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When a system thermalizes it loses all memory of its initial conditions. Even

within a closed quantum system, subsystems usually thermalize using the rest of

the system as a heat bath. Exceptions to quantum thermalization have been ob-

served, but typically require inherent symmetries or noninteracting particles in the

presence of static disorder. The prediction of many-body localization (MBL), in

which disordered quantum systems can fail to thermalize despite strong interactions

and high excitation energy, was therefore surprising and has attracted considerable

theoretical attention. We experimentally generate MBL states by applying an Ising

Hamiltonian with long-range interactions and programmably random disorder to

ten spins initialized far from equilibrium with respect to the Hamiltonian. Using

experimental and numerical methods we observe the essential signatures of MBL:

initial state memory retention, Poissonian distributed many-body energy level spac-

ings, and evidence of long-time entanglement growth. Our platform can be scaled



to more spins, where detailed modeling of MBL becomes impossible.
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Chapter 1: Introduction

1.1 Cold Atoms for Quantum Simulation

When a system thermalizes it loses all memory of its initial conditions. Even

within a closed quantum system, subsystems can thermalize using the rest of the

system as a heat bath. However, it is still an open question whether a quantum

system will thermalize [1–12]. In the case that it can thermalize the dynamics

leading to thermalization are, in general, not well understood and can be non-

trivial [13–16]. Determining if a quantum system can thermalize is an important

question because in a thermal state one can use statistical mechanics to describes

the system’s dynamics with limited knowledge [17].

Cold atom systems have distinguished themselves as a leading platform for

quantum simulation [18, 19]. They have been used to investigate thermalization in

closed quantum systems [4,7,8,10–12,14,16,17,20–25] with a recent simulation in a

neutral atom system studying features of many-body localized (MBL) that cannot be

simulated with classical numerics [22]. In particular, cold atom quantum simulators

have been used to study the absence of thermalization in integrable systems [4] and

in the cases of Anderson localization [7, 8, 20] and MBL [10–12, 21–23], and have

studied non-trivial dynamics before a system thermalizes [14,16,17,25].
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Trapped ions [11, 25–38] bring the unique feature of tunable long-range inter-

actions [26, 39, 40] to the quantum simulation table. In the context of MBL this

allows study of the open theoretical question of what ranges of interactions support

an MBL phase [41–44]. I will discuss data where we scan the range of the inter-

action over a set of parameters where some predict many-body delocalization [43].

Moreover, trapped ions have site-specific readout, which in the case of studying

thermalization in closed quantum systems allows for one to determine if subsystems

down to the single-spin level can use the rest of the system as an effective heat bath.

1.2 Outline of Thesis

While I have been in the lab we have performed studies of adiabatic quantum

simulation [32–34], excited state dynamics [35, 37], quantum simulations in spin-1

systems [38], and the dynamics leading to thermalization [25]. However, this thesis

will only discuss our investigations of MBL [11].

Chapter 2 discusses the atom laser interactions that we use to perform quan-

tum simulations. In particular, I present a detailed discussion of a fourth-order Stark

Shift [45] that we use to implement programmable random disorder and prepare ar-

bitrary initial states in order to study MBL. Moreover, I discuss inhomogeneities

that arise in the Ising couplings due to the normal mode structure.

Chapter 3 gives an overview of the experimental apparatus and then jumps

into the details of a couple components of the setup that are new or were not covered

in previous theses on the project [46–49]. One of these topic is the astigmatism that
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is present in the laser beams that are used to drive the spin-spin interactions in

our system. Another is the individual addressing beam path. Also, I will discuss

in detail our investigations of the stability of the trapping radio frequency (RF)

potential and our subsequent attempts to lock it [50].

Chapter 4 describes our experimental investigation of MBL [11]. We ob-

serve the essential features of MBL: initial state memory retention, Poissonian dis-

tributed energy level spacings, and evidence of long-time entanglement growth. This

chapter contains an in depth discussion of the evidence of long-time entanglement

growth which was witnessed using quantum Fisher information (QFI). This discus-

sion makes qualitative connections between growth in the QFI and growth in the

half-chain entanglement entropy which is a more direct measure of entanglement.
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Chapter 2: Atom-Laser Interaction

2.1 Overview

In this chapter I will present the atom-laser interactions that are central to

the quantum simulations discussed in this thesis. Since previous theses [46,48] have

provided detailed derivations of the effective Ising interaction using the Magnus ex-

pansion and effective Hamiltonian theory [47,51] I will only give a high level overview

of the derivation of the effective spin-spin interaction using the Magnus expansion.

However, I will present a detailed derivation of the fourth-order Stark shift that has

enabled [45] the initialization of arbitrary product states and the application of site-

specific transverse magnetic field terms in our effective Hamiltonians. At the end,

I discuss the way the normal mode stucture affects the effective spin-spin coupling

profile, in particular, I will discuss the presence of an inhomogeneity in the nearest

neighbor coupling across the spin chain.

2.2 Stark Shifts and Stimulated Raman Transitions

We will start by considering the simplified model of two CW beams with fre-

quencies, ω0 and ω1, interacting with a three-level system schematically represented

4
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δ

ωe

ω0 ω1

ωHF

Figure 2.1: Schematic Diagram of Three Level System. Schematic diagram

of a three level system addressed by two laser beams at different frequencies. After

performing transformations to a rotating frame where the Hamiltonian is stationary,

one can treat the coupling terms between states as a perturbation to the diagonal

terms of the Hamiltonian using time-independent perturbation theory. Although the

second-order Stark shift for the experimental parameters is relatively small because

of cancellations of the second-order Stark shifts from the 2P1/2 and 3P3/2 levels, the

fourth-order energy correction is about 1000 times larger and can be used to prepare

arbitrary initial states and apply disordered effective field terms.
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in Figure 2.1. The bare Hamiltonian is:

H0 = ωe|e〉〈e|+ ωHF |↑〉 〈↑| , (2.1)

Assuming that ωHF � ωe, ω1, ω0 and thus |↑〉 and |↓〉 cannot be coupled with

a single photon. The two CW electric fields can be written as:

E(r, t) =
1∑
i=0

Ei
2

(ei(ki·r−ωit−φi) + e−i(ki·r−ωit−φi))ε̂i, (2.2)

where ki is the laser wavevector, φi is the laser phase, Ei is the electric field strength,

and ε̂i = is the polarization in the frame of the ion with |ε−i |2 + |ε0i |2 + |ε+i |2 = 1. We

will ignore the phase and the wavevector for this derivation of the Stark shifts. The

laser-ion interaction for dipole allowed transitions is given by:

Hint =− ~µ · ~E

=(
Γ0

2
|↓〉 〈e|+ Γ0

2
|↑〉 〈e|+ h.c.)(eiω0t + e−iω0t)

+ (
Γ1

2
|↓〉 〈e|+ Γ1

2
|↑〉 〈e|+ h.c.)(eiω1t + e−iω1t),

(2.3)

with Γi = giC(ε̂i), where g2
i = γ2Īi

2I0
is the resonant S −→ P Rabi frequency with

time-averaged beam intensity, Īi, and saturation intensity of the transition, I0. C(ε̂i)

is the dipole matrix coupling element for a given polarization. The relevant coupling

coefficients for 171Yb+ can be seen in Tables 2.1 and 2.2 and a detailed description

of how they can be calculated using the Wigner-Eckart theorem [52, 53] is given

in [54]. We will now transform the full Hamiltonian, H = H0 +Hint into a rotating

6



frame given by the unitary transformation U |e〉 = e−iω0t|e〉. The Hamiltonian in the

rotating frame is given by:

H ′ = U †HU − iU †∂U
∂t

= U †(H ′0 +H ′int)U − ω0|e〉〈e|.
(2.4)

Thus

H ′ =ωHF |↑〉 〈↑|+ ∆|e〉〈e|

+ (
Γ0

2
|↓〉 〈e|eiω0 +

Γ0

2
|↑〉 〈e|eiω0 + h.c.)(eiω0t + e−iω0t)

+ (
Γ1

2
|↓〉 〈e|eiω0 +

Γ1

2
|↑〉 〈e|eiω0 + h.c.)(eiω1t + e−iω1t).

(2.5)

Making a rotating wave approximation where one does not consider all terms

rotating at 2ωi, leaves:

H ‘ =ωHF |1〉〈1|+ ∆|e〉〈e|

+ (
Γ0

2
|↓〉 〈e|+ Γ0

2
|↑〉 〈e|+ h.c.)

+ (
Γ1

2
|↓〉 〈e|ei(ω0−ω1)t +

Γ1

2
|↑〉 〈e|ei(ω0−ω1)t + h.c.).

(2.6)

Applying a second unitary transformation of U |↑〉 = e−i(ω0−ω1)t |↑〉 and another

rotating wave approximation discarding terms oscillating at ω0 − ω1, leaves:

H
′′

= δ |↑〉 〈↑|+ ∆|e〉〈e|+ Γ0

2
|↓〉 〈e|+ Γ0

2
|e〉 〈↓|+ Γ1

2
|↑〉 〈e|+ Γ1

2
|e〉 〈↑| . (2.7)
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Where δ = (ωHF − (ω0 − ω1)). Now that we have a stationary Hamiltonian

we will apply non-degenerate, time-independent perturbation theory with H0 =

δ |↑〉 〈↑|+∆|e〉〈e| and treat the off-diagonal terms as a perturbation, V = Γ0

2
|↓〉 〈e|+

Γ0

2
|e〉 〈↓| + Γ1

2
|↑〉 〈e| + Γ1

2
|e〉 〈↑|. Since, the dipole operator cannot couple a spheri-

cally symmetric level to itself the first-order light shift is zero. The nonvanishing

second-order correction to the energy is:

∆E(2)
n =

∑
m 6=n

|〈n|V |m〉|2

E
(0)
n − E(0)

m

. (2.8)

Applying (2.8) to |↓〉:

∆E
(2)
|↓〉 =

∑
m6=n

| 〈↓|V |e〉|2

E
(0)
|↓〉 − E

(0)
e

=
|Γ0|2

4(0−∆)
= −|Γ0|2

4∆
.

(2.9)

Applying (2.8) to |↑〉 with ∆� δ:

∆E
(2)
|↑〉 =

∑
m 6=n

| 〈↑| |V |e〉|2

E
(0)
|↑〉 − E

(0)
e

=
|Γ1|2

4(δ −∆)
≈ −|Γ1|2

4∆
.

(2.10)

Thus, the differential stark shift on these two levels is:

∆E
(2)
diff|↓〉|↑〉 = ∆E

(2)
|↑〉 −∆E

(2)
|↓〉 =

|Γ1|2 − |Γ0|2
4∆

. (2.11)
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δ

ωe

ω0 ω1

ωHF

F=1,mF=0

F=0,mF=0

F=1,mF=-1 F=1,mF=1

ω1/2

F=1,mF=0
F=0,mF=0

F=1,mF=-1 F=1,mF=1

2S1/2

2P1/2

ω3/2
F=2,mF=0

F=1,mF=0

F=2,mF=-1 F=2,mF=1
3P3/2 F=1,mF=1F=1,mF=-1

F=2,mF=2F=2,mF=-2

ωFS

+-

Figure 2.2: Yb Raman Level Diagram. Schematic diagram of all of the states

in the 2S1/2, 2P1/2, and 3P3/2 manifolds. All but the |3P3/2, F = 2,mF = ±2〉 states

have dipole allowed transitions that could affect the Stark shift of the |↓〉 and |↑〉

levels (provided non-zero coupling coefficients between the states).
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Applying (2.8) to the real 171Yb+ system (excluding a 3[3/2]3/2 bracket state which is

≈ 50 THz above the 2P1/2 line and only changes the second order shift by 10% [45])

as seen in Figure 2.2 and using the coupling coefficients in Tables 2.1 and 2.2, Gives

a Stark shift on the qubit states and Zeeman levels of:

∆E
(2)
|↓〉 =

g2
0

12∆
+

g2
1

12(∆− ωHF )
− g2

0

6∆′
− g2

1

6(∆′ + ωHF )
,

∆E
(2)
|↑〉 =

g2
0((ε+0 )2 + (ε−0 )2)

12(∆ + ωHF )
+

g2
0(επ0 )2

12(∆ + ωHF + ω1/2)
+
g2

1((ε+1 )2 + (ε−1 )2)

12∆
+

g2
1(επ1 )2

12(∆ + ω1/2)

− g2
0((ε−0 )2 + (ε+0 )2)

24(∆′ − ωHF )
− g2

0(3 + (επ0 )2)

24(∆′ − ωHF + ω3/2)
− g2

1((ε−1 )2 + (ε+1 )2)

24(ωFS −∆)
− g2

1(3 + (επ1 )2)

24(∆′ + ω3/2)
,

∆E
(2)
|±〉 =

g2
0((επ0 )2 + (ε±0 )2)

12(∆ + ωHF )
+

g2
0(ε±0 )2

12(∆ + ωHF + ω1/2)
+
g2

1((επ1 )2 + (ε±1 )2)

12∆
+

g2
1(ε±1 )2

12(∆ + ω1/2)

− g2
0(1 + 2(επ0 )2 + 5(ε±0 )2)

24(∆′ − ωHF + ω3/2)
− g2

0((επ0 )2 + (ε±0 )2)

24(∆′ − ωHF )
− g2

1(1 + 2(επ1 )2 + 5(ε±1 )2)

24(∆′ + ω3/2)

− g2
1((επ1 )2 + (ε±1 )2)

24∆′
.

