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ABSTRACT

The ground delay program is a mechanism used to decrease the rate of incoming 
ights

into an airport when it is projected that arrival demand into the airport will exceed ca-

pacity. In this paper, we present an integer programming model for planning ground delay

programs. The model considers a stochastic capacity pro�le which is represented by a set

of airport capacity scenarios and their probabilities. Both the demand on the airport and

the output of the model are represented at an aggregate level in terms of numbers of 
ights

per unit time. This allows the model to be used in conjunction with arbitrarily complex

processes for allocating individual 
ights to slots. It was speci�cally designed to be used in

the Collaborative Decision Making setting where individual 
ight assignments result from

an iterative process involving both the airlines and tra�c 
ow managers. We show that

the linear programming dual of the model can be transformed into a network 
ow problem.

This implies that the integer program can be solved e�ciently using linear programming or

network 
ow methods.
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1 Introduction

It is well-known that demand for runway operations (landings and take-o�s) often exceeds

available capacity for periods of several hours at major airports throughout the world. This

is primarily true under unfavorable weather conditions but it happens occasionally under

good weather conditions as well, especially in the United States, where some airports are

\overscheduled" at high demand periods.

When the expected demand for landings is predicted to exceed the arrival capacity of

a major airport in the United States for a signi�cant period of time, the Federal Aviation

Administration (FAA) uses various air tra�c 
ow management (ATFM) measures to smooth

out the arrival 
ow and bring arrival demand in line with capacity. Ground holding is the

most important of these methods. The idea is simple: it is preferable to have a 
ight wait on

the ground at its point of origin rather than to have it circle the airport at its destination,

unable to land. Therefore, if it is known with certainty, or at least with high probability,

that a 
ight will be unable to land due to lack of capacity, it may be advantageous to hold

the 
ight on the ground at its point of origin. Ground holding saves fuel costs and preserves

safety margins by relieving airborne congestion.

The FAA adpoted ground holding as a commonly-employed strategy in the early 1980's.

For each possibly capacitated airport, the FAA generates an estimate, or forecast, of capac-

ity for the day. Treating this forecast as deterministic, the FAA assigns ground delays to

incoming aircraft so that the arrival 
ow will match the forecasted capacity. If the forecast

is accurate, this ensures that air holds (planes forced to wait in the air at their destination

due to lack of landing capacity) will be kept to a minimum. This policy will be referred to

as the deterministic ground holding policy.

An airport acceptance rate (AAR) is the number of 
ights that can be landed at a given

airport in a given unit of time (strictly speaking, this is a capacity not a rate, nonetheless,

it is the established terminology in ATFM). The short-term forecast of capacity on which

ground holding policies are based is known as the forecast of airport acceptance rates (AAR)

and is usually given for each hour over several hours. For instance, it might be predicted

that over a six-hour period, the AAR of an airport will be 36 
ights for the �rst hour, then

3



30 �ghts for each hour thereafter, perhaps re
ecting worsening weather conditions.

Forecasted weather conditions for an airport are converted to runway con�gurations

and subsequent AARs with reasonable accuracy. The main problem with the deterministic

ground holding policy is that it ignores the highly stochastic nature of the weather conditions

that ultimately determines the AARs. For instance, if the forecasted AARs turn out to be

lower than the AARs that actually materialize, then (in retrospect) too much ground holding

has been applied and valuable airport capacity goes unutilized. Similarly, if the forecasted

AARs are higher than the actual AARs, then demand will exceed capacity and there will be

airborne holding that (again, in retrospect) could have been replaced with ground holding.

A large body of work exists on deterministic versions of the ground-holding problem.

See e.g., Terrab [1], Vranas [2], Vranas [3], Bertsimas and Vranas [4], Vranas, Bertsimas and

Odoni [5], and Bertsimas and Stock [6] (this list is by no means exhaustive).

