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Human gait is a spatio-temporal phenomenon that characterizes the motion
characteristics of an individual. It is possible to detect and measure gait even
in low-resolution video. This makes it an attractive modality in surveillance
applications, where it is often difficult to get face or iris information at high
enough resolution for recognition applications. Psychophysical studies indicate
that humans have the capability for recognizing people from even impoverished
displays of gait, indicating the presence of identity information. From early
medical studies it appears that there are twenty four different components to
human gait, and that if all the measurements are considered, gait is unique. It
is interesting, therefore, to study the utility of gait as a biometric. The goal
of this thesis is to investigate the information contained in the video sequences
of human gait and how to extract and exploit that information in ways that

facilitate human identification.



In our work, we present both deterministic and stochastic approaches for gait
recognition. Human identification using gait, similar to text-based speaker iden-
tification, involves different individuals performing the same task and a template-
matching approach is suitable for such problems. In situations where the amount
of training data is limited, we show the utility of a simple feature viz. the width
of the outer contour of the binarized silhouette of the subject and its derivatives
for gait recognition in a dynamic time warping framework. By virtue of their
deterministic nature, template matching methods have limited noise resilience.
A careful analysis of gait would reveal that it has two important components.
The first is a structural component that captures the physical build of a person
while the second is the motion kinematics of the body during a gait cycle. We
propose a systematic approach to gait recognition by building representations
for the structural and dynamic components of gait using exemplars and hidden
Markov models (HMMs). The stochastic nature of the HMM yields better noise
resilience than the template matching technique. To recognize a person walking
at a large distance, humans try to combine information such as posture, arm/leg
swing, hip/upper body sway or some unique movements that are characteristic
of that person. We demonstrate the same effect through fusion of different dy-
namic and static gait features in both determinisitic and stochastic frameworks.
Most gait recognition algorithms rely on the availability of an exact side view
in the probe. However, it is not realistic to expect that this assumption will be
valid in most real-life scenarios. We present a view invariant gait recognition al-
gorithm which is based on synthesizing a side view of a person from an arbitrary
monocular view. The method is based on the planar approximation of a person

that is valid when human identification at a distance is desired.
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Chapter 1

Introduction

Automated person identification is an important component of surveillance. An
effective approach to person identification is to reduce it to the problem of iden-
tifying physical characteristics of the person. This method of identification of
persons based on his/her physiological /behavioral characteristics is called bio-
metrics. The primary advantage of biometric identification over the methods of
identification utilizing “something you possess” or “something that you know”
approach is that biometrics cannot be misplaced or forgotten; it represents a
tangible component of “something that you are”. Established biometric meth-
ods range from fingerprint and hand-geometry techniques to more sophisticated
methods based on face recognition and iris identification. Unfortunately, no
single biometric is perfect or complete. Fingerprints and hand-geometry are re-
liable but require physical contact. Although, signatures based on face and iris
are non-intrusive in nature, the applicability of all these methodologies is re-
stricted to very controlled environments. In fact, current technology is capable
of recognizing mostly frontal faces. At the time of writing, iris recognition is
being attempted at distances of not more than five meters.

When person identification is attempted in natural settings such as those



arising in surveillance applications, it takes on a new dimension. Biometrics
such as fingerprint or iris are no longer applicable. Furthermore, night vision
capability (an important component in surveillance) is usually not possible with
these biometrics. Even though an IR camera would reveal the presence of people,
the facial features are far from discernible in an IR image at large distances. A
biometric that can address some of these shortcomings is human ’gait’ or the
walking style of an individual. The attractiveness of gait as a biometric arises
from the fact that it is non-intrusive and can be detected and measured even in
low resolution video. Furthermore, it is harder to disguise than static appearance

features such as face and it does not require a cooperating subject.

1.1 Prior Work

Early research on gait can be primarily grouped into two categories. The first
category involves psychophysical studies of gait viz. studying the ability of
human observers to recognize gait. The second category includes biomechanical
studies viz. studying kinetics and kinematics associated with gait. These studies
in part led to the development of computational approaches to gait-based human
identification. In this section we describe some of the gait research done in the

areas of psychophysics, biomechanics and computer vision.

1.1.1 Studies in Psychophysics

The belief that humans can distinguish between gait patterns of different in-
dividuals 1s widely held. Intuitively, it is possible to think of the qualities of
walk that help a perceiver identify an approaching figure even before the face

becomes discernible. These gait related quantities include stride length, bounce,



rythm, speed and perhaps even attributes such as swagger or body swing. The
suggestion that humans can identify people by their gait was investigated in a
series of early studies by Johansson [2]. He presented participants with images
that had been reduced to point-light displays. Small light bulbs were attached to
the body joints of a darkly dressed walker and the brightness of the display was
reduced so that only these light points were visible. In this way only gait related
cues were available and thus the perception of pure biological motion could be
examined. When these point-light displays were static, the random collection of
dots were variously interpreted as star constellations. However, as soon as the
figures moved, the points of light were immediately perceived to be a human in
motion. This suggests that we have some implicit notion of human movement,
and can recognize temporal data within this context. Later work using point-
light displays went further, demonstrating that not only could a walking figure
rapidly be extracted from the moving lights, but also a perceiver could distin-
guish between different sorts of biological motion including walking, climbing
stairs, jumping etc [3]. Additionally observers were also shown to be able to
recognize facial expressions through reflecting patches placed on certain parts of
the face [4]. These studies suggests that humans are adept at biological human
perception.

Attempts to address the question of identification from gait have proceeded in
small steps. Kozlowski and Cutting [5] first investigated whether perceivers could
identify the gender of a point-light walker. Their results indicated an accuracy
rate of 65% and 70% when the walker was viewed from the side. A minimum
exposure time of two seconds was required for gender identification. In [6], it

was suggested that gender may be identified indirectly through a determination



of the “center of moment” of a walker.

The demonstration that gender could be extracted from gait provided in-
sight into how perceivers might discriminate between gait patterns of different
individuals. The prospect for perceivers being able to identify individuals from
their gaits was thus encouraging. Cutting and Kozlowski [7] demonstrated that
perceivers could reliably recognize themselves and their friends from dynamic
point-light displays. Barclay et al. [8] suggested that individual walking styles
might be captured by differences in a basic series of pendular limb motions.
Interestingly Beardsworth and Buckner [9] have shown that the ability to rec-
ognize onself from a point-light display is greater than the ability to recognize
one’s friends, despite the fact that we rarely see our own gait from a third-person
perspective. This suggests that, as well as the apparent sensitivity of the hu-
man visual system to biological motion, it is likely that there is some transfer of
information from the kinaestetic modality to the visual modality.

Stevenage et al. [10] also explored the ability of people to identify people
using gait information alone. In one experiment, people were given video footage
of six walking subjects to study. After the studying phase was over, one group
viewed the same walkers under simulated daylight in which the silhouette and
motion of the walkers was clearly visible. A second group viewed the subjects
under simulated dusk in which the outline and motion were difficult to see. A
third group was shown only the point light displays of the walkers. It was found
that all the three groups were able to learn the gait of the six walkers and label
their identity regardless of the nature of data. In a second experiment, a different
set of viewers were given only two seconds to view a target, and they had to pick

the target from a parade of walkers under similar viewing conditions as the first



experiment. It was found that even with such a brief exposure time and their
unfamiliarity with the walking subjects, the perceivers could identify the target

correctly at greater than chance rate.

1.1.2 Medical Studies

Although walking is one of the most universal of all human activities, it was
only in the early part of the twentieth century that the detailed components of
this act started being systematically examined. The studies from the Grecian
era until the mid-nineteenth centuray were, for the most part, observational.
The 1950s saw many diversified kinematic gait studies, most prominently at the
University of California. These studies were spurred by a need for an improved
understanding of locomotion for the treatment of World War II veterans. One
of the goals of gait researchers was to build a model for normal gait, deviations
from which could be used to study gait abnormalities. Such studies involved
collecting the gait of a large number of subjects with no gait abnormalities. The
presence of identity information in gait was a by-product of these studies. In
[11], subjects with reflective targets attached to specific anatomical landmarks
walk before a camera in the illumination of a strobe light flashing twenty times
per second. A mirror was mounted over the walking area so that the target
images projected in the overhead view are captured as well. Twenty different
components of gait which include motions of the hip, knee, ankle etc. were
studied and it was found that when considered together, the gait of the subjects
was unique. Certain components such as pelvic and thoracic rotation had more
pronounced inter-person difference. The ability of recognizing and or modifying

specific movement patterns is of particular interest for successful and effective



therapeutic interventions. A recent study by Schollhorn et al. [12] studied the
gait of fifteen subjects to study the presence of identity information in gait. It was
found in this study that kinetic variables (captured using a force platform) as well
as kinematic variables (captured by reflective markers on the thigh, shank and
hip) were both necessary for gait identification. Furthermore simply using the

leg portion of the body was adequate for getting good identification performance.

1.1.3 Computational approaches

Medical and psychophysical studies, as discussed in Sections 1.1.1 and 1.1.2
indicate that there exists identity information in gait. It is therefore interesting
to study the utility of gait as a biometric. In recent years, there has been an
increase in research related to gait-based human recognition. We attempt to give
a summary of some of examples below, but the listing is by no means complete.

As noted before, joint angles may be sufficient for recognizing people by their
gait. However reliably recovering joint angles from a monocular video is a hard
problem. Approaches to gait recognition problem can be broadly classified as
being either model-based or model-free. Both methodologies follow the general
framework of feature extraction, feature correspondence and high-level process-
ing. The major difference is with regard to establishing feature correspondence
between two consecutive frames. Methods which assume a priori models match
the 2-D image sequences to the model data. Feature correspondence is auto-
matically achieved once matching between the images and the model data is
established. Examples of this approach include the work of Lee et al. [13],
where several ellipses are fitted to different parts of the binarized silhouette of

the person and the parameters of these ellipses such as location of its centroid,



eccentricity etc. are used as a feature to represent the gait of a person. Recog-
nition is achieved by template matching. In [14], Cunado et al. extract a gait
signature by fitting the movement of the thighs to an articulated pendulum-like
motion model. The idea is somewhat similar to an early work by Murray [11]
who modeled the hip rotation angle as a simple pendulum, the motion of which
was approximately described by simple harmonic motion. Model-free methods
establish correspondence between successive frames based upon the prediction
or estimation of features related to position, velocity, shape, texture and color.
Alternatively, they assume some implicit notion of what is being observed. Ex-
amples of this approach include the work of Huang et al. [15], where optical flow
is to derive a motion image sequence for a walk cycle. Principal components
analysis is then applied to the binarized silhouette to derive what are called
eigen gaits. Benabdelkader et al. [16] use image self-similarity plots as a gait
feature. Little and Boyd [17] extract frequency and phase features from mo-
ments of the motion image derived from optical flow and use template matching
to recognize different people by their gait. Appearance based methods work
reasonably well in the face of inaccurate background segmentation, changes in

speed etc. However, such methods cannot tolerate drastic changes in clothing.

1.2 Thesis Contributions

In this thesis we present appearance based approaches for gait-based human
identification using monocular video.

The first approach is a template matching approach to the problem. Given
the gait video of an individual, the images are binarized and the width of the

outer contour of the silhouette of that individual is obtained for each image



frame. Several gait features are derived from this basic width vector. Temporally-
ordered sequences of the feature vectors are then used for representing the gait of
a person. While matching the feature templates for recognition, dynamic time-
warping (DTW), which is a non-linear time-normalization technique, is used to
deal with naturally occurring changes in the walking speeds of individuals. The
performance of the proposed method is tested on indoor as well as outdoor gait
databases, and the efficacy of different gait features and their noise resilience is
studied. The experiments also demonstrate the effect of change in the viewing
angle, characteristics of the floor surface, and frame-rate of data capture on the
accuracy of gait recognition. The approach is found to work well in cases when
relatively clean binarized silhouettes can be obtained through pre-processing and
the training data is limited.

The second approach takes a more structured approach to represent the struc-
ture and kinematics of gait. Two different image features are considered: the
width of the outer contour of the binarized silhouette of the walking person and
the entire binary silhouette itself. To obtain the observation vector from the
image features we employ two different methods. In the first method referred
to as the indirect approach, the high-dimensional image feature is transformed
to a lower-dimensional space by generating what we call the Frame to Exemplar
(FED) distance. The FED vector captures both structural and kinematic traits
of each individual. For compact and effective gait representation and recogni-
tion, the gait information in the FED vector sequences is captured in a hidden
Markov model (HMM). In the second method referred to as the direct approach,
we work with the feature vector directly (as opposed to computing the FED)

and train an HMM. We estimate the HMM parameters (specifically the observa-



tion probability B) based on the distance between the exemplars and the image
features. In this way we avoid learning high-dimensional probability density
functions. The statistical nature of the HMM provides overall robustness to
representation and recognition. The performance of the methods is illustrated
using several databases.

To recognize a person walking at a large distance, humans try to combine in-
formation such as posture, arm/leg swing, hip/upper body sway or some quixotic
characteristic of that person. The same effect can be achieved through fusion of
different gait features. Dynamic features such as the swing of the hands/legs,
the sway of the upper body and static features like height, in both the frontal
and side views are considered. Established techniques, both probabilistic and
non-probabilistic in nature, are used for matching the features. Various com-
bination strategies may be used depending upon the features being combined.
Three simple rules: the Sum, Product and MIN rules that are relevant to our
feature sets are used. Experiments on different datasets demonstrate that fusion
can be used as an effective strategy in recognition.

The gait of a person is easily recognizable when extracted from a side-view of
the person. Accordingly, gait-recognition algorithms work best when presented
with images where the person walks parallel to the camera (i.e. the image
plane). However, it is not realistic to expect that this assumption will be valid
in most real-life scenarios. Hence it is important to develop view-invariant gait
recognition algorithms. We adopt a strategy whereby we synthesize the side-
view of the person from an arbitrary view using a single camera and without
explicit 3-D reconstruction. The method is based on the planar approximation of

a person which is valid when human identification at a distance is desired. The



differential equations of structure from motion (SfM) are used to estimate the
3-D azimuth angle from the video followed by view-synthesis. Since an explicit
3D model is not constructed we call this an ”implicit SEM” approach. Statistical
measures of quality of the synthesis are incorporated to increase the recognition
performance. Examples of synthesized views are presented and gait recognition
performance on three databases is presented. An application to video-based

rendering of planar dynamic scenes is also presented.

1.3 Thesis Organization

The thesis i1s organized as follows. In Chapter 2, we present the appearance
based template matching approach to gait recognition. The framework for gait-
based recognition using continuous HMMs is presented in Chapter 3. Chapter 4
describes the fusion of multiple evidences to boost gait recognition performance.
In Chapter 5 we present a view-invariant gait recognition algorithm based on
the planar approximation of the person when human identification at a distance
is desired. We conclude and outline future extensions and applications of the

thesis in Chapter 6.
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Chapter 2

Gait-Based Human Identification Using
Appearance Matching

2.1 Introduction

A gait cycle corresponds to one complete cycle from rest (standing) position to-
right-foot-forward-to-rest-to-left-foot-forward-to-rest position. The movements
within a cycle consist of the motion of the different parts of the body such as
head, hands, legs etc. The characteristics of an individual are reflected not only
in the dynamics and periodicity of a gait cycle but also in the size and shape of
that individual. Our aim is to build a model for representation and recognition
of individual gait.

In a pattern classification problem, choice of the feature as well as the clas-
sifier is important. We choose the width of the outer contour of the silhouette
a person as the basic image feature. As will be shown, the outer contour con-
tains sufficient information for recognizing gait. From the raw width vector,
different low-dimensional features are derived. These include the smoothed and

down-sampled width vector, the eigensmoothed width vector, and the velocity
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feature vector. Temporally-ordered sequences of these feature vectors are used
for compactly representing the person’s gait. For a normal walk, gait sequences
are repetitive and exhibit nearly periodic behavior. Typically, 5 — 10 contiguous
half-cycles of gait data per subject may be available and the number of frames
per cycle ranges from 8 to 20. The amount of training data is inadequate for
adopting statistical model-based approaches such as the Markov model, as it
may not be possible to reliably estimate the parameters of the model. Hence
a template-matching is adopted for comparing the probe and the reference se-
quences of the temporally-ordered feature vectors. Typically, gait cycles when
taken at different times tend to be unequal in length due to changes in walking
speeds of the individuals. Hence, a classifier based on direct template-matching
is not appropriate. To deal with this issue, dynamic time-warping (DTW) is em-
ployed for matching gait sequences. The DTW method was originally developed
for isolated word recognition [18], and later adapted for text-dependent speaker
verification [19]. The gait problem is analogous to text-based speaker identifi-
cation/verification wherein different individuals utter the same text but differ
only in the characteristics of their utterance [19]. DTW uses an optimum time
expansion/compression function for producing non-linear time normalization so
that it is able to deal with misalignments and unequal sequence lengths of the
probe and the reference gait sequences. Importantly, DTW can be used even
with limited training data.

