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Chapter 1

Introduction

In this thesis we present the development of a lattice kinetic scheme for solving the

standard set of resistive MHD equations

∂tρ + ∇ · (ρu) = 0 (1.1)

∂t(ρu) + ∇ · (ρuu) + ∇p − (∇×B) × B = ∇ · (2νρS) (1.2)

∂tB + ∇× (η∇×B − u× B) = 0 (1.3)

with isothermal closure

p =

[
kBT

m

]
ρ (1.4)

and strain tensor

S =
1

2
[∇u + (∇u)T] .∗ (1.5)

These coupled partial differential equations describe the evolution of plasmas as diverse

as liquid metals, fusion plasmas, and astro-physical plasmas [23]. The canonical set

of numerical methods used for the solution of these equations includes pseudo-spectral

methods, finite-difference methods, and finite element methods. Each of these standard

methods solves the resistive MHD equations through direct discretization of the field

Eqs.(1.1), (1.2), and (1.3). The main challenge in such discretizations is the evaluation

of the nonlinear flux derivatives—one of which is the ∇ · (ρuu) term in Eq.(1.2)—in

such a way that mass, momentum, and energy are properly conserved [27]. In high-

dimensional systems with many field variables, such methods can quickly become tedious

to implement and analyze.

∗This strain tensor gives rise to the standard shear viscosity νρ∇2u as well as a bulk viscosity.
For an extensive discussion of these viscosities in relation to lattice Boltzmann methods, see [10].
We adopt this form because it is the form that will arise from the Chapman-Enskog expansion
of our scheme.

1
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Lattice Boltzmann methods (LBMs) provide an alternative for solving PDE systems

that arise from a kinetic theory. The LBMs rely on the linear nature of the convective

derivative in the Boltzmann equation

∂tf + v · ∇f +
F

m
· ∇vf =

(
df

dt

)
c

(1.6)

to build elegant and simple-to-implement numerical schemes which recover the macro-

scopic field variables ρ and ρu by taking moments of f (as discussed in the next section).

The resulting methods are also amenable to parallelization as they are fully explicit and

local. Perhaps the strongest argument in favor of further investigation of the LBM is

its ability to address multi-phase flows, multi-component flows, flows through porous

media, and flows near complex boundaries: these are areas where traditional methods

can fall somewhat short [5][6].

The second major component of this thesis is the application of the grid-refinement

scheme in [12][11] to pseudo-3D MHD. The refinement scheme derived and discussed in

these references allows block-refinement of the spatial domain. By selectively refining

the spatial grid near small-scale structures, we can avoid the computational overhead of

needlessly refining the entire domain. In [21], the authors use a 2D LBM with multi-block

grid refinement to simulate flows near an airfoil. In MHD, such local flow structures

can occur in, for example, tearing mode reconnection [14] which is relevant to many

astrophysical problems. In this type of reconnection, a thin current layer forms near the

reconnection point. This layer is important to resolve because it drives the reconnection

rate. To resolve this layer without a grid refinement scheme one is forced to use a finely

discretized grid over the entire domain. Refining the grid near this current layer would

allow much lower resistivities to be obtained by focusing computational effort on the thin

current sheet. More generally, any problem involving shocks—such as a coronal mass

ejection—would benefit from an adapative refinement scheme based on block-refinement.

To date, the only application of grid refinement to LBM MHD has been restricted
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to 1D [16]. Here we will apply the multi-block refinement method described in [12] to

our lattice kinetic MHD method in a pseudo-3D case and verify numerically that the

resulting method can properly recover the MHD equations across inter-block boundaries

in linear and non-linear problems.



Chapter 2

The Lattice Boltzmann Method

2.1 The Boltzmann Equation

Lattice Boltzmann methods are numerical methods for solving systems of PDEs that

arise from an underlying kinetic theory. Before we delve into the derivation of an LBM

for the MHD equations, it is appropriate to examine a simpler system, the Navier-Stokes

equations:

∂tρ + ∇ · (ρu) = 0 (2.1)

∂t(ρu) + ∇ · (ρuu) + ∇p = ∇ · (2νρS). (2.2)

We again assume an isothermal closure. This system describes the evolution of a com-

pressible fluid with mass density ρ(x, t) and flow velocity u(x, t). To arrive at these equa-

tions, one can use the classical, purely phenomenological reasoning as in [28]. A second

approach is to derive these equations from first principles. This second approach—

forming one branch of kinetic theory—suggests an alternative to the popular numerical

methods used to solve Eq.(2.1) and Eq.(2.2).

Instead of directly discretizing Eq.(2.1) and (2.2) as in the standard numerical meth-

ods, the LBM considers the more fundamental Boltzmann equation

∂tf + v · ∇f +
F

m
· ∇vf =

(
df

dt

)
c

. (2.3)

This equation describes the evolution of f(x,v, t), the number density of particles at

position x moving with velocity v. The RHS accounts for the effects of particle collisions

while the third term on the LHS is called the body-force term and accounts for any ex-

ternal forces acting on the particles. The LBM solves Eqs.(2.1) and (2.2) by discretizing

4
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(2.3) and recovering the macroscopic fluid variables ρ and ρu∗ by taking the appropriate

moments of f :

ρ(x, t) = m
∫

f(x,v, t)dv (2.4)

ρu(x, t) = m
∫

f(x,v, t)vdv. (2.5)

In order to prove that Eq.(2.3) along with the definitions in Eqs.(2.4) and (2.5), are

equivalent to Eqs.(2.1) and (2.2), we need to define an appropriate collision operator.

Once we have defined a collision operator, we then use the Chapman-Enskog multi-scale

expansion [25] to show the equivalence of these two approaches.

2.2 Binary and BGK Collision Operators

To complete Eq.(2.3), we must define a collision operator for the RHS. Under certain

assumptions [24], we can consider only two-particle collisional effects where the most

general form of the binary collision operator—often denoted by Q(f, f)—is

(
df

dt

)
c

= Q(f, f) =
∫ ∫

[f(v′)f(v′
1) − f(v)f(v1)]σdΩdv1. (2.6)

The quantity σ ≡ σ(|v−v1|, Ω) is the differential cross section for the collisions in which

particles with incoming velocities v and v1 leave with velocities v′ and v′
1. Unfortunately,

the generality of this collision operator makes it impossible to use directly; the Boltzmann

equation becomes intractable if further simplification is not made. Before we proceed to

replace this collision operator with a more practical one that reproduces the appropriate

macroscopic behavior, we note a few key features of the general collision operator that

we wish to reproduce in our approximation, or model collision operator.

First, the collision operator respects conservation of mass, momentum, and energy.

This reflects the simple physical fact that particles which enter collisions do not leave

∗We will use u for macroscopic (or mean) fluid velocities, reserving v for referencing microscopic,
thermal particle velocities.
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with excess energy, mass, or momentum. These constraints are expressed by the collision

invariants

ψ1(v) = 1 (mass conservation) (2.7)

ψ2(v) = v (momentum conservation) (2.8)

ψ3(v) = |v|2 (energy conservation) (2.9)

which are invariant in the sense that

∫
Q(f, f)ψk(v)dv = 0. (2.10)

Second, we would like our collision operator to respect thermodynamic entropy laws.

Boltzmann proved that Q(f, f) respects the increasing entropy law by proving his famous

H-theorem. If we define H as

H(t) =
∫ ∫

f ln fdxdv (2.11)

then it can be shown that
d

dt
H(t) ≤ 0 (2.12)

when f evolves according to Eq.(2.3) equipped with the binary collision operator. The

thermodynamic entropy of the distribution f is −kBH(t). Thus, if H(t) is non-increasing,

then the entropy is non-decreasing. The most interesting fact to come out of this is that

dH/dt = 0 if and only if f is given by the classic Maxwellian distribution

f(x,v, t) = fM(x,v, t) = n

(
1

2πc2
s

)D/2

exp

[
−|v − u|2

2c2
s

]
(2.13)

where D is the number of degrees of freedom in the problem, c2
s ≡ kBT/m, and u is the

mean velocity of the particles [24].
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Bhatnagar, Gross, and Krook proposed the following model for the collision operator:

(
df

dt

)
c

= −f(x,v, t) − f (eq)(x,v, t)

τc
(2.14)

where τc is proportional to the mean time between particle collisions and f (eq) is some

equilibrium distribution to which particles tend to relax [1]. We can see that this collision

operator has an intuitive feel as well: the distribution function f relaxes to some equi-

librium distribution f (eq) at a rate proportional to its deviation from that equilibrium.

With this collision operator, the Boltzmann equation becomes

∂tf(x,v, t) + v · ∇f(x,v, t) = −f(x,v, t) − f (eq)(x,v, t)

τc

. (2.15)

To give insight into the relevant scales in this equation, we non-dimensionalize by making

the following substitutions:

t = t0t̂ (2.16)

x = L0x̂ (2.17)

v = v0v̂ (2.18)

f = f0F (2.19)

τc = τ0τ̂c. (2.20)

To maintain consistency in the units, we require

L0 = v0t0. (2.21)

The result of these substitutions is:

∂t̂F (x̂, v̂, t̂) + v̂ · ∇̂F (x̂, v̂, t̂) = −F (x̂, v̂, t̂) − F (eq)(x̂, v̂, t̂)

τ̂cε
(2.22)
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where ε = τ0/t0. The ratio ε is the Knudsen number. When ε � 1, we can use it

as the small parameter in a multi-scale expansion of the moments of Eq.(2.22). This

procedure is called the Chapman-Enskog multi-scale expansion. If we take f (eq) = fM ,

the procedure produces the Navier-Stokes equations as given in Eqs.(2.1) and (2.2) with

ν = ετcc
2
s [24]. A third equation for the evolution of the internal energy of the fluid is

also obtained; however, here we will consider isothermal closures as discussed before.

