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Abstract 

The problem of scheduling periodic services that have different period lengths seeks to 

find a schedule in which the workload is nearly the same in every time unit.  A time unit’s 

workload is the sum of the workloads of the services scheduled for that time unit.  A level 

workload minimizes the variability in the resources required and simplifies capacity and 

production planning.  This paper considers the problem in which the schedule for each service 

must be perfectly periodic, and the schedule length is a multiple of the services’ period lengths.  

The objective is to minimize the maximum workload.  The problem is strongly NP-hard, but 

there exist heuristics that perform well when the number of services is large.  Because many 

services will have the same period length, we developed a new aggregation approach that 

separates the problem into subproblems for each period length, uses the subproblem solutions to 

form aggregate services, schedules these, and then creates a solution to the original instance.  We 

also developed an approach that separates the problem into subproblems based on a partition of 

the period lengths.  Computational experiments show that using aggregation generates high-

quality solutions and reduces computational effort.  The quality of the partition approach 

depended upon the partition used. 
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Introduction 

The problem of scheduling periodic services that have different period lengths is an 

important problem that occurs in production, maintenance, and other applications.  Typically, a 

firm has agreed to provide a periodic service to a customer by performing a specific task at a 

specific frequency.  Different customers have different requirements, which creates an 

interesting scheduling problem.  The period length (the time between consecutive tasks) varies 

based on the customer’s preferences, and the workload associated with each customer varies 

based on the task that needs to be accomplished each time.  The time unit could be a week, so a 

period length equals a number of weeks, while the workload is in man-hours.   

For example, a firm that maintains and sells access to a database of commercial real 

estate properties must verify and update the status of the information on each property so that 

they have accurate information.  For each property, one of the firm’s researchers periodically 

calls a knowledgeable source to determine what information, if any, has changed since the last 

update.  Different types of properties require different amounts of time for updating the 

information, and the firm has set a frequency for each property (for instance, check every 2 

months).  Kazan et al. (2012) discuss the problem of planning industrial waste management 

services that has similar characteristics.   

This paper, like Kazan et al. (2012), focuses on the problem of minimizing the maximum 

workload when the tasks associated with each service must be completed on a perfectly periodic 

schedule.  A time unit’s workload is the sum of the workloads of the services scheduled for that 

time unit.  A level workload minimizes the variability in the resources required and simplifies 

capacity and production planning.  This is known as the Perfectly Periodic Service Scheduling 

(PPSS) problem.  This paper is not concerned with how the tasks scheduled for the same time 
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unit will be performed.  We assume that the workload associated with a service is independent of 

when it is scheduled and is independent of which other services are scheduled for the same time 

unit.   

This paper presents an aggregation approach that (1) separates an instance by formulating 

and solving a set of subproblems, (2) creates aggregate services from the solutions to these 

subproblems, (3) schedules the aggregate services, and (4) disaggregates that solution to form a 

feasible solution to the original instance.  The objective of this paper is to show that aggregation 

is a computationally efficient method for generating high-quality policies.  The paper precisely 

defines the aggregation approach, presents performance bounds, and discusses computational 

results that demonstrate its performance. 

This paper also presents an approach that separates the problem into subproblems by 

partitioning the set of period lengths, which partitions the set of services.  After each subproblem 

is solved, either the solutions are combined directly or the solutions are used to form aggregate 

services that are scheduled as in the aggregation approach. 

The remainder of the paper proceeds as follows: we will discuss related work, formulate 

the PPSS problem, and then present a schedule construction heuristic.  Then, we discuss the 

algorithms for aggregating an instance and disaggregating a solution for an aggregate instance 

and present performance bounds and a lower bound that will be used to evaluate the quality of 

the solutions.  We then discuss the results of computational experiments designed to evaluate the 

effectiveness of the heuristics, the aggregation approach, and the partition approach.   

Related Work 

Motivated by the problem of planning industrial waste management services, Kazan et al. 

(2012) proved that the PPSS problem is strongly NP-hard and introduced a heuristic approach 
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(the BestFit algorithm) for generating good schedules.  They used the BestFit algorithm to 

generate schedules to real-world instances that ranged in size from 264 services to 4274 services.  

They provided a worst-case performance bound for the BestFit algorithm.   

Park and Yun (1985) presented an integer linear programming model and separated it 

into subproblems using the Chinese Remainder Theorem, with one subproblem for each set of 

period lengths.  As Kazan et al. (2012) point out, this approach would not reduce the size of 

instances (like those used here) in which the period lengths are {2, 3, 4, 6, 8, 12, 16, 24, 48}. 

The Periodic Maintenance Scheduling Problem, discussed by Wei and Liu (1983), is a 

version of the PPSS problem in which all of the services have the same workload, and there is a 

constraint that limits the workload that can be scheduled in any time unit.  The problem is to 

determine if any feasible schedule exists.  Bar-Noy et al. (2002a) discussed a generalized 

maintenance scheduling problem that seeks to minimize the total cost of maintaining and 

operating a set of machines.   

Herrmann (2009) considered the response time variability (RTV) problem when multiple 

servers, working in parallel, are available, and presented a specific aggregation approach.  The 

results showed that, in most cases, combining aggregation with other heuristics does dramatically 

reduce both RTV and computation time compared to using the heuristics without aggregation. 

Other work has considered problem in which a single resource must perform certain tasks 

perfectly periodically or as close to the ideal as possible.  This include Bar-Noy et al. (2002b), 

Campbell and Hardin (2005), Corominas et al. (2007), Waldspurger and Weihl (1995), Hajek 

(1985), Altman et al. (2000), Sano et al. (2004).  Kubiak (2004) provided a good overview of the 

need for fair sequences in different domains and presented results for multiple related problems, 

including the product rate variation problem, generalized pinwheel scheduling, the hard real-time 
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periodic scheduling problem, the periodic maintenance scheduling problem, stride scheduling, 

minimizing response time variability (RTV), and peer-to-peer fair scheduling.  See also Kubiak 

(2009) and Kazan et al. (2012) for additional references to other work on cyclic scheduling. 

