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Abstract

We consider the nonlinear filtering problem of a vector diffusion process,
when several noisy vector observations with possibly different dimension of
their range space are available. At each time any number of these obser-
vations (or sensors) can be utilized in the signal processing performed by
the nonlinear filter. The problem considered is the optimal selection of a
schedule of these sensors from the available set, so as to optimally estimate
a function of the state at the final time. Optimality is measured by a com-
bined performance measure that allocates penalties for errors in estimation,
for switching between sensor schedules and for running a sensor. The solu-
tion is obtained in the form of a system of quasi-variational inequalities in
the space of solutions of certain Zakai equations.



1. Introduction

1.1. Motivation and preliminaries

The problem of nonlinear filtering of diffusion processes has received considerable atten-
tion in recent years; see the anthologies |1}, [2], [3] for a review of important developments.
In current studies as well as in related analyses of the partially observed stochastic control
problem with such models [4], [5], a key role is played by the linear stochastic partial differ-
ential equation describing the evolution of the unnormalized conditional probability measure
of the state process given the past of the observations, the so called Zakai equation.

A significant byproduct of these advances is the feasibility of analyzing complex signal
processing problems, including adaptive and sensitivity studies, in an integrated, systematic
manner, without heuristic or adhoc assumptions. A problem of interest in this area is the
so called sensor scheduling problem. Roughly speaking this problem is concerned with the
simultaneous selection (according to some performance measure) of a signal processing scheme
together with the sensors that collect the data to be processed. Particular applications include
multiple sensor platforms, distributed sensor networks, large scale systems. For example, in
a multiple sensor platform, there is definite need for coordinating the data obtained from
the various sensors which may include radar, infrared, sonar, etc. The data obtained from
different sensors are of varying quality and a systematic way is needed for allocating confidence
or basing decisions on data collected from different types of sensors. For example radar sensors
are more accurate than infrared sensors for long range tracking while the opposite is true for
short range tracking. In sensor networks one needs to coordinate data collected from a large
number of sensors distributed over a large geographical area. Conflicts should be resolved
and a preferred set of sensors must be selected, over finite (short) time intervals, and utilized
in detection, estimation or control decisions. Similarly in large scale systems there is typically
an attached information network with the objective of collecting data, processing them and
making the results available to the many control agents for their decisions {actions). Again
the need for coordinating this information in a systematic way is critical.

In such sensor scheduling problems the systematic utilization of sensors should be the
result of optimizing reasonably defined performance measures. Clearly these performance
measures shall include terms allocating penalties for errors in detection and/or estimation.
But more importantly, they must include terms for costs associated with turning sensors
on or off, and for switching from one sensor to another. Examples of such costs arising in
practice abound. Turning on a radar sensor increases the detectability of the platform (since
radars are active sensors) and this should be reflected as a switching cost. Deciding to use
a more accurate, albeit more complex sensor, will require higher bandwidth communications
and often more computational power allocated to that sensor. In distributed sensor networks
it may mean the physical movement of a sensor carrying platformn (such as a helicopter
or airplane) to a particular geographical location. In large scale systems the utilization of
several (often hundreds) sensors for decision making may provide better average performance
but it certainly reduces the response speed of the system to changing conditions, and it
increases computational and communication costs both in terms of hardware and software.
The latter are obviously evident in large computer/communication networks. These running



and swithching costs will depend often on the part of the state space occupied by the state
vector, i. e. they will be functions of the state as well. For example sensors have different
accuracy or noise characteristics when the state process takes values in different areas of
the state space. Also there is cost associated with handling the transfer of information, or
tracking record, when there are changes in the set of sensors used; and these costs often
depend on the state process.

It is not our intent to provide an extensive description of applications here. Detailed
descriptions of some of these problems can be found elsewhere; see for example [6], [7]. The
underlying thread in all these problem areas is the existence of a variety of sensors, which pro-
vide data (for processing) including information of widely varying quality about parameters
or variables of interest, for control, detection, estimation etc. Due to the complexity of these
problems it is important to develop systematic conceptual, analytical and numerical methods
for their study and to reduce reliance on ad hoc, heuristic methods as much as possible. The
present paper is offered as a contribution in this direction. It provides a general methodology
to this problem by reducing it to the analysis of a system of quasi-variational inequalities (see
section 3 for details). Numerical methods will be described elsewhere [13].

The sensor scheduling problem is considered here in the context of non-linear filtering of
diffusion processes, and is therefore applicable to detection problems with the same signal
models. Modifications of the results apply to other situations including control. In the next
section we present a somewhat heuristic definition of the problem, intended to describe the
problem clearly, at an intuitive level. The intricasies of establishing this model in a rigorous
mathematical fashion are given in section 2, and constitute one of the main contributions of

the paper.

1.2. Preliminary description of the problem

The problem considered is as follows. A signal (or state) process z(-) is given, modelled
by the diffusion

dz(t) = f(z(t))dt + g(2(t))dw(t) (1.3)
z(0) = ¢

in IR". We further consider M noisy observations of z(-), described by
dy'(t) = Ri(z(t))dt + R} dvi(t), (1.2)
y'(0) = 0

with values in IR%. Here w(-), v*(-) are independent, standard, Wiener processes in IR", IR%
respectively, and R; = R‘T > 0 are d; X d; matrices. Further mathematical details on the
system (1.1), (1.2) will be given in section 2. Let us consider a finite time horizon |0, T]. To
formulate the problem of determining an optimal utilization schedule for the available sensors,
so as to simultaneously minimize the cost of errors in estimating a function of z(-) and the
costs of using as well as of switching between various sensors, we need to specify these costs.
To this end, let ¢;(z) denote the cost per unit time when using sensor i, and the state of the
system is z; k;,(z), koi(z) denote the cost for turning off, respectively on, the ith sensor when
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the state of the system is z. The objective of the performed signal processing is to compute,
at time T, an estimate ¢(T) of a given function ¢(z(T)) of the state. Penalties for errors in

estimation are assesed according to the cost function
E{c.($(=(T)) — $(T))} := E{|¢(=(T)) - $(T)I’} (1.3)

We shall comment briefly on more general estimation problems in section 4 of this paper.
In particular the consideration of a quadratric ¢.(-) is not a serious restriction.

We consider next, the set of all possible sensor activation configurations, denoted here by
N. An element v € N is a word of length M from the alphabet {0,1}. If the £ position
is occupied by an 1, the £th sensor is activated (used), if by a 0 the £** sensor is off. There
are N = 2M elements in N. A schedule of sensors is then a pieceunse constant function
u(-) : [0,T) — N. We let 7; € [O,T] denote the instants of changing schedule; i. e. , the
moments when at least one sensor is turned on or off. At such a switching moment, suppose
the schedule before is characterized by v € N, and after by ' € N. Then the switching cost
assoctated with such a scheduling change will be

ko(m)i= Y kol@)+ Y kula) (1.4)

{iev}{igv'} {7gvi{sev'}

The total running cost, associated with schedule v € N will be

c(z) = Y cj(z) (1.5)

{7ev}

In (1.4), (1.5), the symbol {¢+ € v} denotes the set of all indices (from the set {1,2,...,M}
which are occupied by an 1 tn v (i. e. the indices corresponding to the sensors which are on);
similarly the symbol {7 € v} denotes the set of indices corresponding to sensors that are off.