In this article, we look at a static stochastic model for the single-airport ground holding

problem: stochastic, in that it explicitly takes into account the stochastic nature of future

capacity, and static, in that it requires all decisions over a given time horizon to be made

in advance. In [7], Richetta and Odoni introduce and analyze the static stochastic ground

holding problem. An integer program is developed, which represents uncertainty by assuming

the existence of a probabilistic distribution of \scenarios", or possible realizations of capacity.

By treating arrivals as 
ows rather than as individual 
ights and by making use of the

fact that the linear programming relaxation always yields an integer solution, the model is

solvable for reasonable problem sizes.

The present paper, based on Ho�man [8] and Rifkin [9], makes three main contributions.

The �rst is to introduce a new model for the static stochastic ground holding problem. By

taking advantage of pre- and post-processing, our model can produce the same solutions

as the Richetta and Odoni model under currently accepted practices, while reducing the

number of decision variables by an order of magnitude. The second contribution is a proof

that the integer program associated with the model is dual network, which implies that the

model can be solved to optimality in polynomial time via network methods and that the LP

relaxation yields an integer solution.

The third contribution of this paper is that the adopted perspective is entirely consistent
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with the recently-initiated (January 1998) Collaborative Decision-Making (CDM) approach

to assigning ground holds to individual 
ights (see [10] or [11]). Prior work on ground delay

problems focused on assigning delays to individual 
ights in order to optimize a system-wide

objective function. The CDM perspective is that the air tra�c system consists of a set of

users (airlines) with diverse, often con
icting, objectives and it is inappropriate to apply a

common objective function across all airlines.

Under CDM, the FAA and the airlines have jointly adopted the view that the FAA

is responsible for forecasting airport capacity and, in the event that a GDP is warranted,

partitioning arrival resources into \arrival slots" to be distributed amongst inbound 
ights in

an equitable manner. For instance, if the AAR for the �rst hour of a GDP is 30 �ghts, then

an arrival slot is created for every two minutes of that hour. In essence, fairness, as de�ned

by CDM, is achieved by awarding the earliest slots to the 
ights with the earliest scheduled

arrival times (as scheduled by the O�cial Airline Guide, created weeks earlier). Suppose

that the capacity of an airport whose normal capacity is 50 
ights per hour is forecasted to

drop to 36 
ights for the �rst hour and 30 
ights for the next two hours. Then the �rst 36

scheduled 
ights would be assigned to the 36 slots in the �rst hour, the next 30 scheduled


ights would be assigned to the 30 slots in the second hour, and so on. Each airline is then

given an opportunity to redistribute its 
ights among the slots it has been awarded, subject

to certain rules for 
ight eligibility. In practice, there are many practical considerations such

as 
ights that cannot make their appointed slot time and 
ights exempted from FAA-assigned

ground delay. See Ho�man, Ball, Hall, Odoni, Wambsganss [10] for details.

The model presented in this paper is consistent with this approach. It determines the

number of arrival slots that should be made available in each time period. The CDM proce-

dures are then relied upon to assign individual 
ights to slots.

In Section 2, we state our assumptions, formulate the problem more precisely, and present

our model. In Section 3, we prove that the integer program de�ned by the model is dual

network. In Section 4, we present an example of the model's behavior and potential use.

Finally, in Section 5, we draw conclusions and point out future research directions.
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2 Model Formulation

The static stochastic ground holding problem assumes that the only element of uncertainty

is the arrival capacity at the airport in question; demand and travel times are deterministic

and known in advance. We assume that the time interval of interest consists of T 2 Z+ time

periods. For each time period, there is a demand Dt, which is the number of 
ights predicted

to arrive at the airport in time interval t, if there were no capacity restrictions. We also

assume that probabilistic information about the uncertain capacity is available in the form

of Q scenarios, Mq, for 1 � q � Q, where Mq;t, 1 � t � T , is the arrival capacity (AAR) of

the airport during time t, if scenario q were realized. We assume that the probability of the

q'th scenario occurring, pq, is known. Let cg > 0 be the cost of ground holding a single plane

for one time period and let ca > 0 be the cost of one period of airborne delay for a single

plane. We assume that these costs are linear in the length of the delay, and that ca > cg (if

not, there is no need for ground holding). To ensure feasibility, we add a T +1'st time period

during which the airport has an arbitrarily large capacity (A solution with delays extending

into the T +1'st interval would indicate that the original time horizon (T ) was not su�cient

to ensure a recovery from lost capacity).

