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With the growing complexity of energy efficient buildings, the methods of 

modeling and simulating such structures must account for monitoring several thousand 

design parameters across multiple diverse domains. As a result, modeling tools are now 

very specific to their respective domains and are growing more and more incongruous 

with each other. This calls for a way to integrate multiple modeling tools in the effort 

to create a single, large model capable to encapsulate data from multiple, different 

models.  

Thus, in this thesis, different methods to perform an integration with Systems 

Modeling Language (SysML) and a simulation tool were identified, described and 

evaluated. Then, a new method was developed and discussed. Finally, the new method 

was demonstrated by developing a SysML executable model of a simple two-room 

house that utilizes solar power for space heating, with a heat pump used as a backup. 

Using the Functional Mock-up Interface (FMI) standard, the SysML model is 

integrated with a Modelica model, and a simulation is run in Simulink. Finally, a 

tradeoff analysis was performed for the purpose of design space exploration. 
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Chapter 1 

Overview 

1.1  Introduction 

With the growing complexity of energy efficient buildings, the methods of 

modeling and simulating such structures must account for monitoring several thousand 

design parameters across multiple diverse domains. As a result, modeling tools are now 

very specific to their respective domains and are growing more and more incongruous 

with each other. This calls for a way to integrate multiple modeling tools in the effort 

to create a single, large model capable of encapsulating data from multiple, different 

models. 

Buildings are complex systems that have numerous interactions between different 

components, spanning several different domains. Thus, when it comes down to 

designing a new building for the purpose of construction, many challenges are faced in 

the building modeling stages. This is especially true now, in the era of living, breathing 

“smart” buildings. Such a structure involves a vast array of data captured from sensors 

like occupancy sensors, lighting sensors, thermostats, security sensors etc. In a smart 

building all of these sensors can either be a part of an individual Building Management 

System (BMS), a partially integrated BMS or fully integrated Building Automation 

System (BAS).  
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1.2  Problem Statement 

When it comes to modeling such a large system, for the purpose of construction, all 

the tools to do that are not very congruent with each other. In this work, we will be 

approaching this problem from a Systems Engineering point of view with the intention 

of being able to run a simulation using a Systems Modeling Language (SysML) tool 

known as No Magic Cameo Systems Modeler. The definition and execution of 

engineering models, some of which may simply be represented as black boxes through 

the use of SysML constraint blocks is of great interest in terms of practicing Model 

Based Systems Engineering [1].   

To do this, using the Functional Mock-up Interface (FMI) standard, the SysML 

model is integrated with a Modelica model, through an intermediate Simulink Model, 

in which the simulation runs. Finally, a tradeoff analysis is run through SysML, in 

Matlab, for the purpose of design space exploration to demonstrate that meaningful 

decisions can be carried out using this approach. In this case, the tradeoff is between 

the cost of the thermal insulation used in the construction of the house versus the heat-

load needed by the heat pump to maintain a constant indoor air temperature. 

1.3  Contribution of this Thesis 

The major contribution of this thesis is that different methods to perform an 

integration with SysML and a simulation tool were identified, described and evaluated. 

Then, a new method was developed and discussed. Finally, the new method was 

demonstrated. 
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This thesis work provides step by step instructions of the implementation of an 

Agile Model Based Systems Engineering approach through the usage of a SysML/ 

Model/ Simulation integration. This means that SysML was used to drive the models 

and simulations used in performance analyses and tradeoff analyses that are performed 

during system development [2].  

This was demonstrated by developing an executable SysML model of a two-room 

house that utilizes solar-thermal power for the purpose of space heating with a heat 

pump being used as a backup. Using the FMI 2.0 standard, a Modelica model of the 

house was integrated with the SysML model using Simulink as an intermediate 

interface, enabling users to perform a tradeoff analysis by varying design parameters 

through the SysML interface.  
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Chapter 2 

Background 

2.1  Need for MBSE in Today’s World. 

Model Based Systems Engineering (MBSE) is an engineering paradigm gaining 

traction towards inculcating a model-centric approach to engineering instead of the age-

old document-centric approach. As defined in the International Council on Systems 

Engineering (INCOSE) Systems Engineering Vision 2020, Model Based Systems 

Engineering is referred to as the “formalized application of modeling to support system 

requirements, design analysis, verification, and validation activities beginning with the 

conceptual design phase and continuing throughout development and later life cycle 

phases” [3].  

The MBSE approach encourages Systems Engineers to improve the precision and 

efficiency of their communication with other Systems Engineers as well as stakeholders 

through the usage of a common visual modeling language [4]. The most popular choice 

for this modeling language is the Object Management Group’s System Modeling 

Language, commonly known as OMG SysML.   

The need for MBSE is felt when clear communication is required between the 

system designers and various stakeholders across the Systems Development Life 

Cycle. MBSE is also able to capture and manage corporate intellectual property related 

to systems architectures, designs, and process [4]. Along with being able to provide a 

scalable structure, for problem solving, as well as being able to explore multiple 
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architectures with minimum risk, an MBSE approach also helps in catching errors early 

in the Development Life Cycle. Through all these functions, the MBSE approach is 

able to enhance system performance.   

In this work, in the spirit of MBSE, an attempt was successfully made to integrate 

Cameo Systems Modeler, an OMG SysML environment with an FMU, an output of 

Dymola, a Modelica based modeling and simulation engine. More about Cameo and 

Dymola and their usage in this thesis will discussed in Chapter 3. The main reasoning 

for following such an approach was based on the reasoning that integrated models 

reduce inconsistencies, enable automation and support early and continual verification 

by analysis. 
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Chapter 3 

Modeling Tools 

In Section 2.1, the need for the Model-Based Systems Engineering approach was 

discussed. As models obviously play a key role in MBSE, it is important for all the 

different modeling tools to work together in harmony in order to approach the modeling 

of this energy efficient house from a Systems Engineering standpoint. In this regard, 

the three tools that were used to create the executable model were Cameo Systems 

Modeler, Dymola and Simulink.    

3.1  Cameo Systems Modeler – SysML Environment  

No Magic Cameo Systems Modeler is a commercial cross-platform collaborative 

Model-Based Systems Engineering (MBSE) environment, which provides smart, 

robust, and intuitive tools to define, track, and visualize all aspects of systems in the 

most standard-compliant SysML models and diagrams [5]. For the purpose of this 

thesis, version 18.5 sp3 of Cameo Systems Modeler was used in a Windows 10 

environment.  

The reason Cameo Systems Modeler was the chosen SysML environment is 

because it is one of the two most widely used SysML Environments in the industry. 

The other most commonly used tool is IBM Rhapsody. In addition to that, the Systems 

Engineering courses at UMD were taught using Cameo Systems Modeler and it was 

also readily available for research purposes. 
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Systems Modeling Language or SysML is the modeling language most widely used 

by Systems Engineers. The main idea is that SysML is a standardized medium for 

communication; the rules defined in it give the model’s elements and relationships 

unambiguous meaning. The capability to construct and read well-formed models is at 

the heart of the MBSE approach [6]. It enables the visualization of the system’s design 

in the form of the four pillars of Systems Engineering, namely, the system structure, 

behavior, parametric relationships, and requirements. SysML is based off UML 

however, it has multiple additions to it like Internal Block Diagrams, Parametric 

Diagrams, and Requirement Diagrams [6].   

 

 

Figure 3.1: The SysML Diagram Taxonomy [7] 

3.2  Dymola – Modelica Environment  

Dymola is a commercial modeling and simulation tool that is based on the Modelica 

modeling language. It is capable of modeling integrated and complex systems from 

various domains like mechanical, electrical, control, and thermodynamics. It is known 

for its multi-engineering capabilities with compatible model libraries for many 
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different engineering fields. This allows for models of complete systems to be built that 

better represent the real world [8]. For the purpose of this thesis, Dymola was used as 

the modeling tool used to create the Functional Mock-up Unit (FMU) of the two-room 

house. FMUs will be discussed in the following section.  

Modelica, the modeling language used in Dymola, is a non-proprietary, object-

oriented, equation-based language to conveniently model complex physical systems 

[9]. The Modelica Standard library consists of over 1600 model components and 1350 

functions over many domains. The Modelica version used in this thesis was 3.2.2. Since 

it is an open-source language, there are a large number of third party libraries that are 

built using Modelica.  

In this thesis, the BuildingSystems Library v2.0.0 beta was extensively utilized for 

creating the model of the energy efficient house. This model will be extensively 

discussed in Section 5.3. The library can be found on the GitHub page at 

https://github.com/UdK-VPT/BuildingSystems. It was developed by a team in the 

Universität der Künste Berlin under the guidance of Dr. Christoph Nytsch-Geusen. 

The Modelica open-source BuildingSystems library is developed for dynamic 

simulation of the energetic behavior of single rooms, buildings and whole districts [10]. 

Using this library, modeling a living space and its HVAC system became possible. The 

library also allowed for the use of renewable energy systems to be included in the 

model.  
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3.3  Functional Mockup Interface 

A Functional Mock-up Unit (FMU) is a product of the Functional Mock-up 

Interface (FMI) standard. This standard is tool-independent that helps support model-

exchange and co-simulation of dynamic models using .xml files and compiled C code 

[11]. The first version, FMI 1.0, was published in 2010, followed by FMI 2.0 in July 

2014 [11]. For this thesis, the FMI 2.0 standard was utilized for the model exchange 

purpose. As mentioned in the standard documentation, the goal behind FMI for model 

exchange is that a modeling environment can generate C code of a dynamic system 

model that can be utilized by other modeling and simulation environments [12]. The 

model of interest is distributed in one zip file called FMU that contains several files 

like An XML file containing the definition of all exposed variables in the FMU and 

other static information; all needed model equations are provided with a small set of 

easy to use C functions; extraneous data is included in the FMU zip file, especially a 

model icon (bitmap file), documentation files, maps and tables needed by the FMU, 

and/or all object libraries or dynamic link libraries that are utilized [12]. 

3.4  Simulink/ Matlab 

Simulink, like Dymola, is commercial graphical modeling and simulation 

environment developed by Mathworks Inc., in conjunction with Matlab. It offers a 

close integration with Matlab environment and can either drive Matlab or be scripted 

from it. Simulink is widely used in automatic control and digital signal processing for 

multidomain simulation and Model-Based Design [13]. Although Simulink is capable 
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of modeling multi-domain systems too, for large systems with several hundred 

components, it is very cumbersome to do so. 

For the purpose of this thesis, Simulink wasn’t used for the purpose of simulating 

the model of the energy efficient house. Rather, it was merely used as a shell or an 

interface that imported an FMU from the Dymola Model. This Simulink shell model 

was then imported in Cameo Systems Modeler to create the executable model making 

use of the preexisting Cameo Systems Modeler-Matlab Integration. The details of how 

exactly this was performed can be found in Section 5.4 and Section 5.5.  
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Chapter 4 

Current Approaches to Creating an Executable Model  

4.1  OpenModelica – SysML Integration Using OMG Specification 

The first approach that was tried for creating the executable model was a Java based 

approach using an existing specification called the SysML – Modelica Transformation 

Specification Version 1.0 using No Magic Cameo Systems Modeler and 

OpenModelica, another Modelica based environment [14]. This method was 

introduced by the Object Management Group (OMG) in 2012 where the vision was to 

provide a bi-directional mapping between SysML and Modelica to leverage the benefits 

from both languages. By integrating SysML and Modelica, SysML’s strength in 

descriptive modeling can be combined with Modelica’s Differential Algebraic 

Equation (DAE) solving capability to support analyses and trade studies [14]. Using 

this approach, Cameo Systems Modeler users could use a plugin created by the Model 

Based Systems Engineering Center at Georgia Tech University to import and export 

Modelica models to SysML [15]. These plugins were named SysML4Modelica and 

Modelica4SysML.  