Using the above notation the available observations, under sensor schedule u(-) are de-

scribed by
dy(t,u(t)) := h(z(t),u(t))dt + r(u(t))dv(t), (1.6)

where it is apparent that the available observations depend explicitly on the sensor schedule
u(-). In (1.6), forc € IR", v € N,

[ hl(z)X{u}(l)

hz,) = | B@xml) |, (1.7)

| WM(@)x0 (M) |

a block column vector, where in standard notation

. 1, if the ¢** position in the word v is occupied by an 1
X (1) := { 0, otherwise (1.8)

Similarly for v ¢ N



r(v) := Block diagonal{ R X3 (D)} (1.9)
where R; are the symmetric, positive matrices defined above. Finally
vi(?)
v(t) := | : (1.10)
vM(2)
is a higher dimensional standard Wiener process. In view of (1.7), for all v € N
h(-,v): R™ — IRP, (1.11)
while
r(v) : R — IRP, (1.12)
where
D=d+dy+ -+ du. (1.13)

To make the notation clearer, consider the case M = 2, N = 4. Then X = {00,01, 10,11}

and

h(z, 00)
h(z,01)
h(z, 10)
h(z,11)

while

r(00)
r(10)
r{01)

r(11)

Il

|

(1.14)

|

[0

g (1.15)

[ RY? o
(0 o0

[0 O
0 Ry’

[ R 0

|

0o R’

Clearly the dimension of the range space of y(-,v) is

M
D‘, = Z d,' X{,,}(l).
=1

(1.16)



Of course for all v, y(t,v) € IRP. ‘
Following established terminology (c.f. [9]) we see that a sensor scheduling strategy is de-

fined by an increasing sequence of switching times 7; € |0, T] and the corresponding sequence
vi € N of sensor activation configurations. We shall denote such a strategy by u(:), where

u(t) =v;, t€[rmn); J=12,... (1.17)

As stated earlier we are interested in the simultaneous minimization of costs due to es-
timation errors as well as sensor scheduling. We shall therefore consider joint estimation
and sensor scheduling strategies. Such a strategy consists of two parts: the sensor schedul-
ing strategy u (see (1.17)) and the estimator é. The set of admissible strategies U,, is the
customary set of strategies adapted to the sequence of o-algebras

7D = ofy(s,u(), s < 1) (1.18)

That is, we consider strict sense admissible controls in the sense of [4]. For the problem
under investigation this last statement must be interpreted very carefully. First, we have
indicated in (1.18), that the available past observation data information o-algebra depends
(as is evident from (1.6) - (1.9)) very strongly on the sensor schedule »(-). This dependence is
non-standard, as here the dimension of the observation vector and the noise covariance change
drastically at each switching time 7;. In standard stochastic control formulations [4], [5], the
dependence of y on u(-) is much more implicit. This is a difficult part of the formulation
here, since it prevents us from using Girsanov transformations in a straightforward manner.
Secondly (1.18) means that the switching times 7; and the variables v;, which define u(-),
must be adapted to the filtration }:"(""(')), which depends essentially on the values of 7; and
v;! Finally (1.18) also means that ¢(T’) must be measurable with respect to FO) - we
shall describe a rigorous mathematical construction of such a model in section 2.
Given such a strategy the corresponding cost is

J(u(),4) = E{l$(=(T)) - (D) (1.19)
+ /0 e(z(t), u(t))dt (1.20)
S k() u(en) ulm) (121)
Here forz € IR®, v,V € N
c(x,v) = c,(z), (1.22)
(c.f. Eq. (1.5)), and
k(z,v,V') =k, (z), (1.23)

(c.f. Eq. (1.4)).
The optimal sensor scheduling in nonlinear filtering is thus formulated as the determina-

tion of a strategy achieving X
inf J{u(-), ) (1.24)
u(')?'ﬁ



among all admissible strategies.

To simplify the notation a little, let us order the elements of N according to the numbers
they represent in binary form. For example in the case M = 2, N = 4 we replace N =
{00,01,10,11} by the set of integers {1, 2, 3, 4}. That is the one-one correspondence between
N and {1,2,...,N} is described by

v +—— (integer represented by v) + 1 (1.25)

k +— binary representation of (k — 1).

So in the sequel of the paper we replace all the v,v' in equations (1.4) - (1.23) by the
corresponding integers from {1, 2, ..., N }.

The structure of the paper is as follows. In section 2 a precise mathematical formulation is
given and the corresponding stochastic control problem is precisely defined. In section 3 the
set of quasi-variational inequalities solving the problem is derived. In section 4 we offer some
comments and discussion for extensions, further developments and computational methods.

2. The Stochastic Control Formulation

2.1. Setting of the model

Let (2, 4, P) be a complete probability space, on which a filtration 7, is given, A = Z.
Let w(-) and 2(-) be two independent, standard %-Wiener processes with values in JR" and
IR? respectively, carried by this probability space. On the same space we consider also an
IR™valued random variable £, independent of w(-),2(-), and with probability distribution
function #g.

We consider the Itd equation (1.1), where f(-) is IR™-valued, bounded and Lipschitz, while
g(-) is IR™*"-valued, bounded and Lipschitz. Letting a = %ggT, we assume a > al,, where
a > 0 and 7, is the n x n identity matrix. The Lipschitz property is unnecessary and can be
easily removed using Girsanov’s transformation (i.e. consider weak solutions of (1.1)) [8]. It
is assumed here to simplify the technicalities not related with the main issues of the paper.
Under these assumptions (1.1) has a strong solution with well known properties [8]. Note
that under P, z(-) 1s independent of z(-).

Consider next functions h‘(-), i=1,...,M, from IR" into IR, which are bounded and
Hélder continuous. We shall denote by L the infinitesimal generator of the Markov process

() 2

n 8 n 6
L= ‘.%.:::1 a,'j(:(;)m + ; f,'(.’C) 81:‘- (21)
or in divergence form
= P i 2.1
L "']-Z:I a ‘a'J (I) 61:] ‘Z:; a (I)a ; ( a’)
where
ai(z) == ~filz) + 3 2B (2.18)



Let us next consider an smpulsive control defined as follows. There is a sequence 7y <
T3... < T¢ < ... of increasing F-stopping times. To each time 7; we attach an 7, -measurable
random variable u; with values in the set of integers { 1, 2, ..., N} 1. We define

u(t) =w, <t<ny, 1=0,1,2,... (2.2)

and set 70 = 0. We require that
1T ast T oo, (2.3)

while 74 = T is possible for some finite k.
Let v; be the element of N, corresponding to u, via (1.25).

Then define

h(z,u(t)) := h(z,vi), 7 <t < Tigr, (2.4)
where k(z,v) is defined by (1.7}, in terms of the given functions A'(-). Clearly A(-, u(t)) maps
IR"™ into IRP for all sensor schedules u(-) and is obviously bounded and Holder continuous in
z. Define also

r(u(t)) := r(w), 7 <t < Tig, (2.5)

where r(-) is defined by (1.9), in terms of the given matrices R;, ¢ = 1,2,...,M. Clearly
r(u(t)) maps IR? into IRP for all sensor schedules u(-) but it is singular. Next we define
h(z,v) to be the vector valued function

[ RVR(z)x 0y (1)

h(z,v) == | BV R (z)xn (i 2.6
; JX{v}

Ryt PhM(2)x (3 (M) |

with x,}(7) defined as in (1.8). Let
h(z,u(t)) := h(z,u), 7 <t < 11 (2.7)

Clearly h({-,u(t)) maps IR" into IRP for all sensor schedules u(-) and is obviously bounded
and Holder continuous in z. We shall refer to u(-) as the tmpulsive control. As we shall see, it
describes essentially the decision to select at a sequence of decision times one of the functions
h(-,k), k € {1,2,...,N}. This is the precise mathematical implementation of the sensor
selection decision described in the introduction.

