

ABSTRACT

Title: SYSML EXECUTABLE MODEL OF AN

ENERGY EFFICIENT HOUSE AND

TRADE-OFF ANALYSIS

 Kersasp Aspi Cawasji

Master of Science, Systems Engineering, 2018

Thesis Directed By: Professor John S. Baras

Institute for Systems Research

With the growing complexity of energy efficient buildings, the methods of

modeling and simulating such structures must account for monitoring several thousand

design parameters across multiple diverse domains. As a result, modeling tools are now

very specific to their respective domains and are growing more and more incongruous

with each other. This calls for a way to integrate multiple modeling tools in the effort

to create a single, large model capable to encapsulate data from multiple, different

models.

Thus, in this thesis, different methods to perform an integration with Systems

Modeling Language (SysML) and a simulation tool were identified, described and

evaluated. Then, a new method was developed and discussed. Finally, the new method

was demonstrated by developing a SysML executable model of a simple two-room

house that utilizes solar power for space heating, with a heat pump used as a backup.

Using the Functional Mock-up Interface (FMI) standard, the SysML model is

integrated with a Modelica model, and a simulation is run in Simulink. Finally, a

tradeoff analysis was performed for the purpose of design space exploration.

SYSML EXECUTABLE MODEL OF AN ENERGY EFFICIENT

HOUSE AND TRADEOFF ANALYSIS

by

Kersasp Aspi Cawasji

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Master of Science

2018

Advisory Committee:

Professor John S. Baras, Advisor/ Chair

Associate Professor Mark A. Austin

Professor Raymond A. Adomaitis

© Copyright by

Kersasp Aspi Cawasji

2018

ii

Dedication

To my parents, Aspi and Jeroo. Thank you for the golden gift of a sound education.

iii

Acknowledgements

I would like to sincerely express my gratitude to my thesis advisor, Dr. John Baras

for his support and valuable guidance throughout the length of my time at the

University of Maryland. With his vast magnitude of knowledge and expertise in several

fields, he has inspired me to push the limits of my mind and shown me that there is

always more to learn.

I would also like to thank Dr. Mark Austin and Dr. Raymond Adomaitis for taking

the time out to be a part of my thesis committee and providing me with their valuable

insight along the way. Dr. John MacCarthy also deserves a very special thanks for his

mentorship over the two years that I have been here. Not only was he always available

to aid in our studies but also played a large role in developing a strong work ethic for

all his students.

In addition, I would also like to acknowledge my peers and colleagues Amar Vamsi

Krishna, Kunal Mehta, Rishabh Agarwal, and Samvrit Srinivas, and my partner Mallika

Deepak, who have always been a great source of support and encouragement

throughout my journey at UMD. I am grateful for always having them to fall back on

for advice, ideas and much need comic relief when stress levels were high.

Finally, I would like to sincerely thank my parents, Aspi and Jeroo, and my younger

brother, Yashaan, for providing unending support, life-lessons, guidance and love all

through my life, and more so during my formative college years. Despite them being

so far away, I have always felt like a part of our close-knit family.

iv

Table of Contents

List of Tables ... vi

List of Figures .. vii

List of Abbreviations .. ix

1. Overview ... 1

1.1 Introduction ... 1

1.2 Problem Statement .. 2

1.3 Contribution of this Thesis .. 2

2. Background .. 4

2.1 Need for MBSE in Today’s World. ... 4

3. Modeling Tools ... 6

3.1 Cameo Systems Modeler – SysML Environment ... 6

3.2 Dymola – Modelica Environment ... 7

3.3 Functional Mockup Interface .. 9

3.4 Simulink/ Matlab ... 9

4. Current Approaches to Creating an Executable Model 11

4.1 OpenModelica – SysML Integration Using OMG Specification 11

4.2 FMU Import into Cameo Systems Modeler Itself ... 16

5. Executable Model Using SysML-Simulink-FMI Integration 17

5.1 Overview and High-Level Description of the Integration Procedure 17

5.2 SysML Model .. 19

5.2.1 Structure Diagrams .. 19

5.2.2 Parametric Diagram ... 28

5.3 Dymola Model of Two-Room Energy Efficient House 38

5.3.1 Overview of Dymola Model .. 38

5.3.2 The Building Block .. 41

5.3.3 The Ambient Block .. 45

5.3.4 The House Heating Block Cluster ... 47

5.3.5 Simulation of the Dymola Model .. 48

5.3.6 FMU Generation .. 50

5.4 Simulink as an Intermediate Model ... 51

5.4.1 Overview of Simulink Model .. 51

v

5.4.2 Setup of FMI Kit in Simulink .. 52

5.4.3 Creating the Simulink Model ... 52

5.4.4 Simulink Simulation Configuration ... 55

5.5 Integration Procedure .. 57

5.5.1 Integration Mechanics and Matlab Script .. 58

5.5.2 Installing ParaMagic Plugin ... 59

5.5.3 Creating an Instance ... 61

5.5.4 Solving the Instance ... 68

6. Multi-Objective Trade-Off Analysis .. 72

6.1 Overview ... 72

6.2 Pareto Frontier Analysis .. 73

6.2.1 Solving the Design Configurations .. 75

6.2.2 Results of Pareto Frontier Analysis ... 75

7. Conclusions and Future Work ... 83

7.1 Summary of Thesis Work Performed .. 83

7.2 Evaluation of Integration Framework and Future Work 84

Appendices .. 87

A.1 Additional SysML Model Diagrams .. 87

A.2 Matlab Scripts used in the SysML Model of the Two-Room House 92

A.2.1 Constraint Block Matlab Script (exec_script.m) 92

A.2.2 Constraint Block Matlab Script (heatpump_eleccon.m) 95

A.2.3 Constraint Block Matlab Script (heatpump_heatload.m) 95

A.2.4 Constraint Block Matlab Script (solar_heatload.m) 95

A.3 Trade-Off Analysis .. 96

A.3.1 Matlab Script Used for Pareto Analysis (Pareto_Analysis2.m) 96

A.3.2 Table of Pareto Points. .. 100

Bibliography ... 102

vi

List of Tables

5.1: Table of System Metrics, Variable Names and Units .. 29

5.2: Table of Design Parameters, Variable Names and Nominal Values 30

5.3 Table of Design Constants, Variable Names and Nominal Values 31

5.4: Configuration data for Construction Elements .. 44

6.1: Table of 5 Design Parameters and Discrete Value Levels 74

6.2: Table of 4 Design Parameters and Discrete Value Levels 75

6.3: Table of 5 System Metrics and Associated Optimization Actions 76

6.4: Table of 3 System Metrics and Associated Optimization Actions 77

6.5: Table of Finalized Design Options and Associated Parameter and Metric

Values ... 82

vii

List of Figures

 3.1: The SysML Diagram Taxonomy [7] .. 7

 4.1: Test Modelica File of Spring Mass Damper System .. 13

 4.2: Containment Tree from ModelicaImportTest.mdzip .. 14

 4.3: Error Window Displaying Unhandled Java Error... 15

 5.1: Export of Modelica Model into the FMU ... 18

 5.2: Simulink as in Interface between the FMU and the SysML Model 18

 5.3: Interaction between the SysML Model and Simulink Model 18

 5.4: System Domain Block Definition Diagram .. 21

 5.5: Heat Pump System Block Definition Diagram ... 22

 5.6: Solar Thermal System Block Definition Diagram .. 23

 5.7: Building Structure System Block Definition Diagram 24

 5.8: Context Level IBD .. 25

 5.9: System Level IBD ... 26

 5.10: IBD of Heating System ... 28

 5.11: Constraint and Parameters in the Constraint1 Specification Window 33

 5.12: Linking Constraint Block parameter to Block values using the Parametric

Equation Wizard. ... 34

 5.13: SysML Parametric Diagram showing the relationship between system values,

constraints and metric values .. 36

 5.15: SysML Parametric Diagram Describing the Cost of Electricity Consumed by

the System. .. 38

 5.16: Dymola model - SystemModel .. 39

 5.17: The Building block (top left), the Ambient block (top right), the House-Heating

block cluster (bottom) ... 41

 5.18 3D Structure of the Building .. 42

 5.19: Internal Structure of the Building Block in Dymola ... 43

 5.20: Configuration data for Construction Element wall1 ... 44

 5.21: Configuration Data for Ambient Block .. 46

 5.22: Compiler Setting in Simulation Setup Window ... 48

 5.23: General Tab Settings in Dymola Simulation Setup Window 49

 5.24: Translate Button in Simulation Tab of Dymola [19] .. 50

 5.25: Export FMU Settings Window ... 51

 5.26: FMU Block imported into Simulink and FMU loaded into it. 53

viii

 5.27: Outputs tab FMU block configuration window allows for additional outputs to

be monitored. ... 54

 5.28: Final Simulink Model ... 55

 5.29: Simulink Solver Options ... 56

 5.30: Data Import and Export Settings .. 57

 5.31: Cameo Systems Modeler Resource/ Plugin Manager 60

 5.32: Loading ParaMagic Profile ... 60

 5.33 Validating System Model .. 61

 5.34: Selecting Parts in the Automatic Instantiation Wizard 63

 5.35: Creating Packages for the Instance ... 64

 5.36: Creating the Instance BDD ... 64

 5.37: Instance of the System Model – 1 ... 65

 5.38: Instance of the System Model – 2 ... 66

 5.39: Instance of the System Model – 3 ... 67

 5.40: Instance of the System Model – 4 ... 68

 5.41: ParaMagic Browser... 69

 5.42: Plot of Indoor Air Temperature vs. Time ... 70

 5.43: Plot of Solar Thermal and Heat Pump Heat Load vs. Time 71

 5.44: Plot of Electricity Consumption vs. Time .. 71

 6.1: Pareto Optimal Solutions .. 78

 6.2: Pareto Optimal Solutions – Tilted View ... 79

 6.3: Pareto Optimal Solutions After First Elimination .. 80

 6.4: Pareto Optimal Solutions After Second Elimination .. 81

 A.1: External Interface BDD ... 87

 A.2: Internal Interface BDD .. 87

 A.3: Parametric Diagram – Constraint 2 .. 88

 A.4: Parametric Diagram – Constraint 3 .. 89

 A.5: Parametric Diagram – Constraint 3 .. 90

ix

List of Abbreviations

BAS Building Automation System

BDD Block Definition Diagram

BMS Building Management System

DAE Differential Algebraic Equations

FMI Functional Mockup Interface

FMU Functional Mock-up Unit

HVAC Heating, Ventilation, Air Conditioning

IBD Internal Block Diagram

INCOSE International Council on Systems Engineering

MBSE Model Based Systems Engineering

OMG Object Management Group

SysML Systems Modeling Language

1

Chapter 1

Overview

1.1 Introduction

With the growing complexity of energy efficient buildings, the methods of

modeling and simulating such structures must account for monitoring several thousand

design parameters across multiple diverse domains. As a result, modeling tools are now

very specific to their respective domains and are growing more and more incongruous

with each other. This calls for a way to integrate multiple modeling tools in the effort

to create a single, large model capable of encapsulating data from multiple, different

models.

Buildings are complex systems that have numerous interactions between different

components, spanning several different domains. Thus, when it comes down to

designing a new building for the purpose of construction, many challenges are faced in

the building modeling stages. This is especially true now, in the era of living, breathing

“smart” buildings. Such a structure involves a vast array of data captured from sensors

like occupancy sensors, lighting sensors, thermostats, security sensors etc. In a smart

building all of these sensors can either be a part of an individual Building Management

System (BMS), a partially integrated BMS or fully integrated Building Automation

System (BAS).

2

1.2 Problem Statement

When it comes to modeling such a large system, for the purpose of construction, all

the tools to do that are not very congruent with each other. In this work, we will be

approaching this problem from a Systems Engineering point of view with the intention

of being able to run a simulation using a Systems Modeling Language (SysML) tool

known as No Magic Cameo Systems Modeler. The definition and execution of

engineering models, some of which may simply be represented as black boxes through

the use of SysML constraint blocks is of great interest in terms of practicing Model

Based Systems Engineering [1].

To do this, using the Functional Mock-up Interface (FMI) standard, the SysML

model is integrated with a Modelica model, through an intermediate Simulink Model,

in which the simulation runs. Finally, a tradeoff analysis is run through SysML, in

Matlab, for the purpose of design space exploration to demonstrate that meaningful

decisions can be carried out using this approach. In this case, the tradeoff is between

the cost of the thermal insulation used in the construction of the house versus the heat-

load needed by the heat pump to maintain a constant indoor air temperature.

1.3 Contribution of this Thesis

The major contribution of this thesis is that different methods to perform an

integration with SysML and a simulation tool were identified, described and evaluated.

Then, a new method was developed and discussed. Finally, the new method was

demonstrated.

3

This thesis work provides step by step instructions of the implementation of an

Agile Model Based Systems Engineering approach through the usage of a SysML/

Model/ Simulation integration. This means that SysML was used to drive the models

and simulations used in performance analyses and tradeoff analyses that are performed

during system development [2].