This seemed to be the ideal method to convert a Modelica Model into a SysML 

representation of it. This would enable an Internal Block Diagram (IBD) of the system 

to be created. Next, having developed the structural, behavioral and parametric 

diagrams, of the system, they could be linked to the parameters and linkages and other 

data items from the imported Modelica model, the next step would be to execute this 
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SysML model and have it run a simulation within SysML itself. Using this 

functionality, a tradeoff analysis could then be performed.  

So, to begin working on this method, the following steps were taken:  

1. Install OpenModelicaCompiler 1.9.3. 

2. Download and unzip the edu.gatech.mbsec.magicdraw.plugin.modelica2sysml. 

zip and edu.gatech.mbsec.magicdraw.plugin.sysml2modelica.zip files as 

folders.  

3. Place the unzipped folders in the plugins folder of your MagicDraw installation 

directory (C:\Program Files\Cameo Systems Modeler\plugins). 

4. Launch the MagicDraw application. 

5. Download ModelicaImportTest.mdzip.  

6. Download the associated SysML4Modelica profile, sysml4modelicaprofile. 

mdzip 

7. Import a Modelica model into the MagicDraw SysML project.  

a. Go on Data (right click)->Modelica to SysML->Import Modelica. 

Select the Modelica .mo file.  

b. The Modelica file imported for this example was a small Spring Mass 

Damper as shown in Figure 4.1.  
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Figure 4.1: Test Modelica File of Spring Mass Damper System 

At this stage, it should have been possible to automatically create the IBD. This 

could theoretically be done by selecting the Modelica class which contains connectors 

and then right click New Diagram and select a SysML Internal Block Diagram. Some 

manual refactoring would most likely still be necessary to make it look nice.  

However, this last step was not possible, as when the Modelica file was imported, 

instead of separating itself into its hierarchical structure, only a single block, sprdmp 

was created as shown in Figure 4.2.  
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Figure 4.2: Containment Tree from ModelicaImportTest.mdzip 

On opening the block and reading its specification, there was no indication of any 

other information from the Modelica model or any of its constituent blocks. There was 

also no mention of any ports, paths, values or properties listed in the specifications. In 

fact, there was no information at all and the specification was completely blank. In 

addition, there was no information about any of the equation, constraints or variables 

related to the Spring Mass Damper System. There was also an error pop-up that showed 

up when the Modelica Model was imported. This is shown in Figure 4.3. The unhandled 

errors were Java related as is visible from the figure. However, due to a lack of 

experience with Java, not much of an effort could be made in debugging the program 

and solving the problem.  
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Figure 4.3: Error Window Displaying Unhandled Java Error 

The reason for the failure of this method was speculated to be that the No Magic 

profile and the related plugins were developed sometime in 2012 with much older 

versions of Cameo Systems Modeler and OpenModelica. However, these examples 

were run using Cameo Systems Modeler v18.5 sp3. Since, previous versions of either 

of these software were not easily accessible with the requisite licensing, no further 

attempt was made to recreate this example and use it for the purpose of this thesis. 
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4.2  FMU Import into Cameo Systems Modeler Itself 

The latest No Magic Cameo Systems Modeler beta version has crude support for 

importing FMUs using the older FMI 1.0 standard for Co-Simulation [16]. The Cameo 

Simulation Toolkit in Cameo Systems Modeler is capable of reading FMU files which 

are imported into the model in the form of FMU Blocks with the stereotype of 

≪FMU≫. However, this functionality doesn’t allow for FMUs to be imported into the 

system for the Purpose of Model-Exchange.  

Also, for the purpose of the co-simulations, it was found that importing the FMU 

into Cameo didn’t allow for the change in the input parameters that resided in the FMU 

block, making it practically useless for the purpose of tradeoff analyses. The restriction 

of the design space exploration ruled out this method for creating an executable SysML 

model. However, in the future, it is very likely that No Magic will update the Cameo 

Systems Modeler to be able to read FMU using the later FMI 2.0 standard for the 

purpose of model exchange as well as co-simulation. If this thesis work should be 

recreated two more years from now, following this method could be a much better and 

more robust solution.   
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Chapter 5 

Executable Model Using SysML-Simulink-FMI Integration 

5.1  Overview and High-Level Description of the Integration Procedure 

In this section, the integration procedure will be defined. 

Cameo Systems Modeler is used to create systems architecture of the two-room 

house in SysML. Dymola is used to create a multi-domain Modelica model of the same 

two-room energy efficient house. This Modelica model contains all the internal 

equations, constraints and relations that govern the two-room house. It is also capable 

of accepting user defined input values to the design parameters of the systems, 

performing the calculations, and producing the output values for the system metrics. 

This Modelica model is then exported as FMU as shown in Figure 5.1. The FMU is 

just a “skeletal structure” of the Modelica model and needs to be run from a different 

modeling tool to be able to accept input values and then output the corresponding 

metric values. 
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Figure 5.1: Export of Modelica Model into the FMU 

Next, The FMU is imported into Simulink as shown in Figure 5.2. In this case, 

Simulink doesn’t add anything new to the model, but merely acts as a shell or an 

interface to the FMU. Simulink was chosen as the interface since Cameo Systems 

Modeler and Matlab/Simulink have an existing integration that could be exploited for 

this usage. 

 

Figure 5.2: Simulink as in Interface between the FMU and the  SysML Model 

Now, through the SysML Model of the two-room house, this Simulink model is 

called. User-defined design parameter values that were inputted into the SysML model 

are now sent to Simulink. With these values, Simulink will run the FMU, calculate the 

values of the output metrics and send them back to SysML to be displayed back to the 

user. This is shown in Figure 5.3.  

 
 

Figure 5.3: Interaction between the SysML Model and Simulink Model    
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5.2  SysML Model  

This section describes the SysML model of the two-room energy efficient house. 

The first step to creating the executable model is to build the SysML architecture of the 

system. A few components of the architecture of a two-room house will be covered in 

the following sections.  

5.2.1 Structure Diagrams 

The first structure diagram created was the System Domain Block Definition 

Diagram (BDD) as is shown in Figure 5.4. This BDD articulates the structure of the 

system’s domain, the system itself and its constituent elements. From the diagram it 

can be seen that the domain of the system comprises of the System, the Users and the 

Environment. The System itself is further comprised of the Heating system, the Indoor 

Environment and the Building Structure itself. Each of these subsystems are also 

broken down into their constituents. It is important to note that the Building Structure 

components are built using certain materials which are also shown as blocks in the 

Domain BDD. The operations of each component of the system as well as the values 

(variables) associated with each of the blocks should also be shown in a BDD. 

However, for the purpose of readability of the diagram, these details have been 

suppressed.  

Next, the Environment is also broken down into its subsystems namely, the 

Domestic Cold-Water Supply, the External Environment, and the Electricity Provider. 

Finally, the Users of the system are also shown in their own block.  
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The hierarchical structure of the Heat Pump System is shown in Figure 5.5. This 

BDD also shows the operations and values associated with each of the constituent 

blocks of the Heat Pump System. Similarly, the Solar Thermal System and all its 

associated constituents are displayed in Figure 5.6 below. The hierarchical structure of 

the Building Structure, all its components and constituent building materials are shown 

in Figure 5.7 
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Figure 5.5: Heat Pump System Block Definition Diagram  
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Figure 5.6: Solar Thermal System Block Definition Diagram 
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The next structure diagram, the Context Level Internal Block Diagram (IBD), 

shown in Figure 5.8, describes the internal structure of a single block, the Multizone 

Building System Domain. Since the Multizone Building System Domain comprises of 

the Multizone Building System itself and the Environment, this diagram also describes 

the connection between the system itself and the environment. The context level IBD 

also displays the interfaces and the various flows (energy and data) across connections 

among different parts and properties that form internal structure of the domain block. 

From the Context level IBD we see that the Environment and its constituent blocks 

supply electricity, ambient air temperature data, radiation and cold water to the system. 

The associated External Interface Diagram can be found in the Appendix in Figure A.1. 

 

Figure 5.8: Context Level IBD 

The System Level IBD shown in Figure 5.9 shows further detail of the interfaces 

and flows that are present within the system itself. The inputs into the system are solar 

irradiation, external air, electricity, ambient air temperature, and the user-set zone 

setpoint. The outputs of the system are exhaust air, the zone temperatures within the 

building, and the operative temperature within the building. As can be seen, all of the 
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inputs except the Ambient Air Temperature data feed into the Heating/ Cooling System 

which then, in turn, provides heat to the Indoor Environment as outputs and 

additionally, also outputs exhaust air. The Indoor Environment receives the Ambient 

Air Temperature data as well as heat from the Heating/ Cooling System and outputs the 

current Zone Temperature and Zone Operative Temperature to the system.  

 

Figure 5.9: System Level IBD 

In addition to the System Level IBD, a more detailed IBD of just the Heating 

Subsystem is shown in Figure 5.10. Since the process of heating a house and 

maintaining the specified Zone Temperature is a non-sequential and continuous 

process, this IBD serves better than an activity diagram would. This is because activity 

diagram is extremely useful to show a concrete chain of events that take place in a very 

specific order. However, for this system since most of the processes are taking place 
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concurrently, the system behavior is better described, showing in detail, the flow of 

information to and from each element contained within the system.  

The IBD below in Figure 5.10 describes the Heating System in which the Zone 

Temperature is supplied to the Thermostat, which in turn on comparing the Zone 

Temperature and Zone Setpoint, provides a Boolean actuator signal to the Two-Way 

Valve. The Two-Way Valve in turn regulate the amount of fluid flow through to the 

Radiator. The Radiator is supplied with warm water from two thermal loops. One is 

the Solar Thermal System which is the main source of thermal energy to heat the house. 

The other loop is the backup Heat Pump loop that is only used to support the Solar 

Thermal System on days when there isn’t enough solar thermal energy being provided 

to the house. The associated Internal Interface Diagram can be found in the Appendix 

in Figure A.2. 
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Figure 5.10: IBD of Heating System 

5.2.2 Parametric Diagram  

The diagram most important to creating the executable model is the SysML 

Parametric diagram. This diagram is used to express information about a system’s 
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constraints [17]. The constraints are in the form of mathematical models that determine 

the set of valid values within the running system.  

This Parametric Diagram allows the previously described Simulink model to be 

treated as a “black box” constraint within the Cameo Systems Modeler SysML Model. 

This is achieved by using a special plugin called ParaMagic, developed by InterCAX 

Inc.  

To create this parametric diagram, first all the factors and metrics have to be 

identified. For this model of the two-room energy efficient house, the metrics are shown 

in Table 5.1  

S 

No. 
System Metric Variable Name Units 

1.  
Variance of Indoor Air 

Temperature 
Var_TAir K2 

2.  
Heat Pump Heat-load Per 

Annum 
HeatPump_HeatLoad kWh 

3.  
Solar-thermal Heat-load 

Per Annum 
SolarThermal_HeatLoad kWh 

4.  
Cost of Electricity 

consumed Per Annum 
Cost_ElectricConsumption $ 

5.  Cost of Thermal Insulation Cost_Insulation $ 

Table 5.1: Table of System Metrics, Variable Names and Units 

Although there are several different factors that affect the indoor air temperature, 

only few factors were selected as the design parameters. These are the parameters that 

can be realistically altered in order to improve the values of the metrics. Each design 

parameter, its associated SysML variable name and its nominal value can be found in 
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Table 5.2. The design parameters chosen were the thickness of the wood-fiber 

insulation layers used in the construction of the outer wall, intermediate wall, and the 

ceiling, the surface area of windows, and the indoor temperature setpoint.  