2.3 Discretizing the Boltzmann Equation

We proceed with the development of the LBM by discretizing Eq.(2.22), written here

without the hats:

∂tF (x,v, t) + v · ∇F (x,v, t) = −F (x,v, t) − F (eq)(x,v, t)

τcε
. (2.23)

Evidently, we must discretize this equation in velocity, space, and time. We begin by

discretizing the velocity dimension, obtaining

∂tFi(x, t) + vi · ∇Fi(x, t) = −Fi(x, t) − F (eq)(x, t)

τcε
(2.24)

where

Fi(x, t) ≡ F (x,vi, t) (2.25)

and we have some discrete set of velocities vi. It will turn out that we need only a

few velocities to reproduce the Navier-Stokes equations. Next we discretize Eq.(2.24) in

space and time. We are faced with the standard set of choices for discretizing the spatial

and temporal derivatives. Here we adopt the standard LBM discretization without

further consideration for other possible discretizations. As we will see, the standard

discretization results in a fully explicit upwind method that has second order accuracy

both spatially and temporally on the Navier-Stokes equations. In one dimension, the
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discretization looks like:

Fi(x, t + δt) − Fi(x, t)

δt
+ vi

Fi(x + δxi, t + δt) − Fi(x, t + δt)

δxi

= −Fi(x, t) − F
(eq)
i (x, t)

τcε
. (2.26)

If we enforce

vi =
δxi

δt
(2.27)

then we can rewrite Eq.(2.26) as:

Fi(x + viδt, t + δt) − Fi(x, t) = − δt

τcε

[
Fi(x, t) − F

(eq)
i (x, t)

]
. (2.28)

The multi-dimensional version is, analagously:

Fi(x + viδt, t + δt) − Fi(x, t) = − δt

τcε

[
Fi(x, t) − F

(eq)
i (x, t)

]
. (2.29)

The standard procedure then calls for identifying δt with ε, leading to

Fi(x + viδt, t + δt) − Fi(x, t) = −1

τ

[
Fi(x, t) − F

(eq)
i (x, t)

]
(2.30)

or

Fi(x + viδt, t + δt) =
[
1 − 1

τ

]
Fi(x, t) +

[
1

τ

]
F

(eq)
i (x, t) (2.31)

where τ = τc is the dimensionless relaxation parameter (we have dropped the subscipt

to match standard notation). This equation suggests a very simple numerical implemen-

tation. At each time step, for each velocity vi, we form the sum on the RHS and then

translate—or stream—the solution in the direction of vi. Now, because of the relation

given in Eq.(2.27) the streaming step will be an integer number of grid cells, resulting

in an efficient and easy to implement numerical scheme.

It is also interesting to note that enforcement of Eq.(2.27) is not necessary. In the

case where Eq.(2.27) does not hold, the streaming step does not align with the spatial
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grid, and one must implement interpolation algorithms to complete the streaming step.

Relaxation of Eq.(2.27) may even lead to more stable numerical schemes by using the

aditional flexibility to construct more isotropic sets of streaming vectors [19][16]. Here

we will restrict ourselves to schemes where Eq.(2.27) is satisfied, and the streaming step

does not require use of interpolation schemes.

2.4 Chapman-Enskog and Equilibrium Construction

To show that solving Eq.(2.31) does indeed reproduce Navier-Stokes equations, one

applies a multi-scale Chapman-Enskog expansion using ε as the small parameter. If the

Knudsen number ε is small, the standard Chapman-Enskog formalism calls for expanding

Fi and ∂t as

Fi =
∞∑

n=0

εnF
(n)
i = F

(0)
i +

[
εF

(1)
i + ε2F

(2)
i + ...

]
(2.32)

= F
(eq)
i +

[
F

(neq)
i

]

∂t =
∞∑

n=0

εn∂tn = ∂t0 + ε∂t1 + ... (2.33)

where we require that each of the the non-equilibrium parts do not contribute to the

macroscopic field variables ρ and ρu:

∑
i

εnF
(n)
i = 0 ∀ n > 0 (2.34)

∑
i

viε
nF

(n)
i = 0 ∀ n > 0. (2.35)

Recall that we identified the time step δt with the Knudsen number ε in our discrete

equation. We therefore Taylor expand Eq.(2.31) in the small parameter δt. Keeping

terms to order δt2 from the Taylor expansion and making the multi-scale substitutions

in Eqs.(2.32) and (2.33), we get

[∂t0 + vi · ∇] F
(0)
i = −F

(1)
i

τ
(2.36)
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∂t1F
(0)
i +

(
1 − 1

2τ

)
[∂t0 + vi · ∇] F

(1)
i = −F

(2)
i

τ
(2.37)

at the lowest two orders in ε (or δt). Taking the first and second moments of these will

give equations for the evolution of ρ and ρu. As we will show later, the result is

∂t

∑
i

F
(0)
i + ∇ · (∑

i

viF
(0)
i ) = 0 (2.38)

∂t(
∑

i

viF
(0)
i ) + ∇ ·

[
Π(0) + δt

(
1 − 1

2τ

)
Π(1)

]
= O(δt2) (2.39)

where

Π(0) ≡ ∑
i

viviF
(0)
i (2.40)

Π(1) ≡ ∑
i

viviF
(1)
i (2.41)

The main work in developing a lattice kinetic scheme is then to find local equilibrium

functions F
(0)
i such that Eq.(2.39) gives the Navier-Stokes equation. To proceed towards

this goal, it is necessary to define the form of F
(0)
i , along with a set of discrete velocities.

The most commonly used set of velocities (also called streaming vectors) in 2D is the

following:

vi = v ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0) i = 0

(±1, 0), (0,±1) i = 1, 2, 3, 4

(±1,±1) i = 5, 6, 7, 8 .

(D2Q9) (2.42)

This choice for the velocity discretization is the called the D2Q9 set, referencing the

number of dimensions (two), and the number of streaming vectors (nine). This set owes

its popularity to the fact that it has the minimum number of streaming vectors necessary

to reproduce the isothermal Navier-Stokes equations on a square grid.∗
∗Actually, the zero velocity is not necessary; however, many authors have noted it has a very
positive effect on the stability of the resultant numerical scheme.
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The second necessary ingredient is an ansatz for F
(0)
i . The standard ansatz has the

following form [4]:

F
(0)
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A1 + B1u
2 + C1(vi · u) + D1(vi · u)2 i = 0

A2 + B2u
2 + C2(vi · u) + D2(vi · u)2 i = 1, 2, 3, 4

A3 + B3u
2 + C3(vi · u) + D3(vi · u)2 i = 5, 6, 7, 8 .

(2.43)

The resultant scheme for this ansatz is

F
(0)
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

16
36

ρ
[
1 − 3

2
u2 + 3(vi · u) + 9

2
(vi · u)2

]
i = 0

4
36

ρ
[
1 − 3

2
u2 + 3(vi · u) + 9

2
(vi · u)2

]
i = 1, 2, 3, 4

1
36

ρ
[
1 − 3

2
u2 + 3(vi · u) + 9

2
(vi · u)2

]
i = 5, 6, 7, 8

(2.44)

for streaming vector length v = 1. The resulting equations (i.e. the zeroth and first

moments of Eqs.(2.36) and (2.37)) with this equilibrium are [13]

∂t0ρ + ∇ · (ρu) = 0 (2.45)

∂t1ρ = 0 (2.46)

∂t0(ρu) + ∇ · (ρuu) + ∇(c2
sρ) = 0 (2.47)

∂t1ρ + ∇ · (2νρS − δt
(
τ − 1

2

)
∇ · (ρuuu)) = 0 (2.48)

with

S =
1

2
[∇u + (∇u)T] (2.49)

ν =
1

6
[2τ − 1] δt. (2.50)

In the incompressible limit, when ∇ · u = 0 and ∇ρ = 0, these equations are equivalent

to Eqs.(2.1) and (2.2) because the ∇ · (ρuuu) term becomes negligible. Thus, using

the D2Q9 velocity distribution and the ansatz in Eq.(2.43), we can construct a scheme
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that is consistent with the incompressible Navier-Stokes equations. One can eliminate

this spurious ∇ · (ρuuu) term by extending the ansatz to include higher powers of u;

however, this has the drawback of requiring additional streaming vectors [9].

It has been observed that the equilibrium distribution in Eq.(2.44) can also be arrived

at by Taylor expanding the Maxwellian distribution fM in small Mach number Ma ≡ |u|
cs

and then using a Gaussian quadrature on the F
(0)
i to enforce the moment constraints

[15]. The Taylor expansion of fM gives rise to

[
1 − 3

2
u2 + 3(vi · u) +

9

2
(vi · u)2

]
(2.51)

while the differing weights in Eq.(2.44) arise from the quadrature.

For the present work, we will follow the procedure outlined in the appendix of [13]

to construct a 3D lattice kinetic scheme to solve the resistive MHD equations. In order

to recover the 3D equations, we will use the following, D3Q19, set of streaming vectors:

vi = v ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, ..., 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, ..., 18 .

(2.52)

In our case the moments of Eqs.(2.36) and (2.37) will force the introduction of terms

involving B into F
(0)
i . Our ansatz will be of the form:

F
(0)
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A1 + B1u
2 + C1B

2 i = 0

A2 + B2u
2 + C2B

2 + D1(vi · u) + E1(vi · u)2 + F1(vi · B)2 i = 1, ..., 6

A3 + B3u
2 + C3B

2 + D2(vi · u) + E2(vi · u)2 + F2(vi · B)2 i = 7, ..., 18

(2.53)

where we have abused notion in our choice of B as both a coefficient and the magnetic

field. It will always be clear from context whether we are referring to the coefficient

or the magnetic field. In the next chapter we will proceed to derive the appropriate

coefficients for the ansatz and also treat the magnetic field B within the lattice kinetic

framework. The resulting scheme is the 3D analog of the 2D scheme derived in [9].



Chapter 3

Derivation of a LBM for 3D MHD

In this chapter we derive the equilibrium functions for our 3D lattice kinetic scheme.

Before proceeding to this, we first present a derivation of the resistive MHD equations

which they will model. Just as there is more than one way of arriving at the Navier-

Stokes equations, there is more than one way of arriving at the MHD equations. We

choose to derive them systematically from moments of the Boltzmann equation with a

Lorentz term. This approach is more in the spirit of kinetic theory than a phenomeno-

logical approach. Different instances of this derivation may also be found in standard

plasma physics texts. For example, we borrow the begining of what follows from [23].

3.1 Single-Fluid Resistive MHD Equations

In general, a plasma contains many ion species along with electrons, each described

by its own distribution f with a corresponding Boltzmann equation. The MHD approx-

imation assumes a one-species plasma in which case the plasma may be characterized by

an ion distribution fi and an electron distribution fe. MHD also restricts itself to fully

ionized and neutral plasmas; later, this assumption will allow us to reduce the two-fluid

system resulting from fi and fe to a single-fluid system. To close the resistive MHD

system, Maxwell’s equations will be included to describe the evolution of the electro-

magnetic fields embedded in the plasma. We will non-dimensionalize the system and

then discuss which terms are neglected in resistive MHD.

For each of the species, we start with the Boltzmann equation

∂tf + v · ∇f +
q

m
[E + v × B] · ∇vf =

(
∂f

∂t

)
c

(3.1)

where F has been replaced by the Lorentz force, q [E + v × B]. The F may include

other forces such as gravity; however, for this treatment we will retain only the Lorentz

14
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force. This equation applies to both the ion distribution fi and the electron distribution

fe. As we proceed, f will be used with the implication that there are actually two

Boltzmann equations, one for fi and one for fe. Recall that zeroth and first moments of

the Boltzmann equation give the continuity and momentum equations. To recover the

continuity equation, we take the zeroth moment of Eq.(3.1):

∫
∂tfdv +

∫
v · ∇fdv +

∫
q

m
[E + v × B] · ∇vfdv =

∫ (
∂f

∂t

)
c

dv. (3.2)

The RHS is zero by conservation of mass. The force due to E in the Lorentz term on

the LHS can be rewritten using the divergence theorem as a surface integral over the

surface of the phase space where ‖v‖ = ∞.