Aggregation is a well-known and valuable technique for solving optimization problems, 

especially large-scale mathematical programming problems.  Model aggregation replaces a large 

optimization problem with a smaller, auxiliary problem that is easier to solve (Rogers et al., 

1991).  The solution to the auxiliary model is then disaggregated to form a solution to the 

original problem.  Model aggregation has been applied to a variety of production and distribution 

problems, including machine scheduling problems.  For example, Rock and Schmidt (1983) and 

Nowicki and Smutnicki (1989) aggregated the machines in a flow shop scheduling problem to 

form a two-machine problem.  Previous work has developed and studied aggregation approaches 

for the RTV problem, the waiting time problem (WTP), and the balanced word problem (BWP) 

(Herrmann, 2007, 2008, 2009, 2010, 2011a, b, 2012).  Those problems seek to minimize the 

deviation of the schedule from a perfectly periodic one, whereas the PPSS problem considered 

here seeks to minimize the variability of workload in a perfectly periodic schedule.   

PPSS Problem Formulation 

We are given a set of n services that require scheduling.  A service may correspond to a 

particular customer or location or equipment that needs periodic service like cleaning or 

maintenance.  Thus, each service generates a set of tasks that must be done periodically.  Service 

i has a period length ip  and workload iw .  A task must be scheduled every ip  time units, and the 

task adds iw  to the workload for the time unit in which it is scheduled.  The schedule length 

equals J time units, where J is the least common multiple of 1, , np p… .  Thus, service i will 

require tasks in / iJ p  time units and will add iw  to the workload for the time units in which its 
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tasks are scheduled.  The first occurrence of a task for service i must be in one of the first ip  

time units.  Once this is determined, the schedule for the remaining tasks for this service follows.  

Note that any services with 1ip =  are trivial to schedule.  Thus, we will consider only services 

with 2ip ≥ . 

Let is  be the time unit in which the first task of service i is scheduled.  A schedule is 

completely specified when all of the is  are determined.  Clearly, 1 i is p≤ ≤ .  Let jS  be the set of 

services that have tasks scheduled in time unit j, and let jW  be the total workload of time unit j, 

for 1, ,j J= … .  Then, ji S∈  if and only if (mod )i ij s p= .  
j

j i
i S

W w
∈

= ∑ . 

The objective function is to minimize max { 1W , …, JW }. 

Thus, we can describe the PPSS problem as follows: Given an instance { ( ),i ip w , 

1, ,i n= … }, find a schedule of length J that minimizes max { 1W , …, JW } subject to the 

constraints that 1 i is p≤ ≤  for 1, ,i n= … .  

Kazan et al. (2012) presented an integer programming formulation of the PPSS problem 

and proved that the PPSS problem is strongly NP-hard. 

Given an instance, let *W  be the optimal value of max { 1W , …, JW }.  Then, because the 

total workload over all J time units equals 
1

/
n

i i
i

w J p
=
∑ , it is easy to see that *

1
/

n

i i
i

W w p
=

≥∑ .  We 

denote this lower bound as LB. 

It will be convenient to define the following for an instance of the PPSS problem: let PLN  

be the number of distinct values of the period length, let kp′  be the k-th value, with 1,..., PLk N= , 

and let kA  be the set of services that have i kp p′= .   
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Consider the following special case: if each and every set kA  had exactly kp′  services and 

the workloads of all of the services in kA  were equal, then an optimal schedule can be found 

easily by assigning each of the services in kA  to a different time period.  This would create a 

schedule in which every time period has the same total workload.  The aggregation approach 

described later attempts to create such an instance. 

BestFit Heuristic 

Kazan et al. (2012) presented the BestFit heuristic and showed that it can generate high-

quality solutions, especially when the number of services is large (over 1000).  The worst-case 

computational effort is ( )logO n n nJ+ .   

BestFit algorithm 

The BestFit algorithm can be described as follows.  The input is an instance { ( ),i ip w , 

1, ,i n= … }.  Let J be the least common multiple of 1, , np p… . 

1. Sort the services and renumber so that 1 2 nw w w≥ ≥ ≥" .   

2. Set 0jW =  for 1, ,j J= … .   

3. For 1, ,i n= … , perform the following steps: 

a. Set { }max : , , ,j k i iW W k j p j J p j′ = = + − +…  for 1, , ij p= … . 

b. Find j* such that { }* 1min , ,
ij pW W W′ ′ ′= … . 

c. Set *is j=  and add iw  to * *, ,
ij J p jW W − +… . 

4.  Return 1,..., ns s  as the schedule. 

Note that Kazan et al. (2012) considered other ways to sort the services; our results 

showed that sorting by workload had the best performance. 
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Let *W  be the optimal maximum workload, let H be the maximum workload of the PPSS 

schedule generated by the BestFit heuristic, and let p be the period length of the service that 

determines the maximum workload.  Then, if 2p J≤ , */ /H W J p≤ .  Otherwise, 

* 2/ 1 ( 1) /H W J p p≤ + −  (Kazan et al., 2012). 

Aggregation Approach 

To improve the performance of this heuristic, we developed and tested an aggregation 

approach that (1) separates an instance by formulating and solving a set of subproblems, (2) 

creates aggregate services from the solutions to these subproblems, (3) schedules the aggregate 

services, and (4) disaggregates that solution to form a feasible solution to the original instance.  

Before giving the details of the approach, we will consider some of the ideas that motivated and 

justify the approach. 