This was demonstrated by developing an executable SysML model of a two-room

house that utilizes solar-thermal power for the purpose of space heating with a heat

pump being used as a backup. Using the FMI 2.0 standard, a Modelica model of the

house was integrated with the SysML model using Simulink as an intermediate

interface, enabling users to perform a tradeoff analysis by varying design parameters

through the SysML interface.

4

Chapter 2

Background

2.1 Need for MBSE in Today’s World.

Model Based Systems Engineering (MBSE) is an engineering paradigm gaining

traction towards inculcating a model-centric approach to engineering instead of the age-

old document-centric approach. As defined in the International Council on Systems

Engineering (INCOSE) Systems Engineering Vision 2020, Model Based Systems

Engineering is referred to as the “formalized application of modeling to support system

requirements, design analysis, verification, and validation activities beginning with the

conceptual design phase and continuing throughout development and later life cycle

phases” [3].

The MBSE approach encourages Systems Engineers to improve the precision and

efficiency of their communication with other Systems Engineers as well as stakeholders

through the usage of a common visual modeling language [4]. The most popular choice

for this modeling language is the Object Management Group’s System Modeling

Language, commonly known as OMG SysML.

The need for MBSE is felt when clear communication is required between the

system designers and various stakeholders across the Systems Development Life

Cycle. MBSE is also able to capture and manage corporate intellectual property related

to systems architectures, designs, and process [4]. Along with being able to provide a

scalable structure, for problem solving, as well as being able to explore multiple

5

architectures with minimum risk, an MBSE approach also helps in catching errors early

in the Development Life Cycle. Through all these functions, the MBSE approach is

able to enhance system performance.

In this work, in the spirit of MBSE, an attempt was successfully made to integrate

Cameo Systems Modeler, an OMG SysML environment with an FMU, an output of

Dymola, a Modelica based modeling and simulation engine. More about Cameo and

Dymola and their usage in this thesis will discussed in Chapter 3. The main reasoning

for following such an approach was based on the reasoning that integrated models

reduce inconsistencies, enable automation and support early and continual verification

by analysis.

6

Chapter 3

Modeling Tools

In Section 2.1, the need for the Model-Based Systems Engineering approach was

discussed. As models obviously play a key role in MBSE, it is important for all the

different modeling tools to work together in harmony in order to approach the modeling

of this energy efficient house from a Systems Engineering standpoint. In this regard,

the three tools that were used to create the executable model were Cameo Systems

Modeler, Dymola and Simulink.

3.1 Cameo Systems Modeler – SysML Environment

No Magic Cameo Systems Modeler is a commercial cross-platform collaborative

Model-Based Systems Engineering (MBSE) environment, which provides smart,

robust, and intuitive tools to define, track, and visualize all aspects of systems in the

most standard-compliant SysML models and diagrams [5]. For the purpose of this

thesis, version 18.5 sp3 of Cameo Systems Modeler was used in a Windows 10

environment.

The reason Cameo Systems Modeler was the chosen SysML environment is

because it is one of the two most widely used SysML Environments in the industry.

The other most commonly used tool is IBM Rhapsody. In addition to that, the Systems

Engineering courses at UMD were taught using Cameo Systems Modeler and it was

also readily available for research purposes.

7

Systems Modeling Language or SysML is the modeling language most widely used

by Systems Engineers. The main idea is that SysML is a standardized medium for

communication; the rules defined in it give the model’s elements and relationships

unambiguous meaning. The capability to construct and read well-formed models is at

the heart of the MBSE approach [6]. It enables the visualization of the system’s design

in the form of the four pillars of Systems Engineering, namely, the system structure,

behavior, parametric relationships, and requirements. SysML is based off UML

however, it has multiple additions to it like Internal Block Diagrams, Parametric

Diagrams, and Requirement Diagrams [6].

Figure 3.1: The SysML Diagram Taxonomy [7]

3.2 Dymola – Modelica Environment

Dymola is a commercial modeling and simulation tool that is based on the Modelica

modeling language. It is capable of modeling integrated and complex systems from

various domains like mechanical, electrical, control, and thermodynamics. It is known

for its multi-engineering capabilities with compatible model libraries for many

8

different engineering fields. This allows for models of complete systems to be built that

better represent the real world [8]. For the purpose of this thesis, Dymola was used as

the modeling tool used to create the Functional Mock-up Unit (FMU) of the two-room

house. FMUs will be discussed in the following section.

Modelica, the modeling language used in Dymola, is a non-proprietary, object-

oriented, equation-based language to conveniently model complex physical systems

[9]. The Modelica Standard library consists of over 1600 model components and 1350

functions over many domains. The Modelica version used in this thesis was 3.2.2. Since

it is an open-source language, there are a large number of third party libraries that are

built using Modelica.

In this thesis, the BuildingSystems Library v2.0.0 beta was extensively utilized for

creating the model of the energy efficient house. This model will be extensively

discussed in Section 5.3. The library can be found on the GitHub page at

https://github.com/UdK-VPT/BuildingSystems. It was developed by a team in the

Universität der Künste Berlin under the guidance of Dr. Christoph Nytsch-Geusen.

The Modelica open-source BuildingSystems library is developed for dynamic

simulation of the energetic behavior of single rooms, buildings and whole districts [10].

Using this library, modeling a living space and its HVAC system became possible. The

library also allowed for the use of renewable energy systems to be included in the

model.

9

3.3 Functional Mockup Interface

A Functional Mock-up Unit (FMU) is a product of the Functional Mock-up

Interface (FMI) standard. This standard is tool-independent that helps support model-

exchange and co-simulation of dynamic models using .xml files and compiled C code

[11]. The first version, FMI 1.0, was published in 2010, followed by FMI 2.0 in July

2014 [11]. For this thesis, the FMI 2.0 standard was utilized for the model exchange

purpose. As mentioned in the standard documentation, the goal behind FMI for model

exchange is that a modeling environment can generate C code of a dynamic system

model that can be utilized by other modeling and simulation environments [12]. The

model of interest is distributed in one zip file called FMU that contains several files

like An XML file containing the definition of all exposed variables in the FMU and

other static information; all needed model equations are provided with a small set of

easy to use C functions; extraneous data is included in the FMU zip file, especially a

model icon (bitmap file), documentation files, maps and tables needed by the FMU,

and/or all object libraries or dynamic link libraries that are utilized [12].

3.4 Simulink/ Matlab

Simulink, like Dymola, is commercial graphical modeling and simulation

environment developed by Mathworks Inc., in conjunction with Matlab. It offers a

close integration with Matlab environment and can either drive Matlab or be scripted

from it. Simulink is widely used in automatic control and digital signal processing for

multidomain simulation and Model-Based Design [13]. Although Simulink is capable

10

of modeling multi-domain systems too, for large systems with several hundred

components, it is very cumbersome to do so.

For the purpose of this thesis, Simulink wasn’t used for the purpose of simulating

the model of the energy efficient house. Rather, it was merely used as a shell or an

interface that imported an FMU from the Dymola Model. This Simulink shell model

was then imported in Cameo Systems Modeler to create the executable model making

use of the preexisting Cameo Systems Modeler-Matlab Integration. The details of how

exactly this was performed can be found in Section 5.4 and Section 5.5.

11

Chapter 4

Current Approaches to Creating an Executable Model

4.1 OpenModelica – SysML Integration Using OMG Specification

The first approach that was tried for creating the executable model was a Java based

approach using an existing specification called the SysML – Modelica Transformation

Specification Version 1.0 using No Magic Cameo Systems Modeler and

OpenModelica, another Modelica based environment [14]. This method was

introduced by the Object Management Group (OMG) in 2012 where the vision was to

provide a bi-directional mapping between SysML and Modelica to leverage the benefits

from both languages. By integrating SysML and Modelica, SysML’s strength in

descriptive modeling can be combined with Modelica’s Differential Algebraic

Equation (DAE) solving capability to support analyses and trade studies [14]. Using

this approach, Cameo Systems Modeler users could use a plugin created by the Model

Based Systems Engineering Center at Georgia Tech University to import and export

Modelica models to SysML [15]. These plugins were named SysML4Modelica and

Modelica4SysML.

This seemed to be the ideal method to convert a Modelica Model into a SysML

representation of it. This would enable an Internal Block Diagram (IBD) of the system

to be created. Next, having developed the structural, behavioral and parametric

diagrams, of the system, they could be linked to the parameters and linkages and other

data items from the imported Modelica model, the next step would be to execute this

12

SysML model and have it run a simulation within SysML itself. Using this

functionality, a tradeoff analysis could then be performed.

So, to begin working on this method, the following steps were taken:

1. Install OpenModelicaCompiler 1.9.3.

2. Download and unzip the edu.gatech.mbsec.magicdraw.plugin.modelica2sysml.

zip and edu.gatech.mbsec.magicdraw.plugin.sysml2modelica.zip files as

folders.

3. Place the unzipped folders in the plugins folder of your MagicDraw installation

directory (C:\Program Files\Cameo Systems Modeler\plugins).

4. Launch the MagicDraw application.

5. Download ModelicaImportTest.mdzip.

6. Download the associated SysML4Modelica profile, sysml4modelicaprofile.

mdzip

7. Import a Modelica model into the MagicDraw SysML project.

a. Go on Data (right click)->Modelica to SysML->Import Modelica.

Select the Modelica .mo file.

b. The Modelica file imported for this example was a small Spring Mass

Damper as shown in Figure 4.1.

13

Figure 4.1: Test Modelica File of Spring Mass Damper System

At this stage, it should have been possible to automatically create the IBD. This

could theoretically be done by selecting the Modelica class which contains connectors

and then right click New Diagram and select a SysML Internal Block Diagram. Some

manual refactoring would most likely still be necessary to make it look nice.

However, this last step was not possible, as when the Modelica file was imported,

instead of separating itself into its hierarchical structure, only a single block, sprdmp

was created as shown in Figure 4.2.

14

Figure 4.2: Containment Tree from ModelicaImportTest.mdzip

On opening the block and reading its specification, there was no indication of any

other information from the Modelica model or any of its constituent blocks. There was

also no mention of any ports, paths, values or properties listed in the specifications. In

fact, there was no information at all and the specification was completely blank. In

addition, there was no information about any of the equation, constraints or variables

related to the Spring Mass Damper System. There was also an error pop-up that showed

up when the Modelica Model was imported. This is shown in Figure 4.3. The unhandled

errors were Java related as is visible from the figure. However, due to a lack of

experience with Java, not much of an effort could be made in debugging the program

and solving the problem.

15

Figure 4.3: Error Window Displaying Unhandled Java Error

The reason for the failure of this method was speculated to be that the No Magic

profile and the related plugins were developed sometime in 2012 with much older

versions of Cameo Systems Modeler and OpenModelica. However, these examples

were run using Cameo Systems Modeler v18.5 sp3. Since, previous versions of either

of these software were not easily accessible with the requisite licensing, no further

attempt was made to recreate this example and use it for the purpose of this thesis.

16

4.2 FMU Import into Cameo Systems Modeler Itself

The latest No Magic Cameo Systems Modeler beta version has crude support for

importing FMUs using the older FMI 1.0 standard for Co-Simulation [16]. The Cameo

Simulation Toolkit in Cameo Systems Modeler is capable of reading FMU files which

are imported into the model in the form of FMU Blocks with the stereotype of

≪FMU≫. However, this functionality doesn’t allow for FMUs to be imported into the

system for the Purpose of Model-Exchange.

Also, for the purpose of the co-simulations, it was found that importing the FMU

into Cameo didn’t allow for the change in the input parameters that resided in the FMU

block, making it practically useless for the purpose of tradeoff analyses. The restriction

of the design space exploration ruled out this method for creating an executable SysML

model. However, in the future, it is very likely that No Magic will update the Cameo

Systems Modeler to be able to read FMU using the later FMI 2.0 standard for the

purpose of model exchange as well as co-simulation. If this thesis work should be

recreated two more years from now, following this method could be a much better and

more robust solution.

17

Chapter 5

Executable Model Using SysML-Simulink-FMI Integration

5.1 Overview and High-Level Description of the Integration Procedure

In this section, the integration procedure will be defined.

Cameo Systems Modeler is used to create systems architecture of the two-room

house in SysML. Dymola is used to create a multi-domain Modelica model of the same

two-room energy efficient house. This Modelica model contains all the internal

equations, constraints and relations that govern the two-room house. It is also capable

of accepting user defined input values to the design parameters of the systems,

performing the calculations, and producing the output values for the system metrics.

This Modelica model is then exported as FMU as shown in Figure 5.1. The FMU is

just a “skeletal structure” of the Modelica model and needs to be run from a different

modeling tool to be able to accept input values and then output the corresponding

metric values.

18

Figure 5.1: Export of Modelica Model into the FMU

Next, The FMU is imported into Simulink as shown in Figure 5.2. In this case,

Simulink doesn’t add anything new to the model, but merely acts as a shell or an

interface to the FMU. Simulink was chosen as the interface since Cameo Systems

Modeler and Matlab/Simulink have an existing integration that could be exploited for

this usage.

Figure 5.2: Simulink as in Interface between the FMU and the SysML Model

Now, through the SysML Model of the two-room house, this Simulink model is

called. User-defined design parameter values that were inputted into the SysML model

are now sent to Simulink. With these values, Simulink will run the FMU, calculate the

values of the output metrics and send them back to SysML to be displayed back to the

user. This is shown in Figure 5.3.