Our decision variables are At, 1 � t � T + 1, the number of planes that should land

during time interval t in the absence of airborne delays. We also introduce auxiliary variables

Gt, and Wq;t, for 1 � t � T + 1, 1 � q � Q, where Gt is the number of 
ights whose arrival

time is adjusted from time interval t to time interval t+1 (or later) using a ground delay at

their point of origin, and Wq;t is the number of 
ights held in the air from time period t to

t+ 1 (or later) by an airborne delay under scenario q.

The At values can be viewed as planned airport acceptance rates (PAARs) in the sense

that they represent the number of aircraft that should land in each time interval based on

the planned departure times. Of course, depending on which AAR scenario is realized it may

or may not be possible to land the planned number of aircraft. The Gt variables represent

arrival time adjustments based on planned ground delay and the Wq;t variables represent

arrival time adjustments based on unplanned (stochastic) airborne delays. The model can

be viewed as assigning ground delays in order to mitigate uncertain airborne delays.
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The model provides information on adjustments to arrival times. The actual control

variables in the physical system are aircraft departure times. The revised departure times

can be easily recovered by subtracting the travel time from the scheduled arrival time. Since

the model does not assign delay to individual aircraft, another mechanism must do this. As

indicated in the previous section, the model achieves compatibility with CDM procedures

by dealing with planes in the aggregate.

The objective is to minimize the expected value of the sum of the air and ground delay

costs. This gives rise to the following integer programming problem:

(SGHP ) min
PT

t=1 cgGt +
PQ

q=1

PT
t=1 capqWq;t (1)

At �Gt�1 +Gt = Dt t = 1; : : : ; T + 1

(G0 = GT+1 = 0) (2)

�Wq;t�1 +Wq;t � At � �Mq;t t = 1; : : : ; T + 1

q = 1; : : : ; Q

(Wq;0 = Wq;T+1 = 0) (3)

At 2 Z+;Wq;t 2 Z+; Gt 2 Z+ (4)

The objective function (1) is the sum of the (�xed) ground delay costs and the (expected)

air delay costs. Constraint set (2) says that all planes originally wishing to land in the current

time period (Dt) or whose scheduled arrival time has been pushed beyond the previous time

period (Gt�1) must be scheduled to arrive either in the current time period (At) or later

(Gt). Although a plane may be scheduled by this model to arrive in period t (re
ected in

At), it may not actually land until later due to airborne delay under one of the scenarios.

Constraint set (3) says that, under scenario q, all planes scheduled to arrive in the current

time period (At) or air delayed from the previous time period (Wq;t�1) must be air delayed

until a later time period (Wq;t) or allowed to land. The inequality is necessary (rather than

equality) because there may not be enough planes available to �ll up the airport capacity.

Unused capacity is represented by a slack variable.
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Figure 1: Illustration of Model for Q = 1 and Q = 2

We note that this model is \almost" a network 
ow problem. Constraints (2) and (3)

have the structure of 
ow conservation constraints. However, the presence of a common

in-
ow variable, At, in each of the Q constraints in (3) destroys the network structure except

in the case of Q = 1. Figure 1 illustrates the model for the cases of Q = 1, where it is a

network 
ow problem, and Q = 2, where it is not.

This model is closely related to Richetta and Odoni's model (see [7]), but is much simpler.