(2.12)

Writing the frequencies normalized by the fine-structure splitting ωFS, ∆̃ =

∆/ωFS ≈ 0.339, ∆̃′ = ∆′/ωFS ≈ 0.661, ω̃HF = ωHF/ωFS ≈ 1.26 × 10−4, ω̃1/2 =

ω1/2/ωFS ≈ 2× 10−5, ω̃3/2 = ω3/2/ωfs ≈ 2× 10−5 and expanding to lowest-order in

ω̃HF , ω̃1/2, and ω̃3/2 yields a differential AC stark shift between |↓〉 and |↑〉 of:

∆E
(2)
diff|↓〉|↑〉 =− g2

0 + g2
1

12ωFS

(
ω̃HF

∆̃2

)
− g2

0(επ0 )2 + g2
1(επ1 )2

12ωFS

(
ω̃1/2

∆̃2

)
− g2

0 + g2
1

6ωFS

(
ω̃HF

∆̃′2

)
+
g2

0(επ0 )2 + g2
1(επ1 )2

24ωFS

(
ω̃3/2

∆̃′2

)
.

(2.13)
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If one ignores the hyperfine splitting of the P manifold (it has small effect of

order ≈ 10−5) then one finds simpler expressions for the second-order Stark shifts

on the |↓〉 and |↑〉 states:

∆E
(2)
|↓〉 =

g2
0

12

(
1

∆
− 2

ωFS −∆

)
,

∆E
(2)
|↑〉 =

g2
0

12

(
1

∆ + ωHF
− 2

ωFS − (∆ + ωHF )

)
.

(2.14)

For an individual addressing beam with 20 mW of time-average power focused

tightly to a 3 µm waist, we find ∆E
(2)
diff|↓〉|↑〉 = −1.5 kHz. This is a small shift because

of the cancellations of the Stark shifts from the 2P1/2 and 3P3/2 levels. Thus to

achieve sufficiently large Stark shifts from the individual addressing beam to use for

arbitrary product state preparation and for the application of a random disordered

field one must look to higher-order energy corrections.

Expanding the differiential AC Stark shift between |↓〉 and the Zeeman states,

|±〉, to lowest-order in ω̃HF , ω̃1/2, and ω̃3/2 gives:

∆E
(2)
diff|↓〉|±〉 =∓ g2

0c0 + g2
1c1

12ωFS

(
1

∆̃
+

1

∆̃′

)
− g2

0 + g2
1

12ωFS

(
ω̃HF

∆̃2
+

2ω̃HF

∆̃′2

)
− g2

0(ε∓0 )2 + g2
1(ε∓1 )2

12ωFS

(
ω1/2

∆̃2

)
− (g2

0 + g2
1)(3 + 3(ε∓0 )2 − 2(ε±0 )2)

24ωFS

(
ω̃3/2

∆̃′2

)
.

(2.15)

With ci = (ε+i )2 − (ε−i )2 a measure of the circular polarization of the ith beam.

The next non-zero correction to the energy is given by a fourth-order pertur-

bation. Using the notation Vab = 〈a|V |b〉 and Eab = E
(0)
a − E(0)

b this fourth-order

11



shift can be written as:

∆E(4)
n =

∑
k,l,m6=n

VnmVmlVlkVkn
EnmEnlEnk

−∆E(2)
n

|Vnm|2
E2
nm

−2Vnn
VnmVmlVln
E2
nlEnm

+V 2
nn

|Vnm|2
E3
nm

. (2.16)

Using Vnn = 0 and that m, l, k 6= n gives a shift for |↓〉 and |↑〉:

∆E
(4)
|↓〉 =

V|↓〉eVe|↑〉V|↑〉eVe|↓〉
E|↓〉eE|↓〉|↑〉E|↓〉e

−∆E2
|↓〉
|V|↓〉e|2

E
(2)
|↓〉e

=
|Γ0|2|Γ1|2

16(0−∆)(0− δ)(0−∆)
−
(−|Γ0|2

4∆

)
Γ2

0

4∆2

= −|Γ0|2|Γ1|2
16∆2δ

+
|Γ0|4
16∆3

,

∆E
(4)
|↑〉 =

V|↑〉eVe|↓〉V|↓〉eVe|↑〉
E|↑〉eE|↑〉|↓〉E|↑〉e

−∆E
(2)
|↑〉
|V|↑〉e|2
E2
|↑〉e

=
|Γ1|2|Γ0|2

16(δ −∆)(δ − 0)(δ −∆)
−
(−|Γ1|2

4∆

) |Γ1|2
4(δ −∆)2

≈ |Γ1|2|Γ0|2
16∆2δ

+
|Γ1|4
16∆3

.

(2.17)

Rewriting this in terms of the two-photon Rabi frequency Ω = Γ0Γ1

2∆
and using the

aforementioned assumption that δ � ∆ gives a fourth-order Stark shift of:

∆E
(4)
|↓〉 = −|Ω|

2

4δ
,

∆E
(4)
|↑〉 =

|Ω|2
4δ

.

(2.18)

As for the case with the second-order energy shift we will now apply this

formula to 171Yb+ (once again excluding the contributions from the 3[3/2]3/2 state).

Thus the total fourth-order Stark shift is given by:
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∆E(4)
n =

∑
a6=n

Ω2
n,a

4δn,a
. (2.19)

In the previous equation Ωn,a is the two-photon Rabi frequency between |n〉 and |a〉,

δn,a = ωa− (ω0−ω1), and ωa = E
(0)
a −E(0)

n . The necessary Rabi frequencies for this

calculation are (once again ignoring the hyperfine structure of the excited states):

Ω|↓〉,|↑〉 = (ε−0 ε
−
1 − ε+0 ε+1 )Ω0,

Ω|↓〉,|−〉 = −(ε−0 ε
π
1 + επ0ε

+
1 )Ω0,

Ω|↓〉,|+〉 = (ε+0 ε
π
1 + επ0ε

−
1 )Ω0,

Ω|↑〉,|−〉 = (ε−0 ε
π
1 + επ0ε

+
1 )Ω0,

Ω|↑〉,|+〉 = (ε+0 ε
π
1 + επ0ε

−
1 )Ω0,

(2.20)

with Ω0 =
g20
6

( 1
∆

+ 1
ωFS−∆

). The maximum fourth-order light shift would occur

for pure σ̂± polarization, which has the largest Rabi frequency between the clock

states, Ω|0〉,|1〉. However, due to the optical access in our experimental setup it is not

possible to send in a beam with that polarization. Thus, the largest experimentally

implementable fourth-order Stark shift occurs for ε̂ = α̂ = 1/2σ̂−+ 1/
√

2π̂+ 1/2σ̂+.

Due to the sign of the coupling coefficients, when ε̂ = α̂ the fourth-order Stark shift

on |↑〉 from |±〉 cancel and ∆E
(4)
|↑〉 = 0. For the two different polarizations discussed

above, the differential fourth-order Stark shift between |↓〉 and |↑〉 is:

13



∆E
(4)
diff|↓〉|↑〉 =

Ω2
0

2δ|↓〉,|↑〉
for ε̂ = σ̂±,

∆E
(4)
diff|↓〉|↑〉 =

Ω2
0

8

(
1

δ|↓〉,|−〉
+

1

δ|↓〉,|+〉

)
for ε̂ = α̂.

(2.21)

Instead of considering just two applied frequencies, we will now discuss the

experimental realization using a 355 nm pulsed laser beam with repetition rate,

ωrep, where all possible comb teeth pairs can contribute. One can write the two-

photon Rabi frequency for two comb teeth, k0 and k1:

Ωn =
gk0gk1

2∆
≈ sech(

nωrep
2

), (2.22)

where k1 − k0 = n and under the assumption the pulse bandwidth is significantly

greater than ωHF . Define j such that |ωa − 2πjωrep| is minimized and plug (2.22)

into (2.19):

∆E(4)
n =

∑
a6=n

Ω2
n,a

4

∞∑
k=−∞

sech2((j + k)πωrepτ)

δn,a − k(2πωrep)

=
∑
a6=n

Cn,a
Ω2
n,a

4δn,a
,

(2.23)

with δn,a = ωa − j(2πωrep) and:

Cn,a =
∞∑

k=−∞

sech2((j + k)πωrepτ)

1− (2πkωrep
δn,a

)
. (2.24)
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Only a few of the closest beatnotes contribute to the Stark shift as the de-

nominator in (2.24) increases quickly. In addition, for ωrep much greater than the

Zeeman splitting of the F = 1 levels of the 2S1/2 manifold, ∆E4
|↑〉 = 0. Now the

differential fourth-order Stark shift can be written:

∆E4
diff|↓〉|↑〉 =C|↓〉,|↑〉

Ω2
0

2δ|↓〉,|↑〉
for ε̂ = σ̂±,

∆E4
diff|↓〉|↑〉 =

Ω2
0

8

(
C|↓〉,|−〉
δ|↓〉,|−〉

+
C|↓〉,|+〉
δ|↓〉,|+〉

)
for ε̂ = α.

(2.25)

Using the same experimentally realistic parameters as above for calculating

the second order shift of a time-averaged power of 20 mW focused down to 3 µm,

and the laser parameters of ωrep/2π = 120 MHz, a pulse duration of τ ≈ 14 ps, and

a bandwidth of about 70 GHz the fourth-order energy shift between |↓〉 and |↑〉 is:

∆E
(4)
diff|↓〉|↑〉 = 247 kHz for ε̂ = σ̂±,

∆E
(4)
diff|↓〉|↑〉 = 137 kHz for ε̂ = α̂.

(2.26)

The fourth-order Stark shift is about 100 times larger than the second-order

Stark shift because of the cancellations of the second-order Stark shifts from the

2P1/2 and 3P3/2 levels allowing its use to prepare arbitrary initial product states and
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2S1/2: F = 0,mF = 0 2S1/2: F = 1,mF = 0

2P1/2: F = 0,mF = 0 0 1/
√

3

2P1/2: F = 1,mF = −1 1/
√

3 1/
√

3

2P1/2: F = 1,mF = 0 1/
√

3 0

2P1/2: F = 1,mF = 1 1/
√

3 −1/
√

3

3P3/2: F = 1,mF = −1
√

2/3 −1/
√

6

3P3/2: F = 1,mF = 0
√

2/3 0

3P3/2: F = 1,mF = 1
√

2/3 1/
√

6

3P3/2: F = 2,mF = −1 0 1/
√

2

3P3/2: F = 2,mF = 0 0
√

2/3

3P3/2: F = 2,mF = 1 0 1/
√

2

Table 2.1: Dipole coupling matrix element for different polarizations from |2S1/2:

F = 0,mF = 0〉 and|2S1/2: F = 1,mF = 0〉 to excited P manifold.

apply disordered potentials to the ions.

2.3 Mølmer-Sørenson Interaction and Effective fields

For the discussion of the Mølmer-Sørenson interaction [39] I will start with

the Hamiltonian for a laser field interacting with a two-level atom in a harmonic

potential in an interaction picture with respect to the bare harmonic oscillator and

atomic Hamiltonians [55]:
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2S1/2: F = 1,mF = −1 2S1/2: F = 1,mF = 1

2P1/2: F = 0,mF = 0 −1/
√

3 −1/
√

3

2P1/2: F = 1,mF = −1 −1/
√

3 0

2P1/2: F = 1,mF = 0 −1/
√

3 1/
√

3

2P1/2: F = 1,mF = 1 0 1/
√

3

3P3/2: F = 1,mF = −1 1/
√

6 0

3P3/2: F = 1,mF = 0 1/
√

6 −1/
√

6

3P3/2: F = 1,mF = 1 0 −1/
√

6

3P3/2: F = 2,mF = −1 1/
√

2 0

3P3/2: F = 2,mF = 0 1/
√

6 1/
√

6

3P3/2: F = 2,mF = 1 0 1/
√

2

Table 2.2: Dipole coupling matrix element for different polarizations from |2S1/2:

F = 0,mF = −1〉 and |2S1/2: F = 1,mF = 1〉 to excited P manifold.
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H =
Ω

2
|↑〉 〈↓| exp(i(η(ae−iωt + a†eiωt)− δt+ φ)) + h.c., (2.27)

Where h = 1, a and a† are the raising and lowering operators of a harmonic oscillator

with frequency ω, δ is the detuning from the atomic transition which in our case

is ωhf , η = ∆kx0 is the Lamb-Dicke parameter which is ≈ 0.16 in our setup, ∆k

is the wavevector difference and φ is the phase difference between the two photons

used to drive the stimulated Raman transition, and x0 =
√
h̄/2mω is the size of the

harmonic oscillator ground state.