Figure 5.3: Interaction between the SysML Model and Simulink Model

19

5.2 SysML Model

This section describes the SysML model of the two-room energy efficient house.

The first step to creating the executable model is to build the SysML architecture of the

system. A few components of the architecture of a two-room house will be covered in

the following sections.

5.2.1 Structure Diagrams

The first structure diagram created was the System Domain Block Definition

Diagram (BDD) as is shown in Figure 5.4. This BDD articulates the structure of the

system’s domain, the system itself and its constituent elements. From the diagram it

can be seen that the domain of the system comprises of the System, the Users and the

Environment. The System itself is further comprised of the Heating system, the Indoor

Environment and the Building Structure itself. Each of these subsystems are also

broken down into their constituents. It is important to note that the Building Structure

components are built using certain materials which are also shown as blocks in the

Domain BDD. The operations of each component of the system as well as the values

(variables) associated with each of the blocks should also be shown in a BDD.

However, for the purpose of readability of the diagram, these details have been

suppressed.

Next, the Environment is also broken down into its subsystems namely, the

Domestic Cold-Water Supply, the External Environment, and the Electricity Provider.

Finally, the Users of the system are also shown in their own block.

20

The hierarchical structure of the Heat Pump System is shown in Figure 5.5. This

BDD also shows the operations and values associated with each of the constituent

blocks of the Heat Pump System. Similarly, the Solar Thermal System and all its

associated constituents are displayed in Figure 5.6 below. The hierarchical structure of

the Building Structure, all its components and constituent building materials are shown

in Figure 5.7

21

F
ig

u
re

 5
.4

:
S

y
st

em
 D

o
m

ai
n
 B

lo
ck

 D
ef

in
it

io
n
 D

ia
g
ra

m

22

Figure 5.5: Heat Pump System Block Definition Diagram

23

Figure 5.6: Solar Thermal System Block Definition Diagram

24

F
ig

u
re

 5
.7

:
B

u
il

d
in

g
 S

tr
u
ct

u
re

 S
y
st

em
 B

lo
ck

 D
ef

in
it

io
n
 D

ia
g
ra

m

25

The next structure diagram, the Context Level Internal Block Diagram (IBD),

shown in Figure 5.8, describes the internal structure of a single block, the Multizone

Building System Domain. Since the Multizone Building System Domain comprises of

the Multizone Building System itself and the Environment, this diagram also describes

the connection between the system itself and the environment. The context level IBD

also displays the interfaces and the various flows (energy and data) across connections

among different parts and properties that form internal structure of the domain block.

From the Context level IBD we see that the Environment and its constituent blocks

supply electricity, ambient air temperature data, radiation and cold water to the system.

The associated External Interface Diagram can be found in the Appendix in Figure A.1.

Figure 5.8: Context Level IBD

The System Level IBD shown in Figure 5.9 shows further detail of the interfaces

and flows that are present within the system itself. The inputs into the system are solar

irradiation, external air, electricity, ambient air temperature, and the user-set zone

setpoint. The outputs of the system are exhaust air, the zone temperatures within the

building, and the operative temperature within the building. As can be seen, all of the

26

inputs except the Ambient Air Temperature data feed into the Heating/ Cooling System

which then, in turn, provides heat to the Indoor Environment as outputs and

additionally, also outputs exhaust air. The Indoor Environment receives the Ambient

Air Temperature data as well as heat from the Heating/ Cooling System and outputs the

current Zone Temperature and Zone Operative Temperature to the system.

Figure 5.9: System Level IBD

In addition to the System Level IBD, a more detailed IBD of just the Heating

Subsystem is shown in Figure 5.10. Since the process of heating a house and

maintaining the specified Zone Temperature is a non-sequential and continuous

process, this IBD serves better than an activity diagram would. This is because activity

diagram is extremely useful to show a concrete chain of events that take place in a very

specific order. However, for this system since most of the processes are taking place

27

concurrently, the system behavior is better described, showing in detail, the flow of

information to and from each element contained within the system.

The IBD below in Figure 5.10 describes the Heating System in which the Zone

Temperature is supplied to the Thermostat, which in turn on comparing the Zone

Temperature and Zone Setpoint, provides a Boolean actuator signal to the Two-Way

Valve. The Two-Way Valve in turn regulate the amount of fluid flow through to the

Radiator. The Radiator is supplied with warm water from two thermal loops. One is

the Solar Thermal System which is the main source of thermal energy to heat the house.

The other loop is the backup Heat Pump loop that is only used to support the Solar

Thermal System on days when there isn’t enough solar thermal energy being provided

to the house. The associated Internal Interface Diagram can be found in the Appendix

in Figure A.2.

28

Figure 5.10: IBD of Heating System

5.2.2 Parametric Diagram

The diagram most important to creating the executable model is the SysML

Parametric diagram. This diagram is used to express information about a system’s

29

constraints [17]. The constraints are in the form of mathematical models that determine

the set of valid values within the running system.

This Parametric Diagram allows the previously described Simulink model to be

treated as a “black box” constraint within the Cameo Systems Modeler SysML Model.

This is achieved by using a special plugin called ParaMagic, developed by InterCAX

Inc.

To create this parametric diagram, first all the factors and metrics have to be

identified. For this model of the two-room energy efficient house, the metrics are shown

in Table 5.1

S

No.
System Metric Variable Name Units

1.
Variance of Indoor Air

Temperature
Var_TAir K2

2.
Heat Pump Heat-load Per

Annum
HeatPump_HeatLoad kWh

3.
Solar-thermal Heat-load

Per Annum
SolarThermal_HeatLoad kWh

4.
Cost of Electricity

consumed Per Annum
Cost_ElectricConsumption $

5. Cost of Thermal Insulation Cost_Insulation $

Table 5.1: Table of System Metrics, Variable Names and Units

Although there are several different factors that affect the indoor air temperature,

only few factors were selected as the design parameters. These are the parameters that

can be realistically altered in order to improve the values of the metrics. Each design

parameter, its associated SysML variable name and its nominal value can be found in

30

Table 5.2. The design parameters chosen were the thickness of the wood-fiber

insulation layers used in the construction of the outer wall, intermediate wall, and the

ceiling, the surface area of windows, and the indoor temperature setpoint.

S.

No.
Design Parameter Variable Name

Nominal

Value

1.
Outer wall

Wood fiber insulation thickness
OW_WoodFibIns 0.015 m

2.
Intermediate wall

Wood fiber insulation thickness
IW_WoodFibIns 0.1 m

3.
Ceiling

Wood fiber insulation thickness
C_WoodFibIns 0.255 m

4. Window Area Window_height 3.0 m2

5. Indoor Temperature Setpoint Temp_Setpoint 20 °C

Table 5.2: Table of Design Parameters, Variable Names and Nominal Values

In addition to the design parameters, a number of design constants were also

chosen. Setting certain values as design constants allowed for those parameters to be

held constant for the purpose of the tradeoff analysis performed in this thesis work but

at the same time it allows for those values to be changed in future works if required.

The design constants chosen were the thicknesses of the other materials that make

up the outer-wall, the intermediate wall and the ceiling of the house. Each design

constant, its associated SysML variable name and its nominal value can be found in

Table 5.3.

31

S

No.
 Design Constant Variable Name

Nominal

Value

(m)

1.
O

u
te

r
w

al
l

m
at

er
ia

ls

Plasterboard thickness OW_Plasterboard 0.01

2. Brick thickness OW_Brick 0.24

3. High grade plaster thickness OW_HGplaster 0.02

4.
Reinforcement plaster

thickness
OW_ReinfPlaster1 0.005

5.
Reinforcement plaster

thickness
OW_ReinfPlaster2 0.005

6.

In
te

rm
ed

ia
te

w
al

l

m
at

er
ia

ls

Plasterboard thickness IW_Plasterboard1 0.015

7. Plasterboard thickness IW_Plasterboard2 0.015

8.

C
ei

li
n
g

M
at

er
ia

ls

Plasterboard thickness C_Plasterboard 0.0125

9. Polyamide foil thickness C_PolyamideFoil 0.0005

Table 5.3 Table of Design Constants, Variable Names and Nominal Values

Having identified the factors, constants and metrics, a constraint block had to be

first created in Cameo Systems Modeler [18]. This constraint was labeled TAir

Variance and its specification window is shown in Figure 5.11. Next all the parameters

as shown in the above table were inputted into the Constraint Block. The constraint

inputted into the block was:

Variance_TAir=xfwExternal(matlab,scriptascii,

exec_script,

32

OW_Plasterboard,

OW_Brick,

OW_HGplaster,

OW_ReinfPlaster1,

OW_WoodFibIns,

OW_ReinfPlaster2,

IW_Plasterboard1,

IW_WoodFibIns,

IW_Plasterboard2,

C_Plasterboard,

C_PolyamideFoil,

C_WoodFibIns,

Window_width,

Window_height,

Temp_Setpoint)

The xfwExternal function is used to call an external solver into parametric

diagrams. The variable on the left side of the equal-to sign is the metric being solved

for. The first three arguments of the xfwExternal function describe the solver being

called, here Matlab; the type of element called, here an ascii script; and the name of the

function or script [18]. The remaining arguments of the function are the design

constants and design parameters that will affect the metric. The Matlab script named

exec_script.m being called by this function will be discussed in a later section. It

can be found in Section A.2 of the Appendix Section.

33

Figure 5.11: Constraint and Parameters in the Constraint1 Specification Window

Following this, the parameters in the Constraint Block were linked to the value

properties of each block from the System Block Definition Diagram using the

Parametric Equation Wizard. This is demonstrated in Figure 5.12. This was one of the

most crucial steps in creating the Parametric Diagram.

34

Figure 5.12: Linking Constraint Block parameter to Block values using the

Parametric Equation Wizard.

The same process is carried out for the next three Constraint Blocks named

ElectricConsumption, HeatPump HeatLoad, and SolarThermal HeatLoad. As the

names suggest, each of these constraints compute the electricity consumed by the

35

system, the total yearly heat load provided by the heat pump, and the total yearly heat

load provided by the solar thermal system. All these constraints were then added to the

main Parametric Diagram under the main System Block. This diagram is shown in

Figure 5.13. The reason each constraint had to be added into its own constraint block

is a limitation of the ParaMagic plugin that was used to run the simulation of the

Modelica model. Also, the reason the metric from the first constraint block,

Variance_TAir, is fed into the remaining constraints is a work-around that had to be

implemented for each of the constraints to be solved in the order of left to right as

shown in the parametric diagram. It should also be noted that the first constraint block

would run the main simulation and take the longest time to solve. Every subsequent

constraint block calls a separate Matlab script that loads the data obtained from solving

the first constraint, processes it as required and presents the corresponding metric

values. The aforementioned Matlab scripts can be found in Section A.2 of the Appendix

Section.

For readability purposes, Figure 5.13 has been cropped, showing the connection

between the various system value properties and the constraint parameters in the

constraint block. This cropped version is shown in Figure 5.14. The rest of the cropped

pieces of the diagram can be found in Section A.1 of the Appendix Section.

36

F
ig

u
re

 5
.1

3
:

S
y
sM

L
 P

ar
am

et
ri

c
D

ia
g
ra

m
 s

h
o
w

in
g
 t

h
e

re
la

ti
o
n
sh

ip
 b

et
w

ee
n
 s

y
st

em
 v

al
u
es

,
co

n
st

ra
in

ts
 a

n
d
 m

et
ri

c
v
al

u
es

37

Figure 5.14: SysML Parametric Diagram - Cropped

38

In addition to this parametric diagram, another parametric diagram was created at

the domain level to show the relationship between the cost of electricity consumed by

the system, the amount consumed and the unit price for electricity. This is demonstrated

in Figure 5.15. This concludes the description of the SysML Model of the system.

Figure 5.15: SysML Parametric Diagram Describing the Cost of Electricity

Consumed by the System.

5.3 Dymola Model of Two-Room Energy Efficient House

5.3.1 Overview of Dymola Model

The Dymola model of the two-room energy efficient house is shown below in

Figure 5.16. This Dymola Model contains all the equations, constraints and relations

pertaining to calculating the values of the system metrics for a given set of input

parameter values. This main model is named SystemModel.

39

F
ig

u
re

 5
.1

6
:

D
y
m

o
la

 m
o
d
el

 -

S

y
st

em
M

o
d
el

40

This model can be broadly categorized into 3 separate component clusters. These are

the, Building model, the Ambient model and the House-Heating model. These

components are highlighted in Figure 5.17. The Building block for this thesis was

developed by the author using the BuildingTemplate template model class that can be

found in the BuildingSystems Library at the path BuildingSystems.Buildings.

BaseClasses.BuildingTemplate. The description of the process for creating the Building

block can be found in Section 5.3.2. The Ambient block was instantiated by the author

from BuildingSystems.Buildings.Ambient and configured as described in Section 5.3.3.

Finally, the Home-Heating cluster of blocks was adapted from an existing example in

the BuildingSystems Library from the path BuildingSystems.Applications.