S. 

No. 
Design Parameter Variable Name 

Nominal 

Value  

1.  
Outer wall  

Wood fiber insulation thickness 
OW_WoodFibIns 0.015 m 

2.  
Intermediate wall  

Wood fiber insulation thickness 
IW_WoodFibIns 0.1 m 

3.  
Ceiling 

Wood fiber insulation thickness 
C_WoodFibIns 0.255 m 

4.  Window Area Window_height 3.0 m2 

5.  Indoor Temperature Setpoint  Temp_Setpoint 20 °C  

Table 5.2: Table of Design Parameters, Variable Names and Nominal Values 

In addition to the design parameters, a number of design constants were also 

chosen. Setting certain values as design constants allowed for those parameters to be 

held constant for the purpose of the tradeoff analysis performed in this thesis work but 

at the same time it allows for those values to be changed in future works if required.  

The design constants chosen were the thicknesses of the other materials that make 

up the outer-wall, the intermediate wall and the ceiling of the house. Each design 

constant, its associated SysML variable name and its nominal value can be found in 

Table 5.3. 
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S 

No. 
 Design Constant Variable Name 

Nominal 

Value  

(m) 

1.  
O

u
te

r 
w

al
l 

m
at

er
ia

ls
 

Plasterboard thickness OW_Plasterboard 0.01 

2.  Brick thickness OW_Brick 0.24 

3.  High grade plaster thickness OW_HGplaster 0.02 

4.  
Reinforcement plaster 

thickness 
OW_ReinfPlaster1 0.005 

5.  
Reinforcement plaster 

thickness 
OW_ReinfPlaster2 0.005 

6.  

In
te

rm
ed

ia
te

 

w
al

l 

m
at

er
ia

ls
 

Plasterboard thickness IW_Plasterboard1 0.015 

7.  Plasterboard thickness IW_Plasterboard2 0.015 

8.  

C
ei

li
n
g
 

M
at

er
ia

ls
 

Plasterboard thickness C_Plasterboard 0.0125 

9.  Polyamide foil thickness C_PolyamideFoil 0.0005 

Table 5.3 Table of Design Constants, Variable Names and Nominal Values 

Having identified the factors, constants and metrics, a constraint block had to be 

first created in Cameo Systems Modeler [18]. This constraint was labeled TAir 

Variance and its specification window is shown in Figure 5.11. Next all the parameters 

as shown in the above table were inputted into the Constraint Block. The constraint 

inputted into the block was:  

Variance_TAir=xfwExternal(matlab,scriptascii, 

exec_script, 
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OW_Plasterboard, 

OW_Brick, 

OW_HGplaster, 

OW_ReinfPlaster1, 

OW_WoodFibIns, 

OW_ReinfPlaster2, 

IW_Plasterboard1, 

IW_WoodFibIns, 

IW_Plasterboard2, 

C_Plasterboard, 

C_PolyamideFoil, 

C_WoodFibIns, 

Window_width, 

Window_height, 

Temp_Setpoint)  

 

The xfwExternal function is used to call an external solver into parametric 

diagrams. The variable on the left side of the equal-to sign is the metric being solved 

for. The first three arguments of the xfwExternal function describe the solver being 

called, here Matlab; the type of element called, here an ascii script; and the name of the 

function or script [18]. The remaining arguments of the function are the design 

constants and design parameters that will affect the metric. The Matlab script named 

exec_script.m being called by this function will be discussed in a later section. It 

can be found in Section A.2 of the Appendix Section. 
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Figure 5.11: Constraint and Parameters in the Constraint1 Specification Window 

Following this, the parameters in the Constraint Block were linked to the value 

properties of each block from the System Block Definition Diagram using the 

Parametric Equation Wizard. This is demonstrated in Figure 5.12. This was one of the 

most crucial steps in creating the Parametric Diagram.  
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Figure 5.12: Linking Constraint Block parameter to Block values using the 

Parametric Equation Wizard. 

The same process is carried out for the next three Constraint Blocks named 

ElectricConsumption, HeatPump HeatLoad, and SolarThermal HeatLoad. As the 

names suggest, each of these constraints compute the electricity consumed by the 
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system, the total yearly heat load provided by the heat pump, and the total yearly heat 

load provided by the solar thermal system. All these constraints were then added to the 

main Parametric Diagram under the main System Block. This diagram is shown in 

Figure 5.13. The reason each constraint had to be added into its own constraint block 

is a limitation of the ParaMagic plugin that was used to run the simulation of the 

Modelica model. Also, the reason the metric from the first constraint block, 

Variance_TAir, is fed into the remaining constraints is a work-around that had to be 

implemented for each of the constraints to be solved in the order of left to right as 

shown in the parametric diagram. It should also be noted that the first constraint block 

would run the main simulation and take the longest time to solve. Every subsequent 

constraint block calls a separate Matlab script that loads the data obtained from solving 

the first constraint, processes it as required and presents the corresponding metric 

values. The aforementioned Matlab scripts can be found in Section A.2 of the Appendix 

Section. 

For readability purposes, Figure 5.13 has been cropped, showing the connection 

between the various system value properties and the constraint parameters in the 

constraint block. This cropped version is shown in Figure 5.14. The rest of the cropped 

pieces of the diagram can be found in Section A.1 of the Appendix Section.  
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Figure 5.14: SysML Parametric Diagram - Cropped 
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In addition to this parametric diagram, another parametric diagram was created at 

the domain level to show the relationship between the cost of electricity consumed by 

the system, the amount consumed and the unit price for electricity. This is demonstrated 

in Figure 5.15. This concludes the description of the SysML Model of the system.  

 

 

Figure 5.15: SysML Parametric Diagram Describing the Cost of Electricity 

Consumed by the System.  

5.3  Dymola Model of Two-Room Energy Efficient House 

5.3.1 Overview of Dymola Model 

The Dymola model of the two-room energy efficient house is shown below in 

Figure 5.16. This Dymola Model contains all the equations, constraints and relations 

pertaining to calculating the values of the system metrics for a given set of input 

parameter values. This main model is named SystemModel.  
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This model can be broadly categorized into 3 separate component clusters. These are 

the, Building model, the Ambient model and the House-Heating model. These 

components are highlighted in Figure 5.17. The Building block for this thesis was 

developed by the author using the BuildingTemplate template model class that can be 

found in the BuildingSystems Library at the path BuildingSystems.Buildings. 

BaseClasses.BuildingTemplate. The description of the process for creating the Building 

block can be found in Section 5.3.2. The Ambient block was instantiated by the author 

from BuildingSystems.Buildings.Ambient and configured as described in Section 5.3.3. 

Finally, the Home-Heating cluster of blocks was adapted from an existing example in 

the BuildingSystems Library from the path BuildingSystems.Applications. 

HeatingSystems.SolarHeatingSystem. This example can be found by downloading the 

BuildingSystems library from the GitHub page at https://github.com/UdK-

VPT/BuildingSystems and loading it into the Dymola environment and then navigating 

to the aforementioned path. The details of the changes made to the implantation of this 

example and its usage in the Dymola model of the system can be found in Section 5.3.4. 
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Figure 5.17: The Building block (top left), the Ambient block (top right),  

the House-Heating block cluster (bottom)   

5.3.2 The Building Block 

The Building block in the Dymola model was modeled as a simple cuboidal 

geometry separated into two symmetrical rooms with a length of 5 m, a depth of 5 m 

and a height of 3 m. Both these rooms are arranged side by side separated by an 

intermediate wall, thereby making the dimension of the entire house 10 m × 5 m × 3 
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m. with an internal air volume of 150 m3. A 3D mockup of the building is shown in 

Figure 5.18 below for illustrative purposes.  

 

 

Figure 5.18 3D Structure of the Building  

The building block contains two thermal zones blocks. One for each of the two 

rooms. These thermal zones were instantiated into the building model by dragging and 

dropping two component models from the class BuildingSystems.Buildings. 

Zones.ZoneTemplateAirvolumeMixed. Following this the construction elements like 

walls, ceiling and the floors were also created in the model by using the component 

from the class BuildingSystems.Buildings.Constructions.Walls. WallThermal1DNodes. 

The windows were added into the model from the class BuildingSystems.Buildings. 

Constructions.Windows.Window. The internal structure of the building block is shown 

in Figure 5.19.  
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Figure 5.19: Internal Structure of the Building Block in Dymola  

Each of these construction elements were configured by double clicking the 

element and defining the configuration parameters. These parameters are defined in 

Table 5.4. Each of the construction elements was also assigned a construction type. The 

construction type used for the outer-walls, intermediate walls, ceilings and floors for 

this house were OuterWallSingle2014, IntermediateWallSingle2014, RoofSingle2014, 

BasePlateSingle2014. Figure 5.20 shows the configuration data used for the 

construction element wall1.  
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Element angleAzi  angleTil Element angleAzi angleTil 

wall1 90.0 ° 90.0 ° bottom1 0.0 ° 180.0 ° 

wall2 180.0 ° 90.0 ° bottom2 0.0 ° 180.0 ° 

wall3 180.0 ° 90.0 ° ceiling1 0.0 ° 0.0 ° 

wall4 -90.0 ° 90.0 ° ceiling2 0.0 ° 0.0 ° 

wall5 0.0 ° 90.0 ° window1 0.0 ° 90.0 ° 

wall6 0.0 ° 90.0 ° window2 0.0 ° 90.0 ° 

wall7 -90.0 ° 90.0 °    

Table 5.4: Configuration data for Construction Elements 

 

Figure 5.20: Configuration data for Construction Element wall1 
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Next, a Temp_KOutput output, extended from BuildingSystems.Interfaces. 

Temp_KOutput, was instantiated in the building model and was named TOperative. 

This can also be seen in the Figure 5.16. Then, the TOperative port from each of the 

two zones was connected to the TOperative output of the building model. Effectively, 

this created an output port called TOperative on the building block in the SystemModel 

model. Similarly, another Temp_KOutput output, extended from BuildingSystems. 

Interfaces.Temp_KOutput, was instantiated in the SystemModel model and was named 

TOperative. The TOperative port from the building model icon was then connected to 

the TOperative output in the SystemModel model. 

Similarly, another Temp_KOutput output was also instantiated in the SystemModel 

model and named TAir. The TAir port from the building block icon in the SystemModel 

model was then connected to the TAir output in the SystemModel model.  

These steps were necessary in order to define the outputs of the entire Dymola 

model as it was exported as an FMI and instantiated in Simulink. It also provided an 

easy way to plot outputs when running the Dymola simulation of the model as the 

newly created outputs are on the highest level and can be located easily.  

5.3.3 The Ambient Block 

Now that the building block is setup, the ambient block will be setup next. Double 

clicking on the ambient block, brings up its configuration window as shown in Figure 

5.21. the parameter nSurfaces defines the number of building surfaces that are exposed 

to the ambient environment. The value for this parameter is derived from the parameter 

building.nSurfacesAmbient, which is also defines the number of building surfaces that 

are exposed to the ambient environment but from the building block’s point of view. 
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Next, the weather file used in for the weatherDataFile parameter is 

USA_SanFrancisco_weather.nc which is titled WeatherDataFile_USA_SanFrancisco. 