To see that indeed this is the case, we can, with the above preparation, use Girsancv’s
measure transformation method. Let us then consider the process

c(t) = exp{ [ Fla(s),u(s))Tdas) = 5 [ Ih(a(s),u(s)Ids) (2.8)

1Recall that V = 2™ and the binary representation of each integer 1, 2, ..., N determines a sensor activation

configuration by (1.25).



where T denotes transpose, |- || is the JR” norm. Note that the process u(t) is adapted to 7.
Then since z(-) is adapted to #* C % and u(-) is cadlag [8], (2.8) is well defined. Moreover
since k is bounded, by Girsanov’s theorem [8], [14], ¢(:) is an F-martingale. We can thus
define a change of probability measure

dpu()
TR ¢(t) (2.9)
and consider the process
t.
o(t) = 2(2) ~ [ *fa(s), u(s))ds. (2.10)

By Girsanov’s theorem [8], [14], under the probability measure P*() on (2, 4), (-} is a
standard F-Wiener process with values in IR?. Furthermore, by the independence of w(:)
and z(-), w(-) remains a standard IR"-valued, %-Wiener process which is independent of
v(-). Finally € remains independent of w(-), v(-) while keeping its probability law, denoted
by mo. Thus z(-) also retains its probability law under PO,

To relate this construction, i.e. (2.2) - (2.10) with the M noisy observations (sensors)
loosely described in the introduction (c.f. in particular eq. (1.6)), observe that (2.10) can be
written as

r(u(t))dz(t) = h(z(t),u(t))dt + r(u(t))dv(?) (2.11)
in view of (1.7), (1.9), (2.4), (2-5), (2.6) and (2.7). Indeed

[ R *x03(1) 0 0 11 BRI R (z)x 0 (1)

r(w(t)hr(z, () = | g B %00 (2) 0 Ry PR (2)x 1y (2)
Lo 0 R xa(M) | | Ry hM (2)x gy (M) |
= h(x,u;), i << Tigy- (2.12)

To give a precise meaning to (1.2), or (1.6), let us introduce the process

y(t,u(t)) == y*(t), 7 <t < Tipa (2.13)

where

dy”(t) := r(15) dz(t) = h(z(t), v:) dt + r(v;) du(t). (2.14)

It is clear that if we select u(t) = v, V¢, where v has 0 everywhere except for one 1 in the

i** location, then (1.2) results. It is also rather plain that y*(t) € IRP» and that in this case

the Wiener process r(v)v(-) is also D,-dimensional (see (1.16) for the definition of D,). The
process y*(t) represents exactly the observation which is available in [7;,7;4,).



The next issue that we wish to clarify relates to the measurability question that we
discussed in section 1.2, after eq. (1.18). For any u(-), given the construction of y(-,u(-)),
above we can now consider F*(**()) a5 defined by (1.18). We shall say that u(-) is admissible,
denoted u € Uy, if u(t) is .'f","("“(')) measurable, t > 0, where .’r',"("“(')) is constructed as above.
This more precisely means that the 7; are Y,"("“('))—stopping times or that

{r; <t} c FLD (2.15)

and that
vi € Fplmtd), (2.16)
Note that since £ ¢ # for any sensor schedule u(-) adapted to 7Y if 7. are FYOHOL
stopping times they are also %-stopping times, and the above construction (2.8) - (2.14) is
still valid. The implication of (2.15), (2.16) is that one should check that an optimizing
strategy, obtained by some procedure, must satisfy the admissibility conditions. Clearly U,, is
nonempty as strategies u(t) = v, t € |O,T}, obviously are admissible. Also strategies with
fixed switchings are also admissible. Note that for an admissible control 7¥"*()) ¢ FA
We have thus established in this section the precise mathematical models of nonlinear
filtering problems where selection of sensors is possible. In particular we have succeeded
in circumventing the subtleties associated with the definition of admissible sensor schedules

discussed in section 1.2.(2)

2.2. The optimization problem

For the dynamical system described in 2.1, we consider now the cost functional (1.19)
where the underlying probability measure is P*(). As indicated in the introduction, the
general problem where the function ¢ will be in a nice class, e.g., bounded C?, or polynomial,
or C*® can be treated along identical lines. To simplify the notation we have chosen to
formulate the problem for ¢(z) = z. The technical difficulties for this case are identical to
the ones in the more general cases discussed above, particularly since this ¢(-) is unbounded
on IR". For this choice the selection of the optimal estimator ¢(T) is the conditional mean

$(T) = E“O{z(T) | 7, (2.17)

where E*() denotes expectation with respect to P“(). Let u(u,t) denote the conditional
probability measure of z(t), given 7)) on IR™. It is convenient to express (2.17) as a

vector valued functional of p(u,t)

~

HT) = ®(u(u,T)) = [ zdu(u,T). (2.18)

We shall further assume that the running and switching cost functions ¢;(-), k;;(+),
1,7 € {1,...,N}, introduced in (1.4) and (1.5) have the following regularity

ci(-),k;;(-) arein Cy(IR") (i. e. bounded and continuous) (2.19)

2Since r(u(t)) is a singular matrix, this stage is more delicate than in standard stochastic control theory, where

7> would suffice.
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As a result of this simple transformation we can rewrite the cost as a function of the
impulsive control u(-) only (i.e. the selection of ¢(-) has been eliminated): :

() = BO(a(T) - Sl DI+ [ (o) u(t))d

+ ik(I(Tj)’u(r.i-*l)’u(ri))Xr,~<T}y (2.20)

i=1

where xr.<r is the characteristic function of the )-set {w; ni(w) < T}. We further assume
that the switching costs are uniformnly bounded below

k(z,7,57) > k,, z€ IR", 1, 7 €{1,...,N} (2.21)

with ko a positive constant. Note that as a consequence of (2.20) if for some admissible u(-)
with positive probability, the number of times 7; < T is infinite, then the cost J(u(-)) will
be infinite. Therefore for T finite the optimal policy will exhibit a finite number of sensor

switchings.
The optimal sensor selection problem can now be stated precisely as the optimization

problem

P . Find an admissible impulsive control v*(-) such that

Ty = inf (), (2.22;

[
I
W]
——

where U,4 are all impulsive control strategies adapted to FY(-¥()) or equivalently satisfying
(2.15), (2.16). Problem P is a non-standard stochastic control prablem of a partially observed

diffusion.