HeatingSystems.SolarHeatingSystem. This example can be found by downloading the

BuildingSystems library from the GitHub page at https://github.com/UdK-

VPT/BuildingSystems and loading it into the Dymola environment and then navigating

to the aforementioned path. The details of the changes made to the implantation of this

example and its usage in the Dymola model of the system can be found in Section 5.3.4.

41

Figure 5.17: The Building block (top left), the Ambient block (top right),

the House-Heating block cluster (bottom)

5.3.2 The Building Block

The Building block in the Dymola model was modeled as a simple cuboidal

geometry separated into two symmetrical rooms with a length of 5 m, a depth of 5 m

and a height of 3 m. Both these rooms are arranged side by side separated by an

intermediate wall, thereby making the dimension of the entire house 10 m × 5 m × 3

42

m. with an internal air volume of 150 m3. A 3D mockup of the building is shown in

Figure 5.18 below for illustrative purposes.

Figure 5.18 3D Structure of the Building

The building block contains two thermal zones blocks. One for each of the two

rooms. These thermal zones were instantiated into the building model by dragging and

dropping two component models from the class BuildingSystems.Buildings.

Zones.ZoneTemplateAirvolumeMixed. Following this the construction elements like

walls, ceiling and the floors were also created in the model by using the component

from the class BuildingSystems.Buildings.Constructions.Walls. WallThermal1DNodes.

The windows were added into the model from the class BuildingSystems.Buildings.

Constructions.Windows.Window. The internal structure of the building block is shown

in Figure 5.19.

43

Figure 5.19: Internal Structure of the Building Block in Dymola

Each of these construction elements were configured by double clicking the

element and defining the configuration parameters. These parameters are defined in

Table 5.4. Each of the construction elements was also assigned a construction type. The

construction type used for the outer-walls, intermediate walls, ceilings and floors for

this house were OuterWallSingle2014, IntermediateWallSingle2014, RoofSingle2014,

BasePlateSingle2014. Figure 5.20 shows the configuration data used for the

construction element wall1.

44

Element angleAzi angleTil Element angleAzi angleTil

wall1 90.0 ° 90.0 ° bottom1 0.0 ° 180.0 °

wall2 180.0 ° 90.0 ° bottom2 0.0 ° 180.0 °

wall3 180.0 ° 90.0 ° ceiling1 0.0 ° 0.0 °

wall4 -90.0 ° 90.0 ° ceiling2 0.0 ° 0.0 °

wall5 0.0 ° 90.0 ° window1 0.0 ° 90.0 °

wall6 0.0 ° 90.0 ° window2 0.0 ° 90.0 °

wall7 -90.0 ° 90.0 °

Table 5.4: Configuration data for Construction Elements

Figure 5.20: Configuration data for Construction Element wall1

45

Next, a Temp_KOutput output, extended from BuildingSystems.Interfaces.

Temp_KOutput, was instantiated in the building model and was named TOperative.

This can also be seen in the Figure 5.16. Then, the TOperative port from each of the

two zones was connected to the TOperative output of the building model. Effectively,

this created an output port called TOperative on the building block in the SystemModel

model. Similarly, another Temp_KOutput output, extended from BuildingSystems.

Interfaces.Temp_KOutput, was instantiated in the SystemModel model and was named

TOperative. The TOperative port from the building model icon was then connected to

the TOperative output in the SystemModel model.

Similarly, another Temp_KOutput output was also instantiated in the SystemModel

model and named TAir. The TAir port from the building block icon in the SystemModel

model was then connected to the TAir output in the SystemModel model.

These steps were necessary in order to define the outputs of the entire Dymola

model as it was exported as an FMI and instantiated in Simulink. It also provided an

easy way to plot outputs when running the Dymola simulation of the model as the

newly created outputs are on the highest level and can be located easily.

5.3.3 The Ambient Block

Now that the building block is setup, the ambient block will be setup next. Double

clicking on the ambient block, brings up its configuration window as shown in Figure

5.21. the parameter nSurfaces defines the number of building surfaces that are exposed

to the ambient environment. The value for this parameter is derived from the parameter

building.nSurfacesAmbient, which is also defines the number of building surfaces that

are exposed to the ambient environment but from the building block’s point of view.

46

Next, the weather file used in for the weatherDataFile parameter is

USA_SanFrancisco_weather.nc which is titled WeatherDataFile_USA_SanFrancisco.

Figure 5.21: Configuration Data for Ambient Block

Next, a Temp_KOutput output, extended from BuildingSystems.Interfaces.

Temp_KOutput, was instantiated in the SystemModel model and was named TAirAmb.

This can also be seen in the Figure 5.16. Then, the TAirAmb port from the Ambient

model icon was then connected to the TAirAmb output in the SystemModel model.

47

5.3.4 The House Heating Block Cluster

In the SystemModel, the rest of the blocks that support the heating of the model

were adopted and modified from an example found in the BuildingSystems Library as

extended from BuildingSystems.Applications.HeatingSystems.SolarHeatingSystem.

This house-heating system simulates a solar thermal system which supplies a building

with space heating. In the example a boiler is used to provide backup heating in case

the solar system is unable to deliver the required amount of energy. However, in the

model used for this thesis, the boiler was substituted by the air/water heat-pump. This

was done in an effort to also use the heat-pump as an air cooler in the summer months.

That way, the model would be able to simulate heating and cooling like most American

houses across the country. However, using the same heat-pump in a reversible manner

proved challenging due to the lack of documentation of the HeatPump block in the

BuildingSystems Library documentation. Thus, it was decided that the heat-pump

would be used only to provide heat in the winter months as a backup to the solar heating

system. Implementing the HeatPump block instead of the boiler block in the example

was not as straightforward as swapping one block out for the other. The HeatPump also

required the addition of the new medium with which the heat exchange would take

place. The additional heat-transfer medium was defined as Air: Moist air model. Two

additional blocks had to be connected to the HeatPump block for it to function. First

Boundary_pT, a block describing the boundary pressure and temperature of the air

medium and second, m_flow_eva was also connected, specifying the flow source that

produces a prescribed mass flow with temperature defined by the ambient condition as

obtained from the Ambient block.

48

Although in the mentioned example, a building model and ambient model was

already present, a new building and ambient model was developed as per the method

described in Section 5.3.2 and Section 5.3.3 respectively, and those were used instead.

5.3.5 Simulation of the Dymola Model

Now that the model development was complete, the next step was to run the

simulation of the Dymola model and once the model was verified to be working, the

FMI would be generated next.

To simulate the system, first a compiler had to be selected in the Dymola Simulation

Setup window in the Complier tab as shown in Figure 5.22. For this work, Visual

Studio 2013/ Visual C++ Express Edition (12.0) was used as the compiler. The Test

Compiler button verified that the compiler was running in 32 bit, as well as 64 bit mode.

Figure 5.22: Compiler Setting in Simulation Setup Window

49

After the compiler was selected, in the General tab of the Simulation Setup

Window, the start time and stop time of the simulation had to be defined. The start time

was defined as 0 d and the stop time was defined as 365 d, to simulate a whole calendar

year starting from 01 January. Although the simulation actually uses seconds as a

timestep, it was more convenient to input the start and stop time in the unit of days.

The other settings were left to their default values. This process is shown in Figure

5.23.

Figure 5.23: General Tab Settings in Dymola Simulation Setup Window

50

5.3.6 FMU Generation

At this stage, the Dymola model was ready, and the Functional Mock-up Unit

(FMU) of the model was ready to be generated. To generate the FMU in Dymola, the

Translate button in the Simulation Tab of Dymola was used as shown in Figure 5.24.

Figure 5.24: Translate Button in Simulation Tab of Dymola [19]

Following this, a dialog box appears to select the FMU Export settings as shown in

Figure 5.25 and the following settings were selected. Since the FMU was going to be

exported from Dymola and into Simulink, the model exchange type of FMU was

selected. Clicking OK generated the FMU files in the chosen Dymola directory. This

concludes the description of the Dymola Model for this thesis.

51

Figure 5.25: Export FMU Settings Window

5.4 Simulink as an Intermediate Model

5.4.1 Overview of Simulink Model

To integrate the Dymola model with Cameo Systems Modeler, Simulink was

required to be used as an intermediate model. This is because the Dymola model was

unable to be linked with SysML model either directly or through the use of the FMI

standard. Since Matlab does have an existing integration with Cameo Systems Modeler,

the idea was to somehow import the Dymola Model into Simulink which would then

be programmatically accessible to Cameo through a Matlab script. This meant that the

Simulink model would just be an empty “shell” containing the full Dymola model

52

without any alteration to it. The only value it adds to the model is the ability to link

with SysML by exploiting the existing Cameo-Matlab integration.

5.4.2 Setup of FMI Kit in Simulink

For importing the Dymola model into Simulink, a special block called the FMI

block was required. This special block could be found in the FMI Kit for Simulink that

is made available by Dassault Systems with Dymola. The FMI Kit enables embedding

FMUs into Simulink [20]. It also has full support for both export and import of both

versions, 1.0 and 2.0 of FMIs. FMI Kit for Simulink is located in the

$Dymola_installation_folder/Mfiles/FMIKit_for_Simulink/

directory. To make the FMI Kit available in Matlab and Simulink the above directory

and all its sub-folders had to be added to the Matlab path. In addition, the

ds_fmikit_setup.m Matlab script had to be run every time an FMU would be

imported into Simulink [20]. Thus, for the purpose of this thesis, this script was just

added to the Matlab startup file, startup.m so that it would run every time Matlab

started up.

5.4.3 Creating the Simulink Model

Now that the FMI Kit was set up for the Simulink, a new Simulink model was

created and named exec_model.slx. To add an FMU block to this model, the

following steps were taken.

1. Open the Simulink library browser (View > Library Browser) and drag the

FMU block from the FMI Kit library into the model.

53

2. Double-click the FMU block, select Load and choose the FMU of the two-

room, energy-efficient house, generated by Dymola

3. Click OK.

After following these steps, the model would look like Figure 5.26.

Figure 5.26: FMU Block imported into Simulink and FMU loaded into it.

Notice that the FMU block also has six outputs that correspond with the same six

outputs from the Dymola model. In addition to these outputs, additional outputs can be

created in the Simulink model using variables internal to the Dymola system by double

clicking on the FMU block in the Simulink and navigating to the Outputs tab. This is

demonstrated in the Figure 5.27.

54

Figure 5.27: Outputs tab FMU block configuration window allows for additional

outputs to be monitored.

Next, each of the output arrows in the model were connected to Bus Creator block

from the Simulink Library browser. The Bus Creator block usually has only 2 inputs.

So, allow the three outputs from the FMU block to the Bus Connector, double click on

it and change the number of input signals to 3. Following, the output arrows were

dragged from the FMU block and connected to the Bus Connector block. Next, a block

called the Scope1 was added to the model and connected to the Bus Creator block. This

would allow the first three outputs from the FMU Block to be plotted on a single graph.

55

Similarly, another Bus Creator and two more Scopes were set up for the other outputs.

Finally, six Output Port blocks were added to the model from the Simulink Library

browser as shown in Figure 5.28. This concluded the building of the Simulink Model.

Figure 5.28: Final Simulink Model

5.4.4 Simulink Simulation Configuration

The settings for the Simulink simulation were configured by accessing the Model

Configuration Parameters window in Simulink. In the Commonly Used Parameters

tab the start and stop time of the simulation were specified as 0 s and 365*24*60*60 s

respectively to simulate the Dymola model over a 1-year period. Next in the Solver

Options tab, the Fixed-step type was selected and the Solver was set to auto. In the

additional options section, the fixed-step size was set to 3.5 s. The reason for setting

this obscure value as the fixed time step was because the intention was to choose a large

56

enough step size that would not slow down the simulation too much. The intended step-

size was 30 s however, at this setting the Simulink simulation would always crash for

an unknown reason. Thus, through hit and trial, 3.5 s was found to be the largest step

size that Simulink would accept without crashing. In attempts to reduce the simulation

time, the solver type was also changed to Variable-step however, this actually increased

the simulation time by 2-3 times, so solver type was changed back to fixed-step with

step size of 3.5 s. The Solver options used are shown in Figure 5.29.

Figure 5.29: Simulink Solver Options

Next, the data import and export settings are configured in the Data Import/Export

tab of the Model Configuration Parameters window. The format was changed to

Array to enable the three outputs of the Simulink model to be captured as an array

yout in the Matlab workspace. The data import and export settings are shown in

Figure 5.30.

57

Figure 5.30: Data Import and Export Settings

After this, the Simulink simulation can be run just to verify that everything works.

This concludes the description of the Simulink Model for this thesis. Just to reiterate,

bereft of this Simulink “shell”, the Dymola model cannot be directly integrated to the

Cameo SysML model using any current method. It is only required as an intermediate

model.

5.5 Integration Procedure

Having concluded building the SysML model of the system, the actual process to

integrate all three models to create one fully executable model will be discussed in this

section. First, the internal mechanics of the integration will be explained and the

procedure to actually perform it will follow.