 

 

Figure 5.21: Configuration Data for Ambient Block 

Next, a Temp_KOutput output, extended from BuildingSystems.Interfaces. 

Temp_KOutput, was instantiated in the SystemModel model and was named TAirAmb. 

This can also be seen in the Figure 5.16. Then, the TAirAmb port from the Ambient 

model icon was then connected to the TAirAmb output in the SystemModel model. 
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5.3.4 The House Heating Block Cluster 

In the SystemModel, the rest of the blocks that support the heating of the model 

were adopted and modified from an example found in the BuildingSystems Library as 

extended from BuildingSystems.Applications.HeatingSystems.SolarHeatingSystem. 

This house-heating system simulates a solar thermal system which supplies a building 

with space heating. In the example a boiler is used to provide backup heating in case 

the solar system is unable to deliver the required amount of energy. However, in the 

model used for this thesis, the boiler was substituted by the air/water heat-pump. This 

was done in an effort to also use the heat-pump as an air cooler in the summer months. 

That way, the model would be able to simulate heating and cooling like most American 

houses across the country. However, using the same heat-pump in a reversible manner 

proved challenging due to the lack of documentation of the HeatPump block in the 

BuildingSystems Library documentation. Thus, it was decided that the heat-pump 

would be used only to provide heat in the winter months as a backup to the solar heating 

system. Implementing the HeatPump block instead of the boiler block in the example 

was not as straightforward as swapping one block out for the other. The HeatPump also 

required the addition of the new medium with which the heat exchange would take 

place. The additional heat-transfer medium was defined as Air: Moist air model. Two 

additional blocks had to be connected to the HeatPump block for it to function. First 

Boundary_pT, a block describing the boundary pressure and temperature of the air 

medium and second, m_flow_eva was also connected, specifying the flow source that 

produces a prescribed mass flow with temperature defined by the ambient condition as 

obtained from the Ambient block. 
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Although in the mentioned example, a building model and ambient model was 

already present, a new building and ambient model was developed as per the method 

described in Section 5.3.2 and Section 5.3.3 respectively, and those were used instead.   

5.3.5 Simulation of the Dymola Model 

Now that the model development was complete, the next step was to run the 

simulation of the Dymola model and once the model was verified to be working, the 

FMI would be generated next.  

To simulate the system, first a compiler had to be selected in the Dymola Simulation 

Setup window in the Complier tab as shown in Figure 5.22. For this work, Visual 

Studio 2013/ Visual C++ Express Edition (12.0) was used as the compiler. The Test 

Compiler button verified that the compiler was running in 32 bit, as well as 64 bit mode.  

 

Figure 5.22: Compiler Setting in Simulation Setup Window 
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After the compiler was selected, in the General tab of the Simulation Setup 

Window, the start time and stop time of the simulation had to be defined. The start time 

was defined as 0 d and the stop time was defined as 365 d, to simulate a whole calendar 

year starting from 01 January. Although the simulation actually uses seconds as a 

timestep, it was more convenient to input the start and stop time in the unit of days. 

The other settings were left to their default values. This process is shown in Figure 

5.23.  

 

 

Figure 5.23: General Tab Settings in Dymola Simulation Setup Window 
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5.3.6 FMU Generation 

At this stage, the Dymola model was ready, and the Functional Mock-up Unit 

(FMU) of the model was ready to be generated. To generate the FMU in Dymola, the 

Translate button in the Simulation Tab of Dymola was used as shown in Figure 5.24.  

 

Figure 5.24: Translate Button in Simulation Tab of Dymola [19] 

Following this, a dialog box appears to select the FMU Export settings as shown in 

Figure 5.25 and the following settings were selected. Since the FMU was going to be 

exported from Dymola and into Simulink, the model exchange type of FMU was 

selected. Clicking OK generated the FMU files in the chosen Dymola directory. This 

concludes the description of the Dymola Model for this thesis.   
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Figure 5.25: Export FMU Settings Window 

5.4  Simulink as an Intermediate Model 

5.4.1 Overview of Simulink Model 

To integrate the Dymola model with Cameo Systems Modeler, Simulink was 

required to be used as an intermediate model. This is because the Dymola model was 

unable to be linked with SysML model either directly or through the use of the FMI 

standard. Since Matlab does have an existing integration with Cameo Systems Modeler, 

the idea was to somehow import the Dymola Model into Simulink which would then 

be programmatically accessible to Cameo through a Matlab script. This meant that the 

Simulink model would just be an empty “shell” containing the full Dymola model 
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without any alteration to it. The only value it adds to the model is the ability to link 

with SysML by exploiting the existing Cameo-Matlab integration. 

5.4.2 Setup of FMI Kit in Simulink 

For importing the Dymola model into Simulink, a special block called the FMI 

block was required. This special block could be found in the FMI Kit for Simulink that 

is made available by Dassault Systems with Dymola. The FMI Kit enables embedding 

FMUs into Simulink [20]. It also has full support for both export and import of both 

versions, 1.0 and 2.0 of FMIs. FMI Kit for Simulink is located in the 

$Dymola_installation_folder/Mfiles/FMIKit_for_Simulink/ 

directory. To make the FMI Kit available in Matlab and Simulink the above directory 

and all its sub-folders had to be added to the Matlab path. In addition, the 

ds_fmikit_setup.m Matlab script had to be run every time an FMU would be 

imported into Simulink [20]. Thus, for the purpose of this thesis, this script was just 

added to the Matlab startup file, startup.m so that it would run every time Matlab 

started up.  

5.4.3 Creating the Simulink Model 

Now that the FMI Kit was set up for the Simulink, a new Simulink model was 

created and named exec_model.slx. To add an FMU block to this model, the 

following steps were taken.  

1. Open the Simulink library browser (View > Library Browser) and drag the 

FMU block from the FMI Kit library into the model. 
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2. Double-click the FMU block, select Load and choose the FMU of the two-

room, energy-efficient house, generated by Dymola 

3. Click OK. 

After following these steps, the model would look like Figure 5.26. 

 

Figure 5.26: FMU Block imported into Simulink and FMU loaded into it. 

 

Notice that the FMU block also has six outputs that correspond with the same six 

outputs from the Dymola model. In addition to these outputs, additional outputs can be 

created in the Simulink model using variables internal to the Dymola system by double 

clicking on the FMU block in the Simulink and navigating to the Outputs tab. This is 

demonstrated in the Figure 5.27.  
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Figure 5.27: Outputs tab FMU block configuration window allows for additional 

outputs to be monitored. 

Next, each of the output arrows in the model were connected to Bus Creator block 

from the Simulink Library browser. The Bus Creator block usually has only 2 inputs. 

So, allow the three outputs from the FMU block to the Bus Connector, double click on 

it and change the number of input signals to 3. Following, the output arrows were 

dragged from the FMU block and connected to the Bus Connector block. Next, a block 

called the Scope1 was added to the model and connected to the Bus Creator block. This 

would allow the first three outputs from the FMU Block to be plotted on a single graph. 
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Similarly, another Bus Creator and two more Scopes were set up for the other outputs. 

Finally, six Output Port blocks were added to the model from the Simulink Library 

browser as shown in Figure 5.28.  This concluded the building of the Simulink Model.  

 

Figure 5.28: Final Simulink Model 

5.4.4 Simulink Simulation Configuration 

The settings for the Simulink simulation were configured by accessing the Model 

Configuration Parameters window in Simulink. In the Commonly Used Parameters 

tab the start and stop time of the simulation were specified as 0 s and 365*24*60*60 s 

respectively to simulate the Dymola model over a 1-year period. Next in the Solver 

Options tab, the Fixed-step type was selected and the Solver was set to auto. In the 

additional options section, the fixed-step size was set to 3.5 s. The reason for setting 

this obscure value as the fixed time step was because the intention was to choose a large 
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enough step size that would not slow down the simulation too much. The intended step-

size was 30 s however, at this setting the Simulink simulation would always crash for 

an unknown reason. Thus, through hit and trial, 3.5 s was found to be the largest step 

size that Simulink would accept without crashing. In attempts to reduce the simulation 

time, the solver type was also changed to Variable-step however, this actually increased 

the simulation time by 2-3 times, so solver type was changed back to fixed-step with 

step size of 3.5 s. The Solver options used are shown in Figure 5.29.  

 

Figure 5.29: Simulink Solver Options 

Next, the data import and export settings are configured in the Data Import/Export 

tab of the Model Configuration Parameters window. The format was changed to 

Array to enable the three outputs of the Simulink model to be captured as an array 

yout in the Matlab workspace. The data import and export settings are shown in 

Figure 5.30.  
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Figure 5.30: Data Import and Export Settings 

After this, the Simulink simulation can be run just to verify that everything works. 

This concludes the description of the Simulink Model for this thesis. Just to reiterate, 

bereft of this Simulink “shell”, the Dymola model cannot be directly integrated to the 

Cameo SysML model using any current method. It is only required as an intermediate 

model.  

5.5  Integration Procedure 

Having concluded building the SysML model of the system, the actual process to 

integrate all three models to create one fully executable model will be discussed in this 

section. First, the internal mechanics of the integration will be explained and the 

procedure to actually perform it will follow. 
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5.5.1 Integration Mechanics and Matlab Script 

The way the integration works is that the user will input values for the design 

parameters in SysML in an “instance” of the model (Instances will be explained in 

detail below). These inputted values are then exported as a text file with the name 

input.txt by the SysML ParaMagic Plugin. The text file is then read by the Matlab script, 

assigning the inputted values to their corresponding variables and thereby inputting 

them into the Matlab workspace. This Matlab script then programmatically launches 

the Simulink model that was discussed earlier. Next, the script obtains the default 

parameters for the entire Simulink model from the FMU that resides in the Simulink 

model. Subsequently, these parameters are replaced with new parameters as specified 

in the input.txt file that is outputted by Cameo Systems Modeler. Following this step, 

using string manipulation methods, the old parameters string is edited to include the 

new parameters as mentioned by the input.txt file.  

This is done by first, converting the old parameters string, which is saved as a char 

to a string for the purpose of string manipulation. Then the string is split into a 

cell array and the relevant cells are edited. The cell array is then converted 

back to a string and then back into char and fed back into the Simulink model to 

simulate. 

Finally, the Simulink model is re-evaluated through the simulation and the metric 

is calculated over the period of the simulation time, in this case, one year. Lastly, the 

final value of the metric at the end of the simulation time is outputted from Matlab as 

a text file called output.exe. This file is then read by the ParaMagic Plugin in the SysML 
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model and the stored metric value is then displayed in SysML and updated into the 

SysML model.  

To conduct a trade study, several instances are created in SysML, each with a 

different set of input parameters. Based on the resulting values of the metric, a suitable 

set of design parameters can be chosen.  

5.5.2 Installing ParaMagic Plugin  

To install the ParaMagic Plugin, the following steps were performed from the 

Cameo Systems Modeler Interface.  

 

1. Install ParaMagic Plugin 

a. From the toolbar, Help > Resource/ Plugin Manager 

b. Expand the Plugins (Commercial) section 

c. Check the ParaMagic Box and Select Download/Install as shown in 

Figure 5.31 

i. With an evaluation license provided by the University of 

Maryland, this plugin will be accessible for 30 days. 