2.3. The equivalent fully observed problem

In this section we transform the problem of section 2.2, to a fully observed stochastic
control problem, by introducing appropriate Zakai equations. As is customary in the theory
of nonlinear filtering [1], [2], [3], [4], let us introduce the operator

p(u(-),t)(¥) = E{c(t)p(z(t)) | 72Oy (2.23)

for each impulsive control u(-). The notation is chosen so as to emphasize the dependence on
u(-), which is due to the dependence of ¢(-) on u(-) as introduced in eq. (2.8).> The operator
(2.23) maps the set of Borel bounded functions on IR", into the set of real valued stochastic

processes adapted to .7,”'("“(‘)). Note that p(u(-),?) can be viewed as a positive finite measure
on IR™. It is the unnormalized conditional probability measure of z(t) given FCmO) (1], [2].

3But the expectation is with respect to P and not pet),
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With the help of these measures we can rewrite the various cost terms in (2.20) as follows:

B*O{)|z(T) - @(u(w, )P} = E{(T)|=(T) - &(u(x,T))II*}

E{p(u(), T)(0)}, (2.24)
where
0(z) = |1z — ;’}f—%—%&%n (2.25)

with x representing the function x(z) := z and 1 the function 1(z) := 1, z € IR". A
straightforward computation implies that

E*O{||z(T) — @(u(v, T))|I’} = E{¥(p(u(), T))} (2-26)

where V is the functional on finite measures on IR" defined by

2
vt — ity _ B0 -
() = ) - L2b) (22)
where x?(z) = ||z]|*, £ € IR", and p is any finite measure on IR™ such that the quantities
©(x?) and p(x) make sense.
Next

I

BL(T) [ e(at) u(0)dt)

= B{[ BG@)e(a) u(0) |7)de)

= B{[ BG(T) Aol (o), ult))de)

= B se(a(0) u(t)dt), (2:29)

B /0 " e(2(t), u(t))dt}

because z(t),u(t) are measurable with respect to % and ¢(-) is an #-martingale. Now define
a map C with values in Cy(IR") via

C(u) == ey, (), v €{1,2,...,N}. (2.29)
Then in view of (2.29), (2.23), we can rewrite (2.28) as
B[ clalt) w®)d) = B[ Ble@ele(0) )7 O)at)
= B[ pu(),0)(C(u(t))dt). (2.30)

Finally

E*Ok(z(r:), u(r-1), w(r:)) Xri<r} E{¢(r)k(z(r), u(ri-1), (7)) Xri<T}
E{E{¢(r:)k(z(r), u(ri-1), w(r))xr,<r | 72040} }

E{p(u(-), %) (K (u(ri-1), (%)) xri<r }- (2-31)

o
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Here we have introduced the function K with values in C,(IR"), via
K(ui,uj) ='k0£.lfj(.)’ Ui, U € {1,2,...,N}, ) (2.32)

and we utilized the admissibility of u(-). Note that in the simpler case where c;(-),ki;(-),
t, 7€ {1,2,..., N} are constant independent of z, (2.30) simplifies to

B[ efale),u@)de = B[ plu(), ) (Meuods) (2.33)
and (2.31) simplifies to
EO{k(z(r), u(rer), w(r)) Xruer} = Blkupuixeerp(@() )0} (2.34)

Utilizing (2.26), (2.30), (2.31) we can rewrite the cost corresponding to policy u(-), given
in (2.20), as follows

Ie() = BEEEE,T) + [ pu),0C(0)d
+ ZP(“('),Ti)(K(ui—l,u.‘))Xr.-<T}- (2.35)

i=1

In (2.35) we have succeeded in displaying the cost as a functional of the unnormalized con-
ditional measure p(u(-),-) which is the “information” state of the equivalent fully observed
stochastic control problem. To complete this transformation we need to derive the evolution
equation for p(u(-),:), i.e. the Zakai equation. We turn into this problem next and derive a
weak form of the Zakai equation for p(u(-),-) in the following lemma. Here C?' denotes the
space of all functions ¢(z,t) on IR™ x IR which are bounded, continuous together with their
first and second derivatives with respect to z, and first derivatives with respect to .

Lemma 2.1: For any 9y € C’:’l we have the relation

p(u().0B) = mo(d(0)) + /‘p(u-,s)(%f+L&)ds

+ fZP(u 1 (u(s))(s))dz s) (2-36)

where
[i(u(s)9] (2) = hilz,u(s))$(z), i=1.2....D, $€C
Y(s)(z) = ¥(=,9), (2.37)

and h; is the 1" component of & (see (2.6)).

Proof:
Let B(-) € L*(0,T; IRP) given and consider the %-martingale p(t), defined by

dp(t) = p(t)B(t)Td=(t), p(0) = 1. (2.38)
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Recall that by definition of ¢(t) (c.f. eq. (2.8))

de(t) = ¢()h(z(t), u(t))T dz(2), ¢(0) = 1. . (2:39)
Therefore by 1té’s rule [8]
d(¢(t)r(t)) = g(t)p(t)l(ff(x(t),u(t))+ﬁ(t))sz(t)
+ hT(z(t),u(t))B(t)dt]
¢(0)p(0) = 1, (2.40)

and since ¥ € G}

aw(z.) = DD 4y, )a

+ [V(=(t). )] g(=(t))dw(t), (2.41)

where L is given in (2.1). Therefore suppressing some arguments for ease of notation
P .
d(=(0,0) )] = OO + L + B py)d
+ vy gdw(t) + v(h + B)Td=(t)]- (2.42)

In (2.41), (2.42) we used the notation ¢ = (6:1 ey 5‘3;1"—)7‘. Integrating (2.42), and taking
expectations we deduce

E{d(z(t),1)e(t)o(t)} ) + E{ / b + Ly + KT By)ds). (2.43)
We can then write
B[ SN 50 + twldsh = B{[ Blo(s)s(s )(%f + Ly) | 0 ds)
= B[ Ipu(), ) (5L + Ly)ds)
= E{s(t) / %’-”- + Ly)ds) (2.44)

by virtue of the %-martingale property of p(-). S.lmxlarly
B[ ¢(s) ()b (=(s). ule)T B(s)(x(s), 5)ds)
= B{olt) [ c()b(als), )R (a(s), u(s)"d2(s)}
= B0 |3 Al e (2, 2.45)

where in the first equality we have used the representation p(t) = 1 + f; p(s)B(s)Tdz(s), and
the well known insomorphism between Itd stochastic integrals and L? [8]. Finally

E{¢(z(t),)c()p(t)} = E{o(t)p(x(-),) (¥ (1))}. (2.46)
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Using (2.44), (2.45), (2.46) in (2.43) we obtain
B{plp(u(),)(B() ~ 1oB(0) ~ [ p(u(),5)(58 + Lp)ds
= [} 2P, ) ()P o)) = 0. (247

We can replace in (2.47) p(t) by a linear combination of such variables, with different 8.
The set of corresponding variables is dense in L?(f1, 7%, P). However, the random variable in
the brackets in the right hand side of (2.47) is clearly in LZ(Q,,T,"("“(.)),P) and therefore in
L2(Q, 72, P) since 7*0*O) ¢ 7= Then (2.47) implies the result of the lemma (2.36).