∫
E · ∇vfdv =

∫
‖v‖=∞

fE · dA = 0. (3.3)

This integral is taken over the surface where ‖v‖ = ∞ and must be 0 if the system has

finite energy. The v × B force in the Lorentz term can be rewritten using basic vector

identities and the divergence theorem as

∫
(v ×B) · ∇vfdv =

∫
‖v‖=∞

(fv × B) · dA −
∫

f∇v × (v ×B)dv (3.4)

where the first integral again zero for distributions with finite energy. The remaining

terms are simplified using definitions of n and u to get

∂tn + ∇ · (nu) = 0. (3.5)

Multiplying by the mass m of the particles gives

∂tρ + ∇ · (ρu) = 0. (3.6)

To recover the momentum equation, we take the first moment of Eq.(3.1):

∫
∂tfvdv +

∫
v · ∇fvdv +

∫ q

m
[E + v × B] · ∇vfvdv =

∫ (
∂f

∂t

)
c

vdv. (3.7)
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The second term can be written as

∇ ·
∫

fvvdv = ∇ ·
∫

f(u + ṽ)2dv = ∇ ·
∫

f(uu + ṽṽ + 2uṽ)dv (3.8)

using ṽ as the microscopic particle velocity so that v = u + ṽ. Since the mean of the

random microscopic velocity fluctuations ṽ is zero by definition, this expression reduces

to

∇ ·
∫

f(uu + ṽṽ + 2uṽ)dv = ∇ · (nuu + nṽṽ) (3.9)

where second term in this expression is the definition of stress tensor P/m. Algebra,

along with the finite energy argument used previously, gives us the following for the

third term in Eq.(3.7):

∫
q

m
[E + v ×B] · ∇vfvdv = −qn

m
[E + u× B] . (3.10)

The final simplification of Eq.(3.7) is

∂t(nu) + ∇ · (nuu) + ∇ · P

m
− qn

m
[E + u ×B] =

∫ (
∂f

∂t

)
c

vdv. (3.11)

Multiplying by the particle mass m this equation is:

∂t(ρu) + ∇ · (ρuu) + ∇ · P − qn [E + u× B] =
∫ (

∂f

∂t

)
c

mvdv. (3.12)

In conclusion, we have the following equations:

∂tρi + ∇ · (ρiui) = 0 (3.13)

∂tρe + ∇ · (ρeue) = 0 (3.14)

∂t(ρiui) + ∇ · (ρiuiui) + ∇ ·Pi − eni [E + ui ×B] = Mi

∫ (
∂fi

∂t

)
c

vdv (3.15)

∂t(ρeue) + ∇ · (ρeueue) + ∇ · Pe + ene [E + ue ×B] = me

∫ (
∂fe

∂t

)
c

vdv.(3.16)
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The collision terms, which are non-zero due to electron-ion collisions, can be computed

as [23]:

me

∫ (
∂fe

∂t

)
c

vdv = ηe2n2(ui − ue) (3.17)

for the electron equation and

Mi

∫ (
∂fi

∂t

)
c

vdv = −me

∫ (
∂fe

∂t

)
c

vdv = ηe2n2(ue − ui) (3.18)

for the ion equation. We use n = ne = ni by invoking the plasma neutrality assumption.

Thus, the momentum equations become

∂t(ρiui) + ∇ · (ρiuiui) + ∇ ·Pi − eni [E + ui × B] = ηe2n2(ui − ue) (3.19)

∂t(ρeue) + ∇ · (ρeueue) + ∇ · Pe + ene [E + ue × B] = ηe2n2(ue − ui). (3.20)

Eqs.(3.13), (3.14), (3.19), and (3.20) describe a two fluid system: one fluid being ions,

one fluid being the electrons. We can transform these equations into a one-fluid system

by taking four specific linear combinations of these equations and applying the following

definitions:

ρ ≡ ρi + ρe (3.21)

M ≡ Mi + me (3.22)

ρu ≡ ρiui + ρeue (3.23)

P ≡ Pi + Pe (3.24)

J ≡ en(ui − ue). (3.25)

The sum of Eqs.(3.13) and (3.14) gives, using Eqs.(3.21) thru (3.25),

∂tρ + ∇ · ρu = 0. (3.26)



18

Subtracting Eqs.(3.13) and (3.14), after dividing each equation by its respective particle

mass, gives

∇ · J = 0. (3.27)

The sum of Eqs.(3.19) and (3.20) gives

∂t(ρu) + ∇ · (ρuu) +
Mime

e2
∇ ·

(
JJ

ρ

)
+ ∇ · P − J × B = 0 (3.28)

where we have used the approximation

ui = u +
me

Mi

J

ne
≈ u (3.29)

on the basis that ion mass is thousands of times greater than the electron mass (i.e.

Mi 
 me). Finally, adding Eqs.(3.19) and (3.20) after multiplying each by its respective

charge-to-mass ratio q/m gives

E + u× B =
meMi

e2ρ
[∂tJ + ∇ · (uJ + Ju)] − M

eρ
∇ ·Pe +

Mi

eρ
(J × B) + ηJ. (3.30)

Collecting the four linear combinations of the four two-fluid equations results in an

equivalent (up to approximation) new set of single fluid equations

∇ · J = 0 (3.31)

∂tρ + ∇ · ρu = 0 (3.32)

∂t(ρu) + ∇ · (ρuu) +
Mime

e2
∇ ·

(
JJ

ρ

)
−∇ · P + J ×B = 0 (3.33)

E + u× B =
meMi

e2ρ
[∂tJ + ∇ · (uJ + Ju)] − M

eρ
∇ · Pe +

Mi

eρ
(J × B) + ηJ. (3.34)

To close this system we need Maxwell’s equations

∇× E = −∂tB (3.35)
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∇×B =
1

c2
∂tE + µ0J (3.36)

∇ ·B = 0 (3.37)

∇ · E = 0 (3.38)

for the evolution of the electric and magnetic fields.∗ We will also disregard the dis-

placement current 1
c2

∂tE because its only relevant when plasma velocities approach c.

Finally, we will take the isothermal approximation for this work, so that the scalar part

of the pressure tensor is p = pi + pe = nkB(Te + Ti) = kBT
m

ρ where we have defined

T = Te + Ti.
† We will take the entire pressure tensor to be

P = pI − 2νρS. (3.39)

The off-diagonal parts of the pressure tensor are described by S. These off diagonal

components are generally included in resistive MHD in the form of an νρ∇2u term in the

momentum equation. In the Navier-Stokes equations S is non-zero when the distribution

function f departs from a Maxwellian. In any event, we adopt this form because this is

the form that will later arise from the Chapman-Enskog multi-scale expansion.

Next, we non-dimensionalize the equations derived in the last section and discuss

the regime referred to as MHD. Non-dimensionalization proceeds by replacing the fun-

damental quantities E, B, u, ρ with Ê, B̂, û, ρ̂ where

E = E0Ê (3.40)

B = B0B̂ (3.41)

u = u0û (3.42)

ρ = ρ0ρ̂. (3.43)

∗∇ · E = 0 because we have assumed the plasma is neutral. Also, the last two equations are
implied by the first two if they are satisfied by the initial conditions.

†We will continue to define c2
s ≡ kBT

m .



20

The subscripted quantities carry units, and thus the hatted variables are unitless. We

also rescale the domain over which these variables are defined by making similar substi-

tutions:

t = t0t̂ (3.44)

x = L0x̂. (3.45)

To preserve units, the following relationships between unit-ed quantities must hold:

E0 ≡ u0B0 (3.46)

u0 ≡ B0

µ0ρ0
(3.47)

t0 ≡ L0

u0

. (3.48)

In this process, the non-fundamental quantities such as P, J will also be renormalized

as follows:

p = P0p̂ and P = P0P̂ with P0 =
B2

0

µ0

(3.49)

J = J0Ĵ with J0 =
B0

µ0L0
. (3.50)

We begin by making these substitutions into Eq.(3.34) resulting in:

Ê + û× B̂ =

(
c/ωpe

L0

)2
1

ρ̂

[
∂t̂Ĵ + ∇ · (ûĴ + Ĵû)

]
(3.51)

−
(

c/ωpi

L0

)
1

ρ̂
∇ · P̂e

+

(
c/ωpi

L0

)
1

ρ̂
(Ĵ × B̂)

+

(
η

L0u0µ0

)
Ĵ
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where we have made use of the electon and ion plasma frequencies

ωpe =

√
n0e2

ε0me
(3.52)

ωpi =

√
n0e2

ε0Mi
. (3.53)

For ideal MHD, the entire RHS of Eq.(3.51) is assumed small. Keeping the last term

results in resistive MHD. Keeping the next to last term results in Hall MHD. For now,

we are interested in simulating regimes where all but the last term can be neglected,

resulting in:

Ê + û × B̂ =

(
η

L0u0µ0

)
Ĵ. (3.54)

Performing the same non-dimensionalization on Eq.(3.32), we get

∂t̂(ρ̂û) + ∇̂(ρ̂ûû) +

(
c/ωpe

L0

)2

∇̂ ·
(

ĴĴ

ρ̂

)
+ ∇̂p̂ −

(
ν

u0L0

)
∇̂ · (2ρ̂Ŝ) − Ĵ× B̂ = 0 (3.55)

where we will assume the third term is small for the same reason we assumed the first

term of Eq.(3.51) was small. Finally, for Eq.(3.31) non-dimensionalization gives:

∂t̂ρ̂ + ∇̂ · (ρ̂û) = 0. (3.56)

Non-dimensionalizing the two relevant Maxwell equations—having neglected the dis-

placement current—we get

∇̂ × Ê = −∂t̂B̂ (3.57)

∇̂ × B̂ = Ĵ (3.58)

In summary, the non-dimensionalized equations are, neglecting terms which are small

in the MHD regime we are examining,

∂t̂ρ̂ + ∇̂ · (ρ̂û) = 0 (3.59)
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∂t̂(ρ̂û) + ∇̂(ρ̂ûû) + ∇̂p̂ − Ĵ × B̂ =
(

ν

u0L0

)
∇̂ · (2ρ̂Ŝ) (3.60)

Ê + û× B̂ =

(
η

L0u0µ0

)
Ĵ (3.61)

∇̂ × Ê = −∂t̂B̂ (3.62)

∇̂ × B̂ = Ĵ. (3.63)

The reader may recognize the dimensionless Reynolds (Re) and magnetic Reynolds (Rm)

numbers in the above equations:

1

Re
=

ν

u0L0
(3.64)

1

Rm
=

η

L0u0µ0
. (3.65)

Using these definitions and eliminating E and J, we can rewrite the equations as:

∂tρ + ∇ · (ρu) = 0 (3.66)

∂t(ρu) + ∇(ρuu) + ∇p − (∇× B) ×B =
1

Re
∇̂ · (2ρ̂Ŝ) (3.67)

∇× (
1

Rm
∇× B − u ×B) = −∂tB (3.68)

where we have dropped the hats.

