ABSTRACT

Title of dissertation: ONLINE DECISION MAKING
VIA PROPHET SETTING

Soheil Ehsani
Doctor of Philosophy, 2017

Dissertation directed by: Professor Mohammad Hajiaghayi
Department of Computer Science

In the study of online problems, it is often assumed that there exists an ad-
versary who acts against the algorithm and generates the most challenging input
for it. This worst-case assumption in addition to the complete uncertainty about
future events in the traditional online setting sometimes leads to worst-case scenar-
ios with super-constant approximation impossibilities. In this dissertation, we go
beyond this worst-case analysis of problems by taking advantage of stochastic mod-
eling. Inspired by the prophet inequality problem, we introduce the prophet setting
for online problems in which the probability distributions of the future inputs are
available. This modeling not only considers the availability of statistical data in the
design of mechanisms but also results in significantly more efficient algorithms.

To illustrate the improvements achieved by this setting, we study online prob-
lems within the contexts of auctions and networks. We begin our study with an-
alyzing a fundamental online problem in optimal stopping theory, namely prophet

inequality, in the special cases of iid and large markets, and general cases of ma-

troids and combinatorial auctions and discuss its applications in mechanism design.
The stochastic model introduced by this problem has received a lot of attention
recently in modeling other real-life scenarios, such as online advertisement, because
of the growing ability to fit distributions for user demands. We apply this model
to network design problems with a wide range of applications from social networks
to power grids and communication networks. In this dissertation, we give efficient
algorithms for fundamental network design problems in the prophet setting and
present a general framework that demonstrates how to develop algorithms for other

problems in this setting.

ONLINE DECISION MAKING
VIA
PROPHET SETTING

by

Soheil Ehsani

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2017

Advisory Committee:

Professor Mohammad Hajiaghayi, Chair/Advisor
Professor Peter Cramton

Professor William Gasarch

Professor David Mount

Professor Aravind Srinivasan

(© Copyright by
Soheil Ehsani
2017

Dedicated to my family.

i

Acknowledgment

First and foremost, I would like to thank my advisor Prof. Mohammad Haji-
aghayi for his extraordinary support. He has been more than an advisor to me and
has given me suggestions and ideas that I would not receive from anybody other
than a close friend. I remember a lot of challenging situations in which Mohammad
took my hand and supported me to get through them. I feel very fortunate to have
had him as my Ph.D. advisor. Thank you Mohammad for everything and I look
forward to our lifelong collaboration.

Many thanks to Prof. Peter Cramton, Prof. William Gasarch, Prof. David
Mount, and Prof. Aravind Srinivasan for serving on my dissertation committee.

The graduate school provided me an opportunity to meet and collaborate with
the smartest and humblest people. I would like to thank all my friends who I got
to know during this time and learn a lot from them. I would like to thank my
co-authors Prof. Harald Racke, Prof. Robert Kleinberg, Dr. Brendan Lucier, Prof.
Thomas Kesselheim, Prof. Mohamad Ghodsi, Vahid Liaghat, Sina Dehghani, Saeed
Seddighin, Hossein Esfandiari, Melika Abolhassani, Karthik Abinav Sankararaman,
Brian Brubach, Sahil Singla, and Mehdi Borujeni for sharing their knowledge and
experiences with me. Thank you all for helping me create this important chapter of

my life and fill it with a lot of great memories.

il

I also gratefully acknowledge the support of the following grants during my
Ph.D. studies: NSF CAREER award CCF-1053605, NSF BIGDATA grant IIS-
1546108, NSF AF:Medium grant CCF-1161365, DARPA GRAPHS/AFOSR grant
FA9550-12-1-0423, DARPA SIMPLEX grant, and World Quantitative and Science
fellowship.

Leaving the most important for the last, I owe my deepest thanks to my family
- my mother and father Yalda and Nemat, and my siblings Abouzar, Hosein, and
Maryam for their infinite love and support! I don’t know where I would be without
you, and words cannot express the gratitude I owe you. I hope the dedication of

this dissertation to you returns a little bit of your immense kindness.

v

Dedication
Acknowledgement
Table of Contents
List of Figures

3 Overview
3.1 Introduction

Table of Contents

3.1.1 Online vs Offine
3.1.2 Prophet Setting vs Online Setting

3.2 Outline. . .

3.2.1 Online Network Design
3.2.2 Prophet Inequalities
3.2.3 Online Problems in Prophet Setting

4 Online Degree-Bounded Steiner Network Design

4.1 Introduction

4.1.1 Our Contributions
4.1.2 Related Degree-Bounded Connectivity Problems
4.1.3 Related Online Problems
4.1.4 Preliminaries L o
4.2 Online Degree-Bounded Steiner Forest
4.2.1 Analysis
4.3 An Asymptotically Tight Lower Bound

5 Online Weighted Degree-Bounded Steiner Networks

5.1 Introduction

5.1.1 Our Results and Techniques

0.1.1.1

Massaging the optimal solution

5.1.1.2 Bounded-frequency mixed packing/covering IPs . . .
5.1.2 Preliminaries oo

i

iii

14
14
16
21
22
23
25
26
35

39
39
42
43
45

5.1.3 Overview of the Chapter
5.2 Finding the Right Integer Program
5.3 Online Bounded Frequency Mixed Packing/Covering IPs
5.4 Putting Everything Together

Beating 1-1/e for Ordered Prophets

6.1 Introduction
6.1.1 Our Contribution
6.1.2 Applications in Mechanism Design
6.1.3 Other Related Work

6.2 IID Distributions e

6.3 Non IID Distributions

Prophet Secretary for Matroids and Combinatorial Auctions

7.1 Imtroduction
7.1.1 Our Techniques
7.1.2 Related Work o oo

7.2 Our Approach using a Residual

7.3 Prophet Secretary for Combinatorial Auctions
7.3.1 Bipartite Matching 000
7.3.2 XOS Combinatorial Auctions

7.4 Prophet Secretary for Matroids

7.5 Fixed Threshold Algorithms
7.5.1 Single Item Prophet Secretary
7.5.2 Impossibility for IID Prophet Inequalities

Stochastic k-Server Problem

81 Introduction
8.1.1 The Stochastic Model
8.1.2 OurResults
8.1.3 Further Related Work

8.2 Preliminarieso

8.3 Structural Characterization

8.4 Fractional Solutions
8.4.1 Linear Program oL

8.5 Reduction from Integral k-server to Fractional k-server
8.5.1 Integrals Are as Strong as Fractionals On the Line
8.5.2 Reduction for General Graphs

Survivable Network Design and Prophets

9.1 Introduction
9.1.1 Our Results and Techniques
9.1.2 Further Related Work

9.2 Steiner Tree Packing
9.2.1 Fractional Steiner Tree Packing

vi

9.2.2 Fractional Steiner Tree Packing of k-connected Graphs 155

9.2.3 Steiner Forest Packing 159

9.3 Uniform SNDP 160
9.4 Non-Uniform SNDP, 171
9.5 From Oblivious I.I.D. to Prophet and Applications to Online Problems173
9.6 Stochastic Survivable Network Design 178
9.6.1 Algorithm 180
9.6.2 Structural Lemma for k-connected Graphs 183
Appendices 187
A Online Degree-Bounded Edge-weighted Steiner Tree 187

B Online Degree-Bounded Group Steiner Tree 190

C Omitted Proofs 191

D Missing Calculations in Example 7.1 201

E Extension of FTA’s to Bipartite Matchings 201

F Correlated Setting oL 204

G Program oo 205

H Experimental Results 208
Bibliography 211

vil

4.1

5.1

QU > W N

List of Figures

Existence of a cycle implies that of a path with low uptick load in its
extension part. L. L oL oL

An example where every vertex has degree-bound 3 and every edge
has weight 1. The first demand is (v, vs) and the second demand is
(v3,v6). The optimal solution for SF_IP is a subgraph, say H, with
the set of all edges and vertices, i.e. H = . However an optimal
solution for PC_IP is: Two subgraphs H; for the first request which
has edges {e(vy, v2), e(v1,v4), €(vyg,v5)} and Hy for the second request
which has edges {e(vq, v3), e(vy, v5), €(v4, v6)}. Note that w(H) = 5
and w(H;) +w(Hy) = 6, since we have edge e(vy, vs) in both H; and
H,. Moreover the number of edges incident with v4 in the solution of
PCIP is 4, i.e. degy, (vq) +degy,(va) =4.

An example graph illustrating that the greedy algorithm has Q(n)-

competitive ratio. L
The graph G consists of 2k + 1 nodes and 3k edges.
The highlighted subtree represents an optimum solution OPT3.
The plot shows function A(w) for values of w from 0 to tan(a) ~ 3.7. . . .
Performance of our algorithm compared to the optimum. The dashed

curve indicates two times the optimum.

viil

36

Chapter 3: Overview

3.1 Introduction

In the theoretical study of algorithms, it is often assumed that there exists an
adversary that acts against the algorithm and generates the most challenging input
for it. This is the basis of the worst-case analysis of algorithms. Despite its impor-
tance in the consideration of all aspects of algorithms for risk-averse applications,
the worst-case analysis usually tightens our hands in designing more efficient algo-
rithms for less adversarial but more likely instances. An evident example in which
this issue occurs is the traditional online setting in which there are super-constant
approximation impossibilities for many problems. This dissertation aims to go be-
yond the worst-case analysis of online algorithms by including stochastic data in
the tradition online setting. Most importantly, the online stochastic setting that we
introduce, namely the prophet setting, takes advantage of the developments of sta-
tistical and machine learning tools in demand prediction in order to model real-life
problems. To illustrate the improvement achieved by this setting, we study online
problems in the two contexts of network mechanism design and auction mechanism

design.

3.1.1 Online vs Offline

Offline problems are perhaps the most basic form of problems in theoretical
computer science. In the offline variant of a problem, we assume all the input is
given at once, and the goal is to output a solution using a polynomial amount of
memory and time. Examples of this class include minimum Steiner tree (graph
theory), clustering a set of points (combinatorial optimization), finding an optimal
assignment of goods to buyers (auction theory), and a plenty of other problems which
follow the three-stage process of an offline problem, i.e. getting input, processing
data, and outputting a solution.

Maybe one of the biggest issues with the offline variant of problems is that
they lack the ability to model the real-life instances in which the input is not given
(or is not available) all at once. To clarify this issue, let us discuss it in above
examples. An application of the minimum Steiner tree problem is when a network
provider wants to find cheap routings for connecting a set of devices in a network.
The above issue arises when the set of devices is not known at the beginning, but the
provider receives the connectivity requests from devices at different times and wants
to connect each device to previous ones upon receiving its request. Similarly, in a
clustering problem the points may arrive at different times, or in an auction the set
of buyers and goods may be subject to change as people/goods appear at different
times while our objective functions remain the same. Although one may suggest
using offline algorithms to address the above issue, we argue that such algorithms

may potentially result in entirely different solutions every time a part of the input

arrives. Of course, this would not be much appealing in many applications especially
those with high cost of revoking decisions.

The goal of online variants of problems is to properly model the above scenario
in which the input grows over time. In particular, in the online instance of a problem,
we assume that an initial state/configuration of the problem is given, and then at
each discrete time ¢ a part of the input is revealed and the algorithm has to update its
solution so that the recent part of the input is considered. As a clarifying example,
in the above Steiner tree instance the network provider should route a new device
through some connections while the connections between previous devices do not
change. Similarly, in a clustering problem we should assign each new point to a
cluster without changing the clusters of previous points, and in an online scenario of
an auction we should serve new buyers without changing the way we served previous
people.

An online problem can be formulated as follows. Let S be the set of all initial
states, Z be the collection of all inputs, and O be the collection of all outputs for the
problem. An online scenario goes in this way: first the algorithm receives an initial
state Sy € S, and then at every discrete time ¢ it receives I; € Z, where I;_; C I,
and has to find a solution O, to it where O,_; C O; € O. The goal of an online
algorithm is to find such online solution that optimizes the objective function for
every t. In contrast, in an offline problem the algorithm receives Sy € S,1 € T at
once and is supposed to output a single O € O for the given input.

In this dissertation, we study the online variants of some of the fundamental

problems in the contexts of network design and auction mechanism design. We begin

with introducing the online variant of degree-bounded Steiner forest problem and
propose polylogarithmic competitive algorithms for them. We also outline some
negative aspects of the online modeling of this problem by presenting hardness
instances in which the online sequence of inputs makes the decision making difficult

even for randomized algorithms.

3.1.2 Prophet Setting vs Online Setting

In general, the online setting assumes a high degree uncertainty about future
demands. In particular, the algorithm has no information about I; \ I;_; at any
time before t. This uncertainty allows the adversary to generate instances of the
online input for which no algorithm can perform good enough. Our approach to
deal with this hardness issue is to consider the online stochastic variant borrowed
from the prophet inequality problem. In chapters 6 and 7 we discuss more about this
problem, its special and general cases, and its application in mechanism deign. Here,
we emphasize that the main difference in the prophet setting and the traditional
online setting is that the algorithm has partial information about the input received
at each time ¢. More specifically, before the online scenario begins, in addition to
the initial state Sy € S the algorithm also gets probability distributions D, for every
Al = I\ I;_1 which is to the part of input received at time ¢. Then in the online
scenario and at each time ¢, the new input is chosen from a random process, i.e.
Al ~ Dy, and the algorithm has to update its solution O; while optimizing the

objective function.

There are two reasons why we study online problems in the prophet setting.
First, in a lot of real-life applications of these problems, the input is not generated
by an adversary but it is produced by natural parameters of the system. Therefore
the adversarial hardness instances that limit the theoretical study of the online
problems become unimportant. Second, in some applications there is a large amount
of historical data available to the algorithm designer, which can be exploited using
statistical tools to fit distributions for future inputs. Hence, the consideration of
having partial information for future input in prophet setting properly captures this

aspect and allows a more efficient design of algorithms.

3.2 Outline

In chapters 4 and 5 we consider network design problems in the traditional
online setting. In chapters 6 and 7 we study the special cases and general cases of
the prophet inequality problem, which is an important fundamental online decision
making problem, and discuss their applications in auction mechanism design. In
chapters 8 and 9 we borrow the setting of prophet inequality and apply it on two
important network design problem, namely the k-server problems and the survivable
network design problem, and show how this allows significant improvements upon

previous results.

3.2.1 Online Network Design

One of the fundamental problems in the area of network design is the Steiner
tree problem. In this problem we are given a graph G = (V, E') and a weight function
w: E — RT and a set of nodes S C V. The goal is to find a set of edges H C F
with minimum w(H) = > ., w(e) such that all vertices of S are connected in H.
This problem was first introduced in the 70’s in Garey and Johnson’s Black Book of
NP-Completeness [MD79]. As a special case when S = V' the problem boils down
to the minimum spanning tree problem which has extensively been studied and has
near linear-time optimum algorithms. However, finding a minimum weight Steiner
tree could be hard for some input instances. Hence, there is a considerable line of
work for Steiner problems in approximation algorithms.

The goal of an approximation algorithm is to give a guarantee about the cost
of its solution in comparison with the cost of the optimum solution. In other words,
if ALG denotes the cost the solution found by an a-approximation algorithm and
OPT denotes the cost of the optimum solution, then the ratio ALG/OPT should
never exceed « for any input instance. We note that there are a few other slightly
different definitions for the notion of approximation factor in the literature which
we discuss in the next chapters.

In this dissertation, we study some of the classical variants of Steiner network
design in the online setting and give approximation algorithms for them. As opposed
to the classical (offline) Steiner tree problem, in the online setting, we do not have

all the connectivity demands at the beginning, but we receive them over time and

have to immediately provide a connection for each demand upon its arrival. Recall
that the problems in the online setting are usually harder to deal with because of
the uncertainties of future demands.

In Chapter 4 we initiate the study of degree-bounded network design problems
in the online setting. The degree-bounded Steiner tree problem — which asks for a
subgraph with minimum degree that connects a given set of vertices — is perhaps one
of the most representative problems in this class. We deal with its well-studied gen-
eralization called the degree-bounded Steiner forest problem where the connectivity
demands are represented by vertex pairs that need to be individually connected.

In the classical online model, the input graph is given offline but the demand
pairs arrive sequentially in online steps. The selected subgraph starts off as the
empty subgraph, but has to be augmented to satisfy the new connectivity constraint
in each online step. The goal is to be competitive against an adversary that knows
the input in advance.

The standard techniques for solving degree-bounded problems often fall in
the category of iterative and dependent rounding techniques. Unfortunately, these
rounding methods are inherently difficult to adapt to an online settings since the
underlying fractional solution may change dramatically in between the rounding
steps. Indeed, this might be the very reason that despite many advances in the
online network design paradigm in the past two decades, the natural family of degree-
bounded problems has remained widely open.

In our work we design an intuitive greedy-like algorithm that achieves a com-

petitive ratio of O(logn) where n is the number of vertices. We show that no (ran-

7

domized) algorithm can achieve a (multiplicative) competitive ratio o(logn); thus
our result is asymptotically tight. We further show strong hardness results for the
group Steiner tree and the edge-weighted variants of degree-bounded connectivity
problems.

We study the weighted generalization of online degree bounded Steiner forest
in Chapter 5. In edge-weighted degree-bounded Steiner forest (EW-DB-SF) we are
given an edge-weighted graph with a degree bound for every vertex. Given a root
vertex in advance, we receive a sequence of terminal vertices in an online manner.
Upon the arrival of a terminal, we need to augment our solution subgraph to connect
the new terminal to the root. The goal is to minimize the total weight of the solution
while respecting the degree bounds on the vertices.

In the offline setting, EW-DB-ST and its many variations have been exten-
sively studied since early eighties. Unfortunately, the recent advancements in the
online network design problems are inherently difficult to adapt for degree-bounded
problems. In particular, it is not known whether the fractional solution obtained by
standard primal-dual techniques for mixed packing/covering LPs can be rounded
online.

In contrast, we obtain our result by using structural properties of the optimal
solution, and reducing the EW-DB-SF problem to an exponential-size mixed pack-
ing/covering integer program in which every variable appears only once in covering
constraints. We then design a generic integral algorithm for solving this restricted
family of IPs.

As mentioned above, we demonstrate a new technique for solving mixed pack-

ing/covering integer programs. Define the covering frequency k of a program as the
maximum number of covering constraints in which a variable can participate. Let m
denote the number of packing constraints. We design an online deterministic inte-
gral algorithm with competitive ratio of O(klogm) for the mixed packing/covering
integer programs.

We prove the tightness of our result by providing a matching lower bound for
any randomized algorithm. We note that our solution solely depends on m and
k. Indeed, there can be exponentially many variables. Furthermore, our algorithm
directly provides an integral solution, even if the integrality gap of the program is
unbounded. We believe this technique can be used as an interesting alternative for

the standard primal-dual techniques in solving online problems.

3.2.2 Prophet Inequalities

A simple but fundamental problem that models an online stochastic scenario is
prophet inequality. In an instance of this problem, the input contains n probability
distributions Dq,..., D, with finite supports on R*. Then the problem scenario
continues in an online fashion such that at time ¢, random variable X; is drawn
from D;. An algorithm can stop the scenario at anytime and claim a reward equal

to the most recent observation. The goal is to find a policy 7 that maximizes

E[ALG] _ E[X,]

E[OPT] E[maxlgign Xz] '

In Chapter 6 we study the prophet inequality problem with iid distributions.

In this problem all values X,...,X, come from a common distribution. Hill and

Kertz studied the prophet inequality on iid distributions [The Annals of Probability
1982]. They proved a theoretical bound of 1 — % on the approximation factor of

their algorithm. They conjectured that the best approximation factor for arbitrarily

1
1+1/e

large n is ~ (.731. This conjecture remained open for more than thirty years.
In this dissertation, we present a threshold-based algorithm for the prophet
inequality with n iid distributions. Using a nontrivial and novel approach we show
that our algorithm is a 0.738-approximation algorithm. By beating the bound of
%1/@’ this refutes the conjecture of Hill and Kertz. Moreover, we generalize our
results to non-iid distributions and discuss its applications in mechanism design. We
note that prophet inequality and its generalizations such as matroids and matchings
have received a considerable attention in the past decade due to their applications in
mechanism design, auction design, ad allocation, etc. Therefore, we believe our work
is a fuller treatment of the a major fundamental case of this important problem.
In Chapter 7 we study generalizations of the natural combination of prophet
inequalities and secretary problems, which are central to the field of Stopping The-
ory. Recently, there has been a lot of work in generalizing these models to multiple
items because of their applications in mechanism design. The most important of
these generalizations are to matroids and to combinatorial auctions (extends bipar-
tite matching). Kleinberg-Weinberg [KW12] and Feldman et al. [FGL15] show that
for adversarial arrival order of random variables the optimal prophet inequalities
give a 1/2-approximation. For many settings, however, it’s conceivable that the
arrival order is chosen uniformly at random, akin to the secretary problem. For

such a random arrival model, we improve upon the 1/2-approximation and obtain

10

(1 — 1/e)-approximation prophet inequalities for both matroids and combinatorial
auctions. This also gives improvements to the results of Yan [Yanl1] and Esfandiari
et al. [EHLM15] who worked in the special cases where we can fully control the
arrival order or when there is only a single item.

The techniques we use are threshold based. We convert our discrete problem
into a continuous setting and then give a generic template on how to dynamically

adjust these thresholds to lower bound the expected total welfare.

3.2.3 Online Problems in Prophet Setting

In Chapter 8 we study a stochastic variant of the celebrated k-server problem.
In the k-server problem, we are required to minimize the total movement of k servers
that are serving an online sequence of ¢ requests in a metric. In the stochastic setting
we are given ¢ independent distributions (Py, Ps, ..., P;) in advance, and at every
time step i a request is drawn from P;.

Designing the optimal online algorithm in such setting is NP-hard, therefore
the emphasis of our work is on designing an approximately optimal online algorithm.
We first show a structural characterization for a certain class of non-adaptive online
algorithms. We prove that in general metrics, the best of such algorithms has a
cost of no worse than three times that of the optimal online algorithm. Next, we
present an integer program that finds the optimal algorithm of this class for any
arbitrary metric. Finally by rounding the solution of the linear relaxation of this

program, we present an online algorithm for the stochastic k-server problem with

11

an approximation factor of 3 in the line and circle metrics and factor of O(logn)
in a general metric of size n. In this way, we achieve an approximation factor that
is independent of k, the number of servers. Furthermore, we extend our results to
the correlated setting where the probability of a request arriving at a certain point
depends not only on the time step but also on the previously arrived requests.

In Chapter 9 we study the online and stochastic versions of survivable network
design problem. In an instance of this problem we are given non-negative integers
ru for each pair u,v € V, the solution subgraph H should contain r,, edge-disjoint
paths for each pair v and v.