As a remark we would like to note that the assumed nondegeneracy of z(-), implies that
the solution of (2.36) is unique. This can be proved in general under our working hypotheses,
for solutions which are measure-valued processes. Here we outline such a proof for the case
when these conditional measures are absolutely continuous with respect to Lebesgue measure
on IR"; i.e., in the case unnormalized conditional densities exist. For this we need to assume

in addition that

7o has a density py with respect to Lebesgue measure; py € L*(IR™) (2.48)
Let us denote by L* the formal adjoint of L (see (2.1), (2.1a), (2.1b)):

I a LI,
L= ai5(Z) 5 =i, :
i§=:1 Bx;aJ(I) dz; + '2:; ax,-“ (2.49)

and consider the Hilbert space form of the Zakai equation [10]

dp = L'pdt+ ph(-,u(t))Tdz(t)
p(0) = po. (2.50)

The function space in which the solution is sought is
L*(Q, A, P;C(0,T; L*(IR™))) N L%, (. (0,T; H* (IR™)) (2.51)

Here H1! is the usual Sobolev space on IR™ [11] and the subindex F¥(**()) in the second L?
space, denotes that the solution is adapted to the filtration 3";"(')’"(')), t > 0. It follows from
the results of E. Pardoux [11], that there exists a unique solution of (2.49) in the function
space (2.50), under the assumptions made here. We can then establish the following.

Lemma 2.2: The following property holds
p(u(-), ) (%) = (p(u(-), 1), %), (2.52)

Vi in L?*(JR") and bounded, where (-,-) denotes inner product in L?(IR").

Proof:
By slight abuse of notation we use the same symbol to denote the conditional unormalized

measure and density (whenever the latter exists). Let us prove inductively that



15

p(u(-),n vV (EA 7)) (¥) = (p(u(), 7 V (EA 7in1)), ¥), - (253)
where the left hand side notation refers to the measure appearing in (2.36), while the right
hand side notation to the solution of (2.50), which is uniquely defined. Suppose then that
(2.53) holds for i-1, and therefore in particular

p(u(),w)(¥) = (p(u(),n), ¥), Vo (2.54)
Consider now the solution n of
(_22 +Ln = —nh(,u(s))TB(s), s € (mnV (EA 7))
n(z, VvV (EATL)) = $(2) (2.55)

where 1 € C(IR™) and f is a smooth deterministic function with values in IR?. From the
assumptions on f, g and h* (it is here that we use the assumed Holder continuity of k'), we
can assert that the solution of (2.55) belongs to C*'(IR™ X (7:,7: V (t A 7i11))), for any sample
w, {11]. Therefore (2.36) implies (using (2.55))

p(u().r v (EAT)) () = p(u(),7) (7 (7))
— /T.V(t/\r+1)zp ( (s))f](s))ﬂJ(s)ds

rv(tarie,) D 5 _
v f > p((), ) (H; (u(s))(s))dzs(s),  (2:56)

where H; is as defined in lemma 2.1, and 7(s)(z) := n(z,s). Therefore by It&’s rule
p(u(),n vV (EAT0))(®)p(r Vv (EA 7)) = p(u(-),7) (7 (7)) p(7:)
TiV{EAT 1) D ~
7 lols) 3 pul), ) U (u(s)) ()

#7 o) 3 p( ), ) N 5t o) (257)

¥
Hence

E{p(u(-),n V [t Aia))(D)o(m v (E A 7ia))}
= E{p(u(),n}{7(7))p(%)}- (2.58)

On the other hand from (2.50) and (2.55) we obtain
(P(u() iV (E A7) ¥) = (p(u(), ), 7(n))
AU R R IR

[ S 0. B i s, (@)
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and thus also
E{(p(u(),n vV (A 71))s¥)p(ri V (¢ A miia} = E{(p((), ), 71 (n))p(7}. (2.60)

But from the inductive hypothesis (2.54), the right hand sides of (2.58) and (2.60) are equal.
Hence the left hand sides coincide. Varying f, we easily deduce that (2.53) holds, at least for
Y € C§°(IR"), which is sufficient to conclude the proof of the lemma.

With this result we can rewrite the cost (2.35) as follows

() = BEEEO,D) + [ (6e)), )

b0 xner (60, 7], K i, ) (261)
where (see (2.27))
V(p(u(-),T)) = (p(u(-), T),x*) - ”((}; ((Z(('_))’,?)”’%Hz. (2.62)

Since the expression (2.62) involves unbounded functions we have to show that it makes sense.

At this point it is useful to introduce a weighted Hilbert space in order to express
U(p(u(-),T)) in a more convenient form. To this end let

ulz) =1+ | = | (2.63)

and L*(IR";u) denotes the space of functions ¢ such that pu € L*(IR"). Define in a similar
way the space L'(IR";u). From the discussion of existence and uniqueness of solutions of

(2.50) in the functional space (2.51) and if
po € L*(IR"; p) N L'(RR"; ),

it is easy to check that (2.50), under the assumptions made in section 2.1, has a unique
solution in the space

L*(Q, A, P; C(0,T; L*(IR"; u) N L*(IR"™; u))) N L*(0, T; H*(IR"; 1)) (2.64)

where H!(IR™;u) is the obvious modification of H'(IR"). This justifies that the quantities
arising in (2.62) have a meaning.

We note that J(u(-)) is indexed implicitly (we do not include this in our notation) by
mo (or po) and u(0) = j, j € {1,...,N} which is determistic since it is #7-measurable, by
construction.

We close this section by rewriting the dynamics (2.50), in terms of the originally given
observation nonlinearities &’, and with forcing inputs the processes y*(-) introduced in (2.13),
(2.14). In view of (2.5), (2.6), (2.7), (2.13), (2.14) we have

h(-,u(t))Td2(t) = Zh’ Oxea ()R dz(t), 7 <t < mon
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(where we have written z = [z, 23, ... 2m]")

= Zh’ Ixpay (7R lR & Xy (1) dzi(t), 7 <t < 7ig

= 5(-,1/,-)Tdy(t,1/,~), T, <t <71
=: 6(-,u(t)) dy(t, u(t)),
where

[ R (z)x )y (1)

6(z,v) = | 7K (2)x0(4) (2.65)

| Bas B (z)x1y (M) |

Therefore the system dynamics (2.50) can be written equivalently
dp(u(-),t) = L'p(u(-),t)dt + p(u(-),2)8(-,u(t))" dy(t, u(-))
p(v(-),0) = po,

where y(t,u(t)) is defined in (2.13), (2.14). This makes precise the construction of a Zakai
equation driven by “controlled” observations alluded to in the introduction. It also becomes
now clear that the spaces described by (2.51), (2.64) are the appropriate ones as far as

solutions of (2.50) or (2.66) are concerned.