3.2 D3Q19 Lattice Kinetic Scheme

The next step is to develop a lattice Boltzmann scheme that will recover the equa-

tions derived in the previous section. Clearly the added complication over a purely

hydrodynamic system is that we must treat the magnetic field B in addition to the

fluid. In order to realize the main advantages of the lattice Boltzmann schemes outlined

in the introduction, we must treat the magnetic field analogously to the fluid fields; that

is, B must be recovered from the moment of some distribution function that evolves

according to a Boltzmann equation.



23

To get an idea of the type of distribution function we will need, lets begin by con-

sidering the ideal MHD equations. We use the condition that ∇ · B = 0 to rewrite the

MHD equations in conservative form:

∂tρ + ∇ · (ρu) = 0 (3.69)

∂t(ρu) + ∇ ·
[
ρuu +

(
p +

B2

2

)
I −BB

]
= 0 (3.70)

∂tB + ∇ · (uB −Bu) = 0 (3.71)

or, using tensor notation, ∗

∂tρ + ∂β(ρuα) = 0 (3.72)

∂t(ρuα) + ∂β

[
ρuαuβ +

(
p +

B2

2

)
δαβ − BαBβ

]
= 0 (3.73)

∂tBα + ∂β (uαBβ − Bαuβ) = 0. (3.74)

If we make the following definitions:

Παβ ≡ ρuαuβ +

(
p +

B2

2

)
δαβ − BαBβ (3.75)

Λαβ ≡ uαBβ − Bαuβ (3.76)

these equations can be written as

∂tρ + ∂β(ρuα) = 0 (3.77)

∂t(ρuα) + ∂βΠαβ = 0 (3.78)

∂tBα + ∂βΛαβ = 0. (3.79)

The expressions being operated on by the divergence operator are the momentum flux

(Παβ) and magnetic flux (Λαβ) tensors. For the fluid, the momentum flux tensor Παβ

∗Where repeated indices will imply summation unless otherwise noted.
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arises as the second moment of the distribution function f :

ρ = m
∫

fdv (3.80)

ρuα = m
∫

fvαdv (3.81)

Παβ = m
∫

fvαvβdv. (3.82)

Ideally, we would like to recover B and Λαβ from a similar hierarchy of moments of a

distribution function g

Bα
?
=

∫
gvαdv (3.83)

Λαβ
?
=

∫
gvαvβdv (3.84)

where now v is velocity of some fictitious particle whose existence is not physical but is

only used to model the induction MHD equation. A quick examination reveals that this

approach is bound to fail because the RHS of Eq.(3.84) is symmetric while the LHS,

given in Eq.(3.76), is anti-symmetric. Because Λαβ is anti-symmetric, we will have to

approach the magnetic field variables in a fundamentally different way from the fluid

variables.

There are two approaches to defining a set of distribution functions that allow the

recovery of B. One approach is through the bi-directional streaming model of Chen, et

al.[6]. This approach has many drawbacks relative to the method we use in the present

work. The primary disadvantage is that the resistivity η and viscosity ν cannot be set

independently[17]. A second approach, proposed by Dellar[9], recovers each component

of B from its own distribution function. The result is a vector-valued distribution

function gα where

Bα =
∫

gα(x,v, t)dv (3.85)

Λαβ =
∫

vαgβ(x,v, t)dv. (3.86)
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The hope is we can construct a g(eq)
α such that when gα evolves according to the standard

BGK Boltzmann equation

∂tgα + v · ∇gα =
gα − g(eq)

α

τm
(3.87)

we recover the appropriate macroscopic behavior for the magnetic field.

We proceed then with the goal of constructing the equilibrium distribution functions

F
(eq)
i and G

(eq)
αi such that when Fi and Gαi evolve according to

Fi(x + viδt, t + δt) =

[
1 − 1

τf

]
Fi(x, t) +

[
1

τf

]
F

(eq)
i (x, t) (3.88)

Gαi(x + viδt, t + δt) =

[
1 − 1

τg

]
Gαi(x, t) +

[
1

τg

]
G

(eq)
αi (x, t) (3.89)

we recover the correct macroscopic MHD equations. Recall that we can use the Chapman-

Enskog multi-scale expansion on these equations to get

[∂t0 + vi · ∇] F
(0)
i = −F

(1)
i

τf

(3.90)

∂t1F
(0)
i +

(
1 − 1

2τ

)
[∂t0 + vi · ∇] F

(1)
i = −F

(2)
i

τf
(3.91)

at the lowest two orders in ε. There is a corresponding set for Gαi. If we take the

moments of these two equations, we will recover the macroscopic equations that are

being solved by this numerical method. Taking the zeroth and first moments of the

lowest order equation in ε, we get

∂t0

∑
i

F
(0)
i +

∑
i

vi · ∇F
(0)
i = − 1

τf

∑
i

F
(1)
i (3.92)

∂t0

∑
i

viF
(0)
i +

∑
i

vivi · ∇F
(0)
i = − 1

τf

∑
i

F
(1)
i . (3.93)

The RHS of each of these is zero because of the way we constructed the Chapman-Enskog

expansion. We can also interchange the vi and ∇ because vi is a constant, getting:

∂t0

∑
i

F
(0)
i + ∇ ·∑

i

viF
(0)
i = 0 (3.94)
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∂t0

∑
i

viF
(0)
i + ∇ ·∑

i

viviF
(0)
i = 0 (3.95)

or

∂t0

∑
i

F
(0)
i + ∇ · (∑

i

viF
(0)
i ) = 0 (3.96)

∂t0(ρu) + ∇ · Π(0) = 0 (3.97)

with the definition

Π(n) ≡ ∑
i

viviF
(n)
i . (3.98)

Similarly for the magnetic field, consider the zeroth∗ moment of Eq.(3.90), which gives

∂t0

∑
i

G
(0)
αi +

∑
i

vi · ∇G
(0)
αi = − 1

τg

∑
i

G
(1)
αi (3.99)

which becomes

∂t0

∑
i

G
(0)
αi + ∇ ·∑

i

viG
(0)
αi = 0 (3.100)

or

∂t0

∑
i

G
(0)
αi + ∇ · Λ(0) = 0 (3.101)

using the definition

Λ(n) ≡ ∑
i

viG
(n)
i . (3.102)

Thus, to lowest order in ε, the discrete Lattice Boltzmann method is solving the following

equations:

∂t0

∑
i

F
(0)
i + ∇ · (∑

i

viF
(0)
i ) = 0 (3.103)

∂t0(
∑

i

viF
(0)
i ) + ∇ · Π(0) = 0 (3.104)

∂t0

∑
i

G
(0)
αi + ∇ · Λ(0) = 0. (3.105)

∗Only the zeroth moment of Eq.(3.90) is relevant for this analysis because B is only quantity
whose physical behavior we are interested in reproducing.
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If we go through a similar procedure on the Chapman-Enskog equation at the next

higher power in ε, we find that

∂t1

∑
i

F
(0)
i = 0 (3.106)

∂t1(
∑

i

viF
(0)
i ) + ∇ ·

(
1 − 1

2τf

)
Π(1) = 0 (3.107)

∂t1

∑
i

G
(0)
αi + ∇ ·

(
1 − 1

2τg

)
Λ(1) = 0. (3.108)

Summing the first and second order moment equations, and neglecting higher order

terms in ε, we get that:

∂t

∑
i

F
(0)
i + ∇ · (∑

i

viF
(0)
i ) = 0 (3.109)

∂t(
∑

i

viF
(0)
i ) + ∇ ·

[
Π(0) + δt

(
1 − 1

2τf

)
Π(1)

]
= O(δt2) (3.110)

∂t

∑
i

G
(0)
αi + ∇ ·

[
Λ(0) + δt

(
1 − 1

2τg

)
Λ(1)

]
= O(δt2). (3.111)

The goal then is to construct F
(0)
i and G

(0)
i so that

∑
i

F
(0)
i = ρ (3.112)

∑
i

viF
(0)
i = ρu (3.113)

∑
i

viviF
(0)
i ≡ Π(0) = ρuu +

(
p +

B2

2

)
I −BB (3.114)

∑
i

viG
(0)
i ≡ Λ(0) = uB − Bu (3.115)

and the viscous and resistive effects are reproduced by the Π(1) and Λ(1) terms. We will

find that we can successfully recover Π(0) and Λ(0), but that the Π(1) and Λ(1) terms

will have some spurious components.

At this point we must introduce an ansatz for our solution if we are to continue.

In order to introduce the ansatz, we need to also define our set of streaming vectors.
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For the present work we will use the following, D3Q19, set of streaming vectors for the

discretization of F

vi = v ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, ..., 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, ..., 18

(3.116)

and the D3Q7 set of streaming vectors for the discretization of G

vi = v ×
⎧⎪⎨
⎪⎩

(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, ..., 6 .
(3.117)

These choices are motivated by the need for sufficient isotropy to ensure the possibility

of satisfying Eqs.(3.114) and (3.115). Along with this velocity distribution, we must also

propose an ansatz for the form of the F (0) and G(0). For F (0) we propose the following

ansatz:

F
(0)
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A1 + B1u
2 + C1B

2 i = 0

A2 + B2u
2 + C2B

2 + D1(vi · u) + E1(vi · u)2 + F1(vi · B)2 i = 1, ..., 6

A3 + B3u
2 + C3B

2 + D2(vi · u) + E2(vi · u)2 + F2(vi · B)2 i = 7, ..., 18 .

(3.118)

As noted before, it is possible to arrive at an F
(0)
i which satisfies Eq.(3.114), modulo

the magnetic stress terms, and takes the form of the above ansatz by Taylor expand-

ing the Maxwellian in u/cs around u = 0. While this a priori approach is somehow

more satisfying the the ansatz approach, it does not always result in feasible numerical

schemes. For example, consider [8] wherein the author demonstrates that when a LBM

scheme for the shallow water equations is derived using such an a priori approach, the

resulting numerical method is unstable. He shows that an alternate formulation for the

equilibrium which is not the result of any a priori approach proves stable and accurate.

This fact casts doubt on the general utility of a priori approaches. Furthermore, in the
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case of G
(0)
i , there is no obvious physical interpretation for Gi. Thus, finding it in an a

priori way seems unlikely.