While this problem is known to admit good approximation algorithms in the
offline case, the problem is much harder in the online setting. Gupta, Krishnaswamy,
and Ravi [GKR12] (STOC’09) are the first to consider the online survivable net-
work design problem. They demonstrate an algorithm with competitive ratio of
O(k log3 n), where k = max,, ry,. Note that the competitive ratio of the algorithm
by Gupta et al. grows linearly in k. Hence, an important open problem in the online
community [NPS11, GKR12] is whether the linear dependency on k can be reduced
to a logarithmic dependency.

Consider an online greedy algorithm that connects every demand by adding a
minimum cost set of edges to H. Surprisingly, we show that this greedy algorithm
significantly improves the competitive ratio when a congestion of 2 is allowed on
the edges or when the model is stochastic. While our algorithm is fairly simple, our
analysis requires a deep understanding of k-connected graphs.

In particular, we prove that the greedy algorithm is O(log® n log k)-competitive

12

if one satisfies every demand between u and v by r,,/2 edge-disjoint paths. The
spirit of our result is similar to the work of Chuzhoy and Li [CL] (FOCS’12), in
which the authors give a polylogarithmic approximation algorithm for edge-disjoint
paths with congestion 2.

Moreover, we study the greedy algorithm in the online stochastic setting. In
particular, we consider the iid model, where each online demand is drawn from
a single probability distribution, the unknown iid model, where every demand is
drawn from a single but unknown probability distribution, and the prophet model in
which online demands are drawn from (possibly) different probability distributions.
Through a different analysis we prove that a similar greedy algorithm is constant
competitive for the iid and the prophet models. Also, the greedy algorithm is
O(log n)-competitive for the unknown iid model, which is almost tight due to the
lower bound of [GGLS08] for single connectivity.

Finally, we present a general framework which analyzes the algorithm for the
prophet model through an oblivious algorithm for the iid model. By applying this
framework to other problems we achieve constant competitive algorithms for vertex
cover and facility location and a logarithmic competitive algorithm for set cover in

the prophet model.

13

Chapter 4: Online Degree-Bounded Steiner Network Design

4.1 Introduction

The problem of satisfying connectivity demands on a graph while re-
specting given constraints has been a pillar of the area of network design
since the early seventies [Win89, Chv73, CGMS80, CG82, PY82]. The prob-
lem of DEGREE-BOUNDED SPANNING TREE, introduced in Garey and John-
son’s Black Book of NP-Completeness [MD79], was first investigated in the
pioneering work of Fiirer and Raghavachari [FR90] (Allerton’90). In the
DEGREE-BOUNDED SPANNING TREE problem, the goal is to construct a spanning
tree for a graph G = (V, E)) with n vertices whose maximal degree is the smallest
among all spanning trees. Let b* denote the maximal degree of an optimal spanning
tree. Fiirer and Raghavachari [FR90] give a parallel approximation algorithm which
produces a spanning tree of degree at most O(log(n)b*).

Agrawal, Klein, and Ravi ([AKR91]) consider the following generaliza-
tions of the problem. In the DEGREE-BOUNDED STEINER TREE problem we are
only required to connect a given subset 7" C V. In the even more general
DEGREE-BOUNDED STEINER FOREST problem the demands consist of vertex pairs,

and the goal is to output a subgraph in which for every demand there is a path

14

connecting the pair. They design an algorithm that obtains a multiplicative ap-
proximation factor of O(log(n)). Their main technique is to reduce the problem to
minimizing congestion under integral concurrent flow restrictions and to then use
the randomized rounding approach due to Raghavan and Thompson ([RT85]).

Shortly after the work of Agrawal et al., Fiirer and Raghavachari [FR94]| signif-
icantly improved the result for DEGREE-BOUNDED STEINER FOREST by presenting
an algorithm which produces a Steiner forest with maximum degree at most b* + 1.
They show that the same guarantee carries over to the directed variant of the prob-
lem as well. Their result is based on reducing the problem to that of computing a
sequence of maximal matchings on certain auxiliary graphs. This result settles the
approximability of the problem, as computing an optimal solution is NP-hard even
in the spanning tree case.

In this thesis, we initiate the study of degree-bounded network design prob-
lems in an online setting, where connectivity demands appear over time and must
be immediately satisfied. We first design a deterministic algorithm for ONLINE
DEGREE-BOUNDED STEINER FOREST with a logarithmic competitive ratio. Then
we show that this competitive ratio is asymptotically best possible by proving a
matching lower bound for randomized algorithms that already holds for the Steiner
tree variant of the problem.

In the offline scenario, the results of Fiirer, Raghavachari [FR90, FR94]| and
Agrawal, Klein, Ravi [AKR91] were the starting point of a very popular line of
work on various degree-bounded network design problems [MRS98, Goe06, Nut12,

LS13, KKN13, EV14]. We refer the reader to the next sections for a brief sum-

15

mary. One particular variant that has been extensively studied is the edge-weighted
DEGREE-BOUNDED SPANNING TREE. Initiated by Marathe et al. ([MRS"98]), in
this version, we are given a weight function over the edges and a bound b on the
maximum degree of a vertex. The goal is to find a minimum-weight spanning tree
with maximum degree at most b. The groundbreaking results obtained by Goe-
mans ([Goe06]) and Singh and Lau ([SLO7]) settle the problem by giving an algo-
rithm that computes a minimum-weight spanning tree with degree at most b + 1.
A slightly worse result is obtained by Singh and Lau ([LS13]) for the Steiner tree
variant. Unfortunately, in the online setting it is not possible to obtain a compara-
ble result. We show that for any (randomized) algorithm A there exists a request
sequence such that A4 outputs a sub-graph that either has weight Q(n) - OPT, or

maximum degree Q(n) - b.

4.1.1 Our Contributions

In the online variant of DEGREE-BOUNDED STEINER FOREST , we are given
the graph G in advance, however, demands arrive in an online fashion. At online
step 7, a new demand (s;,t;) arrives. Starting from an empty subgraph, at each step
the online algorithm should augment its solution so that the endpoints of the new
demand s; and t; are connected. The goal is to minimize the maximum degree of
the solution subgraph. In the non-uniform variant of the problem, a degree bound
b, € R* is given for every vertex v. For a subgraph H and a vertex v, let deg (v)

denote the degree of v in H. The load of a vertex is defined as the ratio degy (v)/b,.

16

In the non-uniform variant of ONLINE DEGREE-BOUNDED STEINER FOREST, the
goal is to find a subgraph satisfying the demands while minimizing the maximum
load of a vertex.

Our algorithm is a simple and intuitive greedy algorithm. Upon the arrival of
a new demand (s;,t;), the greedy algorithm (GA) satisfies the demand by choosing
an (s;,t;)-path P; such that after augmenting the solution with P;, the maximum
load of a vertex in P; is minimum. A main result of our work is to prove that the
maximum load of a vertex in the output of GA is within a logarithmic factor of
OPT, the maximum load of a vertex in an optimal offline solution which knows all

the demands in advance.

Theorem 4.1. The algorithm GA produces an output with mazximum load at most

O(logn) - OPT.

The crux of our analysis is establishing several structural properties of the
solution subgraph. First we group the demands according to the maximum load of
the bottleneck vertex at the time of arrival of the demand. We then show that for
every threshold r > 0, vertices with load at least r at the end of the run of GA,
form a cut set that well separates the group of demands with load at least r at their
bottleneck vertex. Since the threshold value can be chosen arbitrarily, this leads to
a series of cuts that form a chain. The greedy nature of the algorithm indicates that
each cut highly disconnects the demands. Intuitively, a cut that highly disconnects
the graph (or the demands) implies a lower bound on the number of branches of

every feasible solution.

17

We use a natural dual-fitting argument to show that for every cut set, the ratio
between the number of demands in the corresponding group, over the total degree
bound of the cut, is a lower bound for OPT. Hence, the problem comes down to
showing that one of the cuts in the series has ratio at least 1/O(logn) fraction of the
maximum load A of the output of GA. To this end, we first partition the range of
r € (0, h] into O(logn) layers based on the total degree bound of the corresponding
cut. We then show that the required cut can be found in an interval with maximum
range of r. We analyze GA formally in Section 4.2.

We complement our first theorem by giving an example for a special case of
ONLINE DEGREE-BOUNDED STEINER TREE in which no online (randomized) algo-
rithm can achieve a (multiplicative) competitive ratio o(logn). This also implies
that obtaining (non-trivial) additive competitiveness is not possible in the online

setting.

Theorem 4.2. Any (randomized) online algorithm for the degree bounded online
Steiner tree problem has (multiplicative) competitive ratio Q(logn). This already

holds when b, =1 for every node.

The previously known techniques. As discussed before, the majority of techniques
used for solving the offline variants of degree-bounded problems involve rounding
an optimal fractional solution of a relaxed linear program. Since one may need to
buy a long path to connect the endpoints of a demand, independent rounding of
a fractional solution is hardly efficient. Instead, dependent and iterative rounding

methods are usually used for attacking degree-bounded problems. In the online

18

paradigm, one can maintain a competitive fractional solution for these problems,
however, it is inherently difficult to apply the aforementioned rounding techniques
in an online setting: the underlying online fractional solution changes in between
the rounding steps, thus breaking the chain of dependencies.

In contrast to the works on the offline paradigm, in this thesis we propose a
simple combinatorial algorithm with a dual-fitting analysis. We use the structural
properties of the output of our algorithm to show the existence of a chain of cuts
that well separates the demand endpoints. When restricted to the case of uniform
bounds, these cuts imply an upper bound on the toughness of the graph. The tough-
ness of a graph is defined as minycy %; where for a graph H, CC(H) denotes
the collection of connected components of H. It can be shown that the reciprocal
of the toughness gives a lower bound for OPT. Therefore we use a combinatorial
argument to show that the minimum of this ratio over the cuts in our chain of cuts
is within O(log(n)) approximation of the reciprocal of the maximum load of a vertex
in our solution.

We would like to emphasize that although the concept of toughness is well-
studied in the literature, this line of research is mainly focused on relating toughness
conditions to the existence of cycle structures, see for example a comprehensive sur-
vey by Bauer et al. [BBS06]. The relation between the graph toughness and degree-
bounded problems have been previously observed by Win [Win89] and Agrawal et
al. [AKR91]. However as mentioned in the introduction, Agrawal et al. use a com-
pletely different argument for analyzing the problem when reduced to a congestion

minimization problem. We hope that the structural properties introduced in this

19

thesis together with the dual interpretation of our analysis, paves the way for solving

the classical problems in the family of degree-bounded problems.

Hardness under more general constraints. We further investigate the following ex-
tensions of the online degree bounded Steiner tree problem. First, we consider the
edge-weighted variant of the degree-bounded Steiner tree problem. Second, we con-
sider the group Steiner tree version in which each demand consists of a subset of
vertices, and the goal is to find a tree that covers at least one vertex of each de-
mand group. The following theorems show that one cannot obtain a non-trivial

competitive ratio for these versions in their general form.'

Theorem 4.3. Consider the edge weighted variant of
ONLINE DEGREE-BOUNDED STEINER TREE. For any (randomized) online al-
gorithm A, there exists an instance and a request sequence such that either
E[maxdegree(A)] > Q(n) - b or Elweight(A)] > Q(n) - OPT), where OPT, denotes

the minimum weight of a Steiner tree with maximum degree b.

Theorem 4.4. There is no deterministic algorithm with competitive ratio o(n) for

the DEGREE-BOUNDED GROUP STEINER TREE problem.

LOur lower bound results imply that one needs to restrict the input in order to achieve com-
petitiveness. In particular for the edge-weighted variant, our proof does not rule out the existence

of a competitive algorithm when the edge weights are polynomially bounded.

20

4.1.2 Related Degree-Bounded Connectivity Problems

The classical family of degree-bounded network design problems have various
applications in broadcasting information, package distribution, decentralized com-
munication networks, etc. (see e.g. [GMK88,HGMO03]). Marathe et al. ([MRS'98]),
first considered the general edge-weighted variant of the problem. They give a bi-
criteria (O(logn), O(logn)-b)-approximation algorithm, i.e., the degree of every node
in the output tree is O(logn) - b while its total weight is O(logn) times the optimal
weight. A long line of work (see e.g. [KR00] and [KR05]) was focused on this problem
until a groundbreaking breakthrough was obtained by Goemans ([Goe06]); his al-
gorithm computes a minimum-weight spanning tree with degree at most b+ 2. Later
on, Singh and Lau ([SLO7]) improved the degree approximation factor by designing
an algorithm that outputs a tree with optimal cost while the maximum degree is at
most b + 1. In the online setting, the follow-up work of Dehghani et al. [DEH17a]
proposes non-tight bicriteria algorithms for edge-weighted degree-bounded Steiner
forest problem.

In the degree-bounded survivable network design problem, a number d; is
associated with each demand (s;,¢;). The solution subgraph should contain at
least d; edge-disjoint paths between s; and ¢;. Indeed this problem has been
shown to admit bi-criteria approximation algorithms with constant approxima-
tion factors (e.g. [LS13]). We refer the reader to a recent survey in [LRS11].
This problem has been recently considered in the node-weighted variant too (see

e.g. [Nut12,EV14]). The degree-bounded variant of several other problems such as

21

E-MST and k-arborescence has also been considered in the offline setting for which

we refer the reader to [KKN13, BKN09] and references therein.

4.1.3 Related Online Problems

Online network design problems have attracted substantial attention in the
last decades. The online edge-weighted Steiner tree problem, in which the goal is to
find a minimum-weight subgraph connecting the demand nodes, was first considered
by Imase and Waxman ([IW91]). They showed that a natural greedy algorithm
has a competitive ratio of O(logn), which is optimal up to constants. This result
was generalized to the online edge-weighted Steiner forest problem by Awerbuch
et al. ([AABO4]) and Berman and Coulston ([BC97]). Later on, Naor, Panigrahi,
and Singh ([NPS11])) and Hajiaghayi, Liaghat, and Panigrahi ([HLP13]), designed
poly-logarithmic competitive algorithms for the more general node-weighted variant
of Steiner connectivity problems. This line of work has been further investigated in
the prize-collecting version of the problem, in which one can ignore a demand by
paying its given penalty. Qian and Williamson ([QW11]) and Hajiaghayi, Liaghat,
and Panigrahi ([HLP14]) develop algorithms with a poly-logarithmic competitive
algorithms for these variants.

The online b-matching problem is another related problem in which vertices
have degree bounds but the objective is to maximize the size of the solution sub-
graph. In the worst case model, the celebrated result of Karp et al. ([KVV90])

gives a (1 — 1/e)-competitive algorithm. Different variants of this problem have

22

been extensively studied in the past decade, e.g., for the random arrival model see
[FMMMO09, KMT11,MY11], for the full information model see [MOGS12, MGZ12],
and for the prophet-inequality model see [AHL"11, AHL12, AHL13]. We also refer
the reader to the comprehensive survey by Mehta [Meh12].

Many of the aforementioned problems can be characterized as an online pack-
ing or covering linear program. Initiated by work of Alon et al. [AAAT09] on online
set cover, Buchbinder and Naor developed a strong framework for solving pack-
ing/covering LPs fractionally online. For the applications of their general framework
in solving numerous online problems, we refer the reader to the survey in [BN09].
Azar et al. [ABFP13] generalize this method for the fractional mized packing and
covering LPs. In particular, they show an application of their method for integrally
solving a generalization of capacitated set cover. Their result is a bi-criteria compet-
itive algorithm that violates the capacities by at most an O(log?n) factor while the
cost of the ouput is within O(log” n) factor of optimum. We note that although the
fractional variant of our problem is a special case of mixed packing/covering LPs,

we do not know of any online rounding method for Steiner connectivity problems.

4.1.4 Preliminaries

Let G = (V,FE) denote an undirected graph of size n (|V| = n). For
every vertex v € V., let b, € RT denote the degree bound of v. 1In the
DEGREE-BOUNDED STEINER FOREST problem, we are given a sequence of connec-

tivity demands. The " demand is a pair of vertices (s;,t;) which we call the end-

23

points of the demand. An algorithm outputs a subgraph H C G in which for every
demand its endpoints are connected. The load of a vertex v w.r.t. H is defined
as ly(v) = degy(v)/b,. We may drop the subscript H when it is clear from the
context. The goal is to find a subgraph H that minimizes the maximum load of a
vertex. Observe that one can always find an optimal solution without a cycle, hence
the name Steiner forest. Furthermore, without loss of generality?, we assume that
the endpoints of the demands are distinct vertices with degree one in G and degree
bound infinity. We denote the maximum load of a vertex in an optimal subgraph
by OPT = ming max, £y (v).

The following mixed packing/covering linear program (IP) is a relaxation for the
natural integer program for DEGREE-BOUNDED STEINER FOREST. Let S denote the
collection of subsets of vertices that separate the endpoints of at least one demand.
For a set of vertices S, let §(.S) denote the set of edges with exactly one endpoint
in S. In P, for an edge e, x(e) = 1 indicates that we include e in the solution
while x(e) = 0 indicates otherwise. The variable « indicates an upper bound on
the load of every vertex. The first set of constraints ensures that the endpoints of
every demand are connected. The second set of constraints ensures that the load of

a vertex is upper bounded by «. The program D is the dual of the LP relaxation PP.

20ne can add a dummy vertex for every vertex v € V connected to v. We then interpret a
demand between two vertices as a demand between the corresponding dummy vertices. The degree
bound of a dummy vertex can be set to infinity. This transformation can increase the degree of

any node by at most a factor of 2, which does not affect our asymptotic results.

24

minimize « (P) maximize ZY(S) (D)

Ses
vVSCS Z x(e) > 1 (y(5)) Ve = (u,v) Z y(9) < z(u) +z(v)
ecd(9S) S:e€d(S)

VeV > x(e)<a-b, (x(e))

ecd({v})

(2(v)) > z()b, <1 ()

v

x(e),a € R z(v),y(S) € Rxg

In the online variant of the problem, G and the degree bounds are known in
advance, however, the demands are given one by one. Upon the arrival of the 7
demand, the online algorithm needs to output a subgraph H; that satisfies all the
demands seen so far. The output subgraph can only be augmented, i.e., for every
Jj <1, H; C H;. The competitive ratio of an online algorithm is then defined as the
worst case ratio of max, ¢y (v)/OPT over all possible demand sequences where H is

the final output of the algorithm.

4.2 Online Degree-Bounded Steiner Forest

Consider an arbitrary online step where a new demand (s,t) arrived. Let H
denote the online output of the previous step. In order to augment H for connecting
s and ¢, one can shortcut through the connected components of H. We say an edge
e = (u,v) is an extension edge w.r.t. H, if u and v are not connected in H. Let
P denote an (s,t)-path in G. The extension part P* of P is defined as the set of

extension edges of P. Observe that augmenting H with P* satisfies the demand

25

(s,t). For a vertex v, we define (},(v) = £y (v) + 2/b, to be the uptick load of v.
We slightly abuse the notation by defining ¢};(P*) = max,ey (p+) {f;(v) as the uptick
load of P*, where V(P*) is the set of endpoints of edges in P*.

The greedy algorithm (GA) starts with an empty subset H. Upon arrival of
the i-th demand (s;,1;), we find a path P; with smallest uptick load ¢};(P;) where

(2

P is the extension part of ;. We break ties in favor of the path with a smaller
number of edges. Note that the path P; can be found efficiently using Dijkstra-like
algorithms. We define 7; = ¢},(P;) to be the arrival threshold of the i-th demand.

We satisfy the new demand by adding P/ to the edge set of H (see Algorithm 1).

4.2.1 Analysis

We now use a dual-fitting approach to show that GA has an asymptotically
tight competitive ratio of O(log(n)). In the following we use GA to also refer to
the final output of our greedy algorithm. We first show several structural properties
of GA. We then use these combinatorial properties to construct a family of feasible
dual vectors for . We finally show that there always exists a member of this family
with an objective value of at least a 1/0O(log(n)) fraction of the maximum load of
a vertex in GA. This in turn proves the desired competitive ratio by using weak
duality.

For a real value r > 0, let I'(r) denote the set of vertices with ££,(v) > r. Let
D(r) denote the indices of demands i for which the arrival threshold 7; is at least

r. For a subgraph X, let CC(X) denote the collection of connected components

26

Algorithm 1 Online Degree-Bounded Steiner Forest
Input: A graph G, and an online stream of demands (s1, 1), (s2,t2),

Output: A set H of edges such that every given demand (s;,?;) is connected via
H.

Offline Process:
1: Initialize H = @.
Online Scheme; assuming a demand (s;, ¢;) is arrived:
1: Compute P, a (s;,t;)-path with the smallest uptick load ¢};(P;) in its extension

part.

e Shortcut the connected components of H by replacing the edges of a com-

ponent with that of a clique.

e In the resulting graph, define the distance of a vertex v from s; as the

minimum uptick load of a (s;, v)-path.

e Find P, by evoking a Dijkstra-like algorithm according to this notion of

distance.

2 Set H=H U P;.

of X. For ease of notation, we may use the name of a subgraph to denote the set
of vertices of that subgraph as well. Furthermore, for a graph X and a subgraph
Y C X, let X\ Y denote the graph obtained from X by removing the vertices of Y.

Recall that S is the collection of subsets that separate the endpoints of at

least one demand. The following lemma, intuitively speaking, implies that I'(r)

27

well-separates the endpoints of D(r).
Lemma 4.1. For any threshold r > 0, we have |[CC(G\ I'(r))NS| > |D(r)| + 1.

Proof. For a vertex v € G\ I'(r) we use CC(v) to denote its connected component.
Observe that, since the endpoints of demands are nodes with infinite degree bound,
the endpoints are not contained in I'(r), and, hence, are in G \ I'(r).

We construct a graph F' that has one node for every connected component in
G\ I'(r) that contains an endpoint of a demand in D(r). Edges in F' are defined
as follows. For every demand i € D(r) between s; and t;, we add an edge that
connects the components CC(s;) and CC(¢;). In the following we argue that F' does
not contain cycles. This gives the lemma since in a forest |D(r)|+ 1 = |Ep|+1 <
Vel < |CCG\T(r) NS,

Assume for contradiction that the sequence (ej,...,€; ,), k > 2 forms a
(minimal) cycle in F', where e;; corresponds to the demand between vertices s;; and
ti;. Assume wlog. that e;_, is the edge of the cycle for which the corresponding
demand appears last, i.e., 15—y > %; for every j < k. Let H denote the online solution
at the time of arrival of the demand 7;_;. We can augment H to connect each ti;
t0 84,1 moass 0 < J <k — 1 without using any node from I'(r), since these nodes are
in the same component in G \ I'(r). But then we have a path P between s;, , and

t and the extension part P* does not contain any vertex from I'(r). This is a

lg—1

contradiction since the arrival threshold for the demand ¢;_; is at least r. O

Lemma 4.1 shows that cutting I'(r) highly disconnects the demands in D(r).