2. Load ParaMagic profile 

a. From the toolbar, File > Use project > Use Local Project as shown in 

Figure 5.32 

b. In the “paths to used projects” section, select <install.root>\profiles 

c. Select the ParaMagic Profile.mdzip from the dropdown menu. 

d. Click finish 
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Figure 5.31: Cameo Systems Modeler Resource/ Plugin Manager 

 

Figure 5.32: Loading ParaMagic Profile 
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5.5.3 Creating an Instance  

Having created the SysML structure and Parametric Diagram, the next step was to 

create an instance of the system and then use the ParaMagic Plugin to solve the instance 

to solve for the metric. An instance is an example of the model with specific values 

assigned to the given parameters and which can be solved for the unknowns [21].  

However, in order to create an instance, first the model had to be “validated”. It is 

important to note that in this context, the validation of the model has nothing to the do 

with the Systems Engineering technical process of Verification and Validation. This 

validation simply means that the model was checked for consistency and screened for 

syntax errors and other minor errors. To validate the model, the root block, in this case, 

Multizone Building System has to be right clicked and then under the ParaMagic tab, 

the Validate button has to be clicked. This is demonstrated in Figure 5.33.  

 

Figure 5.33 Validating System Model 
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This validation uncovered several minor errors in the model that needed to be 

resolved before proceeding. However, to aid in the localization of the errors, it is 

suggested that each block contained within the main root block be validated. This 

permits the user to resolve all lower level errors which will subsequently allow the main 

root block to be validated.  

Next, an instance of the system was created using the Automatic Instantiation 

Wizard. This was performed by: 

 

1. Right clicking on the root block, Multizone Building System 

2. Navigate to Tools > Create Instance 

3. Select all the part of the model that need to be instantiated as shown in Figure 

5.34. In this case, all the value properties associated with the design parameters 

and their parent blocks need to be selected. In addition, the metric, Indoor Air 

Temperature and its parent block were also selected.  
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Figure 5.34: Selecting Parts in the Automatic Instantiation Wizard 

4. Click Next 

5. Create a Package under the root folder and name it Instances.  

a. Create a new package called Instance01 under Instances (shown in 

Figure 5.35).  
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Figure 5.35: Creating Packages for the Instance 

6. Click Next 

7. Create the instance BDD under the package that was just created and name it 

Instance01 BDD (shown in Figure 5.36) 

 

Figure 5.36: Creating the Instance BDD 

8. Click Finish 

Following these steps resulted in the creation of the instance as shown in Figure 

5.37, Figure 5.38 Figure 5.39, and Figure 5.40. For the sake of readability, the actual 

Instance BDD has been cropped into the four aforementioned figures. In the figures, it 

can be seen that a large set of nested blocks are created. Each of these nested blocks 



 

 

65 

 

are an instance of that block from the system model. Most of the instances will also 

have a default value of 0 associated with its value type. Each of the design parameters 

and constants then had their value manually set to their nominal value as described in 

Table 5.2 and Table 5.3 respectively. Since the value of the other value properties are 

not known, they can be left as 0 since, they are not explicitly a part of the main 

constraint equations.  

 

Figure 5.37: Instance of the System Model – 1   



 

 

66 

 

 

Figure 5.38: Instance of the System Model – 2 
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Figure 5.39: Instance of the System Model – 3 
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Figure 5.40: Instance of the System Model – 4 

5.5.4 Solving the Instance 

Finally, the instance was solved using the ParaMagic Plugin. To do this, the 

following steps were performed. 

 



 

 

69 

 

1. Right click on the Instance in the containment tree.  

2. Navigate to the ParaMagic Button and click on Browse. This will launch the 

ParaMagic Browser. 

3. Expand all the tabs to reveal the design parameters and their respective values. 

Notice that their causality should be set to given. 

4. Set the causality of the metric, Indoor Air Temperature to target. The Browser 

should now look as shown in Figure 5.41.  

 

Figure 5.41: ParaMagic Browser 
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5. Click on Solve.  

Following these instructions will cause Cameo to launch Matlab, and then launch 

the Simulink Model. The Simulink model will run and finally output 3 graphs as shown 

in Figure 5.42, Figure 5.43 and Figure 5.44. Finally, the ParaMagic Browser will update 

with the calculated value of the target parameter. This can then be updated in the 

SysML model clicking on the “Update to SysML” button. This concludes the 

Executable Model building process.  

 

 

Figure 5.42: Plot of Indoor Air Temperature vs. Time  
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Figure 5.43: Plot of Solar Thermal and Heat Pump Heat Load vs. Time  

 

Figure 5.44: Plot of Electricity Consumption vs. Time  
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Chapter 6 

Multi-Objective Trade-Off Analysis 

6.1  Overview   

In the previous section, creating a single Instance of the system model was 

discussed using a single set of design parameters. However, to be able to perform a 

meaningful trade-off analysis, several such instances need to be simulated and the 

results compared using multi-objective optimization techniques in order to satisfy the 

objective function. 

Consol Optcad is one such multi-criteria optimization tool that uses a Feasible 

Sequential Quadratic Programming (FSQP) algorithm that would be best suited for a 

project like this [22]. The biggest advantage of this tool is its ability to change the 

parameters during the simulation in order to satisfy the constraints of the objective 

function, after having provided an initial parameter set. Another major benefit of such 

a tool is its ability to handle non-linear objective functions. Dimitrios Spyropoulos was 

able to utilize this tool in his thesis work to perform a multi-objective tradeoff analysis 

for an electric micro-grid system [23]. Despite making continued efforts to recreate 

Spyropoulos’s work to integrate Consol Optcad with SysML for performing the trade-

off analysis in this project, it couldn’t be performed for a variety of reasons. Mainly 

because of a lack of comprehensive documentation of the integration procedure as well 

as a lack of time, resources and expertise to perform the integration from the beginning. 
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Yet, to demonstrate the power of the method, the trade-off analysis was performed in 

Matlab.  

6.2  Pareto Frontier Analysis 

For this system, since there are multiple conflicting metrics that define the quality 

of the system, a multi-objective trade-off analysis needs to be conducted in order to 

satisfy the objective function. One method of doing this analysis in by performing a 

Pareto Frontier Analysis. Taking various configurations of the design parameters of the 

system and performing a Pareto Frontier Analysis would provide a set of Pareto 

Optimal points that form the frontier and also demarcate the dominated region in the 

feasible solution set.  

The first step to performing this analysis was to select discrete values of the 

previously defined design parameters and creating all possible configurations of them. 

Thus three levels of discrete values were chosen from the design parameters as shown 

in Table 6.1. The nominal values for all the parameters except window area correspond 

to the low values in the table. The nominal value for the Window Area was actually 3 

m2, thus corresponding with the high value as shown in the table. 
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 Outer wall  

Wood fiber 

insulation 

thickness  

Intermediate 

wall Wood 

fiber 

insulation 

thickness 

Ceiling 

Wood fiber 

insulation 

thickness 

Window 

Area  

Indoor 

Temperature 

Setpoint  

 

Low 0.16 m 0.1 m 0.255 m 1 m2 20 °C 

Medium 0.24 m 0.2 m 0.3825 m 2 m2 21 °C 

High 0.32 m 0.3 m 0.510 m 3 m2 22 °C 

Table 6.1: Table of 5 Design Parameters and Discrete Value Levels 

 

Having five metrics with three levels of values each would yield 35 = 243 different 

configurations for which the associated metric values would have to be computed. 

Running a test simulation with one of these configuration sets showed that this would 

be very time prohibitive on the machine on which it was being run, taking into account 

its meager capability specifications. Thus, to cut down on the number of the 

configurations, it was decided that the Intermediate Wall Wood Fiber Insulation 

Thickness was not as important as the other design parameters since it was internal to 

the house and wouldn’t affect the metrics to a large extent. Thus, this parameter was 

cut from the list, leaving us with a new configuration table of 4 design parameters with 

three discrete levels each.  This table is shown in Table 6.2. This amounted to 34 = 81 

design configurations.  

  



 

 

75 

 

 

Outer wall  

Wood fiber 

insulation thickness 

Ceiling Wood 

fiber insulation 

thickness 

Window 

Area 

Indoor 

Temperature 

Setpoint 

Low 0.16 m 0.255 m 1 m2 20 °C 

Medium 0.24 m 0.3825 m 2 m2 21 °C 

High 0.32 m 0.510 m 3 m2 22 °C 

Table 6.2: Table of 4 Design Parameters and Discrete Value Levels 

 

6.2.1 Solving the Design Configurations 

To solve the design configurations and find the value for each metric for every 

configuration, a simple automation tool in the Cameo Systems Modeler ParaMagic 

Plugin was used. This feature is called the ParaMagic Trade Study. ParaMagic uses the 

Excel Connection feature to set up the different initial parameter sets or “scenarios” as 

rows in a spreadsheet. Parameter sets are automatically read, the model is repeatedly 

executed, and output values written back to the spreadsheet [24].  

6.2.2 Results of Pareto Frontier Analysis 

Now that the each metric value was calculated for all the design configurations, a 

Pareto Frontier Analysis could be performed on the data. This was done by executing 

a fairly straightforward Pareto Frontier subroutine in Matlab. This Matlab script can be 

found in Section A.3.1 of the Appendix Section.  

The objective function used in the Matlab script was supposed to minimize four of 

the metrics and maximize one. This is summarized in Table 6.3. The Variance of Indoor 

Air Temperature was minimized since it is desired for the indoor temperature to stay 

as close to the user-defined setpoint as possible, thereby making this a classic regulation 
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problem. Next, the Heat Pump Heat-load Per Annum was minimized to ensure that the 

heat pump isn’t being used more than necessary. Since it was very electricity intensive 

to run and was designed to be a backup to the solar system, minimizing the amount of 

heating produced by the heat pump was a desirable trait. It was also desired that the 

heating provided by the solar thermal system be maximized, so the Solar-thermal Heat-

load Per Annum metric was maximized. The Cost of Electricity consumed Per Annum 

metric was also minimized in order to reduce the operating cost of the system. Finally, 

the Cost of the Thermal Insulation used in the building construction was also minimized 

in order to keep the first costs of constructing the house low.  

S 

No. 
System Metric Units Minimize or Maximize 

1.  
Variance of Indoor Air 

Temperature 
K2 Minimize 

2.  
Heat Pump Heat-load 

Per Annum 
kWh Minimize 

3.  
Solar-thermal Heat-

load Per Annum 
kWh Maximize 

4.  
Cost of Electricity 

consumed Per Annum 
$ Minimize 

5.  
Cost of Thermal 

Insulation 
$ Minimize 

Table 6.3: Table of 5 System Metrics and Associated Optimization Actions 

 

This script yielded that all 81 possible configurations were Pareto Optimal points. 

This was a much unexpected result and created cause for doubting the correctness of 

the analysis performed in the Matlab script. However, the script was verified to be 

correct and was retested with several other examples outputting correct results. This 
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meant that the analysis was indeed correct and all the possible configuration were 

Pareto Optimal Solutions. 

The only reason that could lead to such a result was that there were very few data 

points for the number of metrics being analyzed. Since obtaining more data points was 

time-prohibitive, it was decided that since some metrics were dependent on others, their 

removal from the objective function should not be of much significance to the 

optimization problem. So the metric, Solar-Thermal Heat-load per annum was 

eliminated since maximizing it meant that the Heat Pump Heat-Load would be 

minimized. This is because of the total heat load required to keep the house warm is 

algebraic sum of the Solar-Thermal Heat-Load and the Heat Pump Heat Load. The 

other metric eliminated from the list was the Cost of Electricity consumed Per Annum. 