When the ion’s motional wavepacket is much smaller than the wavelength

or when η2(2n̄ + 1) � 1, known as the Lamb-Dicke limit, then processes that

change the motional state by more than one quanta are suppressed and one can use

eiη(ae−iωt+a†eiωt) ≈ 1 + iη(ae−iωt + a†eiωt). Then (2.27) can be approximated as:

H ≈ Ω

2
|↑〉 〈↓| (1 + iη(ae−iωt + a†eiωt))ei(−δt+φ) + h.c., (2.28)

In the case of driving the atom on resonance, δ = 0, one can disregard the phonon

terms oscillating at ±ω, which gives a Hamiltonian of:

Hcarr =
Ω

2
(|↑〉 〈↓| eiφ + |↓〉 〈↑| e−iφ). (2.29)

We refer to this as driving a carrier transition. This allows manipulation of the

18



spin state without changing the motional state. We use carrier transitions for state

initialization, reading out in the σx or σy basis, and to apply effective σx and σy

fields in our simulated Hamiltonians. It is clear from (2.29) that with correct choice

of phase the Hamiltonian simplifies to a σx or σy operator.

When δ = ±ω the stationary terms in the Hamiltonian are then the ones that

change the motional state as well spin state. The Hamiltonian is then:

Hrsb =
iηΩ

2
(|↑〉 〈↓| aeiφ − |↓〉 〈↑| a†e−iφ), (2.30)

Hbsb =
iηΩ

2
(|↑〉 〈↓| a†eiφ − |↓〉 〈↑| ae−iφ). (2.31)

For δ = −ω, one gets (2.30), which is referred to as a red side band transition because

the beatnote frequency is a harmonic oscillator frequency away from ωHF and is

equivalent to the Jaynes-Cummings Hamiltonian [56]. When the laser beatnote

frequency is δ = ω this is called the blue side band transition and is an anti-Jaynes-

Cummings Hamiltonian.

In the case of the Mølmer-Sørenson interaction when both the red and blue

sidebands are applied simultaneously one can write the Hamiltonian as [48]:

HMS = Ωcos(µt+ φm)[σφs−π/2 + ησσs(ae−iωtt + a†eiωtt)], (2.32)

with:
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φs =
φr + φb + π

2
,

φm =
φr − φb

2
.

(2.33)

Generalizing this to many ions and many modes, choosing φr = 0 and φb = π

giving φs = π and φm = −π/2, and disregarding the off-resonant coupling to the

carrier transition gives:

HMS = −
∑
i,m

ηi,msin(µt)σxi ((ame
−iωt,mt + a†me

iωt,mt)). (2.34)

The effective Ising interaction emerges from the Magnus expansion given by:

U(t) = T [e−i
∫ t
0 dt1H(t1)] = eΩ̄1+Ω̄2+Ω̄3+···, (2.35)

Here, T is the time-ordering operator and the first three terms of the Magnus ex-

pansion are given by:

Ω̄1 =− i
∫ t

0

dt1H(t1),

Ω̄2 =− 1

2!

∫ t

0

dt1

∫ t1

0

dt2[H(t1), H(t2)],

Ω̄3 =
i

3!

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]).

(2.36)
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Plugging (2.34) into the above equations gives the effective Ising interaction in

the second order term emerging from the fact that the phonon raising and lowering

operators for the same mode do not commute. When working in the far-detuned

limit, ηi,mΩi � |µ − ωm|, which ensures that the normal modes are only virtually

excited, allows one to ignore the spin-motion coupling terms, σixam and σixa
†
m that

emerge in the first order equation and one is left with:

U ≈ exp(−
∑
i,j,m

σxi σ
x
j

iηi,mηj,mΩiΩj

2(µ2 − ω2
m)

ωmt). (2.37)

There are no higher order terms in the Magnus expansion as this second order term

commutes with the base Hamiltonian.

Equation (2.37) is equivalent to the the time-evolution operator for a long-

range Ising interaction:

Heff =
∑
i,j

Ji,jσ
x
i σ

x
j , (2.38)

with the strength of the spin-spin couplings given by:

Ji,j =
∑
m

bi,mbj,mΩiΩjΩR

2(µ2 − ω2
m)

. (2.39)

In this equation, b is the normal mode coupling matrix to each ion and the interaction

strengths are written proportional to the atom recoil frequency, ΩR = (∆k)2

2M
. These
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long-range interactions fall off with a power law, Ji,j ≈ 1
|i−j|α , where α can be tuned

between 0 and 3 as discussed below.

One can also generate an effective global σz field by asymmetrically detuning

the red and blue sidebands about the normal modes of motion. In this case when

choosing the appropriate rotating frame a global σz emerges from the first-order

term in the Magnus expansion.

2.4 Influence of Normal Modes on the Interaction Profile

The ions’ equilibrium positions are determined through the balance of the

mutual electrostatic repulsion of the ions and the confining potential. In our trap

the ions are tightly bound in the x and y direction and only weakly bound in

the z direction and thus form a linear chain in this direction. Due to the ions’

interaction their motion is coupled together and thus the motion of a single ion

in a chain of N ions can be written in terms of N collective normal modes of

motion. A detailed discussion of the calculation of the ion equilibrium positions

and normal mode frequencies and eigenvectors is given in [57]. We use the higher

frequency transverse normal modes of motion because they are less sensitive to

thermal motion outside of the Lamb-Dicke limit and heating as a consequence of

the stronger confinement [58].

One can think of the spin-spin coupling as arising from a modulation of the

Coulomb interaction between the ions through the virtual excitation of the normal

modes of motion. From this description and (2.39) it is clear that the spin-spin

22



coupling profile is determined by the normal mode structure. In this section I

will discuss how we tune the range of the interaction and the inhomogenitiy of the

nearest neighbor Ising coupling that arises from the normal mode profile and discuss

its dependence on α.

To achieve longer range interactions (smaller α) one detunes closer to the

center of mass mode, the highest frequency mode, or increases the axial confinement

to increase the bandwidth of the transverse normal modes so that the coupling to the

center of mass mode is stronger relative to the other modes. Because the center of

mass mode is an all-to-all coupling this results in a long range interaction. However,

in this case an inhomogenity in the nearest neighbor interactions, JNN , arises as

the highest frequency normal modes of motion (excluding center of mass) have a

stronger coupling to the end ions than the center ions. Thus, JNN is larger on the

ends of the chain than in the center.

For shorter range interactions (larger α), one detunes further from the center of

mass mode, or decreases the bandwidth of the normal modes so that the coupling to

the center of mass mode becomes weaker compared to the lower frequency modes.

Since these lower frequency modes do not couple to all of the ions equally this

decreases the range of the interaction. Once again, there is an inhomogenity in JNN

due to the fact that the lower frequency normal modes of motion have a stronger

coupling to the center ions, so JNN in the center of the chain is larger than on the

ends. This inhomogenity varies with increasing α from JNN being larger on the ends

to being larger in the center with roughly homogeneous couplings when α ≈ 1.3 as

seen in Fig. 2.4. Although, there is a point where the coupling between the two
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Figure 2.3: Normal Modes. Normal mode coupling coefficients for 10 ions from

highest to lowest frequency. The first few high frequency modes have a stronger

coupling to the end ions than the ions at the center of the chain resulting in JNN

being larger for the ends of the chain than for the center for longer range interactions.

Conversely, the lower frequency modes have a stronger coupling to the center ions

and thus JNN is larger for the center than on the ends for shorter range interactions.
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end ions and the center ions is equal, Fig. 2.5 makes clear that there is never a

point where the nearest neighbor interactions are completely uniform since there is

never a point where the standard deviation of JNN is equal to zero. Moreover, from

this plot it appears as if the value of α for which the couplings are most uniform is

increasing with larger ion chains.

I will mention, but not discuss in detail, that there is a much less pronounced

inhomogenity of the longer range interactions across the chain.
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Figure 2.4: NN Inhomogenity vs α. Ratio of the nearest neighbor coupling

strength between two end ions and the center ions for 6, 8, 10, 12, and 14 ions with

respect to α. For longer range interactions (smaller α), JNN is larger on the end of

the chain due the stronger average coupling of the highest frequency normal modes

to the end of the chain. However, as the interaction range becomes shorter (larger

α) JNN becomes large for center of the chain because the lower frequency normal

modes couple more strongly to the center of the chain.
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Figure 2.5: NN Inhomogenity vs α Standard deviation. Standard deviation

of the nearest neighbor couplings for 6, 8, 10, 12, and 14 ions with respect to α. As

also seen in Figure 2.4 the couplings are most homogenious at α ≈ 1.3. However,

since the standard deviation is always non-zero there is never a point were the

couplings are completely uniform. The value of α where the couplings are most

uniform appears to be increasing with increasing ion number.
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Chapter 3: Experimental Apparatus

In this chapter I will discuss our particular experimental setup for trapped

ion quantum simulation. As mentioned earlier this is a mature project in a mature

lab and thus, many of the details of the setup have been discussed in the theses of

already graduated members of the quantum simulation lab [46–49] or other projects

in the Monroe group. I will begin with a high-level overview and then jump into

a more detailed discussion of the setup. I will expand on the astigmatism of the

Raman beams, the individual addressing beam path, and our attempts to lock the

frequency of the secular motion of the trap which are new since Crystal Senko’s

thesis [48].

3.1 Overview

We trap ions in a three-layer RF Paul Trap. An RF voltage is applied to the

middle electrodes which confines the ions radially. The trap geometry results in a

zero of the RF field along an axis of the trap referred to as the RF null. DC voltages

are applied to the outer electrodes to provide axial confinement and to provide

additional compensatory voltages to ensure that the ions are along the RF null.

The trap is housed inside an ultra-high vacuum chamber which we believe to have a
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pressure on the level of 10−11 Torr. Although this is a low pressure, the ion lifetimes

are still limited by collisions between the ions and background gas molecules. This

is a motivation for attempts to develop a cryogenic system at 4 K which which

could potentially cryopump the pressure down a few orders of magnitude and lead

to longer lifetimes [59].

Resonant light at 369 nm is used to cool, initialize (optical pumping), and

detect the ions on the
∣∣2S1/2

〉
to
∣∣2P1/2

〉
transition. Ions in the low-lying

∣∣2D3/2

〉
levels are repumped using 935 nm light. One unique feature of our lab is that we

have additional far-detuned Doppler cooling beams at 48 MHz, 400 MHz, 800 MHz

from resonance. The beam at 48 MHz is present to cool ions that are experiencing

micromotion, which is motion at the RF drive frequency, and significantly increases

cooling efficiency during loading when the trap RF is low. The cooling beams at 400

MHz and 800 MHz are present to cool the ions after a collision that are presumably

hot. We photoionize in two steps: the first is provided by a 399 nm diode laser and

the seconds either comes from a 369 nm laser or our 355 nm laser.

We collect the the detection florescence from the ions with an objective (NA

= 0.23) which we image and then focus onto a PMT for calibrations and diagnostics

or an ICCD camera for data taking. Using a camera enables site-specific readout of

the ions which is essential for the data presented in this thesis. About 10% of the

369 nm light is focused onto a different PMT which we use to detect loss of the ions

during the cooling cycle.

For coherent operations between the two effective spin states we use the beat-

note between two pulsed laser beams that originate from a Coherent Paladin com-
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pact 4 W laser. Because the repetition rate is chosen so that a single comb cannot

drive the hyperfine transition, we use AOM’s to make up the difference so that the

beatnote can drive transitions. We use the zeroth order light from one of the AOM’s

used for coherent operations to apply site-resolved Stark shifts on the ions [45].

There is also a microwave horn present, that we use for diagnostics and the initial

alignment of the Raman beams.

3.2 369 nm Resonant Laser Light and 399 nm Loading Light

We use 369 nm light to perform optical pumping (state initialization), Doppler

cooling, and readout. Because we work with long ion chains and thus must expand

our beams to globally address all of the ions we historically need ≈ 2.5 mw delivered

to the trap which is more than the other experiments. Although, as I will discuss

below, we may not need as much power when working with longer chains because our

far detuned cooling beam does not effectively recool longer chains after a collision

between an ion in the chain and a background gas molecule. The beam path for the

resonant (369 nm), loading (399 nm), and repump (935 nm) light is schematically

represented in Figure 3.1

Since we need so much laser power we use a Coherent MBR-110 Ti:Sapphire

laser pumped by a Lighthouse Photonics Sprout-G-18W which provides 18 W of

532 nm, to produce 739 nm light. This laser is well documented in the Coherent

manuals and in previous theses by [46] and [48]. Approximately 50 mW of this light

is sent to a setup to perform Doppler-free spectroscopy on I2 as documented in the
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thesis of Andrew Chew [60]. At peak performance we have seen upwards of 1.75

W out of the MBR as measured after the pickoff for I2 spectroscopy, but recently

we have only managed about 1.2 W at this point. These numbers are well below

what one could expect to for optimal performance of the MBR and are probably

due to the fact that the cavity is not clean. This is supported by the fact that every

time the power out of the MBR dips it can be recovered by cleaning the intra-cavity

etalon.