Indeed this implies a bound on the toughness of the graph. Toughness, first defined

28

by Chvétal [Chv73] and later generalized by Agrawal et al. [AKR91], is a measure
of how easy it is to disconnect a graph into many components by removing a few
vertices. More formally, the toughness of a graph is defined as min ycy % For
the spanning tree variant of the problem, it is not hard to see that OPT'is at least the
reciprocal of toughness. Although it is more involved, we can still establish a similar
relation for the non-uniform Steiner forest problem (see Lemma 4.3). However, first
we need to show a lower bound on the number of demands separated by T'(r).

We establish a lower bound for |D(r)| with respect to the load of vertices in
['(r). For any r,b > 0 we define T'y(r) := {€fx(v) > 7 A b, > b}, as the set of nodes
with degree bound at least b that have uptick load at least r in the final online
solution. We further define

excess(r, b) = Z (degGA(U) — [rby] + 2) :

vElL(r)

which sums the (absolute) load that nodes in T'y(r) receive after their uptick load

became r or larger. The following lemma relates |D(r)| to excess(r,b).
Lemma 4.2. For any r,b > 0, excess(r,b) < 2|D(r)| + 3|T%(v)].

Proof. Consider some online step i. Let H denote the output of the previous
step. Let P be the extension part of the path selected by GA and let V(P;)
denote the endpoints of edges of P7. Since in GA we break ties in favor of the
path with the smaller number of edges, we can assume that the path does not go
through a connected component of H more than once, i.e., for every C' € CC(H),

V(P nCl<2.

29

Consider the variable quantity 0(r,b) := Zv:f}}(v)ZrAbvzb(degH<v) — [rby] + 2)
throughout the steps of GA where H denotes the output of the algorithm at every
step. Intuitively, at each step d(r, b) denotes the total increment in degrees of those
vertices in I'y(r) that already reached uptick load r. In particular, at the end of the
run of GA, §(r,b) = excess(r,b).

Now suppose at step ¢ adding the edges P to H increases 6(r,b) by ¢;. There
are two reasons for such an increase. On the one hand, if the demand ¢ is from D(r)
it may simply increase degy(v) for some node with uptick load at least r. On the
other hand also if the demand is not from D(r) it may cause a node to increase its
uptick load to r in which case it could contribute to the above sum with at most 1
(in a step the degree may increase by 2; the first increase by 1 could get the uptick
load to > r and the second increase contributes to the sum).

Clearly increases of the second type can accumulate to at most |[[',(r)]. In
order to derive a bound on the first type of increases recall that we assume that
endpoints of demands are distinct vertices with degree one and thus s; and t; are
outside any connected component of H. Since V(P}) contains at most two vertices
of a connected component of H, we can assert that the path selected by GA is
passing through at least ¢;/2 components of H that contain some vertices of I';(r).
Hence, after adding P; to the solution, the number of connected components of the
solution that contain some vertices of I'y(r) decreases by at least (¢;—2)/2. However,

throughout all the steps, the total amount of such decrements cannot be more than

30

the number of vertices in I'y(r). Therefore

excess(r, b) Z q; + Z i

1€D(r) i¢D(r)
=2[D(r)|+ Y (g —2) +[To(r)]
1€D(r)

<2|D(r)| + 3w (r)] ,
and the lemma follows. O

Let A > 0 denote the minimum degree bound of a vertex with non-zero degree
in an optimal solution. Note that this definition implies that OPT > 1/A. Indeed,
replacing A with one in the following would make the arguments slightly simpler.
However, by doing so we incur an additive log(n) term in the final result which can
be arbitrary far from OPT. Therefore it is necessary to employ A in the analysis.
For a set of vertices I, let b(I') = >~ _b,. We now describe the main dual-fitting

argument for bounding the maximum load in GA.
Lemma 4.3. For any r > 0, |D(r)|/b(Ta(r)) < OPT.

Proof. Let G denote the graph obtained from G by removing vertices with degree
bound below A. Similarly, let Sa denote the collection of sets that separate a
demand in Gao. Consider a slightly modified dual program D defined on G and
Sa, i.e., we obtain D from the original dual program by removing all vertices with
degree bound below A. We note that the objective value of a dual feasible solution
for D is still a lower bound for OPT. In the remainder of the proof, we may refer
to DA as the dual program. Recall that in a dual solution, we need to define a dual
value y(5) for every cut S € Sa such that for every edge e = (u,v) the total value

31

for cuts containing e does not exceed z(u) + z(v). On the other hand, > z(v)b,
cannot be more than one.

For a real value r > 0, we construct a dual vector (y,,z,) as follows. For
every v € I'a(r), set z,.(v) = 1/b(I'a(r)); for other vertices set z,(v) = 0. For every
component S € CC(Ga \ I'a(r)) N Sa, set y,.(S) = 1/b(Ca(r)); for all other sets
set y,(S) = 0. We prove the lemma by showing the feasibility of the dual vector
(v, 2,) for Da.

Consider an arbitrary component C' € CC(G\I'(r)). By definition, C separates
at least one demand. Let ¢ be such a demand and let ¢; € C' denote an endpoint of it.
Removing vertices with degree bound below 1/A from C' may break C' into multiple
smaller components. However, an endpoint of a demand has degree bound infinity,
and, hence, the component that contains ¢; belongs to Sa. Therefore | CC(G\I'(r))N
S| < | CC(Ga\T'A(r))NSal; which by Lemma 4.1 leads to | CC(GA\T'a(7))NSa| >

|D(r)| + 1. Therefore the dual objective for (y,,z,) is at least

B 1 [D(r)| +1
> vlS) =) b(Ta(r)) = b(T'a(r))

SESA SeCC(Ga\l'A(r))NSA

Thus we only need to show that (y,,z,) is feasible for Program Da. First, by

construction we have

1
>z (b= Y m.bvzy

velA(T)

Now consider an arbitrary edge e = (u,v). If e does not cross any of the compo-
nents in CC(Ga \ Ta(r)), then 3 g 5 ¥-(S) = 0 and we are done. Otherwise,
> seess) Yr(S) = 1/b(I'a(r)). However, exactly one endpoint of e is in I'z(r). Thus
z,(u) + z,(v) = 1/b(I'a(r)), which implies that the dual vector is feasible. O

32

We now have all the ingredients to prove the main theorem.

Proof of Theorem 4.1: Let GA denote the final output of the greedy algo-
rithm. Let h denote the maximum load of a vertex in GA, i.e., h = max, {ga(v).
Furthermore, let ha = max,p,>a lea(v). In the following we first show that

ha < O(logn) - OPT. For this we use the folowing claim.

Claim 4.1. There exists an r > 0 such that excess(r,A) > ﬁ@g;ln/fﬁ -b(Ca(r)) —

ICa(r)]-

Proof. Recall that I'a(r) is the set of vertices with uptick load at least r in GA
and degree bound at least A. The function b(I'a(7)) is non-increasing with r since
for every r; < ro, ['a(r2) C Ta(ry). For r = 1/A, b(La(r)) < n(n+ 1)A as a node
with degree bound b, > (n + 1)A will have uptick load at most (n +1)/b, < 1/A,
and, hence, will not be in I'a(r). Also, 7 < ha implies b(I'a(r)) > A as there exists
a node with load ha in I'a(r) and this node has degree bound at least A.

We now partition the range of r (from 1/A to ha) into logarithmically many

intervals. We define the ¢-th interval by

Ulq) =

{r{1/A<r<ha A 29/A<bTa(r) <20 /AY},

for ¢ € {0,...,[logy((n + 1)n)]}. We further set 7(¢) = maxU(q) and r(q) =
min U(q), and call 7(¢) — r(q) the length of the g-th interval. Since there are only
2log, n + 3 possible choices for ¢ there must exist an interval of length at least
(ha —1/A)/(2logyn + 3).

33

Consider a node v that is contained in I'a(7) and, hence, also in I'a(r). This
node starts contributing to excess(r, A), once its uptick load reached r and con-
tributes at least until its uptick load reaches 7. Hence, the total contribution is at
least deg(T) — deg(r), where deg(7) and deg(r) denotes the degree of node v when

reaching uptick load 7 and r, respectively. We have

deg(r) — deg(r) = ([T, = 2) = ([zby] = 2) = (T =)by — 1.

Summing this over all nodes in I'a(7) gives

excess(r,A) > (T —r) - b(La(F)) — [Ta(7)]

> (7= 1) Wla(r) = [La(r)
> R Es) - s

where the second inequality uses the fact that |[TaA(T)] < |[Ta(r)| < [Ta(7)|/2. O

Claim 4.2. ha < (24log, n + 37)OPT.

Proof. If we use the r from the previous claim and solve for ha we obtain

excess(r,A) +Ta(r) 1

ha < (4logyn+6) -

b(Ta(r)) A
Lemma 4.2

1 1
< :)+ =
< (41og, 1 + 6) <QOPT+ 4A) + 5

Lemma 4.5 and b(T'a(r)) > A|Ta(r)]
< (24logyn + 37) - OPT

OPT > 1/A .

34

a

We now bound the maximum load h in terms of the restricted maximum load
ha. Consider a vertex v* with maximum load lga(v*) = h. If b« > A then ha = h
and we are done. Otherwise consider the last iteration ¢ in which the degree of v* is
increased in the solution. Let H denote the output of the algorithm at the end of
the previous iteration ¢ — 1. The degree of v* in the online solution is increased by
at most two at iteration i. Hence h < (£ (v*) < 7.

Recall that in our greedy algorithm, 7; is the minimum uptick load of a path
that satisfies the new demand. Let P denote a path that connects s; and t; in an
optimal solution. Recall that by the definition, b, > A for every vertex v of P. For

every vertex v in P we have

2
Ti S EE(U) S hA + b_ EH(U) § KGA(U) S hA
< ha+ 2 b, > A
> A A v Z
< ha + 20PT OPT > 1/A
< O(logn) - OPT by the above claim

Therefore leading to h < O(logn) - OPT.

4.3 An Asymptotically Tight Lower Bound

In the following we show a lower bound for
ONLINE DEGREE-BOUNDED STEINER TREE. Consider a graph G = (X W Z, F),

35

€ €r—2

Figure 4.1: Existence of a cycle implies that of a path with low uptick load in its extension

part.

with |Z| = 2° and | X]| = (2;). For every pair {z1, 22} of nodes from Z there exists
an edge {z1, 22} € E and a node x € X that is connected to z; and z. An arbitrary
node from Z acts as root for the Steiner tree problem.

For a node z € Z, an algorithm A, and a request sequence o (consisting of
nodes from X') we use deg, ,(z) to denote the number of neighbors of 2z among all
nodes from X in the Steiner tree obtained when running algorithm A on request
sequence ¢. Similarly, we use deg’y ,(z) to denote the number of those neighbors of
z that also appear in . Note that deg(:) and deg'(-) ignore edges between nodes
from Z as an algorithm (online or offline) can simply connect all nodes in Z in a

cycle which increases the degree of any node by only 2.

Lemma 4.4. Fiz a possibly randomized online algorithm A. For any subset S C Z,
|S| = 2%, 0 < s < /{ there exists a request sequence g consisting of terminals from

X s.t.

36

e for a node x € og both its neighbors in G are from set S;
o there exists a node z* € S with E[deg), ,(2*)] > s/2;

e there exists an offline algorithm OFF for servicing requests in o with

maXZGS{degOFF,a(Z)} <1, and degOFF,U(Z> =0 forz € (Z\ S)U{z"}.

Proof. We prove the lemma by induction over s. The base case s = 0 holds
trivially when choosing the empty request sequence. For the induction step consider
an arbitrary subset S C Z with |S| = 257!, Partition S into two disjoint subsets S;
and Sy of cardinality 2° each.

Let o1 be the request sequence that exists due to induction hypothesis for set
S1. Hence, there is a node 2} € Sy with E[deg)y ,, (2])] > s/2. Now, let A behave
like algorithm A after it already received a request sequence oy (hence, it starts with
all edges that are chosen when running A on oq; note, however, that degkm(-) only
takes into account edges incident to nodes from o5). Due to induction hypothesis for
A and set S, there exists a request sequence oy such that E[degkm(z;)] > s/2 for
anode z3 € Sy. Hence, the request sequence o = o o 0y fulfills E[deg), ,(2})] > 5/2
and E[deg', ,(23)] > s/2.

We extend the request sequence by appending the node x that is connected to
27 and z3 in G. After serving the request one of the edges {z, 21 } or {x, 22} must be
chosen with probability at least 1/2 by A. Hence, afterwards either E[deg; ,(2])] or
E[deg' 04, (23)] must be at least (s+ 1)/2.

It remains to argue that there exists a good offline algorithm. Combining the
offline algorithms OFF; and OFF, for o; and o5 gives an offline algorithm for o, 0oy

37

that has max.{degopr s 00,(2)} < 1 and degopp 4,00,(2)} = 0 for z ¢ 51 U Sy and
for z € {z],25}. Now, when the node x connected to z] and zj is appended to the
request sequence the offline algorithm can serve the request by either buying edge

{z, 21} or {z, 22}, and can therefore gurantee that z* (2, or z) has degree 0. O

Proof of Theorem 4.2: Choosing s = logn in the above lemma gives our lower

bound. O

38

Chapter 5: Online Weighted Degree-Bounded Steiner Networks

5.1 Introduction

Degree-bounded network design problems comprise an important family of net-
work design problems since the eighties. Aside from various real-world applications
such as vehicle routing and communication networks [BV95, OP05, Vof892], the fam-
ily of degree-bounded problems has been a testbed for developing new ideas and
techniques. The problem of degree-bounded spanning tree, introduced in Garey and
Johnson’s Black Book of NP-Completeness [MD79], was first investigated in the
pioneering work of Fiirer and Raghavachari [FR90]. In this problem, we are re-
quired to find a spanning tree of a given graph with the goal of minimizing the
maximum degree of the vertices in the tree. Let b* denote the maximum degree
in the optimal spanning tree. Fiirer and Raghavachari give a parallel approxi-
mation algorithm which produces a spanning tree of degree at most O(log(n)b*).
This result was later generalized by Agrawal, Klein, and Ravi [AKR91] to the
case of degree-bounded Steiner tree (DEGREE-BOUNDED STEINER TREE) and de-
gree bounded Steiner forest (DEGREE-BOUNDED STEINER FOREST) problem. In
DEGREE-BOUNDED STEINER TREE, given a set of terminal vertices, we need to

find a subgraph of minimum maximum degree that connects the terminals. In

39

the more generalized DEGREE-BOUNDED STEINER FOREST problem, we are given
pairs of terminals and the output subgraph should contain a path connecting
each pair. Fiirer and Raghavachari [FR94] significantly improved the result for
DEGREE-BOUNDED STEINER FOREST by presenting an algorithm which produces a
Steiner forest with maximum degree at most b* + 1.

The study of DEGREE-BOUNDED STEINER TREE and
DEGREE-BOUNDED STEINER FOREST was the starting point of a very pop-
ular line of work on various degree-bounded network design problems;
e.g. [MRS'98, Nutl12, LS13, KKN13, EV14] and more recently [FR12, EV14].
One particular variant that has been extensively studied was initiated by
Marathe et al. [MRST98]: In the edge-weighted degree-bounded spanning tree
problem, given a weight function over the edges and a degree bound b, the goal
is to find a minimum-weight spanning tree with maximum degree at most b. The
initial results for the problem generated much interest in obtaining approximation
algorithms for the edge-weighted degree-bounded spanning tree problem [CRRT09,
CRRT06, Goe06, KKRR04, KR00, KR05, LNSS09, Rag96, RMR*01, RS06]. The
groundbreaking results obtained by Goemans [Goe06] and Singh and Lau [SLO7]
settle the problem by giving an algorithm that computes a minimum-weight
spanning tree with degree at most b + 1. Singh and Lau [LS13] generalize their
result for the edge-weighted Steiner tree (EW-DB-ST) and edge-weighted Steiner
forest (EW-DB-SF') variants. They design an algorithm that finds a Steiner forest
with cost at most twice the cost of the optimal solution while violating the degree

constraints by at most three.

40

Despite these achievements in the offline setting, it was not known whether
degree-bounded problems are tractable in the online setting. The online counter-
parts of the aforementioned Steiner problems can be defined as follows. The under-
lying graph and degree bounds are known in advance. The demands arrive one by
one in an online manner. At the arrival of a demand, we need to augment the solu-
tion subgraph such that the new demand is satisfied. The goal is to be competitive
against an offline optimum that knows the demands in advance.

Recently, Dehghani et al. [DEHL16] explore the tractability of the Online
DEGREE-BOUNDED STEINER FOREST problem by showing that a natural greedy
algorithm produces a solution in which the degree bounds are violated by at most a
factor of O(logn), which is asymptotically tight. They analyze their algorithm using
a dual fitting approach based on the combinatorial structures of the graph such as
the toughness® factor. Unfortunately, they can also show that greedy methods are
not competitive for the edge-weighted variant of the problem. Hence, it seems
unlikely that the approach of [DEHLI16] can be generalized to EW-DB-SF.

The online edge-weighted Steiner connectivity problems (with no bound on
the degrees) have been extensively studied in the last decades. Imase and
Waxman [IW91] use a dual-fitting argument to show that the greedy algorithm
has a competitive ratio of O(logn), which is also asymptotically tight. Later
the result was generalized to the EW SF variant by Awerbuch et al. [AABO4]

and Berman and Coulston [BC97]. In the past few years, various primal-dual

!The toughness of a graph is defined as minxcy %; where for a graph H, CC(H)

denotes the collection of connected components of H.

41

techniques have been developed to solve the more general node-weighted vari-
ants [AAAT09,NPS11,HLP13], prize-collecting variants [QW11, HLP14], and multi-
commodity buy-at-bulk [CEKP15]. These results are obtained by developing various
primal-dual techniques [AAA 09, HLP13] while generalizing the application of com-
binatorial properties to the online setting [NPS11, HLP14, CEKP15]. In this thesis
however, we develop a primal approach for solving bounded-frequency mized pack-
ing/covering integer programs. We believe this framework would be proven useful

in attacking other online packing and covering problems.

5.1.1 Our Results and Techniques

In this thesis, we consider the online Steiner tree and Steiner forest problems
at the presence of both edge weights and degree bounds. In the Online EW-DB-SF
problem, we are given a graph G = (V, E') with n vertices, edge-weight function w,
degree bound b, for every v € V| and an online sequence of connectivity demands

(siyti). Let wepe denote the minimum weight subgraph which satisfies the degree

maxe w(e)

bounds and connects all demands. Let p = —— o w(d)”

Theorem 5.1. There exists an online deterministic algorithm which finds a sub-
graph with total weight at most O(log® n)Wope while the degree bound of a vertex is
violated by at most a factor of O(log®(n)log(np)).

If one favors the degree bounds over total weight, one can find a subgraph with

degree-bound violation O(log%n)éﬁi’;&;)) and total cost O(log®(n) légi()gg)zzj))wopt.

We note that the logarithmic dependency on p is indeed necessary. It follows

42

from the result of [DEHL16] that the competitive ratio of any algorithm is either
Q(n) or Qlog p).

Our technical contribution for solving the EW-DB-SF problem is twofold.
First by exploiting a structural result and massaging the optimal solution, we show
a formulation of the problem that falls in the restricted family of bounded-frequency
mized packing/cover IPs, while losing only logarithmic factors in the competitive
ratio. We then design a generic online algorithm with a logarithmic competitive
ratio that can solve any instance of the bounded-frequency packing/covering IPs.

In what follows, we describe our results in detail.

5.1.1.1 Massaging the optimal solution

Initiated by work of Alon et al. [AAAT09] on online set cover, Buchbinder and
Naor developed a strong framework for solving packing/covering LPs fractionally
online. For the applications of their general framework in solving numerous online
problems, we refer the reader to the survey in [BN09]. Azar et al. [ABFP13] gener-
alize this method for the fractional mized packing and covering LPs. The natural
linear program relaxation for EW-DB-SF,| commonly used in the literature, is a
special case of mixed packing/covering LPs: one needs to select an edge from every
cut that separates the endpoints of a demand (covering constraints), while for a
vertex we cannot choose more than a specific number of its adjacent edges (packing
constraints). Indeed, one can use the result of Azar et al. [ABFP13] to find an

online fractional solution with polylogarithmic competitive ratio. However, doing

43

the rounding in an online manner seems very hard.

Offline techniques for solving degree-bounded problems often fall in the cate-
gory of iterative and dependent rounding methods. Unfortunately, these methods
are inherently difficult to adapt for an online settings since the underlying fractional
solution may change dramatically in between the rounding steps. Indeed, this might
be the very reason that despite many advances in the online network design paradigm
in the past two decades, the natural family of degree-bounded problems has remained
widely open. In this thesis, we circumvent this by reducing EW-DB-ST to a novel
formulation beyond the scope of standard online packing/covering techniques and
solving it using a new online integral approach.

The crux of our IP formulation is the following structural property: Let (s;,t;)
denote the i demand. We need to augment the solution @;_; of previous steps
by buying a subgraph that makes s; and ¢; connected. Let G; denote the graph
obtained by contracting the pairs of vertices s; and ¢; for every j < 4. Note that any
(s; — t;)-path in G; corresponds to a feasible augmentation for @); ;. Some edges in
G; might be already in ();_; and therefore by using them again we can save both on
the total weight and the vertex degrees. However, in Section 5.2 we prove that there
always exists a path in GG; such that even without sharing on any of the edges in G;
and therefore paying completely for the increase in the weight and degrees, we can
approximate the optimal solution up to a logarithmic factor. This in fact, enables
us to have a formulation in which the covering constraints for different demands
are disentangled. Indeed, we only have one covering constraint for each demand.
Unfortunately, this implies that we have exponentially many variables, one for each

44

possible path in GG;. This may look hopeless since the competitive factors obtained
by standard fractional packing/covering methods introduced by Buchbinder and
Naor [BN09] and Azar et al. [ABFP13], depend on the logarithm of the number of
variables. Therefore we come up with a new approach for solving this class of mixed

packing/covering integer programs (IP).

5.1.1.2 Bounded-frequency mixed packing/covering IPs

We derive our result for EW-DB-ST by demonstrating a new technique for
solving mixed packing/covering integer programs. We believe this approach could be
applicable to a broader range of online problems. The integer program [IP1 describes
a general mixed packing/covering IP with the set of integer variables x € Z% and a.
The packing constraints are described by a m x n non-negative matrix P. Similarly,
the ¢ x n matrix C' describes the covering constraints. The covering frequency of a
variable x; is defined as the number of covering constraints in which x; has a positive
coefficient. The covering frequency of a mixed packing/covering program is defined

as the maximum covering frequency of its variables.

minimize a (IP1)

s.t. Px<qa .