The performance of our approach is tested on five standard gait databases;
namely, the University of Maryland (UMD) database, the MIT database, the
Carnegie Mellon University (CMU) database, the University of Maryland angular-
walk database (UMD3) and the USF gait challenge database. A description of

12



these databases is detailed in Section 2.5 and will be refered to in later chapters
as well. These databases contain video sequences of individuals walking in a
normal manner along certain pre-defined paths. The UMD and CMU databases
have both frontal and side views, the MIT database has only side-view sequences.
The UMD3 database contains videos of people walking at angles 0, 15, 30, 45 and
60 degrees. The USF database consists of 71 people walking along an elliptical
path on grass and concrete. A recently released version has 122 subjects. The
proposed DTW-based approach is equally applicable to side as well as frontal
views and the results are analyzed to determine the factors that contribute to
accuracy of gait recognition. The idea is to study the efficacy of the features
derived from the basic width vector and their resilience to noise in the estimate
of the width vector. Our experiments also reveal the effect of differences in walk-
ing speeds, and the relevance of different body parts for gait recognition. Low
frame-rate during data capture and methods to mitigate its effect are discussed.
The effect of change in viewing angle on gait recognition is examined. It will be
shown that the accuracy also depends on the surface characteristics of the floor.

In Section 2.2, the basic width vector, its extraction, and its relevance for
the gait problem are explained. Section 2.3 discusses different low-dimensional
features derivable from the basic width vector for gait representation. In Section
2.4, we describe how gait sequences can be matched using dynamic time-warping.
Section 2.5 briefly reviews the gait databases used in our studies. Experimental
results are discussed in Section 2.6. Conclusions and suggestions for further

studies are given in Section 2.7.
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2.2 The Width Vector

An important issue in gait-based human identification is the extraction of salient
features that will effectively capture gait characteristics. The feature must be
reasonably robust to operating conditions and should yield good discriminability
across individuals. As mentioned earlier, we assume that the side view of each
individual is available. Intuitively, the silhouette appears to be a good feature
as 1t captures the motion of most of the body parts. It also supports night
vision capability as it can be derived from IR imagery also. While extracting

this feature we are faced with two options:
1. Use the entire silhouette.
2. Use only the outer contour of the silhouette.

We propose to use only the outer contour as we believe that it contains adequate
information for recognizing gait. We choose the width of the outer contour of
the silhouette as our feature vector. Given the image sequence of a subject, the

width vectors are generated as follows:

1. Background subtraction as discussed in [20] is first applied to the image
sequence. The resulting motion image is then binarized into foreground

and background pixels (see Figure 2.1).

2. A bounding box is then placed around the part of the motion image that
contains the moving person. The size of the box is chosen to accomodate
all the individuals in the database. These boxed binarized silhouettes can
be used directly as an image features or further processed to derive the

width vector as described below.
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3. Given the binarized silhouettes, the left and right boundaries of the body
are traced. The width of the silhouette along each row of the image is
then stored. The width along a given row is simply the differences in the

locations of the right-most and the left-most boundary pixels in that row.

The physical structure of the subject as well as the swing of the limbs and
other details of the body are retained in the width vector thus derived but the
pose information is lost. For the four individuals shown in Figure 2.1, an overlay
of the width vectors derived from the silhouettes is given in Figure 2.2.

The width-vector plots clearly bring out the fact that there is relatively more
swing in the middle region (corresponding to hands) and in the end region (cor-
responding to feet), as compared to other parts of the body. However, these
plots do not depict the temporal information. To bring out the temporal effects
explicitly, the width vectors are plotted as a sequence of gray-level patterns in
Figure 2.3 for the same four individuals. In this figure, about 5 full gait cycles are
shown. The vertical axis corresponds to the index of the width vector, while the
horizontal axis corresponds to the frame number. The total number of frames
for each plot was fixed at 110 for uniformity. We call this the temporal plot of
the width vector. It is clear that the width vector is approximately periodic and
gives the extent of movement of different parts of the body. It varies with time
in a quasi-periodic fashion, with the time taken for the completion of a half-cycle
treated as the period.

Every component of the width vector contributes to the gait signature of a
subject. The brighter a pixel, the larger is the value of the width vector in that
position. The top part in each of the plots corresponds to the head-region, the

middle part corresponds to the torso while the bottom part corresponds to the
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(d)

Figure 2.1: Silhouettes for a full gait-cycle corresponding to (a) Person 1 (b)
Person 2 (c¢) Person 3 (d) Person 4.
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foot-region of the individual. Note that the intensity variations in the torso and
leg region, (corresponding to the hand and leg-swing) are larger than in the head
region. The extent of the dark region near the top and bottom of the temporal
width plots reflects the height differences between the individuals.

A comparison of the temporal width plots across individuals reveals interest-
ing gait information. The structural or static differences among people is clearly
revealed by the extent of the non-zero portions in these plots. One can also
decipher kinematic information. For instance in Figure 3, the hand motion in
the case of Person 1 is more pronounced as compared to Person 2. Note that the
intensities are brighter for Person 1 in the middle region compared to Person 2.
There also exist visible differences in the brightness gradients or velocities for dif-
ferent people. i.e., the velocity profile for each individual is different. There are
differences in the repetition frequency which may be useful to distinguish peo-
ple at a gross level. For instance, Person 3 has 12 half-gait cycles for the same
number of frames compared to 10 % cycles for Person 1 and 10 cycles for Person
2. Thus, considering a gait (half)-cycle as a unit of observation, we can capture
both spatial and temporal characteristics of an individual’s gait signature over

several cycles.

2.3  Gait Representation

As discussed, the width vector captures important characteristics about an indi-
vidual’s gait. However, the dimension of the raw width vector can be quite high
(168 in our experiments). In this section, we enumerate different low-dimensional
but effective features that can be derived from the basic width vector. The idea

is to arrive at a compact representation that exploits redundancy in the gait

19



data for dimensionality reduction. Features that are directly obtained from the
basic width vector are called direct features and these include the smoothed and
down-sampled versions of the width vector. On the other hand, features derived
using an eigen-analysis of the width vector across frames are called eigenfeatures.
Corresponding to every frame of the gait cycle of an individual, one can extract
any of the feature vectors discussed here. The gait of the individual is then
represented by temporally ordering the feature vectors in accordance with the
image frames in the gait cycle of that individual. We now describe each of the

features in detail.

2.3.1 Direct Features

Examples of direct features are shown in Figure 2.4.

1. The raw width vector: This is the basic width vector discussed in Section

2.2, and is derived directly from the video sequence.

2. 3-point smoothed width vector: This is derived from the raw width vector

by smoothing it with a 3-point mean filter.

3. H-point, 11-point, and 21-point smoothing and down-sampling by a fac-
tor of 4, 8 and 16, respectively: The motivation behind smoothing and
down-sampling stems from the fact that the original width vector has re-
dundancies. Hence, it should be possible to discriminate reasonably well
using lower dimensional features. Also, the original raw width vector is
derived by simple and quick pre-processing. Hence, it is usually noisy and

smoothing helps to mitigate the effect of noise.
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Figure 2.4: Width plots for an arbitrary frame. (a) Unsmoothed raw feature. (b)
3-point smoothed feature. (c) 5-point smoothed feature. (d) 11-point smoothed
feature. (e) 21-point smoothed feature. (f) Reconstructed width vector using
the first two eigenvectors.
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4. Difference feature vector: This is useful to study the effect of kinematics for
gait-based human identification. There are many different ways to extract
kinematic information from the width vector. One would be to simply take
the difference of successive raw width vectors across frames thus preserving
only the changes that occur between frames, during a gait cycle followed
by smoothing and downsampling. There is a trade-off between smoothing
and extracting dynamic information. Although some degree of smoothing
is required to counter noise, too much smoothing can alter the dynamic
information. Obviously, most of the structural information, like girth of the
person, is lost when we go to the velocity domain. It is to be expected that
neither dynamic nor structural information, in isolation, will be sufficient
to capture gait. As will be shown later, both are necessary and cannot be

decoupled.

2.3.2 Eigenfeatures

From the temporal width plots, we note that although the width vector changes
with time within a gait cycle, there is a high degree of correlation among the
width vectors across frames. Most changes occur in the hand and in the leg
regions. Hence, it is reasonable to expect that gait information in the width
vector can be derived with much fewer coefficients. This is what we attempt to
do in the eigenanalysis of gait.

All the width vectors corresponding to several training gait cycles of an indi-
vidual are used to construct the covariance or scatter matrix for that individual.
Principal components analysis is then performed to derive the eigenvectors for

this data.
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Given the width vectors {W(1),---,W(N)},for N frames W(.) € RM, we
compute the eigen vectors {V(1,)---,V(M)} corresponding to the eigen val-
ues of the scatter matrix arranged in the descending order and reconstruct the
corresponding width vectors using m(< M) most significant eigen vectors as

W, (i) = (2; w; V(i) + W
i=
where w; =< W (i), V(j) > and W = Ml‘FNﬂM

Note that every individual has his/her own eigengait space. Reconstruction
of the width vector using only the first and the second eigenvectors is shown in
Figure 2.4(f). The consequence of approximating the width vector using only
the first two eigenvectors is that the effect of noise is suppressed and the width
vector is smooth. The first two eigenvectors capture the physical structure of
the person as well as typical arm and leg swings, and serve as a freeze-frame

representation of the gait sequence.

2.4  Matching Gait Sequences using DTW

Since only limited training data is usually available for gait analysis, a template-
matching approach is adopted for recognition. The input to the gait recognition
algorithm 1s a sequence of image frames. Each image frame can be compactly
represented by any of the feature vectors discussed in Section 2.2 to derive a
template which consists of a temporally ordered sequence of feature vectors for
representing gait. The number of frames in the reference gait sequence and the
probe gait sequence depend on the number of gait cycles available. Larger the
number of gait cycles used for matching, the better we can expect the perfor-

mance to be. Typically, the number of frames in the reference and probe data
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Figure 2.5: A typical dynamic time-warping path.

will differ. Moreover, the reference and probe gait data are seldom synchronized.
Therefore, direct matching of a probe gait sequence with a reference gait sequence
should be avoided. In this work, a pattern-matching method based on dynamic
programming paradigm is used for dealing with this situation. Dynamic Time
Warping (DTW) [19] can be used to compensate for the variability in the speed
of walking which in turn reflects in the number of frames for each gait cycle. A
distance metric (usually the Euclidean distance) defined as a function of time is
computed between the two feature sets representing the gait data. A decision
function is arrived at by integrating the metric over time. The DTW method
was originally developed for isolated word recognition [18], and later adapted
for text-dependent speaker verification [19]. The gait problem is analogous to
text-based speaker identification /verification wherein different individuals utter
the same text but differ only in the characteristics of their utterance [19].
Consider the z — y plane shown in Figure 2.5 where the x and the y axes
represent the frame numbers of the probe and the reference patterns, respectively.

Assume that the first frame of the reference and probe sequence are both indexed
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as 1. Let the last frames of the reference and probe sequences be indexed as X
and Y, respectively. The match between the two sets can be represented by a
sequence of K points C(1),C(2),....,C(k),...,C(K), where C(k) = (z(k),y(k)),
and z(k) is a frame index of the probe sequence and y(k) is a frame index of
the reference sequence. Here, C'(k) represents mapping of the time axis of probe

sequence onto that of the reference sequence. The sequence

is called the warping path.
The process of time normalization uses certain constraints depending on the

problem at hand. Some of the constraints are the following [21].

(a) Endpoint Constraints: The fixed endpoints of the patterns lead to a set of

constraints on the warping function. They are of the form
z(l)=1, y(1)=1, z(k) =X, and y(k) =Y (2.1)

i.e., the first and the last frames of the probe sequence should be matched
with the first and the last frames of the reference, respectively. Under these
constraints, a typical warping would look like the one shown in Figure
2.5. The motivation behind the end point constraint arises from the fact
that DTW involves matching two entities that are similar and where the
start and and end point for the sequences correspond e.g. comparing the
speech signals for the same word pronounced by two different speakers.
The imposition of the end-point constraint ensures that extremal feature
vectors are not lost. When matching gait sequences, the use of the width
vector provides a simple way of segmenting the gait sequence into cycles

(see Section 2.4.1), before DTW may be performed. In the presence of
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noise the exact start and end frames may be hard to determine. However
the flexibility provided by the montonicity and local continuity constraints

ensure that the errors arising from this imprecise localization are not large.

(b) Monotonicity Constraint: This constraint requires feature vectors belonging
to a probe sequence (or the reference sequence) to be matched in monoton-
ically increasing order. This maintains the temporal order of the sequence

during time normalization. This is accomplished by ensuring that

z(k—1) <z(k), and y(k — 1) < y(k). (2.2)

(c¢) Local Continuity Constraints: This constraint can be used to ensure use
of each frame probe frame during normalization, and also to ensure that
no more than one frame is skipped in the reference. This is achieved by

setting the constraints
z(k)—z(k—1)=1, and y(k) —y(k —1) <2 (2.3)

(d) Global Path Constraints: This constraint restrains the extent of compres-
sion or expansion. The warping path can be constrained by defining a
region around which the warping path is allowed to traverse. The region
between the two parallel lines marked in the x — y plane in Figure 6 de-
fines the allowable grid or the region through which the warping path can
traverse. The warping path can be limited to a band around the diagonal
so that the search time for optimal path is significantly reduced. This is
reasonable as it is unlikely that the probe sequence of the genuine case

would deviate significantly from its reference.

After deciding the local and global constraints, the DTW algorithm is applied

as follows.
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1. Local Distance Computation: This involves computing the distance be-
tween the feature vectors representing the probe and reference frames. The
distance between the probe and reference feature vectors tyx and ry can be

computed using

d(C(k)) = |tx — 1y

so that the total distance along the path F'is given by

E(F) =3 d(C(k)) (2.4)

The distance F(F') is the similarity score which can be used at the decision

making stage.

2. Cumulative Distance Computation: The cumulative distance D(z(k), y(k))
is the minimum distance to reach (z(k), y(k)) at the k™ stage starting from
(1,1). This distance is the sum of all the local distances of points through
which the warping path passes to reach (z(k),y(k)) from (1,1). Initial-
ize the cumulative distance D(1,1) to L(1,1), where L(1,1) = d(C(1)).
For all the other points lying within the global region of search, com-
pute the cumulative distance using the local path constraints, i.e., the
point (z(k),y(k)) can only be reached from the points ((z(k) —1),y(k)) or
((x(k)—=1),(y(k) = 1)) or ((z(k) —1),(y(k) —2)). If the distance at stage

k is obtained as

Eoyl
~—r

then D(X,Y) gives the distance between the probe and the reference se-

quences.
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3. Backtracking: Using the cumulative distance matrix and the local path

constraints, the warping path F' can be obtained by backtracking.

2.4.1 Implementation details

Use of dynamic time warping relies on similar start and end points for the probe
and gallery. Hence prior to applying the DTW algorithm it is necessary to
parse the video sequence into cycles. A simple way to achieve this is using the
width feature explained in Section 2. From Figure 2.3 it is easy to see that
N(t) = (E]]\il 1(7))(t) where I(j) denotes the width at row j of the image, viz.

the sum of widths will show a periodic variation (see Figure 2.6).
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Figure 2.6: Sum of widths as a function of time.

The troughs of the resulting waveform correspond to the rest positions during
the walk cycle while the crests correspond to the part of the cycle where the

hands and legs are maximallly displaced. A half-cycle consists of frames between
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two successive troughs of sum of intensities plot. In general, the exact trough
may be hard to determine in the presence of noise and picking a frame in its
neighborhood is usually adequate. Given a video sequence, the width feature
thus provides a natural parsing in terms of half-cycles. In our experiments, four
half-cycles from the probe sequence are matched with four half-cycles from the
gallery sequence. Euclidean distance was chosen as the local distance. A global
constraint of maz(0.1Nya1ery, 0.1 Nprope) was chosen. Using the similarity matrix
resulting from the matching algorithm, the cumulative match characteristic as
explained in [22]. Essentially the cumulative match characteristic is a plot of
the number of times the right person occurs in the top n matches where n < G

where (G denotes the number of people in the gallery, as a function of n.

2.5 Data

The UMD Database: Gait data was captured with the out-door video re-
search (OVR) facility at the University of Maryland '. Cameras located at right
angles and at a height of 4.5 meters above the ground were used for data cap-
ture. The UMD dataset consists of 44 individuals. There are 38 male and 6
female subjects with different ethnicity, physical build etc. The individuals were
asked to walk normally along a T-shaped path. Because the cameras are orthog-
onally placed and the path is T-shaped, a side-view and a frontal view could be
captured simultaneously as the person walked. The videos for each individual
were recorded with intervals ranging from about half-a-day to a maximum of

one month. Each image frame was of size 170 x 138 pixels. Labeling was done

thttp://degas.umiacs.umd.edu/hid

29



to mark the gender, test/training sequences, direction of walk, number of gait

cycles, and left /right foot forward.