The remaining 739 nm light that is not used for Doppler-free spectroscopy

is fiber coupled into a polarization maintaining fiber (Coastal Connections 630 nm

PM) using a Thorlabs PAF-X-11-B-FiberPort. Typically, this fiber coupling effi-

ciency is greater than 60%. The output of this fiber is directed into in a Spectra

Physics Wavetrain doubling system where it is frequency doubled to 369 nm. As a

consequence of this fiber coupling the frequency doubler rarely needs to be realigned,

however, a procedure for doing so is discussed in Senko’s thesis [48].

As the light exits the doubler it is approximately 430 MHz detuned from

the
∣∣2S1/2, F = 1

〉
to
∣∣2P1/2, F = 0

〉
transition and then is shifted to appropriate

frequency using EOM’s and AOM’s. After the doubler there are three HWP’s, two

PBS’s, and a thin film polarizer that allow the light to be arbitrarily redistributed

to all of the different 369 nm beam paths.

The light that is reflected by the thin film polarizer after being transmitted

by the first HWP and PBS pair is sent to an AOM (Brimrose QZF-420-40-370)

where its frequency is shifted on resonance with the
∣∣2S1/2, F = 1

〉
to
∣∣2P1/2, F = 0

〉
transition. The RF source for this AOM is a PTS 500 frequency synthesizer from
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Figure 3.1: Schematic Diagram of the 369 nm Beams. A 532 nm laser

pumps a Ti:Sapphire laser which outputs at 739 nm. We fiber couple this light

to a polarization-maintaining fiber whose output we frequency double to 369 nm.

This 369 nm light is split into several different beams for Doppler cooling, detection,

and optical pumping. There are HWP PBS pairs that act as variable attenuators

that allow for any arbitrary distribution of laser intensity into each of the beams.

We couple all of the 369 nm light to fibers to spatially filter resonant laser light

when the AOM is not being driven. After the fibers, all of the 369 nm beams are

combined with the 399 nm loading beam and 935 nm repump and are focused down

on the ions.
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Programmed Test Sources inc. Because of dipole selection rules, ∆F = 0,±1 and

∆mF = 0,±1,
∣∣2P1/2, F = 0

〉
only decays to the

∣∣2S1/2, F = 1
〉

(except for decay to

a low lying
∣∣2D3/2, F = 1

〉
state) creating a closed cycling transition which allows

for efficient state-dependent detection between the |↓〉 and |↑〉 states.

This florescence is collected by a imaging objective CVI (UVO-20.0-10.0-355-

532, NA=0.23) and is then magnified by a factor of ≈ 130 by a doublet lens pair and

is slowly focusing onto either a camera (Princeton Instruments PIMax: 1024i ICCD,

for a detailed description see [61]) or a PMT (Hamamatsu H10682-210) based on

the position of the flipper mirror as seen in Figure 3.2. The PMT has an additional

lens to demagnify the image so that it fits on the detector. The camera and imaging

objective are being updated with a new custom objective with NA=0.4 which will

allow for more light collection and an Andor iXon Ultra 897-EX EMCCD camera.

There is an adjustable aperture (Thorlabs SM1D12CZ) at the image plane of

the objective that filters out light scatter that is not from the ion. We replaced the

previous fixed pinhole with the adjustable one because it was clipping the individual

addressing beam and was thus limiting the number of ions that could be individually

addressed. The amount of background scatter does not decrease when we close the

aperture which seems to indicate that it is not at the image plane of the objective,

so when the new 369 nm imaging system is installed it will allow for the tuning of

the distance between the aperture and the objective lens.

In the camera and PMT beam path there are Semrock LP02-355RS-25 and

FF01-370/10-25 to filter out 355 nm and other background light. An additional

Semrock FF01-370/10-25 is in the PMT beam path in order to further filter out the

33



LPD01-355RU-25

Doublet

Adjustable Iris

355 nm InputUVO-20.0-10.0-355-532

Vacuum Window

Box

FF01-370/10-25

LP02-355RS-25

90/10 BS

f=75 mm

BLP01-355R-25

FF01-370/10-25

FF01-370/10-25

Flipper Mirror

FF01-370/10-25

Dropout PMT

PMTCamera

Ions

Demagnifying 
         Lens

Figure 3.2: Schematic Diagram of Ion Imaging Optics. The 369 nm florescence

from the ion is collected with an off-the-shelf imaging objective with NA of 0.23

which is also used to tightly focus the individual addressing beam. The light at 369

nm is magnified by a factor of ≈ 130 and slowly focused onto either a camera or

PMT depending on the position of the flipper mirror. 10% of the 369 nm florescence

is sent to a dropout detection PMT. The individual addressing beam is combined

with the 369 nm beam path using a dichroic beam splitter. There are several filters

in the beam paths to the camera and PMT’s in order to filter out room light and

scatter from the individual addressing beam.
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355 nm light that enters into the imaging system due to the individual addressing

beam. This filter is not needed in the camera path because the camera intensifier is

off during the application of the individual addressing beam.

10% of the 369 nm light is picked off and sent to an additional PMT which

is used to monitor fluorescence counts during cooling to determine if the ions are

in the trap. If the cooling fluorescence counts drop below a certain threshold for

a given number of consecutive cooling cycles the control program interrupts the

experimental sequence and lowers the trapping RF and applies full cooling power and

the additional far detuned cooling frequencies. Because our ability to recapture ions

after a background gas collision depends on how quickly additional cooling power

and the farther detuned cooling beams can be applied to the ions, the probability

of a successful recapture increases greatly as compared to having the experiment

operator determine if ions were lost and applying the ion recapture scheme.

In order to efficiently determine if the ions are still in a linear chain during

cooling it is important that the number of background counts on the PMT due to

other sources of light is small. This is achieved by including two Semrock FF01-

370/10-25 filters and a Semrock BLP01-355R-25 filter. However, when we installed

the second FF01-370/10-25 filter there was still a significant amount of background

scatter that seemed to be from the individual addressing beam so installing an

additional 355 nm filter such as another Semrock FF01-370/10-25 or a LPD01-

355RU-25 may further lower the background counts.

The 369 nm light that is reflected by the first HWP and PBS pair and trans-

mitted by the second pair is used for Doppler cooling on the transition
∣∣2S1/2

〉
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to
∣∣2P1/2

〉
. In order to cool both the

∣∣2S1/2, F = 0
〉

and the
∣∣2S1/2, F = 1

〉
states,

this light is first sent through a resonant New Focus EOM at 7.37 GHz. Cool-

ing of both states is necessary because at the end of an experiment some ions are

in the
∣∣2S1/2, F = 0

〉
and there is some probability of off-resonantly exciting the∣∣2S1/2, F = 1

〉
to
∣∣2P1/2, F = 1

〉
transition which can decay to the

∣∣2S1/2, F = 0
〉

state. The second order sideband is at 14.74 GHz, which is equal to the combined

hyperfine splitting of the
∣∣2S1/2

〉
and

∣∣2P1/2

〉
states. The RF drive for this EOM is

≈0.5 W after amplification and is supplied by a Vaunix Lab Brick signal generator.

The light is then sent through an AOM (Brimrose QZF-420-40-370) that fre-

quency shifts the first order beam to a half a linewidth away from the
∣∣2S1/2, F = 1

〉
to
∣∣2P1/2, F = 0

〉
and the

∣∣2S1/2, F = 0
〉

to
∣∣2P1/2, F = 1

〉
transitions for the EOM

carrier and second order sideband beams, respectively. This is the detuning that

gives the most efficient Doppler cooling. This AOM is driven by an amplified signal

from a HP8640B which is sent through a computer controlled VCA to allow for

continuous control of the RF power.

The zeroth order of this AOM is used as a far detuned cooling beam, which we

refer to as ”protection plus” for when the chain suffers a background gas collision.

Because of the beam’s high power, it can cool a large range of ion velocities. This

beam must be blocked using a physical shutter because it is the zeroth order output

of an AOM, the other beams are modulated using the RF drive to the AOM. Because

of the speed of mechanical shutters, this beam must be blocked during the exper-

imental cycle and thus further underscores the importance of the aforementioned

drop-out detection.

36



The light that is reflected by both pairs of HWP’s and PBS’s is used for

global preparation of the
∣∣2S1/2, F = 0

〉
state through optical pumping. This light

is first sent through a resonant New Focus EOM at 2.105 GHz which is equal to the

hyperfine splitting between the
∣∣2P1/2

〉
levels. This EOM is driven by a HP8671A

and its strength is tuned such that power in the carrier mode is zeroed. The light

then pass through an AOM (Brimrose QZF-420-40-370) whose first diffracted order

is on resonance with
∣∣2S1/2, F = 1

〉
to
∣∣2P1/2, F = 1

〉
. Since the

∣∣2P1/2, F = 1
〉

levels

have some probability of decaying to the
∣∣2S1/2, F = 0

〉
driving this transition can

prepare
∣∣2S1/2, F = 0

〉
with high fidelity.

The last 369 nm beam is another far-detuned cooling beam which we refer

to as the “protection” beam which is the transmitted light from the first PBS and

the thin film polarizer. This light passes through an AOM (IntraAction ASM-

4001LA8.18) and its negative first order diffracted beam is ≈ 800 MHz off-resonance

of the
∣∣2S1/2, F = 1

〉
to
∣∣2P1/2, F = 0

〉
transition. The large amount of power in

this beam, just as with the “protection plus” beam, and the large detuning results

in cooling ions over a large range of velocities, however, it is unable to cool the∣∣2S1/2, F = 0
〉

state.

All of the 369 nm light is coupled to optical fibers to spatially filter resonant

light scatter from the AOM’s. 400 MHz AOMs are used in order to achieve large

deflection angles between the zeroth and first diffracted order beams out of the

AOM and to ensure the zeroth order light is far off-resonance. There is a really nice

summary figure of all of the 369 nm light in [48].

The optical pumping and detection beams are combined on a 50/50 BS before
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being coupled to fiber and the rest of the 369 nm beams are combined on 50/50 BS’s

after the optical fibers. The light is vertically focused at an intermediate focus by

V1 which is then imaged onto the ions by V2 with a magnification factor 1/5. An

improvement to the current optics setup would be to move the 369 nm fiber output

closer to the chamber which should improve beam pointing stability.

Loading is achieved using a two step ionization process which is described in

detail in [62]. The first step is provided by a photon from a 399 nm laser. The second

is traditionally provided by a 369 nm resonant photon, but we have found that it is

much more efficient to use the 355 nm beam as the second step of ionization because

of the high power in that beam. The 399 nm laser comes from a Toptica (DL100)

grating-tuned external cavity diode laser and is combined with the protection beam

after the 369 nm fiber with a Semrock dichroic beamspliter FF380-Di01-25x36.

As previously noted there is some probability for population to decay into

the
∣∣2D3/2

〉
levels. We repump this population into the

∣∣2S1/2

〉
state by apply-

ing 935 nm laser light on resonance with the
∣∣2D3/2

〉
to
∣∣3[3/2]1/2

〉
transition be-

cause the
∣∣3[3/2]1/2

〉
contains some of the

∣∣2P1/2

〉
state and

∣∣2P1/2

〉
↔
∣∣2D3/2

〉
and∣∣2P1/2

〉
↔
∣∣2S1/2

〉
are dipole-allowed transitions [48]. A Toptica (DL100) grating-

tuned external cavity diode laser provides this light. The frequency is stabilized

by feeding back to a piezo to control the grating angle using software to lock a

frequency measurement on a wavemeter (High Finesse WSU). The laser frequency

is on resonance with the
∣∣2D3/2, F = 1

〉
to
∣∣3[3/2]1/2, F = 0

〉
transition. The light

passes through a fiber EOM from EOSpace driven at 3.0695 GHz and adds side-

bands at the drive frequency which are at approximately 2% of the carrier. The
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lower sideband is used to drive the
∣∣2D3/2, F = 2

〉
to
∣∣3[3/2]1/2, F = 1

〉
transition.

This light is combined with the 369 nm and loading light using a dichroic mirror.