In the online variant of mixed packing and covering IP, we are given the packing

45

constraints in advance. However the covering constraints arrive in an online manner.
At the arrival of each covering constraint, we should increase the solution x such
that it satisfies the new covering constraint. We provide a deterministic algorithm

for solving online mixed packing/covering IPs.

Theorem 5.2. Given an instance of the online mized packing/covering IP, there
exists a deterministic integral algorithm with competitive ratio O(klogm), where m

is the number of packing constraints and k is the covering frequency of the IP.

We note that the competitive ratio of our algorithm is independent of the
number of variables or the number of covering constraints. Indeed, there can be
exponentially many variables.

Our result can be thought of as a generalization of the work of Aspnes et
al. [AAFT97] on virtual circuit routing. Although not explicit, their result can
be massaged to solve mixed packing/covering IPs in which all the coefficients are
zero or one, and the covering frequency is one. They show that such IPs admit a
O(log(m))-competitive algorithms. Theorem 5.2 generalizes their result to the case
with arbitrary non-negative coefficients and any bounded covering frequency.

We complement our result by proving a matching lower bound for the com-
petitive ratio of any randomized algorithm. This lower bound holds even if the

algorithm is allowed to return fractional solutions.

Theorem 5.3. Any randomized online algorithm A for integral mized packing and
covering is SU(klogm)-competitive, where m denotes the number of packing con-
straints, and k denotes the covering frequency of the IP. This even holds if A is

46

allowed to return a fractional solution.

As mentioned before, Azar et al. [ABFP13] provide a fractional algorithm
for mixed packing/covering LPs with competitive ratio of O(logmlogd) where d
is the maximum number of variables in a single constraint. They show an almost
matching lower bound for deterministic algorithms. We distinguish two advantages

of our approach compared to that of Azar et al:

e The algorithm in [ABFP13| outputs a fractional competitive solution which
then needs to be rounded online. For various problems such as Steiner connec-
tivity problems, rounding a solution online is very challenging, even if offline
rounding techniques are known. Moreover, the situation becomes hopeless if
the integrality gap is unbounded. However, for bounded-frequency IPs, our
algorithm directly produces an integral competitive solution. Thus it does
not depend on rounding methods, and is applicable to problems with large
integrality gap, or the problems for which it is shown that rounding methods
do not preserve any approximation guarantee, and as such, the traditional

approach fails.

e Azar et al. find the best competitive ratio with respect to the number of
packing constraints and the size of constraints. Although these parameters
are shown to be bounded in several problems, in many problems such as con-
nectivity problems and flow problems, formulations with exponentially many
variables are very natural. Our techniques provide an alternative solution with

a tight competitive ratio, for formulations with bounded covering frequency.

47

5.1.2 Preliminaries

Let G = (V, E) be an undirected graph of size n (|V| =n). Let w: E — Z+,
be a function denoting the edge weights. For a subgraph H C G, we define w(H) :=
> ecnm) W(e). For every vertex v € V, let b, € Zo denote the degree bound of
v. Let degy(v) denote the degree of vertex v in subgraph H. We define the load
lg(v) of vertex v w.r.t. H as degy(v)/b,. In DEGREE-BOUNDED STEINER FOREST
we are given graph G, degree bounds, and k connectivity demands. Let o; denote
the i-th demand. The i-th demand is a pair of vertices o; = (s;,t;), where s;,t; € V.
In DEGREE-BOUNDED STEINER FOREST the goal is to find a subgraph H C G
such that for each demand o;, s; is connected to t; in H, for every vertex v € V|
lg(v) < 1, and w(H) is minimized. In this thesis without loss of generality we
assume the demand endpoints are distinct vertices with degree one in G and degree
bound infinity.

In the online variant of the problem, we are given graph G and degree bounds
in advance. However the sequence of demands are given one by one. At arrival of
demand o;, we are asked to provide a subgraph H;, such that H; ; C H; and s; is
connected to t; in H;.

The following integer program is a natural mixed packing and covering integer
program for EW-DB-SF. Let S denote the collection of subsets of vertices that
separate the endpoints of at least one demand. For a set of vertices S, let §(5)
denote the set of edges with exactly one endpoint in S. In SF_IIP, for an edge e,

z. = 1 indicates that we include e in the solution while z, = 0 indicates otherwise.

48

The variable a indicates an upper bound on the violation of the load of every vertex
and an upper bound on the violation of the weight. The first set of constraints
ensures that the load of a vertex is upper bounded by a. The second constraint
ensures that the violation for the weight is upper bounded by «. The third set of
constraints ensures that the endpoints of every demand are connected. Here we
assume Wept is known to the algorithm, although this can be waived by standard

doubling techniques.

minimize « . (SF_IP)
wev - o oa < (5.1)
v — . .
b Te < @
ecd({v})
1
w(e)re < a . (5.2)
Wopt eck
VSCS > me>1. (5:3)
e€d(S)

z. € {0,1},a € Z~g .

5.1.3 Overview of the Chapter

We begin Section 5.2 by providing a bounded frequency IP for EW-DB-SF.
The IP is not a proper formulation of the problem, however, we can show that one
can map feasible solutions of EW-DB-SF to feasible solutions of the IP without
increasing the cost too much. In Section 5.3 we provide a deterministic algorithm for
online bounded frequency mixed packing/covering IPs. We also provide a matching
lower bound for the competitive ratio of any randomized algorithm. Finally, in

Section 5.4 we merge our techniques to obtain online polylogarithmic-competitive

49

algorithms for EW-DB-SF.

5.2 Finding the Right Integer Program

In this section we design an online mixed packing and covering integer pro-
gram for EW-DB-SF. We show this formulation is near optimal, i.e. any
f—approximation for this formulation, implies an O(f log? n)-approximation for
EW-DB-SF. In Section 5.4 we show there exists an online algorithm that finds
an O(logn)-approximation solution for this IP and violates degree bounds by
O(log® nlog wep), where wey; denotes the optimal weight.

First we define some notations. For a sequence of demands o =
((s1,t1), ..., (Sk, tx)), we define R,(i) to be a set of ¢ edges, connecting the end-

points of the first ¢ demands. In particular R, (i) := U;Zl

e(sj,t;), where e(s;,t;)
denotes a direct edge from s; to t;. Moreover, we say subgraph H; satisfies the con-
nectivity of demand o; = (s;,t;), if s; and t; are connected in graph H; U R,(i — 1).
Let H; denote the set of all subgraphs that satisfy the connectivity of demand o;. In
PC_IIP variable o denotes the violation in the packing constraints. Furthermore for
every subgraph H C G and demand o;, there exists a variable ', € {0,1}. z%, =1
indicates we add the edges of H to the existing solution, at arrival of demand o;.
The first set of constraints ensure the degree-bounds are not violated more than «.

The second constraint ensures the weight is not violated by more than a. The third

set of constraints ensure the endpoints of every demand are connected.

20

minimize « . (PC_IP)

1 .
YoeV b Z Z degy(v)ay < a . (5.4)
i=1 HCG
1 & |
w(H)zy < a . (5.5)
oPt 1 gca
Vo, d ap =1 (5.6)
HEH;

VHCG,1<i<k xye€{0,1} .

We are considering the online variant of the mixed packing and covering pro-
gram. We are given the packing Constraints (5.4) and (5.5) in advance. At arrival
of demand o;, the corresponding covering Constraint (5.6) is added to the program.
We are looking for an online solution which is feasible at every online stage. More-
over the variables xy should be monotonic, i.e. once an algorithm sets xg = 1 for
some H, the value of zy is 1 during the rest of the algorithm. Figure (5.1) illus-
trates an example which indicates the difference between the solutions of PC_IP and
SF _TP.

Let popt and lopt denote the optimal solutions for PC_IP and SF_IP, respec-
tively. Lemma 5.1 shows that given an online solution for PC_IIP we can provide a

feasible online solution for SF_IIP of cost popt.

Lemma 5.1. Given a feasible solution {x, a} for PCIP, there exists a feasible

solution {x', a} for SF_IP.

o1

Figure 5.1: An example where every vertex has degree-bound 3 and every edge has
weight 1. The first demand is (v, v5) and the second demand is (vs, vg). The optimal
solution for SF_IP is a subgraph, say H, with the set of all edges and vertices, i.e.
H = G. However an optimal solution for PC_IP is: Two subgraphs H; for the first
request which has edges {e(v1, v2), e(v1,v4), e(vy, v5)} and Hy for the second request
which has edges {e(ve, v3),e(v4,vs), e(vy,v6)}. Note that w(H) = 5 and w(H;) +
w(Hjy) = 6, since we have edge e(v4, vs) in both Hy and Hy. Moreover the number of

edges incident with v, in the solution of PC_IP is 4, i.e. degy, (vs) + degy, (v4) = 4.

In the rest of this section, we show that we do not lose much by changing SF_IP
to PC_IP. In particular we show popt < O(log®n)lopt. To this end, we first define
the connective list of subgraphs for a graph G, a forest F', and a list of demands
o. We then prove an existential lemma for such a list of subgraphs with a desirable
property for any (G, F, o). With that in hand, we prove popt < O(log” n)lopt.

Given G, a list of demands o = ((s1,1), ..., (Sk, tx)), and a forest F' C G:

Definition 5.1. Let Q = (Q1,Q2, Q3, ..., Qx) be a list of k subgraphs of F. We say
Q is a connective list of subgraphs for (G, F, o) iff for every 1 < i < k there exists
no cut disjoint from @Q; that separates s; from t;, but does not separate any s; from

t; for j <u.

52

The intuition behind the definition of connective subgraphs is the following: If
@ is a connective list of subgraphs for an instance (G, F, o) then for every i we are
guaranteed that the union of all subgraphs Uélei connects s; to t;. In Lemma 5.2
we show for every (G, F, o), there exists a connective list of subgraphs for (G, F, o),

such that each edge of F appears in at most O(log? n) subgraphs of Q.

Lemma 5.2. Let G be a graph and F be a forest in G. If o is a collection of
k demands ((s1,t1),...,(Sk,tx)), then there exists a connective list of subgraphs
Q = (Q1,Qa,...,Qr) for (G, F,o) such that every edge of F appears in at most

31log? |V (F)| number of Q;’s.

Proof. Here we give a sketch of the proof of lemma; we refer the reader to the
full version for detailed proofs. We first prove a cost-minimization variant of the
lemma. Consider an arbitrary weight vector w : F' — R2%. We argue that there is a
connective list Q, such that >, w(Q;) < O(log® n)w(F). Let H; = (V, FUR,(i), w;)
denote a weighted graph for which w;(e) = w(e) for e € F, and w;(e) = 0 for
e € R,(i). Now we note that there is no cost-sharing among ;’s in the goal
>, w(Q;). Therefore the optimal choice for @); corresponds to the minimum-weight
(si,t;)-path in I{Ii_l. Hence, we need to analyze the cost of these greedy choices.
Awerbuch et al. [AAB96] showed that the greedy algorithm is indeed O(log® n)-
competitive for the edge-weighted Steiner forest problem. The standard greedy
algorithm is slightly different from the greedy process we discussed above. In the
greedy algorithm of Awerbuch et al., at time step ¢ we choose a minimum-cost (s;, t;)-

path in a graph in which there is a zero-cost edge between any pair of vertices in

93

the same connected component of the current solution; not just the (s;,t;) pairs of
the previous demands. However, in their analysis they only use the zero-cost edges
among the terminals of a previous demand. This is indeed not surprising since we
hardly have any control on the greedy choices other than the fact that they satisfy
the demands. Therefore the following claim follows from the result of Awebuch et

al.?:

Claim 5.1 (implicitly proven in Theorem 2.1 of [AAB96]). For any weight function

w defined over F', there exists a connective list) for which

S @(Q)) < Ollog? n)i(F)

)

However, Claim 5.1 is not enough for us. We need a solution in which every
edge is used at most O(log®n) times, not just in an amortized sense. Indeed we can
show that since there is a solution for every weight function, we can have a fractional
connective list @ in which every edge is used (fractionally) at most O(log®n) times.
This implies that we have a fractional connective list. Finally, we provide a rounding
argument which obtains an integral connective list by losing only a constant factor;
which completes the proof of lemma.

|

Finally, we can leverage Lemma 5.2 to show popt < O(log®n)lopt. This shows

2There is also a lower bound of Q(logn) for the competitive ratio of the greedy algorithm.
Closing the gap between this lower bound and the upper bound of O(log2 n) for EW Steiner forest

is an important open problem.

o4

we can use PC_IP as an online mixed packing/covering IP to obtain an online so-
lution for ONLINE EDGE-WEIGHTED DEGREE-BOUNDED STEINER FOREST losing a
factor of O(log®n).

In Section 5.4 we show this formulation is an online bounded frequency mixed
packing/covering IP, thus we leverage our technique for such IPs to obtain a

polylogarithmic-competitive algorithm for online EW-DB-SF.

5.3 Online Bounded Frequency Mixed Packing/Covering IPs

In this section we consider bounded frequency online mixed packing and cover-
ing integer programs. For every online mixed packing and covering IP with covering
frequency k, we provide an online algorithm that violates each packing constraint by
at most a factor of O(klogm), where m is the number of packing constraints. We
note that this bound is independent of the number of variables, the number of cov-
ering constraints, and the coefficients of the mixed packing and covering program.
Moreover the algorithm is for integer programs, which implies obtaining an integer
solution does not rely on (online) rounding.

In particular we prove there exists an online O(k log m)-competitive algorithm
for any mixed packing and covering IP such that every variable has covering fre-
quency at most k, where the covering frequency of a variable x, is the number of
covering constraints with a non-zero coefficient for x,.

We assume that all variables are binary. One can see this is without loss of

generality as long as we know every variable z, € {1,2,3,...,2/}. Since we can

95

replace x, by [variables y!,...,%. denoting the digits of x, and adjust coefficients
accordingly. Furthermore, for now we assume that the optimal solution for the given
mixed packing and covering program is 1. In Theorem 5.4 we prove that we can
use a doubling technique to provide an O(klogm)-competitive solution for online
bounded frequency mixed packing and covering programs with any optimal solution.
The algorithm is as follows. We maintain a family of subsets S. Initially S = 0.
Let S(j) denote S at arrival of Cj1. For each covering constraint Cjq, we find a
subset of variables S;;; and add S;;1 to §. We find S in the following way. For
each set of variables S, we define a cost function 7¢(S(j)) according to our current
S at arrival of Cj4;. We find a set S;;; that satisfies C;;; and minimizes 75(S(5)).

More precisely we say a set of variables S satisfies C}; if
) ZxTES Cjs1,2r > 1, where Cj41, denotes the coefficient of C;; for z,.

pPr <1

e For each packing constraint P, > ¢+

Now we add 5,41 to § and for every z, € Sj;1, we set , = 1. We note that
there always exists a set S that satisfies Cji;, since we assume there exists an
optimal solution with value 1. Setting S to be the set of all variables with value
one in an optimal solution which have non-zero coefficient in C} 4, satisfies Cj;.
It only remains to define 74(S(j)). But before that we need to define A;(S) and
F;(8(j)). For packing constraint P; and subset of variables S, we define A;(S) as

Ai(S) =3, cg +Pa. For packing constraint P; and S(j), let

Fi(S() == > AS) . (5.7)

SeS(5)

o6

Now let 75(S(5)) = Yo7, pfiSWI+AS) _ pF(SW) where p > 1 is a constant to be

1=

defined later.

Algorithm 2
Input: Packing constraints P, and an online stream of covering constraints

C,Cy,
Output: A feasible solution for online bounded frequency mixed packing/covering.
Offline Process:
1: Initialize S < 0.
Online Scheme; assuming a covering constraint Cj, is arrived:
1. Sjyq < argming{7s(S(j)) | S satisfies Cj41}.
2: for all z, € S;;; do

3 x, 1.

Let x* be an optimal solution, and x*(j) denote its values at online stage j.

We define G;(j) as
J
: Z Z L,

Now we define a potential function ®; for online stage j.

m

;=) p"E(y = Gilh) (5.9)

i=1
where p,y > 1 are constants to be defined later.

Lemma 5.3. There exist constants p and vy, such that ®; is non-increasing.

Proof. We find p and 7 such that ®;;; — ®; < 0. By the definition of ®,,

Qi — ;= plEU (g — Gy(j + 1)) = p" D (y = Gi()) (5.10)

i=1

o7

By EquatiOn (5’7)7 pF’L(S(J—’_l)) — sz(S(])) — sz(S(J))+A1(S) — pFl(S(])) Moreover by
Equation (5.8), (v = Gi(j + 1)) — (v = Gi(4)) = — 20,0150 27 Py, For simplicity
of notation we define B;(j + 1) :=>_ L1*P;,. Thus we can write Equation

r:Ciy1,>0 kL7

(5.10) as

by — D —Zp STy = Gi(j) = Bi(j +1)) = p"CD(y = Gi(j)) - (5.11)

=N (= Gi(5)) (pF SRS _

i=1

pril) — phSUTIIB;(j +1) Since Gi(j) > 0

<D A(phSIITAE) _ plEW)) — pREUEI By (5 4+ 1) Fy(S(j + 1)) > Fi(S()))

<3 A(pPHSITAS) _ pRSW)) _ RSO By 4 1) |
=1

Now according to the algorithm for each subset of variables S’ such that
> owes Ciri(x,) > 1, either 75(S(j)) < 75/(S(j)) or there exists a packing con-
straint P; such that A;(S") > 1. In B;(j + 1), we are considering variables z, such
that ¥ = 1, thus for every P;, B;(j + 1) < 1. Therefore setting S’ to be the set of
variables z, such that ¥ = 1 and Cj4;, > 0, we have 7¢(S(j)) < 75/(S(j)). Thus
S PREOIFAS) _ pRSH) < T GFSEI+BG+Y) _ pFASU). Therefore we can

rewrite Inequality (5.11) as
Cjy1— 5 < Z’Y SUN+Bi(G+1) _ pFi(S(j))) _ pFi(S(j))Bi(j +1) (5.12)

_ZPF(S N(ypPt) —y = Bi(j +1)) .

o8

We would like to find p and 7 such that ®; is non-increasing. We find p and v such

that for each packing constraint P;, yp%U+Y) —~ — B;(j 4 1) < 0. Thus

ypPUt) — oy < Bi(j + 1) Since 0 < B;(j +1) < 1 (5.13)
vpBi(j+1)—~v < Bi(j +1) By simplifying (5.14)
p<1+1/y. (5.15)

Thus if we set p < 14 1/7, ®; is non-increasing, as desired.]

Now we prove Algorithm 2 obtains a solution of at most O(klogm).

Lemma 5.4. Given an online bounded frequency mized packing covering IP with
optimal value 1, there exists a deterministic integral algorithm with competitive ratio
O(klogm), where m is the number of packing constraints and k is the covering

frequency of the IP.

Proof. By Lemma 5.3 for each stage j, ®;1; < ®;. Therefore ®; < &5 = ym.

Thus for each packing constraint P;,

PP SO (v — G4(5)) < ym . (5.16)
Thus,
Fi(S() « am < am) Since G;(7) <1 5.17
R T e D= 10
Thus we can conclude
Fi(8(5)) € O(logm) . (5.18)

By definition of F;(S(j)), Fi(S(J)) = Xsesiyy 2i(S) = Dses > cs 1P Since

each variable z, is present in at most k sets, +P; - x(j) < F;(S(j)) . Thus by

1
k
Inequality (5.18) Px(j) € O(klogm), which completes the proof. O

29

Finally we prove there exists an online O(klogm)-competitive algorithm for
bounded frequency online mixed packing and covering integer programs with any

optimal value.

Theorem 5.4. Given an instance of the online mized packing/covering IP, there
exists a deterministic integral algorithm with competitive ratio O(klogm), where m

15 the number of packing constraints and k is the covering frequency of the IP.

5.4 Putting Everything Together

In this section we consider the online mixed pack-
ing/covering formulation discussed in Section 5.2 for
ONLINE EDGE-WEIGHTED DEGREE-BOUNDED STEINER FOREST PC_IP.
In this section we show this formulation is an online bounded fre-
quency mixed packing/covering IP. Therefore we our techniques dis-
cussed in Section 5.3 to obtain a polylogarithmic-competitive algorithm for
ONLINE EDGE-WEIGHTED DEGREE-BOUNDED STEINER FOREST.

First we assume we are given the optimal weight w,p as well as degree bounds.

We can obtain the following theorem.

Theorem 5.5. Given the optimal weight wey,, there exists an online deterministic
algorithm which finds a subgraph with total weight at most O(log® n)Wope while the

degree bound of a vertex is violated by at most a factor of O(log®n).

Proof. By Lemma 5.1, given a feasible online solution for PC_IIP with violation
a, we can provide an online solution for SF_IP with violation a. Moreover, in

60

Section 5.2 we show that popt < O(log®n)lopt. Thus given an online solution for
PC_IP with competitive ratio f, there exists an O(flogn)-competitive algorithm
for ONLINE DEGREE-BOUNDED STEINER FOREST. We note that in PC_IP we know
the packing constraints in advance. In addition every variable x%; has non-zero
coefficient only in the covering constraint corresponding to connectivity of the i-th
demand endpoints, i.e. the covering frequency of every variable is 1. Therefore by
Theorem 5.4 there exists an online O(log m)-competitive solution for PC_IP, where
m is the number of packing constraints, which is n + 1. Thus there exists an online
O(log® n)-competitive algorithm for ONLINE DEGREE-BOUNDED STEINER FOREST.

This means the violation for both degree bounds and weight is of O(log®n). O

Finally if wep is not given, we show that by applying standard doubling tech-

niques one can prove Theorem 5.1 using the result shown above.

61

Chapter 6: Beating 1-1/e for Ordered Prophets

6.1 Introduction

Online auctions play a major role in modern markets. In online markets, infor-
mation about customers and goods is revealed over time. Irrevocable decisions are
made at certain discrete times, such as when a customer arrives to the market. One
of the fundamental and basic tools to model this scenario is the prophet inequality
and its variants.

In a prophet inequality instance we are given a sequence of distributions.
Iteratively, we draw a value from one of the distributions, based on a predefined
order. In each step we face two choices, either we accept the value and stop, or
we reject the value and move to the next distribution. The goal in this problem
is to maximize the expected value of the item selected. We say an algorithm for a
prophet inequality instance is an a-approximation, for o < 1, if the expectation of
the value picked by the algorithm is at least « times that of an optimum solution
which knows all of the values in advance.

Prophet inequalities were first studied in the 1970’s by Krengel and Suche-
ston [Ken87, KS77, KS78]. Hajiaghayi, Kleinberg and Sandholm [HKS07] studied

the relation between online auctions and prophet inequalities. In particular they

62

showed that algorithms used in the derivation of prophet inequalities can be reinter-
preted as truthful mechanisms for online auctions. Later Chawla, Hartline, Malec,
and Sivan [CHMS10a] used prophet inequalities to design sequential posted price
mechanisms whose revenue approximates that of the Bayesian optimal mechanism.