Before continuing, it will prove helpful to introduce the following definitions of the

rank-2 tensor L
(I)
αβ

L
(I)
αβ ≡ ∑

i∈I

viαviβ (3.119)

and the rank-4 tensor L
(I)
αβγδ

L
(I)
αβγδ ≡ ∑

i∈I

viαviβviγviδ. (3.120)

In the case of the D3Q19 and D3Q7 streaming vectors, these tensors have the following

values

L
(I)
αβ = v2 ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 I = 0

2δαβ I = 1, ..., 6

8δαβ I = 7, ..., 18

(3.121)

L
(I)
αβγδ = v4 ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 I = 0

2δαβγδ I = 1, ..., 6

4(∆αβγδ − δαβγδ) I = 7, ..., 18

(3.122)

where the symbol ∆αβγδ is introduced as shorthand for δαβδγδ + δαγδβδ + δαδδβγ. Also,

δαβγδ =

⎧⎪⎨
⎪⎩

1 if α = β = γ = δ

0 otherwise .
(3.123)

We also note that all odd rank tensors, such as
∑

i∈I viαviβviγ will be 0, e.g.

L
(I)
αβγ ≡ ∑

i∈I

viαviβviγ = v3 ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 I = 0

0 I = 1, ..., 6

0 I = 7, ..., 18

(3.124)
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because of the lattice symmetries.

To continue, we must impose on our ansatz for F
(0)
i the following conditions:

18∑
i=0

F
(0)
i = ρ (3.125)

18∑
i=0

viF
(0)
i = ρu (3.126)

18∑
i=0

viviF
(0)
i ≡ Π(0) = ρuu +

(
p +

B2

2

)
I − BB. (3.127)

Using our ansatz for F
(0)
i and the tensor definitions given above, the first requirement,

Eq.(3.125), can simplified as follows

18∑
i=0

F
(0)
i = (A1 + 6A2 + 12A3)

+ (C1 + 6C2 + 12C3) · B2 + (B1 + 6B2 + 12B3) · u2

+ (E1uαuβ + F1BαBβ) · L(1−6)
αβ + (E2uαuβ + F2BαBβ) · L(7−18)

αβ

= (A1 + 6A2 + 12A3)

+ (C1 + 6C2 + 12C3) · B2 + (B1 + 6B2 + 12B3) · u2

+ (E1uαuβ + F1BαBβ) · 2v2δαβ + (E2uαuβ + F2BαBβ) · 8v2δαβ

= (A1 + 6A2 + 12A3)

+ (C1 + 6C2 + 12C3) · B2 + (B1 + 6B2 + 12B3) · u2

+ (E1u
2 + F1B

2) · 2v2 + (E2u
2 + F2B

2) · 8v2 (3.128)

Collecting the coefficients of u2 and B2 we get:

18∑
i=0

F
(0)
i = (A1 + 6A2 + 12A3)

+ (B1 + 6B2 + 12B3 + 2v2E1 + 8v2E2) · u2

+ (C1 + 6C2 + 12C3 + 2v2F1 + 8v2F2) · B2. (3.129)
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Now, comparing this with the constraint in Eq.(3.125), it is evident that we need

A1 + 6A2 + 12A3 = ρ (3.130)

B1 + 6B2 + 12B3 + 2v2E1 + 8v2E2 = 0 (3.131)

C1 + 6C2 + 12C3 + 2v2F1 + 8v2F2 = 0 (3.132)

in order for this constraint to hold. Similarly, for Eq.(3.126) we get that

18∑
i=0

viF
(0)
i = D1uβL

(1−6)
αβ + D2uβL

(7−18)
αβ

= 2D1uβδαβv2 + 8D2uβδαβv2

= v2(2D1 + 8D2)uα (3.133)

Evidently, in order for Eq.(3.126) to hold, we need that

2D1v
2 + 8D2v

2 = ρ. (3.134)

Finally, for the constraint in Eq.(3.127) we get that

18∑
i=0

viviF
(0)
i = (2v2A2 + 8v2A3) · δαβ

+ (2v2B2 + 8v2A3) · u2δαβ + (2v2C2 + 8v2C3) · B2δαβ

+ (v4E1uγuδ + v4F1BγBδ) · 2δαβγδ

+ (v4E2uγuδ + v4F2BγBδ) · 4(∆αβγδ − δαβγδ)

= (2v2A2 + 8v2A3) · δαβ +

+ (2v2B2 + 8v2B3 + 4v4E2) · u2δαβ + (2v2C2 + 8v2C3 + 4v4F2) · B2δαβ

+
[
(2v4E1 − 4v4E2)uαuβ + (2v4F1 − 4v4F2)BαBβ

]
· δαβ

+ 8v4E2uαuβ + 8v4F2BαBβ . (3.135)

Thus, in order for Eq.(3.127) to hold, we need the following relationships among the
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coefficients:

2v2A2 + 8v2A3 = c2
sρ (3.136)

2v2B2 + 8v2B3 + 4v4E2 = 0 (3.137)

2v2C2 + 8v2C3 + 4v4F2 =
1

2
(3.138)

2v4E1 − 4v4E2 = 0 (3.139)

2v4F1 − 4v4F2 = 0 (3.140)

8v4E2 = ρ (3.141)

8v4F2 = −1. (3.142)

Thus far, we have found the constraints on the coefficients necessary for satisfying

Eqs.(3.125), (3.126), and (3.127); however, the set of constraints still does not uniquely

determine the coefficients. To continue, we now examine the Π(1) that results from our

ansatz:

Π(1) =
18∑
i=0

viviF
(1)
i (3.143)

which, using Eq.(3.90) can be written as

Π(1) = Π
(1)
αβ =

18∑
i=0

vivi

[
−τf (∂t0 + vi · ∇)F

(0)
i

]

= −τf

[
∂t0

18∑
i=0

viviF
(0)
i −∇ ·

18∑
i=0

viviviF
(0)
i

]

= −τf

[
∂t0Π

(0)
αβ + ∂γ

(
D1uδL

(1−6)
αβγδ + D2uδL

(7−18)
αβγδ

)]

which can be written, substituting the expression for Π
(0)
αβ , and making a few simplifica-

tions

− 1

τf
Π

(1)
αβ = ∂t0

[(
c2
sρ +

1

2
BγBγ

)
δαβ + ρuαuβ − BαBβ

]

+ ∂γ(4v
4D2uγ)δαβ + ∂α(4v4D2uβ) + ∂β(4v4D2uα)

− ∂α(2v4D1 − 4v4D2)uβδαβ . (3.144)
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For isotropy, we need the last term to be zero:

∂α(2v2D1 − 4v2D2)uβδαβ = 0 ⇒ 2v2D1 − 4v2D2 = 0 (3.145)

which, recalling Eq.(3.134), results in D1 = ρ
6v2 and D2 = ρ

12v2 . Using this, Π
(1)
αβ may be

written, after some substitutions, as

− 1

τf

Π
(1)
αβ = Bγ∂ηΛγηδαβ + Bα∂ηΛβη + Bβ∂ηΛαη

+

(
v2

3
− c2

s

)
∂γ(ρuγ)δαβ +

v2

3
∂α(ρuβ) +

v2

3
∂β(ρuα)

− uβ∂α(c2
sρ) − uα∂β(c2

sρ) − ∂γ(ρuαuβuγ) (3.146)

which can be further rearranged to

− 1

τf
Π

(1)
αβ = Bγ∂ηΛγηδαβ + Bα∂ηΛβη + Bβ∂ηΛαη

+
v2

3
ρ(∂αuβ + ∂βuα) − ∂γ(ρuαuβuγ)

+

(
v2

3
− c2

s

)
∂γ(ρuγ)δαβ +

(
v2

3
− c2

s

)
(uα∂βρ + uβ∂αρ). (3.147)

Looking at Eq.(3.147) we can see that the third term is the only term which we want

to be present if we are to recover a sensible strain tensor S. The presence of the other

extraneous terms must be dealt with. Clearly, if we take c2
s = v2

3
then we will eliminate

the last two terms. This gives another restriction on the A coefficients in our ansatz. The

first, second, third, and fifth terms cannot be so conveniently eliminated. If, however, we

imagine rescaling u by the sound speed cs, then ∂γ(ρuαuβuγ) is O(Ma3). As we discussed

previously, this term can be neglected for small mach number.

To address the first three terms, we note that they each contain a piece that of the

form Bγ∂η(uαBη − Bαuη). Now, rescaling u by the sound speed cs, and B by cs
√

ρ,

these terms are seen to be O(Maβ−1) were we have used that β = c2
s/c

2
a and ca ≡ B/

√
ρ.
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Thus, as Ma → 0 and β → ∞, these equations are consistent with the standard MHD

equations because the suprious terms go to zero faster than the physical terms in the

MHD equations. The scheme may therefore be said to be consistent with the MHD

equations in the high-β, low Mach number regime.∗

So far, we have found 12 equations relating the coefficients of our ansatz; however,

we have 16 unknowns if we count the sound speed cs as an unknown.∗ We need four

more equations in order to uniquely determine the system. Consider the following four

equations:

A1

A2

=
B1

B2

=
C1

C2

= 3
A2

A3

= 3
B2

B3

= χ. (3.148)

In the D2Q9 hydrodynamic case, imposing the analogous relations results in the stan-

dard D2Q9 equilibrium distribution discussed in the introduction [29]. Imposing these

restrictions here, the resultant equilibrium can be written:

F
(0)
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

12
12

ρ
[

1
3
− 1

2v2 u
2
]

i = 0

2
12

ρ
[

1
3
− 1

2v2 u
2 + 1

v2 (vi · u) + 3
v4 (vi · u)2 − 3

2v4 (vi · B)2
]

i = 1, ..., 6

1
12

ρ
[

1
3
− 1

2v2 u
2 + 1

v2 (vi · u) + 3
v4 (vi · u)2 − 3

2v4 (vi · B)2 + 3
2v2 B

2
]

i = 7, ..., 18

where χ = 2 and c2
s = v2

3
. Interestingly, the sound speed that results from these extra,

arbitrary, equations is precisely the one that cancels some of the extraneous terms in

Π(1). Going back to Eq.(3.110), we see that, in the Ma → 0 and β → ∞ limit, ρu is

evolving according to

∂t(ρu) + ∇ ·
[
Π − δtτf

(
1 − 1

2τf

)
2v2

3
ρS

]
= 0 (3.149)

∗The β of a plasma is defined as the ratio of the hydrodynamic pressure csρ to the magnetic
pressure B2/2.∗We could regard cs as an adjustable parameter; however, this results in very ugly solution for the
coefficients. It is convenient to exchange the free parameter cs for the free parameter χ defined
in Eq.(3.148).
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which is consistent with the MHD equations if we take

ν = δt
(
τf − 1

2

)
v2

3
. (3.150)