{2.66)

3. The solution of the optimization problem

3.1. Setting up a system of quasi-variational inequalities

Let us consider the Banach space H = L*(IR"; u) N L'(JR™; ) and the metric space H*
of positive elements of H. Let

B := space of Borel measurable, bounded functions onH™*

C := space of uniformly continuous, bounded functions onH*. (3.1)

Let us now define semigroups ®;(t) on B or C as follows. Consider (2.50) with fixed sched-
ule u(¢) = 7, and let p; denote the corresponding density p(-,7}. Then for j € {1,2,...,N}

dp; = L'pj dt + p;R7" dz(t), p;(0) =, (3.2)

where _ :
h? = h(-, 7). (3.3)

We set
®;(t)(F)(m) = E{F(p;x(t))}, F€B or C, (3.4)

N e e e
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where p; » indicates the solution of (3.2) with initial value 7. It is easy to see that ®; is a
semigroup since p;(t) is a Markov process with values in H*. It is also useful to introduce
the subspaces B; and C, of functions such that

|E ()

Fll; sup ———4— <«
” ”1 xEI'lI')+ 14+ ”71'”# oo (35)

where || 7 ||,=|| 7 ||zi(ru)- The spaces By and C; are also Banach spaces. They are
needed, because we shall encounter functionals with linear growth in the cost function (2.61).
To simplify the statement and analysis of the quasi-variational inequalities that solve the
optimization problem considered here, we give the details for the case N =2 only in the
sequel. We shall insert remarks to indicate how the results should be modified for the general

case. Let us introduce the notation

C; = C(z, ), 1= 1,2,
K1 = K(I,Z)
K, := K(2,1). (3.6)

Since Cy, Cs, K1, K; are bounded functions, one can utilize them to define elements of C; via
(for example)

Ci(r) = (Cy,7) (3.7)
where a slight abuse of notation, in denoting the functional and the function by the same
symbol, has been allowed. Similarly the functional on H*

PN Tl
Y(r) = (7, x°) 1) (3.8)
belongs to C, since it is positive and
W(r) < (1,3 < [ (3.9)

Consider now the set of functionals Uy(,t), Uz(m,t) such that

Ul,Ug € C(O,T;Cl)
Ul('at) Z O’ UZ(st) Z 0

Uln,T) = Uy(m,T) = Y(n)
Ui(n,t) < (Dl(s—t)U,(w,s)+/:<I>1(A~t)Cl(7r)dA
Us(r,t) < <I>2(s~—t)U2(7r,s)+/S<I)2(/\—t)(]2(7r)d)\
Vs > i t
Uy(r,t) < Ky(r)+ Uy(m,t)
Uy(m,t) < Kp(m)+ U(m,t). (3.10)

In the sequel we will occasionally use the notation U;(s)(n) = Us(r,s), 1=1,2.
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3.2. Existence of a maximum element

We shall refer to (3.10) as the system of quasi-variational inequalities (QVI). Our first
objective is to prove the following.
Theorem 3.1. We assume that the conditions on the data f,g,h’ introduced in section 2.1

hold. Then the set of functconals Uy, U; satisfying {3 10) is non-empty and has a mazimum
element, in the sense that if Ul, U, denotes this mazimum element and Ui, U, satisfies (3.10),

then

U,>U,,0, > U,

The proof will be carried out in several steps. In fact there is some difficulty due to the
functional ¥(x). We shall modify it in order to assume that

0< ¥(r) <¥(r1) (3.11)

where W is a constant. We shall prove the theorem with the additional assumption (3.11),
prove the probabilistic interpretation, i.e. the connection with the infimum of (2.61). The
probabilistic formula will be next used in an approximation procedure. We can approximate
for instance the functional ¥ defined by (3.8) in the following way. Set

dz))?

2 W —
U, (1) = / mlzll’ g, _ aelsE) (3.12)

1+ EEY [rdz
which clearly satisfies (3.11) with ¥ = n.

Proof of Theorem 3.1 under the assumption (3.11). The set of functionals satisfying (3.10)
is a subset of B, or C; defined in (3.5). However for this subset the norm (3.5) is unnecessarily
restrictive. For those functionals it is sufficient to set

~

H = L*(R")nLY(R")
H* = set of positive elements of H (3.13)

and to consider él, C, the space of Borel or continuous functionals on H* such that

1Flh = sup 0L o (3.14)

rci+ 14+ (7, 1)
We shall then study the systermn (3.10) with C, replaced by 1. Let us notice that
H* c H*
and if one considers a functional F in B, or C 1, its restriction to H* belongs to B; or C;; the
injection
F — restriction of Fto H*

is continuous from Bl or C 1 to By or C;. Therefore replacing in (3.10) Cy by ¢ 1 gives a stronger

result.
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We shall in the proof omit to write the symbol ~ and write B1,C; instead of él, él,H +

instead of H*, the norm [l ll1 is then given by (3.14).
The proof is then an adaptation of the methods of Bensoussan-Lions [9] to the present

case in order to take into account the fact that we use C, instead of C.
First note that

121()l 2(cricyy < 1 (3.15)
where £(Cy; Cy) is the space of linear continuous operators from C 1 into itself. Indeed we have
12:()(F)(m) _ |E{F(p1a(t))}]
1+ (=, 1) 1+ (m, 1)
(1 + E(p1+(t), 1))
< MFl=— + (7, 1)
= |[Fs
since from (3.2)
E(p1x(t),1) = (m, 1) (3.16)
Therefore
@&} (F)llx < [[F|, (3.17)

which implies (3.15).
Note also that a solution of (3.10) will satisfy

Us(m,t) < 4(T — ) (r, T) +/tT 1 (X — £)Cy(r)dA (3.18)

and due to positivity, we also have
1@l < 10T+ [Colla (T~ ¢) < T+ ei(T — t) (3.19)

where ||Cy]| = sup, C,(z).
As it is customary in the study of QVI we begin with the correspending obstacle problem,
UI’UZ € C(O: T;Cl)
U(-,t) > 0, Uy(-,t) >0

Uy(m,T) = Up(r,T) = ¥(n)

Ui(r,t) < ¢l(s—t)U,(7r,s)+/t’q>,(x—t)cl(7r)dA
Un(n,t) < <I>2(s—t)U2(7r,s)+/IS<I>2(/\-t)C’2(7r)d/\
Vs > ¢
Uy(m,t) < Ky(7) 4 ¢2(m,t)
Uy(m,t) < Ko () + ¢i(m,t) (3.20)

where we assume that
e € C(0,T5C)
§1(7r1 t) 2 07 §2(7T,t) Z 0

1 (m,T),0(mr,T) > W(n (3.21)
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We then have the following.

Proposition 3.1: For ¢,,¢ as tn (3.21) the set of Uy, U, satisfying (3.20) is not empty and

has a mazsmum element.
It is clear that for ¢, ¢ given, the system of inequalities (3.20) can be decoupled and
U,,U; can be considered separately. Let us then omit indices momentarily and consider

U € C(0,T;C)
U(-,t) 0
U(r,T) U(m)
U(r,t) @@—vaﬁ)+/ﬂwx—qcmmx
Vs t t
U(n,t) ¢(¢) (3.22)
where ¢ stands for instance, for Ky(n) + ¢2(m,t). To prove proposition 3.1, it suffices to show

that (3.22) has a maximum element. This can be done by the penalty method. So we look

for U, solving

v

1

IA

VAN

ma);:@@—qm@yg[¢u~nwwywamuyqunﬂa

for t<s<T
U(T)(r) = ()
U € C(O,T;Cl)
Uc(-t) > 0. (3.23)

We can then assert
Lemma 3.1 There is a unique solution of (3.23).

Proof: Notice that (3.23) is equivalent to

U(0) = 9T = )UAT) + [ 80~ Ol ~ 2(U.0) () 1A (3.24)
and also to

1 T 1
Udft) = e‘ﬂT"”Q(TV—t)W(W)+1/ e (X — 1)
t

() + LU = <(UX) = ¢(3)) "] (3.25)

Let us define the transformation 7, of C(0,T; C,) into itself using the right hand side of (3.25).
Then the latter can be written as a fixed point equation

U, = T.U, (3.26)

Using (3.11) and (3.15) one can show precisely as in Bensoussan-Lions [9, p.488] that some
power of T, is a contraction. Hence the result of the lemma follows.
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One then can also prove as in [9, pp.489 - 490), that if e < ¢, ||U.]}; < K, then 0 < U, < U,
As in [9, pp.494 - 495] one then shows that as € | 0,U, | U which is the maximum element of
(3.22). The convergence takes place in C(0,7T;C;). This establishes Proposition 3.1.