58

5.5.1 Integration Mechanics and Matlab Script

The way the integration works is that the user will input values for the design

parameters in SysML in an “instance” of the model (Instances will be explained in

detail below). These inputted values are then exported as a text file with the name

input.txt by the SysML ParaMagic Plugin. The text file is then read by the Matlab script,

assigning the inputted values to their corresponding variables and thereby inputting

them into the Matlab workspace. This Matlab script then programmatically launches

the Simulink model that was discussed earlier. Next, the script obtains the default

parameters for the entire Simulink model from the FMU that resides in the Simulink

model. Subsequently, these parameters are replaced with new parameters as specified

in the input.txt file that is outputted by Cameo Systems Modeler. Following this step,

using string manipulation methods, the old parameters string is edited to include the

new parameters as mentioned by the input.txt file.

This is done by first, converting the old parameters string, which is saved as a char

to a string for the purpose of string manipulation. Then the string is split into a

cell array and the relevant cells are edited. The cell array is then converted

back to a string and then back into char and fed back into the Simulink model to

simulate.

Finally, the Simulink model is re-evaluated through the simulation and the metric

is calculated over the period of the simulation time, in this case, one year. Lastly, the

final value of the metric at the end of the simulation time is outputted from Matlab as

a text file called output.exe. This file is then read by the ParaMagic Plugin in the SysML

59

model and the stored metric value is then displayed in SysML and updated into the

SysML model.

To conduct a trade study, several instances are created in SysML, each with a

different set of input parameters. Based on the resulting values of the metric, a suitable

set of design parameters can be chosen.

5.5.2 Installing ParaMagic Plugin

To install the ParaMagic Plugin, the following steps were performed from the

Cameo Systems Modeler Interface.

1. Install ParaMagic Plugin

a. From the toolbar, Help > Resource/ Plugin Manager

b. Expand the Plugins (Commercial) section

c. Check the ParaMagic Box and Select Download/Install as shown in

Figure 5.31

i. With an evaluation license provided by the University of

Maryland, this plugin will be accessible for 30 days.

2. Load ParaMagic profile

a. From the toolbar, File > Use project > Use Local Project as shown in

Figure 5.32

b. In the “paths to used projects” section, select <install.root>\profiles

c. Select the ParaMagic Profile.mdzip from the dropdown menu.

d. Click finish

60

Figure 5.31: Cameo Systems Modeler Resource/ Plugin Manager

Figure 5.32: Loading ParaMagic Profile

61

5.5.3 Creating an Instance

Having created the SysML structure and Parametric Diagram, the next step was to

create an instance of the system and then use the ParaMagic Plugin to solve the instance

to solve for the metric. An instance is an example of the model with specific values

assigned to the given parameters and which can be solved for the unknowns [21].

However, in order to create an instance, first the model had to be “validated”. It is

important to note that in this context, the validation of the model has nothing to the do

with the Systems Engineering technical process of Verification and Validation. This

validation simply means that the model was checked for consistency and screened for

syntax errors and other minor errors. To validate the model, the root block, in this case,

Multizone Building System has to be right clicked and then under the ParaMagic tab,

the Validate button has to be clicked. This is demonstrated in Figure 5.33.

Figure 5.33 Validating System Model

62

This validation uncovered several minor errors in the model that needed to be

resolved before proceeding. However, to aid in the localization of the errors, it is

suggested that each block contained within the main root block be validated. This

permits the user to resolve all lower level errors which will subsequently allow the main

root block to be validated.

Next, an instance of the system was created using the Automatic Instantiation

Wizard. This was performed by:

1. Right clicking on the root block, Multizone Building System

2. Navigate to Tools > Create Instance

3. Select all the part of the model that need to be instantiated as shown in Figure

5.34. In this case, all the value properties associated with the design parameters

and their parent blocks need to be selected. In addition, the metric, Indoor Air

Temperature and its parent block were also selected.

63

Figure 5.34: Selecting Parts in the Automatic Instantiation Wizard

4. Click Next

5. Create a Package under the root folder and name it Instances.

a. Create a new package called Instance01 under Instances (shown in

Figure 5.35).

64

Figure 5.35: Creating Packages for the Instance

6. Click Next

7. Create the instance BDD under the package that was just created and name it

Instance01 BDD (shown in Figure 5.36)

Figure 5.36: Creating the Instance BDD

8. Click Finish

Following these steps resulted in the creation of the instance as shown in Figure

5.37, Figure 5.38 Figure 5.39, and Figure 5.40. For the sake of readability, the actual

Instance BDD has been cropped into the four aforementioned figures. In the figures, it

can be seen that a large set of nested blocks are created. Each of these nested blocks

65

are an instance of that block from the system model. Most of the instances will also

have a default value of 0 associated with its value type. Each of the design parameters

and constants then had their value manually set to their nominal value as described in

Table 5.2 and Table 5.3 respectively. Since the value of the other value properties are

not known, they can be left as 0 since, they are not explicitly a part of the main

constraint equations.

Figure 5.37: Instance of the System Model – 1

66

Figure 5.38: Instance of the System Model – 2

67

Figure 5.39: Instance of the System Model – 3

68

Figure 5.40: Instance of the System Model – 4

5.5.4 Solving the Instance

Finally, the instance was solved using the ParaMagic Plugin. To do this, the

following steps were performed.

69

1. Right click on the Instance in the containment tree.

2. Navigate to the ParaMagic Button and click on Browse. This will launch the

ParaMagic Browser.

3. Expand all the tabs to reveal the design parameters and their respective values.

Notice that their causality should be set to given.

4. Set the causality of the metric, Indoor Air Temperature to target. The Browser

should now look as shown in Figure 5.41.

Figure 5.41: ParaMagic Browser

70

5. Click on Solve.

Following these instructions will cause Cameo to launch Matlab, and then launch

the Simulink Model. The Simulink model will run and finally output 3 graphs as shown

in Figure 5.42, Figure 5.43 and Figure 5.44. Finally, the ParaMagic Browser will update

with the calculated value of the target parameter. This can then be updated in the

SysML model clicking on the “Update to SysML” button. This concludes the

Executable Model building process.

Figure 5.42: Plot of Indoor Air Temperature vs. Time

71

Figure 5.43: Plot of Solar Thermal and Heat Pump Heat Load vs. Time

Figure 5.44: Plot of Electricity Consumption vs. Time

72

Chapter 6

Multi-Objective Trade-Off Analysis

6.1 Overview

In the previous section, creating a single Instance of the system model was

discussed using a single set of design parameters. However, to be able to perform a

meaningful trade-off analysis, several such instances need to be simulated and the

results compared using multi-objective optimization techniques in order to satisfy the

objective function.

Consol Optcad is one such multi-criteria optimization tool that uses a Feasible

Sequential Quadratic Programming (FSQP) algorithm that would be best suited for a

project like this [22]. The biggest advantage of this tool is its ability to change the

parameters during the simulation in order to satisfy the constraints of the objective

function, after having provided an initial parameter set. Another major benefit of such

a tool is its ability to handle non-linear objective functions. Dimitrios Spyropoulos was

able to utilize this tool in his thesis work to perform a multi-objective tradeoff analysis

for an electric micro-grid system [23]. Despite making continued efforts to recreate

Spyropoulos’s work to integrate Consol Optcad with SysML for performing the trade-

off analysis in this project, it couldn’t be performed for a variety of reasons. Mainly

because of a lack of comprehensive documentation of the integration procedure as well

as a lack of time, resources and expertise to perform the integration from the beginning.

73

Yet, to demonstrate the power of the method, the trade-off analysis was performed in

Matlab.

6.2 Pareto Frontier Analysis

For this system, since there are multiple conflicting metrics that define the quality

of the system, a multi-objective trade-off analysis needs to be conducted in order to

satisfy the objective function. One method of doing this analysis in by performing a

Pareto Frontier Analysis. Taking various configurations of the design parameters of the

system and performing a Pareto Frontier Analysis would provide a set of Pareto

Optimal points that form the frontier and also demarcate the dominated region in the

feasible solution set.

The first step to performing this analysis was to select discrete values of the

previously defined design parameters and creating all possible configurations of them.

Thus three levels of discrete values were chosen from the design parameters as shown

in Table 6.1. The nominal values for all the parameters except window area correspond

to the low values in the table. The nominal value for the Window Area was actually 3

m2, thus corresponding with the high value as shown in the table.

74

 Outer wall

Wood fiber

insulation

thickness

Intermediate

wall Wood

fiber

insulation

thickness

Ceiling

Wood fiber

insulation

thickness

Window

Area

Indoor

Temperature

Setpoint

Low 0.16 m 0.1 m 0.255 m 1 m2 20 °C

Medium 0.24 m 0.2 m 0.3825 m 2 m2 21 °C

High 0.32 m 0.3 m 0.510 m 3 m2 22 °C

Table 6.1: Table of 5 Design Parameters and Discrete Value Levels

Having five metrics with three levels of values each would yield 35 = 243 different

configurations for which the associated metric values would have to be computed.

Running a test simulation with one of these configuration sets showed that this would

be very time prohibitive on the machine on which it was being run, taking into account

its meager capability specifications. Thus, to cut down on the number of the

configurations, it was decided that the Intermediate Wall Wood Fiber Insulation

Thickness was not as important as the other design parameters since it was internal to

the house and wouldn’t affect the metrics to a large extent. Thus, this parameter was

cut from the list, leaving us with a new configuration table of 4 design parameters with

three discrete levels each. This table is shown in Table 6.2. This amounted to 34 = 81

design configurations.

75

Outer wall

Wood fiber

insulation thickness

Ceiling Wood

fiber insulation

thickness

Window

Area

Indoor

Temperature

Setpoint

Low 0.16 m 0.255 m 1 m2 20 °C

Medium 0.24 m 0.3825 m 2 m2 21 °C

High 0.32 m 0.510 m 3 m2 22 °C

Table 6.2: Table of 4 Design Parameters and Discrete Value Levels

6.2.1 Solving the Design Configurations

To solve the design configurations and find the value for each metric for every

configuration, a simple automation tool in the Cameo Systems Modeler ParaMagic

Plugin was used. This feature is called the ParaMagic Trade Study. ParaMagic uses the

Excel Connection feature to set up the different initial parameter sets or “scenarios” as

rows in a spreadsheet. Parameter sets are automatically read, the model is repeatedly

executed, and output values written back to the spreadsheet [24].

6.2.2 Results of Pareto Frontier Analysis

Now that the each metric value was calculated for all the design configurations, a

Pareto Frontier Analysis could be performed on the data. This was done by executing

a fairly straightforward Pareto Frontier subroutine in Matlab. This Matlab script can be

found in Section A.3.1 of the Appendix Section.

The objective function used in the Matlab script was supposed to minimize four of

the metrics and maximize one. This is summarized in Table 6.3. The Variance of Indoor

Air Temperature was minimized since it is desired for the indoor temperature to stay

as close to the user-defined setpoint as possible, thereby making this a classic regulation

76

problem. Next, the Heat Pump Heat-load Per Annum was minimized to ensure that the

heat pump isn’t being used more than necessary. Since it was very electricity intensive

to run and was designed to be a backup to the solar system, minimizing the amount of

heating produced by the heat pump was a desirable trait. It was also desired that the

heating provided by the solar thermal system be maximized, so the Solar-thermal Heat-

load Per Annum metric was maximized. The Cost of Electricity consumed Per Annum

metric was also minimized in order to reduce the operating cost of the system. Finally,

the Cost of the Thermal Insulation used in the building construction was also minimized

in order to keep the first costs of constructing the house low.

S

No.
System Metric Units Minimize or Maximize

1.
Variance of Indoor Air

Temperature
K2 Minimize

2.
Heat Pump Heat-load

Per Annum
kWh Minimize

3.
Solar-thermal Heat-

load Per Annum
kWh Maximize

4.
Cost of Electricity

consumed Per Annum
$ Minimize

5.
Cost of Thermal

Insulation
$ Minimize

Table 6.3: Table of 5 System Metrics and Associated Optimization Actions

This script yielded that all 81 possible configurations were Pareto Optimal points.

This was a much unexpected result and created cause for doubting the correctness of

the analysis performed in the Matlab script. However, the script was verified to be

correct and was retested with several other examples outputting correct results. This

77

meant that the analysis was indeed correct and all the possible configuration were

Pareto Optimal Solutions.

The only reason that could lead to such a result was that there were very few data

points for the number of metrics being analyzed. Since obtaining more data points was

time-prohibitive, it was decided that since some metrics were dependent on others, their

removal from the objective function should not be of much significance to the

optimization problem. So the metric, Solar-Thermal Heat-load per annum was

eliminated since maximizing it meant that the Heat Pump Heat-Load would be

minimized. This is because of the total heat load required to keep the house warm is

algebraic sum of the Solar-Thermal Heat-Load and the Heat Pump Heat Load. The

other metric eliminated from the list was the Cost of Electricity consumed Per Annum.

This is because, in the simplistic Dymola model of the house, the only appliance that

consumed any electricity was the heat pump itself. Thus, minimizing the Heat Pump

Heat-Load was essentially equivalent to minimizing the electricity consumption of the

house.