First, if, for period length kp′ , one could find a schedule for the services in kA  in which 

the total workload was the same in every time period, the total workload in every time period 

that schedule would equal 1
k

k

ip
i A

w′
∈
∑ .  (As Kazan et al. (2012) remarked, when all period lengths 

are equal, then the PPSS problem is equivalent to the problem of minimizing the makespan of a 

schedule for parallel machines.)  If such a schedule could be found for every period length 

( 1,..., PLk N= ), then these schedules, when combined, would form a complete, feasible schedule 

for the entire set of services, and the total workload in every time period would equal 

1

1 1

/
PL

k
k

N n

i i ip
k i A i

w w p′
= ∈ =

=∑ ∑ ∑ , which is the lower bound LB, so this ideal schedule must be optimal.   

In addition, we note that, in any feasible solution to the PPSS problem, a time period may 

have multiple tasks that are generated by services that have the same period length (say p).  The 
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tasks generated by this set of services will occur in J/p (evenly spaced) time periods.  Thus, in 

this schedule, these services are equivalent to one (aggregate) service that has a workload equal 

to the sum of these corresponding workloads and the same period length.   

Thus, the ideal schedule mentioned in the previous paragraph is equivalent to a schedule 

in which there are kp′  (aggregate) services that have period length kp′  and all of the (aggregate) 

services with the same period length have the same workload.  Thus, we have the special case 

that was identified earlier. 

These ideas motivated the aggregation approach, which transforms any instance into 

another instance that nearly fits the conditions of the special case.  The aggregation approach 

first separates an instance of the PPSS problem into subproblems.  There is one subproblem for 

each distinct period length in the instance, and each subproblem has all of the services with that 

period length.  Each of the subproblems is a parallel machine scheduling problem in which the 

number of machines equals p, the associated period length.  A solution to any subproblem can be 

viewed as p aggregate services, one for each machine, where the workload of each aggregate 

service is the total processing time on the corresponding machine.  Note that each aggregate 

service has the workload of one or more services from the original PPSS instance. 

An aggregate instance of the PPSS problem can be created with all the aggregate services 

from all of the subproblems.  The total workload of the aggregate instance equals the total 

workload of the original instance, but the total number of services has been reduced.  Any 

solution for the aggregate instance can be transformed into a solution for the original instance by 

starting each service in the time unit in which its aggregate service starts. 

More precisely, the aggregation algorithm proposed here involves separation (splitting 

the PPSS problem into subproblems), aggregation (combining services into aggregate services), 
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and disaggregation (constructing a solution for the original instance from a solution for the 

aggregate instance).   

The notation used in the algorithm that follows enables us to keep track of the services in 

order to describe the disaggregation of a schedule precisely.  Let 0I  be the original instance, let 

PLN  be the number of distinct values of the period length, and let kp′  be the k-th value, with 

1,..., PLk N= .  For 1,..., PLk N= , let kI  be the k-th subproblem generated from 0I  and let kn′  be 

the number of services with i kp p′= .  Let AI  be the aggregate instance.  Let khB  be the set of 

services that form an aggregate service, 1,..., PLk N= , 1,..., kh p′= . 

As the aggregation algorithm is presented, we describe its operation on the following 

nine-service example: 0I  = {(2, 6), (2, 4), (2, 3), (2, 2), (2, 2), (3, 8), (3, 6), (3, 5), (3, 2)}, n = 9, 

2PLN = , and J = 6.   

Aggregation.  Given: an instance 0I  with { ( ),i ip w , 1, ,i n= … }.   

1. For 1,..., PLk N= , perform the following steps: 

a. If k kn p′ ′≤ , go to the next value of k. 

b. Create an instance kI  of P//Cmax as follows: the number of machines equals kp′ .  There are 

kn′  jobs, with one job for every service i with i kp p′= ; the processing time of that job equals 

iw .   

c. Generate a solution to the instance of P//Cmax.  For 1,..., kh p′= , let khB  be services whose 

jobs are scheduled on machine h. 

Example.  With k = 1, kp′  = 2, kn′  = 5.  If the solution to the two-machine problem 

schedules services 1 and 5 on machine 1 and services 2, 3, and 4 on machine 2, then 
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11 {1,5}B =  and 12 {2,3,4}B = .  With k = 2, kp′  = 3, kn′  = 4.  If the solution to the 

three-machine problem schedules service 6 on machine 1, service 7 on machine 2, 

and services 8 and 9 on machine 3, then 21 {6}B = , 22 {7}B = , and 23 {8,9}B = . 

2. For 1,..., PLk N= , perform the following steps: 

a. If k kn p′ ′≤ , then create kn′  aggregate services as follows: for 1,..., kh n′= , khB  = {[h]}, the 

period length equals kp′ , and the workload of the aggregate service is [ ]kh hw w′ = , where [h] 

is the index of the h-th service with a period length equal to kp′ .  Go to the next value of k. 

b. Consider the solution to instance kI . For 1,..., kh p′= , create an aggregate service, set the 

period length to kp′ , and set the workload 
kh

kh i
i B

w w
∈

′ = ∑ .   

Example.  With k = 1, kp′  = 2.  Create two aggregate services with workloads 

11 1 5 8w w w′ = + =  and 12 2 3 4 9w w w w′ = + + = .  With k = 2, kp′  = 3.  Create three 

aggregate services with workloads 21 6 8w w′ = = , 22 7 6w w′ = = , and 23 8 9 7w w w′ = + = . 

3. Create an aggregate instance AI  = { ( ),k khp w′ ′ , 1,..., PLk N= , { }1,..., min ,k kh n p′ ′= } of the 

PPSS problem.  The total number of aggregate services { }
1
min ,

PLN

AS k k
k

N n p
=

′ ′= ∑ .  Generate a 

schedule for the aggregate instance that specifies the start time khs′  of each aggregate service.  