Under current experimental conditions (I optimized the fiber coupling of each

beam before the measurement) the power in all of the laser beams as measured

by the FieldMate Laser Power Meter set on λ = 399 nm and directly after their

respective fiber couplings unless otherwise noted are:

Power out of the doubler - 27 mW

Loading power (measured before M1) - 1.8 mW

Cooling power (measured at a cooling VCA setting of 5) - 443 µW

Protection power - 400 µW

Protection plus power - 600 µW

Optical pumping power - 204 µW

Detection power - 8.5 µW

3.3 355 nm Raman Laser Light

I will now discuss the 355 nm optics setup that is used to deliver the 355 nm

light from a Coherent Paladin compact 4 W laser from the output of the laser to

the ions. The Raman setup is also documented in [48]. In this thesis I will give an

an overview of the Raman optics setup and discuss the astigmatism of the light at

the ions that is a consequence of using lenses whose focal lengths are defined for

different wavelengths.

After the 355 nm light exists the Paladin laser it encounters a pickoff window
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whose reflection is sent to a fast photodiode (Alphalas UPD-30-VSG-P) used for

the beatnote stabilization lock [48, 63] as seen in Figure 3.3. The transmitted light

through the pickoff window then reaches a HWP and PBS used as a variable at-

tenuator for the light reaching the ions. The light is then split into two paths by a

50/50 BS for the two Raman beams.

The two Raman beam paths are identical except we use the zeroth order light

from the Raman 2 AOM for the individual addressing beam, the AOM in the Raman

2 beam path has multiple frequencies applied to it, and there is a delay stage in

the Raman 2 beam path to match the optical path length of the two Raman arms.

Thus, I will only discuss the Raman 2 path in detail, but both paths can be seen in

Figs. 3.3, 3.4.

After the 50/50 BS there is a HWP used to tune the polarization to give

the maximum diffraction efficiency from the AOM (typically ≈ 50%). The light

then passes through a f=100 mm lens which focuses the light through the AOM

(Brimrose QZF-210-40-355) so that the AOM can be imaged. We want to image

the AOM because we apply multiple frequencies simultaneously to generate the

spin-spin couplings and we want the output of the ions at these different drive

frequencies to overlap at the ions. As mentioned, the zeroth order light is picked off

for the individual addressing beam path using a D-mirror and is re-collimated using

a f=400 mm lens. The first order output of the Raman 2 AOM is re-collimated with

a f=250 mm lens.

The light is then sent through a telescope consisting of a f=250 mm plano-

convex lens, a f=100 mm horizontal cylindrical lens and a f=500 mm vertical cylin-
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Figure 3.3: First Half of 355 nm Beam Path. The 355 nm pulsed laser light

is provided by a Coherent Paladin 4 W laser. Some of this light is picked off from

the main beam path for the beat-note stabilization lock. The rest of the light is

broken up into two beams that each pass through imaged AOM’s, are beam shaped

with telescopes, and are focused at an intermediate focus which is later imaged onto

the ions. The zeroth order light from the Raman 2 AOM is used for individual ion

addressing.
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Figure 3.4: Second Half of 355 nm Beam Path. After the intermediate focus,

the beam is recollimated with a f=100 mm lens and encounters a QWP and a HWP

to ensure maximum coupling between the two effective spin states. Afterward, there

is a pickoff window to divert light to a photodiode that will be used to monitor laser

intensities for noise eating. There is a delay stage in the Raman 2 beam path so

that the length of the Raman 1 and 2 beam paths can be matched. Since the beams

hit the ions at a 45 degree angle the effective horizontal beam waist is a factor of

√
2 larger.
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Figure 3.5: Individual Addressing Beam Path. After the Raman 2 AOM the

individual ion addressing light passes through an AOM that is not imaged so that

different diffraction angles correspond to a different laser beam position at the ions.

After the AOM the light passes through a telescope consisting of a negative lens

with f=-50 mm and a lens with f=150 mm. The light then pass through a slow lens

which matches the 355 nm beam to the 369 nm camera imaging system. There are

also waveplates in this beam path to set the beam polarization correctly. Some of

the light is picked off for a sample and hold noise eater.
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drical lens. Afterward, the light is focused down with a horizontal cylindrical lens of

f=150 mm and a vertical cylindrical lens of f=100 mm to a beam waist, in principle,

of 10 µm vertically and 100 µm horizontally at the intermediate focus. In reality,

when imaging the spot size at the intermediate focus we see that it is really 9 µm

vertically and 90 µm horizontally.

This is the optimal vertical beam waist in terms of sensitivity to pointing

instability. We determined this by measuring the decay time of oscillations due to a

Stark shift from the red and blue sidebands during a Ramsey experiment. We saw

that the decay time is shorter when the Raman beams were more tightly focused in

the the vertical direction and unchanged when the Raman beams were less tightly

focused in the vertical direction.

After the intermediate focus the beams are then recollimated using a f=100

mm spherical lens. The beam is then focused down onto the ions using an f=110

mm best form lens which is a lens that consists of two spherical surfaces but has be

optimized for reduced spherical aberration. This imaging system consisting of the

f=100 mm spherical lens and f=110 mm best form lens has a magnification of ≈ 1:1

between the intermediate focus and the ions.

There is also a delay stage in the Raman 2 beam path in order to match the

path lengths of the two beams so that the pulses in each arm hit the ions simulta-

neously. The light also passes through a QWP and HWP to set the polarization of

the beam so that the light only couples between the |↓〉 and |↑〉 states and there is

no coupling to the Zeeman levels. There is no coupling to the Zeeman levels when

the beams are horizontally polarized (not accounting for the birefringence of the
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vacuum window).

An imperfection in the Raman beam setup is astigmatism between the focal

positions in the vertical and horizontal directions due to using lenses with focal

lengths defined for different wavelengths. We determine the degree of astigmatism

by placing a mirror right before the vacuum chamber in the Raman 1 beam path

and reflecting the light onto a camera that is at the same effective optical position

as the ions. We then fit the following equation for the beam waist to the data:

ω(z) = ω0

√
1 +

(
z − z0

zR

)2

. (3.1)

Where ω is the beam waist, z0 is the position of the focus, z is the axial position,

and zR is the Rayleigh range. This fit along with the directly measured beam waists

can be seen in Fig. 3.6. There is clearly astigmatism present as the location of

the focus in the horizontal and vertical direction are different (Final lens position of

0.291 in. for the vertical focus vs. 0.717 in. for the horizontal focus). With normal

operating conditions we measure the beam waist at the ions to be 9 µm vertically

and 93 µm horizontally.

Although, a horizontal waist of 93 µm is rather large we find that it is not large

enough to provide uniform laser intensity for longer chains. For a chain of 26 ions

with an axial harmonic potential with frequency of 500 Hz for a horizontal beam

waist of (accounting for the factor
√

2 because of the angle of the Raman beams with

respect to the ions) there would be a ∼5 % variation in the Rabi frequency across the
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chain. This is problematic for global state preparation and measurement of the ions

along any direction of the Bloch sphere because these operations require uniform

Rabi frequencies along the length of the chain. In the current system we addressed

this issue by defocusing the Raman beams to achieve a large horizontal beam waist,

but this results in a substantial amount of laser power being thrown away and much

lower laser intensity at the ions. Thus, in future setups using long ion chains it

would be most efficient to use a diffractive optic or some other beam shaping optical

element that could deliver a top-hat beam profile at the ions. Because, working with

a horizontal beam waist of 93 µm results in only ∼ 15 % of the total laser power

in the full Gaussian beam being delivered to the ions for a chain of 10 ions with an

axial harmonic potential of 500 Hz (∼25µm chain length).

There is a 355 nm pickoff window in both Raman beam paths that will even-

tually be used to monitor their intensities in order to correct for laser intensity

fluctuations. The photodiode signal will be fed to a PID lock which will feed back

to the AOM’s in each respective arm. There is an additional complexity in the case

of noise eating on the Raman 2 beam in that the RF drive is often lowered during

the experimental evolution to perform adiabatic ramps. Thus, the set point of the

PID lock will also need to be ramped so the lock point will follow the RF drive.

As mentioned above, the zeroth order light from the Raman 2 AOM is used

for an individual addressing beam that allows for the application of site-resolved

arbitrary Stark shifts on the ions whose beam path is detailed in Figure 3.5. After

the zeroth order light is recollimated by the f=400 mm lens in Figure 3.3 it is focused

down with an f=250 mm lens and passes through a HWP so that the polarization can
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Figure 3.6: Raman Beam Astigmatism. Horizontal (a) and vertical (b) beam

waists respectively of Raman one at the ion position with respect to the position of

the final lens before the chamber. Clearly the beam is astigmatic as the focul points

in the vertical direction (final lens position of 2.91) and the horizontal direction

(final lens position of 7.17) are different
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be tuned for optimal diffraction efficiency (as with the Raman beams the diffraction

efficiency is typically 50%). The AOM is not placed at the focus of the beam so

that the output of the AOM is not imaged. This is done so applying different RF

frequencies results in a displacement of the individual addressing beam at the ions.

The beam is then recollimated with a f=250 mm lens. It encounters a delay

stage which was installed so that the length of the individual addressing beam path

can be matched with the length of the Raman beam path so the pulses from the

individual addressing beam can hit the ion at the same time as the pulses from the

Raman beams if there were ever a reason to do so. The light then impinges on a

telescope with a magnification of 3 consisting of a negative lens of f=-50 mm and

a plano convex lens of f=150 mm. After the telescope, the beam passes through a

slow lens with a focal length of f=750 mm which was chosen using Zmax to ensure

that there would be tight focus at the ions after the light passes through the 369

nm imaging system (a horizontal beam waist of less than 3 µm [45]).

There is a HWP and QWP after the slow lens to set the polarization to the

value which gives the largest fourth-order Stark shift which, as mentioned in the

previous chapter, is when the light is polarized 1/2σ̂− + 1/
√

2π̂ + 1/2σ̂+ along the

ion axis of quantization. This is achieved when the light’s polarization is an equal

superposition of vertical and horizontal polarization along the beam propagation

direction. After the polarizers, the beam is then combined with the 369 nm imaging

system.

There is also a piece of glass which picks off some of the 355 nm light and

monitors it on a photo diode. This lock is a sample and hold lock with proportional
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and double-integral gain, which samples the intensity of the individual addressing

beam during the Doppler cooling cycle, compares it to a set point, and holds at

the output value of the proportional and double-integral filter (New Focus LB1005

High-Speed Servo Controller) during the interaction cycle of the experiment.

3.4 Trap RF Stabilization

We confine ions by applying RF and DC voltages to electrodes in a three-layer

RF Paul trap [46–48]. The RF voltage is supplied by an HP 8640B at about 38 MHz

and passes through an amplifier. We further increase this voltage with a quarter-

wave helical resonator (the can) which increases the voltage by the quality factor,

Q, of the resonator.

From the discussion in the previous chapter it is clear the effective spin-spin

couplings in our system depend on the secular trapping frequency. Thus, it follows

that if the the secular trapping frequency is unstable, the spin-spin couplings will

be as well. The secular frequency of the ions’ motion [62] if given by:

ωtrap =
eV0

21/2mΩTR2
, (3.2)

where e is the charge of the electron, V0 is the voltage of the RF drive, m is the

mass of a 171Yb+ ion, ΩT is the RF drive frequency delivered to the trap, and R is

the distance from the RF electrodes to the ions. Since the charge, trap geometry,

and mass are fixed the only sources of noise on the secular frequency can come from
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noise on V0 or on ΩT . Ideally, one would like to stabilize V0
ΩT

, but we instead lock the

RF voltage delivered to can and ΩT to the resonance of the can as detailed below.

When a background gas collides with an ion, the chain destablizes and we

lower the trap RF to facilitate cooling of the ions. This is done by switching to a

RF path with a VCA which is used to lower the RF delivered to the trap. We do this

because we believe the RF heats the ions when they are not on the RF null. This

process of lowering and raising the RF results in ∼1-5kHz drift in ωtrap which relaxes

back to the value before recrystalizaion after approximately the time the RF was

lowered. Traditionally, we compensate for this by simply waiting to continue taking

data for the length of time the RF was low before continuing with experiments.

We lock ΩT to the resonance of the can by minimizing the reflection from the

can which is done by locking the phase of the reflected signal as seen in Figure 3.7.

The phase of the reflected is mixed with a fixed phase delay. This value is then

locked using a home built PID which feeds back onto the frequency of the HP8640B

Signal Generator.

This value is locked because if ΩT is not on the can resonance, then there will

be less power delivered to the trap. During the course of a recrystalization cycle we

find that the can resonance drifts by ∼1-2 kHz. Looking at equation 3.2, this seems

like it would only account for a secular frequency change of a few Hz out of ∼4.8

MHz. Thus, this drift in ΩT does not account for the drift we see in the secular

frequency [48].

As a result, we have investigated if the drift in the secular frequency after

recrystalization is due to changes in the RF power delivered to the trap. When
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Figure 3.7: Trap RF Stabilization Diagram. The RF voltage for the trap is

supplied by a HP8640B signal generator. The main output goes through an RF

switch, which directs the RF through either a VCA used to lower the RF power, or

a mixer used to lock the RF power. Afterward, the two paths are recombined and

then pass through an RF amplifier and then a bi-directional coupler whose forward

output is connected to the can, which steps up the voltage to the trap. The forward

pickoff of the bi-directional is sent to a rectifier whose signal is sent to a PID to lock

the RF power delivered to the can. The reflection pickoff is compared with a fixed

phase delay and sent to a PID to ensure ΩT follows the can resonance.
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directly measuring the RF power supplied to the can we saw a shift that was roughly

the same size and relaxed on the same timescale as the trap secular frequency. This

motivated looking into drifts in the RF power applied to the can as the explanation

for the drift in the secular frequency.