The CMU Database: The CMU database ? consists of different views of in-
door gait sequences of 25 individuals walking on a treadmill. Different situations
such as a person walking at a slow pace, fast pace, and walking while carrying
a ball in his/her hands are considered. Even though it is an indoor database, it
serves as a good testbed for evaluating performance under variations in walking
speed and also to assess the relative importance of body parts. For example, in
the sequence where the person is carrying the ball, there is very little upper-body

movement. The size of each image frame in this database is 640 x 486 pixels.

The MIT Database: The MIT database ® consists of side-views of gait se-
quences of 25 subjects captured indoors, and collected on four different days.
There are 4-8 segments per subject per day with 2-5 contiguous half cycles per
segment. The number of subjects on a particular day varies from 4 to 16. As a
result, the degree of overlap across days is less. The frame rate of the camera is
only 15 frames per second (as compared to 25 for the UMD database), and the
image size is 128 x 104 pixels. A lower frame rate leads to sparse temporal sam-
pling of the gait information and must be tackled appropriately. This database
provides a good testbed for evaluating training and test databases captured on

different days.

The UMD3 Database: The UMD3 database consists of outdoor gait sequences
of 12 people walking along straight-line paths at azimuth angles of 0,15, 30,45

and 60 degrees from the side view. The data was captured at the rate of 25

Zhttp://hid.ri.cmu.edu
3http://www.ai.mit.edu/people/llee/HID /intro.htm/
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frames per second by a tripod-mounted camera. Two sequences of each person
were captured with a time interval of at least 1 hr between them. One of the
sequences was used as reference and the other was used as the probe. This
database provides a testbed for assessing gait recognition performance as a func-

tion of the viewing angle. The image size for zero azimuth is 210 x 105 pixels.

The USF Database: In this database [23], each subject was required to walk
in a counter-clockwise manner along two elliptical courses. The elliptical courses
are located outdoors and approximately 15 meters along the major-axis and 5
meters along the minor-axis. To enable testing on different floor surfaces, the
first course was laid out on flat concrete, while the second was laid out on a
typical grass-lawn. Each course was viewed by the two cameras. Their lines of
sight were not parallel but verged so that the whole ellipse was just visible from
the two cameras. When the persons walked along the rear portion of the ellipse,
their view was approximately sideways. Subjects were also asked to bring a sec-
ond pair of shoes, so that they could walk a second time in a different pair of
shoes. A little over half of the subjects walked in two different shoe-types. The
image size of the subjects is 100 x 50 pixels. The database has 71 individuals
of which 75% are males. The USF database also has people walking with a

briefcase in their hand and data collected six months apart.

2.6 Experimental Results

In this section, we present the results of our approach to gait recognition on
all the databases described in Section 2.5. Each of the databases has its own
interesting features, and our exercise reveals several interesting facts about the

gait-based human identification problem. The performance of all the features
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Feature\ Rank 1 2 3 4 5

Set of 4 half cycles 1(a) 68.1 | 77.2 | 84.0 | 84.0 | 84.0
Set of 4 half cycles shifted by one 1(b) | 70.4 | 79.5 | 81.8 | 86.3 | 86.3
Minimum of 1(a) and 1(b) 79.0 | 81.4 | 83.2 | 86.0 | 86.0

Table 2.1: UMD database: Cumulative match scores for the first five ranks for
the case of 2 full-cycles having a relative phase shift of 1 half-cycle.

discussed in Section 2.3 were first studied for the UMD database to get a feel
for what might be a good feature vector for gait representation and recognition.

The method described in Section 2.4 was used for recognition.

2.6.1 Results for the UMD Database

For this database there were approximately 40 frames corresponding to 4 half-
cycles in the gallery and probe. It must be mentioned here that similar to hand-
dominance (right/left handedness), foot-dominance (right/left leggedness) also
exists in individuals. In practice, it is difficult to align the reference and the probe
sequences accurately with respect to heel-strike. The result of ignoring heel-
strike information (left-foot forward or right-foot forward first) in gait analysis
is reflected in Table 2.1.

Suppose there are five half-cycles in both reference and probe sequences for a
particular subject. The first four half-cycles of the two sequences are matched to
generate a matrix of similarity scores. Then, the reference sequence is matched
with a probe sequence shifted by half-cycle to generate another matrix of simi-
larity scores. Of the two shifted probe sequences, only one can provide a better
match if the subject exhibits foot-dominance. The two similarity scores are com-

bined using the minimume-error criterion. The improvement in recognition when
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Feature\ Rank 1 2 3 4 5
Unsmoothed 168-dim feature 79.0 | 81.4 | 83.2 | 86.0 | 86.0
3-point smoothed 168-dim feature | 79.0 | 81.4 | 83.7 | 86.0 | 86.0
5-point smoothed 42-dim feature | 76.7 | 83.7 | 83.7 | 88.3 | 88.7
11-point-smoothed 21-dim feature | 76.7 | 83.7 | 83.7 | 83.7 | 90.0
21-point-smoothed 11-dim feature | 79.0 | 86.0 | 86.5 | 88.3 | 90.0

Table 2.2: UMD database: Cumulative match scores for the first five ranks for
different directly-derived feature vectors.

heel-strike is taken into account can be noted from Table 2.1. In the results that
follow, we assume that fusion of the similarity scores from two phase-shifted
cycles has been carried out.

The recognition results for the direct features are given in Table 2.2. From
the table, we note that all the features have done well despite the presence of
noise in the estimate of the basic width vector. The experiment also shows
that dimensionality reduction is possible to a great extent by exploiting the
redundancy in the gait data. In the experiments to come, we choose the 5-point
smoothed 42-dimensional width vector, which is between the two extremities of
no-smoothing and very heavy-smoothing, as the direct feature for performance
analysis.

For the eigenfeatures, the performance results obtained by combining differ-
ent numbers of eigenvectors is given in Table 2.3. Again, four half-cycles of each
subject were used for matching. Note that by using just the first two eigenvec-
tors an accuracy of 80% is achievable. Other eigenvectors are noisy and, in fact,
tend to lower the accuracy. Hence, we have used only the first two eigenvectors
for computing the eigenfeatures in our experiments. It is also of interest to study

the effect of the number of half cycles on matching. Intuitively, one would expect
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Feature\ Rank 1 12 (3 |4 |5
Eigenvector 1 73| 75| 80 | 80 | 84
Eigenvectors 1,2 80 | 87190 |90 |91
Figenvectors 1,2,3 68 | 80 | 84 | 84 | 84
Eigenvectors 1,2,3.4 73|77 |84 | 84 | 84
Figenvectors 1,2,3.4,5 | 70 | 73 | 79 | 82 | 84
Eigenvector 2 58 | 63 | 67 | 72| T4
Eigenvectors 2,3 61 | 64 | 67 | 82|76
Eigenvectors 2,3,4 61 | 65| 68 | 68 | 72
Eigenvectors 2,3,4.5 68 | 68 | 72 | 74 | T4

Eigenvector 3 51 | 54 | 60 | 62 | 62
Eigenvectors 3,4 55 | 60 | 68 | 68 | 72
Eigenvector 4 22 128 135 | 42 | 42
Eigenvector 5 20 1 24 | 36 | 40 | 44

Table 2.3: Cumulative match scores for the UMD database using different eigen-
features.

Feature\Rank |1 2 3 4 5
Four half-cycles | 80.0 | 87.0 | 90.0 | 90.0 | 91.0
Two half-cycles | 71.0 | 80.0 | 82.0 | 84.0 | 87.0
One half-cycle | 65.0 | 67.0 | 77.0 | 83.0 | 87.0

Table 2.4: Effect of length of gait sequence for the UMD database: Cumulative
match scores for the first five ranks.

to obtain a better match with more number of half cycles, i.e., with a longer gait
sequence. When the number of half-cycles is reduced, systematically from four
to one, the corresponding results are given in Table 2.4.

While reducing the number of half-cycles, the number of frames was kept
approximately constant by linearly interpolating the components of the width
vector. As expected, the performance degrades as the length of the sequence is
reduced.

To assess the relative discriminability of the structural component of the
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Feature\ Rank 1 2 3 4 5
Smoothed and differenced 168-dim feature 41.9 | 51.6 | 61.2 | 70.9 | T4.1
Eigen decomp. of velocity profile 56 5 76 80 83
Eigen decomp. of width vector and successive difference | 32.0 | 40.0 | 51.0 | 61.0 | 65
of projected weights

Eigen decomp. of width vector and using 2nd eigenvector | 58.0 | 63.0 | 67.0 | 72.0 | 74.0

Table 2.5: UMD database: Cumulative match scores for the velocity profile.

width vector versus its dynamic component, we computed the difference of the
width vectors corresponding to successive frames in the gait sequence. Eigen-
decomposition of the velocity vector is carried out and reconstructed using the
first two eigenvectors. Table 2.5 shows the results obtained by considering only
the velocity profile as the feature of interest.

Alternatively, the width vector could have been first subjected to eigendecom-
position, and the successive differences of the projected values used for match-
ing. Note that the accuracy drops significantly if only the velocity information is
used. Clearly, for gait-based human identification both structural and kinematic

information are important.

2.6.2 Results for the CMU database

The following experiments were performed on this database: (i) Train on slow-
walk and test on slow-walk, (ii) train on fast-walk and test on fast-walk, (iii)
train on slow-walk and test on fast-walk and (iv) train on walk carrying a ball
and test on walk carrying a ball.For this database, the number of frames corre-
sponding to 4 half-cycles varied between 55 for slow walk to about 75 for fast
walk. The results are given in Table 2.6. We note that the eigensmoothed fea-

ture performs better than the direct-smoothed feature. This can be attributed to
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Rank

Experiment Feature 1 2 3 4 5
Slow vs Slow | Direct-smoothed feature | 70.8 | 83.3 | 87.5 | 95.8 | 95.8
Eigen-smoothed feature | 95.8 | 95.8 | 95.8 | 95.8 | 100.0
Fast vs Fast | Direct-smoothed feature | 83.3 | 83.3 | 83.3 | 83.3 | 87.5
Eigen-smoothed feature | 95.8 | 95.8 | 95.8 | 95.8 | 100.0
Fast vs. Slow | Direct-smoothed feature | 54.1 | 75.0 | 87.5 | 87.5 | 87.5
Eigen-smoothed feature | 75.0 | 83.3 | 83.3 | 83.3 | 87.5

Table 2.6: CMU database: Recognition results for different experiments.

the fact that eigensmoothing exploits spatio-temporal redundancy unlike direct-
smoothing which uses only spatial smoothing. When the reference is the slow-
walk sequence and the probe is the fast-walk sequence, the performance is found
to be inferior than for the case when the reference and probe are both slow-walk
sequences. DTW is known to perform poorly [24] when the ratio of reference
sequence-length to probe sequence-length is less than 0.5 or more than 2. In the
CMU dataset, this ratio for the worst case was 1.36. From Table 7, we note that
the DTW-based method is reasonably robust to changes in walking speed. In
fact, in our experiments, the value of the ratio for one of the mismatched cases
was 1.15. A few frames in the gait cycles of this incorrectly recognized person
under slow and fast-walk modes are shown in Figures 2.7 (a) and (b).

As is apparent from the figure, the posture as well as hand-swings for the
person are quite different in cases of fast-walk and slow-walk. Figures 2.7 (c)
and (d) show the warping paths for the person with the highest ratio and the
incorrectly recognized person, respectively. Note that the warping path for the
correctly recognized person is much more regular as compared to that of the
incorrectly recognized individual. Hence, it is the change in the posture and

body dynamics of the person rather than the mismatch in the length of the
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Figure 2.7: Sample images of the same subject corresponding to (a) slow-walk
and (b) fast-walk (Notice the change in posture and body dynamics) (¢) Warping
path for person with largest reference sequence-length to probe sequence-length
ratio (d) Warping path for the person in (a) and (b).
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Experiment\ Rank | 1 2 3 4 5
Ball vs Ball 95.45 | 100.00 | 100.00 | 100.00 | 100.00

Table 2.7: Cumulative match scoresfor the ball experiment in the CMU database
using the eigen-smoothed feature.

reference and probe sequences that was responsible for the mismatch.

Finally, we consider the case when the person is walking with a ball in his
hand. In this situation, most of the gait dynamics is confined to the leg region.
For this experiment, we observe from Table 2.7 that the recognition performance
is very good (person identified correctly within the top 2 matches). This experi-
ment suggests that for the purpose of recognition certain parts of the body may
contain more information than the others. In particular, using the leg motion
alone provides more discriminating evidence as compared to what might be ob-
tained by weighting the evidences from the hand and leg motion coequally. This
fact can be used for building more efficient gait recognition algorithms in some

cases. Incidentally, this has been noted in kinesiology research as well [12].

2.6.3 Results for the MIT Database

The evaluation scheme for the MIT database is as follows. For training, data col-
lected on days 2, 3 and 4 were used. Data collected on day 1 was used for testing.
Overall, there are 8 subjects. We extract 2 half-cycles (which is the maximum
number of half-cycles common to all the subjects in the database) and build
the direct-smoothed width vector. Since the frame rate is 15 frames/second, on
the average, there are only 7-8 frames per half-cycle so that there were about
28 frames in four half-cycles. We recognize that the length of the gait sequence

is not adequate. As discussed earlier, the more the number of half-cycles, the
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better would be the possibility of obtaining a correct match. Nevertheless, 4 out
of the 8 people were correctly recognized. Since the frame-rate is low for this
database, it results in coarse-sampling in the temporal domain and presents a
problem while matching. When we used linear interpolation between frames to
partially compensate for the coarse sampling, the recognition rate increased to
5 matches out of 8. When the eigenfeatures were tried on this database, the

results were not very different.

2.6.4 Results for the UMD3 database

The UMD3 database contains gait data corresponding to different azimuth an-
gles. The gait sequences were captured at different times at angles § = 0, 15, 30,
45 and 60 deg with respect to the side-view. To account for the foreshortening
effect as a person walks at non-zero azimuths, the height of each individual was
computed from the zero-azimuth width plots, and this was used to normalize the
height corresponding to non-zero azimuth angles. Figure 2.8 shows the width
plots for one of the individuals in the database for each of the above angles.

There were approximately 60 frames corresponding to 4 half-cycles for the
UMD3 database. It can be seen that for large azimuth angles the hand swings
appear only in alternate half-cycles. This is because the body occludes the
presence of hands in the alternate half-cycles. Another observation is that the
range of variations in the width amplitude is small for large azimuth angles.
Therefore, recognition performance can be expected to be more sensitive to the
presence of noise in the gait sequence for higher values of 4.

Two full-cycles having a relative shift of one half-cycle were used as gallery

sequence (similar to the first UMD database) and two full-cycles captured at a
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Figure 2.8: Width profile of an individual for different azimuth angles (a) 0 deg
(b) 15 deg (c) 30 deg (d) 45 deg and (e) 60 deg.

later time were chosen as the probe sequence. Both the 5-point direct-smoothed
feature and the eigensmoothed feature were tested for recognition and the results
are given in Table 2.8.

In the table, L. and R refer to two full gait-cycles with a relative shift of
one half-cycle, while F' refers to the case when we accept smaller of the two
entries corresponding to L and R. It is clear that # = 0, which is the side-view,
provides the best viewing direction for gait recognition. Since the variation in
the amplitude of the width vector was small for large s, eigensmoothing results
in better performance. For smaller values of #s when the width vector compo-
nents are relatively large, eigensmoothing does not seem to yield any significant

improvement over direct smoothing.
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Rank (direct)

Rank (eigen)

Angle from side-view | Sequence chosen | 1 2 3 1 2 3

0 deg L 75.00 | 91.67 | 100.00 | 91.67 | 91.67 | 100.00
R 75.00 | 83.33 | 91.67 | 83.33 | 83.33 | 91.67
F 91.67 | 91.67 | 100.00 | 91.67 | 91.67 | 100.00

15 deg L 66.67 | 83.33 | 100.00 | 91.67 | 91.67 | 100.00
R 58.33 | 75.00 | 83.33 | 91.67 | 91.67 | 100.00
F 91.67 | 91.67 | 100.00 | 91.67 | 91.67 | 100.00

30 deg L 66.67 | 83.33 | 91.67 | 83.33 | 83.33 | 91.67
R 25.00 | 50.00 | 50.00 | 58.33 | 91.67 | 100.00
F 83.33 | 83.33 | 91.67 | 83.33 | 83.33 | 100.00

45 deg L 33.33 | 41.67 | 50.00 | 41.67 | 66.67 | 91.67
R 66.67 | 75.00 | 83.33 | 83.33 | 91.67 | 100.0
F 50.00 | 83.33 | 100.00 | 58.33 | 83.33 | 100.00

60 deg L 33.33 | 50.00 | 58.33 | 58.33 | 75.00 | 91.67
R 41.67 | 58.33 | 58.33 | 75.00 | 83.33 | 91.67
F 58.33 | 83.33 | 91.67 | 75.00 | 83.33 | 91.67

Table 2.8: UMD3 database: Cumulative match scores for the first three ranks

for different azimuth angles using the direct and the eigen-feature vectors.
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2.6.5 Results for the USF Database

The USF database has the largest number of individuals among all the databases.
It has variations with respect to floor surface (grass (G) or concrete(C)), shoe
type (A or B), and camera viewing direction (left (L) or right (R)). The reference
for all the experiments was chosen to be (G, A, R). The number of frames corre-
sponding to four half cycles varied from 65 to 90. Different probe sequences for
the experiments along with the cumulative match scores are given in Table 2.9
for the baseline algorithm [23] as well as our method using the eigensmoothed
width feature. Note that recognition performance suffers most due to difference
in surface characteristics, and least due to difference in viewing angle. However,
unlike the UMD3 experiment, both the cameras see an ‘almost’ side-view of the
subjects. An examination of the USF database revealed that the silhouettes
provided were noisier compared to the previous datasets. We wanted to see
what the performance would be by using the binary silhouettes directly as the
feature. In this case we used the binary correlation distance in the local distance
computation. As can be seen from the last two columns of Table 2.9 usage of the
binarized silhouettes yields better performance numbers compared to the width

vector in this case.