Thus, the updated metrics that would be a part of the objective function in the Pareto

Frontier Analysis are shown in Table 6.4

S

No.
System Metric Units Minimize or Maximize

1.
Variance of Indoor Air

Temperature
K2 Minimize

2.
Heat Pump Heat-load

Per Annum
kWh Minimize

3.
Cost of Thermal

Insulation
$ Minimize

Table 6.4: Table of 3 System Metrics and Associated Optimization Actions

78

Thus, solving the simulation for the aforementioned metrics yielded the following

results as tabulated in Appendix Section A.3.2. The highlighted rows are the Pareto

Points. The Pareto Analysis using these three metrics yielded 46 Pareto Optimal points

as shown in Figure 6.1.

Figure 6.1: Pareto Optimal Solutions

 If the above 3D plot is rotated as shown in Figure 6.2, a very clear Pareto Frontier

Surface can be seen. Also, an interesting clustering of the various configurations is

observed.

79

Figure 6.2: Pareto Optimal Solutions – Tilted View

However, out of 81 possible design configuration points, having 46 Pareto Optimal

points isn’t very helpful from a trade-off analysis point of view. This is because, if such

a problem is presented to customer, he should have to choose from a set of 46 Pareto

Points. Thus, some pruning of the Pareto Points was required to reduce the number of

the choices to be presented. The first method of reducing the number of Pareto Optimals

was simply by trimming the extreme values in all three dimensions. Since all three of

the metrics have to be minimized, the numerically higher values of each metric could

be deleted. Thus, any Pareto Point in the top 60% of the values of the Variance of the

80

Indoor Temperature, or the top 60% of the values of the Heat Pump Heat-Load, or the

top 85% of the Cost of Insulation was eliminated. This reduced the Pareto Points from

46 to only 12 as shown in Figure 6.3.

Figure 6.3: Pareto Optimal Solutions After First Elimination

The next level of thinning down the Pareto Points was by finding points very close

to each other in clusters and picking only one from each cluster to represent the whole

cluster as a single design configuration. To aid in this, each of the remaining Pareto

Points was assigned an ID consistent with the design configurations that produced them

from the table in Appendix Section A.3.2. From the 27-45-63 cluster, point # 45 was a

81

midpoint of amongst the three points in terms of all the three metrics. Thus point # 27

and # 63 were eliminated and # 45 was retained. From the 18-36 group, point # 18 was

eliminated as it had a significantly higher value for the heat-load for roughly the same

cost of insulation and variance of temperature. In a similar method, points # 72, #52,

and #61 were also eliminated, leaving us with 6 Pareto Points as shown in Figure 6.4.

Figure 6.4: Pareto Optimal Solutions After Second Elimination

From these last six points, point # 70 and # 54 were the last to be eliminated as they

provided a very small increment in the reduction of the heat-load and variance of indoor

82

temperature in comparison to point # 43 and # 45 respectively while costing close to

$1200 more. Thus, having eliminated these 2 points, the final 4 points and their

respective design configurations and metric values are shown in Table 6.5. Points # 9,

36 and # 43 provide a good spread between the three metrics. Each of these points

favors a particular metric and is a fair representation of the possible choices a customer

would want to make based on the customer’s preferences. Point # 9 could be chosen if

the customer wants to spend the least amount of money on the thermal insulation of the

house. Point # 36 could be chosen if the customers prioritizes the minimization of the

heat-load, and point # 43 could be chosen if the customer wants to have the least

variance in the indoor temperature, thereby prioritizing comfort. Lastly, point # 45 is a

potential choice if the customer wants to minimize the heat-load and variance of indoor

temperature, while willing to pay a significantly higher upfront cost for the extra

thermal insulation. An interesting point to make note of is that for all four of these

points, the Window Area is 1 m2, smallest window area value from the discrete values

chosen.

 Parameters Metrics

ID
OW

Insulation

C

Insulation

Window

Area

Temp

Setpoint

Variance

in TAir

Heat pump

Heat load

Cost of

Insulation

9 0.16 m 0.255 m 1 m2 20 ° 0.041 K2 108.18 kWh $ 4727

36 0.24 m 0.255 m 1 m2 20 ° 0.042 K2 90.76 kWh $ 5915

43 0.24 m 0.3825 m 1 m2 21 ° 0.018 K2 117.31 kWh $ 6967

45 0.24 m 0.3825 m 1 m2 20 ° 0.037 K2 83.91 kWh $ 6967

Table 6.5: Table of Finalized Design Options and Associated Parameter and Metric

Values

83

Chapter 7

Conclusions and Future Work

7.1 Summary of Thesis Work Performed

In conclusion, the major contribution of this thesis was that different methods to

perform an integration with SysML and a simulation tool were identified, described

and evaluated. Then, a new method was developed and discussed. Finally, the new

method was demonstrated by developing an executable SysML model of a two-room

house that utilizes solar-thermal power for the purpose of space heating with a heat

pump being used as a backup. Using the FMI 2.0 standard, a Modelica model of the

house was integrated with the SysML model using Simulink as an intermediate

interface, enabling users to perform a tradeoff analysis by varying design parameters

through the SysML interface.

Cameo Systems Modeler is used to create systems architecture of the two-room

house in SysML. Dymola is used to create a multi-domain Modelica model of the same

two-room energy efficient house. The Modelica model is then exported as FMU. The

FMU is just a “skeletal structure” of the Modelica model.

Next, The FMU was imported into Simulink. Simulink didn’t add anything new to

the model, but merely acts as a shell or an interface to the FMU. Simulink was chosen

as this interface since Cameo Systems Modeler and Matlab/Simulink have an existing

integration that could be exploited for this usage.

84

User-defined design parameter values that were inputted into the SysML model

were sent to Simulink. With these values, Simulink ran the FMU, calculated the values

of the output metrics sent them back to SysML to be displayed back to the user.

After the completion of the integration procedure of the SysML architecture with

the FMU model of the two-room house, a multi-objective trade-off analysis was

conducted. A Pareto Analysis was performed to identify the Pareto Frontier.

Considering the initially discussed five metrics, all 81 design configurations turned out

to be Pareto Points. Thus, the five metrics were cut down to three thereby yielding 46

Pareto points. Using various methods, these Pareto Points were trimmed down to 4

points that provided a good spread between the three metrics. Each of these points

favored a particular metric that could be representative of a potential customer’s

preferences.

7.2 Evaluation of Integration Framework and Future Work

Although the integration of SysML with a modeling and simulation tool for the

purpose reducing inconsistencies, enabling automation and supporting early and

continual verification by analysis, was successful, the method of integration has a large

scope for improvement. Since there was no way to simulate the FMU in Cameo

Systems Modeler itself, the usage of Simulink as an intermediate model between

SysML and the FMU caused the overall procedure to be fairly “clunky”. This was very

evident in the part where string manipulations to replace the default values for the

design parameters, embedded in the FMU, with the new input parameters specified by

the user in SysML, had to be performed in the Matlab script responsible for calling the

85

Simulink model. If no changes are made to the FMU for any part of this integration,

the string manipulations would not pose any problems. However, even if a single

change is made to the FMU through Dymola, the string manipulations would have to

performed again to ensure that the right design parameter inputted by the user is

mapped to the right variable residing in the FMU.

Next, the ParaMagic plugin that even made this integration possible in the first

place also proves to be a bottleneck to its capabilities in some instances. The major

drawback of this tool is observed when any constrain block in the SysML architecture

calls a Matlab function or script to evaluate a system metric value. Although the Matlab

script is capable to calculate multiple metric values in the same script, only a single

metric value could be outputted back into the SysML model to be displayed to the user.

Hence, for different system metrics to be computed by a single Matlab script, the same

script had to be solved repeatedly, each outputting the value of a different metric. In

this thesis, this issue was overcome by setting the first Matlab script as the main

calculation module and setting the subsequent Matlab scripts to just pull the calculated

values of different system metrics from the first Matlab script. However, it was still a

major drawback of the ParaMagic tool and a cause for inefficiency in the integration

procedure.

As for finding a better integration technique in the future, the FMU import Cameo

Systems Modeler described in Section 4.2 of this thesis shows the most promise. This

method is still in development and if successfully completed, will eliminate the need

to use an intermediate modeling tool like SysML to execute FMUs. The Model-

Exchange enabled FMU could be directly imported into the SysML architecture of any

86

system and could interact with the rest of the system architecture in a streamlined

manner.

Another area worth exploring is the recreation of the OMG SysML-Modelica

Transformation Specification mention in Section 4.1. For seemingly unknown reasons,

this OMG standard is not compatible with the latest versions of Cameo Systems

Modeler or Dymola. It would be of great value if the transformation was brought back

to life, allowing for Modelica models to be transformed into SysML constructs. This

method would in-fact eliminate the need for the FMU block altogether as the Modelica

model would itself transform into SysML artifacts preserving all the data, equations,

constraints and connections that are part of the Modelica model. However, this would

only be most useful to those who are only working with SysML and Modelica as this

method doesn’t help with the integration of other modeling tools.

87

Appendices

A.1 Additional SysML Model Diagrams

Figure A.1: External Interface BDD

Figure A.2: Internal Interface BDD

88

Figure A.3: Parametric Diagram – Constraint 2

89

Figure A.4: Parametric Diagram – Constraint 3

90

Figure A.5: Parametric Diagram – Constraint 3

91

92

A.2 Matlab Scripts used in the SysML Model of the Two-Room House

A.2.1 Constraint Block Matlab Script (exec_script.m)

%% Executable script

% This script is run through MagicDraw Cameo Systems Modeler. It

% essentially calls the simulink model for the Energy Efficient Home system

% which is being modelled in SysML in Cameo Systems Modeler.

clear

clc

%% Inputs into Simulink

% The following inputs are generated by Paramagic and stored in a text file

% called "input.txt" in the project directory. It contains the inputs to

% the constraints as mentioned in the constraint block in the SysML model

% in the order that is stated in the "xfwExternal" function.

% In this case is the inputs into the constraint equations are:

% pos = xfwExternal(matlab, scriptascii, exec_script, OW_Plasterboard,

% OW_Brick, OW_HGplaster, OW_ReinfPlaster1, OW_WoodFibIns,

% OW_ReinfPlaster2, IW_Plasterboard1, IW_WoodFibIns, OW_ReinfPlaster2,

% IW_Plasterboard1, IW_WoodFibIns, IW_Plasterboard2, C_Plasterboard,

% C_PolyamideFoil, C_WoodFibIns, Window_width, Window_height)

% OW_Plasterboard = Thickness of Outer wall Plasterboard 1

% OW_Brick = Thickness of Outer wall Brick

% OW_HGplaster = Thickness of Outer wall High grade plaster

% OW_ReinfPlaster1 = Thickness of Outer wall Reinforced plaster

% OW_WoodFibIns = Thickness of Outer wall Wood Fiber Insulation

% OW_ReinfPlaster2 = Thickness of Outer wall Plasterboard 2

%

% IW_Plasterboard1 = Thickness of Intermediate wall Plasterboard 1

% IW_WoodFibIns = Thickness of Intermediate wall Wood Fiber Insulation

% IW_Plasterboard2 = Thickness of Intermediate wall Plasterboard 2

%

% C_Plasterboard = Thickness of Ceiling Plasterboard

% C_PolyamideFoil = Thickness of Ceiling Polyamide Foil

% C_WoodFibIns = Thickness of Ceiling Wood FIber Insulation

%

% Window_width = Width of window

% Window_height = Height of Window

%

% Temp_Setpoint

% These values are stored in the Matlab workspace and will be called by the

% Simulink model which will also be launched subsequently in this script.

inSel= load('input.txt');

OW_Plasterboard = inSel(1);

OW_Brick = inSel(2);

OW_HGplaster = inSel(3);

OW_ReinfPlaster1 = inSel(4);

OW_WoodFibIns = inSel(5);

OW_ReinfPlaster2 = inSel(6);

93

IW_Plasterboard1 = inSel(7);

IW_WoodFibIns = inSel(8);

IW_Plasterboard2 = inSel(9);

C_Plasterboard = inSel(10);

C_PolyamideFoil = inSel(11);

C_WoodFibIns = inSel(12);

Window_width = inSel(13);

Window_height = inSel(14);

Temp_Setpoint = inSel(15);

%% Open the Simulink Model

% The following commands launch the simulink model that you want to

% integrate as the "black box" constraint block in SysML Cameo.

mdl='exec_model';

open_system(mdl);

open_system([mdl '/Scope1']);

open_system([mdl '/Scope2']);

open_system([mdl '/Scope3']);

%% Obtain the default parameters

% This function obtains the default parameters for the entire model from

% the FMU that are now stored in the Simulink model. Subsequently, these

% parameters will be replaced with new parameters as specified in the

% input.txt file that is outputted by Cameo Systems Modeler.

old_param = get_param('exec_model/executable_fmu','parameters');

%% String Manipulation

% In this section, using string manipulation methods, the old paramter

% string will be edited to include the new parameters as mentioned by the

% input.txt file.