Example.  The aggregate instance has 5 aggregate services: {(2, 8), (2, 9), (3, 8), (3, 

6), (3, 7)}  Note that J still equals 6.   A feasible schedule for this aggregate instance 

has 11 2s′ = , 12 1s′ = , 21 1s′ = , 22 3s′ = , and 23 2s′ = .  The workloads are 17, 15, 15, 16, 

16, and 14. 
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4. Generate a schedule for the original instance as follows: for 1,..., PLk N= , 

{ }1,..., min ,k kh n p′ ′= , and khi B∈ , set i khs s′= . 

Example.  11 {1,5}B = , so 1 5 11 2s s s′= = = .  12 {2,3,4}B = , so 2 3 4 12 1s s s s′= = = = .  

21 {6}B = , so 6 21 1s s′= = .  22 {7}B = , so 7 22 3s s′= = .  23 {8,9}B = , so 8 9 23 2s s s′= = = .  

The worst-case computational effort of the aggregation procedure depends upon the 

algorithms used to solve the subproblems (which are parallel machine scheduling problems) and 

the aggregate instance.  If a list scheduling procedure is used for the parallel machine scheduling 

problems, then, although the worst-case computational effort of each one is ( )logk kO n n′ ′ , the 

worst-case computational effort required for all of them is 
1

log
PLN

k k
k

O n n
=

⎛ ⎞
′ ′⎜ ⎟

⎝ ⎠
∑ , which is less than 

( )logO n n . 

If BestFit is used to create a schedule for the aggregate instance, the worst-case 

computational effort of that procedure is ( )logAS AS ASO N N N J+ .  Because 
1

PLN

AS k
k

N p
=

′≤∑ , then 

the computational effort of solving the aggregate problem remains constant as the number of 

services increases beyond 
1

PLN

k
k

p
=

′∑  if the set of period lengths remains constant.  The 

disaggregation of the schedule for the aggregate instance requires ( )O n  time.  Thus, if list 

scheduling and BestFit are used, the worst-case computational effort of the aggregation 

procedure is not worse than that worst-case computational effort of BestFit.  (We also note that 

the parallel machine subproblems could be solved in parallel.)  This fact and the small increase 

(at most 1/3) in the worst-case relative performance (discussed in the next section) indicate that 
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the aggregation procedure should, in general, be faster than the BestFit procedure but may 

possibly generate slightly lower-quality solutions. 

Performance Bounds 

This section will present bounds on the worst-case performance of the aggregation 

procedure.  First, we consider the parallel machine scheduling problem max||P C .  Let m be the 

number of machines, let *
maxC  be the optimal makespan for an instance, and let max

LPTC  be the 

makespan of the schedule found using the longest processing time (LPT) first list scheduling 

rule.  The worst case performance of the LPT first list scheduling rule is * 4 1
max max 3 3/LPT

mC C ≤ −  

(Graham, 1969). 

Now, consider an instance of PPSS.  Let *W  be the optimal maximum workload, let AW  

be the maximum workload of the schedule generated by the aggregation procedure, and let p and 

w′  be the period length and workload of the aggregate service that determines the maximum 

workload of this schedule (the deciding aggregate service).  (Note that the following proof 

follows the ideas of Graham, 1969, and Kazan et al., 2012.) 

Theorem 1. The worst-case performance guarantee of the aggregation procedure is 

*/ /AW W J p≤  if 2p J≤ , and ( )( )2
* 4 1

3 3/ 1A J J
p pp

W W ≤ + − −  if 2p J> . 

Proof. The aggregate service was determined by solving a parallel machine scheduling 

problem using the LPT first list scheduling rule.  The scheduling problem had p machines, and 

the workload w′  of the aggregate service is the total processing time of the jobs on one machine.  

Thus, if we let *
maxC  be the optimal makespan for this problem, ( ) *4 1

max max3 3
LPT

mw C C′ ≤ ≤ − .  

Moreover, because all of the jobs in the parallel machine scheduling problem are services in the 

PPSS instance, it is clear that * *
maxC W≤ .  Thus, ( ) *4 1

3 3mw W′ ≤ − . 
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Recall that, when the deciding aggregate service is added, { }* 1min , ,j pW W W′ ′ ′= … .  Thus, 

there are at least p time periods that have a workload of at least *jW ′ .  Thus, 

( )*
* /J

j pW pW w J′ ′≥ + , which implies that ( )* 1
*

J
j p pW W w′ ′≤ − .  Because *

A
jW W w′ ′= + , 

( )2
* 1A J J

p p
W W w′≤ + − .   

If 2p J≤ , then */ /AW W J p≤ . 

If 2p J> , then because ( ) *4 1
3 3mw W′ ≤ − , ( )( )2

* 4 1
3 3/ 1A J J

p pp
W W ≤ + − − .  Q.E.D. 

This performance guarantee allows one to bound the relative error by considering the 

worst-case value of p.  For the cases considered in this paper, the bound decreases as p increases.  

When J = 48 and the smallest value of p = 2, then we know only that */ / 24.AW W J p≤ =   For 

instances with no small period lengths, the bound will decrease.  If, for instance, the set of period 

lengths is {8, 12, 16, 24, 48}, then J = 48, the smallest value of p = 8, and this performance 

guarantee shows that ( )( )2
* 314 1

3 3 96/ 1 6A J J
p pp

W W ≤ + − − = .  If the set of period lengths is only 

{24, 48}, then this performance guarantee shows that ( )( )2
* 1814 1

3 3 864/ 1 3A J J
p pp

W W ≤ + − − = .   

Partitioning Approach 

We also considered a partitioning approach that generalizes the aggregation approach.  

Instead of considering one period length at a time, this partitioning approach considered multiple 

period lengths simultaneously.  Given a partition of the set of period lengths into multiple subsets 

so that the period lengths in any one subset were multiples of each other, the first step of the 

aggregation approach created one instance of the PPSS problem for each subset.  This instance 

contained only the services with the period lengths in that subset.  The schedule length was the 
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least common multiple of the period lengths in that subset.  The partition approach used the 

BestFit heuristic to construct a schedule for that instance (subproblem).  