In the classical definition of the prophet inequality, the values can be drawn
from their distributions in an arbitrary (a.k.a. adversarial or worst) order. Assuming
an adversarial order, the problem has a 0.5 approximation algorithm which is tight.
Recently, Yan [Yanll] considered a relaxed version of this problem in which the
algorithm designer is allowed to pick the order of distributions (a.k.a. best order),
and provided a 1 — % approximation algorithm for this problem. Later, Esfandiari,
Hajiaghayi, Liaghat and Monemizadeh [EHLM15] showed that there exists a 1 — 1
approximation algorithm even when the distributions arrive in a random order. Both
results provided by Yan and Esfandiari et al. are not tight.

In this work we consider prophet inequalities in both best order and random
order settings and take steps towards providing tight approximation algorithms for
these problems. Particularly, we consider this problem assuming a large market
assumption (i.e. we have several copies of each distribution). Indeed, the large mar-
ket assumption is well-motivated in this context [BJNO7, DH09, EKM15, MSVV07,

MGZ12].

63

6.1.1 Our Contribution

First we consider the prophet inequality on a set of identical and independent
distributions (iid). The prophet inequality on iid distributions has been previously
studied by Hill and Kertz [HK82] in the 1980’s. Hill and Kertz provided an algorithm
based on complicated recursive functions. They proved a theoretical bound of 1 — %
on the approximation factor of their algorithm, and used a computer program to
show that their algorithm is a 0.745-approximation when the number of distributions
is n = 10000. They conjectured that the best approximation factor for arbitrarily

large n is 5 +11 Te 0.731. This conjecture remained open for more than three decades.

In this thesis we present a simple threshold-based algorithm for the prophet
inequality with n iid distributions. Using a nontrivial and novel approach we show
that our algorithm is a 0.738-approximation algorithm for large enough n, beating
the bound of %1/@ conjectured by Hill and Kertz. This is the first algorithm which
is theoretically proved to have an approximation factor better than 1 — é for this

problem. Indeed, beating the 1 — % barrier is a substantial work in this area [FV06,

FMMMO09]. The following theorem states our claim formally.

Theorem 6.1. There exists a constant number ng such that for every n > ng, there
exists a 0.738-approzimation algorithm for any prophet inequality instance with n

1id distributions.

Next, we extend our results to support different distributions. However, we
assume that we have several copies of each distribution. This can be reinterpreted
as a large market assumption. We say a multiset of independent distributions

64

{F,...,F,} is m-frequent if for each distribution F; in this multiset there are at
least m copies of this distribution in the multiset. We show that by allowing the
algorithm to pick the order of the distributions, there exists a 0.738-approximation
algorithm for any prophet inequality instance on a set of m-frequent distributions,

for large enough m. The following theorem states this fact formally.

Theorem 6.2. There exists a constant number mqy such that there exits a 0.738-
approximation best order algorithm for any prophet inequality instance on a set of

mo-frequent distributions.

Our next theorem shows that even in the random order setting one can achieve

a 0.738-approximation algorithm on m-frequent distributions, for large enough m.

Theorem 6.3. There exists a constant number cy such that there exits a 0.738-
approximation random order algorithm for any prophet inequality instance on a set

of (¢ log(n))-frequent distributions.

To conclude the presentation of our results we show that it is not possible to
extend our results to the worst order setting. The following theorem states this fact

formally.

Theorem 6.4. For any arbitrary m, there is a prophet inequality instance on a
set of m-frequent distributions such that the instance does not admit any 0.5 + -

approximation worst order algorithm.

65

6.1.2 Applications in Mechanism Design

The prophet inequality has numerous applications in mechanism design and
optimal search theory, so our improved prophet inequality for m-frequent distribu-
tions has applications in those areas as well. By way of illustration, we present here
an application to optimal search theory. In Weitzman’s [Wei79] “box problem”,
there are n boxes containing indepedent random prizes, vy, ..., v,, whose distribu-
tions are not necessarily identical. The cost of opening box i is ¢; > 0. A decision
maker is allowed to open any number of boxes, after which she is allowed to claim the
largest prize among the open boxes. The costs of the boxes, and the distributions of
the prizes inside, are initially known to the decision maker, but the value v; itself is
only revealed when box i is opened. A search policy is a (potentially adaptive) rule
for deciding which box to open next—or whether to stop—given the set of boxes
that have already been opened and the values of the prizes inside. Weitzman [Wei79]
derived the structure of the optimal search policy, which turns out to be wonderfully
simple: one computes an “option value” o; for each box ¢, satisfying the equation
E[max{0,v; — 0;}] = ¢;. Boxes are opened in order of decreasing o; until there is
some open box ¢ such that v; > o; for every remaining closed box j, then the policy
stops. Kleinberg, Waggoner, and Weyl [KWW16] presented an alternative proof of
this result which works by relating any instance of the box problem to a modified
instance in which opening boxes is cost-free, but the prize in box i is min{v;, o;}
rather than v;. The proof shows that when we run any policy on the modified in-

stance, its net value (prize minus combined cost) weakly improves, and that the net

66

value is preserved if the policy is non-exposed, meaning that whenever it opens a
box with v; > oy, it always claims the prize inside.

An interesting variant of the box problem arises if one constrains the decision
maker, upon stopping, to choose the prize in the most recently opened box, rather
than the maximum prize observed thus far. In other words, upon opening box 7 the
decision maker must irrevocably decide whether to end the search and claim prize
v;, or continue the search and relinquish v;. Let us call this variant the impatient
box problem. It could be interpreted as modeling, for example, the decision problem
that an employer faces when scheduling a sequence of costly job interviews in a
labor market where hiring decisions must be made immediately after the interview.
The factor 1 — % prophet inequality of Yan and Esfandiari et al. implies that if the
decision maker is allowed to choose the order in which to inspect boxes (or even if a
random order is used), the net value of the optimal impatient box problem policy is
at least 1— % times the net value of the optimal policy for the corresponding instance
of the original (non-impatient) box problem; for the proof of this implication, see
Corollary 3 and Remark 1 in [KWW16]. A consequence of Theorem 6.2 above is that
this ratio improves to 0.738 if the instance of the impatient box problem contains
sufficiently many copies of each type of box.

Our results also have applications to a recent line of work that employs prophet
inequalities to design posted-price mechanisms. In the standard posted-price setup,
a seller has a collection of resources to distribute among n buyers. The buyers’ values
are drawn independently from distributions that are known in advance to the seller.

The seller can use this distributional knowledge to set a (possibly adaptive) price on

67

the goods for sale. Buyers then arrive sequentially and make utility-maximizing pur-
chases. Hajiaghayi et al. [HKS07] noted the close connection between this problem
and the prophet inequality, with the price corresponding to a choice of threshold.
This has immediate implications for designing prices for welfare maximization, and
one can additionally obtain bounds for revenue by applying the prophet inequality
to virtual welfare [CHK07, CHMS10a]. There has subsequently been a significant
line of work extending this connection to derive posted-price mechanisms for broader
classes of allocation problems, such as matroid constraints [KW12], multi-item auc-
tions [Alall,CHMS10a] and combinatorial auctions [FGL15]. The result of Yan and
Esfandiari et al. [EHLM15] implies that for the original case of a single item for sale,
if the seller is allowed to choose the order in which the buyers arrive (or if they can
be assumed to arrive in random order), then a posted-price mechanism can obtain
expected welfare that is at least 1 — é times the expected welfare of the optimal
assignment. Theorem 6.2 implies that this ratio improves to 0.738 if the pool of
buyers contains sufficiently many individuals whose values are drawn from the same

distribution.

6.1.3 Other Related Work

The first generalization of the prophet inequality is the multiple-choice prophet
inequality [Ken87,Ken85, Ker86]. In the multiple-choice prophet inequality we are

allowed to pick k values, and the goal is to maximize the total sum of picked values.

Alaei [Alall] gives an almost tight (1 — \/klw)—approximation algorithm for the k-

68

choice prophet inequality (the lower bound is proved in Hajiaghayi, Kleinberg, and
Sandholm [HKS07]).

Prophet inequalities have been studied under complicated combinatorial struc-
tures such as matroid, polymatroid, and matching. Kleinberg and Weinberg [KW12]
consider matroid prophet inequalities, in which the set of selected values should be
an independent set of a predefined matroid. They give a tight 0.5-approximation
worst order algorithm for this problem. Later, Diitting and Kleinberg extended this
result to polymatroids [DK15]. More recently, Ehsani, Hajiaghayi, Kesselheim, and
Singla [EHKS17] present a 1 — 1/e-approximation algorithm for prophet secretary
in matroid and combinatorial auction settings.

Alaei, Hajiaghayi, and Liaghat study matching prophet inequalities [AHL 11,

AHL13,AHL12]. They extend the multiple-choice prophet inequality and give an al-

most tight (1— \/klw)—approximation worst order algorithm for any matching prophet
inequality instance, where k is the minimum capacity of a vertex.

Rubinstein considers the prophet inequalities restricted to an arbitrary
downward-closed set system [Rub16]. He provides an O(logn logr)-approximation
algorithm for this problem, where n is the number of distributions and r is the size

of the largest feasible set. Babaioff, Immorlica and Kleinberg show a lower bound

of QA" 1) for this problem [BIK07]. Prophet inequalities has also been studied
loglogn)

restricted to independent set in graphs [GHK™14].

69

6.2 IID Distributions

In this section we give a 0.738-approximation algorithm for prophet inequality
with iid items. Let us begin with some definitions. Assume that X;,..., X, are
iid random variables with common distribution function F'. For simplicity, assume
that F' is continuous and strictly increasing on a subinterval of R=°. An algorithm
based on a sequence of thresholds 61, ...,0, is the one that selects the first item k
such that X, > 0,.

Let 7 denote the stopping time of this algorithm, where 7 is n + 1 when
the algorithm selects no item. For simplicity suppose X, is a zero random vari-
able. The approximation factor of an algorithm based on 6, ...,60, is defined as
FE[X;]/F[max X;]. This factor captures the ratio between what a player achieves
in expectation by acting based on these thresholds and what a prophet achieves in
expectation by knowing all X;’s in advance and taking the maximum of them.

In Algorithm 3 we presents a simple oblivious algorithm for every n and dis-
tribution function F. Theorem 6.5 proves that this algorithm is at least 0.738-

approximation for large enough number of items.

Algorithm 3
Input: n iid items with distribution function F'.

1: Set a to 1.306 (root of cos(a) — sin(a)/a — 1).
2: Set 0; = F~'(cos(ai/n)/ cos(a(i — 1)/n)).

3: Pick the first item ¢ for which X; > 6,.

70

Theorem 6.5. For every € > 0 there exists a number n. (a function of € and
independent of n) such that for every n > n. Algorithm 3 for n items is at least

(1 — €)a-approximation where « = 1 — cos(a) ~ 0.7388.

In the following we walk you through the steps of the design of Algorithm 3 and
provide a proof for Theorem 6.5. For a given sequence of thresholds let qo, q1, .- ., qn
denote the probability of the algorithm not choosing any of the first items. More
specifically, let ¢; = Pr[r > 1] for every 0 < i < n. Knowing the thresholds
01, ...,0, one can find this sequence by starting from ¢y = 1 and computing the rest
using ¢; = ¢;—1F(0;). Inversely, one can simply find the thresholds from ¢, ..., g,
using 6; = F~1(q;/q;—1). Hence, we focus the design of our algorithm on finding the
sequence ¢y, . ..,q,. To this end, we aim to find a continuous function A : [0, 1] —
[0, 1] with A(0) = 1 such that by setting ¢; = h(i/n) we can achieve our desired set
of thresholds.

Note that such a function A has to meet certain requirements. For instance, it
has to be strictly decreasing, because at every step the algorithm picks an item with
some positive probability, therefore h(i/n) = ¢; = Pr[r > i] is smaller for larger . In
the following we define a class of functions which has two additional properties. We

prove that these properties can be useful in designing a useful threshold algorithm.

Definition 6.1. A continuous and strictly decreasing function h : [0,1] — [0, 1] with

h(0) =1 is a threshold function if it has the following two properties:

1. h is a strictly concave function.

it. For every e > 0 there exists some 0y < € such that for every 6 < dy, €+ 0 <

71

h'(s—68)/h(s —08) < (1 —¢€)h'(s)/h(s) .

As shown in the following lemma, the first property leads to a decreasing
sequence of thresholds. Also, we exploit the second property to show that the

approximation factor of A improves by increasing the number of items.

Lemma 6.1. If h is a threshold function, then the sequence of thresholds 64, ...,60,

achieved from h is decreasing.

Proof. For every 1 < i < n we have ; = F~'(¢q;/q;_1). Since every ¢; = h(i/n),

we have §; = F‘l(%) Note that F'is a strictly increasing function, therefore

having 6; > 6,1 requires h(g(_i/{;}n) > h((}f(t/%") For simplicity let z = i/n and

d = 1/n. From the first property of threshold functions we have:

h(z 4 0) + h(z — 0)
5 :

h(z) >

By raising both sides to the power of 2, and subtracting (h(x + §)/2 — h(z — §)/2)?

from each side we have:

h(x>2—(h<“5>2) (x+5 x—5))2_<h(:c+5);h(x—5))2

=h(z+)h(z —9) .

Therefore h(x)* > h(z + §)h(x —), which means h(x)/h(x — 6) > h(z + 6)/h(z)

and the proof is complete. O

Next, we define a class of functions and prove for every function of this class
that its approximation factor approaches « for a large enough n. This enables us to
narrow down our search for a useful function h.

72

Definition 6.2. A threshold function h is a-strong if it has the following properties:
i h(1)<1— o

. fol h(r)dr > .

ii. ¥V 0<s<1:1—h(s)—h(s)/h(s) fsl h(r)dr > a(l —exp(h'(s)/h(s))) .

The following theorem formally states the mentioned claim for a-strong func-

tions.

Theorem 6.6. If h is an a-strong function, then for every € > 0 there exists an n.
such that for every n > n. the threshold algorithm that acts based on h is at least

(1 — e)a-approximation on n iid items.

Proof. Let OPT be a random variable that denotes the optimum solution and
ALG be a random variable that denotes the value picked by the algorithm. We can

write the expectation of OPT as
E[OPT] = /O " Primax X; > aldz . (6.1)
Similarly the expectation of ALG is
E[ALG] = /0 " PrX, > alde (6.2)

The main idea behind the proof is to show for a-strong functions that the integrand
in (6.2) is an approximation of the integrand in (6.1) for every non-negative value
of x. In particular, for every e there exists some n. such that for every n > n, the
second integrand is at least (1 — €)a times the first integrand and this proves the
theorem.

73

Let us begin with finding an upper bound for the integrand in (6.1). Let
G(z) = 1— F(x) for every z € R=". The following lemma gives an upper bound for

Primax X; > z] based on G(z) and n.

Lemma 6.2. For every € > 0 there exists an n. such that for every n > n. the
following inequality holds :

Primax X; > z] < L= exll)(—nG(:zf)) :
—€

Lemma 6.2 gives us an upper bound on Prjmax X; > z]. Now we aim to find
a lower bound for Pr[X, > z]. Through these two bounds we are able to find a
lower bound on the approximation factor of the algorithm.

In Lemma 6.1 we showed that the thresholds are decreasing. Hence for an
r € R2Y if x < 6, then Pr[X, > z] is equal to Pr[X, > 6,] because the algorithm
never selects an item below that value. Moreover, Pr[X, > 0,] is equal to Pr|r < n|
which is equal to 1 — Pr[r >n| =1—¢, = 1 — h(1). The first property of a-strong
functions ensures that this number is at least «. Since PrmaxX; > z| is no more
than 1, therefore, for every x < 6, we have Pr[X, > z| > aPr[max X; > z|.

Now suppose z € R=? and = > 6,,. For Pr[X, > z] we have,

PriX, > zx] = ZPT’[XT > x|t =i|Pr[r =]

=1

= > ga(L~ Flmax{6y,2})) - (6.3)

Since the thresholds are decreasing, there exists a unique index j(z) for which
Oj(z) > © > 0j(z)41. For the sake of simplicity we assume there is an imaginary item
Xy for which 6y = oco. In this way j(x) is an integer number from 0 to n — 1. By

74

expanding (6.3) we have:

Z Gi_ F(max{6;,z}))

= Z ¢i—1G(max{6;,z})

j(x) n
= Z ¢i1G(0;) + Z ¢i1G(z) . (6.4)
=1 i=j(z)+1

The first sum in (6.4) is indeed the probability of selecting one of the first j(z)

items, therefore we can rewrite it as 1 — g;(,). Hence,

Pr[X; > 2] =1 — gj) + Z ¢i—1G(z)

i=j(z)+1
a 1
=1—gj() +nG(z) ¢i1—
i=j(z)+1
=1—gj@) +nG(x Z h@—l/n
i=j(z)+1
1
> 1— gy + nG(z) / h(r)dr | (6.5)
j(x)/n

The integral in (6.5) comes from the fact that h is a decreasing function and for
such functions the Riemann sum of an interval is an upper bound of the integral of
the function in that interval. For simplicity let s(x) = j(z)/n. Inequality (6.5) can
be written as follows:
1
PriX, > 2] > 1 - h(s(z)) + nG(x) / i (6.6)
In order to complete the proof of the theorem, we need to show that the right

hand side of Inequality (6.6) is an approximation of PrjmaxX; > z]. To this end,

we use the following lemma.

5

Lemma 6.3. For every € > 0 there exists an n. such that for every integer n > n.

the following inequality holds for every x > 6,,:
1
1 —h(s(x)) + nG(x)/ h(r)dr > (1 — €)a(l — exp(—nG(x))) .
s(z)

To wrap up the proof of the theorem we combine the results of the previous
lemmas. Suppose n; and ny are the lower bounds of Lemma 6.2 and Lemma 6.3
for n, respectively, such that their inequalities hold for €/2. For every n > n, =

max{ni, ny} we have:

1

PriX, >x] > 1—h(s(x)) + nG(m)/ h(r)dr Inequality (6.6) (6.7)

s(x)
> (1 —¢€/2)a(l — exp(—nG(x))) Lemma 6.3 (6.8)
> (1 —¢€/2)%*a Pr[max X; > z] Lemma 6.2 (6.9)

> (1 —¢e)a Prmax X; > z| .

This shows that for every non-negative value of x the chance of the algorithm in
selecting an item with value at least x is an approximation of the corresponding
probability for the optimum solution. More specifically, we showed that for every
n > n. and for every x > 0 the integrand of (6.2) is a (1 — €)a-approximation of the

integrand of (6.1), hence the theorem is proved. O

Now we have all the materials needed to prove Theorem 6.5. In order to prove
the theorem, we show that the function h(s) = cos(as) is an a-strong function,
where a ~ 1.306 is a root of cos(a) + sin(a)/a — 1 and a = 1 — cos(a) ~ 0.7388. To

this end, we first need to show that this function is a threshold function:

i. To show the concavity of h it suffices to show that its second derivative is

76

11.

negative for every 0 < s < 1. Note that h'(s) = —asin(as) and h"(s) =

—a? cos(as).

The ratio of h'(s)/h(s) for every s is equal to —atan(as). For every e we need to
show that there exists some dy < € such that for every § < jp and e+ < s <1

the following holds:
—atan(a(s —§)) < —(1 — €)atan(as)

or equivalently, by dividing both sides to —a and changing the direction of the

inequality we want to have:
tan(as — ad)) > (1 — €) tan(as) .

Note that tan(as) is a convex function because tan”(as) = 2 tan(as) sec?(as) >
0 for 0 < s < 1. For every 0 < 0 < s in such functions we have:

tan(as) — tan(as — ad)
ad

< tan’(as) = sec*(as) < sec*(a) .

Therefore,
tan(as) < tan(as — ad) + adsec*(a) .

etan(ae)
a(l—e) sec?(a)

By multiplying both sides by (1 — €) and assuming that § < §y =
we have:
(1 —€)tan(as) < (1 — €)(tan(as — ad) + ad sec*(a))
< tan(as — ad) — etan(as — ad) + (1 — €)ad sec*(a)
< tan(as — ad) — etan(as — ad) + € tan(ae)

= tan(as — ad) — e(tan(a(s — 0)) — tan(ae)) (6.10)

7

Note that tan(z) is an increasing function, therefore for every s > e+4 Inequality
(6.10) is less than or equal to tan(as — ad), thus the second property holds as

well.

We showed that h(s) = cos(as) is a threshold function. Now we prove that this
threshold function is also an a-strong function. Due to definition o = 1 — cos(a) =
1 —h(1), thus the first property holds. Moreover, fol h(r)dr = sin(a)/a. Again, due
to definition a is a root of cos(a)+ sin(a)/a—1, and thus sin(a)/a = 1 —cos(a) = a.
Now we only need to show that the third property of a-strong functions holds. To

do so, we need to show that:
1 — cos(as) + atan(as)[sin(a)/a — sin(as)/a] > a(1 — exp(—atan(as))) . (6.11)

By subtracting a(1 — exp(—atan(as))) from both sides and multiplying them by

cos(as) we have:

cos(as)—cos(as)*+sin(a)sin(as)—sin(as)?—a cos(as)+a cos(as) exp(—atan(as))) >0 .

Note that cos?(as) + sin?(as) = 1, therefore the above inequality is equivalent to:
(1 — a) cos(as) + sin(a) sin(as) + a cos(as) exp(—atan(as)) > 1 .

Since sin(a)/a = 1 — cos(a) = a we can replace sin(a) with aa. Also, from the
relation between trigonometric functions we have cos(z) = 1/4/1 + tan?(z) and
sin(z) = tan(z)/4/1 + tan?(x). By considering these equalities and assuming that

w = tan(as) the above inequality becomes simplified as follows:

11—« aaw aexp(—aw)

+ +
V1i+w? V14 w? V14 w?
78

>1.

By multiplying both sides by v/1 4+ w? and raising them to the power of two, and

subtracting 1 + w? from both sides we have:

(1 —a+ aaw + aexp(—aw))? —1 —w? >0 .

Now we use the following lemma to finish the proof.

Lemma 6.4. Suppose A(w) = (1—a+aaw+aexp(—aw))?—1—w? where a ~ 1.306
is a root of cos(a) + sin(a)/a — 1 and « = 1 — cos(a) ~ 0.7388. Then for every

0 <w < tan(a) we have A(w) > 0.

Lemma 6.4 shows that this inequality holds for every 0 < w < tan(a). Con-
sequently, Inequality (6.11) holds for every 0 < s < 1. This completes the proof
that h(s) = cos(as) is an a-strong function for o ~ 0.7388, since it has all the three

properties.