We can then proceed with the

Proof of Theorem 3.1: (Continuation)
Let us consider the map H mapping C(0,T;C;) x C(0,T;C,) into itself defined by

II(§13§2) = (U],Uz) (327)
where the right hand side represents the maximum element of (3.20). Let now
T
Ui(mt) = @4(T - )¥(m)+ [ &(A~1)Ci(x)dr
t
T
US(m,1) = (T — t)¥(n) +/ &,() — £)Cy(r)dA (3.28)
t

Consider ¢(t), &(t),7 = 1,2 such that

0 S §t(t) S €i(t) S (];'o(t))i = 1a21 (329)
and
&(t) — a(t) < ~&(), v € [0,1]. (3.30)
Then we have
0< H(&, &) ~ Hlsi, ) < 2(1 =) H(61, &) (3.31)
where
'< ko (3.32)
7= ko + ¥+ max([ICy], CalT |
Indeed, setting
K=1-7(1-7) (3.33)
we have to prove that
k H(&1, €2) < H(61, 6)- (3.34)
Let us set
(U17 U2) = H(§l7 §2)
(U, Uz2) = H(&, &) (3.35)
We need then to show that : 5
ICU1 S Ul, ICUZ S Uz. (3.36)
If we can establish that
'CKI(W) + ’CEZ(ﬂ', t) S Kl(”) + S’z(ﬂ', t)
kKo(7) + kby(m,t) < Kow)+ a(nw,t), (3.37)
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then (3.36) is implied by the monotonicity properties of Variational Inequalities. But
fz(?l', t)(l —")') S g'z(ﬂ", t), (3.38)
hence it is enough to establish that

kK (7) + k&a(m,t) < Ki(x) + (1 =) &, t) (3.39)
kKo () + e&i(m,t) < Kp(m) + (1 — ) &i(m,t)

The first of (3.39) will be satisfied if

[ — (1= 7)]&(m,t) < (1 - x)Kin) (3-40)

or if
7' &a(m,t) < (1 — ') Ky (x). (3.41)

But observe that
&a(m,t) < U (m,t) < (¥ + [[Co||T) (m, 1)

So it is enough to choose v’ so that
(@ + | CalIT)(r, 1) < (1 = )ko(m, 1) (5.4
where kg is the uniform lower bound (2.21), since Ky(w) > ko(w,1). This last inequality

requires

ko

'< — 3.43
T =t U+ |CT (3.43)
In an identical fashion, the second of (3.39) will be satisfied if
k
> (3.44)

¥ < = :
ko + W + ||Cy||T

So both of (3.39) will be satisfied if we choose 4" according to (3.32). The proof of the theorem
then proceeds via the standard iteration

(o, oty = H (U7, U7) (3.45)
as in (9, pp.512 - 514].

Remark: The extension of this result to the general case N # 2 is straightforward. The
system (3.10) has N functionals Uy,...,Un. Everything in (3.10) is the same except for the
last two inequalities which are replaced by

Um,t) < min (Ki;(r) + Uj(n,t)), t=1,...,N (3.46)

One again introduces the system (3.20) where the last two inequalities are replaced by
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U.'(?f,t) < m;n (Ki j(7r) + gf(“’t))v 1=1,...,N (3'47)
2 T
1=1,...,N

where ¢; € C(0,T;C;), and saiisfy the remainder of (3.21). One then establishes the analog
of Proposition 3.1 by penalization. The analog of Theorem 3.1 is established by introducing
a map H mapping C(0,T;C;)" into itself defined by

II(Q,Q,...,S‘N) = (Ul,Uz...,UN)

where the right hand side is the maximum element of the analog of (3.20).

3.3. Existence of an admissible sensor schedule

Our objective in this section is to show that the maximum element U,, U, of the QVI (3.10)
provides the value function for the optimization problem (2.61), (2.66) when the assumption
(3.11) holds. Furthermore we want to show how an admissible optimal sensor schedule is

determined once the pair Uy, U, is known.
We shall prove that

U(#.0) = (il;f J(u(+)), r=1.2 (3.48)
u(0)=2
p(0)=m

where m € H? satisfies (r,1) = 1. An optimal schedule will be constructed as follows.
Suppose, to fix ideas that 7 = 1. Then define

T = }1(15,{571(])1(”,0 = Ky(pu(t)) + Uz(pi(1). 1)} (3.49)

where again p;(t) is the solution of (3.2). We write

p(t) =m(t), t€[0,n] (3.50)

Next define )
1= inl_{Us(pa(t), ), = Ka(pa(t)) + Us(palt), )} (351)

Ty St<T

In (3.51), it must be kept in mind that p;(¢) represents the solution of (3.2) with j=2, starting
at 7} with value p,(7;). We then define

P (t) = p2(t)s te [T;,T;] ‘ (3'52)

Note that, unless 7{ = T,

T, > Ty, : (3.53)
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otherwise

Uipi(r7), ) = Kalpa(1)) + Ua(pa(r7), 1) .
Ua(pi(ry),77) = Ka(pi(r{)) + Ur(pa(r1)s71) (3.54)

which is impossible since
K, (pi(7])) > 0, K2(p1(7y)) > O a.s. (3.55)

Similarly one proceeds to construct a sequence of 77 < 7; < 75 < ... and the process p*(-).
We can then prove the following.

Theorem 3.2. With the same assumptions as in Theorem 8.1 and in addition assuming that
(8.11) holds; the sequence of stopping times 7{,7;,... defines an optimal admissible sensor

schedule.
Proof: Considering (3.10) as a VI with obstacle ¢;, ¢, we can write from the definition of

-

Uy(m,0) = E{Ul(pl( 1),71)
+ / Ci(p1(A))dA). (3.56)

This can be established by utilizing the penalization (3.23), along similar lines as in [9, pp.
578 - 587]. Then

E{Ui(p:(),7)} = E{Ui(p*(7{)s7/}
= E{¥(p"(T))xs;=1}
+ E{Ui(p" (1), )X <1}

Substituting back in (3.56) and using the definition of 7{ in (3.49) we obtain

Uy(7,0) = E{\Il(p‘(T))xfl—zr-F/; ' Ci(p°(A))dA
+K1(p*(T1‘))X7;<T + UZ(P'(T;),T;)X,;.(T} (3.57)
Furthermore, again by employing penalization one can show that

E{Ux(p"(n1),7{)} = E{U2(p2(71),71)} = E{Uz(m( ‘) 1)
+ / A))dA}. (3.58)

This implies
E{Uz(p2(7))s 71 )xsr<r} = E{U2(pa(7;),73)xr;<r
+  Xrp<T /‘2 C2(p2(A))dA}. (3.59)

1
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Next

E{UZ(P2(T;),T;)X7;<T} = E{‘I’(P'(T))Xr;«r,r;:l'}
+ E{Uz(p*(73),72)Xrz<T}

Substituting back in (3.57) and using the definition of 7; in (3.51) we obtain
Uy(m,0) = E{¥(p"(T))xr;=r + K1 (p"(r{))Xr; <1
1.‘
FE (0" (1)xgr + [ Cap (X)) A