2.7 Conclusions

In this chapter, we have proposed a new approach to gait recognition using the
DTW technique. The method was tested on five different databases using sev-
eral features. The width of the outer contour of the binarized silhouette of a

person was used as the gait feature. Different feature vectors were derived from
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Experiment (Probe) Baseline Width Vector | Binary Silhouette

Rank 1 | Rank 5 | Rank 1 | Rank 5 | Rank 1 | Rank 5
A (G A L) 79 96 79 91 84 97
B (G, B, R) 66 81 67 79 83 91
C(G,B,1L) 56 76 30 55 59 79
D (C, A, R) 29 61 17 42 41 64
E (C,B,R) 24 55 15 39 24 53
F(C,A L) 30 46 16 30 27 51
G (C,B, L) 10 33 9 31 24 38

Table 2.9: Probe Sets and match scores for the USF database using the baseline
algorithm and our approach using width feature and entire binary silhouette.

the basic width vector using either direct smoothing and down-sampling or by
way of eigenanalysis for gait representation and matching. During the matching
process, the DTW algorithm was used to effectively handle unequal lengths of
the reference and the probe gait sequences. Various situations such as changes
in walking speed, sensitivity to viewing angle, different floor characteristics, low
frame-rate etc were considered. The performance of our method was found to be
quite satisfactory on all the databases. The eigensmoothed feature performed
the best followed by the direct-smoothed feature vector. The velocity profile
of the width vector is not sufficient to capture gait characteristics when used in
isolation. Our experiments confirm that the side-view is the optimal one for cap-
turing the gait characteristics. As the azimuth angle increases, the recognition
accuracy falls. The method is capable of recognizing even frontal gait but with
lower accuracy as compared to that of the side-view.

It would be interesting to analyze if the warping path characteristics of the
DTW algorithm can be used to determine the direction of motion. Also, a study

that combines evidences from different component level features of the human
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body for the purpose of recognition deserves investigation.
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Chapter 3

A Framework for gait-based person identification

using continuous HMMs

A careful analysis of gait would reveal that it has two important components.
The first is a structural component that captures the physical build of a person
e.g. body dimensions, length of limbs etc. The second component is the motion
kinematics of the body during a gait cycle. Our effort in this chapter is directed
towards deriving and fusing information from these two components. We propose
a systematic approach to gait recognition by building representations for the
structural and kinematic components of gait.

We considered two image features, one being the width of the outer contour of
the binarized silhouette, and the other being the binary silhouette itself. A set of
exemplars that occur during a gait cycle is derived for each individual. To obtain
the observation vector from the image features we employ two different methods.
In the indirect approach the high-dimensional image feature is transformed to a
lower-dimensional space by generating the FED. The FED vector captures both
structural and kinematic traits of each individual. For compact and effective gait

representation and recognition, the gait information in the FED vector sequences
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is captured using a HMM for each individual. In the direct approach, we work
with the feature vector directly and train a HMM for gait representation. The
difference between the direct and indirect methods is that in the former the
feature vector is directly used as the observation vector for the HMM whereas
in the latter, the FED is used as the observation vector. In the direct method,
we estimate the observation probability by an alternative approach based on the
distance between the exemplars and the image features. In this way we avoid
learning high-dimensional probability density functions. The performance of the
methods is tested on different databases.

Section 3.1 explores the issue of feature selection. Section 3.2 describes the
two algorithms. In Section 3.3 |, we present experimental results and Section 3.4

concludes the chapter.

3.1 Feature Selection

An important issue in gait is the extraction of appropriate salient features that
will effectively capture the gait characteristics. The features must be reasonably
robust to operating conditions and should yield good discriminability across
individuals. We assume that the side view of each individual is available. As
discussed before, the silhouette appears to be a good feature to look at as it
captures the motion of most of the body parts. While extracting this feature we

are faced with two options:
1. Use the entire silhouette.

2. Use only the outer contour of the silhouette.
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The choice of using either of the above features depends upon the quality of
the binarized silhouettes. If the silhouettes are of good quality, the outer con-
tour retains all the information of the silhouette and allows a representation, the
dimension of which is an order of magnitude lower than that of the binarized
silhouette. However for low quality, low resolution data, the extraction of the
outer contour from the binarized silhouette may not be reliable. In such situ-
ations, as seen from Section 2.6.5 direct use of the binarized silhouette may be
more appropriate The utility of the width feature has been discussed before in

Chapter 2.

3.2 Proposed Algorithms

Given a sequence of image features for person j, X7 = {x7(1),x/(2),---,x’(T)},
we wish to build a model for the gait of person j and use it to recognize this

person from M different subjects in the database.

3.2.1 Overview

A closer examination of the physical process behind the generation of gait sig-
nature reveals that, during a gait cycle, it is possible to identify certain distinct
phases or stances. In Figure 3.1, we show five frames that we have picked from
a gait cycle for two individuals.

In the first stance, the person holds the two feet together. In the second, he 1s
just about to start and his hand is slightly raised. In the third stance, the hands
and the feet are separated, while in the fourth, the hands and feet are displaced to
a maximum. Finally, in the fifth stance, the person is returning to the rest state.

Clearly, every person transits among these successive stances as he/she walks.
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(b) Person 2

Figure 3.1: Stances corresponding to the gait cycle of two individuals.

Although, these stances are generic, there exist differences not only in their
image appearance based on the physical build of an individual but also in the
way an individual transits across these stances as he/she walks which represents
the gait kinematics of the individual. A reasonable way to build a structural
representation for a person is to pick N exemplars (or stances) € = {ey,---,en}
from the pool of images that will minimize the error in representation of all
the images of that person. The specifics of choice of exemplars may differ for
different approaches. Given the image sequence for an unknown person )Y =

{y(1),---,¥(T)}, these exemplars can be directly used for recognition as

T
ID = arg min; »_ min,eq,..n3d(y (1), el),

t=1

where y(t) represents the image of an unknown person at the tth time instant,
while e/ represents the nth exemplar of the jth individual. Note, however,
that such a simple discrimination criterion is susceptible to failures not only
due to noise but more importantly due to the presence of structural similarities

among people in the database. To improve discriminability, the kinematics of
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the data must be exploited. A closer look at the gait cycle reveals that there is a
temporal progression in the proximity of the observed silhouette to the different
exemplars. Note that at the start of the gait cycle, a frame is closer to the first
exemplar as compared to the other four. As time progresses, the frame will be
closer to the second exemplar as compared to the others and so on. A similar
behavior is reflected with regard to the remaining exemplars as well. Underlying
the proximity of the silhouette to the exemplars is a probabilistic dependence
across the exemplars. This encompasses information about how long a gait cycle
persists in a particular exemplar as well as the way in which the gait cycle transits
from one exemplar to the other. For two people who are similar in physical build,
this kinematic knowledge can be used to improve the recognition performance.
Because the transitions are systematic, it is possible to model this probabilistic

dependence by a Markov matrix as shown below.
A= [Plei(t)]e;(t —1))] (3.1)

for i,7 € {1,---,N}. The matrix A encodes the kinematics in terms of state
duration densities and transition probabilities. Often, in a practical situation,
only a finite amount of training data is available and modeling can be difficult if
the feature dimensionality is high. The dimension of the feature vectors described
in the previous section is at least 100. Directly using the feature vectors to
estimate the structure of the person and the kinematics of gait is clearly not
advisable. We propose two different approaches to model the structure and

kinematics of gait.
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3.2.2 Approach 1: Indirect Approach

Gait representation

In this approach we pick N exemplars (or stances) € = {es, -+, ey} from the
pool of images that will minimize the error in representation of all the images of
that person. If the overall average distortion is used as a criterion for codebook
design, the selection of the N exemplars is said to be optimal if the overall
average distortion is minimized for that choice. There are two conditions for
ensuring optimality. The first condition is that the optimal quantizer is realized

by using a nearest neighbor selection rule.
q(x) = e, == d(x,e) < d(x.e;). ] # 1,1 <1,j <N,

where x represents an image in the training set, d(x, e;) is the distance between x
and e; while N is the number of exemplars. The second condition for optimality
is that each codeword/exemplar e; is chosen to minimize the average distortion
in the cell C}, i.e.,

e; = argming K(d(x, e)|x € C;),

where the C;s represent the Voronoi partitions [25] across the set of training
images. To iteratively minimize the average distortion measure, the most widely
used method is the k-means algorithm [25, 26]. However, implementing the k-
means algorithm raises a number of issues. It is difficult to maintain a temporal
order of the centroids (i.e. exemplars) automatically. Even if the order is main-
tained, there could be a cyclical shift in the centroids due to phase shifts in the
gait cycle (i.e. different starting positions). In order to alleviate these problems,
we divide each gait cycle into N equal segments. We pool the image features

corresponding to the ¢th segment for all the cycles. The centroids (essentially the
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mean) of the features of each part were computed and denoted as the exemplar
for that part. Doing this for all the N segments gives the optimal exemplar set
E={e}, -, ey}

Of course, there is the issue of picking N. This is the classical problem
of choosing the appropriate dimensionality of a model that will fit a given set
of observations e.g., choice of degree for a polynomial regression. The notion of
‘best fit” can be precisely defined by an objective function involving a penalty for
the model complexity. Examples include minimum Bayes information criterion
[27], minimum description length [28] etc. Similar problems exist for the case
where there exists no parametric model for the data set e.g. vector quantization.
In problems like image compression, it is a common practice to look at the rate-
distortion curves to examine the marginal reduction in the distortion as the bits
per pixel are increased. We take a similar approach here. In Figure 3.2, we plot
the average distortion as a function of the number of centroids for the UMD
database. It can be observed that beyond five centroids, the average distortion
does not decrease as rapidly with the increase in the number of centroids.

In order to reliably estimate the gait kinematics we propose a novel way of
compactly encoding the observations observations, while retaining all the rele-
vant information. Let x(¢) denote the feature extracted from the image at time ¢.
The distance of x(t) from the corresponding exemplars e, € £ can be computed
to build an FED, f(¢), which serves as a lower (/N-)dimensional representation
of the image at time ¢. For instance, for the jth individual we compute the nth

element of the FED vector as
[£5 (1)) = d(x7(1),€l), (3.2)

where, t € {1,---,T}, e/ denotes the nth exemplar of the jth person and
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Figure 3.2: Rate-distortion curve for number of exemplars vs distortion.

n € {l,---,N}. Thus, ij](t) constitutes an observation vector for person j.
Similarly, iji(t) represents the observation sequence of the person ¢ encoded in
terms of the exemplars of person j. Note that the dimension of ij] (t) is only N.
These observations can be derived for several such gait cycles in the database.
It is clear that as we examine a gait cycle, the proximity of a frame from each
of the stances changes with time. Correspondingly, the elements of the vector
ijJ (t) would reflect this feature. To elaborate this further, note that for a frame
at the start of the gait cycle, the first element of the observation vector will
be smaller in magnitude as compared to the remaining four elements. As time
progresses, the first element will increase in magnitude because the frame moves
closer to the second stance. The magnitude of the second element will decrease
as long as the frame is close to the second stance and then it will start to increase
as well. A similar behavior is observed in the rest of the elements of the vector.
The duration for which an element of this vector stays low encodes the stance

duration density as also the probability of transition to another stance. Figure
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Figure 3.3: FED vector components plotted as a function of time.

3.3 shows the evolution of the different components of the FED vector ijJ (t) for
a half-gait cycle.

As can be seen, there is a systematic succession of troughs for the different
FED vector components across time. The FED vector representation is inde-
pendent of the choice of features. The distance in (3.2) will change depending
upon the feature. For example, for the case of the width feature, d corresponds
to the Euclidean distance, whereas for the binary silhouette d corresponds to the
binary correlation.

As described before, it is possible to model transition across exemplars by a
Markov matrix. For the person j, it is possible to look upon the FED vector
sequence ij] (t) as the observed manifestation of the transition across exemplars
(a hidden process). An HMM is appropriate for such a signal. HMMs use a
Markov process to model the changing statistical characteristics that are mani-
fested in the actual observations. The state sequence is hidden, and can only be

observed through another set of observable stochastic processes. Each hidden
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state of the model is associated with a set of output probability distributions
which can be either discrete probability mass functions or continuous proba-
bility density functions. Details on HMMs can be found in [29]. For the gait
problem, the exemplars can be considered as analogues of states of the HMM
while the FED vector sequence can be considered as the observed process. Since
the feature vectors are transformed to the intermediate FED vector representa-
tion, we refer to this approach as an indirect approach. In the proposed model
for gait, the primary HMM parameters of interest are the number of states,
the initial probability vector (7), the transition probability matrix (A) and the
output probability distribution B which we model as a continuous probability

distribution. A brief explanation of each of these terms follows.

e Initial probability (7): The initial probability vector is given by = = {x;}
where 7; represents the probability of being in state ¢ at the beginning
of the experiment. For the gait problem, m; can be thought of as the

probability of starting in a particular stance.

e Transition probability matrix (A): The entries of this matrix are given by
a;j where a;; = P(i441 = jliz = t). This represents the probability of being
in state j at time ¢t + 1 given that the previous state was . An HMM in
which every state of the HMM can be reached from any other state, viz.
every coefficient a;; of A is positive, is refered to as ergodic HMM. When
the coeflicients have the property a;; = 0 for 7 < 1z, i.e., if no transitions
are allowed to states whose indices are lower than the current state, the

HMM is refered to as a left-to-right model.

e Probability of observation(B): The probability of observing symbol x while
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in state j is given by b;(x). Since the observations in our experiment are
continuous-valued, finding b;(x) turns out to be a problem of estimating
the underlying probability density function of the observations. In the lit-
erature on HMMs, a Baum-Welch type of re-estimation procedure has been
formulated [29] for a mixture of any log concave or elliptically symmetric

density function (such as the Gaussian).

In this paper, A = (A, B, 7) will be used to compactly represent an HMM.

Gait Recognition

The HMM model parameters A = (A, B, ) serve as a means to represent the
gait of different people. For robust recognition, it is reasonable that one must
examine several gait cycles before taking a decision i.e., instead of looking at a
single walking cycle, it would be prudent to examine multiple cycles of a person
to derive any conclusion about his/her gait. We assume that several gait cycles
of an individual are given. The problem is to recognize this individual from a
database of people whose models for gait are known a priori.

To begin with, the image sequence of the unknown person Y = {y(1),---,y(7)}
is subjected to the same image processing operations as the training image se-
quence i.e., the image feature y(¢) of this person is generated for each frame and
the FED vector ij(t) is computed for all j € {1,---, M} using (2). We wish to
compute the likelihood that the observation sequence ij was generated by the
HMM corresponding to the jth person. This can be deciphered by using the

forward algorithm [29] which computes this log probability as

P; = log(P(f]);)) (3.3)
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Here, ); is the HMM model corresponding to the person j. We repeat the above
procedure for every person in the database thereby producing P;, 5 € {1,---, M }.
Suppose that the unknown person was actually person m. We would then expect
F,, to be the largest among all P;’s. A larger value of P,, will be the result of

two factors.

1. The distance between ) and the stances of person m will be smaller than

that between ) and any other person.

2. The pattern of transitions between stances/states for J will be closest to

that for person m.

Note that the observed image sequence must be in accordance with the transition
probability matrix A as well as the observation probability B in order to yield
a larger value for the log-probability. If the values of Py,---, Py are observed
for a sufficient number of gait cycles of the unknown person, one would expect
that in a majority of cases P,, would be lower as compared to the rest of the
P;s. For smaller databases, the performance can be easily examined in terms of
a confusion matrix. For larger databases, a more convenient way of reporting
recognition performance is to report the number of times the right person occurs

in the top n matches where n < M i.e. by way of cumulative match scores

(CMS).

3.2.3 Approach 2: Direct Approach

Gait representation

In this approach we use the feature vector in its entirety to estimate the HMM

A = (A, B, ) for each person. Hence we refer to this approach as the direct
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approach. One of the important issues in training is learning the observation
probability B. In general, if the underlying distribution of the data is non-
Gaussian, it can be characterized by a mixture of Gaussians. As discussed before,
the reliability of the estimated B depends on the number of training samples
available and the dimension of the feature vector. In order to deal with the high
dimensionality of the feature vector, we propose an alternative representation
for B.