Two versions of combining the solutions to the subproblems were considered.  The first, 

which we call partition-aggregation, formed aggregate services from each solution.  The number 

of aggregate services (and each one’s period length) was the smallest period length of any 

service in that subproblem.  The workload of the aggregate service was the maximum workload 

of the time units separated by the period length.  For example, if the period lengths were 2, 4, 

and 8, a schedule has 8 time units.  The first aggregate service corresponds to time units 1, 3, 5, 

and 7, so its workload is the maximum workload of these time units, and the aggregate service 

represents all of the services scheduled in these time units; likewise, the second aggregate service 

corresponds to time units 2, 4, 6, and 8 and the services scheduled in these time units.   

Then, like the aggregation approach, this approach used the BestFit heuristic to construct 

a schedule for the aggregate instance and disaggregated the schedule to create a solution for the 

original instance.  Note that using the aggregation approach is equivalent to using the partition-

aggregation approach with a partition in which each period length is its own subset. 

Partition-Aggregation.  Given: an instance 0I  with { ( ),i ip w , 1, ,i n= … } and a partition 

of the period lengths into PTN  subsets such that period length k is in subset kP , where 

{ }1, ,k PTP N∈ …  for 1,..., PLk N= . 

1. For 1,..., PTr N= , perform the following steps: 

a. Create an instance rI  of PPSS: rI  = { ( ),i ip w : ki S∈  and kP r= }.  This instance 

will have 
: k

k
k P r

n
=

′∑  services.  Set rJ ′  to be the least common multiple of 

{ }:k kp P r′ =  and set { }min, min :r k kp p P r′= = . 
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b. Generate a solution to this instance. Let rjW  denote the scheduled workload for 

time unit j for 1,..., rj J ′= .  For service i in rI , let ris  denote the time unit of 

the first scheduled task, and set ( )min, min,1 /ri r ri rp s pδ ⎢ ⎥= −⎣ ⎦ , where x⎢ ⎥⎣ ⎦  is the 

greatest integer less than or equal to x.  This value is the interval between the 

scheduled start time and the time unit for the corresponding aggregate service.  

Note that min,1 ri ri rs pδ≤ − ≤ . 

2. For 1,..., PTr N= , perform the following step: 

a. Consider the solution to instance rI . For min,1,..., rh p= , create an aggregate 

service, set the period length to min,rp , and set the workload 

{ }min, min,max : , , ,rh rj r r rw W j h p h J p h′ ′= = + − +… . 

3. Create an aggregate instance AI  = { ( )min, ,r rhp w′ , 1,..., PTr N= , min,1,..., rh p= } 

of the PPSS problem.  The total number of aggregate services equals 

min,
1

PTN

r
r

p
=
∑ .  The schedule length AJ ′  is the least common multiple of 

{ }min, : 1, ,r PTp r N= … .  Generate a schedule for the aggregate instance that 

specifies the start time rhs′  of each aggregate service.  

4. For 1,..., PTr N= , perform the following step: 

a. For every service i in rI , set ri rih s δ′ = −  and then i rh ris s δ′′= + . 

Example.  To demonstrate this algorithm, we describe its operation on the following 

eleven-service example: 0I  = {(4, 5), (2, 6), (2, 1), (2, 4), (6, 1), (2, 2), (4, 1), (6, 2), (3, 5), (3, 4), 

(3, 3)}, n = 11, 4PLN = , and J = 12.  The partition is {2, 4} and {3, 6}, so 2PTN = . 
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Step 1.  The first subproblem corresponds to the first subset in the partition: 1I  = {(4, 5), 

(2, 6), (2, 1), (2, 4), (2, 2), (4, 1)}, 1 4J ′ = , and min,1 2p = .  A feasible solution to this subproblem 

has the following start times: 11 2s = , 12 1s = , 13 1s = , 14 2s = , 16 1s = , 17 4s = .  1 0iδ =  for all 

services except ( )17 2 4 1 / 2 2δ = − =⎢ ⎥⎣ ⎦  because service 7 starts in time unit 4 but will be part of 

the second aggregate service from this subproblem.  The time unit workloads are (9, 9, 9, 5). 

The second subproblem corresponds to the second subset in the partition: 1I  = {(6, 1), (6, 

2), (3, 5), (3, 4), (3, 3)}, 2 6J ′ = , and min,2 3p = .  A feasible solution to this subproblem has the 

following start times: 25 6s = , 28 3s = , 29 1s = , 2,10 2s = , 2,11 3s = .  2 0iδ =  for all services except 

( )25 3 6 1 / 3 3δ = − =⎢ ⎥⎣ ⎦  because service 5 starts in time unit 6 but will be part of the third 

aggregate service from this subproblem.  The time unit workloads are (5, 4, 5, 5, 4, 4). 

Step 2.  With r = 1, min,1p  = 2.  Create two aggregate services with workloads 

11 11 13max{ , } 9w W W′ = =  and 12 12 14max{ , } 9w W W′ = = .  Their period length equals 2. 

With r = 2, min,2p  = 3.  Create three aggregate services with workloads 

21 21 24max{ , } 5w W W′ = =  and 22 22 25max{ , } 4w W W′ = = , and 23 23 26max{ , } 5w W W′ = = .  Their 

period length equals 3. 

Step 3.  The aggregate instance has 5 aggregate services: {(2, 9), (2, 9), (3, 5), (3, 4), (3, 

5)}  Note that AJ ′  equals 12 (which is shorter than the actual schedule length).   A feasible 

schedule for this aggregate instance has 11 1s′ = , 12 2s′ = , 21 1s′ = , 22 3s′ = , and 23 2s′ = .   