Further evidence pointing to noise on the RF power accounting for changes in

the trap secular frequency can be seen in a plot of the time evolution of the aver-

age photon counts with two ions when stopping at the 5π/2 time during Mølmer-

Sørenson flopping and the time evolution of the RF supplied to the can as mea-

sured by monitoring the forward pickoff of a bi-directional coupler (Mini-Ciruits

ZFBDC20-62HP-S) with an RF rectifier [50] as displayed in Figure 3.8. It is clear

that the fluctuations in both of these quantities change together.

This point is further established if one looks at the Allan deviation [64,65] for

this measurement. The Allan deviation is given by:

σy(τ) =

√
1

2
〈(ȳn+1 − ȳn)2〉, (3.3)

where τ is the sample period, ȳn is the average value of the measurements made

during τ , and the expectation value is taken over the total sample time.

The Allan deviation was developed because for common types of noise present

in atomic clock experiments such as 1/f or white noise the traditional standard

deviation is divergent. The Allan deviation, σy(τ), represents the deviation of the

measurement over a period τ . It is clear from Figure 3.9 that the Allan deviation
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Figure 3.8: Average Photon Counts and RF Voltage vs Time Without

the RF Lock. The flucuations in the time evolution of the average photon counts

when stopping at the 5π/2 time during Mølmer-Sørenson flopping and the RF power

supplied to the can seem correlated without the RF lock. This suggests a common

noise source causing these fluctuations.
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Before RF power stabilization, strong correlations between
 RF power and Molmer-Sorensen at fixed time (5*pi/2).
data: 03/02/2016 set2

Allan deviation

Note: RF power measured with Agilent 436A power meter with 8481B diode, 
MS flopping measured with PMT photon counts, 
so these are compeletelty independent measurements. Vertical scale for RF power measurement 
is in arbitrary units, but the RMS fluctuation is of the order of 200 ppm. 

time (scans, 8ms per scan)

 A
ve

ra
ge

  P
ho

to
n 

C
ou

nt
s

time (scans, 8ms per scan)

 a
vg

.  
ph

ot
on

 c
ou

nt
s

time (s)

 A
lla

n 
D

ev
ia

tio
n 

of

 A
lla

n 
D

ev
ia

tio
n

0 20000 40000 60000 80000

15.0

15.5

16.0

16.5

0.010 0.100 1 10 100 1000

0.05

0.10

0.50

1

5

10

After RF power stabilization, can still see 
residual correlations, but other effects are kicking in.
data: 04/08/2016 set3

Real time data (~12 min total) Allan deviation

Real time data (~10 min total)

10 2 0.1 1 10 100

0.5

1

5

10

Time (s)

0.000015

of
 R

F 
(V

ol
ts

)

 RF Power 
 Photon Counts 

0.000020

0.000060

0.000110

Figure 3.9: Allan Deviation of the Average Photon Counts and RF voltage

Without the RF Lock. The Allan deviation begins to increase after the same

time period for both the average photon counts when stopping at the 5π/2 time

during Mølmer-Sørenson flopping and the RF power supplied to the can. This

futher suggests that both of these quantities are limited by the same noise source.

for the average photon counts with two ions when stopping at the 5π/2 time during

Mølmer-Sørenson flopping and the RF supplied to the can both diverge at the same

time scale suggesting a common noise source.

The RF power is stabilized by locking the aforementioned measured rectifier

voltage to a set point using a PID (New Focus LB1005 High-Speed Servo Controller)

and feeding back to a mixer which is being used as a voltage controlled attenuator

as seen in Figure 3.7. After locking the RF power to the can one can see increased

stability of both the RF power and the Mølmer-Sørenson flopping frequency in that

the Allan deviation in Figure 3.10 continues to average down for larger values of
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Before RF power stabilization, strong correlations between
 RF power and Molmer-Sorensen at fixed time (5*pi/2).
data: 03/02/2016 set2

Note: RF power measured with Agilent 436A power meter with 8481B diode, 
MS flopping measured with PMT photon counts, 
so these are compeletelty independent measurements. Vertical scale for RF power measurement 
is in arbitrary units, but the RMS fluctuation is of the order of 200 ppm. 
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Figure 3.10: Allan Deviation of the Average Photon Counts and RF Volt-

age with the RF Lock. Application of the lock of the RF supplied to the can

results in a decrease of the Allan deviation of the average photon counts when stop-

ping at the 5π/2 time during Mølmer-Sørenson flopping and the RF supplied to the

can over a significantly longer time period than without the lock. This seems to

indicate, that stabilizing the RF power delivered to the can increases the stability

of the spin-spin interactions.

τ than when it was not locked. It is also evident from Figure 3.11 that although

the fluctuations between the RF power and average photon counts still have some

correlation, there are different sources driving the fluctuations in each case as they

are not as correlated as when the lock was not engaged.

In the future we may stop locking ΩT to the can resonance and directly sample

and lock the RF voltage on the high voltage side of the can using a capacitive

divider [50]. This will result in a more stable value of ωtrap because even though
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Before RF power stabilization, strong correlations between
 RF power and Molmer-Sorensen at fixed time (5*pi/2).
data: 03/02/2016 set2

Allan deviation

Note: RF power measured with Agilent 436A power meter with 8481B diode, 
MS flopping measured with PMT photon counts, 
so these are compeletelty independent measurements. Vertical scale for RF power measurement 
is in arbitrary units, but the RMS fluctuation is of the order of 200 ppm. 
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Figure 3.11: Average Photon Counts and RF Voltage vs Time with the

RF Lock. After locking, there are smaller flucuations in the time evolution of the

average photon counts when stopping at the 5π/2 time during Mølmer-Sørenson

flopping and the RF power supplied to the can. These flucuations in these two

quantities seem to be less correlated than without the lock on the RF supplied to

the can which seems to indicate that their stability is limited by different noise

sources.
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the current locking scheme keeps a constant RF voltage applied to the can, changes

in ΩT due to shifts in the can resonance destabilize the power delivered to the trap

and ωtrap. Whereas stabilizing the RF voltage on the high voltage side of the can

will result in a stable value of V0
ΩT

, and thus a stable ωtrap.

3.5 Random Anecdotal Evidence to Achieve Longer Lifetimes

In the past year or so we have been experiencing much longer ion lifetimes. We

have been doing a few things a little bit differently that seem to have improved this,

but we have never systemically studied it. I will present this anecdotal evidence

here.

The factor that seems to have the most significant impact is the 935 nm light

frequency and power. The power coupled into the 935 nm fiber drifts, and we find

optimizing this fiber coupling and, thus, delivering more 935 nm power to the ions

increases lifetimes. In addition, over the course of the day the wavemeter drifts and

when this happens its calibration is no longer valid. Sometimes this drift can be

rather substantial and we seem to have improved lifetimes if we optimize the 935

nm every couple of hours or after one of the labs recalibrates the wavemeter. We

optimize the 935 nm frequency by aligning it for maximum detection florescence

with 10 ions. It seems that the enhanced sensitivity of doing this optimization with

10 ions instead of 1 improves the ion lifetimes.

Our theory of why we see longer lifetimes with better D state repumping is

that we are better able to cool the ions. Thus, when there is a less energetic collision
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between a background gas molecule and the ion chain we are quickly able to re-cool

it before it melts the ion chain. Similarly, we see seemingly longer lifetimes when

sideband and Doppler cooling are optimized. In addition, to further improve the

efficiency of ion cooling we have an another Doppler cooling beam that is further

detuned from resonance by the RF drive frequency in an attempt to cool ions that

are experiencing micromotion. This additional Doppler cooling beam seems to sub-

stantially improve cooling of the ions during loading when the RF drive to the trap

is low.

We also see that sometimes ions become trapped in higher energy orbits where

a 1-D chain will crystallize and there will still be another ion trapped that will collide

with the 1-D chain and reduce the lifetimes. This seems to happen in two cases:

loading and after recrystalization. Sometimes when the RF is low during loading we

will crystalize the desired number of ions, but there will still be an additional ion in

a higher energy orbit. To prevent this, one should wait about 15 seconds after the

desired number of ions has crystalized to ensure that another ion is not in the trap

(another additional ion will crystalize during this time if it is in the trap). If one

does not wait this extra time, occasionally the ion chain will melt quickly after the

trap RF has returned to its normal operating value, presumably due to a collision

between the ions in the 1-D chain and the ion that was in a higher energy orbit.

Often after a collision melts the ion chain and we lower the trap RF we do not

recrystalize all of the ions. In this case, if one keeps the recrystalized ions and loads

back up to the desired number of ions, the ensuing chain lifetime will sometimes be

brief. To prevent this, one should always turn off the RF to the trap to eject the
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ions and load from zero ions after a collision when all of the ions are not recaptured.
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Chapter 4: Many-Body Localiztion

4.1 Introduction

It is exceedingly rare in nature for systems to localize, or retain local informa-

tion about their initial conditions at long times. In an important counterexample,

Anderson demonstrated that localization can arise due to the presence of disorder,

which can destructively scatter propagating waves and prevent transport of energy

or particles [1]. Although this interference effect can be applied to generic quan-

tum systems, most experimental work has been restricted to the narrow parameter

regime of low excitation energies and no interparticle interactions [6–8].

Whether such localization persists in the more general case of arbitrary exci-

tation energy and non-zero interparticle interactions was theoretically explored by

Anderson [1], and more recently by others [2,3,66–68]. This MBL phase is predicted

to emerge for a broad set of interaction ranges and disorder strengths, though the

precise phase diagram is not well known [41] since equilibrium statistical mechan-

ics breaks down in the MBL phase and numerical simulations are limited to ∼ 20

particles [66, 67]. Experiments have measured constrained mass transport [21], the

breakdown of ergodicity [10], the coupling of identical 1-D MBL systems [23], peri-

odically driven MBL [12], and have mapped the 2-D MBL transition in disordered
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atomic systems with interactions [22].

Here we report the direct observation of MBL in a long-range transverse

field Ising model with programmable, random disorder. This is a non-integrable

model that cannot be mapped to noninteracting particles (a necessary condition for

MBL [3]) and we can easily tune the disorder strength and interaction range over

a parameter space that exhibits this phenomenon. Our experiment is effectively a

closed quantum system over the timescales of interest, since the system localizes

approximately 60 times faster than the coupling rate to the outside environment.

The Hamiltonian for this investigation of MBL is given by:

HIsing =
∑
i<j

Ji,jσ
x
i σ

x
j +

B

2

∑
i

σzi +
∑
i

Di

2
σzi (4.1)

with the origin of the spin-spin coupling and transverse field discussed above. The

site-specific programmable disorder term Di is sampled from a uniform random

distribution with Di ∈ [−W,W ]. The disorder is generated by site-dependent laser-

induced Stark shifts discussed in a previous chapter.

4.2 Measuring the Spin-Spin Coupling Matrix

For our study of MBL, we tune α between 0.95 and 1.81, although for most

of the data α ≈ 1.13. We directly measure the complete spin-spin coupling matrix

(Fig. 4.1a) for α ≈ 1.13, demonstrating the long-range interactions required to

exhibit MBL in this model. In order to observe the dynamics between just two of
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the ions in the chain, we shelve the other spins out of the interaction space. This is

done by performing a π rotation between |↓〉z, 2S1/2 |F = 0,mF = 0〉, and one of the

Zeeman states, 2S1/2 |F = 1,mF = −1〉, while shifting the two ions of interest out

of resonance by applying a large Stark shift with the individual addressing beam.

We then apply our Hamiltonian which now acts only on the two ions left in the

interaction space and determine the elements of the spin-spin coupling matrix by

fitting the measured interaction Rabi flopping frequency between each pair of spins.

We applied a Stark shift to all but two of the ions instead of applying a Stark shift

to just two of the ions because it is less susceptible to cross talk. Since even if there

is some unwanted Stark shift on one of the two ions of interest it will still be small

compared to the intended stark shift on the other ions.

4.3 Arbitrary Product State Preparation

State initialization starts with optically pumping the spins with high-fidelity

to |↓↓↓ · · · 〉z. Then we perform a global π/2 rotation to bring the ions to |↓↓↓ · · · 〉x.