As discussed in the previous section it is possible, during a gait cycle, to
identify certain distinct phases or stances. We build a structural representation
for a person by picking N exemplars (or stances) from the training sequence,
X = {x(1),---,x(T)}. We now define B in terms of the distance of this vector

from the exemplars as follows.
ba(x(1)) = P(x(t)]e,) = pe-Pe) (3.4)

The probability, P(x(t)|e,) is defined as a function of D(x(t),e,), the distance
of the feature vector x(¢) from the n'* exemplar, e,. The motivation behind
using an exemplar-based model in the above manner is that the recognition can
be based on the distance measure between the observed feature vector and the
exemplars. During the training phase, a model is built for all the subjects in the
gallery. Note that B is completely defined by &£ if a and 3 are fixed beforehand.
An initial estimate of £ and X is formed from X', and these estimates are refined
iteratively using Expectation-Maximization [30]. We can iteratively refine the
estimates of A and 7 by using the Baum-Welch algorithm [29] with £ fixed. The
algorithm to refine estimates of £, while keeping A and 7 fixed, is determined
by the choice of the distance metric. We describe in the following sections the

methods used to obtain initial estimates of the HMM parameters, the training
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algorithm, and, finally, identification from a probe sequence.

Initial Estimate of HMM Parameters

In order to obtain a good estimate of the exemplars and the transition matrix,
we first obtain an initial estimate of an ordered set of exemplars from the se-
quence and the transition matrix and then iteratively refine the estimate. We
observe that the gait sequence is quasi-periodic and we use this fact to obtain the
initial estimate £©). We first divide the sequence into cycles. We can further
divide each cycle into N temporally adjacent clusters of approximately equal

th cluster of all cycles to be generated

size. We visualize the frames of the n
from the n'* state. Thus we can get an initial estimate of e, from the feature
vectors belonging to the n'* cluster of all cycles. In order to get reliable initial
estimates of the exemplars, we need to robustly estimate the cycle boundaries
(see [31]). A corresponding initial estimate of the transition matrix, A (with
Ag?j) = Ag?j)mod ~41 = 0.5, and all other Ag?k) = 0) is also obtained. The initial

probabilites 7(9) are set to be equal to 1/N.

Training the HMM Parameters

The iterative refinement of the estimates is performed in two steps. In the first
step, a Viterbi evaluation [29] of the sequence is performed using the current
values for the exemplars and the transition matrix. We can thus cluster feature
vectors according to the most likely state they originated from. Using the current
values of the exemplars, £ and the transition matrix, A%, Viterbi decoding on
the sequence X yields the most probable path @ = {¢{)(1),¢"(2),...,¢D(T)},

where ¢{)(1) is the estimated state at time ¢ and iteration 7. Thus the set of
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observation indices, whose corresponding observation is estimated to have been
generated from state n is given by 7() = {1 : ¢)(1) = n}. We now have a set of
frames for each state and we would like to select the exemplars so as to maximise

the probability in (3.5). If we use the definition in (3.4), (3.6) follows.

el™) = arg.max[],_ ;o P(x(t)[e) (3:5)
GSH) — argeminzteT(i)D(X(t)ve) (3'6)

The actual method for minimizing the distance in (3.6) however depends on the
distance metric used. We use the inner product (IP) distance (3.7). We have
experimented with other distance measures, namely the Euclidean (EUCLID)
distance and the sum of absolute difference (SAD) distance [31].

T

X'e
Dip(x,e) =1 - ——— (3.7)
xTxele
Note that though x and e are 2-dimensional images, they are represented as
vectors of dimension D x 1 for ease of notation. 1py; is a vector of D ones. The

equations for updating the exemplars is given by (3.8). x denotes the normalized

vector x.
eltl) — et X(t) (3.8)

The exemplars estimated for one observation sequence are displayed in Fig-

AL

Figure 3.4: Exemplars estimated using IP distance measure

ure 3.4.
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Given €0+ and A, we can calculate A+Y using the Baum-Welch algo-
rithm [29]. We set 7(+1) = ~ at each iteration. Thus we can iteratively refine

our estimates of the HMM parameters. It usually takes only a few iterations to

obtain an acceptable estimate.

Identifying from a Test Sequence

Given the sequence of the unknown person, ), and the exemplars and HMM
model parameters for the different people in the database, we wish to recognize
the unknown person. As before, the given image sequence of the unknown per-
son is subjected to the same image processing operations as the training image
sequence to extract the relevant image features. As explained before the likeli-
hood that the observation sequence was produced by the jth individual in the

database is computed using the forward algorithm as
by =log(P(V[)))- (3.9)

Note that A; implicitly includes the exemplar set corresponding to person j.

3.3  Experimental Results

In this section, we demonstrate the performance of the proposed algorithms
on different databases. Our experiments are aimed at finding how well the
two methods perform with respect to several different variations such as size
of database, speed of walking, clothing, illumination etc. We have considered
normal walk as well as the treadmill data for analysis. The video sequences
were taken from the CMU UMD and USF databases. For the sake of brevity,

we present detailed results of the indirect approach using width vectors on the
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CMU and UMD databases while the results of the direct and indirect approaches
with the binarized silhouette feature will be presented for the USF database.
Silhouettes and the feature vectors for the person are extracted using the
procedure described in Section 3.1. In general the choice of N depends on
the frame rate. For the UMD and CMU databases, we chose N to be five.
However for the USF database which has a higher frame rate, we found that
N = 6 1s a better choice. The Viterbi algorithm was used to identify the probe
sequence, since it is efficient and can operate in the logarithmic domain using
only additions. For every gait cycle, we rank order the probabilities and the
corresponding person indices in descending order. We then evaluate performance
by letting each person in the database be the unknown u and plot the fraction
of times that the right person is within the top n matches as a function of n.
This curve known as the cumulative match score characteristic (CMS) was first
used in the context of face recognition by Philips et al. [22]. Details of these

databases are given in Section 2.5.

3.3.1 The CMU Database

We did the following experiments on this database: (i) train on slow-walk and
test on slow-walk, (ii) train on fast-walk and test on fast-walk, (iii) train on
slow-walk and test on fast-walk, (iv) train on fast-walk and test on slow-walk
(v) train on walk carrying a ball and test on walk carrying a ball. In cases (i),
(ii) and (v), for each person, the sequences were divided into two halves, one half
used for training and the other for testing, while in the cases (iii) and (iv), the
entire slow /fast sequence was used for training and the other fast/slow sequence

was used for evaluation.
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Figure 3.5: Cumulative match characteristic for normal walk and walk when
carrying an object for the CMU database.

The results obtained using the proposed method are given in Figures 3.5 and
3.6.

It can be seen that the right person in the top 3 matches 90% of the times
for the cases where the training and testing sets correspond to the same walking
styles. Observe that the results on CMU database when the HMM is trained
using cycles from slow walk and tested using cycles from fast walk, the result
is poor compared to the situation when the training and testing scenarios are
reversed. In an effort to understand this, we ran an experiment whereby we
artificially increased the number of frames per activity cycle using interpolation
and observed the resulting HMM. It was seen that the A matrix tends towards
diagonal dominance. This occurs on account of the fact that the HMM does not
provide adequate representation of extreme temporal durations of activity. The

probability of ¢ consecutive observations in state z can be written as

dl(t) = at(l — CL“')

k33
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Figure 3.6: Cumulative match characteristic for across speed testing for the

CMU database.

where d;(t) is the probability of taking a self-loop at state i for ¢ times viz. a
geometric distribution. As the duration of the activity T' — oo for a fixed N,
this causes a; — 1 and a;; — 0. Clearly, the geometric distribution does not
represent a realistic description of the state duration density in the gait-modeling
problem. Similar issues have been raised in the context of speech recognition
and a solution is to explicitly model the distribution of state duration as has
been done by Russell [32]. For the case of training with fast-walk and testing
on slow-walk, the dip in performance, similar to the appearance matching case
(see Figure 2.7(a) and (b)) is caused due to the fact that for some individuals
as biomechanics suggests, there is a considerable change in body kinematics and
stride length as a person changes his speed.

When the subjects are walking with a ball in their hands, most of the gait
dynamics are confined to the leg region. For this experiment i.e. case (v), we
observe from Figure 3.5, that the top match is the correct match 90% of the

time which is higher than the top match score (around 70%) in the normal walk
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Figure 3.7: Results for the UMD database using Algorithm 1 (44 people).

cases. This observation is in line with the DTW method as well (Section 2.6.2).

3.3.2 The UMD Database

The result using the proposed method for the UMD database is shown in Figure

3.7(a).

In Figure 3.7(a), the dashed-dotted line represents the chance recognition rate

which corresponds to the line connecting (1, %) and (P,100), where P denotes

the number of people in the gallery. In order to assess the confidence in our

recognition capability, we computed the recognition performance by dropping

one subject from the gallery and the probe when we compute the cumulative

match characteristic. Essentially this amounts to computing the CMS charac-

teristics by eliminating row ¢ and column ¢ from the similarity matrix. By this
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procedure, we ensure that no individual in the gallery leads to a bias in the
performance computation. Having computed the CMS characteristics thus, we
find the variance in the cumulative match score at every rank. Smaller the value
of this variance, the more reliable is the gait recognition performance. This is

shown for the UMD database in Figure 3.7(b).

3.3.3 The USF Database

Finally, we consider the USF database! which has been identified as the gait
challenge database [1]. The database has variations as regards viewing direction,
shoe type, surface type. Also the subjects were asked to carry a briefcase for one
testing condition. We present the results of both our methods and a comparative
analysis on this dataset. Different probe sequences for the experiments along
with the cumulative match scores are given in Table 3.1 for the baseline algorithm
[23], our direct and indirect approaches The image quality for the USF database
is worse than the previous two databases in terms of resolution and amount of
noise. We experimented with both the width feature as well as the binarized
silhouette for the USF dataset. However, the extraction of the outer contour in
this case is not reliable and the width vectors were found to be noisy. In Table
3.1, we report only the results of our methods using the silhouettes as the image
feature. GG and C indicate grass and concrete surfaces, A and B indicate shoe
types and L and R indicate left and right cameras, respectively. From Table 3.1
we observe that the direct method is more robust to the presence of noise than

the indirect method. We also note that the recognition performance suffers most

More details about this database can be found at
http://figment.csee.usf.edu/GaitBaseline/
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Experiment (Probe) Baseline Indirect Approach | Direct Approach

Rank 1 | Rank 5 | Rank 1 | Rank 5 | Rank 1 | Rank 5
A (G A L) 79 96 91 100 99 100
B (G, B, R) 66 81 76 81 89 90
C(G,B,1L) 56 76 65 76 78 90
D (C, A, R) 29 61 25 61 35 65
E (C,B,R) 24 55 29 39 29 65
F(C,A L) 30 46 24 46 18 60
G (C,B, L) 10 33 15 33 24 50

Table 3.1: Probe Sets and match scores for the USF database using the baseline
algorithm and our indirect and direct approaches.

due to differences in surface and background characteristics, and least due to
difference in viewing angle. Results from other research groups using this data
can be found in [33] and websites (http://degas.umiacs.umd.edu/links.html).
From Tables 2.9 and 3.1, we note that the HMM approach indeed surpasses the
performance using the appearance matching method. Recently, the gallery in
the USF database was extended by adding subjects who walked with only one
shoe type on grass, which happened to be labelled as Shoe B. Since the shoe
type labeling is arbitrary, they were put in the gallery to increase the gallery
size to 122. In Table 3.2 we present results using the new gallery. In this table
12 refers to the probe sequences captured in November and BF' represents the

people walking with a briefcase. The corresponding CMS curves are shown in

Figure 3.8.

3.4 Conclusions

In this chapter, we have presented two approaches to represent and recognize

people by their gait. The width of the outer contour of the binarized silhouette
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Experiment (Probe) | Baseline | HMM
A (G A L) 73 89
B (G, B, R) 78 88
C (G, B, 1) 3] 68
D (C, A, R) 2] 35
E(C,B,R) 22 =
F(C,A,L) 7 15
G (C,B,L) 7| 21
H (G, A, R, BF) 61| =5
(G, B, R, BF) 571 80
J (G, A, L, BF) 36| 58
K (G, A, R, 12) 31 17
L (C. A, R,12) 31 15

Table 3.2: Recognition Scores for Baseline and HMM (122 people).

Cumulative Match Scores (Training Set is Gallery)
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Figure 3.8: Cumulative match characteristic for USF database using our ap-
proach.
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as well as the silhouette itself were used as features to represent gait. In one
approach, a low-dimensional observation sequence is derived from the silhouettes
during a gait cycle and an HMM is trained for each person. Gait identification is
performed by evaluating the probability that a given observation sequence was
generated by a particular HMM model. In the second approach the distances
between an image feature and exemplars were used to estimate the observation
probability B. The performance of the methods was illustrated using different

gait databases.
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Chapter 4

Fusion of multiple evidences for gait recognition

Consider a person walking at a sufficiently large distance so that the face is
not clearly visible to the naked eye. To recognize the person, we may try to
combine information such as posture, arm/leg swing, hip/upper body sway or
some unique characteristic of that person. Generally speaking, information may
be fused in two ways. The data available may be fused and a decision can be
made based on the fused data or each signal /feature can be matched separately,
using possibly different techniques and the decisions made may be fused. The
former is called data fusion while the latter is referred to as decision fusion.
Kokar et al. [34] have shown that decision fusion is a special case of data fusion.

In this chapter, we investigate different techniques to combine classification
results of multiple evidences extracted from the gait sequences and demonstrate
the improvement in recognition performance. For gait signatures, we use estab-
lished techniques such as DTW and HMMs discussed in Chapters 2 and 3. The

fusion methodologies can be grouped into three categories

1. Holistic fusion: This involves fusing evidence extracted from the entire
silhouette. In this strategy we investigate the swing in the hands and legs.

Since gait is not completely symmetric in that the extent of forward swing
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of hands and legs is not equal to the extent of the backward swing, we
build the left and right projection vectors. We also consider the issue of

foot dominance.

2. Parts-based fusion: This involves fusing evidence from parts of the silhou-
ette. Specifically we consider evidence obtained from the leg portion of the

silhouette alone and fuse it with the height information.

3. Multicamera fusion: This involves fusing information from different cam-
eras. Specifically we consider fusing information from the front and side

views of the subject.

We characterize the performance of the recognition system based on CMS [22]
computed using the aforementioned matrix of similarity scores. As in any recog-
nition system, we would like to obtain the best possible performance in terms of
recognition rates. Combination of evidences obtained is not only logical but also

statistically meaningful. We show that combining evidence using simple strate-

gies such as SUM, PRODUCT and MIN rules improves the overall performance.

4.1 Methodology

As before, background subtraction is used to extract the moving person and the
resulting motion image is binarized. All the features of interest are extracted
from the aforementioned sequences of binarized images. In what follows, unless
stated otherwise, gait sequence refers to the sequence of binarized images of
the subject. Different strategies such as Sum, Product and MIN rules [35], as
applicable in each of the cases are used. Let s ; represent the similarity score

between the " subject in the probe set and the j*" subject in the gallery set for
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(a) (b) (¢)

Figure 4.1: Illustrating the generation of (a) left projection vector, (b) right

projection vector and (b) width vector.

c=1,...,C and C be the number of classifiers. Let s;; be the overall similarity

score.

e SUM rule: s;; = L

c=1 4,5

e PRODUCT rule: s;; = ¢ s

c=1 4,5

C c

o MIN rule: s;; = ming_,s;;

As noted in [35] if the estimation errors of the different classifiers are assumed

to be uncorrelated and unbiased, then variance reduces to o2 = o2 /C.

4.1.1 Holistic fusion

Previously we considered the width of the outer contour of the silhouette as
a feature. The temporal plot of width captures the total motion of the body

parts within a gait cycle. Note however that the this total motion has two
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components to it, namely the forward and backward swings of the body. It
would be interesting to study if there is something to be gained by independently
studying the forward and backward swings. In order to study this we built the
right and left projection vectors. The method for constructing the projection
vectors is described next:

Given a binarized image, we first align the box so that the subject is in
the center of the bounding box. Traversing along each row, starting from the
rightmost column, we identify the first foreground pixel (allowing for adequate
resilience to noise). This constitutes the elements of ’left projection vector’ (see
Figure 4.1(a)). Similarly, a right projection vector’ (see Figure 4.1(b)) is built by
starting the traversal from the left-most column. Each frame is thus represented
by means of a left and a right projection vector.

The pair of left and right projection vectors is extracted for each of the gallery
subjects. When an unknown test sequence comes in, we extract its left and right
projection vectors as outlined above. In order to identify the unknown sub-
ject, his/her projection vectors are matched with those of the gallery subjects.
In order to deal with speed changes during normal walk the DTW framework
discussed in Chapter 2 is used. Dynamic Time Warping provides for such a
mathematical framework [36] in that it allows for non-linear time normalization.
We form two matrices of similarity scores by matching the left and right projec-
tion vectors in the gallery (reference/training) with those in the probe (testing)
set, separately. The SUM rule is used for combining the similarity scores.