Step 4.  With r = 1, 1 4 12 2s s s′= = = , 2 3 6 11 1s s s s′= = = = , 7 12 17 4s s δ′= + = . 

With r = 2, 5 23 25 5s s δ′= + = , 8 11 13 2s s s′= = = , 9 31 1s s′= = , 10 22 3s s′= = . 

The time unit workloads are (14, 14, 13, 10, 13, 13, 14, 10, 13, 14, 13, 9).   
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Partition-Stacking.  The second version of the partition approach, which we call 

partition-stacking, does not create aggregate services or solve an aggregate instance.  Instead, 

after Step 1, this algorithm simply “stacks” the schedules for each subproblem to construct a 

complete solution for the original instance.  Each service’s start time in its subproblem solution 

becomes the start time in the complete solution.  The workload in each time unit is the sum of the 

workloads from the subproblem solutions (after repeating their schedules to fill the entire 

schedule length). 

Consider the eleven-service example again.  The solution to the first subproblem 

specifies feasible start times for services 1, 2, 3, 4, 6, and 7.  The solution to the second 

subproblem specifies feasible start times for services 5, 8, 9, 10, and 11.  These two solutions 

form a solution to the original instance, and the time unit workloads are (14, 13, 14, 10, 13, 13, 

14, 9, 14, 14, 13, 9).  Table 1 shows how the schedules are “stacked.” 

Table 1. “Stacking” solutions to two subproblems.  The entries show the workload in each time 
period for the solutions to both subproblems and the combined schedule for the original eleven-

service example. 
Time Unit: 1 2 3 4 5 6 7 8 9 10 11 12 

Schedule 1: 9 9 9 5 9 9 9 5 9 9 9 5 
Schedule 2: 5 4 5 5 4 4 5 4 5 5 4 4 
Combined 
Schedule 14 13 14 10 13 13 14 9 14 14 13 9 

 

Computational Experiments 

The purpose of the computational experiments was to compare the performance of the 

aggregation approach, the partition approaching, and the BestFit heuristic.  All of the algorithms 

were implemented in Matlab and executed using Matlab R2006b on a Dell Optiplex GX745 with 

Intel Core2Duo CPU 6600 @ 2.40 GHz and 2.00 GB RAM running Microsoft Windows XP 

Professional Version 2002 Service Pack 3. 
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We slightly modified the scheme of Kazan et al. (2012) and generated 81 new instances 

as follows.   

We used nine values of n: 100, 250, 500, 1,000, 2,000, 3,000, 4,000, 5,000, and 10,000.  

The period lengths were chosen from the set {2, 3, 4, 6, 8, 12, 16, 24, 48}.  J = 48 in all 

instances.   

For each value of n, we generated nine instances with that many services, one instance of 

each of nine types.  Each type had different distributions for period length and workload. 

In types 1, 2, 3, 4, 8, and 9, all of the period lengths were equally likely.  In type 5, 

smaller period lengths were more likely. In type 6, larger period lengths were more likely. In 

type 7, period lengths of 6, 8, and 12 were more likely.  Table 2 lists the probability of each 

period length by instance type. 

Table 2. Probability of each period length by instance type. 
Period Instance Type 
Length  1, 2, 3, 4, 8, 9 5 6 7 

2 1/9 1/6 1/18 1/12 
3 1/9 1/6 1/18 1/12 
4 1/9 1/6 1/18 1/12 
6 1/9 1/9 1/9 1/6 
8 1/9 1/9 1/9 1/6 

12 1/9 1/9 1/9 1/6 
16 1/9 1/18 1/6 1/12 
24 1/9 1/18 1/6 1/12 
48 1/9 1/18 1/6 1/12 

 

In addition, different probability distributions were used for the workloads.  For types 1, 

5, 6, and 7, the distribution was a uniform distribution on the range 0 to 200.  For type 2, the 

distribution was a triangular distribution with a minimum of 0, a mode of 0, and a maximum of 

200.  For type 3, the distribution was a triangular distribution with a minimum of 0, a mode of 

200, and a maximum of 200.  For type 4, the distribution was a uniform distribution on the range 

0 to 1000.  For type 8 and 9, the distribution depended upon the period length of the service.  For 
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type 8, the distribution was a uniform distribution on the range 0 to 100 ip−  (so services with 

longer period lengths have smaller workloads).  For type 9, the distribution was a uniform 

distribution on the range ip  to 50ip +  (so services with shorter period lengths have smaller 

workloads).  

For each combination of n and the instance type, we generated an instance by generating 

n random period lengths using the period length distribution for that type and n random 

workloads using the workload distribution for that type. 

For testing the partitioning approach, nine partitions were considered:  

A: {2, 4}, {3, 6}, {8, 16}, {12, 24}, and {48}; 

B: {2, 4}, {3, 6}, {8, 16}, and {12, 24, 48}; 

C: {2, 4, 8}, {3, 6, 12, 24}, {16, 48}; 

D: {2, 4, 8, 16}, {3, 6, 12}, and {24, 48}; 

E: {2, 4, 8, 16} and {3, 6, 12, 24, 48}; 

F: {2, 4, 8, 16, 48} and {3, 6, 12, 24}; 

G: {2, 4, 12}, {3, 6}, {8, 16}, and {24, 48}; 

H: {2, 4, 12, 24}, {3, 6}, and {8, 16, 48}; and 

I: {2, 4, 12, 24, 48}, {3, 6}, and {8, 16}. 

For each instance, we evaluated the lower bound LB, used the BestFit heuristic to 

construct a schedule, and used the aggregation algorithm to construct a schedule.  We used LPT 

list scheduling to generate solutions to the parallel machine scheduling subproblems and the 

BestFit heuristic to construct a solution for the aggregate instance.  
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Table 3. Average number of aggregate services for the instances. 