%

% First, we convert char to string for the purpose of string

% manipulation. Then the string is split into a cell array and the relevant

% cells are edited. The Cell array is then converted back to a string and

% then chars and fed back into the Simulink model to simulate.

old_param_str = string(old_param)

C = strsplit(old_param_str);

%%

% Outer Wall Construction Data Parameters - Reassignment

[C(1495), C(1527), C(1559), C(1591), C(1622), C(1653)] =

deal(OW_Plasterboard);

[C(1496), C(1528), C(1560), C(1592), C(1623), C(1654)] = deal(OW_Brick);

[C(1497), C(1529), C(1561), C(1593), C(1624), C(1655)] = deal(OW_HGplaster);

[C(1498), C(1530), C(1562), C(1594), C(1625), C(1656)] =

deal(OW_ReinfPlaster1);

[C(1499), C(1531), C(1563), C(1595), C(1626), C(1657)] =

deal(OW_WoodFibIns);

[C(1500), C(1532), C(1564), C(1596), C(1627), C(1658)] =

deal(OW_ReinfPlaster2);

% Intermediate Wall Construction Data Parameters - Reassignment

C(1469) = IW_Plasterboard1;

C(1470) = IW_WoodFibIns;

94

C(1470) = IW_Plasterboard2;

% Ceiling Construction Data Parameters - Reassignment

[C(1685), C(1711)] = deal(C_Plasterboard);

[C(1686), C(1712)] = deal(C_PolyamideFoil);

[C(1687), C(1713)] = deal(C_WoodFibIns);

% Window Parameters - Reassignment

[C(1774), C(1789)] = deal(Window_width);

[C(1775), C(1790)] = deal(Window_height);

% Temperature Setpoint (should be in Kelvin)

C(1894) = Temp_Setpoint + 273.15;

% % C(33) = strcat(num2str(k),']');

new_param_str = strjoin(C);

new_param_char = char(new_param_str)

set_param('exec_model/executable_fmu','parameters' ,new_param_char);

set_param(mdl,'SimulationCommand','Update')

%% Run simulation within Simulink

% This command runs the simulation from within simulink and then goes on

% the plot the results as shown in the Scope Block called "Scope".

evalc('sim(mdl)');

%% Output ascii text file for SysML to read.

% These commands output the values of the LHS part of the constraint

% equation in SysML into a text file called "output.txt". This text file is

% then read by the Paramagic plugin in Cameo, which subsequently takes the

% data and prints as the values that you have set as a "target" in the

% Paramagic browser.

% output = yout(size(yout,1),1);

TAir = yout(:,1);

logical_count = TAir > 294;

Var_TAir = var(TAir);

% SolarThermal_HeatFlow = yout(:,4);

% SolarThermal_HeatLoad = trapz(SolarThermal_HeatFlow)/(1000*60*60);

save('yout_datafile.mat','yout')

save('output.txt','Var_TAir','-ASCII');

bdclose

exit

95

A.2.2 Constraint Block Matlab Script (heatpump_eleccon.m)

clear

clc

load('yout_datafile')

HeatPump_ElectricConsumption_flow = yout(:,6);

HeatPump_ElectricConsumption =

trapz(HeatPump_ElectricConsumption_flow)/(1000*60*60);

save('output.txt','HeatPump_ElectricConsumption','-ASCII');

exit

A.2.3 Constraint Block Matlab Script (heatpump_heatload.m)

clear

clc

load('yout_datafile')

HeatPump_HeatFlow = yout(:,5);

HeatPump_HeatLoad = trapz(HeatPump_HeatFlow)/(1000*60*60);

save('output.txt','HeatPump_HeatLoad','-ASCII');

exit

A.2.4 Constraint Block Matlab Script (solar_heatload.m)

clear

clc

load('yout_datafile')

SolarThermal_HeatFlow = yout(:,4);

SolarThermal_HeatLoad = trapz(SolarThermal_HeatFlow)/(1000*60*60);

save('output.txt','SolarThermal_HeatLoad','-ASCII');

exit

96

A.3 Trade-Off Analysis

A.3.1 Matlab Script Used for Pareto Analysis (Pareto_Analysis2.m)

% This script reads the metrics in MS Excel generated by the Cameo Systems

% Modeler Trade-Study tool and performs a Pareto Analysis to find the

% Pareto points and eliminate the non-dominant solutions. since there are

% 5 metrics, the Pareto Points cannot be visualized in the form of a plot.

%

% The script will output the Configurations and the associated metric

% values of the Pareto Points.

%

% To run this script, the following files are required to be in the same

% folder:

% 1. paretofront.m

% 2. paretofront.c

% 3. paretofront.mexw32

% 4. paretofront.mexw64

% 5. Tradeoff Analysis.xlsx

clear

clc

Configs = xlsread('Tradeoff Analysis', 'Trade Study', 'A3:E83');

Metrics = xlsread('Tradeoff Analysis', 'Trade Study', 'H3:L83');

Var_TAir = Metrics (:,1);

SolarThermal_HeatLoad = Metrics (:,2);

HeatPump_HeatLoad = Metrics (:,3);

Cost_ElectricConsumption = Metrics (:,4);

Cost_Insulation = Metrics (:,5);

% Since the default for the paretofront function is to minimize, a -ve sign

% has to be added to SolarThermal_HeatLoad since we want to maximize that

% metric.

objective =[Var_TAir, HeatPump_HeatLoad, Cost_Insulation];

I = paretofront(objective);

% To find all the Non-Pareto points easily

NotI = logical(1-I);

figure

plot3(Var_TAir, HeatPump_HeatLoad, Cost_Insulation, 'b.',...

 Var_TAir(I), HeatPump_HeatLoad(I), Cost_Insulation(I), 'ro')

grid ON

axis([0, 0.18, 60,220, 4500, 9500])

xticks(linspace(0,0.18,7));

yticks(linspace(60,220,5));

zticks(linspace(4500,9500,6));

xlabel('Variance in Temp (K^2)')

ylabel('Heatpump Heatload (kWh/yr)')

zlabel('Cost of Insulation ($)')

title('Pareto Frontier Analysis')

legend('Configuration Points','Pareto Optimal Points')

% Axis Rotation Code snippet

97

h = rotate3d;

set(h, 'ActionPreCallback',

'set(gcf,''windowbuttonmotionfcn'',@align_axislabel)')

set(h, 'ActionPostCallback', 'set(gcf,''windowbuttonmotionfcn'','''')')

set(gcf, 'ResizeFcn', @align_axislabel)

align_axislabel([], gca)

axislabel_translation_slider;

%% Video Capture

% OptionZ.FrameRate=40;

% OptionZ.Duration=5.5;

% OptionZ.Periodic=true;

% CaptureFigVid([-20,20;-110,20;-190,20;-290,10;-380,20],

'WellMadeVid',OptionZ)

%%

% The first column of the ParetoConfigs is the ID number of the test case

ParetoConfigs = Configs(I,:);

ParetoMetrics = Metrics(I,:);

NonParetoConfigs = Configs(NotI,:);

NonParetoMetrics = Metrics(NotI,:);

% Number of Pareto Points

N = length(ParetoConfigs)

%% Additional Plotting techniques

% Met3 collects the thre metrics being plotted:

% Var_TAir, HeatPump_HeatLoad, Cost_Insulation

Met3 = [ParetoMetrics(:,1), ParetoMetrics(:,3), ParetoMetrics(:,5)];

xlin = linspace(min(Met3(:,1)),max(Met3(:,1)),30);

ylin = linspace(min(Met3(:,2)),max(Met3(:,2)),30);

[X,Y] = meshgrid(xlin,ylin);

f = scatteredInterpolant(Met3(:,1),Met3(:,2),Met3(:,3));

Z = f(X,Y);

figure

mesh(X,Y,Z) %interpolated

hold on

plot3(Met3(:,1),Met3(:,2),Met3(:,3),'ro',Var_TAir, HeatPump_HeatLoad,

Cost_Insulation, 'b.') %nonuniform

axis([0, 0.18, 60,220, 4500, 9500])

xlabel('Variance in Temp (K^2)')

ylabel('Heatpump Heatload (kWh/yr)')

zlabel('Cost of Insulation ($)')

title('Pareto Frontier Analysis')

legend('Configuration Points','Pareto Optimal Points')

hidden OFF

% Axis Rotation Code snippet

h = rotate3d;

set(h, 'ActionPreCallback',

'set(gcf,''windowbuttonmotionfcn'',@align_axislabel)')

set(h, 'ActionPostCallback', 'set(gcf,''windowbuttonmotionfcn'','''')')

set(gcf, 'ResizeFcn', @align_axislabel)

align_axislabel([], gca)

axislabel_translation_slider;

98

%%

figure

stem3(Met3(:,1),Met3(:,2),Met3(:,3),'MarkerEdgeColor','r')

hold on

plot3(Metrics(:,1), Metrics(:,3), Metrics(:,5),'b.')

hold off

axis([0, 0.18, 60,220, 4500, 9500])

xlabel('Variance in Temp (K^2)')

ylabel('Heatpump Heatload (kWh/yr)')

zlabel('Cost of Insulation ($)')

xticks(linspace(0,0.18,7));

yticks(linspace(60,220,5));

zticks(linspace(4500,9500,6));

title('Pareto Frontier Analysis')

legend('Pareto Optimal Points', 'Configuration Points')

grid on

% Axis Rotation Code snippet

h = rotate3d;

set(h, 'ActionPreCallback',

'set(gcf,''windowbuttonmotionfcn'',@align_axislabel)')

set(h, 'ActionPostCallback', 'set(gcf,''windowbuttonmotionfcn'','''')')

set(gcf, 'ResizeFcn', @align_axislabel)

align_axislabel([], gca)

%% First Pruning

for n = 1:length(Metrics)

 if Metrics(n,1) > (min(Metrics(:,1)) + 0.4*(max(Metrics(:,1))-

min(Metrics(:,1))))

 I(n) = 0;

 end

 if Metrics(n,3) > (min(Metrics(:,3)) + 0.4*(max(Metrics(:,3))-

min(Metrics(:,3))))

 I(n) = 0;

 end

 if Metrics(n,5) > (min(Metrics(:,5)) + 0.8*(max(Metrics(:,5))-

min(Metrics(:,5))))

 I(n) = 0;

 end

end

sum(I)

NotI = logical(1-I);

ParetoConfigs = Configs(I,:);

ParetoMetrics = Metrics(I,:);

NonParetoConfigs = Configs(NotI,:);

NonParetoMetrics = Metrics(NotI,:);

Met3 = [ParetoMetrics(:,1), ParetoMetrics(:,3), ParetoMetrics(:,5)];

figure

stem3(Met3(:,1),Met3(:,2),Met3(:,3),'MarkerEdgeColor','r')

hold on

plot3(Metrics(:,1), Metrics(:,3), Metrics(:,5),'b.')

99

hold off

axis([0, 0.18, 60,220, 4500, 9500])

xlabel('Variance in Temp (K^2)')

ylabel('Heatpump Heatload (kWh/yr)')

zlabel('Cost of Insulation ($)')

xticks(linspace(0,0.18,7));

yticks(linspace(60,220,5));

zticks(linspace(4500,9500,6));

title('Pareto Frontier Analysis')

legend('Pareto Optimal Points','Configuration Points')

grid on

% Axis Rotation Code snippet

h = rotate3d;

set(h, 'ActionPreCallback',

'set(gcf,''windowbuttonmotionfcn'',@align_axislabel)')

set(h, 'ActionPostCallback', 'set(gcf,''windowbuttonmotionfcn'','''')')

set(gcf, 'ResizeFcn', @align_axislabel)

ID = cellstr(num2str(Configs(I,1)));

dx = 0.002; dy = 0.1; dz = 0.1; % displacement so the text does not overlay

the data points

text(Met3(:,1) +dx ,Met3(:,2) + dy ,Met3(:,3) + dz,ID);

%% Second Pruning - Manual Pruning

[I(27), I(63), I(18), I(72), I(52), I(69), I(61), I(54), I(70)] = deal(0);

sum(I)

NotI = logical(1-I);

ParetoConfigs = Configs(I,:);

ParetoMetrics = Metrics(I,:);

NonParetoConfigs = Configs(NotI,:);

NonParetoMetrics = Metrics(NotI,:);

Met3 = [ParetoMetrics(:,1), ParetoMetrics(:,3), ParetoMetrics(:,5)];

figure

stem3(Met3(:,1),Met3(:,2),Met3(:,3),'MarkerEdgeColor','r')

hold on

plot3(Metrics(:,1), Metrics(:,3), Metrics(:,5),'b.')

hold off

axis([0, 0.18, 60,220, 4500, 9500])

xlabel('Variance in Temp (K^2)')

ylabel('Heatpump Heatload (kWh/yr)')

zlabel('Cost of Insulation ($)')

xticks(linspace(0,0.18,7));

yticks(linspace(60,220,5));

zticks(linspace(4500,9500,6));

title('Pareto Frontier Analysis')

legend('Pareto Optimal Points','Configuration Points')

grid on

% Axis Rotation Code snippet

h = rotate3d;

set(h, 'ActionPreCallback',

'set(gcf,''windowbuttonmotionfcn'',@align_axislabel)')

set(h, 'ActionPostCallback', 'set(gcf,''windowbuttonmotionfcn'','''')')

100

set(gcf, 'ResizeFcn', @align_axislabel)

ID = cellstr(num2str(Configs(I,1)));

dx = 0.002; dy = 0.1; dz = 0.1; % displacement so the text does not overlay

the data points

text(Met3(:,1) +dx ,Met3(:,2) + dy ,Met3(:,3) + dz,ID);

A.3.2 Table of Pareto Points.