The second aspect of the total body motion is concerned with foot domi-
nance. Like hand dominance (right/left handedness), foot dominance (right /left

leggedness) also exists. While matching therefore, we may assume that improp-
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erly aligned (i.e. right/left leg forward) reference and test sequences affects the
performance. This is an issue because it is not possible to distinguish between
the left/right limbs from the 2-D binarized silhouettes. Suppose there are five
(half-) cycles in both the gallery and probe sequences for a particular subject.
To account for foot-dominance, we match the first four half-cycles of the two se-
quences and generate a matrix of similarity scores. Then, we match the gallery
sequence with a phase-shifted probe sequence to generate another matrix of sim-
ilarity scores. Of the two phase-shifted test sequences, only one can provide a
match that is in-phase unless the subject does not exhibit foot dominance. With-
out loss of generality, we may assume that foot dominance exists in all subjects.
Then one of the two test sequences is a better match unless corrupted by noise.

Therefore, the two similarity scores are combined using the MIN rule.

4.1.2 Parts-based fusion

Previously, both the hands and legs were considered while selecting the features.
If the movement of the hands is restricted (if the subject is carrying an object
in his/her hands) or if the torso portion of the sequence is unreliable either due
to a systematic failure in background subtraction or due to image synthesis (to
be discussed in Chapter 5), then leg dynamics carries information about the
subject’s gait. We construct the width vector (width of the outer contour of the
binarized silhouette) of size N x 1 from each of the images of size N x M in the
sequence, as illustrated in Figure 4.1(c). All the width vectors corresponding
to several training gait cycles of an individual are used to construct the co-
variance or scatter matrix for that individual. Principal components analysis is

then performed to derive the eigenvectors for this data. Given the width vectors
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Figure 4.2: Effect of eigen decomposition and reconstruction on the width vec-
tors. (a) Overlapped raw width vectors (b) Smoothed width vectors. Notice
that the leg region (the bottom half of the figures) contain a significant portion
of the dynamics.

{W(1),---,W(N)},for the N frames W(.) € RM, we compute the eigen vectors
{V(1,)---,V(M)} corresponding to the eigen values of the scatter matrix ar-
ranged in the descending order and reconstruct the corresponding width vectors

using m(< M) most significant eigen vectors as
W (i) = Q_w;V(i) + W
7=1

where w; =< W(i),V(j) > and W = Mlivﬂﬂl As seen before m = 2 yields
good recognition performance. Figure 4.2 illustrates the effect of eigensmoothing
on the gait sequence using two eigenvectors.

A cursory examination of the width vectors suggests that the leg region may
exhibit a more consistent pattern compared to other parts of the body such as
the arms. At the same time, the gross structure of the body, as contained in

the say, the height is also useful in discrimintating between subjects. While
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leg dynamics concentrates on the variation of the width vector in the horizontal
direction in the leg region alone, the height of the subject varies in an orthogonal
direction. The width vector is truncated so that only the information about the
leg is retained. This sequence of truncated width vectors is the first feature
set, say set A. We estimate the height of the subject from the image sequence
using robust statistics. The estimated height of the individuals forms the second
feature set, say set B. The Euclidean distance measure is used to compare the
feature set B of estimated height of the subjects in the probe and gallery sets.

To compare the truncated width vectors that contain information about leg
dynamics, we use the indirect HMM approach described in Chapter 3. The
sequence of images is projected on to the exemplar set creating the FED repre-
sentation for each frame and the sequence of resulting FED vectors is used to
train an HMM model using the Baum-Welch algorithm. model A = (A, B, 1), in
a qualitative sense, describe respectively the time of persistence in a stance, the
description of the stances and the initial probability distribution of the stances.
Specifically, A denotes the transition probability matrix, B, the observation prob-
ability of each of the states and II denotes the initial probability distribution of
the states. The Viterbi algorithm is used in the evaluation phase to compute
the forward probabilities. The absolute values of the log probability values are
recorded as the similarity scores.

If the decisions made are statistically independent, conditioned on the feature
sets then we may write the final error probability P = e, 73{. In practice,
however it is difficult to validate this assumption. Instead, we use the low cor-
relation of decisions across feature sets as corroboration to the hypothesis that

the errors in the two feature sets, the leg dynamics and the height, are uncorre-
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lated. We use the PRODUCT rule to combine the scores to compute the overall

similarity scores.

4.1.3 Multicamera fusion

Hithero we have studied gait in its canonical view so that the apparent motion of
the walking subject is maximal. This does not preclude the possibility of using
other views ranging from the frontal view to any arbitrary angle of viewing. Even
in the frontal view where the apparent leg/arm swing is the least, there may be
several cues that can be used toward human recognition. More specifically,
the head posture, hip sway, oscillating motion of the upper body among other
features may be useful for recognition. As before, to focus our attention on gait,
we extract the outer contour of the subject from the binarized gait sequence in
the form of the width vector

Figure 4.3(a) shows the variation of the width vector (that reflects in the outer
contour) as a function of time. The size of the width vector grows indicating
that the subject is approaching the camera. We retain the last four half cycles
of each sequence as shown in Figure 4.3(b), and the raw width vector itself is
used for matching. To account for the apparent change in the size of the subject,
we normalize the width vectors by computing an appropriate scale factor. The
positions of the head and the feet (top and bottom pixels) are identified in each
frame and smoothed using a median filter. To the resulting sinusoidal patterns
shown in Figure 4.3(¢), two straight lines, one to the top and one to the bottom,
are fit. The distance between the two lines in each frame is used to compute the
normalizing factor. The normalized plot is shown in Figure 4.3(d).

For matching these sequences, we use the DTW technique. When both the
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Figure 4.3: Outer contour plot for a frontal gait sequence in the UMD datasbase.
(a) Subject walking towards the camera (b) 4 half-cycles chosen for recognition
(c) The positions of head and foot in each frame is located to compute the
normalizing factor. Two straight lines are then fit to the trajectories of the head
and foot. (d) The 4 half-cycles normalized.
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frontal and fronto-parallel (side) gait sequences are available, it is natural to
combine these two orthogonal views before making the final decision about the
identity of the subject. One way to combine multiple views is through the use
of 3-D models. Currently, 3-D models have been built using sequences captured
inside the lab under controlled conditions. [37] takes the visual hull approach
while Bobick et al. extract parameters insensitive to the angle of viewing [38].
We adopt the decision fusion approach and combine the matching scores obtained

from the frontal and side gait sequences using the SUM rule.

4.2  Experiments

We performed experiments on the UMD, CMU, MIT and USF databases (Section
2.5). We consider the use of left and right projection vectors first. As discussed
before, the similarity scores obtained by matching the left and right projection
vectors (separately) are combined to produce the overall matching score. Table
4.2 demonstrates the increase in recognition rate when the results are combined
using the Sum rule. Data fusion is used to form the width vector by combining
the two projection vectors and four half cycles are used for matching. Using
the width vector for matching produces recognition rates that are in general,
slightly lesser than those obtained by combining the similarity scores of the two
projection vectors. However, comparison of the width vectors requires fewer
number of computations since it has N components whereas the two projection
vectors together have 2N components per frame.

We observe in Table 4.2 that the right projection vector performs better
than its left counterpart suggesting that, at least in this dataset, the forward

swing carries a more consistent gait signature. We also considered the effect of
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Feature CMS at rank 1 | CMS at rank 5
Left projection vector 64 81
Right projection vector 65 81
Fusion 86 89

Table 4.1: CMS scores: Combining left and right projection vectors. UMD
Dataset.

Experiment (Probe) | Baseline | Width Vector | Fusion
Teft | Right
A (G, A L) 9 19 391 53
B (G, B, R) 66 | 25 35 Im
C (G, B, 1) 5 | 10 15 20
D (C,A,R) 29| 7 10 21
E(C,B,R) 24| 7 12 19
F(C,A,L) 30| 5 10 17
G (C,B.1) 0] 4 6 9

Table 4.2: Probe Sets and match scores for the USF database using the baseline
algorithm and our approach using width feature and entire binary silhouette.
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Feature\ Rank 1 2 3 4 5

Set of 4 half cycles 1(a) 68.1 | 77.2 | 84.0 | 84.0 | 84.0
Set of 4 half cycles shifted by one 1(b) | 70.4 | 79.5 | 81.8 | 86.3 | 86.3
Minimum of 1(a) and 1(b) 79.0 | 81.4 | 83.2 | 86.0 | 86.0

Table 4.3: UMD database: CMS for the first five ranks for the case of 2 full-cycles
having a relative phase shift of 1 half-cycle.

Feature CMS at rank 1 | CMS at rank 5
Leg dynamics 91 100
Fusion: leg dynamics 96 100

and height

Table 4.4: Cumulative match scores at rank 1 and rank 5 for CMU dataset:
Combining leg dynamics and height using Sum rule

foot-dominance on the UMD database. As can be seen from Table 4.3, fusing
evidences from two phase shifted gait sequences does give an improvement in
the recognition performance.

Table 4.2 shows the results of combining recognition scores of matching leg
dynamics and the overall physical feature, height. Clearly, the leg region retains
information that is useful for the purpose of recognition. Tables 4.2 and 4.2
present the recognition scores for the UMD and MIT datasets respectively.

Finally we analyze the effect of multi-camera fusion. We considered the UMD

Feature CMS at rank 1 | CMS at rank 5
Leg dynamics 31 65
Fusion: leg dynamics 49 72
and height

Table 4.5: Cumulative match scores at rank 1 and rank 5 for UMD dataset:
Combining leg dynamics and height using Sum rule.
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Evaluation Scheme | CMS at rank 1 | CMS at rank 3
Day 1 vs. Days 2,34 29 50
Day 2 vs. Days 1,34 50 100
Day 3 vs. Days 1,24 20 54
Day 4 vs. Days 1,2.3 30 52

Table 4.6: Cumulative match scores at rank 1 and rank 3 for MIT dataset:
Combining leg dynamics and height by adding the similarity scores.

Feature CMS at rank 1 | CMS at rank 5
Frontal Gait 52 74
Side gait 66 86
Frontal and side 85 95

Table 4.7: Cumulative match scores at rank 1 and rank 5 for the UMD dataset:
effect of frontal and side gait fusion

database for this experiment. As described in Section 4.1.3, the width vectors
for the frontal gait are normalized appropriately. The recognition rates for the
frontal gait are shown in Table 4.2. Note that the accuracy for the frontal gait
sequences is lower as compared to the side-view case. This is because the swing
is less pronounced now, and the dynamics are not as effectively captured as in
the case of the side-view. Note that the numbers quoted for the side-view are
prior to normalization for foot-dominance. Thus fusion again helps to improve

the recognition scores.

4.3 Conclusions

Different features that affect gait such as the swing of the hands and legs, the
sway in the body as observed in frontal gait, static features like height were

systematically analyzed. Dynamic time warping and HMMs were chosen for
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matching. The matrices of similarity scores between the gait sequences in the
gallery and probe sets were computed. Sum, Product and MIN rules were used to
combine the decisions made using the separate features. As expected, the overall
recognition performance improved due to fusion. Experimental results using four
different datasets, with each dataset presenting different types of challenges, have

been presented.
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Chapter 5

View Invariant Gait Recognition

5.1 Introduction

The gait of a person is best reflected when he/she presents a side view (referred
to in this chapter as a canonical view) to the camera. Hence, most of the above
gait recognition algorithms rely on the availability of the side views of the sub-
ject. The situation is analogous to face recognition where it is desirable to have
frontal views of the person’s face. In realistic scenarios, however, gait recognition
algorithms need to work in a situation where the person walks at an arbitrary
angle to the camera. The most general solution to this problem is to estimate the
3-D model for the person. Features extracted from the 3-D model can then be
used to provide the gait model for the person. This problem requires the solution
of the structure from motion (SfM) or stereo reconstruction problems [39, 40],
which are known to be hard for articulating objects. In the absense of methods
for recovering accurate 3-D models, a simple way to exploit existing appearance
based methods is to synthesize the canonical views of a walking person. In [41],
Shakhnarovich et al. compute an image based visual hull from a set of monoc-

ular views which is then used to render virtual canonical views for tracking and
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recognition. Gait recognition is achieved by matching a set of image features
based on moments extracted from the silhouettes of the synthesized probe video
to the gallery. An alternative to synthesizing canonical views is the work of Bo-
bick and Johnson [42]. In this work, two sets of activity-specific static and stride
parameters are extracted for different individuals. The expected confusion for
each set 1s computed to guide the choice of parameters under different imaging
conditions (viz. indoor vs outdoor, side-view vs angular-view etc). A cross-view
mapping function is used to account for changes in viewing direction. The set of
stride parameters (which is smaller than the set of static parameters) is found
to exhibit greater resilience to viewing direction. Representation using such a
small set of parameters may not give good recognition rates on large databases.

In this chapter we present a view-invariant gait recognition algorithm for the
single camera case. We show that it is possible to synthesize a canonical view
from an arbitrary one without explicitly computing the 3-D depth. Consider a
person walking along a straight line which subtends an angle 8 with the image
plane (AC in Figure 5.2). If the distance, Zy, of the person from the camera is

much larger than the width, AZ, of the person, then it is reasonable to replace

the scaling factor m for perspective projection by an average scaling factor
ZLO‘ In other words, for human identification at a distance, we can approximate

the actual 3-D human as a planar object. Assume that we are given a video
of a person walking at a fixed angle 6 (Figure 5.2). We show that by tracking
the direction of motion, a, in the video sequence, we can estimate the 3-D angle
6. This can be done by using the optical flow based SfM equations. Using the
planarity assumption, knowing angle § and the calibration parameters, we can

synthesize side-views of the sequence of images of an unknown walking person

84



Video

of
unknown
person

at arbitrary
angle

Tracking and
Background )
Subtraction 3-D walking

Estimation of

View synthesis |——=| Gait Recognition

direction

Reliability analysis

of track

Figure 5.1: Framework for View Invariant Gait Recognition

without explicitly computing the 3D model of the person. We refer to this
approach as the “implicit SfM” approach. In the case where there is no real
translation of the person e.g. person walking on a treadmill, an alternative
approach is employed to obtain the synthesized views of the person. Given a set
of point correspondences for a planar surface between the canonical and non-
canonical views in a set of training images, we compute a homography. This
homography is then applied to the binary silhouette of the person to obtain the
synthesized views. We refer to this approach as the “homography approach”.
An overview of our gait recognition framework is given in Figure 5.1. We
present recognition performance using three gait databases (UMD3, NIST and
CMU). The implicit SfM approach is used for the UMD3 and NIST databases
while the homography approach is used for the CMU database. Keeping in
view the limited quantity of training data, the DTW algorithm [19] is used for
gait recognition. A by-product of the above method is a simple algorithm to

synthesize novel views of a planar scene.
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Figure 5.2: Imaging Geometry

5.2 Framework for view-invariant gait recognition

The imaging setup is shown in Figure 5.2. The coordinate frame is attached
rigidly to a camera with the origin at the center of perspective projection and
the Z-axis perpendicular to the image plane. Assume that the person walks
with a translational velocity V = [vx,0,vz]T along the line AC. The line AB
is parallel to the image plane XY and this is the direction of the canonical
view which needs to be synthesized. The angle between the straight line AB
and AC, i.e. 0, represents a rotation about the vertical axis referred to as the
azimuth angle. In what follows, we will use the notation that [X,Y, Z] denotes

the coordinates of a point in 3D and [z, y] its projection on the image plane.

5.2.1 Tracking

We assume that only one subject is present in the field of view and the availabil-
ity of a high level motion detection module which identifies abrupt changes in

direction of motion and segments of approzimately constant heading directions.
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Assuming that we can find the location (z,cf,y,.s) of the persons head at the
start of such a segment, we use a sequential Monte Carlo particle filter [43] to
track the head of the person to get {(z'(¢),y'(t)),w'(t)} where the superscript
denotes the index of the particle and w'(#) denotes the probability weight for

the estimate ((z'(),y'(¢)).

5.2.2 Estimation of 3-D Azimuth Angle

Assume that the motion between two consecutive frames in the video sequence
is small. Using the optical flow based SfM equations, let p(z(t),y(t)) and
q(z(t),y(t)) represent the horizontal and vertical velocity fields of a point (x(t), y(t))
(e.g. centroid of the head) in the image plane where ¢ denotes time. Since we
consider a straight line motion along AC, p and ¢ are related to the 3D object

motion and scene depth by [44]

px(t),y(1)) = (e(t) = fap(t))h(2(t), y(1)) (5.1)
q(z(t),y(1)) = y()h(z(l),y(t)), (5.2)

where f denotes the focal length, h(z(t),y(t)) = vz(t)/Z(xz(t),y(t)) is the scaled
inverse scene depth and zs(t) = cot(0(t)) = Z—)Z((t),yf(t) = Z—Z(t) is the focus of
expansion (FOE). When vz = 0 but vy # 0, we see that § = 0, i.e. the canonical
direction of walk, AB. Also, in this case ¢(z,y) = 0.