+ 7 ol )+ U5 (53), g cr) (3.60)

Proceeding in a similar fashion, and collecting results we can write:
Ur(m,0) = E{¥(p"(T))xrs=r
+ D Ki(p (7)) Xere<r

=1

n-l T .
+ D Xep <1 ,.+ Cirr(p*(N))dA},

=0 )

+ Unna(p'(72), 72) Xrz<r (3.61)

where we used the notation
K,, ifiis odd
K,, ifiis even
0. = Cy, ifiis odd
T C,, ifiis even
U;, ifiis odd

Ui = { U,, ifiis even. (3'62)

However, observe that nééessarily 74 = T, for n large enough (random). Otherwise one has
7t < T,Vn, on a set 2y C 0 of positive probability. But 7; T 7* < T and

(p°(77), 1) — (p*(v"), 1) (3.63)

where (since (7,1) = 1) .
(p’(r"), 1) =1+ fo p*éTdy (3.64)

(see (2.66)) and )
(p*(r*),1) = E{¢(+")|FX*V} >0 as. (3.65)

where ¢(-) is the process introduced by (2.8). Therefore on 2y, as n — oo

iK-’(p*(f.-‘))xf;a oo (3.66)

=1
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and since Q'g has positive probability, as n — oo -
n
E{}_ Ki(p (7)) xr; <1} — 00, (3.67)
P .

which contradicts (3.19).

We can thus assert that
Xra=T — 1 a.s. (3.68)

In particular, it follows that the sequence 7,75 ..., defines an admissible schedule denoted
by u*. The corresponding state solution of (2.66), comcxdes with p* and (3.61) implies

Uy(n,0) > J(u"(-)). (3.69)
But by standard arguments, one checks that
Uy(m,0) < J(u(-)), Yu(:) € Usa (3.70)

and therefore v*(-) is indeed optimal.

3.4. The main result

We want now to get rid of (3.11) and consider the original functional ¥ in (3.8). Let us
consider the approximation (3.12) ¥, of ¥. To ¥, corresponds a system of QVI.

ur,ur e C(0,T;C)
Ur,Ur > 0
UpMr,T) = Ux,T) = qf(
Ur(m,t) < &y(s — YU (r, s) +/ (A = £)Cy(n)d
UP(m,t) < @3(s — )UP(n, s) +/ X — 1)Cs(r)dA
Vs >
Ul(w,t) < Ki(m)+ Uj(m,t)
Up(m,t) < K(r)+ Ul(m,t). (3.71)

From Theorem 3.2, we can assert that

Ui (n,0) = u(l(?)f J™(u(+)), i=1,2 (3.72)
p(0)=n

where
W) = BT + [ (ul),0,0lu0)d

+ iXT-’<T(p(u(')vTi)vK(ui—laui))}- (373)



28

Therefore we deduce that 4 |
TH@() = J(u() = E{¥n(p(u(-), T)) - ¥(p(u("), T))} (3.74)

and from (3.12) we deduce

() - TE)] < { s iﬂ,’,’f = }
1 T
+E {(/p(u(.),:r)z (1 - W) dx‘)

1 1
( p(u(:), T)z(1 + Mﬂﬂnﬁ)l/z)dz) X fmp(u(-),T)dx }(3.75)

But using the equation (2.50) yields (see (2.1a))

{/P ) Hxlllf:ll‘ } {/’ /'p(u() 9)(z) {ia,- 2H$H(7£2: ;l,’;l, )z;
ta; ( y 2[=zl’(2n + |l=]?) | 8ziz;n? )

X P D e e e
I L T D e G o
T (m ] } ot }

where we employed the summation convention over repeated indices. Hence after majorizing

conveniently
IWICIE 7(z)<]*
{/ = e } </ nt 2
+ T /ot {/ = SRR } sl )

We shall use capital Greek letters, T', A, ..., to indicate constants ; in the following estimates.

Finally we deduce

(u(-), )( J@)=l* ()l=(l*
{/,, n+ =] } < F‘UHH z[]* *nJ
< 1L [r@leltar+ 1. (3.77)
Next consider
p(u(-),t) _ o(u(-),t)

(p(u(-),t), ]1)

which is the normalized conditional probability, measure and satisfies Kusner’s equation

W) = oLl + (o(0)(he) ~ o ()(e)o(0)(R)) - (d= ~ o(t)(i)dt) (378
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If we apply (3.78) with p = l|z||? = x*, we obtain

() = Ele®Ex) - o@®mpE)E?) - oo ®}
< Aol + EB{o(t)(x*))- (3.79)
Finally
E{o(t)()} < A [ w(a)]zl*dz (3.80)

But the 2nd term in (3.75) is

1 ' 1
E {U(T) (X(l + W)) (p(T) (X(l - W)) }

¢ o) ] el o)
< sem )1/2( { (X(l L)m)) ”’})

< A’ [E{HP(T)( (1- W)) “Z‘H

- sl ]

< (s {unoen@ (= )}]/ (3.81)

n+ X

One easily checks that
E{@wxf»? < a4 (fn (mﬂma2<A5

a5 {150 (nfxz) o} < 28 {oto (% L

+ A‘E{tp(t)( e

IA

)

But & A6
< — (3.82)

L2 <

e am {0 < [2°2 {2} ] 29
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which implies

s (b2} <o, [;1;+(/ Z’Eﬂ'—‘”—“’—‘i‘f)z]s%u [@laltan) (280

n + x? n + ||z

Therefore, continuing from (3.81), the 2nd term in (3.75) is majorized by -f,—"; Collecting
results (from (3.75), (3.77), (3.81), (3.84)) we can assert that

n A
7 (w() ~ IO < o (3.89)
provided the initial distribution of p(0), i.e. 7 satifies
/ 7(2)]|z][4dz < oo (3.86)

The estimate in (3.85) is uniform with respect to n. Therefore
A

\U?(7,0) — u(iél)f;:i J(u())] < T4 (3.87)
p(0)=r
In fact we can replace 0 by any ¢t € [0,7] and consider the function
Ui(m,t) = u(igfzi Ji(u(-)) (3.88)

p(t)=r
where J;(u(+)) corresponds to a problem analogous to (2.50), (2.61) starting in ¢ instead of 0.

Therefore we have A
lU,-n(ﬂ',t) - U,‘(W,t)} S ;:174— (3.89)

We have however to be careful to the fact that the constant in (3.89) depends on a bound on

[ m(z)||z||*dz. More precisely we have proved that

U2 8) ~ Uidm, 0] < (1 + [ m(&)lal*da) (3.90)
where A’ this time does not depend on 7 (assuming that = is a probability). It follows that
Ul (w,t) — Ui(m,t) in C(0,T; Cy). (3.91)

Taking the limit in (3.71), we obtain that Uy, U, is a solution of (3.10) and moreover

Uim,0) = int  J(u() (392)

p(0)=m

However by a probabilistic argument already used in section 3.3, any solution of (3.10) is
smalller than the right hand side of (3.92). This completes the proof of Theorem 3.1, and
also provides the same statement as in Theorem 3.2, without the assumption (3.11) and for

our original ¥ given by (3.8).
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