In Richetta and Odoni's model, the decision variables are of the form Xi;j, 1 � i � j � t, the

number of planes that were originally scheduled to arrive at time i that were rescheduled to

arrive at time j. Additionally, slightly superlinear ground holding costs are used, in order to

avoid solutions where the delay distribution is perceived to be unfair. Assuming the super-

linear cost structure, with minimal pre- and post-processing, our model produces solutions

identical to Richetta and Odoni's model but is substantially faster to solve. Additionally,

the model admits a formal proof that the LP relaxation of the IP is guaranteed to yield

integral solutions (see Section 3).

We now turn to the cost parameters ca and cg. An inspection of the model indicates
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that the optimal solution depends only on the ratio of these parameters r = ca

cg
. A possible

objection to this model is the necessity to specify this ratio. We emphasize that this ratio

need not represent actual relative dollar costs of ground and air delay | indeed, the relative

costs of air and ground delay may vary across airlines and even across 
ights by the same

airline. Instead, the cost ratio r need only be a quanti�cation of the FAA's willingness to

trade ground delay for air delay, taking into account the tradeo� between its desire to serve

the industry e�ciently and its operational and safety concerns.

3 Theoretical Results

In this section, we show that the static stochastic ground holding problem can be solved in

polynomial time. In particular, we show that the integer program de�ned in the previous

section is a dual network 
ow problem. As immediate corollaries, the constraint matrix

associated with this IP is totally unimodular, and the LP relaxation yields integral solutions.

We say that an m row, n column (0; 1;�1) matrixM is a network matrix if there exists a

directed tree R on m+1 nodes and a one-to-one mapping of the rows of the matrix onto the

edges of R with the property that each column of the matrix corresponds to the characteristic

vector of a path in R. This de�nition was introduced in [12] and is explored in [13]. The

more familiar node-arc incidence matrices, with a single 1 and �1 in each column, are a

special case of this construction. Network matrices are desirable because they are totally

unimodular and give rise to integral polyhedra.

Theorem 3.1 Let AT be the transpose of the constraint matrix associated with the static

stochastic ground holding problem. Then AT is a network matrix.

Proof Sketch:We shall illustrate the construction of the tree R for the case T = 2; Q = 2

(two time periods and two scenarios) from which it will be clear how to extend the con-

struction to an arbitrary number of time periods and scenarios. The general construction is

explicitly formulated as a matrix transformation in [8], thus providing a more formal proof.

For a two-time-period, two-scenario problem with slack variables, the primal problem is

shown in Figure 2. In this problem, M is de�ned to be any su�ciently large constant (e.g.,
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M =
P

T

t=1
Dt). We de�ne A to be the constraint matrix associated with this problem.

To show that AT is a network matrix, we must �nd a directed tree R on 16 nodes such

that every column of AT (equivalently, every row of A) corresponds to the characteristic

vector of a path in R. Figure 3 shows the required tree. We have labeled each arc of R

with the corresponding primal variable. It can be veri�ed that every row of A corresponds

to the characteristic vector of a path in R. For example, the �fth row of A corresponds to

the path formed by traversing arc S12 backward, then arc W12 forward, then arcs A2 and

W11 backward. Figure 4 shows the graph G spanned by the tree R. We label each arc

with the associated dual cost coe�cient (in the primal, the associated RHS element). This

construction extends to an arbitrary number of scenarios and time periods. 2

Corollary 3.2 The constraint matrix associated with (SGHP ), our IP formulation of the

static stochastic ground holding problem, is totally unimodular. Its LP relaxation yields an

integral solution, and the stochastic ground holding problem can be solved in polynomial time.

The dual problem can be recast in a more familiar form as a min-cost 
ow problem by

negating the objective function and multiplying the dual LP in equality form by N , where

N is the node-arc incidence matrix associated with R with a single row deleted. Figure

5 shows the resulting 
ow problem for the previous example (T = 2; Q = 2). The labeled

arcs can accommodate either positive or negative 
ow, as they are associated with equality

constraints in the original primal problem; the 
ow must be nonnegative on the unlabeled

arcs, which are associated with dual slack variables. The unlabeled arcs are zero-cost arcs

and the unlabeled nodes are neither sources nor sinks.

