate these schedules. Table 5 shows the

average time needed to generate schedules for the BestFit heuristic and the aggregation

algorithm for different values of n. These are averages over nine instances. As n increased, the

time required increased. The average time for the BestFit heuristic is proportional to n. The

average time for the aggregation algorithm increased more slowly than n increased. Because its

subproblem solution approach (LPT list scheduling) is simpler and quicker than the BestFit

heuristic, the aggregation algorithm is faster than the BestFit heuristic and the partitioning

approaches, and its relative performance increased as n increased. The partitioning approaches

were not faster than then BestFit heuristic. Although the subproblems are small, solving them

still requires using BestFit on every service.

Table 5. Average time required to generate a schedule by the BestFit heuristic, the aggregation
algorithm, and the partitioning approach (in 1/1000 seconds).

n BestFit Aggregation Partition-
Stacking

Partition-
Aggregation

100 4 4 5 7
250 11 8 11 14
500 21 12 21 25

1,000 43 15 43 48
2,000 86 20 85 93
3,000 127 25 125 137
4,000 170 30 167 183
5,000 213 35 209 228

10,000 422 61 413 448

Summary and Conclusions

This paper presented an aggregation approach for the problem of scheduling periodic

services that have different period lengths, analyzed its computational effort, and presented a

 25

worst case performance bound. We combined this approach with existing heuristics in order to

determine when aggregation is useful.

The results show that using aggregation reduces the computational effort needed to

construct a schedule and the schedules are equally good for larger instances. For smaller

instances, the quality of the schedules generated using aggregation are not as good. For smaller

instances, the quality of the schedules generated using the partitioning approach depended upon

the partition used but were not as good as those generated by the aggregation approach and did

not reduce the computational effort. Thus, for the PPSS problem, we recommend using

aggregation when the instances are large (greater than 1,000 services).

The results indicate that separating a large problem into subproblems will be faster only if

the subproblems can be solved with faster algorithms that exploit the structure of the

subproblems. This was done in the aggregation approach but not in the more general partitioning

approach.

Because aggregation creates a smaller instance, it could be employed with an exact

approach that requires too much computational effort to run on the original instance but is still

reasonable on the smaller instance. Of course, an optimal solution to the smaller, aggregate

instance would not necessarily yield, after disaggregation, an optimal solution to the original

instance.

 26

References
Altman, E., Gaujal, B., Hordijk, A. (2000). Balanced sequences and optimal routing. Journal of

the ACM, 47(4), 752–775.

Bar-Noy, A., Bhatia, R., Naor, J., Schieber, B. (2002a). Minimizing service an operation costs of

periodic scheduling. Mathematics of Operations Research, 27, 518-544.

Bar-Noy, Amotz, Aviv Nisgah, and Boaz Patt-Shamir (2002b), Nearly Optimal Perfectly

Periodic Schedules, Distributed Computing, 15, 207-220.

Campbell, Ann Melissa, and Jill R. Hardin (2005), Vehicle Minimization for Periodic Deliveries,

European Journal of Operational Research, 165, 668–684.

Corominas, A., Kubiak, W., Palli, N.M. (2007). Response time variability. Journal of

Scheduling, 10, 97-110.

Graham, R.L. (1969). Bounds on Multiprocessing Timing Anomalies, SIAM Journal on Applied

Mathematics, 17, 263-269.

Hajek, B. (1985). Extremal splittings of point processes. Mathematics of Operations Research,

10, 543-556.

Herrmann, J.W. (2007). Generating cyclic fair sequences using aggregation and stride

scheduling. Technical Report 2007-12, Institute for Systems Research, University of

Maryland, College Park. http://hdl.handle.net/1903/7082. Accessed 1 November 2010.

Herrmann, J.W. (2008). Constructing perfect aggregations to eliminate response time variability

in cyclic fair sequences. Technical Report 2008-29, Institute for Systems Research,

University of Maryland, College Park. http://hdl.handle.net/1903/8643. Accessed 1

November 2010.

Herrmann, J.W. (2009). Generating cyclic fair sequences for multiple servers. MISTA 2009,

Dublin, Ireland, August 10-12, 2009.

 27

Herrmann, J.W. (2010). “Using Aggregation to Construct Periodic Policies for Routing Jobs to

Parallel Servers with Deterministic Service Times,” to appear in Journal of Scheduling.

DOI: 10.1007/s10951-010-0209-6. Published online on November 24, 2010.

Herrmann, J.W. (2011a). Using aggregation to reduce response time variability in cyclic fair

sequences. Journal of Scheduling, Volume 14, Number 1, pages 39-55, 2011.

Herrmann, J.W. (2011b), “Generating Better Cyclic Fair Sequences Faster with Aggregation,”

Proceedings of the 5th Multidisciplinary International Scheduling Conference: Theory

and Applications (MISTA 2011), Phoenix, Arizona, August 9-12, 2011.

Herrmann, J.W. (2012), “Finding Optimally Balanced Words for Production Planning and

Maintenance Scheduling,” IIE Transactions, Volume 44, Number 3, pages 215-229.

Kazan, Osman, Milind Dawande, Chelliah Sriskandarajah, and Kathryn E. Stecke (2012).

“Balancing Perfectly Periodic Service Schedules: An Application from Recycling and

Waste Management,” Naval Research Logistics, Volume 59, Issue 2, pages 160-171.

Kubiak, W. (2004). Fair sequences. In J.Y-T. Leung (Ed.), Handbook of Scheduling:

Algorithms, Models and Performance Analysis (pp. 1-21). Boca Raton, Florida: Chapman

& Hall/CRC.

Kubiak, W. (2009). Proportional Optimization and Fairness, New York: Springer.

Nowicki, E., Smutnicki, C. (1989). Worst-case analysis of an approximation algorithm for flow

shop scheduling. Operations Research Letters, 8, 171-177.

Park, K.S., and D.K. Yun (1985). “Optimal Scheduling of Periodic Activities,” Operations

Research, Volume 33, pages 690-696.

Rock, H., Schmidt, G. (1983). Machine aggregation heuristics in shop scheduling. Methods of

Operations Research, 45, 303-314.

 28

Rogers, D.F., Plante, R.D., Wong, R.T., Evans, J.R. (1991). Aggregation and disaggregation

techniques and methodology in optimization. Operations Research, 39(4), 553-582.

Sano, S., Miyoshi, N., Kataoka, R. (2004). “m-balanced words: a generalization of balanced

words. Theoretical Computer Science, 314(1-2), 97-120.

Waldspurger, C.A., Weihl, W.E. (1995). Stride scheduling: deterministic proportional-share

resource management. Technical Memorandum MIT/LCS/TM-528, MIT Laboratory for

Computer Science, Cambridge, Massachusetts.

Wei, W.D., Liu, C.L. (1983). On a periodic maintenance problem. Operations Research Letters,

2(2), 90-93.

	TR_2013-08 Cover_Page
	PPSS aggregation 4