For the constant velocity models, vz(t) = vz(# 0) and vx(t) = vx(# 0),
cot(0(t)) = +%. In this case, given the initial position of the tracked point

(ZTref, Yres), it can be shown that

_ple(t),y(t)  xpep — feot(D)
cot(a)(Trep, Yres) = )50 - . (5.3)
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For a derivation of (5.3) see the Appendix. Thus, given f and (z,¥0), the

azimuth angle # can be computed as

Lref — yrefCOt(Oé(l’refa yref))

col(f) = 7 \

(5.4)

Knowing (zo, y0),cot(a) and 6, f can be computed as part of a calibration pro-

cedure.

5.2.3 Statistical Error Analysis of Azimuth Estimation

Let fx(z) denote the distribution of a random variable X. Defining r = cot(«a),
from (5.3) we have r = 2—?. In order to obtain the distribution of r we define an
auxiliary random variable s = ¢. Then it can be shown using the properties of
a bijective transformation of a pair of random variables [45], that frs(r,s) =

fro(rs,s)|s|. The pdf of r follows by marginalization as

fa(r) :/OO Frs(r, s)ds :/O:o 1| fra(rs, s)ds. (5.5)

—00 —

In general, computing the above integral is non-trivial. We derive expressions

for the pdf of r for the following special cases.

1. Uniform additive noise for p and ¢:

Given p = p+n, and ¢ = ¢+n, where n, ~ U(—=Aq, A1), ng ~ U(=Aq, Ay)

and p and ¢ denote the true image-plane velocities, it can be shown that

1
= d .
In(r) = 7 [, lslds (5.6)
where [, ={v:p—A; <s<p+ATNG—A)r <s< (g+ Ag)r}

2. Zero mean multiplicative Gaussian noise for p and g:

88



180

179

1761 1

175¢ 1
380 400 420 440
X—==>

Figure 5.3: Tracked position of the head for 2 walk cycles

Given p = pn, and ¢ = gn, where n, ~ N (0,0} and n, ~ N(0,03) where

p and ¢ denote the true image-plane velocities, we can explicitly solve (5.5)

to get fr(r) = 222 m viz. Cauchy with scale parameter Z

From the standpoint of implementation, under arbitrary noise distributions, the
sequential Monte Carlo filter can be used to get the distribution of cot(a). As a
person walks, his/her head bobs periodically as shown in Figure 5.3 for 2 cycles.
Hence in order to estimate the distribution of cot(«) it is reasonable to consider
time-instants separated by the approximate period (7") of the walk cycle. Thus

2 (t+T)— z()
yi(t+ 1) —y(t)

cot(a(t +T)) ~ ( w' (L + T)) : (5.7)

where (2(1),75(t)) = arg max’ (z*(¢),y'(t),w'(t)) The distribution for cot(#) fol-

lows from (5.4) using the theory of propagation of random variables [45].
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5.2.4 View Synthesis

Having obtained the angle 6, we need to synthesize the canonical view. Let Z
denote the distance of the object from the image plane. If the dimensions of the
object are small compared to Z, then the variation in 8, df ~ 0. This essentially
corresponds to assuming a planar approximation to the object. Let [ Xy, Yy, Z4)'
denote the coordinates of any point on the person (as shown in the Figure 5.2)
who is walking at an angle § > 0 to the plane passing through the starting point
[(XyefYref Zres]” and parallel to the image plane which we shall refer to, hereafter,
as the canonical plane. Computing the 3-D coordinates of the synthesized point

involve a rotation about the line passing through the starting point.

Then
Xo Xo — Xyey Xres
Yo | =R(0O)| Yo—Yp |+ | Yy (5.8)
Zo 2o — Lyey Zres
where

cos(0) 0 sin(0)
RO)=| 0o 1 0 |. (5.9)
—sin(0) 0 cos(8)
Denoting the corresponding image plane coordinates as [xg, yg]" and [zq, yo|" (for

6 = 0) and using the perspective transformation, we can obtain the equations
for [z0,yo]’ as (see Appendix)
fxgcos((?) + 2, (1 — cos(0))
Tg = ,
’ —sin(0)(xs + Tres) + f

Yo=f 2
—sin(0)(xg + Tres) +

(5.10)

where

x = fzand y = fX
z z
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(5.10) is attractive since it does not involve the 3D depth; rather it is a direct
transformation of the 2D image plane coordinates in the non-canonical view to
get the image plane coordinates in the canonical one. Thus using the estimated
azimuth angle § we can obtain a synthetic canonical view using (5.10). A brief
derivation of (5.10) is given in the Appendix. In summary obtaining the synthe-

sized views from the non-canonical views involves a three step procedure:
1. Estimation of the image plane angle « from the video.
2. Estimation of the azimuth angle 6 via Equation (5.4).

3. View synthesis using Equation (5.10).

5.2.5 Alternative Approach for View Synthesis

The above procedure relies on the true translation of the walking person in the
video. For the case when there is no translation (e.g. person walking on a tread-
mill), neither @ nor f can be estimated from the video. An alternative approach
to view synthesis can be used in this case. We observe that Equation(5.10) is a

homography of the form

a 0 b
HO® =0 ¢ 0. (5.11)
d 0 €

where a = fcos(0), b = fa,.;(1 —cos(f), ¢ = f, d = —sin(f) and e =
—z,e58tn(0) + f. Hence if we have point correspondences for any planar sur-
face between the canonical and non-canonical views in a set of training images,
we can estimate a homography of the type in (5.11). This homography can then
be applied to the binary silhouette of the person in the non-canonical view to

get the synthesized views.
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5.2.6 Justification for generating the synthetic view

Although it is possible to recognize a person purely from joint-angles, considering
the difficulty in estimating them from video, we choose to take an appearance
based approach for gait recognition. For a person walking along a non-canonical
direction, appearance based features used for recognition get distorted. To ex-
plain this better we consider a width-vector based image feature. For a given
image the width-vector is computed as the distance between the extremities of
the silhouette along each row. The top part of the width vector corresponds
to the head-region, the middle part corresponds to the torso while the bottom
part corresponds to the foot-region of the individual. When the person is at
rest, the values of the width vector in the hand and leg regions will be smaller
as compared to when the legs are apart. Temporal plots of the width-vector for
the same person walking in the canonical and non-canonical(§ = 45) direction
are shown in Figures 5.5 (a) and (b) respectively. In these plots, the vertical
axis corresponds to the row index of the width vector, while the horizontal axis
corresponds to the frame number. The dark parts in the leg region correspond to
the rest phases while the bright parts correspond to when the legs are apart. A
simple gait feature, viz. the stride length or the maximal separation of the feet,
can be derived from the width plots by measuring the highest intensity in the
leg regions. Observation of the width plots for the canonical and non-canonical
views reveals that the apparent stride-length is smaller for the non-canonical
view. The second effect that is obvious from the plots is a foreshortening effect
as the person walks away from the camera. In order to obtain good gait recogni-
tion performance, it is necessary to correct for both of these effects through view

synthesis. We will show later in our experiments how view synthesis provides for
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a correction of both of these effects (see Figures 5.5 (¢) and (d)) and improves

the gait recognition performance appreciably.

5.3 Matching Gait Sequences using DTW

Since only limited training data is usually available for gait analysis, we adopt
a template-matching approach for recognizing gait. The number of frames in
the reference gait sequence and the probe gait sequence depend on the number
of gait cycles available. Larger the number of gait cycles used for matching,
the better will be the performance. Typically, the number of frames in the
reference and probe data will differ. Moreover, the reference and probe gait data
are seldom synchronized. Therefore, direct matching of a probe sequence with a
reference sequence is not possible. A pattern-matching method based on dynamic
programming paradigm is useful to deal with this situation. The DTW technique
[19] is used to compensate for the variability in the speed of walking which in
turn reflects in the number of frames for each gait cycle. Different appearance
based features may be extracted from the binarized silhouettes e.g. width of
the outer contour of the silhouette [46], smoothed versions of moment features
in image regions [13] etc with corresponding distance metrics for matching. In
order to assess the utility of our method without being affected by the choice of
a particular image feature, we choose to use the entire image as the feature with
binary correlation as a distance measure.

Given {0i(t),w'(t)} using (5.4) and (5.7) we choose the MAP estimate of
6 to synthesize the corresponding probe sequence image which we denote as
P(t). The gallery sequence is obtained from the video of the person walking in

the canonical plane. Use of DTW relies on similar start and end points for the

93



probe and gallery. Hence prior to applying the DTW algorithm it is necessary to
segment the video sequence into cycles. A simple way to achieve this is using the
width feature explained in Section 2.6. Figure 5.5(a) shows the width vector plot
as a function of time for a given video sequence. It is easy to see that the sum of
intensities along successive columns will show a periodic variation. The troughs
of the resulting waveform correspond to the rest positions during the walk cycle
while the crests correspond to the part of the cycle where the hands and legs
are maximallly displaced. A half-cycle consists of frames between two successive
troughs of sum of intensities plot. We take gallery images corresponding to 4
successive half cycles as the gallery and similarly for the probe. Details of the

DTW are given in Section 2.4.

5.4 Experimental Results

5.4.1 Gait-based Recognition

In this section, we present gait recognition results using three databases. We
would like to mention here that at present the USF gait challenge database is
the most widely used database in the community. In the USF database the
subject walks on an elliptical path and the back portion of the ellipse is used for
gait recognition experiments. However, for most of the path travelled there is
very little angle variation and hence this database is not a suitable testbed for
our approach.

As explained in Sections 2.2 and 2.3, the person’s head is tracked using a
sequential Monte Carlo filter. Using (5.4), 8 ~ (6°(t),w'(t)) is obtained. The

distributions corresponding to two different time instants are shown in Figure
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5.9. Using 0(1) = arg max,;(6(1), w'(t)) the image of the unknown person X (1)
is synthesized using (5.10). A bounding box is then placed around the part of
the motion image that maximally contains the moving person. In order to depict
the performance of the gait recognition algorithms, we use the CMC plots which
show the percentage of times the right person occurs in the top n matches where
n < P where P denotes the number of subjects in the gallery.

UMD3 database This consists of 12 people, who walk along straight lines
at different values of azimuth angle § = 0,15,30 and 45. The image sequences
corresponding to = 0 were used as the gallery while the other sequences were
used as a probe.

The synthesized images for Database 1 are shown in Figure 5.4, along with the
images from the original video sequences. The width profile plot for the canonical
view and the view synthesized from § = 45 are shown in Figure 5.5. As can be
seen from this plot, our method has compensated for both the foreshortening
effect as well as restored the true leg-swing.

From the synthesized images we note that in the torso region, the recon-
structed silhouette is broader than the original. The reason for this is the lim-
itation of the planarity assumption for the torso region viz. parts of the torso
unseen in the canonical view, appear in non-canonical views. The synthesis al-
gorithm, which interprets this as a plane, renders a broader reproduction of the
torso part. Notice however that this effect is somewhat lesser in the leg por-
tions of the silhouette. This fact, as will be explained later, can be exploited
to improve gait recognition performance. Quality of the synthesized images can
be evaluated by computing the binary correlation of the synthesized images at

6 = 15,30,45 with images in the canonical view. This is plotted as a function of
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Figure 5.4: (a) represents different stances of a person walking parallel to the camera;
(b) (d) and (f) represent different stances of a person walking at angles 15, 30 and 45
degrees to the camera; (c) (e) and (g) represent side-views synthesized from original
videos where the person walks at angles of 15, 30 and 45 degrees to the camera.
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Figure 5.5: Width profile as a function of time for (a) Canonical View (§ = 0);
(b)Unnormalized sequence for § = 45; synthesized views for: (c¢) § = 30 (d) 8 = 45.

0 in Figure 5.6. Two consecutive cycles in the canonical view are chosen as the
gallery to be compared with two consecutive gait cycles in the probe sequence.
The DTW technique is used to match a given probe sequence to the different
gallery sequences using binary correlation as a local distance measure and a simi-
larity matrix S = s(¢, j) is obtained, where s(¢, 7) refers to the similarity between
the probe ¢ and the gallery j.

Gait recognition performance for § = 15,30 and 45° is shown in Figures
5.7(a), (b) and (c¢) using the synthesized and raw images in terms of a cumu-
lative match characteristic. Clearly, our method has improved the recognition
performance . As noted before, the algorithm results in a broader reproduction
of the torso region. The situation can be remedied by assigning a lower weight

to the torso region when computing the binary correlation or simply ignoring it.
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Figure 5.6: Quality of reconstruction as a function of the angle of walk.

We take the latter approach by computing the binary correlation only over the
lower half of the boxed image. The result using only the leg region is shown as
the dashed lines in the Figure 5.7. It can be seen that the gait recognition result
is better than what is obtained by using the entire body. Interestingly, [23] notes
that the lower 20 % of the silhouette accounts for roughly 90% of the recognition.
Similarly [46] showed that the gait recognition in the case when the subject was
carrying a ball, viz. no upper body dynamics, the recognition rates were better.
To boost the gait recognition performance further, certain structural characteris-
tics of the individual that are extracted subsequent to view synthesis e.g. height
can be fused with the leg dynamics. The height of the probe sequence is esti-
mated robustly from the synthesized video as h(i) = medianh?(z),5 = 1--- M
M, being the length of the probe sequence. We fuse height information together
with the leg dynamics by scaling each entry s(z, ) of the similarity matrix by

Z((;)) ,2 — ;LE;))) The results for this case are

the corresponding height ratio, max(
shown as the solid line with circles in Figure 5.7. This strategy clearly gives the
best gait recognition performance.

The fact that the gait recognition results are encouraging upto angles of 45
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degrees allows us to hypothesize that it is possible to do reasonable human identi-
fication using gait with only two cameras (installed perpendicular to each other).
In order to study the efficiency of gait recognition with synthesized views, we
compute the Receiver Operating Characteristic (ROC), which is a plot of the
probability of detection (i.e. correct recognition), pp, vs. the probability of a
false alarm (i.e. false acceptance), pr, for azimuth angles § = 15,30 and 45 de-
grees. For a given threshold, we define the notion of detection to correspond to
s(z,1) > threshold and that of a false alarm to correspond to s(z, j) > threshold.
The plots are shown in Figure 5.8. The performance degradation with increas-
ing @ can be understood from these plots. The ROC curves indicate that the
proper detection threshold should vary with #, so as to obtain a performance
characteristic with small pp and large pp.

NIST database

This consists of 30 people walking along a Y -shaped walking pattern as
shown in Figure 5.10.

There are two cameras looking at the top horizontal part of the sigma. The
camera that is located further away is used in our experiments since the planar
approximation we make is more valid in that case. The segment of the sigma
next to the top horizontal part is used as a probe. This segment is at an angle
33° to the horizontal part. A few images from the NIST database are shown
in Figure 5.11. The method described before was used to estimate the walking
direction and it turned out to be very close to the true value (Figure 5.9)

To do gait recognition we employed the fusion of the leg-dynamics with the
height since it gave the best performance for Database 1. The gait recognition

result is shown in Figure 5.12. As can be seen the recognition rate is about 60%.
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Figure 5.7: Cumulative Match Characteristics for Original and Synthesized images

for (a) # = 15 (b) # = 30 and (c) # = 45 for UMD3 database.



Figure 5.8: ROC curves for § = 15,30 and 45 degrees for the case of leg and height
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Figure 5.10: ¥ shaped walking pattern in the NIST database.

(c) .

Figure 5.11: Examples for the NIST database (a) Gallery images of person walk-
ing parallel to the camera (b) Unnormalized 1mages of person walking at 33° to the
camera(c) Synthesized images for (b).
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Figure 5.12: Gait recognition performance on the NIST database.

One of the reasons for the lower recognition performance in this case is that
the image size is rather small. Note however that the recognition goes to 100%
within 6 ranks.

CMU MoBo database

The CMU MoBo database [47] consists of 25 people walking on a treadmill
in the CMU 3D room. There are six synchronized cameras evenly distributed
around the subject walking on the treadmill. For testing our algorithm we
considered views of the slow walk sequences from cameras 3 and 13. The camera
3 captures the exact side view while the camera 13 captures a non-canonical
view of the subjects. The sequence from camera 3 was used as the gallery
while the sequence from camera 13 was used as the probe. Since there is no
actual translation involved in this case, it is not possible to estimate the image

plane angle « or the focal length f. Hence in order to obtain the synthesized

103



Figure 5.13: Computation of Homography for the CMU database.

images for this database, we use an alternate approach. We considered several
points S = {(z1,y1), -, (n, yn)} on the side of the treadmill which is a planar
rectangular surface as shown in Figure 5.13. We then constructed the view
of this rectangular patch as it would appear in the canonical view. A set of
points S = {(z},y1), -+, (2/,y")} is considered on this hypothesized patch. A
homography of the nature of (5.11) is estimated using the sets S and S’ [40].
This homography is then used to obtain the synthesized images for the person.

Gait recognition performance using the unsynthesized and synthesized im-
ages is shown in Figure 5.14. Again we see that synthesis results in better gait
recognition performance and that using the leg region alone achieves better per-
formance as compared to using the entire body. In the latter case, the true

person is identified within the top 6 matches.