We note that the primal problem cannot be recast as a network 
ow problem. This

can be veri�ed by applying standard network recognition algorithms (see [14] or [13]). See

[8] for further discussion of this issue. Additional investigations into these problem classes

are given in Reference [15], which shows that scenario-stochastic min-cost 
ow problems in

outerplanar graphs can always be recast as dual min-cost 
ow problems.
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4 Experiments

In [7], Richetta and Odoni performed computational experiments in which they compared

the quality of solutions generated by their stochastic model to those of the deterministic

algorithm, and to the passive algorithm of no ground delays, under various cost and scenario

assumptions. The primary conclusion was that in many cases, the stochastic algorithm found

solutions with only slightly more ground delay than the passive algorithm, but with much

lower total expected costs. Since our model �nds identical solutions to the Richetta and

Odoni stochastic ground holding model, their results apply.

To demonstrate the tractability of our model, we used CPLEX 4.0 with default settings

on a Sparc Station 10 to solve three realistic instances of the stochastic ground holding

problem, each comprised of a demand pro�le and three AAR scenarios (Q = 3) with varying

capacities in the range of 30-60 
ights per hour. Since each data set spanned a 12-hour time

interval and 624 
ights, these problem instances represent unusually long GDPs at a major

airport. Each data set was solved in two ways: once with the time horizon divided into

60-minute time periods and once with 15-minute time periods, for a total of six test cases

(1A, 1B, 2A, 2B, 3A, 3B). In each test case, we set cg = 2:0 and ca = 5:0.

The results in Table 1 show that the problem is highly tractable. The integer solution
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Test Numb T = Numb Min per Time Simplex Node

Case 
ights periods period t (sec) Iteration B&B

1a 624 12 60 0.07 51 0

1b 624 48 15 0.30 267 0

2a 624 12 60 0.07 59 0

2b 624 48 15 0.37 289 0

3a 624 12 60 0.05 55 0

3b 624 48 15 0.20 223 0

Table 1: SGH model performance

was obtained in zero nodes of the mixed integer program algorithm of CPLEX, empirically

con�rming the integer solution can be obtained directly from the linear program relaxation.

The largest number of iterations of the simplex procedure was 289 and the longest run time

was barely more than half a second. Note that the run time is almost linear in the coarseness

(length of) the time periods.

Next, we explore the solution of an additional test case to gain a qualitative understanding

of the solutions generated by the model. In this hypothetical example, we know that some

poor weather is approaching, but we do not know exactly when it will arrive, how long it will

last, or how severe its impact will be. Figure 6 shows the expected demand at our airport

over the next several hours late in a day (hence the decreasing demand), as well as three

possible realizations of capacity. Each period is 30-minutes long. Capacity Scenario 1, with

probability 0.4, corresponds to a severe, earliest, medium length impact, with an aftershock

at period 7. Scenario 2 assumes a longer, more moderate impact, and Scenario 3 corresponds

to the shortest, mildest impact; both these scenarios have probability 0.3. By comparing

demand to the capacity scenarios, it is clear that some severe delays are bound to occur

during periods 3-6, no matter what really happens on the capacity side.

We explore several values of R = ca=cg , the ratio of air delay cost to ground delay

cost. Figure 7 shows, for each value of R, the optimal schedule of PAARs and the resulting

distribution of both ground and (expected) airborne delays. Note �rst that as R increases,

the optimal schedule grows progressively more conservative, allowing fewer and fewer 
ights

to arrive during the earlier, possibly congested periods. Assuming a First Scheduled, First
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Figure 6: Demand and Scenarios