 Parameters Metrics

ID
OW

Insulation

C

Insulation

Window

Area

Temp

Setpoint

Variance

in TAir

Heatpump

Heat load

Cost of

Insulation

1 0.16 0.255 3 21 0.076 137.85 4727

2 0.16 0.255 3 22 0.040 191.25 4727

3 0.16 0.255 3 20 0.144 95.45 4727

4 0.16 0.255 2 21 0.039 144.67 4727

5 0.16 0.255 2 22 0.020 197.48 4727

6 0.16 0.255 2 20 0.081 100.86 4727

7 0.16 0.255 1 21 0.018 152.87 4727

8 0.16 0.255 1 22 0.009 204.97 4727

9 0.16 0.255 1 20 0.041 108.18 4727

10 0.16 0.3825 3 21 0.073 127.29 5779

11 0.16 0.3825 3 22 0.039 177.35 5779

12 0.16 0.3825 3 20 0.137 88.74 5779

13 0.16 0.3825 2 21 0.037 133.73 5779

14 0.16 0.3825 2 22 0.018 183.46 5779

15 0.16 0.3825 2 20 0.074 93.44 5779

16 0.16 0.3825 1 21 0.016 141.54 5779

17 0.16 0.3825 1 22 0.008 190.68 5779

18 0.16 0.3825 1 20 0.035 100.03 5779

19 0.16 0.51 3 21 0.072 121.89 6831

20 0.16 0.51 3 22 0.039 170.30 6831

21 0.16 0.51 3 20 0.134 85.45 6831

22 0.16 0.51 2 21 0.036 128.13 6831

23 0.16 0.51 2 22 0.018 176.24 6831

24 0.16 0.51 2 20 0.072 89.74 6831

25 0.16 0.51 1 21 0.016 135.74 6831

26 0.16 0.51 1 22 0.008 183.36 6831

27 0.16 0.51 1 20 0.033 95.92 6831

28 0.24 0.255 3 21 0.084 114.90 5915

29 0.24 0.255 3 22 0.046 160.93 5915

30 0.24 0.255 3 20 0.155 82.10 5915

31 0.24 0.255 2 21 0.043 120.61 5915

32 0.24 0.255 2 22 0.022 166.47 5915

33 0.24 0.255 2 20 0.086 85.50 5915

34 0.24 0.255 1 21 0.020 127.78 5915

35 0.24 0.255 1 22 0.010 173.36 5915

36 0.24 0.255 1 20 0.042 90.76 5915

37 0.24 0.3825 3 21 0.082 105.64 6967

38 0.24 0.3825 3 22 0.045 148.01 6967

39 0.24 0.3825 3 20 0.148 77.08 6967

101

40 0.24 0.3825 2 21 0.041 110.66 6967

41 0.24 0.3825 2 22 0.021 153.23 6967

42 0.24 0.3825 2 20 0.079 79.60 6967

43 0.24 0.3825 1 21 0.018 117.31 6967

44 0.24 0.3825 1 22 0.009 159.69 6967

45 0.24 0.3825 1 20 0.037 83.91 6967

46 0.24 0.51 3 21 0.081 101.06 8019

47 0.24 0.51 3 22 0.045 141.45 8019

48 0.24 0.51 3 20 0.145 74.56 8019

49 0.24 0.51 2 21 0.040 105.72 8019

50 0.24 0.51 2 22 0.021 146.47 8019

51 0.24 0.51 2 20 0.077 76.78 8019

52 0.24 0.51 1 21 0.017 112.02 8019

53 0.24 0.51 1 22 0.009 152.73 8019

54 0.24 0.51 1 20 0.035 80.56 8019

55 0.32 0.255 3 21 0.090 103.68 7103

56 0.32 0.255 3 22 0.050 145.00 7103

57 0.32 0.255 3 20 0.161 76.42 7103

58 0.32 0.255 2 21 0.046 108.42 7103

59 0.32 0.255 2 22 0.024 150.06 7103

60 0.32 0.255 2 20 0.090 78.70 7103

61 0.32 0.255 1 21 0.021 114.78 7103

62 0.32 0.255 1 22 0.011 156.38 7103

63 0.32 0.255 1 20 0.044 82.55 7103

64 0.32 0.3825 3 21 0.087 95.39 8155

65 0.32 0.3825 3 22 0.049 132.69 8155

66 0.32 0.3825 3 20 0.154 71.72 8155

67 0.32 0.3825 2 21 0.043 99.38 8155

68 0.32 0.3825 2 22 0.023 137.39 8155

69 0.32 0.3825 2 20 0.083 73.74 8155

70 0.32 0.3825 1 21 0.019 105.02 8155

71 0.32 0.3825 1 22 0.010 143.31 8155

72 0.32 0.3825 1 20 0.038 76.72 8155

73 0.32 0.51 3 21 0.087 91.40 9207

74 0.32 0.51 3 22 0.050 126.50 9207

75 0.32 0.51 3 20 0.152 69.25 9207

76 0.32 0.51 2 21 0.043 94.96 9207

77 0.32 0.51 2 22 0.023 130.96 9207

78 0.32 0.51 2 20 0.080 71.22 9207

79 0.32 0.51 1 21 0.018 100.13 9207

80 0.32 0.51 1 22 0.010 136.67 9207

81 0.32 0.51 1 20 0.036 73.91 9207

102

Bibliography

[1] S. Balestrini-Robinson, D. F. Freeman and D. C. Browne, "An Object-oriented

and Executable SysML Framework for Rapid Model Development," Procedia

Computer Science, vol. 44, p. 424, 2015.

[2] J. E. MacCarthy, Approaches to Agile MBSE - 180326, College Park, MD:

University of Maryland, College Park, 2018.

[3] International Council on Systems Engineering (INCOSE), "Systems Engineering

Vision 2020 (Version 2.03, TP-2004-004-02, September 2007)," INCOSE, 2007.

[4] "Model-Based Systems Engineering Overview," MBSE.Works, [Online].

Available: http://mbse.works/mbse-overview/. [Accessed 28 February 2018].

[5] No Magic Inc., "Cameo Systems Modeler," No Magic, [Online]. Available:

https://www.nomagic.com/products/cameo-systems-modeler#intro. [Accessed 02

March 2018].

[6] L. Delligatti, "Chapter 2: Overview of the Systems Modeling Language," in

SysML Distilled: A Brief Guide to the Systems Modeling Language,

Crawfordsville, Indiana, Addison-Wesley, 2014.

[7] No Magic Inc., "Modeling SysML Diagrams," No Magic, [Online]. Available:

https://docs.nomagic.com/display/SYSMLP182/Modeling+SysML+Diagrams.

[Accessed 02 March 2018].

[8] Dassault Systemes, "Catia Systems Engineering - Dymola," Dassault Systemes,

[Online]. Available: https://www.3ds.com/products-

services/catia/products/dymola/key-advantages/. [Accessed 02 March 2018].

[9] M. Otter, "Modelica Overview," Modelica Association, 28 August 2013.

[Online]. Available: https://www.modelica.org/education/educational-

material/lecture-material/english/ModelicaOverview.pdf. [Accessed 03 March

2018].

[10] C. Nytsch-Geusen, "BuildingSystems," Universität der Künste Berlin, [Online].

Available: http://modelica-buildingsystems.de/index.html. [Accessed 03 March

2018].

[11] Modelica Association Project, "Functional Mock-up Interface," [Online].

Available: http://fmi-standard.org/. [Accessed 15 March 2018].

[12] Modelica Association Project, "Functional Mock-up Interface for Model

Exchange and Co-Simulation," 25 July 2014. [Online]. Available:

https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_Model

Exchange_and_CoSimulation_v2.0.pdf. [Accessed 15 March 2018].

[13] C. D. Bodemann and F. D. Rose, "The Successful Development Process with

Matlab Simulink in the Framework of ESA’s ATV Project," [Online]. [Accessed

15 December 2017].

[14] Object Management Group, "About The Sysml-Modelica Transformation

Specification Version 1.0," November 2012. [Online]. Available:

http://www.omg.org/spec/SyM/. [Accessed 04 January 2018].

103

[15] C. Paredis and A. Reichwein, "Sysml-Modelica Integration," Model-Based

Systems Engineering Center, Georgia Tech, [Online]. Available:

http://www.mbsec.gatech.edu/research/projects/active/sysml-modelica-

integration. [Accessed 29 November 2017].

[16] No Magic Inc., "Simulation of SysML models," No Magic Inc., [Online].

Available:

https://docs.nomagic.com/display/CST190/Simulation+of+SysML+models.

[Accessed 13 January 2018].

[17] L. Delligatti, "Chapter 9: Paramteric Diagrams," in SysML Distilled: A Brief

Guide to the Systems Modeling Language, Crawfordsville, Indiana, Addison-

Wesley, 2014.

[18] InterCAX LLC., "SysML Parametrics Tutorial - HomeHeating," in ParaMagic®

18.0 - Tutorials, Atlanta, Georgia, 2014, p. 65.

[19] Dassault Systemes, "6.10.2 Exporting FMUs from Dymola," in Dymola Dynamic

Modeling Laboratory User Manual - Volume 2, 2016, pp. 309 - 310.

[20] Dassault Systemes, "6.10.5 FMU Export from Simulink/ FMU Import into

Simulink: The FMI Kit for Simulink," in Dymola Dynamic Modeling Laboratory

User Manual - Volume 2, 2016, pp. 339-343.

[21] InterCAX LLC., "SysML Parametrics Tutorial - Addition," in ParaMagic® 18.0

- Tutorials, Atlanta, Georgia, 2014, p. 16.

[22] D. R. Daily, "Trade-off Based Design and Implementation of Energy Efficiency

Retrofits In Residential Homes," University of Maryland, College Park, MD,

2014.

[23] D. Spyropoulos, "Integration of SysML with Trade-off Analysis Tools,"

University of Maryland, College Park, MD, 2012.

[24] InterCAX LLC., "SysML Parametrics Tutorial - LittleEye Trade Study," in

ParaMagic® 18.0 - Tutorials, Atlanta, Georgia, 2014, p. 76.

[25] I. Roth, "Smart Sensors Are Driving Smart Buildings," 16 December 2016.

[Online]. Available: https://www.sensorsmag.com/components/smart-sensors-

are-driving-smart-buildings.

	ABSTRACT
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Overview
	1.1 Introduction
	1.2 Problem Statement
	1.3 Contribution of this Thesis

	Background
	2
	2.1 Need for MBSE in Today’s World.

	Modeling Tools
	1
	2
	3
	3.1 Cameo Systems Modeler – SysML Environment
	3.2 Dymola – Modelica Environment
	3.3 Functional Mockup Interface
	3.4 Simulink/ Matlab

	Current Approaches to Creating an Executable Model
	4
	4.1 OpenModelica – SysML Integration Using OMG Specification
	4.2 FMU Import into Cameo Systems Modeler Itself

	Executable Model Using SysML-Simulink-FMI Integration
	5
	1.
	2.
	3.
	4.
	4.1.

	5.1 Overview and High-Level Description of the Integration Procedure
	5.2 SysML Model
	5.
	5.1.
	5.2.
	5.2.1 Structure Diagrams
	5.2.2 Parametric Diagram

	5.3 Dymola Model of Two-Room Energy Efficient House
	1.
	2.
	3.
	3.1.
	3.1.1.
	5.3.
	5.3.1 Overview of Dymola Model
	5.3.2 The Building Block
	5.3.3 The Ambient Block
	5.3.4 The House Heating Block Cluster
	5.3.5 Simulation of the Dymola Model
	5.3.6 FMU Generation

	5.4 Simulink as an Intermediate Model
	3.1.2.
	5.4.
	5.4.1 Overview of Simulink Model
	5.4.2 Setup of FMI Kit in Simulink
	5.4.3 Creating the Simulink Model
	5.4.4 Simulink Simulation Configuration

	5.5 Integration Procedure
	5.5.
	5.5.1 Integration Mechanics and Matlab Script
	5.5.2 Installing ParaMagic Plugin
	5.5.3 Creating an Instance
	5.5.4 Solving the Instance

	Multi-Objective Trade-Off Analysis
	6
	6.1 Overview
	6.2 Pareto Frontier Analysis
	6.
	6.1.
	6.2.
	6.2.1 Solving the Design Configurations
	6.2.2 Results of Pareto Frontier Analysis

	Conclusions and Future Work
	7
	7.1 Summary of Thesis Work Performed
	7.2 Evaluation of Integration Framework and Future Work

	Appendices
	A.1 Additional SysML Model Diagrams
	A.2 Matlab Scripts used in the SysML Model of the Two-Room House
	A.2.1 Constraint Block Matlab Script (exec_script.m)
	A.2.2 Constraint Block Matlab Script (heatpump_eleccon.m)
	A.2.3 Constraint Block Matlab Script (heatpump_heatload.m)
	A.2.4 Constraint Block Matlab Script (solar_heatload.m)

	A.3 Trade-Off Analysis
	A.3.1 Matlab Script Used for Pareto Analysis (Pareto_Analysis2.m)
	A.3.2 Table of Pareto Points.

	Bibliography