6.3 Non [ID Distributions

In this section we study more generalized cases of the prophet inequalities
problem. Suppose Xi,...,X, are random variables from distribution functions
Fy, ..., F,. Similar to Section 6.2 we assume, for the sake of simplicity, that all
distribution functions are continuous and strictly increasing on a subinterval of R*.
The goal of this section is to show improving results for the best order and a random
order of large market instances. We use the term large market as a general term
to refer to instances with repeated distributions. The following definition formally

captures this concept.

79

Definition 6.3. A set of n items with distribution functions Fi, ..., F, is m-frequent
if for every item in this set there are at least m — 1 other items with the same

distribution function.

In the remainder of this section we show for the best order and a random
order of a large market instance that one can find a sequence of thresholds which in
expectation performs as good as our algorithm for iid items. Roughly speaking, we
design algorithms that are a-approximation for large enough m-frequent instances,
where o = 0.7388. The following two theorems formally state our results for the

best order and a random order, respectively.

Theorem 6.7. For every e > 0 and set X of n items, there exists a number m. (a
function of € and independent of n) such that if X is m-frequent for m > m. then

there exits an algorithm which is (1 — €)a-approximation on a permutation of X.

Theorem 6.8. For every ¢ > 0 and set X of n items there exists a number c. (a
function of € and independent of n) such that if X is m-frequent for m > c.log(n)
then there exists an algorithm which in expectation is (1 — €)a-approzimation on a

random permutation of X.

To prove the theorems we first provide an algorithm for a specific class of
large market instances, namely partitioned sequences. Lemma 6.5 states that this
algorithm is a-approximation when the number of partitions is large. We later show
how to apply this algorithm on the best order and a random order of large market
instances to achieve a similar approximation factor. Following is a formal definition
of partitioned sequences.

80

Definition 6.4. A sequence of items with distribution functions Fi, ..., F, is m-
partitioned if n = mk and the sequence of functions Fiy1, ..., Fixy s a permutation

of Fi,..., Fy for every 0 < i < m.

The following algorithm exploits Algorithm 3 for iid items in order to find

thresholds for a partitioned large market instance.

Algorithm 4
Input: An m-partitioned sequence of items with distribution functions

Fi,...,F,.
1: Let k =n/m.
2: Let F(x) =[]\, Fi(x).
3: Let 0y ...,0,, be the thresholds by Algorithm 3 for m iid items with distribution

function F'.

4: Pick the first item ¢ if X; > 057

Lemma 6.5. For every € > 0 there exists a number m. (a function of € and in-
dependent of the number of items) such that for every m > m. Algorithm / is

(1 — €)a-approximation on an m-partitioned input.
Now we are ready to prove Theorem 6.7 and Theorem 6.8.

Proof of Theorem 6.7: Let s be the lower bound on the number of partitions
in Lemma 6.5 for €/2, and let m, = 2(s — 1)/e. The outline of the proof is as
follows. Let X be an m-frequent set of items for m > m.. We uniformly group
the items into s parts with |m/s| items of each type in every group. Let Y denote
the set of partitioned items. In order to make all parts similar, we may need to

81

discard some of the items, however, we show this does not hurt the approximation
factor significantly. Finally, by applying Algorithm 4 to Y we achieve the desired
approximation factor.

The following lemma shows that discarding a fraction of items influences the

approximation factor proportionally.

Lemma 6.6. Let {Xi,..., X, } be a k-frequent set of items. Suppose for some
S C{1,...,n} that the set {Xs,,...,Xs.} is p-frequent and contains every X; for

1 <i<n. Then we have

E[max X;] > BE[max Xl -

€S — k i<i<n
Note that in partitioning X to s groups there might be at most s — 1 items of
each type being discarded in Y, therefore Y is (m — s + 1)-frequent. Let ALG be
a random variable that denotes the value of the item picked by our algorithm. We

have:

E[ALG] > (1 — e/2)aE[r}rfla§<Y] Lemma 6.5
2
— 1
> (1—- e/2)auE[maxX] Lemma 6.6
m Xex

> (1 — ¢/2)*aE[max X]

XeX

> —
> (1 e)ozE[r)r(lg%(X] :

Therefore, for every m-frequent set X there exists an ordering of its items on which

our algorithm is (1 — €)a-approximation. O

Proof of Theorem 6.8: Let m be a random permutation of the items. Con-
sider s different partitions for the items, i.e. one from X, to Xz ., one from

82

to X so on so forth. We show that when the number of similar items

Tn/s+1 Ton/s?

is large enough then a random permutation is very likely to uniformly distribute
similar items into these parts. Therefore, by discarding a small fraction of the items
Xayy oo, Xy, can be assumed as an s-partitioned sequence, hence Algorithm 4 can
be applied to it.

Note that X is m-frequent, which means that for every item ¢ there are at least
m — 1 other items with the same distribution functions as F;. We refer to a set of
similar items as a type. Therefore, there are at least m items of every type in X.
We use the following lemma to show for every type that with a high probability the

number of items of that type in every partition is almost m/s.

Lemma 6.7 ([PS97]). Let xy,..., 2, be a sequence of negatively correlated boolean

(i.e. 0 or 1) random variables, and let X = >"1" x;. We have:
Pr(|X —E[X]| > 0E[X]] < 3exp(—6°E[X]/3) .

Since 7 is a random permutation, the expected number of these items in a
fixed partition is m/s. Using Lemma 6.7, with probability at most 3exp(_‘§%)
there are less than (1 — §)m/s of these items in a fixed partition. Using Union
Bound on all the s partitions and all types of items (note that there at at most
n/m types), with probability at most 3s- exp(%) there is a type of item which
has less than (1 — d)m/s items in a partitions. If we choose § = €/3 then for every
m > 3 (log(n) + log(2)) this probability becomes less than €/3.

Now we are ready to wrap up the proof. If we choose s = m, 3 using Lemma
6.5, 0 = €¢/3, and ¢, = %2(9/6) then for every m > ¢ log(n) with probability at

83

least (1 —¢€/3) there are at least (1 —¢€/3)m/s items of each type in every partitions.
In such cases by discarding at most €/3 fraction of the items of each type we have
exactly (1 — ¢/3)m/s of them in each partition. Lemma 6.6 states that removing
this fraction of items changes the approximation factor by at most (1 —€/3). This
means that for a random permutation of the items, with probability at least (1—¢/3)
we can loose on the approximation factor by no worse than (1 —¢/3) and have an
s-partitioned sequence. Due to Lemma 6.5, Algorithm 4 is (1 —¢/3)a-approximation
on this number of partitions. Therefore, the approximation factor of our method is

(1 — €/3)3a which is more than (1 — €)a. O

84

Chapter 7: Prophet Secretary for Matroids and Combinatorial Auc-

tions

7.1 Introduction

Suppose there is a sequence of n buyers arriving with different values to your
single item. On arrival a buyer offers a take-it-or-leave-it value for your item. How
should you decide which buyer to assign the item to in order to maximize the value.
There are two popular models in the field of Stopping Theory to study this problem:
the secretary and the prophet inequality models. In the secretary model we assume
no prior knowledge about the buyer values but the buyers arrive in a uniformly
random order [Dyn63]. Meanwhile, in the prophet inequality model we assume
stochastic knowledge about the buyer values but the arrival order of the buyers is
chosen by an adversary [KS78,KS77]. Since the two models complement each other,
both have been widely studied in the fields of mechanism design and combinatorial
optimization (see related work).

These models assume that either the buyer values or the buyer arrival order
is chosen by an adversary. In practice, however, it is often conceivable that there is

no adversary acting against you. Can we design better strategies in such settings?

85

The prophet secretary model introduced in [EHLM15] is a natural way to consider
such a process where we assume both a stochastic knowledge about buyer values
and that the buyers arrive in a uniformly random order. The goal is to design a
strategy that maximizes expected accepted value, where the expectation is over the
random arrival order, the stochastic buyer values, and also any internal randomness
of the strategy.

In this thesis, we consider generalizations of the above problem to combina-
torial settings. Suppose the buyers correspond to elements of a matroid' and we
are allowed to accept any independent set in this matroid rather than only a single
buyer. The buyers again arrive and offer take-it-or-leave-it value for being accepted.
In the prophet inequality model, a surprising result of Kleinberg-Weinberg [KW12]
gives a 1/2-approximation strategy to this problem, i.e., the value of their strategy,
in expectation, is at least half of the value of the expected offline optimum that se-
lects the best set of buyers in hindsight. Simple examples show that for adversarial
arrival one cannot improve this factor. On the other hand, if we are also allowed
to control the arrival order of the buyers, Yan [Yanll] gives a 1 — 1/e =~ 0.63-
approximation strategy. But what if the arrival order is neither adversarial and nor
in your control. In particular, can we beat the 1/2-approximation for a uniformly

random arrival order?

LA matroid M consists of a ground set [n] = {1,2,...,n} and a non-empty downward-closed
set system Z C 2" satisfying the matroid exchange axiom: for all pairs of sets I,.J € Z such that
|| < |J|, there exists an element = € J such that TU{z} € Z. Elements of T are called independent

sets.

86

Matroid Prophet Secretary Problem (MPS): Given a matroid M = ([n],)
on n buyers (elements) and independent probability distributions on their values,
suppose the outcome buyer values are revealed in a uniformly random order. When-
ever a buyer value is revealed, the problem is to immediately and irrevocably decide
whether to select the buyer. The goal is to mazximize the sum of values of the selected

buyers, while ensuring that they are always feasible in Z.

Besides being a natural problem that relates two important Stopping The-
ory models, MPS is also interesting because of its applications in mechanism de-
sign. Often while designing mechanisms, we have to balance between maximizing
revenue/welfare and the simplicity of the mechanism. While there exist optimal
mechanisms such as VCG or Myerson’s mechanism, they are impractical in real
markets [AMO06, Rot07]. On the other hand, simple Sequentially Posted Pricing
mechanisms, where we offer take-it-or-leave-it prices to buyers, are known to give
good approximations to optimal mechanisms, since this reduces the problem to de-
signing a prophet inequality [CHMS10b, Yan11, Alall, KW12 FGL15].

Esfandiari et al. [EHLM15] study MPS in the special case of a rank 1 matroid
and give a (1 — 1/e)-approximation algorithm. For general matroids, as in the orig-
inal models of [CHMS10b, Yan11,KW12], it was unclear prior to our work whether

beating the factor of 1/2 is possible. In Section 7.4 we prove the following result.

Theorem 7.1. MPS There exists a (1 — 1/e)-approximation algorithm to MPS.

Note that the approximation in this theorem as well as the following ones compare to

the expected optimal offline solution for the particular outcomes of the distributions.

87

That is, in the case of matroids, we have E[GA] > (1—1/e)-E[max;ez Y .., vi], where
v; is the value of buyer 1.

Next, let us consider a combinatorial auctions setting. Suppose there are n
buyers that take combinatorial valuations (say, submodular) for m indivisible items
from n independent probability distributions. The problem is to decide how to
allocate the items to the buyers, while trying to maximize the welfare—the sum
of valuations of all the buyers. Feldman et al. [FGL15] show that for XOS? (a
generalization of submodular) valuations there exist static prices for items that gets
a 1/2-approximation for buyers arriving in an adversarial order. Since this factor
cannot be improved for adversarial arrival, this leaves an important open question
if we can design better algorithms when the arrival order can be controlled. Or
ideally, we want to beat 1/2 even when the arrival order cannot be controlled but

is chosen uniformly at random.

Combinatorial Auctions Prophet Secretary Problem (CAPS): Suppose n
buyers take XOS valuations for m items from n independent probability distributions.
The outcome buyer valuations are revealed in a uniformly random order. Whenever
a buyer valuations is revealed, the problem is to immediately and irrevocably assign
a subset of the remaining items to the buyer. The goal is maximize the sum of the

valuations of all the buyers for their assigned subset of items.

In Section 7.3.2 we use dynamic prices to improve the result of [FGL15] for

2A function v: 2M — R is an XOS function if there exists a collection of additive functions

Ay, ..., Ay such that for every S C M we have v(S) = max;<;< A;(5).

88

random order.
Theorem 7.2. CAPS There exists a (1 — 1/e)-approzimation algorithm to CAPS.

Given access to demand and XOS oracles for stochastic utilities of different buyers,
the algorithm in Theorem 7.2 can be made efficient. This is interesting because it
matches the best possible (1 — 1/e)-approximation for XOS-welfare maximization
in the offline setting [DNS10, Fei06].

A desirable property in the design of an economically viable mechanism is
incentive-compatibility. In particular, a buyer is more likely to make decisions about
their allocations based on their own personal incentives rather than to accept a given
allocation that might optimize the social welfare but not the individuals’ profit. For
the important case of unit-demand buyers (aka bipartite matching), in Section 7.3.1

we extend Theorem 7.2 to additionally obtain this property.

Theorem 7.3. bipMatching For bipartite matchings, when buyers arrive in a uni-
formly random order, there exists an incentive-compatible mechanism that gives a

(1 — 1/e)-approzimation to the optimal welfare.

Finally, in Section 7.5 we conclude by showing that for the single-item case one
can obtain a (1 — 1/e)-approximation even by using static prices, and that nothing

better is possible.

7.1.1 Our Techniques

In this section we discuss our three main ideas for a combinatorial auction.
In this setting, our algorithm is threshold based, which means that we set dynamic

89

prices to the items and allow a buyer to purchase a set of items only if her value is
more than the price of that set. This allows us to view total value as the sum of
utility of the buyers and the total generated revenue. Although powerful, dynamic
prices often lead to involved calculations and become difficult to analyze beyond a
single item setting [EHLM15, AEET17]. To overcome this issue, our first idea is to
convert our discrete problem into a continuous setting. We achieve this by noticing
that a random permutation of buyers can be viewed as each buyer arriving at a time
chosen uniformly at random between 0 and 1. The benefit of such a transformation
is that it lets us talk about continuous functions such as the expected revenue/utility
obtained till time ¢ € [0, 1] and to use powerful tools from integral calculus.

Our algorithm for combinatorial auctions sets a base price b; for every item
J based on its contribution to the expected offline optimum E[OPT]. Our second
idea is to define two time varying continuous functions: discount and residual. The
discount function «(t): [0,1] — [0, 1] is chosen such that the price of an unsold item
J at time ¢ is exactly a(t) - b;. We define a residual function r(t): [0, 1] — Rx(that
intuitively denotes the expected value remaining in the instance at time ¢. Hence,
r(0) = E[OPT] and r(1) = 0. Computing r(¢) is difficult for a combinatorial auction
since it depends on several random variables. However, assuming that we know r(t),
we use application specific techniques to compute lower bounds on both the expected
revenue and the expected utility in terms of the functions r(¢) and «(t).

Finally, although we do not know r(t), our third idea is to show that if the
residual function satisfies some “nice” properties (see Definition 7.1) then we can
choose the function «(t) in a way that allows us to simplify the sum of expected

90

revenue and utility, without ever computing r(t) explicitly. This step exploits prop-

erties of the exponential function for integration (see Lemma 7.1).

7.1.2 Related Work

Starting with the works of Krengel-Sucheston [KS78, KS77] and
Dynkin [Dyn63], there has been a long line of research on both prophet in-
equalities and secretary problems. One of the first generalizations is the
multiple-choice prophet inequalities [Ken87, Ken85, Ker86] in which we are allowed
to pick k items and the goal is to maximize their sum. Alaei [Alall] gives
an almost tight (1 — 1/y/k + 3)-approximation algorithm for this problem (the
lower bound is due to [HKS07]). Similarly, the multiple-choice secretary problem
was first studied by Hajiaghayi et al. [HKP04], and Kleinberg [Kle05] gives a
(1 — O(\/1/k))-approximation algorithm.

The research investigating the relation between prophet inequalities and online
auctions is initiated in [HKS07, CHMS10b]. This lead to several interesting follow up
works for matroids [Yan1l,KW12] and matchings [AHL12]. Meanwhile, the connec-
tion between secretary problems and online auctions is first explored in Hajiaghayi
et al. [HKPO04]. Tts generalization to matroids is considered in [BIK07,Lac14,FSZ15]
and to matchings in [GM08, KP09, MY 11, KMT11,KRTV13,GS17].

Secretary problems and prophet inequalities have also been studied beyond
a matroid/matching. For the intersection of p matroids, Kleinberg and Wein-

berg [KW12] give an O(p)-approximation prophet inequality. Diitting and Klein-

91

berg [DK15] extend this result to polymatroids. Feldman et al. [FGL15] study
the generalizations to combinatorial auctions. Later, Diitting et al. [DFKL16] give
a general framework to prove such prophet inequalities. Submodular variants of
the secretary problem have been considered in [BHZ13, GRST10, FZ15, KMZ15].
Prophet and secretary problems have also been studied for many classical combina-
torial problems (see e.g., [Mey0l, GGLS08, GHK" 14, DEH" 15, DEH"17b]). Rubin-
stein [Rubl16] and Rubinstein-Singla [RS17] consider these problems for arbitrary
downward-closed constraints.

In the prophet secretary model, Esfandiari et al. [EHLM15] give a (1 — 1/e)-
approximation in the special case of a single item. Going beyond 1 — 1/e has been
challenging. Only recently, Abolhasani et al. [AEET17] and Correa et al. [CFHT17]
improve this factor for the single item i.i.d. setting. Extending this result to non-

identical items or to matroids are interesting open problems.

7.2 Our Approach using a Residual

In this section, we define a residual and discuss how it can be used to design
an approximation algorithm for a prophet secretary problem. Suppose there are n
requests that arrive at times (75);cn drawn ii.d. from the uniform distribution in
[0, 1]. These requests correspond to buyers of a combinatorial auction or to elements
of a matroid.

Whenever a request arrives, we have to decide if and how to serve it. De-

pending on how we serve request i, say x;, we gain a certain value v;(x;). Our task

92

is to maximize the sum of values over all requests Y. | v;(z;). Our algorithm Alg
includes a time-dependent payment component. The payment that request 7 has to
make is the product of a time-dependent discount function «(t) and a base price
b(x;), where the base price depends on how much this choice limits other allocations
but is time-independent. If request i has to pay p;(x;, T;) = a(t)b(zx;) for our decision
z;, then its utility is given by w; = v;(x;) — pi(z;, T;). We write Utility = >0 | w;
for the sum of utilities and Revenue =)" | p;(x;,T;) for the sum of payments. The
value achieved by Alg equals Utility + Revenue.

Next we define a residual function that has the interpretation of “expected
remaining value in the instance at time ¢t”. In Lemma 7.1 we show that the existence
of a residual function for Alg suffices to give a (1 — 1/e)-approximation prophet

secretary.

Definition 7.1 (Residual). Consider a prophet secretary problem with ezpected
offtine value E[OPT]. For any algorithm Alg based on a continuous differen-
tiable discount function a(t): [0,1] — [0,1], a continuous differentiable function
r(t): [0,1] = Rsq is called a residual if it satisfies the following three conditions for

every choice of a.

r(0) = E[OPT] (7.1a)
E[Revenue] > — /1 at)-r'(t) - dt (7.1b)
E[Utility] > /1 (I —aft)-r(t)-dt. (7.1c)

As an illustration of Definition 7.1, consider the case of a single item. That
is, we are presented a sequence of n real numbers and may select only up to one of

93

them (previously studied in [EHLM15]).

Example 7.1 (Single Item). Suppose buyer i € [n] arrives with random value v;
at time T; chosen uniformly at random between 0 and 1. Define b = E[max; v;| as
the base price of the single item. A buyer arriving at time t is offered the item at
price a(t) - b, and she accepts the offer if and only if v; > a(t) - b. We show that
r(t) = Prlitem not sold before t] - b is a residual function.

By definition, (7.1a) holds trivially. To see that (7.1b) holds, observe that the
increase in revenue from time t to time t + € is approximately «(t) - b if the item
1s allocated during this time, and is O otherwise. That is, the expected increase in
revenue is approximately a(t)(r(t)—r(t+e€)). Taking the limit for e — 0 then implies
(7.1b), i.e., E[Revenue] = — leo a(t)r'(t)dt.

For (7.1¢c), we consider the expected utility of a buyer i conditioning on her

arriving at time t
E[Uz | E - t] - E[litem not sold before t * (Ui - Oé(t) : b)+ | ﬂ - t]'

Although there are non-trivial correlations involved, one can show (see Appendiz D)
that

Elu; | T; = t] > Pr[item not sold before t] - E[(v; — af(t) - b)T].

Nezxt, we take the sum over all buyers i and use that Y, (v; —«(t)-b)* > max;(v; —

a(t)-b) = (1—alt)) b to get

iﬂ?j[uZ | T; =t] > Prlitem not sold before t]- (1 —a(t))-b = (1 —at))-r(t).

94

This implies
1
t=0

E| Utility] —i/l Efu; | E—t]dt—/l iE[ui | n—t]dtz/ (1—a(t))-r(t)-dt.

We now use the properties of a residual function to design a (1 — 1/e)-
approximation algorithm. To this end, we choose «(t) in a manner that makes the
sum of the expected revenue and buyers’ utilities independent of r(t). This allows

us to compute expected welfare, even though we cannot compute r(t) directly.

Lemma 7.1. For a prophet secretary problem, if there exists a residual function
r(t) for algorithm Alg as defined in Definition 7.1, then setting a(t) = 1 —e'™! gives

a (1 —1/e)-approximation.

Proof. To further simplify Eq. (7.1b), we observe that applying integration by

parts gives

So in combination

E[Revenue] = — ([r(t) o))y — /t :lor(t) () - dt) : (7.2)
Now adding (7.2) and (7.1c) gives,
E[Alg] = E[Utility] + E[Revenud]
> /tlor(t) (L= alt)) - dt — [rt)a(d)], + /tlo r(#)al(t) - dt
= /tlo r(t) - (1 —a(t) +a'(t) - dt — [r(t)a(t)],_, -

Although we do not know r(t) and computing ftlzo r(t) - (1 —a(t)+a/(t)) - dt seems
difficult, we have the liberty of selecting the function «(t). By choosing «(t) satis-

95

fying 1 — a(t) + /() = 0 for all ¢, this integral becomes independent of r(f) and

simplifies to 0. In particular, let a(t) = 1 — e*~1. This gives,

E[Alg] > —[r(t) o), = (1—1) r0) = (1—1) E[OPT].

7.3 Prophet Secretary for Combinatorial Auctions

Let N denote a set of n buyers and M denote the set of m indivisible items.
Suppose buyer ¢ arrives at a time 7; chosen uniformly at random between 0 and
1. Let v;: 2¥ — Rsq (similarly 9;) denote the random combinatorial valuation
function of buyer 7. We assume that the distribution of v; has a polynomial support
{v},v2,...,}, where Y, Pr[v; = vf] = 1. Note that this assumption only simplifies
notation. If we only have sample access to the distributions, then we can replace
{v},v2,...,} by an appropriate number of samples.