We turn our attention now to deriving an appropriate Gi. We use the following

ansatz

G
(0)
i =

⎧⎪⎨
⎪⎩

M1B
2 i = 0

M2B
2 + N1B(vi · u) + N2u(vi · B) i = 1, ..., 6

(3.151)

which is the simplest form capable of satisfying Eq.(3.115) [9]. In analogy with F
(0)
i , the

constraints that this equilibrium must satisfy to recover the MHD equations at lowest

order in the Chapman-Enskog expansion are

6∑
i=0

G
(0)
i = B (3.152)

6∑
i=0

viG
(0)
i ≡ Λ(0) = uB −Bu. (3.153)

The first of these constraints implies

6∑
i=0

G
(0)
i = (M1 + 6M2)B = B ⇒ M1 + 6M2 = 1. (3.154)

The second constraint,

6∑
i=0

viG
(0)
i = 2v2 [N1uB + N2Bu] = uB −Bu, (3.155)

implies that

N1 =
1

2v2
(3.156)

N2 = − 1

2v2
. (3.157)
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Evidently, we still have some freedom in our choice for M1 and M2. We make the choice

which results in

G
(0)
i =

⎧⎪⎨
⎪⎩

1
4
B2 i = 0

1
8
B2 + 1

2v2 [B(vi · u) − u(vi · B)] i = 1, ..., 6 .
(3.158)

We acknowledge that this choice is arbitrary. In [16], the author retains this flexibility

as an additional parameter for adjusting the resistivity. Futher work should be done to

determine the significance of this free parameter, if any. Examining Λ(2), for instance,

might reveal a rationale for setting M1 and M2. To recover the dissipative behavior for

B, we can derive Λ(1) in the same way we derived Π(1):

Λ(1) =
6∑

i=0

viG
(1)
i

=
6∑

i=0

vi

[
−τg(∂t0 + vi · ∇)G

(0)
i

]

= −τg

[
∂t0

6∑
i=0

viG
(0)
i + ∇ ·

6∑
i=0

viviG
(0)
i

]

= −τg

[
∂t0Λ0 +

v2

4
∇B

]
(3.159)

Expanding ∂t0Λ0, one finds a series of O(β− 3
2 ), O(Maβ−1), and O(Ma2β− 1

2 ) terms. We

can thus write Λ(1) as

Λ(1) = −τg
v2

4
∇B + O(β− 3

2 ) + O(Maβ−1) + O(Ma2β− 1
2 ). (3.160)

Going back to Eq.(3.111), we see that, neglecting the small extraneous terms in Λ(1) by

assuming high-β and low Mach number, B is evolving according to

∂tB + ∇ ·
[
Λ(0) − δtτg

(
1 − 1

2τg

)
v2

4
∇B

]
= 0 (3.161)

which is consistent with the MHD induction equation if we take

η = δt
(
τg − 1

2

)
v2

4
. (3.162)



Chapter 4

Multi-Block Refinement Scheme

One way of improving the performance of numerical schemes involving discrete grids

is to concentrate grid points—and thus computational effort—in areas of localized small

scale structure. Recently there has been work on developing schemes that allow such

refinement in the context of lattice Boltzmann methods [21] [12] [11] [16]. The most well-

known scheme, described in [12], outlines a “multi-block” strategy for spatial domain

decomposition in LBMs. In this method, one divides the spatial domain into a set of

blocks Bi, each of which can have a different spatial resolution δxi. One restriction with

this method is that grid cells in a block have dimensions that are integer multiples of

the grid cell dimensions in all neighboring blocks.

The blocks in this scheme propagate the density functions Fi across their interfaces

during the streaming step of the LBM algorithm. In order for the values of the field

variables and stress tensors to be consistent on the different blocks, we must transform

the densities Fi appropriately. Also, in order to ensure that the physical values of the

viscosity ν and resistivity η are constant across the entire domain, we must tune the

relaxation parameter τ in each block. We discuss the consequences of these requirements

and the resulting scheme below.

4.1 Maintaining ν and η

If we have a computational domain which has been subdivided into blocks, we would

generally like to ensure that the physical value of the viscosity and resistivity is the same

for each block. Consider two blocks: one has a coarse spacing δxc, and one has a fine

spacing δxf . Recall that the Chapman-Enskog expansion shows that the physical value

of the viscosity ν can be written as a function of the dimensionless relaxation parameter

37
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τ and the time step δt. Indeed, for a general LBM method, ν will take the form

ν = α(τ − 1

2
)δt = α(τ − 1

2
)
δx

v
(4.1)

where α is a constant related to the lattice structure. The value of the viscosity in each

of our blocks is then

νc =
α

v
(τc − 1

2
)δxc (4.2)

νf =
α

v
(τf − 1

2
)δxf (4.3)

assuming the blocks use the same set of streaming vectors. Now, if these two blocks are

each part of some larger simulation domain, we would generally want νc = νf , which

implies that, using Eqs.(4.2) and (4.3),

τf =
δxc

δxf

(
τc − 1

2

)
+

1

2
. (4.4)

A similar line of reasoning results in the same condition for preserving constant resistivity

η. Thus, if the relaxation parameters for F and G both sastify Eq.(4.4), then νc = νf

and ηc = ηf .

4.2 Block Interface Propagation

The other condition that we would like to enforce involves the propagation of in-

formation between grids. Consider again two grids, one with a coarse spacing δxc and

one with a fine spacing δxf . We will denote the density functions on these grids as

F
(c)
i and F

(f)
i , respectively. Consider spliting F

(c)
i and F

(f)
i into their equilibrium and

non-equilibrium parts:

F
(c)
i = F

(c,0)
i +

[ ∞∑
n=1

εnF
(c,n)
i

]
= F

(c,0)
i + [F

(c,neq)
i ] (4.5)

F
(f)
i = F

(f,0)
i +

[ ∞∑
n=1

εnF
(f,n)
i

]
= F

(f,0)
i + [F

(f,neq)
i ]. (4.6)
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Using the lattice BGK equation, one can show that, denoting Fi(x, t + δt) as F̃i the

following transformations are necessary to preserve the continuity of the stress tensors

and field variables across the interface:

F̃
(c)
i = F

(f,0)
i + m

τc − 1

τf − 1

[
F̃

(f)
i − F

(f,0)
i

]
(4.7)

F̃
(f)
i = F

(c,0)
i +

1

m

τf − 1

τc − 1

[
F̃

(c)
i − F

(c,0)
i

]
(4.8)

where m ≡ δxc/δxf [12]. These are the equations we will use to transform densities at the

block interfaces. More recently, some authors have proposed other ways of transforming

the density function F at the interface [11]. For a detailed description of how the

algorithm proceeds, we refer the reader to [21]. Here we give a brief description to bring

up a few key points.

Imagine dividing the plane along a straight line into two blocks, one block with cells

twice the width of the other block. These two blocks will overlap by a single coarse cell

width. At t = 0, the coarse grid is advanced a single time step to reach t = 1.0. Next,

the fine grid will be advanced by two time steps. The first brings it to t = 0.5, and

the second brings it to t = 1.0. We need two steps since δx = vδt: halving the cell size

implies halving the time step. Now, for the first time step, the fine grid does not need

any information from the coarse grid because it has the necessary boundary conditions

from the initial conditions; however, for the second time step from t = 0.5 to t = 1.0, the

values of the incoming distribution functions will need to be supplied from the coarse

grid. To do this we must interpolate between the coarse grid solution at t = 0 and t = 1.

Not only must we interpolate temporally, we must interpolate spatially to recover the

values of the intermediate fine grid points. In the spirit of preserving the spatial locality

of the scheme, we choose to interpolate linearly in space. In [12], the authors use a cubic

spline for the spatial interpolation. Using a cubic spline for the interpolation negates

the locality of the lattice Boltzmann scheme, and we thus choose to avoid it. In time we
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interpolate linearly for the first time step and quadratically thereafter using what would

in this case would be t = −1, t = 0 and t = 1.



Chapter 5

Validation

In this chapter we present a series of numerical tests. The purpose of these will be to

verify some basic features of the lattice kinetic scheme we have developed. To test the

multi-block refinement scheme, we also present a comparison between what we will call

the single-block and dual-block cases. The single-block case is merely the lattice kinetic

scheme we have derived earlier without multi-block refinement. In the dual-block case

we have divided the domain into two equal sized blocks along the line x = 0.5. On one

half, we have refined the grids cell to be half the width of the cells on the other side of the

interface. We use the scheme described in the last chapter to propagate the distribution

functions across the boundary. For all tests, we use a periodic box. All simulations are

done on an Intel architecture in double precision. The code is written in Fortran90.

First we test for the proper reproduction of the linear MHD magnetosonic and shear

Alfven modes. In the case of the Alfven waves, we verify that both the real and imaginary

parts of the dispersion relation are correctly reproduced. We also verify the second order

convergence in δx—or equivalently δt—for the Alfven waves. We then proceed to the

non-linear Orszag-Tang problem [18]. For this problem, we will focus our attention on

the scheme’s convergence properties in the single-block and dual-blocks cases. We also

examine the preservation of ∇ · B and verify conservation of mass.

Before proceeding to these tests, we present a derivation of the linear MHD eigen-

modes. Such a derivation can be found in many texts, e.g. [26]. We favor the derivation

in [22] as unusually transparent and use it as the motivation for what is presented here.

5.1 MHD Eigenmodes

We present here a derivation of the linear MHD eigenmodes which we will then

verify the code reproduces. We begin with the standard ideal MHD equations derived

41
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previously:

∂tρ + ∇ · (ρu) = 0 (5.1)

∂t(ρu) + ∇(ρuu) + ∇p − (∇× B) × B = 0 (5.2)

∂tB −∇× (u× B) = 0. (5.3)

We begin by looking for solutions which are small perturbations to some background

density ρ0 and magnetic field B0. To do this, we make the following substitutions:

ρ = ρ0 + ρ̃ (5.4)

B = B0 + B̃ (5.5)

u = 0 + ũ (5.6)

where we take B̃ � B0 and ρ̃ � ρ0. Making these substitutions and dropping terms

that are the product of two or more small quantities, we get the following linearized set

of ideal MHD equations:

∂tρ̃ + ρ0∇ · ũ = 0 (5.7)

ρ0∂tũ + c2
s∇ρ̃ − (∇× B̃) × B0 = 0 (5.8)

∂tB̃ −∇× (ũ× B0) = 0 (5.9)

where we have used the iso-thermal closure discussed earlier. To find the wave-like

solutions, we assume the perturbations take the following form:

ρ̃ = ρ̃ei(k·x−ωt) (5.10)

B̃ = B̃ei(k·x−ωt) (5.11)

ũ = ũei(k·x−ωt). (5.12)
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Making these substitutions into the linearized equations, we get the following:

ωρ̃ − ρ0(k · ũ) = 0 (5.13)

ωρ0ũ− c2
skρ̃ + (k × B̃) ×B0 = 0 (5.14)

ωB̃ + k × (ũ ×B0) = 0. (5.15)

If we eliminate B̃ and ρ̃ from this system, the result is:

[
ω2 − (k · B0)

2

ρ0

]
ũ−

[(
c2
s +

B2
0

ρ0

)
k − k · B0

ρ0
B0

]
(k · ũ)+

(ũ · B0)(k · B0)

ρ0
k = 0. (5.16)

This can be written as

Aũ = 0 (5.17)

with

A =

⎛
⎜⎜⎜⎜⎜⎝

ω2 − k2c2
A − k2c2

s sin2 θ 0 −k2c2
s sin θ cos θ

0 ω2 − k2c2
a cos2 θ 0

−k2c2
s sin θ cos θ 0 ω2 − k2c2

s sin2 θ

⎞
⎟⎟⎟⎟⎟⎠ (5.18)

by taking B0 = B0ẑ and ky = 0 (i.e., that k lies in the x, z plane). We use θ as the

angle between B0 and k, and define the Alfven speed c2
a ≡ B2

0

ρ0
. These assumptions only

serve to define the coordinates of any physical problem, they do not restrict the class of

solutions supported by Eq.(5.16).