N 

Average 
number of 
aggregate 
services 

100 64
250 101
500 119

1,000 123
2,000 123
3,000 123
4,000 123
5,000 123

10,000 123

 

Before discussing the results of the heuristics, we consider first how many aggregate 

services were generated.  Table 3 shows that, as n increases, the average number of aggregate 

services increases.  For all instances with at least 1000 services, the number of aggregate services 

123ASN = , the sum of the period lengths, which is at least an order of magnitude less than n.  

Recall that all of these instances shared the same nine distinct values of period length ( 9PLN = ). 

To compare the schedule quality, for each instance, we report the relative deviation 

between the max workload of each schedule constructed and the lower bound (see Table 4). 

Table 4. Average values of the relative deviation between the max workload and the lower bound 
for the schedules generated by the BestFit heuristic, the aggregation algorithm, and the partition 
approach using Partition E.  

n BestFit Aggregation Partition E-
Stacking 

Partition E-
Aggregation 

100 2.9% 3.6% 3.8% 3.8% 
250 0.7% 0.9% 0.7% 0.7% 
500 0.2% 0.6% 0.2% 0.2% 

1,000 0.1% 0.2% 0.1% 0.1% 
2,000 0.0% 0.0% 0.0% 0.0% 
3,000 0.0% 0.0% 0.0% 0.0% 
4,000 0.0% 0.0% 0.0% 0.0% 
5,000 0.0% 0.0% 0.0% 0.0% 

10,000 0.0% 0.0% 0.0% 0.0% 
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Figure 1.  Schedule quality of the aggregation approach, the BestFit heuristic, the partition-

aggregation approach, and the partition-stacking approach on instances with 100, 250, 500, and 
1,000 services. 

For the BestFit heuristic, the aggregation algorithm, and the partition approach, the gap 

from the lower bound decreases as the number of services increases.  All of the algorithms 

generate near-optimal solutions for instances with at least 1,000 services. 

For the smaller instances, the BestFit heuristic generates better schedules on average.   

In a smaller instance, a large period length is unlikely to have enough services; that is, it 

is likely that k kn p′ ′<  for larger kp′ .  Thus, in any schedule, these services will cause great 

variability in the workloads.  Because the aggregate instance has fewer services than the original 

instance, the BestFit heuristic has less flexibility to smooth this variability. 

As shown in Figure 1, for the instances with 100, 250, 500, and 1,000 services, the 

partitioning approach generated the best schedules using Partition E.  Partitions E and F (which 

also generated better schedules) have only two subsets.  Using Partitions A, B, and G (which 
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have four or five subsets) on these instances generated schedules that were not as good.  In 

general, for these instances, the partitioning approach generated schedules that were not as good 

on average as those generated by the aggregation approach and the BestFit heuristic.   

The BestFit heuristic corresponds to a partition with only one subset, and the aggregation 

approach corresponds to a partition in which each period length has its own subproblem.  These 

two special cases generated better schedules.  Partitions A to I all involved forming aggregate 

services that approximated (indeed, overestimated) the actual workload, whereas the aggregate 

services in the aggregate approach did not use such approximations. 

The various types of instances had little impact on the performance of the procedures.  

Not surprisingly, the quality of the schedules (measured as the gap from the lower bound) was 

better for type 8 instances (services with longer period lengths have smaller workloads) than for 

type 9 instances (services with shorter period lengths have smaller workloads), however.  For 

type 8 instances, the average relative deviation between the max workload and the lower bound 

was 0.8% for the schedules generated by the BestFit heuristic and 0.6% for the schedules 

generated by the aggregation algorithm.  For type 9 instances, the average relative deviation 

between the max workload and the lower bound was 2.1% for the schedules generated by the 

BestFit heuristic and 2.0% for the schedules generated by the aggregation algorithm. 

Interestingly, the aggregation algorithm performed better than the BestFit heuristic and 

the partitioning approach on type 9 instances with fewer services.  In particular, for type 9 

instances with 100, 250, and 500 services, the average relative gap between the max workload 

and the lower bound was 3.0% for the schedules constructed by aggregation, 3.7% for the 

schedules constructed by the BestFit heuristic, 5.5% for the schedules constructed using partition 

E and stacking, and 5.6% for the schedules constructed using partition E and aggregation.  In the 
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type 9 instances, the services with long period lengths have greater workloads.  Aggregation 

combines many services with short period lengths (but smaller workloads) into services with 

much greater workloads that can be used to create balanced schedules. 

We also measured the clock time needed to generate these schedules.  Table 5 shows the 

average time needed to generate schedules for the BestFit heuristic and the aggregation 

algorithm for different values of n.  These are averages over nine instances.  As n increased, the 

time required increased.  The average time for the BestFit heuristic is proportional to n.  The 

average time for the aggregation algorithm increased more slowly than n increased.  Because its 

subproblem solution approach (LPT list scheduling) is simpler and quicker than the BestFit 

heuristic, the aggregation algorithm is faster than the BestFit heuristic and the partitioning 

approaches, and its relative performance increased as n increased.  The partitioning approaches 

were not faster than then BestFit heuristic.  Although the subproblems are small, solving them 

still requires using BestFit on every service. 

Table 5. Average time required to generate a schedule by the BestFit heuristic, the aggregation 
algorithm, and the partitioning approach (in 1/1000 seconds).  

n BestFit Aggregation Partition-
Stacking 

Partition- 
Aggregation 

100 4 4 5 7 
250 11 8 11 14 
500 21 12 21 25 

1,000 43 15 43 48 
2,000 86 20 85 93 
3,000 127 25 125 137 
4,000 170 30 167 183 
5,000 213 35 209 228 

10,000 422 61 413 448 

 

Summary and Conclusions 

This paper presented an aggregation approach for the problem of scheduling periodic 

services that have different period lengths, analyzed its computational effort, and presented a 
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worst case performance bound.  We combined this approach with existing heuristics in order to 

determine when aggregation is useful.   