Served discipline, the horizontal axis indicates the scheduled arrival time period and the

vertical axis the number of arrivals. The color scheme indicates the amount of ground and

airborne delay experienced, with delays ranging from 0 up to 4 time periods. The ground

and air delay pro�les further demonstrate our theme: as R increases, arriving planes have

experienced progressively more ground delays, and expect to receive progressively fewer

airborne delays. Note that at R = 25 no airborne delay can occur. R = 25 therefore

corresponds to a maximally conservative schedule; increasing R still further will have no

additional e�ect. If the FAA were to apply the deterministic policy to a forecast that

consisted of the lowest capacity of any scenario at each time period, this is the schedule

of PAARs that would be produced. Declaring airborne delays to be 25 times as costly as

ground delays is almost certainly excessive in practice; the R = 25 schedule is shown in order
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to indicate how far R must be increased before no airborne delays can occur (at R = 20,

there are still some expected airborne delays). The high value of R needed to eliminate

all airborne delays indicates that applying the deterministic policy to pessimistic forecasts

roughly corresponds to optimizing expected costs under an unrealistically high ratio of air

delay cost to ground delay cost, producing excessive ground delays. Figure 8 shows, for each

value of R, the distribution of ground and (expected) airborne delays with respect to the

original arrival schedule.

Please note that R may be interpreted as a rough re
ection of (perhaps subjective)

preferences regarding ground vs. airborne delays, instead of a cost ratio in the strict sense.

By varying R the FAA can observe quickly the consequences of alternative settings of the

PAARs. For example, at R = 6 only some 
ights during periods 3, 4 and 5 have expected

airborne delay in excess of 30 minutes (and of under one hour), a situation that may be

acceptable to both the airlines and the FAA. Note that the PAAR for this case is set to 15

and 20 arrivals during periods 3 and 4, as opposed to 10 for R = 25, thus resulting in a large

reduction in total ground delay assigned to 
ights that will arrive after period 3 and until

the end of the day.

In conclusion, the example illustrates our expectation that the proposed model will be

most useful as a \what if" tool: because of its speed and simplicity, it could assist the 
ow

management specialists in the FAA to determine PAARs that, on the one hand, take into

consideration the level of uncertainty associated with short-term capacity forecasts and, on

the other, strike a \comfortable" balance between airborne and ground delay.

5 Conclusion

The stochastic ground holding model presented in this paper �nds the optimal trade-o�

between airborne and ground holding in the formulation of a ground delay program. It

represents a substantial simpli�cation of an earlier model developed by Richetta and Odoni;

it �nds the same solutions via post-processing using far fewer decision variables. The fact

that the model is dual network allows us to relax the integrality constraints, as we are

guaranteed integer optimal solutions directly from the LP relaxation. The combination of
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these two facts results in a highly tractable model which requires only modest computing

power. Additionally, the model is designed to be an integral component of the collaborative

decision-making process, and can be easily integrated into existing tools.

Practical implementation of our model requires that the following issues be addressed:

� Exempt 
ights: In practice, not all 
ights bound for an airport during a GDP can be

assigned a ground delay (e.g., international 
ights). The e�ect of these exempt 
ights

is to subtract from the capacity of the airport. Our model can fully accommodate

these exemptions by pre-processing the AAR scenarios. See [8] for a formal algorithm.

� Our work here assumes the real-time generation of multiple weather scenarios but does

not o�er a rigorous method for quantifying the probability of each scenario. However,

we have reason to believe that this can be done through a combination of special-

ized forecasting techniques and historical statistics on weather conditions and their

corresponding arrival capacities.

� Experimentation is required as to the behavior of the model with respect to changes

in the cost ratio. Some work on this has been done in [8] and [9].

An ideal future model for ground delay would incorporate several e�ects which are not

modeled here and are not currently included in ATFM practice, including non-linear delay

costs, the interaction between arrival and departure capacity at an airport and the \network

e�ects" (propagation to other airports) of ground holding policies.

Finally, it is worth noting that our model with Q = 1 is equivalent to a classic production-

inventory model in which an item can be held in one of two states (see Section 4.5 of [16]).

Thus, there may be applications of the model outside the domain of air tra�c management.
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Figure 7: Optimal Arrival Schedules, with Delay Pro�les
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Figure 8: The Original Arrival Schedule, with Delay Pro�les
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