We find solutions to Eq.(5.17) by setting detA = 0 and solving the resulting char-

acteristic equation for ω. This results in the following solutions for ω:

ω = kca (alfven wave) (5.19)

ω = kcmf
(fast magnetosonic wave) (5.20)

ω = kcms (slow magnetosonic wave). (5.21)
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where

c2
mf

=
1

2

[
c2
a + c2

s +
√

c4
a + c4

s − 2c2
ac

2
s cos 2θ

]
(5.22)

c2
ms

=
1

2

[
c2
a + c2

s −
√

c4
a + c4

s − 2c2
ac

2
s cos 2θ

]
. (5.23)

The un-normalized eigenvectors ũ corresponding to these waves are

ũa =

⎛
⎜⎜⎜⎜⎜⎝

0

1

0

⎞
⎟⎟⎟⎟⎟⎠ (5.24)

ũmf
=

⎛
⎜⎜⎜⎜⎜⎝

c2a−c2s cos 2θ+
√

c4a+c4s−2c2ac2s cos 2θ

c2s sin 2θ

0

1

⎞
⎟⎟⎟⎟⎟⎠ (5.25)

ũms =

⎛
⎜⎜⎜⎜⎜⎝

c2a−c2s cos 2θ−
√

c4a+c4s−2c2ac2s cos 2θ

c2s sin 2θ

0

1

⎞
⎟⎟⎟⎟⎟⎠ . (5.26)

We can compute the corresponding perturbations to B0 and ρ0 by going back to Eqs.(5.13)

and Eq.(5.15).

5.2 Alfven Dispersion

In this section we examine the evolution of Alfven waves in the code. First, we test

that the real part of the dispersion relation ω = cak is properly reproduced by the code.

To test this, we setup the Alfven velocity and magnetic perturbations for a traveling—as

opposed to standing—Alfven wave. We begin by setting k ‖ B and aligning both with

the grid so that

B = (Bx, By, Bz) = (B0, 0, B̃z cos(2πx)) (5.27)

where we use B̃z/B0 = 1000. We then recover the effective ω of the code using a least

squares fit to the code output, as shown in Fig. 5.1. We vary the magnitude of k and
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plot the results in Fig. 5.2.∗ Fig. 5.3 shows the relative error in the wave period. The

grid-scale Alfven wave shows a relative error in period of about 15 percent. At 16 grid

points per wavelength, this error is about one part in 1000. As Fig. 5.3 shows, this

relative error decreases as the square of the number of grid points per wavelength. This

suggests that the real part of the Alfven dispersion is being properly reproduced by the

numerical scheme.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

T

B
z(x

=
0,

y=
0)

code output
fit result

Figure 5.1 A normalized Bz at (x, y) = (0, 0) as a function of time in one of the test cases.
A least-squares fit to this curve recovers the real and imaginary components of the dispersion
produced by the code. This fit is typical, showing good agreement with the code output.

For the dual-block case, we present figures showing the propagation of this Alfven

wave across the block interface. For this case, we set very low resistivity and viscosity,

η = ν = 10−6. Fig. 5.4 shows the case when λ = 4 coarse grid cells. Although the case

with λ = 4 shows that the wave has become deformed after one period of propagation,

the case for λ = 8 in Fig. 5.5 and λ = 16 in Fig. 5.6 show almost no deformation.

Furthermore, the stability of the code for this linear problem even with very small η and

∗We use the wave period T = 2π
ω and λ = 2π

k as the plotting variables because their units are
more natural.
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Figure 5.2 Alfven dispersion (real part) for k ‖ B0. k and B0 that are aligned with the
grid, and ‖B0‖ = 0.1 giving β ≈ 30.

ν is encouraging: the interface does not appear to be introducing any instability into the

scheme. These plots are only motivational. A more convincing test would be to show

that the dual-block solution is converging to the single-block solution. We will do this

later for a different type of Alfven wave.

We also test the imaginary part of the Alfven dispersion on the single-block. The

dispersion relation for an Alfven wave propagating parallel to the background magnetic

field with wave-number magnitude k is

(ω − iηk2)(ω − iνk2) = c2
ak

2 (5.28)

which reduces to

ω = cak + iηk2 (5.29)

when ν = η. Now, recall from the Chapman-Enskog expansion that η and ν are functions

of the relaxation parameters τg and τf , respectively. Thus, we test the code for a range

of η by varying the relaxation parameter τg (keeping η = ν so that Eq.(5.29) applies).

We recover an estimate of the imaginary part of ω by doing a least-squares fit to the
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Figure 5.3 Alfven wave dispersion error. The fitted line has slope −2.1.

code output as before. The results are shown in Fig. 5.7. The imaginary part of the

dispersion seems to be in good agreement with the predictions from Chapman-Enskog

expansion for the tested range of .001 < τg − 0.5 < .2.

We next examine the convergence rate of the scheme in δx (or equivalently δt because

they are linearly related in the LBM). In this test we propagate an Alfven wave at an

a angle of π
4

with respect to the grid. First, to obtain an effectively exact solution, we

propagate the wave for 4 periods on a 256x256 grid. Solutions are then computed on

a series of smaller grids: 8x8, 16x16, 32x32, 64x64, and 128x128. We downsample B

in each solution onto an 8x8 grid, and compute the 2-norm of the difference between it

and the B from the 256x256 solution. The results of this procedure are shown in Fig.

5.8. These error values show a convergence rate of -2.08, which is consistent with the

second-order rate of convergence we expect.

Fig. 5.9 shows the same result for the dual-block case. In this case, a value of Nx = 32

means that the height and width of the entire domain is 32 coarse-sized grid cells (recall

that one half of the domain has been refined). The errors are computed with respect to

the 256x256 solution on the single-block after appropriate downsampling. In this case
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the convergence rate is 1.85. This is again consistent with the expected second-order

convergence rate, although slightly less that we might hope. We will discuss a possible

explanation for this later. The fact that the dual-block solution is converging to the

single-block solution suggests that the multi-block scheme is working successfully.
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Figure 5.4 Bz(x, y = 0)/B̃z at a series of times for an Alfven wave propagation across—
and perpendicular to—the boundary between the coarse and fine blocks. Here, λ = 4 grid
points. The period of the oscillation for this wave is 10. For this run, η = ν = 10−6.
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Figure 5.5 Bz(x, y = 0)/B̃z at a series of times for an Alfven wave propagation across—
and perpendicular to—the boundary between the coarse and fine blocks. Here, λ = 8 grid
points. The period of the oscillation for this wave is 10. For this run, η = ν = 10−6.
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Figure 5.6 Bz(x, y = 0)/B̃z at a series of times for an Alfven wave propagation across—
and perpendicular to—the boundary between the coarse and fine blocks. Here, λ = 16 grid
points. The period of the oscillation for this wave is 10. For this run, η = ν = 10−6.
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Figure 5.7 Alfven dispersion (imaginary part) for k ‖ B0. We use a k and B0 that are
aligned with the grid, and ‖B0‖ = 0.1.
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which in consistent with second order convergence in δx.
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5.3 Magnetosonic Dispersion

In this section, we test for the proper reproduction of magnetosonic waves. As before,

we setup the field perturbations, this time for a traveling magnetosonic wave. We test

fast magnetosonic waves with k ⊥ B0 and k ‖ B0.

Before proceeding with the test results, we say a few qualitative words about a

possible problem with the stability of the fast magnetosonic waves. Recall that linear

stability analysis of numerical schemes for hyperbolic systems requires that the CFL

condition

β
δx

δt
> c (5.30)

be satisfied for stability. Here, c is the speed of the fastest wave supported by the

hyperbolic system, and β is some constant that depends on the numerical scheme. In

the case of sound waves in the D3Q19 LBM, this constraint means

β
δx

δt
> cs =

v√
3

=
1√
3

δx

δt
, (5.31)

where we have used that cs = v√
3

for consistency with the Navier-Stokes equations, and

that v = δx
δt

in order for the streaming step to align with the spatial grid.∗ Now, in the

case of the fast magnetosonic waves in the LBM, the CFL stability condition implies

that, for the fastest magnetosonic wave (i.e. when k ⊥ B0),

β
δx

δt
> cmf

=
[
c2
s + c2

a

] 1
2 =

⎡
⎣1

3

(
δx

δt

)2

+
B2

ρ

⎤
⎦

1
2

. (5.32)

Evidently, for a large enough Alfven speed ca, the CFL condition will be violated. In

standard finite difference schemes one can solve this problem merely by decreasing the

time step δt to satisfy the CFL condition; however, in this case, because we have required

cs = v√
3

and v = δx
δt

, decreasing δt will not help satisfy Eq.(5.32).

∗Recall that v is the length of the streaming vector.
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Another way of mitigating this problem when the CFL condition is weakly violated

is to increase the viscosity and resistivity to dampen any unstable modes. What we

found while performing the following tests was that the magnetosonic waves were sta-

ble for τf , τg > 0.5025 when ‖B0‖ = 0.1; however, contrast this with our observation

that the Alfven waves were stable for τf , τg > 0.5 + 10−5, corresponding to a viscosity

and resistivity orders of magnitude lower. We did find that relaxing the requirement

cs = v√
3
—which has the side-effect of reintroducing more spurious terms into Π(1)—can

stabilize the magnetosonic wave down to τf , τg > 0.5 + 10−5 if we adjust cs indepen-

dently of v. Even with this modification, though, the non-linear Orszag-Tang problem

still required τg, τf ≈ 0.6 for stability at moderate Reynolds numbers. This apparent

incompatibility between the fast magnetosonic wave stability and the pillars of the LBM

derivation (i.e. particles moving with finite, fixed velocity) is something that should be

examined in detail if the LBM is to be of wider use for MHD problems.