At this point we apply a Stark shift with the individual addressing beam to the spins

that are to be flipped and allow the chain to evolve until these ions are π out of

phase with rest of the ions. This, along with our ability to perform high fidelity

global rotations, allows for the preparation of any arbitrary product state along any

direction of the Bloch sphere. Individual spin flips can be achieved with a fidelity of

∼ 0.97, while arbitrary state preparation can be done with a fidelity of ∼ (0.97)N ,

where N is the number of spins flipped with the individual addressing beam.
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Figure 4.1: An Interacting Spin Model with Random Disorder. (a) Directly

measured elements of the spin-spin coupling matrix Jij, Eq. (4.1), (increasing inter-

action strength from blue to red). The long range interactions decay as Jmax/r
1.13.

(b) A specific instance of the random disordered field with a schematic illustration of

the long-range interactions and (c) the random values of the disordered field for all

30 instances of disorder for several different disorder strengths and for each ion (red

indicates positive values, and blue indicates negative values, with values between

-0.5 and 0.5). (d) The level statistics calculated from the measured spin-spin cou-

pling matrix (a) and applied disorders (c) are Poisson-distributed (black line is the

expected level spacings for a Poisson distribution), as predicted for a MBL system.
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We choose to study MBL with the Neél ordered initial state, |↑↓↑↓ · · · 〉z,

because when B � J , the Hamiltonian is effectively an XY model [35, 36] and

conserves
∑

i σ
z
i , because Ising processes that change the total spin projection along

the large field are energetically forbidden. Thus, being in a spin configuration with

half of the spins up and half of the spins down maximizes the accessible energy

states. In addition, the Neél state is never an eigenstate, even for B � J and

W � J , since the uniform B field at each site still allows spin exchange in the

z -basis.

4.4 Determining a Set of Thermalizing Parameters

Before searching for evidence of localization, we first find parameters that

cause the measured state to thermalize in the absence of disorder. Figure 4.2 shows

the time evolution of 〈σxi 〉 for different values of B for the spins initialized in the

randomly chosen product state |↓↓↓↑↓↓↓↑↓↑〉x. Without a transverse field, the spins

are in an eigenstate of the Ising interaction and undergo no evolution. Once a

transverse field is added the individual spins begin to lose memory of their initial

conditions and as its strength is increased, the ions thermalize faster and more

robustly.

To confirm the system is thermalizing, we measure the time evolution of the

single site magnetization, 〈σzi 〉, along an orthogonal direction for different strengths

of the transverse magnetic field starting with the spins initialized in the Néel ordered

state. As seen in Fig. 4.2 the spins have lost information about their initial conditions
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in the z direction for all values of B.

If a system is thermal, the Eigenstate Thermalization Hypothesis (ETH) pro-

vides a general framework where observables reach the value predicted by the micro-

canonical ensemble [69–71]. This allows us to calculate the expected thermal value

of the reduced density matrix given the Hamiltonian and an initial state. To further

establish that the system is thermalizing, we measure the reduced density matrix

for each spin, ρi =Tr{j 6=i}ρ, without applied disorder and B = 4Jmax as shown in

Fig. 4.3a. In our experiment, the spins are initially prepared in a product state with

high fidelity. However at long times, the measured reduced density matrices show

that each of the spins are very close to the zero magnetization mixed state, implying

the system has locally thermalized.

An important signature of the MBL phase is manifested in the spectral statis-

tics of adjacent energy levels of the Hamiltonian. In the thermalzing phase, the

energy levels are given by the eigenvalues of a random-matrix, a matrix whose ele-

ments are given by a random distribution, due to level repulsion. However, in the

MBL phase, this level repulsion is greatly suppressed since eigenstates typically dif-

fer by multiple spins flips. As a result, the level spacing between adjacent energy

eigenvalues are Poisson-distributed [66,67].

We calculate the spectral statistics of adjacent energy levels for the Hamilto-

nian and find they are not Poisson distributed for B = 4Jmax and Di = 0 indicating

that with no applied disorder, the system is not in a localized phase. Furthermore,

one can determine if a system is in a thermal or localized regime by finding the corre-

lation between adjacent energy splittings by calculating the ratio of two consecutive
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Figure 4.2: Measured Thermalization in the Transverse Field Ising Model.

The upper panels show the time dynamics of 〈σxi 〉 (different colors represent different

ions) for 10 spins prepared in the random product state |↓↓↓↑↓↓↓↑↓↑〉x, for different

transverse magnetic field strengths. For B = 0 the spins are in a eigenstate and

do not thermalize. However, as the strength of B is increased the system begins to

thermalize more robustly and quickly. The lower panel plots the time evolution of

〈σzi 〉 with 10 spins prepared in the Néel ordered in the z direction for different trans-

verse magnetic field strengths. We conclude that the system is in the thermalizing

regime for B = 4Jmax since we observe thermalizing behavior along two orthogonal

directions. Error bars are 1 standard deviation of statistical error.
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Figure 4.3: Emergence of a Many-Body Localized State. (a) shows the time-

evolved single-site magnetizations 〈σzi 〉 (different colors represent different ions) for

the Hamiltonian in Eq. (4.1) and with B = 4Jmax with no applied disorder (Di = 0).

The initial-state reduced density matrices for ions 1 and 10 show the spins start in a

product state along the z direction. The time-averaged reduced density matrices for

Jmaxt > 5 (colors from blue to red indicate increasing values of the elements of the

density matrix) agree with the values predicted by the ETH, implying the system

has thermalized locally. (b-e) As the disorder strength increases the spins retain

more information about their initial state, indicating a transition towards MBL. (f)

shows the dynamics of 〈σzi 〉 for the strongest applied disorder, W = 8Jmax. The

initial and steady-state time-averaged reduced density matrices for ions 1 and 10

now show that information is preserved about the initial spin configuration at the

end of the evolution. Statistical error bars (1 s.d.) are smaller than the data points.
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gaps [66]:

rn =
min{δn, δn−1}
max{δn, δn−1}

(4.2)

where δn = En+1 − En ≥ 0. For a localized phase, where one expects a Poisson

energy spectrum, the probability distribution of this order parameter is given by

Pp(r) = 2/(1 + r)2 and thus 〈r〉 ≈ 0.39. For energy level spacings following a

random-matrix as predicted for a thermalizing regime, we calculate 〈r〉 ≈ 0.53 for

a chain of 10 spins. Figure 4.4 shows that 〈r〉 saturates to the expected value

for a random matrix distribution, indicating that the Hamiltonian is thermal for

sufficiently large B.

In contrast to using our directly measured spin-spin couplings and applied

realizations for the strongest experimental disorder W = 8Jmax and B = 4Jmax,

we calculate the distribution of adjacent energy level splittings and find them to be

Poisson-distributed, as expected for a MBL state (Fig. 4.1d).

4.5 Calculating the Density Matrix Expected by the Eigenstate Ther-

malization Hypothesis

Given a Hamiltonian and an initial state |ψ0〉, the corresponding energy is

〈ψ0|H |ψ0〉. For a thermalizing system satisfying ETH this energy should be equal

to the classical energy:

E =
Tr[He−βH ]

Tr[e−βH ]
(4.3)
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Figure 4.4: Thermalizing Level Statistics. The calculated value of 〈r〉 with

respect to B saturates close to the predicted value for a random-matrix distribu-

tion (dashed black line) implying that the Hamiltonian is in the thermal phase for

sufficiently large B.

for the appropriate β = 1/(kBT ). When partitioning the entire system into subsys-

tems A and B, with the size of A much smaller than B (perhaps even a single spin),

then, the density matrix on site A at long times can be approximated by:

ρA =
TrB[e−βH ]

Tr[e−βH ]
(4.4)

Since we start in the Néel ordered state, the initial energy given the Hamilto-

nian in Eq. (4.1) is equal to zero, 〈ψ0|H |ψ0〉 = 0. Equating this to the right hand

side of Eq. (4.3) and solving for β gives β = 0, or T =∞. Using this β in Eq. (4.4)

gives a value for any reduced thermal density matrix of:
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 1/2 0

0 1/2



in agreement with the measured reduced density matrices in Fig. 2a.

4.6 Initial State Memory Retention

We apply the random disordered potential, Di 6= 0, with B = 4Jmax and

observe the emergence of MBL as we increase the strength of disorder. Since the

many-body eigenstates in the MBL phase are not thermal, transport of energy and

spins is suppressed, and ETH fails. Thus, observables will not relax to their thermal

values [67] and memory of the initial conditions will be evident in the single-site

magnetization. When starting in the Neél ordered state, Fig. 4.3b-f shows the time

evolution of 〈σzi 〉 for different disorder strengths. The frozen moments of the spins

increase with increasing disorder as the emergent integrals of motion become more

strongly localized [68].

With the maximum applied disorder, W = 8Jmax, we measure the single-spin

reduced density matrix for the initial state and the averaged matrix for Jmaxt ≥ 5.

In this case, localization of the spins leads to a marked difference in the measured

and thermal reduced density matrices, indicating memory of the system’s initial

conditions and a breakdown of ETH.
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4.7 Normalized Hamming Distance Quantifies Localization

To quantify the localization, we measure the normalized Hamming distance

(HD) [42]:

D(t) =
1

2
− 1

2N

∑
i

〈ψ0|σzi (t)σzi (0) |ψ0〉 (4.5)

which gives the number of spin flips away from the initial state, normalized by the

length of the chain. At long times, the HD approaches 0.5 for a thermalizing state

and remains at 0 for a fully localized state. In Fig. 4.5a, we measure that the

long-time HD is 0.5 in the absence of disorder, and becomes smaller as the disorder

strength is increased and the system more strongly localizes.

Figure 4.5b shows that for finite but weak disorder, the time-averaged HD

for Jmaxt > 5 is essentially unchanged, indicating weak or no localization. However,

once the random field is sufficiently strong we observe a crossover from a thermalizing

to a localized state. Once in this regime, the system becomes more localized with

increasing disorder strength.

4.8 Comparison to Numerics

To demonstrate the MBL we observe is a general feature of our Hamiltonian we

perform numerical simulations using exact diagonalization. Figure 4.6 compares the

experimentally measured time evolution of the normalized HD with numerics and
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Figure 4.5: Hamming Distance (HD). (a) The Hamming Distance (HD) exhibits

time dynamics that reach their steady-state values after Jmaxt ≈ 5. For increasing

disorder, the system becomes more strongly localized, and the steady-state Ham-

ming Distance decreases. (different colors represent different disorder strengths).

(b) The steady-state HD with respect to the strength of the random potential in-

dicates the state is not or only weakly localized for small disorder, but after the

random field is sufficiently strong it becomes more localized with increased disorder.

(c) The system becomes less localized in the presence of longer-range interactions

(smaller α). Error bars, 1 s.d.
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Figure 4.6: Comparison of the Experimental Data (crosses) with Exact

Numerical Simulations (blue lines) for Normalized Hamming Distance.

There is excellent agreement between the numerical simulations using the experi-

mental parameters and the measured data. This demonstrates that the observed

effects are general features of the Hamiltonian.

shows excellent agreement between them. We see similar agreement between exper-

imental data and numerics for the time evolution of the single-spin magnetizations

(not shown). The aspects of MBL we experimentally measure were independently

verified numerically as generic characteristics of (4.1) [72].

4.9 Localization with Respect to Interaction Range

There is great theoretical interest in mapping the MBL phase diagram with

respect to interaction range and disorder strength [41–43]. We have taken the first
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steps towards this goal by measuring a change in the time-averaged HD for W =

8Jmax and Jmaxt > 5 as we adjusted the interaction range, 0.95 < α < 1.81 (Fig.

4.5c). For shorter-range interactions, the system appears more localized, since the

state approaches a fully-localized Anderson insulator as α → ∞. This change in

time-averaged HD with a change in interaction range makes clear that the long-

range couplings are playing a role in the observed dynamics, thus indicating the

observed effect is a many-body phenomenon.

Although there are predictions of a many-body delocalization transition at

α = 1.5 [43, 44], we did not observe this effect as we tuned α across this boundary.

The lack of a sharp transition, along with the presence of MBL states for α < 1,

may be due to finite size effects. As this system is scaled to many dozens of spins, it

will allow better study of the phase transition and mapping of the phase boundary

in a regime where numerics are intractable.

4.10 Decoherence and Dephasing

To measure our system’s coupling to the environment we fit an exponential

decay to the dynamics in the upper left panel of Fig. 4.2 as we expect no time

evolution of 〈σxi 〉 because the initial state is an eigenstate of the Hamiltonian and

thus any dynamics give an estimate of the decoherence rate. We find this estimate

to be JMaxt = 64.6 which is approximately 60 times slower than the dynamics of

the localization.

Figure 4.7 shows a numerical simulation of the extended dynamics for the
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model Hamiltonian with (green curves) and without (blue curves) crosstalk error

between ions from the individual addressing and laser intensity noise on the Ising

couplings. It is clear that the localization persists well beyond the experimental

timescales even when accounting for experimental noise. We model the crosstalk

noise on the disordered field by adding 5% of the Stark shift applied to adjacent

ions to the size of the intended Stark shift which is consistent with the spillover we

measure between ions. To incorporate noise on the spin-spin couplings, we scale

the strength of the Ising couplings by a value we pull randomly from a Gaussian

distribution centered around µ = 1 with σ = 0.05 for each instance of disorder

because the laser intensity noise is slower than the duration of an experiment. The

size of this simulated noise is consistent with the directly measured noise on Ji,j.