This is because, in the simplistic Dymola model of the house, the only appliance that 

consumed any electricity was the heat pump itself. Thus, minimizing the Heat Pump 

Heat-Load was essentially equivalent to minimizing the electricity consumption of the 

house.  

Thus, the updated metrics that would be a part of the objective function in the Pareto 

Frontier Analysis are shown in Table 6.4 

S 

No. 
System Metric Units Minimize or Maximize 

1.  
Variance of Indoor Air 

Temperature 
K2 Minimize 

2.  
Heat Pump Heat-load 

Per Annum 
kWh Minimize 

3.  
Cost of Thermal 

Insulation 
$ Minimize 

Table 6.4: Table of 3 System Metrics and Associated Optimization Actions 
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Thus, solving the simulation for the aforementioned metrics yielded the following 

results as tabulated in Appendix Section A.3.2. The highlighted rows are the Pareto 

Points. The Pareto Analysis using these three metrics yielded 46 Pareto Optimal points 

as shown in Figure 6.1.   

 

 

Figure 6.1: Pareto Optimal Solutions 

 If the above 3D plot is rotated as shown in Figure 6.2, a very clear Pareto Frontier 

Surface can be seen. Also, an interesting clustering of the various configurations is 

observed. 
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Figure 6.2: Pareto Optimal Solutions – Tilted View 

However, out of 81 possible design configuration points, having 46 Pareto Optimal 

points isn’t very helpful from a trade-off analysis point of view. This is because, if such 

a problem is presented to customer, he should have to choose from a set of 46 Pareto 

Points. Thus, some pruning of the Pareto Points was required to reduce the number of 

the choices to be presented. The first method of reducing the number of Pareto Optimals 

was simply by trimming the extreme values in all three dimensions. Since all three of 

the metrics have to be minimized, the numerically higher values of each metric could 

be deleted. Thus, any Pareto Point in the top 60% of the values of the Variance of the 
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Indoor Temperature, or the top 60% of the values of the Heat Pump Heat-Load, or the 

top 85% of the Cost of Insulation was eliminated. This reduced the Pareto Points from 

46 to only 12 as shown in Figure 6.3.  

 

Figure 6.3: Pareto Optimal Solutions After First Elimination 

  

The next level of thinning down the Pareto Points was by finding points very close 

to each other in clusters and picking only one from each cluster to represent the whole 

cluster as a single design configuration. To aid in this, each of the remaining Pareto 

Points was assigned an ID consistent with the design configurations that produced them 

from the table in Appendix Section A.3.2. From the 27-45-63 cluster, point # 45 was a 
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midpoint of amongst the three points in terms of all the three metrics. Thus point # 27 

and # 63 were eliminated and # 45 was retained. From the 18-36 group, point # 18 was 

eliminated as it had a significantly higher value for the heat-load for roughly the same 

cost of insulation and variance of temperature. In a similar method, points # 72, #52, 

and #61 were also eliminated, leaving us with 6 Pareto Points as shown in Figure 6.4.  

 

Figure 6.4: Pareto Optimal Solutions After Second Elimination 

From these last six points, point # 70 and # 54 were the last to be eliminated as they 

provided a very small increment in the reduction of the heat-load and variance of indoor 
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temperature in comparison to point # 43 and # 45 respectively while costing close to 

$1200 more. Thus, having eliminated these 2 points, the final 4 points and their 

respective design configurations and metric values are shown in Table 6.5. Points # 9, 

# 36 and # 43 provide a good spread between the three metrics. Each of these points 

favors a particular metric and is a fair representation of the possible choices a customer 

would want to make based on the customer’s preferences. Point # 9 could be chosen if 

the customer wants to spend the least amount of money on the thermal insulation of the 

house. Point # 36 could be chosen if the customers prioritizes the minimization of the 

heat-load, and point # 43 could be chosen if the customer wants to have the least 

variance in the indoor temperature, thereby prioritizing comfort. Lastly, point # 45 is a 

potential choice if the customer wants to minimize the heat-load and variance of indoor 

temperature, while willing to pay a significantly higher upfront cost for the extra 

thermal insulation. An interesting point to make note of is that for all four of these 

points, the Window Area is 1 m2, smallest window area value from the discrete values 

chosen.  

 Parameters Metrics 

ID 
OW 

Insulation 

C 

Insulation 

Window 

Area 

Temp 

Setpoint 

Variance 

in TAir 

Heat pump 

Heat load 

Cost of 

Insulation 

9 0.16 m 0.255 m 1 m2 20 ° 0.041 K2 108.18 kWh $ 4727 

36 0.24 m 0.255 m 1 m2 20 ° 0.042 K2 90.76 kWh $ 5915 

43 0.24 m 0.3825 m 1 m2 21 ° 0.018 K2 117.31 kWh $ 6967 

45 0.24 m 0.3825 m 1 m2 20 ° 0.037 K2 83.91 kWh $ 6967 

Table 6.5: Table of Finalized Design Options and Associated Parameter and Metric 

Values 
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Chapter 7 

Conclusions and Future Work 

7.1  Summary of Thesis Work Performed  

In conclusion, the major contribution of this thesis was that different methods to 

perform an integration with SysML and a simulation tool were identified, described 

and evaluated. Then, a new method was developed and discussed. Finally, the new 

method was demonstrated by developing an executable SysML model of a two-room 

house that utilizes solar-thermal power for the purpose of space heating with a heat 

pump being used as a backup. Using the FMI 2.0 standard, a Modelica model of the 

house was integrated with the SysML model using Simulink as an intermediate 

interface, enabling users to perform a tradeoff analysis by varying design parameters 

through the SysML interface. 

Cameo Systems Modeler is used to create systems architecture of the two-room 

house in SysML. Dymola is used to create a multi-domain Modelica model of the same 

two-room energy efficient house. The Modelica model is then exported as FMU. The 

FMU is just a “skeletal structure” of the Modelica model. 

Next, The FMU was imported into Simulink. Simulink didn’t add anything new to 

the model, but merely acts as a shell or an interface to the FMU. Simulink was chosen 

as this interface since Cameo Systems Modeler and Matlab/Simulink have an existing 

integration that could be exploited for this usage. 
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User-defined design parameter values that were inputted into the SysML model 

were sent to Simulink. With these values, Simulink ran the FMU, calculated the values 

of the output metrics sent them back to SysML to be displayed back to the user. 

After the completion of the integration procedure of the SysML architecture with 

the FMU model of the two-room house, a multi-objective trade-off analysis was 

conducted. A Pareto Analysis was performed to identify the Pareto Frontier. 

Considering the initially discussed five metrics, all 81 design configurations turned out 

to be Pareto Points. Thus, the five metrics were cut down to three thereby yielding 46 

Pareto points. Using various methods, these Pareto Points were trimmed down to 4 

points that provided a good spread between the three metrics. Each of these points 

favored a particular metric that could be representative of a potential customer’s 

preferences.  

7.2  Evaluation of Integration Framework and Future Work 

Although the integration of SysML with a modeling and simulation tool for the 

purpose reducing inconsistencies, enabling automation and supporting early and 

continual verification by analysis, was successful, the method of integration has a large 

scope for improvement. Since there was no way to simulate the FMU in Cameo 

Systems Modeler itself, the usage of Simulink as an intermediate model between 

SysML and the FMU caused the overall procedure to be fairly “clunky”. This was very 

evident in the part where string manipulations to replace the default values for the 

design parameters, embedded in the FMU, with the new input parameters specified by 

the user in SysML, had to be performed in the Matlab script responsible for calling the 
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Simulink model. If no changes are made to the FMU for any part of this integration, 

the string manipulations would not pose any problems. However, even if a single 

change is made to the FMU through Dymola, the string manipulations would have to 

performed again to ensure that the right design parameter inputted by the user is 

mapped to the right variable residing in the FMU. 

Next, the ParaMagic plugin that even made this integration possible in the first 

place also proves to be a bottleneck to its capabilities in some instances. The major 

drawback of this tool is observed when any constrain block in the SysML architecture 

calls a Matlab function or script to evaluate a system metric value. Although the Matlab 

script is capable to calculate multiple metric values in the same script, only a single 

metric value could be outputted back into the SysML model to be displayed to the user. 

Hence, for different system metrics to be computed by a single Matlab script, the same 

script had to be solved repeatedly, each outputting the value of a different metric. In 

this thesis, this issue was overcome by setting the first Matlab script as the main 

calculation module and setting the subsequent Matlab scripts to just pull the calculated 

values of different system metrics from the first Matlab script. However, it was still a 

major drawback of the ParaMagic tool and a cause for inefficiency in the integration 

procedure.  

As for finding a better integration technique in the future, the FMU import Cameo 

Systems Modeler described in Section 4.2 of this thesis shows the most promise. This 

method is still in development and if successfully completed, will eliminate the need 

to use an intermediate modeling tool like SysML to execute FMUs. The Model-

Exchange enabled FMU could be directly imported into the SysML architecture of any 
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system and could interact with the rest of the system architecture in a streamlined 

manner.  

Another area worth exploring is the recreation of the OMG SysML-Modelica 

Transformation Specification mention in Section 4.1. For seemingly unknown reasons, 

this OMG standard is not compatible with the latest versions of Cameo Systems 

Modeler or Dymola. It would be of great value if the transformation was brought back 

to life, allowing for Modelica models to be transformed into SysML constructs. This 

method would in-fact eliminate the need for the FMU block altogether as the Modelica 

model would itself transform into SysML artifacts preserving all the data, equations, 

constraints and connections that are part of the Modelica model. However, this would 

only be most useful to those who are only working with SysML and Modelica as this 

method doesn’t help with the integration of other modeling tools.  
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Appendices 

A.1 Additional SysML Model Diagrams  

 
Figure A.1: External Interface BDD 

 
Figure A.2: Internal Interface BDD 
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Figure A.3: Parametric Diagram – Constraint 2  
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Figure A.4: Parametric Diagram – Constraint 3 
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Figure A.5: Parametric Diagram – Constraint 3 
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A.2 Matlab Scripts used in the SysML Model of the Two-Room House  

A.2.1 Constraint Block Matlab Script (exec_script.m) 

%% Executable script 

% This script is run through MagicDraw Cameo Systems Modeler. It 

% essentially calls the simulink model for the Energy Efficient Home system 

% which is being modelled in SysML in Cameo Systems Modeler. 

  

clear  

clc 

  

%% Inputs into Simulink 

  

% The following inputs are generated by Paramagic and stored in a text file 

% called "input.txt" in the project directory. It contains the inputs to 

% the constraints as mentioned in the constraint block in the SysML model 

% in the order that is stated in the "xfwExternal" function. 