The results of the fast magnetosonic wave test indicate that fast magnetosonic waves

with both k ⊥ B0 and k ‖ B0 are being properly reproduced. Fig. 5.10 and Fig.5.11

show the results of extracting the real part of ω using a least-squares fit to the code

output. Fig. 5.12 shows the dispersion error for k ⊥ B0. A similar convergence rate

was seen for k ‖ B0, again showing good convergence as there are more points per

wavelength. The only caveat to this result is that, for ‖B0‖ = 0.1, we needed to keep

τf , τg > .5025 for stability, whereas with the Alfven waves we found the scheme stable

for a much smaller values of τf , τg. In any case, for the non-linear Orszag-Tang problem

discussed in the next section, we found that we needed τf , τg > .6 to maintain stability

at moderate Reynolds numbers.
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Figure 5.10 Fast magnetosonic dispersion for k ⊥ B0. k and B0 are aligned with the grid,
and ‖B0‖ = 0.1.
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Figure 5.11 Fast magenetosonic dispersion for k ‖ B0. k and B0 are aligned with the
grid, and ‖B0‖ = 0.1.
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Figure 5.12 Fast magnetosonic dispersion error for k ⊥ B0. The fitted line has slope
−2.0.



58

5.4 Orszag-Tang Problem

We now perform a more stringent, non-linear, test on the code. We examine the

behavior of the single-block and dual-block cases for the following initial conditions [18]:

B =
B0

2
(ẑ ×∇ψ) with ψ = 2 cos(2πx) − cos(4πy) (5.33)

u =
u0

2
(ẑ ×∇φ) with φ = 2(cos(2πx) − sin(2πy)) (5.34)

over the domain 0 < x, y < 1. We choose these initial conditions, due to Orszag and

Tang, because they give rise to many of the features of turbulent plasma flow. They

are a popular choice for code validation exercises [18]. In [9], the author shows that

solutions from a lattice kinetic scheme similar to one derived here converge to solutions

computed using a spectral code. The primary purpose for this exercise is to show that

the dual-block algorithm converges to the solution computed on the single-block. For

what follows, we use B0 = 0.2, and u0 = 0.2, with η = ν = .004. This results in magnetic

and flow Reynolds numbers of about 50. The Mach number based on peak flow speed

is about 1
3
, and β ≈ 10. ∗

Figures 5.13, 5.14, and 5.15 show the evolution of By on 16x16, 32x32, and 64x64

single-block grids. The solution is clearly converging. If we downsample these By so-

lutions at T = 2 onto an 8x8 grid and compute the difference between this and the

256x256 solution, we get the plot given in Fig. 5.20. These errors show a convergence

rate of 2.1, which is consistent with the second order rate of convergence we expect.

Figures 5.16, 5.17, and 5.18 show the evolution of By on 16x16, 32x32, and 64x64

dual-block grids. Again, we note that the solution is clearly converging as we decrease

the grid spacing. We again compute errors with respect to the 256x256 single-block

solution, and find a convergence rate of 1.75 as shown in Fig. 5.21. This convergence

rate is somewhat less than predicted and requires an explanation.

∗We are constrained to such a low Reynolds number here by our need for the scheme to be stable
on the 8x8 grid. On the 256x256 grid, we can achieve Reynolds numbers of about 500.
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The author believes this loss in global convergence rate might be explained by use of

linear spatial interpolation in moving F and G from the coarse block to the fine block.

Recall that when the distribution functions are propagated from the coarse block to the

fine block, we must interpolate to recover values on the intermediate fine block nodes.

Because we have adopted a linear interpolation, this will limit the rate at which the

solution can converge along the interface. This will in turn hurt the global convergence

rate. Note as well that the convergence rate of the linear Alfven wave on the dual-

block was also somewhat less than 2.0. Further investigation is needed to determine

if these lower convergence rates are due to the interpolation schemes; however, with a

convergence rate of 1.75 it is fair to say that the multi-block algorithm is still performing

well.

As further evidence, we present in Fig.(5.19) a dual-block run where the fine grid

has been refined by a factor of 10 with respect to the coarse grid. We use the same

paramters as before in this run. The fact that the code is well-behaved even for such

a large refinment ratio in the presence of non-linear flows is more evidence that this

scheme is working well.

We next examine the extent to which ∇ · B = 0 is maintained. In Fig. 5.22, we

plot the ratio of the max |∇ ·B| to the max |∇ ×B|∗ for the single-block as a measure

of how well ∇ · B = 0 is preserved. The plot shows that this ratio decreases as the

resolution increases, suggesting that ∇·B = 0 is being preserved up to truncation error.

In Fig. 5.23, we show the same plot for the dual-grid case. This plot shows the same

qualitative behavior, suggesting that in the dual-grid we are also preserving ∇ · B = 0

up to truncation error. In each case we compute the the divergence and curl using a

second-order finite difference approximation.

Finally, we test that mass is being conserved in the single-block and dual-block cases.

In the single-block case, we directly compute the conservation by taking the integral of

∗These maxes are taken over the entire domain.
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ρ(t) over the domain and subtracting the value of the integral at t = 0. Fig. 5.24

shows the results of this procedure for a number of different resolutions. We expect this

conservation to be satisfied to near round-off error, which in double precision on an Intel

architecture is about 10−15. The figure supports this; however, we note some strange

behavior as we vary the size of the grid. Curiously, it appears that a 64x64 grid shows

better mass conservation than either an 8x8 grid or a 256x256 grid. We have no a priori

reason to expect such behavior. In any event, the conservation is clearly satisfactory:

while the variations in the density field in this problem are O(10−1), the departure from

true conservation is at most O(10−14), nearly machine round-off.

In the dual-block case we do not expect mass to be absolutely conserved because of

the interpolation scheme used to translate F from the coarse to fine grids. What we can

show, however, is that the solution for ρ computed on the dual-block is converging to the

solution computed on the single-block. This is precisely what Fig. 5.25 demonstrates.

The order of convergence here is 1.88. We thus conclude that mass, while not being

absolutely conserved as in the dual-block case, is being consistently conserved.
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Figure 5.13 Time evolution of By for the Orszag-Tang problem on a 16x16 single-block,
Re = Rm = 50.
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Figure 5.14 Time evolution of By for the Orszag-Tang problem on a 32x32 single-block,
Re = Rm = 50.
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Figure 5.15 Time evolution of By for the Orszag-Tang problem on a 64x64 single-block,
Re = Rm = 50.
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Figure 5.16 Comparison of dual-block(left) and single-block(right) time evolution of By

for the Orszag-Tang problem on a 16x16 block, Re = Rm = 50.
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Figure 5.17 Comparison of dual-block(left) and single-block(right) time evolution of By

for the Orszag-Tang problem on a 32x32 block, Re = Rm = 50.
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Figure 5.18 Comparison of dual-block(left) and single-block(right) time evolution of By

for the Orszag-Tang problem on a 64x64 block, Re = Rm = 50.
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Figure 5.19 Time evolution of By for the Orszag-Tang problem on a 32x32 dual-block
with 10x refinement on left, Re = Rm = 50.
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Chapter 6

Conclusions

We have developed a lattice kinetic scheme for the 3D resistive MHD equations.

The Chapman-Enskog procedure reveals that the scheme is consistent with the MHD

equations only in the low-Mach, high-β regime because of spurious terms in Π(1) and

Λ(1). The scheme is found to correctly reproduce both the magnetosonic and Alfven

waves. The scheme also showed the expected second-order convergence in δx on both

the linear Alfven wave and the non-linear Orszag-Tang problem. One issue that remains

to be resolved is the method’s relatively poor stability at high Reynolds numbers—a

problem that is inherent to LBMs in general[9].

Another unwelcome feature of MHD lattice kinetic schemes is the apparent incom-

patibility of the fast magnetosonic waves and the CFL stability requirement. While it

may be possible to fix this problem by adjusting the sound speed independently of the

streaming vector length, this approach leads to the re-introduction of extra spurious

terms in the viscous part of the stress tensor. In any case, our numerical experiments

show that this approach does not help with stability in the non-linear Orszag-Tang prob-

lem. More work needs to be done to investigate how to reconcile the fast magnetosonic

wave with the CFL stability requirement and to improve the stability of lattice kinetic

schemes in general.

One approach to solving these stability issues present in all lattice kinetic schemes

is to develop an equilibrium function that satisfies a discrete version of Boltzmann’s H

theorem. Such methods are unconditionally stable, meaning Reynolds numbers would be

limited only by the available resolution. Unfortunately, it has recently been shown that

polynomial equilibria—like the one used in this work—cannot satisfy an H theorem [20];

however, some authors have developed entropy methods for the Navier-Stokes equations

[2]. These schemes generally require the solution of a non-linear system at each point
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in space at each time step to evolve the system. The cost of computing this solution

can obviously be prohibitive; however, there is still hope because even these methods

preserve the locality that makes the LBM so attractive. Developing a practical entropy

scheme for MHD that is unconditionally stable would give the LBM a great advantage

over other existing schemes.

Finally, we conclude that the multi-block refinement scheme in [12] can be success-

fully applied to this lattice kinetic scheme in a pseudo-3D context. All but grid-scale

Alfven and magnetosonic waves are shown to propagate well across the boundary in-

terface. The convergence rates obtained with a boundary interface in the domain are

slightly lower than the second-order convergence seen without the interface. More in-

vestigation is required on this topic to determine the effects of the interpolation schemes

on convergence rate. As we discussed before, the linear interpolation scheme used to

propagate information from the coarse to fine grids limits the rate of convergence along

the interface. Overall though, the multi-block refinement scheme proposed in [12] seems

to work well in this context.



Appendix A

Transport Coefficients

In the process of constructing the lattice kinetic scheme for MHD, we found—

through successive application of Taylor and multi-scale expansions to the lattice BGK

equation—a relationship between the physical transport coefficients η and ν (as they

appear in the MHD equations), and the relaxation parameters τg and τf :

ν = δt
(
τf − 1

2

)
v2

3
(A.1)

η = δt
(
τg − 1

2

)
v2

4
. (A.2)

The interpretation given in the body of this thesis is that for a certain τg and τf , we

recover the MHD equations with η and ν given above. If one considers that τg and τf

are free parameters, it becomes clear that the inverses of Eqs.(A.1) and (A.2)

τf = ν
(

1

2
+

3

v2δt

)
(A.3)

τg = η
(

1

2
+

4

v2δt

)
(A.4)

can be used to set τg and τf to recover a desired η and ν. In this sense, the free parameters

τg and τf can be exchanged for η and ν. It should be emphasized that Eqs.(A.1) and

(A.2) are dependent on the equilibirium distribution.
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