By T and v (similarly ¥) we denote the vector of all the buyer arrival times
and valuations, respectively. Also, let v_; (similarly v_;) denote valuations of all
buyers except buyer i. For the special case of single items, we let v;; denote v;({j}).
Let ¢;(t) denote the probability that item j has not been sold before time ¢, where

the probability is over valuations v, arrival times T, and any randomness of the

algorithm.

96

7.3.1 Bipartite Matching

In the bipartite matching setting all buyers are unit-demand, i.e. v;(S) =
max;eg v;j. We can therefore assume that no buyer buys more than one item. We
restate our result.

To define prices of items, let base price b; denote the expected value of the
buyer that buys item j in the offline welfare maximizing allocation (maximum weight
matching). Now consider an algorithm that prices item j at «(t) - b; at time ¢ and
allows the incoming buyer to pick any of the unsold items; here a(t) is a continuous
differentiable discount function.

Consider the function r(t) = 3, g;(t) - b;. Clearly, 7(0) = E[OPT]. Using the
following Lemma 7.2 and Claim 7.1, we prove that r is a residual function for our
algorithm. Since the algorithm is clearly incentive-compatible, Lemma 7.1 implies

Theorem 7.3.

Lemma 7.2. We can lower bound the total expected utility by

E., 7| Utility] > Z /t_lo g;(t) - (1 —a(t)) - b; - dt. (7.3)

Proof. Since buyer ¢ arriving at time ¢ can pick any of the unsold items, we have

n-i]

One particular choice of buyer i is to choose item O PT;(v;, v_;) if it is still available,

+

Eyrlu | T; =t] =E, {mji;ix 1 not sold before ¢ * (Vij — (t) - b;)

97

and no item otherwise. This gives us a lower bound of

EV,T [uz | T‘z = t] Z]EV |:1OPTi(vi,\A/,i) not sold before t * ('Ui,OPTi(vi,\?,i) - Oé(t) . bj)+ ’ E = t:|

= ZEv,o [1j not sold before ¢ * Lj—0PTy(vi,v_,) = (Vij — a(t) - b))t ‘ T, = ﬂ .
J

Note that in the product, the fact whether j is sold before ¢ only depends on v_; and
the arrival times of the other buyers. It does not depend on v; or v. The remaining
terms, in contrast, only depend on v; and v_;. Therefore, we can use independence

to split up the expectation and get

Evrlu; | T; =]

> Z Pr[j not sold before t | T; = t] - By, v_, [1j—oprywiv_y) - (Vij —a(t) - b))t | Ty =1t].
J

Next, we use that Pr[j not sold before ¢ | T; = t] > ¢;(t) by Lemma 7.3 and that
v; and v; are identically distributed. Therefore, we can swap their roles inside the

expectation. Overall, this gives us

Evrlu [T =1t > Z%‘ (t) - Es [Li—opris) - (05 — a(t) - by)] - (7.4)

J

Next, observe that E¢[>, 1;—opr,v) - ©i;] = b; by the definition of b;. Therefore,

using linearity of expectation, summing up (7.4) over all buyers i gives us

ZEV’T[W | T; =] > q;(t) - (1 —a(t)) - b;.

Now, taking the expectation over ¢, we get

1 1
ZU,Z] :Z[:OEV’T[UZ|E:t]dtZZZOZEV’T[UZ|E:t]dt

> [a0ty byt =3 [o) (1 -0() by -

IEf’v,T

98

We next give a bound on the revenue generated by our algorithm.

Claim 7.1. We can bound the total expected revenue by

E,, 7| Revenue] = — Z /t:O q;(t)ex(t) - b; - dt. (7.5)

Proof. Since —¢;(t)dt is the probability that item j is bought between ¢ and ¢ + dt

(note ¢;(t) is decreasing in t), we have

1

E[Revenue| = — Z/ q;(t)ex(t) - b; - dt.

j t=0

|

Finally, we prove the missing lemma that removes the conditioning on the

arrival time.

Lemma 7.3. We have
E,_, P;r[j not sold before t | T; = t]| > q;(t).

Proof. Consider the execution of our algorithm on two sequences that only differ in
the arrival time of buyer 7. To this end, let v be arbitrary values and T be arbitrary
arrival times. Let Ay be the set of items that are sold before time ¢ on the sequence
defined by v and T. Furthermore, let By be the set of items sold before time ¢ if
we replace T; by t. Ties are broken in the same way in both sequences.

We claim that By C Ay for all ¢/ < t.

To this end, we observe that by definition By = Ay for ' < min{T;, ¢} because
the two sequences are identical before min{T;,¢}. This already shows the claim for

99

T; > t. Otherwise, assume that there is some t' < t for which By & Ay. Let tiy
be the infimum among these t’. It has to hold that some buyer i’ arrives at time
tinr and buys item j4 & A, . in the original sequence and jp & By, , in the modified
sequence. Furthermore, we now have to have B, . € A; . because ti,y was defined

to be the infimum of all ¢’ for which By C Ay is not fulfilled. Therefore, j4 & B;

inf *
Additionally, jp & A, ,. The reason is that for any ¢’ < ¢, before the next arrival
By = By, U{jp}

Overall this means that in both sequences at time t;,; buyer ¢’ has the choice
between jg and j4. As his values are identical and ties are broken the same way, it
has to hold that jp = ja, which then contradicts that B, , € A, ..

Taking the expectation over both v and T, we get
,Ff,[] g Ai] < ,Eg[] ¢ Byl
This implies the Lemma 7.3 because
IEr [7 not sold before t] = rll?r [& Ay

rllf‘r[j not sold before t | T; = t| = 11_?1"[]’ ¢ Byl.

7.3.2 XOS Combinatorial Auctions

In this section we prove our main result (restated below) for combinatorial

auctions.

100

Recollect that the random valuation v; of every buyer ¢ has a polynomial sup-
port. We can therefore write the following expectation-version of the configuration

LP, which gives us an upper bound on the expected offline social welfare.

maxZZva(S)-xﬁs
i kS
s.t. ZZmeS = 1 forall j € M

% k S:jes

ins = Prfo; = v} for all 4, k
s

The above configuration LP can be solved with a polynomial number of calls
to demand oracles of buyer valuations (see [DNS10]). Since all functions v} are XOS,
there exist additive supporting valuations; that is, there exist numbers vﬁ ’jS > 0s.t.
vﬁ ’jS =0 for j ¢ S and .4 vﬁ ’jS = vF(S). Before describing our algorithm, we

define a base price for every item.

Definition 7.2. The base price b; of every item j € M is 3, > g.ics vlkjsxfs

Since Y gxfg = Pr[v; = v}], consider an algorithm that on arrival of
buyer i with valuation v¥ draws an independent random set S with probability
z¥g/Prlv; = vf]. Let S denote this drawn set. This distribution also satisfies that

for every item 7,

k
B [Leg] = LPlu=ut] 3 gl <
(7.6)
Now consider the supporting additive valuation for S} in the XOS valuation function
v¥ of buyer 4. This can be found using the XOS oracle for v¥ [DNS10]. Our algorithm

101

assigns her every item j for which Uf, jsl* > «ft) - b;, where «a(t) is a continuous
differentiable function of ¢. Note that since we do not allow buyer i to choose
items outside set S, the mechanism defined by this algorithm need not be incentive
compatible.

Consider the function r(t) = . ¢;(t) - b;, where again g;(¢) denotes the prob-
ability that item j has not been sold before time ¢. Clearly, r(0) = OPT. Using the
following Lemma 7.4 and Claim 7.2, we prove that r is a residual function for our

algorithm. Hence, Lemma 7.1 implies Theorem 7.2.

Lemma 7.4. The expected utility of the above algorithm is lower bounded by

E., 7| Utility] > Z /t_lo g;(t) - (1 — a(t)) - b; - dt. (7.7)

Proof. Given that buyer ¢ arrives at ¢t and only buys item j if vf’ ’]-S; > aft) - by, her
utility is

k,S* +
EV,T,[ui | E - t] - ZIEV,T,S;k |:1j not sold by ¢ *]-jGS;‘ : (Ui,j = a(t) : bj) ‘ E - t:|
J

Using the fact that whether j is sold before ¢ only depends on v_; and T, and not
on v; or S,

. k,S: +
Eyrlw | T, =t = E vPrT[j not sold by t | T; =] - E,, s {1]-633 . (Ui,j —aft) - bj> })
j —1

Now, observe that in our algorithm every buyer ¢ independently decides which set
of items S} it will attempt to buy. Crucially, the probability of an item j being sold

by time ¢ can only increase if more buyers arrive before t. Therefore,

PrT[j not sold by ¢t | T; =t] > Pr_rr[j not sold by t] = ¢;(t).

102

Thus, we get
k,S: +
Eyrfu; | T; =1t > Z(Jj Eo,sp | Ljesr - (Ui,j —a(t) 'bj>

k,S:
> ZQJ) v, Sy |: JES! ” (Ui,j - O‘(t)) b]>:| :

Finally, recollect from Eq. (7.6) that), E,, s [1]-653 -vk’sf] = b;. Moreover,

1,J

y
ZEW,SZ [Ljes:] = Zpr[w =] Z Pr[v—iv’“] -
i i v Yg

S:jes

Hence, by linearity of expectation

ZEUZ\T—t >qu (1—a(t)) - b;.

We next give a bound on the revenue generated by our algorithm.

Claim 7.2. We can bound the total expected revenue by

E,, r[Revenue] = Z/ q;(t - bj - dt. (7.8)

Proof. Since —¢j(t)dt is the probability that item j is bought between ¢ and ¢ + dt

(note ¢;(t) is decreasing in t), we have

E[Revenue] = Z / q;(t - bj - dt.

7.4 Prophet Secretary for Matroids

Let v; denote the random value of the i’th buyer (element) and let v; denote
another independent draw from the value distribution of the 7’th buyer. The problem

103

is to select a subset I of the buyers that form a feasible set in matroid M, while
trying to maximize), ; v;. We restate our main result for the matroid setting.

We need the following notation to describe our algorithm.
Definition 7.3. For a given vector of values v, we define the following terms:
e Let Opt(v | A) denote the optimal solution set in the contracted matroid M /A.
o Let R(A,v) := ZiEOpt('b|A) v; denote the remaining value after selecting set A.
We next define a base price of for every buyer i.

Definition 7.4. Let A denote the independent set of buyers that have been accepted

till now.
o Let bi(A,v) .= R(A,v) — R(AU {i}, v) denote a threshold for buyer i.
o Let b;(A) :=Ey[bi(A, v)] denote the base price for buyer i.

Starting with Ay = (), let AT denote the set of accepted buyers before time ¢
when buyers take values v and arrive in order T. When T is clear from context, we
abuse notation and use A; instead of AT. Suppose a buyer i arrives at time ¢, then
our algorithm selects 7 iff both v; > «a(t) - b;(A;) and selecting i is feasible in M.

Consider the function r(t) := E, ¢ [R(A: V)], where A; is a function of v.
Clearly, 7(0) = E[OPT]. Using the following Lemma 7.5 and Claim 7.3, we prove

that r is a residual function. Hence, Lemma 7.1 implies Theorem 7.1.

Claim 7.3.

1
E, r[Revenue] = —/ a(t) - r'(t)dt.
=0

104

Proof. Consider the time from ¢ to ¢ + € for some ¢ € [0,1], € > 0. Let us fix the
arrival times T and values v of all elements. This also fixes the sets (A;):cp0,1). Let
i1,...,1 be the arrivals between ¢ and ¢ + € that get accepted in this order. Note
that it is also possible that £ = 0. The revenue obtained between ¢ and ¢ + € is now

given as

k
Revenue<;.. — Revenue<; = Z a(ti,)b, (Ay,)

]
Jj=1

= ia(tij)Eq [R(A U {i, ... 0521}, V) — R(A Uiy, .. .05}, V)]
j=1

> a(t+e)Eg [R(Ay, V) — R(Atie, V)] -

Taking the expectation over v and T, we get by linearity of expectation

E, r[Revenue<;i | — Ey r[Revenue<;] > a(t + €)(r(t) — r(t + ¢€)).
By the same argument, we also have
E, r[Revenue<;;| — E, r[Revenue«] < a(t)(r(t) — r(t +¢)).
In combination, we get that
iEV,T[Revenuegt] = —a(t)r'(t),

dt

which implies the claim. O

Lemma 7.5.

E, 7| Utility] > /tzlo(l —a(t)) - r(t)dt.

105

Proof. The utility of buyer 7 arriving at time ¢ is given by
EV,T[ui | T‘z = t] = IE’V7T,i [(Uz - Of(t) : bz(At))+ : 1i¢Span(At) ‘ 712 = t}
=Ev_,1_, [Ey, [(vi — a(t) - b:(A))"] - Ligspanca,) | Ti = 1]

because A; is independent of v;. Since v; and v; are identically distributed, we can

also write

IE'V,T [uz | E - t] - IEv,\A/,T_i [(@z - Oé(t) : bz(At>>+ :]-iQSpan(At) ‘ ,I'z = t} . (79)
Now observe that buyer ¢ can belong to Opt(v | A;) only if it’s not already in
Span(A;), which implies 1;¢span(a,) = licop(v]a,)- Using this and removing non-
negativity, we get

Eva[ui | 7—; = t] Z EV,\A’,T,i [(@’L - O[(t) N bZ(At)) . 1i€Opt(\7|At) ‘ 1—; — ti| .

Now we use Lemma 7.6 to remove the conditioning on buyer 7 arriving at time ¢ as

this gives a valid lower bound on expected utility,
Evrlu | Ty =] > Evorr [(0 — a(t) - bi(Ar) - Licopeian) - (7.10)
We can now lower bound sum of buyers’ utilities using Eq. (7.10) to get

1
Eyr[Utility] =) / Eyrlu; | T = t] - dt
i t=0

1
> Z/ EV,O,T [(@z - Oé(t) 'bi(At))) 1i60pt(<'|At)} - dt.
T Jt=0

By moving the sum over buyers inside the integrals, we get

1
E, 7 [Utility] > / Evor | Y (0= alt) - bi(Ar) - Licopuwian | - dt
t=0

_ / CEvor [RALY) o) Y b4 -

i€OpL(V|Ar)

106

Finally, using Lemma 7.7 for V = Opt(v | A;), we get

E, ¢ [Utility] > /;O Eyor[(1—a(t) - R(A,)] - dt.

Finally, we prove the missing lemma that removes the conditioning on item ¢

arriving at t.

Lemma 7.6. For any i, any time t, and any fized v, v, we have
Er_, [(0: — a(t) - bi(Ar)) - Licoprvian | T = t] > Ep[(0; — a(t) - bi(Ar)) - Licopeaay] -

Proof. We prove the lemma for any fixed T_;. Suppose we draw a uniformly
random 7; € [0,1]. Observe that if 7; > ¢ then we have equality in the above
equation because set A; is the same both with and without 7. This is also the case
when T; < t but ¢ is not selected into A;. Finally, when T; < ¢t and 7 € A; we have
Licopi(v)a,) = 0 in the presence of item i (i.e., RHS of lemma), making the inequality

trivially true. |

Lemma 7.7. For any fixed v, T, time t, and set of elements V that is independent

in the matroid M /A;, we have

D bi(A) < Ey[R(A,)]

eV

Proof. By definition

Z bi(A;) = Eq Z (R(Ai,v) — R(A, U {i}, V)

eV i€V

107

Fix the values v arbitrarily, we also have

> (R(A,¥) — R(A,U{i},¥)) < R(A,,).

eV
This follows from the fact that R(A;, v) — R(A; U {i}, V) are the respective critical
values of the greedy algorithm on M /A; with values v. Therefore, the bound follows
from Lemma 3.2 in [LB10]. An alternative proof is given as Proposition 2 in [KW12]
while in our case the first inequality can be skipped and the remaining steps can be
followed replacing A by A;.

Taking the expectation over v, the claim follows. O

7.5 Fixed Threshold Algorithms

In this section we discuss the powers and limitations of Fized-Threshold Algo-
rithms (FTAs) for single item prophet secretary. In an FTA we set a fixed threshold
for the item at the beginning of the process and then assign it to the first buyer
whose valuation exceeds the threshold. The motivation to study FTAs comes from
their simplicity, transparency, and fairness in the design of a posted price mechanism
(see e.g., [FGL15]).

In Section 7.5.1 we give a (1—1/e)-approximation FTA for single-item prophet
secretary. Next, in Section 7.5.2 we present an upper bound for FTAs. In particular,
we show that there is no FTA, even for identical distributions, with an approxima-
tion factor better than 1 — 1/e. This indicates the tightness of our algorithm for
prophet secretary. Furthermore, in Appendix E we generalize these single item ideas
to present an alternate (1 — 1/e)-approximation algorithm for bipartite matching

108

prophet secretary.

7.5.1 Single Item Prophet Secretary

Our analysis in this section is based on discrete arrival times for the buyers.
In particular, we assume that the buyers arrive based on an initially unknown per-
mutation 7, and at every time ¢ the values of (i) and v,(;) are revealed in an online

fashion. We prove the following result.
Theorem 7.4. There exists a (1 — 1/e)-approximation FTA for prophet secretary.

Proof. Without loss of generality, we assume that all distributions have a finite
expectation and a continuous CDF?. As two extreme selections for the threshold,
if we set 7 to zero then the FTA selects the first item, and if we set it to infinity
then no item will be selected. Therefore, the assumption for the continuity of the
distribution function allows us to select a threshold 7 such that the FTA reaches
the end of the sequence with an exact probability of 1/e. This means all of drawn
values are below 7 with probability 1/e. In the remainder, we show that the FTA
based on this choice of 7 lead to a (1 — 1/e)-approximation algorithm.

Let OPT denote the maximum of all v;s and Alg be a random variable that
indicates the value selected by the algorithm, or is zero if no item is selected. The

goal is to show

e

E[Alg] > (1 _ 1) E[OPT] .

3This assumption is without loss because the actual CDF can be approximated with arbitrary
precision by a continuous function. This approximation corresponds to a randomized tie-breaking

in case of pointmasses.

109

We have E[Alg] = E[Revenue] + E[Utility]. Due to the definition of 7 the algo-
rithm makes a selection with probability 1 — 1/e, therefore E[Revenue] = (1 — %) T.
In the remainder, we complete the proof by showing a lower bound on E[Utility]
based on the expectation of OPT when it is greater than or equal to 7.

Let us first define some notations. We use ¢(j) to denote the probability that
the algorithm does not pick any of the first j item, i.e. ¢(j) := Primaxi<p<j{vzx)} <
7]. We use q_;(j) as the probability of the algorithm not picking any of the first
7 — 1 items conditioned on the event that item ¢ appears at position j. We use the

following lemma to lower bound ¢q_;(j) with ¢(j).

Lemma 7.8. For any item 1 < ¢ < n and any position 1 < 7 < n we have

q-i(j) > q(j).

Proof. Note that ¢(j) has two sources of randomness, one for the choices of 7 and
one for the valuations of v;’s. The lemma can be proven by carefully analyzing the
former, i.e. by considering whether item ¢ appears among the first j — 1 items or

not. More precisely,

000) = Pila @) <P | (o} < 7| 7740) <] (7.11)
+ Pr[r (i) > j] Pr Lrgggj{vw(j)} <7 |7 i) > j] : (7.12)

For Pr [max;<p<;j{vs(;} <7 |7'(i) < j] in (7.11) we have choices of j — 1 items
other than ¢ and require all of their values to be below 7. Therefore this probability
is no more than ¢_;(j). Similarly for Pr [max;<z<;{vs(;} <7 | 77 '(i) > j] in (7.12)

we have choices of at least j — 1 items other than ¢ and again require all of their

110

values to be below 7. Hence, this term is at most ¢_;(j) too, and we have

q(j) < Prlr='(6) < jlg-s(j) + Pr[r~' (i) = jla-i(s) = a-i(s)
which completes the proof.

Now for the utility we have

E[Utility] = Z]E ug| = Z ZPY[W(j) =] ¢i(j) Elvily>,] = Z qu’i(j) E[vi'lvi>7']%'

By applying Lemma 7.8 we get

n n 1
E|Utility| >) Elv; - 15— L .
[UUY]_ZZC](]) [v ZZ]n emma 7.8

i=1 j=1

—ZE L] Y al) + (7.13)

- - - n
=1

3

> E[OPT - 1oprs,] Zq(j)%. (7.14)

To complete the proof of the theorem we need to show that the sum in In-

equality (7.14) is at least 1 — 1/e. Define p(i) := Pr[v; < 7|. For every j we have

183 £ HW(’?)) exp (Zlnzo(w(k)))]

exp 1s convex exp (Z In p(m]) = exp (% Z lnp(k‘)) = exp (—%)
k=1

The last inequality holds because our choice of 7 results in ¢(n)

q(j) =Pr {max {va } < 7'1

=E

=[I=, p(i) = 1/e.
Therefore we have
Ll L& 7\ 1 ! 1
- > —L) .= > —)dr=1—- .
> q(J)n_jE1 eXp< n) - _/O exp(—z)dx

- e
Jj=1

111

This gives us E[Utility] > (1 — 1/e) E[OPT-1opr>-]. Now we are ready to wrap up

the proof. We have
E[Alg] = E[Revenue] + E[Utility]

€ €

> (1 _ 1) - (1 - 1) E[OPT - 1oprs]

1
> (1 - _> (E[OPT - 1opr<,] + E[OPT - 1opr>,])

e
1
= <1 — —) E[OPT] ,
e
which completes the proof. O

7.5.2 Impossibility for IID Prophet Inequalities

In the following we prove an impossibility result for FTAs for single item
prophet secretary. We show this impossibility even for the special case of iid items.
For every n, we give a common distribution D for every item such that no FTA can
achieve an approximation factor better than 1 —1/e. This also implies the tightness

of the algorithm discussed in Section 7.5.1.

Theorem 7.5. Any FTA for iid prophet inequality is at most (1 — 2 + O(+))-

approrimation.

Proof. We prove the theorem by giving a hard input instance for every n as follows:
every v; is n/(e — 1) with probability 1/n? and is (e — 2)/(e — 1) otherwise. The

expected maximum value of these n items is

o= (1355 (-8 o)

112

In this instance, if 7 < (e —2)/(e—1) then the algorithm selects the first item,
and if (e —2)/(e—1) < 7 < n/(e—1) then the algorithm can only select n/(e —1).
In these cases the approximation factor can be at most (e —2)/(e — 1) ~ 0.58.