  

  

% In this case is the inputs into the constraint equations are: 

% pos = xfwExternal(matlab, scriptascii, exec_script, OW_Plasterboard, 

% OW_Brick, OW_HGplaster, OW_ReinfPlaster1, OW_WoodFibIns, 

% OW_ReinfPlaster2, IW_Plasterboard1, IW_WoodFibIns, OW_ReinfPlaster2, 

% IW_Plasterboard1, IW_WoodFibIns, IW_Plasterboard2, C_Plasterboard, 

% C_PolyamideFoil, C_WoodFibIns, Window_width, Window_height) 

  

  

% OW_Plasterboard   = Thickness of Outer wall Plasterboard 1 

% OW_Brick          = Thickness of Outer wall Brick 

% OW_HGplaster      = Thickness of Outer wall High grade plaster 

% OW_ReinfPlaster1  = Thickness of Outer wall Reinforced plaster 

% OW_WoodFibIns     = Thickness of Outer wall Wood Fiber Insulation 

% OW_ReinfPlaster2  = Thickness of Outer wall Plasterboard 2 

%  

% IW_Plasterboard1  = Thickness of Intermediate wall Plasterboard 1 

% IW_WoodFibIns     = Thickness of Intermediate wall Wood Fiber Insulation 

% IW_Plasterboard2  = Thickness of Intermediate wall Plasterboard 2 

%  

% C_Plasterboard    = Thickness of Ceiling Plasterboard  

% C_PolyamideFoil   = Thickness of Ceiling Polyamide Foil 

% C_WoodFibIns      = Thickness of Ceiling Wood FIber Insulation 

%  

% Window_width      = Width of window 

% Window_height     = Height of Window 

%  

% Temp_Setpoint 

  

% These values are stored in the Matlab workspace and will be called by the 

% Simulink model which will also be launched subsequently in this script.  

  

inSel= load('input.txt'); 

  

OW_Plasterboard   = inSel(1); 

OW_Brick          = inSel(2); 

OW_HGplaster      = inSel(3); 

OW_ReinfPlaster1  = inSel(4); 

OW_WoodFibIns     = inSel(5); 

OW_ReinfPlaster2  = inSel(6); 
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IW_Plasterboard1  = inSel(7); 

IW_WoodFibIns     = inSel(8); 

IW_Plasterboard2  = inSel(9); 

  

C_Plasterboard    = inSel(10); 

C_PolyamideFoil   = inSel(11); 

C_WoodFibIns      = inSel(12); 

  

Window_width      = inSel(13); 

Window_height     = inSel(14); 

  

Temp_Setpoint     = inSel(15); 

  

  

%% Open the Simulink Model  

% The following commands launch the simulink model that you want to 

% integrate as the "black box" constraint block in SysML Cameo. 

  

mdl='exec_model'; 

open_system(mdl); 

open_system([mdl '/Scope1']); 

open_system([mdl '/Scope2']); 

open_system([mdl '/Scope3']); 

  

%% Obtain the default parameters 

% This function obtains the default parameters for the entire model from 

% the FMU that are now stored in the Simulink model. Subsequently, these 

% parameters will be replaced with new parameters as specified in the 

% input.txt file that is outputted by Cameo Systems Modeler. 

  

old_param = get_param('exec_model/executable_fmu','parameters'); 

  

%% String Manipulation 

% In this section, using string manipulation methods, the old paramter 

% string will be edited to include the new parameters as mentioned by the 

% input.txt file.  

%  

% First, we convert char to string for the purpose of string 

% manipulation. Then the string is split into a cell array and the relevant 

% cells are edited. The Cell array is then converted back to a string and 

% then chars and fed back into the Simulink model to simulate. 

old_param_str = string(old_param) 

  

C = strsplit(old_param_str); 

  

  

%% 

% Outer Wall Construction Data Parameters - Reassignment 

[C(1495), C(1527), C(1559), C(1591), C(1622), C(1653)] = 

deal(OW_Plasterboard); 

[C(1496), C(1528), C(1560), C(1592), C(1623), C(1654)] = deal(OW_Brick); 

[C(1497), C(1529), C(1561), C(1593), C(1624), C(1655)] = deal(OW_HGplaster); 

[C(1498), C(1530), C(1562), C(1594), C(1625), C(1656)] = 

deal(OW_ReinfPlaster1); 

[C(1499), C(1531), C(1563), C(1595), C(1626), C(1657)] = 

deal(OW_WoodFibIns); 

[C(1500), C(1532), C(1564), C(1596), C(1627), C(1658)] = 

deal(OW_ReinfPlaster2); 

  

% Intermediate Wall Construction Data Parameters - Reassignment 

C(1469) = IW_Plasterboard1; 

C(1470) = IW_WoodFibIns; 



 

 

94 

 

C(1470) = IW_Plasterboard2; 

  

% Ceiling Construction Data Parameters - Reassignment 

[C(1685), C(1711)] = deal(C_Plasterboard); 

[C(1686), C(1712)] = deal(C_PolyamideFoil); 

[C(1687), C(1713)] = deal(C_WoodFibIns); 

  

% Window Parameters - Reassignment 

[C(1774), C(1789)] = deal(Window_width); 

[C(1775), C(1790)] = deal(Window_height); 

  

% Temperature Setpoint (should be in Kelvin) 

C(1894) = Temp_Setpoint + 273.15; 

  

  

% % C(33) = strcat(num2str(k),']'); 

  

new_param_str = strjoin(C); 

  

new_param_char = char(new_param_str) 

  

set_param('exec_model/executable_fmu','parameters' ,new_param_char); 

  

set_param(mdl,'SimulationCommand','Update') 

  

%% Run simulation within Simulink  

  

% This command runs the simulation from within simulink and then goes on 

% the plot the results as shown in the Scope Block called "Scope". 

  

evalc('sim(mdl)'); 

  

%% Output ascii text file for SysML to read.  

  

% These commands output the values of the LHS part of the constraint 

% equation in SysML into a text file called "output.txt". This text file is 

% then read by the Paramagic plugin in Cameo, which subsequently takes the 

% data and prints as the values that you have set as a "target" in the 

% Paramagic browser.   

  

% output = yout(size(yout,1),1); 

  

TAir = yout(:,1); 

logical_count = TAir > 294; 

Var_TAir = var(TAir); 

  

% SolarThermal_HeatFlow = yout(:,4); 

% SolarThermal_HeatLoad = trapz(SolarThermal_HeatFlow)/(1000*60*60); 

  

save('yout_datafile.mat','yout') 

save('output.txt','Var_TAir','-ASCII'); 

bdclose 

exit 
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A.2.2 Constraint Block Matlab Script (heatpump_eleccon.m) 

clear 

clc 

  

load('yout_datafile') 

  

HeatPump_ElectricConsumption_flow = yout(:,6); 

HeatPump_ElectricConsumption = 

trapz(HeatPump_ElectricConsumption_flow)/(1000*60*60); 

  

save('output.txt','HeatPump_ElectricConsumption','-ASCII'); 

exit 

 

A.2.3 Constraint Block Matlab Script (heatpump_heatload.m) 

 
clear 

clc 

  

load('yout_datafile') 

  

HeatPump_HeatFlow = yout(:,5); 

HeatPump_HeatLoad = trapz(HeatPump_HeatFlow)/(1000*60*60); 

  

save('output.txt','HeatPump_HeatLoad','-ASCII'); 

exit 

  

A.2.4 Constraint Block Matlab Script (solar_heatload.m) 

 
clear 

clc 

  

load('yout_datafile') 

  

SolarThermal_HeatFlow = yout(:,4); 

SolarThermal_HeatLoad = trapz(SolarThermal_HeatFlow)/(1000*60*60); 

  

save('output.txt','SolarThermal_HeatLoad','-ASCII'); 

exit 
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A.3 Trade-Off Analysis 

A.3.1 Matlab Script Used for Pareto Analysis (Pareto_Analysis2.m) 

% This script reads the metrics in MS Excel generated by the Cameo Systems 

% Modeler Trade-Study tool and performs a Pareto Analysis to find the 

% Pareto points and eliminate the non-dominant solutions. since there are 

% 5 metrics, the Pareto Points cannot be visualized in the form of a plot. 

%  

% The script will output the Configurations and the associated metric 

% values of the Pareto Points. 

%  

% To run this script, the following files are required to be in the same 

% folder: 

% 1. paretofront.m 

% 2. paretofront.c 

% 3. paretofront.mexw32 

% 4. paretofront.mexw64 

% 5. Tradeoff Analysis.xlsx 

  

clear 

clc 

  

Configs = xlsread('Tradeoff Analysis', 'Trade Study', 'A3:E83'); 

Metrics = xlsread('Tradeoff Analysis', 'Trade Study', 'H3:L83'); 

     

Var_TAir = Metrics (:,1);  

SolarThermal_HeatLoad = Metrics (:,2); 

HeatPump_HeatLoad = Metrics (:,3); 

Cost_ElectricConsumption = Metrics (:,4); 

Cost_Insulation = Metrics (:,5); 

  

% Since the default for the paretofront function is to minimize, a -ve sign 

% has to be added to SolarThermal_HeatLoad since we want to maximize that 

% metric. 

  

objective =[Var_TAir, HeatPump_HeatLoad, Cost_Insulation]; 

  

I = paretofront(objective); 

  

% To find all the Non-Pareto points easily 

NotI = logical(1-I); 

  

figure 

plot3(Var_TAir, HeatPump_HeatLoad, Cost_Insulation, 'b.',... 

    Var_TAir(I), HeatPump_HeatLoad(I), Cost_Insulation(I), 'ro') 

  

grid ON 

axis([0, 0.18, 60,220, 4500, 9500]) 

xticks(linspace(0,0.18,7)); 

yticks(linspace(60,220,5)); 

zticks(linspace(4500,9500,6)); 

xlabel('Variance in Temp (K^2)') 

ylabel('Heatpump Heatload (kWh/yr)') 

zlabel('Cost of Insulation ($)') 

title('Pareto Frontier Analysis') 

legend('Configuration Points','Pareto Optimal Points') 

  

% Axis Rotation Code snippet 
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h = rotate3d; 

set(h, 'ActionPreCallback', 

'set(gcf,''windowbuttonmotionfcn'',@align_axislabel)') 

set(h, 'ActionPostCallback', 'set(gcf,''windowbuttonmotionfcn'','''')') 

set(gcf, 'ResizeFcn', @align_axislabel) 

align_axislabel([], gca) 

axislabel_translation_slider; 

  

%% Video Capture 

  

% OptionZ.FrameRate=40; 

% OptionZ.Duration=5.5; 

% OptionZ.Periodic=true; 

% CaptureFigVid([-20,20;-110,20;-190,20;-290,10;-380,20], 

'WellMadeVid',OptionZ) 

  

%% 

% The first column of the ParetoConfigs is the ID number of the test case 

  

ParetoConfigs = Configs(I,:); 

ParetoMetrics = Metrics(I,:); 

  

NonParetoConfigs = Configs(NotI,:); 

NonParetoMetrics = Metrics(NotI,:); 

  

% Number of Pareto Points 

N = length(ParetoConfigs) 

  

%% Additional Plotting techniques 

  

% Met3 collects the thre metrics being plotted:  

% Var_TAir, HeatPump_HeatLoad, Cost_Insulation 

  

Met3 = [ParetoMetrics(:,1), ParetoMetrics(:,3), ParetoMetrics(:,5)]; 

  

xlin = linspace(min(Met3(:,1)),max(Met3(:,1)),30); 

ylin = linspace(min(Met3(:,2)),max(Met3(:,2)),30); 

  

[X,Y] = meshgrid(xlin,ylin); 

f = scatteredInterpolant(Met3(:,1),Met3(:,2),Met3(:,3)); 

Z = f(X,Y); 

  

figure 

mesh(X,Y,Z) %interpolated 

hold on 

plot3(Met3(:,1),Met3(:,2),Met3(:,3),'ro',Var_TAir, HeatPump_HeatLoad, 

Cost_Insulation, 'b.') %nonuniform 

axis([0, 0.18, 60,220, 4500, 9500]) 

xlabel('Variance in Temp (K^2)') 

ylabel('Heatpump Heatload (kWh/yr)') 

zlabel('Cost of Insulation ($)') 

title('Pareto Frontier Analysis') 

legend('Configuration Points','Pareto Optimal Points') 

hidden OFF 

  