The results show that using aggregation reduces the computational effort needed to 

construct a schedule and the schedules are equally good for larger instances.  For smaller 

instances, the quality of the schedules generated using aggregation are not as good.  For smaller 

instances, the quality of the schedules generated using the partitioning approach depended upon 

the partition used but were not as good as those generated by the aggregation approach and did 

not reduce the computational effort.  Thus, for the PPSS problem, we recommend using 

aggregation when the instances are large (greater than 1,000 services). 

The results indicate that separating a large problem into subproblems will be faster only if 

the subproblems can be solved with faster algorithms that exploit the structure of the 

subproblems.  This was done in the aggregation approach but not in the more general partitioning 

approach. 

Because aggregation creates a smaller instance, it could be employed with an exact 

approach that requires too much computational effort to run on the original instance but is still 

reasonable on the smaller instance.  Of course, an optimal solution to the smaller, aggregate 

instance would not necessarily yield, after disaggregation, an optimal solution to the original 

instance. 



 26

References 
Altman, E., Gaujal, B., Hordijk, A. (2000). Balanced sequences and optimal routing. Journal of 

the ACM, 47(4), 752–775. 

Bar-Noy, A., Bhatia, R., Naor, J., Schieber, B. (2002a). Minimizing service an operation costs of 

periodic scheduling. Mathematics of Operations Research, 27, 518-544. 

Bar-Noy, Amotz, Aviv Nisgah, and Boaz Patt-Shamir (2002b), Nearly Optimal Perfectly 

Periodic Schedules, Distributed Computing, 15, 207-220. 

Campbell, Ann Melissa, and Jill R. Hardin (2005), Vehicle Minimization for Periodic Deliveries, 

European Journal of Operational Research, 165, 668–684. 

Corominas, A., Kubiak, W., Palli, N.M. (2007). Response time variability. Journal of 

Scheduling, 10, 97-110. 

Graham, R.L. (1969). Bounds on Multiprocessing Timing Anomalies, SIAM Journal on Applied 

Mathematics, 17, 263-269. 

Hajek, B. (1985). Extremal splittings of point processes. Mathematics of Operations Research, 

10, 543-556. 

Herrmann, J.W. (2007). Generating cyclic fair sequences using aggregation and stride 

scheduling. Technical Report 2007-12, Institute for Systems Research, University of 

Maryland, College Park.  http://hdl.handle.net/1903/7082.  Accessed 1 November 2010. 

Herrmann, J.W. (2008). Constructing perfect aggregations to eliminate response time variability 

in cyclic fair sequences. Technical Report 2008-29, Institute for Systems Research, 

University of Maryland, College Park.  http://hdl.handle.net/1903/8643. Accessed 1 

November 2010. 

Herrmann, J.W. (2009). Generating cyclic fair sequences for multiple servers. MISTA 2009, 

Dublin, Ireland, August 10-12, 2009. 



 27

Herrmann, J.W. (2010). “Using Aggregation to Construct Periodic Policies for Routing Jobs to 

Parallel Servers with Deterministic Service Times,” to appear in Journal of Scheduling. 

DOI: 10.1007/s10951-010-0209-6.  Published online on November 24, 2010. 

Herrmann, J.W. (2011a). Using aggregation to reduce response time variability in cyclic fair 

sequences. Journal of Scheduling, Volume 14, Number 1, pages 39-55, 2011. 

Herrmann, J.W. (2011b), “Generating Better Cyclic Fair Sequences Faster with Aggregation,” 

Proceedings of the 5th Multidisciplinary International Scheduling Conference: Theory 

and Applications (MISTA 2011), Phoenix, Arizona, August 9-12, 2011. 

Herrmann, J.W. (2012), “Finding Optimally Balanced Words for Production Planning and 

Maintenance Scheduling,” IIE Transactions, Volume 44, Number 3, pages 215-229. 

Kazan, Osman, Milind Dawande, Chelliah Sriskandarajah, and Kathryn E. Stecke (2012). 

“Balancing Perfectly Periodic Service Schedules: An Application from Recycling and 

Waste Management,” Naval Research Logistics, Volume 59, Issue 2, pages 160-171. 

Kubiak, W. (2004). Fair sequences.  In J.Y-T. Leung (Ed.), Handbook of Scheduling: 

Algorithms, Models and Performance Analysis (pp. 1-21). Boca Raton, Florida: Chapman 

& Hall/CRC.  

Kubiak, W. (2009). Proportional Optimization and Fairness, New York: Springer. 

Nowicki, E., Smutnicki, C. (1989). Worst-case analysis of an approximation algorithm for flow 

shop scheduling. Operations Research Letters, 8, 171-177. 

Park, K.S., and D.K. Yun (1985). “Optimal Scheduling of Periodic Activities,” Operations 

Research, Volume 33, pages 690-696. 

Rock, H., Schmidt, G. (1983). Machine aggregation heuristics in shop scheduling. Methods of 

Operations Research, 45, 303-314. 



 28

Rogers, D.F., Plante, R.D., Wong, R.T., Evans, J.R. (1991). Aggregation and disaggregation 

techniques and methodology in optimization. Operations Research, 39(4), 553-582. 

Sano, S., Miyoshi, N., Kataoka, R. (2004). “m-balanced words: a generalization of balanced 

words. Theoretical Computer Science, 314(1-2), 97-120. 

Waldspurger, C.A., Weihl, W.E. (1995). Stride scheduling: deterministic proportional-share 

resource management.  Technical Memorandum MIT/LCS/TM-528, MIT Laboratory for 

Computer Science, Cambridge, Massachusetts. 

Wei, W.D., Liu, C.L. (1983). On a periodic maintenance problem.  Operations Research Letters, 

2(2), 90-93. 


	TR_2013-08 Cover_Page
	PPSS aggregation 4