4.11 Measuring Characteristic Growth of Entanglement with the Quan-

tum Fisher Information

A hallmark of MBL is the characteristic growth of entanglement under co-

herent time evolution [73], though its experimental observation has been elusive so

far. In Anderson insulators without many-body interactions, the entanglement pro-

duction from weakly entangled initial states shows a quick saturation after a sharp

transient regime. However, in MBL systems a long-time growth sets in, which is

logarithmically slow for short-range interactions [74] and can become algebraic with

power-law interactions [75].

This entanglement growth can be measured using a suitable witness operator
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Figure 4.7: Numerical Simulations of the Extended Time Evolution of the

Hamming Distance for the Model Hamiltonian (blue curves) and with

Experimental Noise (green curves). The localization we observe persists much

longer than the experimental timescale in the model Hamiltonian (blue curves) even

when accounting for laser intensity noise and crosstalk between the ions from the

individual addressing beam (green curves).
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or even full state tomography [76]. We instead indirectly characterize the entangle-

ment growth in this system by measuring the QFI [77–79]. The QFI has recently

been shown to witness genuinely multipartite entanglement [80, 81]. From a quan-

tum metrology perspective, the QFI quantifies the sensitivity of a given input state

to a unitary transformation eiϑÔ generated by the hermitian operator Ô. In a pure

state, it is given by [78]:

FQ = 4(∆Ô)2 = 4(〈Ô2〉 − 〈Ô〉2). (4.6)

For a local operator Ô =
∑N

i=1 Ôi (where the difference between largest and

smallest eigenvalue of Ôi is 1), the QFI witnesses entanglement as soon as:

fQ ≡ FQ/N > 1 . (4.7)

To characterize the growth of entanglement out of the initial Néel state, the natural

choice of the generator Ô is the staggered magnetization, Ô =
∑N

i=1(−1)iσzi /2.

Remarkably, this QFI is proportional to the variance of the HD D(t) given by (4.5):

FQ = 4N2(∆D̂)2 =
∑
i,j

[(−1)i+j〈σzi σzj 〉]− [
∑
i

(−1)i〈σzi 〉]2 , (4.8)

when associating D(t) = 〈D̂(t)〉, with D̂ = 1/(2N)[1−∑N
i=1(−1)iσzi ].

With no applied disorder, we observe a fast initial growth of the QFI following
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Figure 4.8: Quantum Fisher Information (QFI). (a) The time evolution of

the QFI for no disorder which is consistent with no long-time growth of entan-

glement. The shaded area indicates the fast initial growth of QFI that follows a

Lieb-Robinson-type bound. (b) The long-time logarithmic growth of the QFI for

the applied disorder of W = (6, 8)Jmax is a lower bound for the entanglement in the

system and is consistent with the expected long-time growth of entanglement in the

MBL state. Black lines are logarithmic fits to the data. Statistical error bars (1

s.d.) are smaller than the data points.

a Lieb-Robinson bound [35, 36] as the correlations propagate through the system,

but no further growth afterwards (Fig. 4.8a). In contrast, for the cases of applied

disorder of W = 6Jmax and W = 8Jmax, the further growth of the QFI is consistent

with a logarithmic increase of entanglement at long times in a MBL state (Fig.

4.8b), but absent for single particle localized systems.

The QFI as defined in Eq. (4.6) assumes a pure state, i.e., that time evolution

is purely unitary. For mixed states, the QFI cannot be expressed as a simple ex-

pectation value of the operator Ô [78]. In general, decoherence reduces the purity
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Figure 4.9: Comparison of Experimental Data (green dots) with Ex-

act Numerical Simulations for the Experimentally Applied Hamiltonian

(thick blue lines) and Free-Fermion Theory (orange) for QFI. The solid

straight lines represent logarithmic fits to the numerical (light blue) and experi-

mental data (light green). Deviations from the ideal coherent dynamics due to

decoherence and other imperfections in the experimental setup, such as detection

error, lead to a reduction of the QFI. Importantly, this suggests that experimental

imperfections do not generate a false positive for entanglement. Moreover, there

is long-time growth in the QFI from the measured data and applied Hamiltonian

numerics that is absent in the free-fermion theory.

of the system’s state over experimental time scales. To show that the measured

increase of FQ as defined in Eq. (4.8) is indeed due to coherent dynamics, we com-

pare to numerical calculations for a unitary time evolution using the experimental

parameters. Figure 4.9 shows the experimental data is always below the theoretical

prediction for a unitary time evolution. The loss of purity or other experimental

imperfections such as detection error, therefore, do not generate a false positive

indicator of entanglement in our system.
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Figure 4.10 further establishes this point, showing an increase in the QFI we

measure and strong agreement between experimental data and theory when post-

selecting for measured states with 5-spin excitations. We postselect because, as

mentioned above, when B � J the Hamiltonian is effectively an XY model and

conserves
∑

i σ
z
i , because Ising processes that flip spins along the large field are

energetically forbidden. However, because of camera detection error we find there

is significant leakage out of states with 5-spin excitations (≈ 70% expected numer-

ically, ≈ 35% detected) into states with 4 and 6-spin excitations (≈ 20% detected)

which should not be populated as the transverse magnetization is conserved modulo

two spin flips in the transverse field Ising model. Thus, we post-select for states

with 5-spin excitations. Figures 4.9 and 4.10 show a clear difference between the

interacting case and a theory of free-fermions (see below) for the experimental data

and numerical simulations, thus, establishing that the growth in QFI in the data

and full-Hamiltonian numerics are due to a many-body effect.

To study how the localization changes with system size, we performed a nu-

merical finite-size scaling. In order to obtain a well-behaved scaling, we use the

Kac prescription [82], i.e., we adjust the couplings as Jij = JN−1 |i− j|−α, where

N = (N − 1)−1∑
i<j |i− j|

−α. Note that using this prescription the fundamental

energy scale J differs by about a factor of 2 from Jmax, the value used above.

For α > 2, the disordered long-range Ising Hamiltonian shows MBL behavior

at large disorder [83]. In Fig. 4.11, we plot the dynamics of the QFI for α = 3,

where it grows consistent with the characteristic long-time growth of entanglement

for an MBL state. In particular, within a time window 2α < tJ < 3α where only
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Figure 4.10: Comparison of Postselected Experimental Data (green dots)

with Exact Numerical Simulations for the Experimentally Applied Hamil-

tonian (thick blue lines) and Free-Fermion Theory (orange) for QFI. The

solid straight lines represent logarithmic fits to the numerical results for the exper-

imentally applied Hamiltonian (light blue) and postselected data for results with

5 spin flips (light green). The increase in the postselected QFI and the agreement

between the postselected data and numerical simulations supports the claim that

experimental imperfections decrease the value of the QFI for the full experimental

data.
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next-nearest-neighbor interactions are relevant, the system essentially behaves as a

nearest-neighbor Ising model with a weak next-to-nearest-neighbor coupling. For

such a system, a logarithmic growth of entanglement is expected, as we indeed find

in that regime, see inset in Fig. 4.11.

Moreover, in Fig. 4.11, we compare our numerical results to the appropriate

long-range free-fermionic theory (see below), which shows a quick system-size in-

dependent saturation of the QFI without further growth. Therefore, we conclude

that the observed increase of the QFI is not possible in a quantum system without

many-body interactions, thus giving a clear signature for true MBL behavior.

The situation is more complex at α = 1.13. For B = 0, it has been predicted

that within the range 1 < α < 2 delocalized behavior could be expected in the

thermodynamic limit [83]. As seen in Fig. 4.12, for the considered system sizes

up to N = 14 the model displays all essential signatures of MBL, as found for

α = 3. However, the important question of whether this localization persists in

the thermodynamic limit can only be addressed with system sizes larger than those

accessible using exact diagonalization. Here, scaling our quantum simulator to larger

system sizes could thus resolve a difficult open question, namely of the existence of

ergodicity in the range 1 < α < 2. However, we would like to emphasize that the

essential features of MBL are nevertheless captured by the 10-spin experimental

system. In particular, we still find a time window consistent with a logarithmic

growth of entanglement, see inset in Fig. 4.12.

In order to make a stronger connection between growth in the QFI and growth

of entanglement we calculate the entropy of entanglement between two halves of the
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chain:

SA = −Tr[ρA log ρA] (4.9)

where ρA = TrB[ρ] and B is the other half of the spin chain. The entanglement

entropy quantifies the number of entangled bits between two subsystems.

In Figs. 4.11 and 4.12 it is clear that there is long-time growth of the entangle-

ment entropy that is consistent with the expected growth for a MBL state [74, 75]

and is absent in the free-fermion numerics. The difference between the numerics for

the model Hamiltonian and the non-interacting theory for the QFI and the entan-

glement entropy in Figs. 4.13 and 4.14 distinguishes between the two cases for the

experimental system size and timescale. These figures also establish a qualitative

connection between growth in the QFI and growth in entanglement.

To show that the QFI growth is truly due to interactions, we also compare nu-

merics with the experimentally applied Hamiltonian to a close approximation of H,

Eq. (4.1), with a non-interacting theory. Using the Jordan-Wigner transformation,

σ−j → e−iθjcj, with the phase of the string operator θj = π
∑

j<i c
†
jcj, the Hamilto-

nian Eq. (4.1) can be mapped to a fermionic theory with annihilation and creation

operators cj and c†j, respectively,

H =
∑
i<j

Jij(c
†
ie
i(θj−θi)cj + c†ie

i(θj+θi)c†j + h.c.)−
∑
i

(B +Di)c
†
ici . (4.10)

If Jij contained only nearest-neighbor interactions, this Hamiltonian would become

equivalent to a free-fermionic theory. For general Jij, however, the string operators

generate interactions between the fermions. Over short times, and especially in a

localized regime, the phases θj are dominated by their initial values, i.e., it is a good
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Figure 4.11: QFI and Entanglement Entropy from Exact Diagonalization

(α = 3 and W/J = 8). Left panel: When subject to disorder, the QFI of the

staggered magnetization shows a characteristic growth of entanglement (blue lines;

from dark to light: N = 8, 10, 12, 14 averaged over 106, 3 × 105, . . . , 2500 disorder

realizations). This growth is absent in a theory of free-fermions with long-range

hopping and pairing (green dashed lines with N = 14 (dark green) averaged over

10000 realizations). Left panel inset: In a time window dominated by next-nearest

neighbor interactions, 2α < tJ < 3α, one observes a characteristic logarithmic entan-

glement growth, expected for a MBL system with short-range interactions. Right

panel: The entanglement entropy between two halves of the chain shows long-time

logarithmic growth for the interacting case and saturates for the free-fermion theory

consistent with the expectation for a MBL state and single-particle localized state,

respectively, and a qualitative agreement between growth in QFI and entanglement

entropy.
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Figure 4.12: QFI and Entanglement Entropy from Exact Diagonalization

(α = 1.13 and W/J = 8). Same color coding as in Fig. 4.11. Importantly, for

the experimentally relevant system size of N = 10, we again find a time window

consistent with a logarithmic growth of entanglement in the growth of QFI (see left

inset) and half-chain entanglement entropy.
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approximation to replace (for the initial Neel state) θj → π
∑

j<i((−1)j+1)/2 in the

Hamiltonian. This replacement amounts to approximating H by a non-interacting

fermionic theory with long-range hopping and pairing. The QFI for that case is

included in Figs. 4.11 and 4.12. As one can see, the QFI quickly saturates to values

below fQ = 1. The experimentally and numerically observed further growth of the

QFI is thus truly due to interactions, and cannot be captured within a free-fermionic

theory, even with long-range hopping.

4.12 Sampling Error

To ensure we observe the general behavior of the disordered Hamiltonian, we

average 30 distinct random instances of disorder (Fig. 4.1b-c). We determine that

averaging over 30 different random realizations of disorder is sufficient to have a

sampling error smaller than the effect we observe by looking at the change in the

time-averaged HD with respect to a change in the disorder strength. Figure 4.5b

makes explicit that this error is much smaller than than the change in the time-

averaged HD with respect to a change in the disorder strength.
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Figure 4.13: Difference between Numerics for the Interacting Model

Hamiltonian and Free-Fermion Theory for QFI and Entanglement En-

tropy (α = 3 and W/J = 8). There is a clear departure between the numerically

calculated QFI and entanglement entropy for the model Hamiltonian and the free-

fermion theory.
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Figure 4.14: Difference between Numerics for the Interacting Model
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tropy (α = 1.13 and W/J = 8). There is a clear departure between the numeri-

cally calculated QFI and entanglement entropy for the model Hamiltonian and the

free-fermion theory for N=10 on the experimental timescale.
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