% Axis Rotation Code snippet 

h = rotate3d; 

set(h, 'ActionPreCallback', 

'set(gcf,''windowbuttonmotionfcn'',@align_axislabel)') 

set(h, 'ActionPostCallback', 'set(gcf,''windowbuttonmotionfcn'','''')') 

set(gcf, 'ResizeFcn', @align_axislabel) 

align_axislabel([], gca) 

axislabel_translation_slider; 
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%% 

figure  

stem3(Met3(:,1),Met3(:,2),Met3(:,3),'MarkerEdgeColor','r') 

hold on 

plot3(Metrics(:,1), Metrics(:,3), Metrics(:,5),'b.') 

hold off 

axis([0, 0.18, 60,220, 4500, 9500]) 

xlabel('Variance in Temp (K^2)') 

ylabel('Heatpump Heatload (kWh/yr)') 

zlabel('Cost of Insulation ($)') 

xticks(linspace(0,0.18,7)); 

yticks(linspace(60,220,5)); 

zticks(linspace(4500,9500,6)); 

title('Pareto Frontier Analysis') 

legend('Pareto Optimal Points', 'Configuration Points') 

  

grid on 

  

% Axis Rotation Code snippet 

h = rotate3d; 

set(h, 'ActionPreCallback', 

'set(gcf,''windowbuttonmotionfcn'',@align_axislabel)') 

set(h, 'ActionPostCallback', 'set(gcf,''windowbuttonmotionfcn'','''')') 

set(gcf, 'ResizeFcn', @align_axislabel) 

align_axislabel([], gca) 

  

  

%% First Pruning 

  

for n = 1:length(Metrics) 

     

    if Metrics(n,1) > ( min(Metrics(:,1)) + 0.4*(max(Metrics(:,1))-

min(Metrics(:,1))) ) 

        I(n) = 0; 

    end 

     

    if Metrics(n,3) > ( min(Metrics(:,3)) + 0.4*(max(Metrics(:,3))-

min(Metrics(:,3))) ) 

        I(n) = 0; 

    end 

     

    if Metrics(n,5) > ( min(Metrics(:,5)) + 0.8*(max(Metrics(:,5))-

min(Metrics(:,5))) ) 

        I(n) = 0; 

    end     

end 

sum(I) 

  

NotI = logical(1-I); 

  

ParetoConfigs = Configs(I,:); 

ParetoMetrics = Metrics(I,:); 

  

NonParetoConfigs = Configs(NotI,:); 

NonParetoMetrics = Metrics(NotI,:); 

  

Met3 = [ParetoMetrics(:,1), ParetoMetrics(:,3), ParetoMetrics(:,5)]; 

  

figure  

stem3(Met3(:,1),Met3(:,2),Met3(:,3),'MarkerEdgeColor','r') 

hold on 

plot3(Metrics(:,1), Metrics(:,3), Metrics(:,5),'b.') 
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hold off 

axis([0, 0.18, 60,220, 4500, 9500]) 

xlabel('Variance in Temp (K^2)') 

ylabel('Heatpump Heatload (kWh/yr)') 

zlabel('Cost of Insulation ($)') 

xticks(linspace(0,0.18,7)); 

yticks(linspace(60,220,5)); 

zticks(linspace(4500,9500,6)); 

title('Pareto Frontier Analysis') 

legend('Pareto Optimal Points','Configuration Points') 

grid on 

  

% Axis Rotation Code snippet 

h = rotate3d; 

set(h, 'ActionPreCallback', 

'set(gcf,''windowbuttonmotionfcn'',@align_axislabel)') 

set(h, 'ActionPostCallback', 'set(gcf,''windowbuttonmotionfcn'','''')') 

set(gcf, 'ResizeFcn', @align_axislabel) 

  

  

ID = cellstr(num2str(Configs(I,1))); 

dx = 0.002; dy = 0.1; dz = 0.1; % displacement so the text does not overlay 

the data points 

text(Met3(:,1) +dx ,Met3(:,2) + dy ,Met3(:,3) + dz,ID); 

  

  

%% Second Pruning - Manual Pruning 

  

[I(27), I(63), I(18), I(72), I(52), I(69), I(61), I(54), I(70)] = deal(0); 

  

sum(I) 

  

NotI = logical(1-I); 

  

ParetoConfigs = Configs(I,:); 

ParetoMetrics = Metrics(I,:); 

  

NonParetoConfigs = Configs(NotI,:); 

NonParetoMetrics = Metrics(NotI,:); 

  

Met3 = [ParetoMetrics(:,1), ParetoMetrics(:,3), ParetoMetrics(:,5)]; 

  

figure  

stem3(Met3(:,1),Met3(:,2),Met3(:,3),'MarkerEdgeColor','r') 

hold on 

plot3(Metrics(:,1), Metrics(:,3), Metrics(:,5),'b.') 

hold off 

axis([0, 0.18, 60,220, 4500, 9500]) 

xlabel('Variance in Temp (K^2)') 

ylabel('Heatpump Heatload (kWh/yr)') 

zlabel('Cost of Insulation ($)') 

xticks(linspace(0,0.18,7)); 

yticks(linspace(60,220,5)); 

zticks(linspace(4500,9500,6)); 

title('Pareto Frontier Analysis') 

legend('Pareto Optimal Points','Configuration Points') 

grid on 

  

% Axis Rotation Code snippet 

h = rotate3d; 

set(h, 'ActionPreCallback', 

'set(gcf,''windowbuttonmotionfcn'',@align_axislabel)') 

set(h, 'ActionPostCallback', 'set(gcf,''windowbuttonmotionfcn'','''')') 
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set(gcf, 'ResizeFcn', @align_axislabel) 

  

ID = cellstr(num2str(Configs(I,1))); 

dx = 0.002; dy = 0.1; dz = 0.1; % displacement so the text does not overlay 

the data points 

text(Met3(:,1) +dx ,Met3(:,2) + dy ,Met3(:,3) + dz,ID); 

 

 

A.3.2 Table of Pareto Points.  

 Parameters Metrics 

ID  
OW 

Insulation 

C 

Insulation 

Window 

Area 

Temp 

Setpoint 

Variance 

in TAir 

Heatpump 

Heat load 

Cost of 

Insulation 

1 0.16 0.255 3 21 0.076 137.85 4727 

2 0.16 0.255 3 22 0.040 191.25 4727 

3 0.16 0.255 3 20 0.144 95.45 4727 

4 0.16 0.255 2 21 0.039 144.67 4727 

5 0.16 0.255 2 22 0.020 197.48 4727 

6 0.16 0.255 2 20 0.081 100.86 4727 

7 0.16 0.255 1 21 0.018 152.87 4727 

8 0.16 0.255 1 22 0.009 204.97 4727 

9 0.16 0.255 1 20 0.041 108.18 4727 

10 0.16 0.3825 3 21 0.073 127.29 5779 

11 0.16 0.3825 3 22 0.039 177.35 5779 

12 0.16 0.3825 3 20 0.137 88.74 5779 

13 0.16 0.3825 2 21 0.037 133.73 5779 

14 0.16 0.3825 2 22 0.018 183.46 5779 

15 0.16 0.3825 2 20 0.074 93.44 5779 

16 0.16 0.3825 1 21 0.016 141.54 5779 

17 0.16 0.3825 1 22 0.008 190.68 5779 

18 0.16 0.3825 1 20 0.035 100.03 5779 

19 0.16 0.51 3 21 0.072 121.89 6831 

20 0.16 0.51 3 22 0.039 170.30 6831 

21 0.16 0.51 3 20 0.134 85.45 6831 

22 0.16 0.51 2 21 0.036 128.13 6831 

23 0.16 0.51 2 22 0.018 176.24 6831 

24 0.16 0.51 2 20 0.072 89.74 6831 

25 0.16 0.51 1 21 0.016 135.74 6831 

26 0.16 0.51 1 22 0.008 183.36 6831 

27 0.16 0.51 1 20 0.033 95.92 6831 

28 0.24 0.255 3 21 0.084 114.90 5915 

29 0.24 0.255 3 22 0.046 160.93 5915 

30 0.24 0.255 3 20 0.155 82.10 5915 

31 0.24 0.255 2 21 0.043 120.61 5915 

32 0.24 0.255 2 22 0.022 166.47 5915 

33 0.24 0.255 2 20 0.086 85.50 5915 

34 0.24 0.255 1 21 0.020 127.78 5915 

35 0.24 0.255 1 22 0.010 173.36 5915 

36 0.24 0.255 1 20 0.042 90.76 5915 

37 0.24 0.3825 3 21 0.082 105.64 6967 

38 0.24 0.3825 3 22 0.045 148.01 6967 

39 0.24 0.3825 3 20 0.148 77.08 6967 
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40 0.24 0.3825 2 21 0.041 110.66 6967 

41 0.24 0.3825 2 22 0.021 153.23 6967 

42 0.24 0.3825 2 20 0.079 79.60 6967 

43 0.24 0.3825 1 21 0.018 117.31 6967 

44 0.24 0.3825 1 22 0.009 159.69 6967 

45 0.24 0.3825 1 20 0.037 83.91 6967 

46 0.24 0.51 3 21 0.081 101.06 8019 

47 0.24 0.51 3 22 0.045 141.45 8019 

48 0.24 0.51 3 20 0.145 74.56 8019 

49 0.24 0.51 2 21 0.040 105.72 8019 

50 0.24 0.51 2 22 0.021 146.47 8019 

51 0.24 0.51 2 20 0.077 76.78 8019 

52 0.24 0.51 1 21 0.017 112.02 8019 

53 0.24 0.51 1 22 0.009 152.73 8019 

54 0.24 0.51 1 20 0.035 80.56 8019 

55 0.32 0.255 3 21 0.090 103.68 7103 

56 0.32 0.255 3 22 0.050 145.00 7103 

57 0.32 0.255 3 20 0.161 76.42 7103 

58 0.32 0.255 2 21 0.046 108.42 7103 

59 0.32 0.255 2 22 0.024 150.06 7103 

60 0.32 0.255 2 20 0.090 78.70 7103 

61 0.32 0.255 1 21 0.021 114.78 7103 

62 0.32 0.255 1 22 0.011 156.38 7103 

63 0.32 0.255 1 20 0.044 82.55 7103 

64 0.32 0.3825 3 21 0.087 95.39 8155 

65 0.32 0.3825 3 22 0.049 132.69 8155 

66 0.32 0.3825 3 20 0.154 71.72 8155 

67 0.32 0.3825 2 21 0.043 99.38 8155 

68 0.32 0.3825 2 22 0.023 137.39 8155 

69 0.32 0.3825 2 20 0.083 73.74 8155 

70 0.32 0.3825 1 21 0.019 105.02 8155 

71 0.32 0.3825 1 22 0.010 143.31 8155 

72 0.32 0.3825 1 20 0.038 76.72 8155 

73 0.32 0.51 3 21 0.087 91.40 9207 

74 0.32 0.51 3 22 0.050 126.50 9207 

75 0.32 0.51 3 20 0.152 69.25 9207 

76 0.32 0.51 2 21 0.043 94.96 9207 

77 0.32 0.51 2 22 0.023 130.96 9207 

78 0.32 0.51 2 20 0.080 71.22 9207 

79 0.32 0.51 1 21 0.018 100.13 9207 

80 0.32 0.51 1 22 0.010 136.67 9207 

81 0.32 0.51 1 20 0.036 73.91 9207 
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