5.4.2 Video-based rendering of planar dynamic scenes

The view synthesis algorithm can also be used for rendering planar dynamic

scenes with interesting applications in video compression, video indexing and
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Figure 5.14: Cumulative Match Characteristics for Original and Synthesized images
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retrieval. It would be interesting to study how the method performs when the
object being viewed is non-planar. When the imaged object is non-planar, por-
tions unseen in the canonical view appear. An example is shown in Figure 5.15
which shows the top views of a rectangular block. The dashed rectangle repre-
sents the canonical case while the solid one represents the case when the block is
at an angle . Under perspective projection, the length of projection of the tilted
rectangular block on the image plane for § # 0 can be shown to be a function
of the spatial coordinates of the block(see Appendix), while under a weak per-
spective projection it is a function of # alone. To simplify analysis we used the
weak perspective approximation. The error introduced by this approximation
is small provided Z >> a,b,z. The dotted lines represent the true perspective
projections of the edge of the block while the solid lines represent the weak per-
spective approximation. Under weak perspective projection, the apparent width

of the block visible in the image plane is
I .
W, = Z(acos(&) + bsin(0)). (5.12)

Rendering this image of the block directly using (5.10) will lead to an incorrect
synthesized view. In general this problem can be avoided only if multiple cameras
are available. For the present single camera case, a simple way to circumvent this
problem is to synthesize only the portion of the image corresponding to acos(8).

From Figure 5.17, we see that the torso appears wider than in the canonical
view. This is due to the fact that the torso is really non-planar. The effects of
non-planarity become more severe as the azimuth angle increases. To deal with
this we need to ignore parts of the torso which are not seen in the canonical view.
We assume the torso to be a rectangular block. Given the extent of the torso

(U, L) the widths at different row positions a(z) : U < 2 < L can be learned
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Figure 5.15: Rendering of Non-planar objects

from different images of the person in the canonical view. Given 6, and an image
in the non canonical view at azimuth @ only pixels upto a distance of a(z)Cos(f)
(see (5.12)) from the left extremity of the silhouette are synthesized using (5.10).
The next issue is how to obtain U and L. To this end, the width of the outer
contour of the silhouette is computed for different images in the canonical view.
Principal components analysis is performed on the width vectors, which are then
projected on to the principal eigen vector. This has the effect of removing noise
and retaining only the true variations which occur in the torso(hand)and leg
regions. The result is shown in the Figure 5.16. From this overlay the extent of

the torso region can be determined.
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Figure 5.16: Width Vectors projected on to the principal eigen vector for azimuth
angle § =0

5.4.3 Fusion of Face and Gait

For optimal performance, the system must use as many cues as possible and com-
bine them in meaningful ways. Different modalities can be used for identification
based on the distance of the individual from the camera. If the person is far away
from the camera, it is hard to get face information at a high enough resolution
for recognition tasks. However when available, it yields a very powerful cue for
recognition. A modality which can be detected and measured when the subject
is far away from the camera is gait. One of the features of the NIST database is
that it provides for recognition of multiple modalities. The far portions of the
walking path are suitable for gait recognition, while at the end of the walking
path the person walks providing a frontal view of his face to the camera. This
final segment can be used for face-recognition. In such situations it is possible
to fuse both face and gait cues as part of a higher level recognition system to get
better recognition performance than from any of the single recognition units.
In [48], an algorithm for probabilistic recognition of human faces was pro-

posed. In still-to-video recognition, where the gallery consists of still images, a
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Figure 5.17: The first column in (a) shows a frame from the canonical view; the
second and third columns respectively show an image synthesized from a similar
frame at an azimuth § = 15 before and after the correction for non-planarity
is applied. (b) and (c) represent the same cases for azimuths § = 30 and 45
respectively.

time series model is used to fuse temporal information in a probe video, which
simultaneously characterizes the kinematics and identity using a motion vector
and an identity variable. The joint posterior density of the motion vector and
the identity variable is estimated at every time instant and then propagated to
the next time instant. Marginalization over the motion vector yields a robust
estimate of the posterior distribution of the identity variable. A computation-

ally efficient SIS algorithm is used to estimate the posterior distribution. It was

shown that a degeneracy in the posterior probability of the identity variable oc-
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curs, leading to improved recognition. The computational load involves a term
that is linearly proportional to the size of the database N. We employ decision
fusion which is a special case of data fusion (see Kokar et al. [34]) to combine
the results of our gait recognition algorithm and the face recognition algorithm
in [48]. We consider two fusion scenarios: hierarchical and holistic. The first
involves using the gait recognition algorithm as a filter to pass on a smaller set
of candidates to the face recognition algorithm. The second involves combining
the similarity scores obtained individually from the face and gait recognition
algorithms.

The face recognition algorithm yields a match score which is a probability
while the gait recognition algorithm yields a distance measurement. In order to
make the scores comparable before fusing them, it is necessary to apply a score
transformation to the classifiers. The transformation should be such that the
relative ordering of the scores is not altered. In other words the transforma-
tion function should be monotone. Some of the commonly used transformations
include linear, logarithmic, exponential and logistic. The purpose of these trans-
formations is, first, to map the scores to the same range of values and second,
to change the distribution of the scores. For example, the logarithmic transfor-
mation puts strong emphasis on the top ranks, whereas the lower ranked scores
which are transformed to very high values, have a quickly decreasing influence.
A detailed discussion of score transformation is given in [49] in the context of
combining classifiers for face recognition. It was shown that all the above men-
tioned transformation gave comparable results. For the problem of face and gait
fusion we chose the exponential transformation for score normalization. The

similarity matrices and CMC characteristics for the face and gait recognition
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algorithms are shown in Figure 5.18.

Hierarchical Fusion: Given the similarity matrix for the gait recognition
algorithm, we plot the histograms of the diagonal and non diagonal terms of the
normalized similarity matrix. From Figure 5.19 we note that the distributions
of the true matches and false matches have limited overlap. This suggests that
a threshold can be determined from the histogram and only individuals whose
score is higher than this threshold need be passed to the face recognition algo-
rithm. Although it is tempting to choose this threshold as high as possible, it
should be noted that due to overlap in the two histograms, choosing a very high
value may lead to the true person not being in the set of individuals passed to
the face recognition algorithm . For the NIST database we chose a threshold
of 0.035. This results in passing approximately the top six matches from the
gait recognition unit to the face recognition algorithm. The CMC plot for the
resulting hierarchical fusion is shown in Figure 5.20 (a). Note that the top match
performance has gone up to 97% from 93 % for this case. The more important
gain however is in terms of the number of computations required. This number
drops to one-fifth of its previous value. This demonstrates the value of gait as a
filter.

Holistic Fusion If the main requirement is that of accuracy as against com-
putational speed, alternate fusion strategies can be employed. Assuming that
gait and face can be considered to be independent cues, a simple way of com-
bining the scores is to use the SUM or PRODUCT rule [35]. Both the strategies
were tried. The CMC curve for either case is as shown in Figure 5.20(b). In

both cases the recognition rate is 100 %.
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5.5  Conclusion

In this chapter, we have proposed a method for synthesizing arbitrary views of
planar objects, and applying the synthesized views for gait recognition when
humans are walking at an arbitrary angle to the camera. Our method used the
differential form model of structure from motion for estimating the azimuth angle
of the original view from monocular video data. Thereafter, a video sequence
at the new view was synthesized. The entire process was done in 2D, though
3D structure of the scene played an implicit role. Examples of synthesized views
were presented. Gait recognition performance was reported for three databases
and the benefit of using our method was demonstrated. One of the future areas
of our work is to achieve reliable gait recognition over the entire field of view
by using only two cameras. Though the method has been explained from the
motivation of the gait recognition problem, it has important applications in other
areas too, like multimedia and video processing. That forms a part of our future

research into this problem.
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Chapter 6

Conclusions and Future Work

The goal of this thesis is to investigate the information contained in the video
sequences of human gait and how to extract and represent that information
in ways that facilitate human identification. The attractiveness of gait as a
biometric arises from the fact that it is non-intrusive and can be detected and
measured even in low resolution video. Furthermore, it is harder to disguise than
static appearance features such as face and it does not require a cooperating
subject. Unlike traditional biometrics like face, fingerprints, iris etc., gait is a
spatio-temporal signature viz. it contains a structural component and a dynamic
component. In this thesis, we presented algorithms for implicit and explicit
representation of these components. The following were the main contributions
of the thesis:

In Chapter 2, an appearance based method for gait recognition based on
template matching was presented. The width of the outer contour of the bi-
narized silhouette of a person was used as the gait feature. Different feature
vectors were derived from the basic width vector using either direct smooth-
ing and down-sampling or by way of eigenanalysis for gait representation and

matching. The results showed that since the gait measurements were highly
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structured, the two most significant eigenvectors retain most of the identity in-
formation. Also, eigen-analysis furnished an elegant way of smoothing the gait
data. During the matching process, the DTW algorithm was used to effectively
handle unequal lengths of the reference and probe gait sequences. Experimental
results were reported on several standard gait databases. The method was shown
to be robust to changes in walking speed. Other situations such as sensitivity to
viewing angle, different floor characteristics, low frame-rate etc were considered.
The performance of our method was found to be quite satisfactory on all the
databases. The contribution of dynamics via the velocity profile of the width
vector was studied and it was shown that, by itself, it is not sufficient to capture
the gait characteristics when used in isolation. Our experiments also confirm
that the side-view is the optimal one for capturing gait characteristics.

In Chapter 3, we proposed a systematic approach to gait recognition by
building representations for the structural and dynamic components of gait in an
HMM framework. A set of exemplars that occur during a gait cycle was derived
for each individual. To obtain the observation vector from the image features
two different methods were used. In the indirect approach the high-dimensional
image feature was transformed to a lower-dimensional space by generating the
Frame to Exemplar (FED) distance vector sequence. For compact and effective
gait representation and recognition, the gait information in the FED vector
sequences was captured using a HMM for each individual. In the direct approach,
the feature vector is directly used to train an HMM for gait representation. An
alternative approach based on the distance between the exemplars and the image
features is used for estimating the observation probability. The performance of

the methods was tested on different gait databases. In situations where the
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binary silhouettes had significant noise e.g. the USF gait challenge database,
the statistical nature of the hidden Markov model was shown to provide more
robust performance compared to appearance matching. On the other hand for
the CMU and UMD database where the silhouettes of good quality but the
amount of training data was limited, the appearance matching method gave a
better performance. This observation can guide the choice of the gait recognition
algorithm to be used in a particular situation.

In Chapter 4, combination of multiple instances of different gait features was
studied. Experiments were designed to analyze the significance of different body
parts such as the hands and legs for recognition. It was shown that there is an
asymmetry in gait as far as forward and back swings go and a simple way to boost
gait recognition via right and left projection vectors was demonstrated. We found
that the leg region exhibits a more consistent pattern and when combined with
simple physical features such as the apparent height, higher recognition rates
may be obtained. Frontal gait was also studied for the purpose of identification
and the width vector was computed as the frontal gait feature. Sum, product and
MIN rules were used to combine the decisions made using the separate features.
As expected, the overall recognition performance improved due to fusion.

In Chapter 5, we proposed a method for synthesizing arbitrary views of planar
objects, and applying the synthesized views for gait recognition when humans are
walking at an arbitrary angle to the camera. Our method used the differential
form model of structure from motion for estimating the azimuth angle of the
original view from monocular video data. Thereafter, a video sequence at the new
view was synthesized. The entire process was done in 2D, though 3D structure of

the scene played an implicit role. Examples of synthesized views were presented.
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Gait recognition performance was reported for three databases and the benefit
of using our method was demonstrated. An application to video-based rendering

of planar dynamic scenes was also presented.

6.1 Applications and Future Directions

This thesis provided a suite of algorithms for the problem of human identification
using gait. The ideas presented here can be applied to a variety of gait and non-
gait applications. The techniques developed apply to general activity-specific
person identification. One of the uses of the temporal width plot for example,
can be in the qualitative and/or quantitative assessment of gait abnormalities.
It would also be interesting to analyze if the warping path characteristics of the
DTW algorithm can be used to study subtle changes in individual gait patterns.
The gait recognition algorithms can also be used in conjunction with other cues
such as the color of clothing etc. for short time verification problems viz “was
this the same person who walked in front of this camera ¢ minutes ago?”. We
also presented a view invariant gait recognition algorithm. The fact that the
gait recognition results are encouraging upto angles of 45 degrees allows us to
hypothesize that it is possible to do reasonable human identification using gait
with only two cameras (installed perpendicular to each other). This could prove
to be less restrictive than the visual hull approach that needs at least 4 cameras.
A simple approach for correcting the view synthesized from a non-canonical view,
independent of the spatial location of the object was discussed. This approach
can be extended to more general 3-D models of objects. One of the uses of the
approach can be for example, for synthesizing canonical views of distant faces.

The approach also has potential for use in video communications. For example,
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if the azimuth angle of a dynamic planar patch can be estimated by the method
discussed in Chapter 5, then in order to reproduce the sequence at the receiver
end all we would need to send is a canonical image of the object, the azimuth
angle along with a few motion parameters. We also presented preliminary results
of a face and gait fusion algorithm. It would be interesting to study the fusion at

the data level of face and gait cues via 3-D models for view invariant recognition.
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Appendix A

Appendix

Proof of Equation (5.3):

Assuming a constant velocity model

B X(t) B me + vXt
l’(t) - fZ(t) - f Zref + th

Y)Yy
y(t) fZ(t) _fZTef o

Taking the time derivatives and simplifying

Zreva - Xreva

(Zref + UZt)2
Yiesvz

(Zref + th)Q

©(t) = f
y(t) = f
Dividing Equation A.6 by Equation A.7, we get

cot(a) = —=
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Z’reva - XTeva

(A.9)

—YrefUz

Noting that cot(0) = +% and multiplying and dividing Equation A.9 by f

ZrerZ7

we get

feol(9) — f7=

cot(a) = v = (A.10)
T Zey
_ Zreg = Jeol(0) (A.11)
Yref
where z,.5 = f)Z(T—“‘JJ: and y,.5 = ?—e;

Proof of Equation (5.10):

Let [ Xy, Yy, Zg]" denote the coordinates of any point on the person who is walking
at an angle § > 0 to the plane passing through the starting point [X,cfY,es Zes)
and parallel to the image plane which we shall refer to, hereafter, as the canonical

plane. Rotation of this point on to the canonical plane by 6 yields

Xint Cos(0) 0 Sin(0)] Xg— Xref (Xo — Xref)Cos(0) + (Zo — Zyes)Sin(0)

Yint = 0 1 0 - Yé’_Yref = (Yﬁ_Yref)

th —Szn(&) 0 008(9) Z@ — Zref —(Xg — Xref)Sz'n(Q) + (Zg — ZTef)COS(e)
(A 12

The coordinates of the synthesized point with respect to the coordinate frame

attached to the camera are given as

XO Xint Xref
% = Yint + Yref (‘Alg)
ZO Zint Zref
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which simplifies to

Xo XoCos(0) + ZgSin(0) — X,esCos(0) — Zer Stn(0) + X,ef

Yo | = Yy

Zo —XpSin(0) + ZgCos(0) — X,ef Stn(0) — Z,efCos(0) + Zyes
(A.14)

Under perspective projection,

Xo
To = fZ y Yo — f_ (A-15)
$e:f7€7y€:fz (A-16)

Substituting from Equation (A.14) in (A.15), we get

XoCos(0) + ZgSin(0) — X,e;Co0s(0) — Zpes Stn(8) + X,ef
—XySin(0) + ZyCos(8) — X, Sin(0) — Z,.;C08(0) + Zypes’
Yy
f—XgSz'n(H) + ZgC08(0) — X, Sin(0) — Z,.;C08(0) + Zypes

(A.17)

Ty =

Yo = (A.18)

Multiplying and dividing the numerator and denominator of Equations A.17

and A.18 by we get

z9Cos(0) + fSin(0) + [75(1 — Cos(0)) — fZ=LSin(0)

—xg5in(0) + fCos(0) — ZT—;me( )+ f Tef(l — 003(9))7

yo = [ —— v . (A.20)
—xgSn(0) + fCos(0) — [+ ”f Sin(0) + f Tef(l — Cos(0))

(A.19)

To =

Now for Z,.s, Zg >> 0, f Zref R~ fZ“f = 2, and Tef ~ 1 This means that
we consider the person far from the camera and for a few cycles only when he
does not move too far from the starting point.

Thus Equations A.19 and A.20 simplify to

2gCo0s(0) + z,.5(1 — Cos(0))

—Sin(0)(xp+ xref) + f
i Yo

(A.21)

T
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Proof of Equation (5.12):

Considering only the front face of the rectangular block in Figure 5.15 the pro-

jected length under true and weak perspective perspective projection are given

by (A.23)and (A.24)as

CLOOS(G) __ zaSin(f)

Wpersp - 2Sin(0 Z (JAQS)
1_|_ Z( )
Wpeakpersp = aCos(8) (A.24)
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