Now, note that the CDF of this input distribution is not continuous. Reshaping
a discrete distribution function into a continuous one, however, does not change the
approximation factor because for example in the above instance we only need a
very slight change at the point (e —2)/(e — 1) of the CDF. This change gives us a
randomness when 7 = (e — 2)/(e — 1), which is equivalent to flipping a random coin
and skipping every item with some probability p < 1 — 1/n? if the drawn value is

(e —2)/(e —1). With this assumption we have

E[Alg] - sz E[Ui) 1Ui27] = 1 _pip E[Ui :]-viZT]

=1
1—p" 1 e—2 1 n

= 1— — — —
L—=p <(n’ p)€—1+n2€—1>
1—p" 1

< —2+— . 7.15
e—1 (6 +n(1—p)> ()

To complete the proof, it suffices to show that the right hand side of Inequality
(7.15) is at most 1 — 1/e + O(1/n). To this end, we try to maximize this term

based on parameter ¢ where p =1 — ¢/n. We can rewrite the right hand side of the

1—(1-4&)
e—1 c

If ¢ € O(n) then this term is at most (e — 2 + ©(1/n))/(e — 1) =~ 0.41 + O(1/n)

inequality as

which is below 1 — 1/e for sufficiently large n. Otherwise ¢/n < 1 and we can

approximate (1 — ¢/n)" as e”¢+ O(1/n). This upper bounds Inequality (7.15) by

113

(1—e“)e—2+1/c)/(e—1)+ O(1/n), where the first term is independent of n

and is at most 1 — 1/e for different constants c; thereby completing the proof. O

We would like to note that the continuity of the CDF of the input distributions
is a useful and natural property that can be used by an FTA. This is because making
this assumption allows us to design a (1 — 1/e)-approximation algorithm, as shown
by Theorem 7.4, but not assuming this puts a barrier of 1/2 for any FTA, which is
shown by [EHLM15]%. For example, in the above instance the approximation factor
without assuming continuity would be at most (e —2)/(e—1) = 0.58, which is below
the 1 —1/e ~ 0.63 claim of Theorem 7.4. This contradiction is because without this
assumption on the input distribution the algorithm could not set 7 in a way that

the probability of selecting an items became exactly 1 — 1/e.

4Their hardness instance contains different distributions, hence does not necessarily apply to

iid prophet inequality.

114

Chapter 8: Stochastic k-Server Problem

8.1 Introduction

The k-server problem is one of the most fundamental problems in online com-
putation that has been extensively studied in the past decades. In the k-server
problem we have k£ mobile servers on a metric space M. We receive an online se-
quence of ¢ requests where the i** request is a point 7, € M. Upon the arrival of
r;, we need to move a server to r;, at a cost equal to the distance from the current
position of the server to r;. The goal is to minimize the total cost of serving all
requests.

Manasse, McGeoch, and Sleator [MMS90] introduced the k-server problem as
a natural generalization of several online problems, and a building block for other
problems such as the metrical task systems. They considered the adversarial model,
in which the online algorithm has no knowledge of the future requests. Following the
proposition of Sleator and Tarjan [ST85], they evaluate the performance of an online
algorithm using competitive analysis. In this model, an online algorithm ALG is
compared to an offline optimum algorithm OP'T which is aware of the entire input
in advance. For a sequence of requests p, let |ALG(p)| and |OPT(p)| denote the

total cost of ALG and OPT for serving p. An algorithm is c-competitive if for every

115

p, |ALG(p)| < ¢|OPT(p)| + ¢o where ¢q is independent of p.

Manasse et al. [MMS90] showed a lower bound of k for the competitive ra-
tio of any deterministic algorithm in any metric space with at least k + 1 points.
The celebrated k-server conjecture states that this bound is tight for general met-
rics. For several years the known upper bounds were all exponential in k, until a
major breakthrough was achieved by Koutsoupias and Papadimitriou [KP95], who
showed that the so-called work function algorithm is (2k — 1)-competitive. Prov-
ing the tight competitive ratio has been the “holy grail” of the field in the past
two decades. This challenge has led to the study of the problem in special spaces
such as the uniform metric (also known as the paging problem), line, circle, and
trees metrics (see [CKPV91,CLI1] and references therein). We also refer the reader
to Section 8.1.3 for a short survey of randomized algorithms, particularly the re-
cent result of Bansal, Buchbinder, Madry, and Naor [BBMN11] which achieves the
competitive ratio of O(log® nlog® k) for discrete metrics that comprise n points.

The line metric (or Euclidean 1-dimensional metric space) is of particular inter-
est for developing new ideas. Chrobak, Karloof, Payne, and Vishwnathan [CKPV91]
were the first to settle the conjecture in the line by designing an elegant k-
competitive algorithm. Chrobak and Larmore [CLI1] generalized this approach to
tree metrics. Later, Bartal and Koutsoupias [BK04] proved that the work function
algorithm is also k-competitive in line. Focusing on the special case of k£ = 2 in line,
Bartal et al. [BCL0O0] show that, using randomized algorithms, one can break the
barrier of lower bound k by giving a 1.98-competitive algorithm for the case where

we only have two servers.

116

Despite the strong lower bounds for the k-server problem, there are heuristics
algorithms that are constant competitive in practice. For example, for the paging
problem- the special case of uniform metric- the least recently used (LRU) strategy
is shown to be experimentally constant competitive (see Section 8.1.3). In this
chapter we propose an algorithm and run it on real world data to measure its
performance. In particular we use the distribution of car accidents obtained from
road safety data. Our experiments illustrate our algorithm is performing even better
in practice. The idea of comparing the performance of an online algorithm (with
zero-knowledge of the future) to the request-aware offline optimum has led to crisp
and clean solutions. However, that is not without its downsides. The results in the
online model are often very pessimistic leading to theoretical guarantees that are
hardly comparable to experimental results. Indeed, one way to tighten this gap is
to use stochastic information about the input data as we describe in this chapter.

We should also point out that the competitive analysis is not the only possible
or necessarily the most suitable approach for this problem. Since the distributions
from which the input is generated are known, one can use dynamic programming (or
enumeration of future events) to derive the optimal movement of servers. Unfortu-
nately, finding such an optimal online solution using the distributions is an NP-hard
problem !, thus the dynamic programming or any other approach takes exponential

time. This raises the question that how well one can perform in comparison to the

'Reduction from k-median to Stochastic k-server: to find the k£ median of set S of vertices, one
can construct an instance of stochastic k-server with ¢ = 1 and Py (v) = 1/|S| for every v € S. The

best initialization of the servers gives the optimum solution to k-median of S.

117

best online solution. In the rest of the chapter we formally define the model and

address this question.

8.1.1 The Stochastic Model

In this chapter, we study the stochastic k-server problem where the input is
not chosen adversarially, but consists of draws from given probability distributions.
This problem has applications such as equipment replacement in data centers. The
current mega data centers contain hundreds of thousands of servers and switches
with limited life-span. For example servers usually retire after a few years. The
only efficient way to scale up the maintenance in data centers is by automation,
and robots are designed to handle maintenance tasks such as repairs or manual
operations on servers. The replacement process can be modeled as requests that
should be satisfied by robots, and robots can be modeled as servers. This problem
also has applications in physical networks. As an example, suppose we model a
shopping service (e.g. Google Express) as a k-server problem in which we receive
an online sequence of shopping requests for different stores. We have k shopping
cars (i.e., servers) that can serve the requests by traveling to the stores. It is quiet
natural to assume that on a certain time of the week/day, the requests arrive from
a distribution that can be discovered by analyzing the history. We formalize this
stochastic information as follows.

For every i € [1---t], a discrete probability distribution FP; is given in advance

from which request r; will be drawn at time step ¢. The distributions are chosen by

118

the adversary and are assumed to be independent but not necessarily identical. This
model is inspired by the well-studied model of prophet inequalities * [KST7,HKS07].
As mentioned before, the case of line metric has proven to be a very interesting
restricted case for studying the k-server problem. In this thesis, we focus mainly on
the class of line metric though our results carry over to circle metric and general
metrics as well.

In the adversarial model, the competitive ratio seems to be the only well-
defined notion for analyzing the performance of online algorithms. However, in the
presence of stochastic information, one can derive a much better benchmark that
allows us to make fine-grained distinctions between the online algorithms. We recall
that in the offline setting, for a class of algorithms C, the natural notion to measure
the performance of an algorithm ALG € C is the approximation ratio defined as the
worse case ratio of |[ALG| to |OPT(C)| where OPT(C) is the optimal algorithm in the
class. In this thesis, we also measure the performance of an online algorithm by its
approximation ratio— compared to the optimal online solution. We note that given
distributions P, ..., P, one can iteratively compute the optimal online solution by
solving the following exponential-size dynamic program: for every i € [0---¢] and
every possible placement A of k servers (called a configuration) on the metric, let

7(i, A) denote the minimum expected cost of an online algorithm for serving the

2In the prophet inequality setting, given (not necessarily identical) distributions Py, ..., P, an
online sequence of values 1, ..., x, where x; is drawn from P;, an onlooker has to choose one item
from the succession of the values, where x; is revealed at step i. The onlooker can choose a value

only at the time of arrival. The goal is to maximize the chosen value.

119

first 7 requests and then moving the servers to configuration A. Note that 7(i, A)

can inductively be computed via the following recursive formula
7(i, A) = m];n 7(i—1, B)+E,,p, [min. distance from B to A subject to serving r;] ,

where 7(0, A) is initially zero for every A.

8.1.2 Our Results

Our first main result is designing a constant approximation algorithm in the
line metric when the distributions for different time steps are not necessarily iden-

tical.

Theorem 8.1. There exists a 3-approrimation online algorithm for the stochastic
k-server problem in the line metric. The running time is polynomial in k and the
size of the support of the input distributions. The same guarantee holds for the circle

metric.

For the general metric, we present an algorithm with a logarithmic approxi-

mation guarantee.

Theorem 8.2. There exists a O(logn)-approximation online algorithm for the

stochastic k-server problem in a general metric of size n.

We prove the theorems using two important structural results. The first key
ingredient is a general reduction from class of online algorithms to a restricted class
of non-adaptive algorithms while losing only a constant factor in the approximation
ratio. Recall that a configuration is a placement of k-servers on the metric. We

120

say an algorithm ALG is non-adaptive if it follows the following procedure: ALG
pre-computes a sequence of configurations Ay, Ay, ..., A;. We start by placing the
k-servers on Ag. Upon the arrival of r;, (i) we move the servers to configuration A;;
next (ii) we move the closest server s to r;; and finally (iii) we return s to its original

position in A;. We first prove the following structural result.

Theorem 8.3. For the stochastic k-server problem in the general metric, the opti-
mal non-adaptive online algorithm is within 3-approximation of the optimal online

algorithm.

Using the aforementioned reduction, we focus on designing the optimal non-
adaptive algorithm. We begin by formulating the problem as an integer program.
The second ingredient is to use the relaxation of this program to formalize a natural
fractional variant of the problem. In this variant, a configuration is a fractional
assignment of server mass to the points of the metric such that the total mass
is k. To serve a request at point r;, we need to move some of the mass to have
at least one amount of server mass on r;. The cost of moving the server mass
is naturally defined as the integral of the movement of infinitesimal pieces of the
server mass. By solving the linear relaxation of the integer program, we achieve the
optimal fractional non-adaptive algorithm. We finally prove Theorems 8.1 and 8.2
by leveraging the following rounding techniques. The rounding method in line has
been also observed by Tiirkoglu [T1ir05]. We provide the proof for the case of line in
Section 8.5 for the sake of completeness. The rounding method for general metrics

is via the well-known embedding of a metric into a distribution of well-separated

121

trees while losing a logarithmic factor in the distortion. Bansal et al. [BBMN11] use
a natural rounding method similar to that of Blum, Burch, and Kalai [BBK99] to
show that any fractional k-server movement on well-separated trees can be rounded

to an integral counterpart by losing only a constant factor.

Theorem 8.4 (first proven in [Tiir05]). Let ALG denote a fractional k-server algo-
rithm in the line, or circle. One can use ALGy to derive a randomized integral algo-
rithm ALG such that for every request sequence o, E[|[ALG(0)|] = |[ALG(0)|. The
expectation is over the internal randomness of ALG. Furthermore, in the stochastic

model ALG can be derandomized.

Theorem 8.5 (proven in [BBMN11]). Let ALG denote a fractional k-server algo-
rithm in any metric. One can use ALGy to derive a randomized integral algorithm

ALG such that for every request sequence o, E[|ALG(0)|] < O(logn) |ALG(o)].

We further show that in the stochastic setting, if the number of possible input
scenarios is m, even if the distributions are correlated, one can compute the best
fractional online competitive algorithm in time polynomial in m and n. Note that
since the number of placements of k servers on n points is exponential, it is not
possible to enumerate all the possible choices of an online algorithm. We solve
this problem by presenting a non-trivial LP relaxation of the problem with size
polynomial in n and m; therefore obtaining the following result. We present the

formal model and analysis in Appendix F.

Theorem 8.6. The optimal online algorithm of the stochastic k-server problem
with correlated setting in line and circle can be computed in polynomial time w.r.t.

122

the number of possible scenarios. In general metrics, an O(logn)-approximation

algorithm can be obtained.

8.1.3 Further Related Work

The randomized algorithms often perform much better in the online paradigm.
For the k-server problem, a lower bound of Q(logk) is shown by [KRR94] for the
competitive ratio of randomized algorithms in most common metrics. Despite the
exponential gap, compared to the lower bound of deterministic algorithms, very
little is known about the competitiveness of randomized algorithms. In fact, the
only known algorithms with competitive ratios below k, work either in the uni-
form metric (also known as the paging problem [FKL*91,MS91, ACN00, BBN12]),
a metric comprising k + 1 points [FMO03], and two servers on the line [BCL00]. Two
decades after the introduction of the k-server problem, a major breakthrough was
achieved by Bansal et al. [BBMNT11] in discrete metrics with sub-exponential size.
If M comprise n points, their randomized algorithm achieves a competitive ratio of
O(log® nlog” k).

The case of uniform metric has been extensively studied under various stochas-
tic models motivated by the applications in computer caching. Koutsoupias and Pa-
padimitriou [KP95] consider two refinements of the competitive analysis for server
problems. First, they consider the diffuse adversary model. In this model, at every
step ¢ the adversary chooses a distribution D; over the uniform metric of the paging

problem. Then the i** request is drawn from D, which needs to be served. The

123

distribution D; is not known to the online algorithm and it may depend on the
previous requests. However, in their chapter, they consider the case wherein it is
guaranteed that for every point p, D;(p) < e for a small enough ¢; i.e., the next
request is not predictable with absolute certainty for the adversary. The results of
Koutsoupias and Papadimitriou and later Young [You98| shows that the optimum
competitive ratio in this setting is close to 1 + ©(ke).

The second refinement introduced in [KP95] restricts the optimal solution
to having lookahead at most ¢. Hence, one can define a comparative ratio which
indicates the worst-case ratio of the cost of the best online solution to the best
solution with lookahead ¢. They show that for the k-server problem, and more
generally the metrical task system problem, there are online algorithms that admit
a comparative ratio of 2¢ + 1; for some instances this ratio is tight.

Later, Panagiotou and Souza [PS06] considered the paging problem when the
adversary is restricted to certain local constraints on the request. These constraints
are motivated by the locality of reference in a memory cache and typical memory-
access patterns. They show that under these constraints the LRU algorithm is
constant competitive, which indeed gives a theoretical explanation to why LRU
works pretty well in practice.

Various other models of restricting the adversary (access graph model [BIRS95,
IKP96,FM97], fault rate model [KPR00, AFG02,Den83], etc) have also been consid-
ered for the paging problem (see [PS06,Bec04] and references therein for a further
survey of these results). Unfortunately, many of the stochastic settings considered
for the paging problem do not seem to have a natural generalization beyond the uni-

124

form metric setting. For example, in the diffuse adversary model, most of the studied
distributions do not weaken the adversary in the general metric. In this chapter, we
look for polynomial-time approzimation algorithms in the class of online algorithms
that have access to the distributions.

We would like to mention that various online problems have been previously
considered under prophet inequality model or i.i.d. model (where all distributions
are identical). Motivated by ad auctions, the maximum matching problem has been
extensively studied in these models, achieving near one competitive ratios [AHL12,
AHL*11,AHL13]. In the graph connectivity problems, Garg, Gupta, Leonardi,and
Sankowski [GGLS08] consider the online variants of Steiner tree and several related
problems under the i.i.d. stochastic model. In the adversarial model, there exists an
Q(logn) lower bound on the competitive ratio of any online algorithm, where n is the
number of demands. However, Garg et al. show that under the i.i.d. assumption,
these problems admit online algorithms with constant or O(loglogn) competitive
ratios. We refer the reader to the excellent book by Borodin and El-Yaniv [BEY05]

for further study of online problems.

8.2 Preliminaries

In this section we formally define the stochastic k-server problem. The classical
k-server problem is defined on a metric M which consists of points that could be
infinitely many. For every two points x and y in metric M, let d(x,y) denote

the distance of x from y which is a symmetric function and satisfies the triangle

125

inequality. More precisely for every three points x, y, and z we have

d(z,z) =0 (8.1)
d(z,) = d(y, 2) (5.2
d(z,y) +d(y,z) > d(z, z). (8.3)

In the k-server problem the goal is to place k servers on k points of the met-
ric, and move these servers to satisfy the requests. We refer to every placement
of the servers on the metric points by a configuration. Let p = (ry,re,..., 1) be
a sequence of requests, the goal of the k-server problem is to find configurations
(Ao, A1, Ag, ..., A;) such that for every i there exists a server on point r; in configu-
ration A;. We say such a list of configurations is valid for the given list of requests.
A valid sequence of configurations is optimal if Y d(A;_1, 4;) is minimized where
d(X,Y) stands for the minimum cost of moving servers from configuration X to
configuration Y. An optimal sequence (A, Ay, ..., A;) of configurations is called an
optimal offline solution of OFKS(M, p) when p is known in advance. We refer to
the optimal cost of such movements with | OFKS(M, p)| = > d(A;_1, A;).

We also define the notion of fractional configuration as an assignment of the
metric points to non-negative real numbers. More precisely, each number specifies
a mass of fractional server on a point. Every fractional solution adheres to the
following condition: The total sum of the values assigned to all points is exactly
equal to k. Analogously, a fractional configuration serves a request r; if there is a
mass of size at least 1 of server assigned to point r;. An offline fractional solution
of the k-server problem for a given sequence of requests p is defined as a sequence

126

of fractional configurations (A, Ay, ..., A;) such that A; serves r;.

In the online k-server problem, however, we’re not given the whole sequence
of requests in the beginning, but we will be informed of every request once it is
realized. An algorithm A is an online algorithm for the k-server problem if it reports
a configuration Ag as an initial configuration and upon realization of every request r;
it returns a configuration A; such that (Ag, Ay, Ag, ..., A;) is valid for (ry, 7o, ... 7).
If A is deterministic, it generates a unique sequence of configurations for every
sequence of requests. Let A(M, p) be the sequence that A generates for requests in
p and |[A(M, p)| denote its cost.

In the online stochastic k-server problem, in addition to metric M, we are
also given ¢ independent probability distributions (Py, Ps, ..., P;) which show the
probability that every request r; is realized on a point of the metric at each time. An
algorithm A is an online algorithm for such a setting, if it generates a configuration
for every request r; not solely based on (ry,79,...,7;) and (Ao, A1,...,A;_1) but
also with respect to the probability distributions. Similarly, we define the cost of an
online algorithm A for a given sequence of requests p with |A(M, p, (P1, Py, ..., P))]|.
We define the expected cost of an algorithm A on metric M and with probability

distributions (Py, Ps, ..., P;) by

|A(M7 <P17P27 cee 7Pt>)’ = EVi7riNPi

A(Mapa <P17P27"'7Pt>)"

For every metric M and probability distributions (P, P, ..., P;) we refer to the
online algorithm with the minimum expected cost by OPTx p, p,,...,P,)-

An alternative way to represent a solution of the k-server problem is as a

127

vector of configurations (By, By, ..., B;) such that B; does not necessarily serve
request ;. The cost of such solution is equal to Y d(B;_1, B;) + > 2d(B;, ;) where
d(B;,r;) is the minimum distance of a server in configuration B; to request ;. The
additional cost of 2d(B;,r;) can be thought of as moving a server from B; to serve
r; and returning it back to its original position. Thus, every such representation of
a solution can be transformed to the other representation. Similarly, d(B;,r;) for
a fractional configuration B; is the minimum cost which is incurred by placing a
mass 1 of server at point ;. We use letter B for the configurations of such solutions
throughout this chapter.

In this chapter the emphasis is on the stochastic k-server problem on the line
metric. We define the line metric £ as a metric of points from —oo to +oo such
that the distance of two points z and y is always equal to |x — y|. Moreover, we
show that deterministic algorithms are as powerful as randomized algorithms in this
setting, therefore we only focus on deterministic algorithms here. Thus, from here
on, we omit the term deterministic and every time we use the word algorithm we

mean a deterministic algorithm unless otherwise is explicitly mentioned.

8.3 Structural Characterization

In this section we define a class of online algorithms for the stochastic k-server
problem and show an important structural property for this class. Later, we leverage
this property to provide a polynomial time algorithm for the problem. Although

we give the algorithm for the line metric, the structural characterization holds for

128

general graphs and is of independent interest.

Recall that an online algorithm A has to fulfill the task of reporting a config-
uration A; upon arrival of request r; based on (Ao, A1, ..., Ai—1), (ri,r2, ..., 7)),
and (P, Py, ..., P). We say an algorithm B is request oblivious, if it reports
configuration B; regardless of request r;. As such, B generates configurations
(By, B, ..., By) for a sequence of requests (r1,7,...,7;) and the cost of such con-
figuration is Y d(B;_1, B;) + >_ 2d(B;,r;). More precisely, no matter what request
r; is, B will generate the same configuration for a given list of past configurations
(By, B1,...,B;_1), a given sequence of past requests (ri,r,...,7;_1), and the se-
quence of probability distributions (Py, Ps, ..., P;). In the following we show that
every online algorithm A can turn into a request oblivious algorithm B, that has a

cost of at most [3BA(M, p, (P, Ps, ..., P,))| for a given sequence of requests p.

Lemma 8.1. Let A be an online algorithm for the stochastic k-server problem. For

any metric M, there exists a request oblivious algorithm B, such that

|Ba(M, (P1, Py, ..., P))| <3JAM, (P, Py, ..., P))l

Proof. Let p be a sequence of requests. We define online algorithm B, as
follows: The configuration that B, reports for a given list of input arguments
(Bo, By, ...,Bj), (ri,re,...,r;), and (P, Ps,..., P;) is the output of algorithm A
on inputs (By, By, ..., B;), (ri,r2,...,1i-1), and (P, Py, ..., P;) (The same input
except that r; is dropped from the sequence of requests). We show the cost of such
algorithm for input p is at most 3 times the cost of A for the same input.

Let (Ag, Aq,...,A;) be the sequence of configurations that A generates for

129

requests p and (By, By, ..., B;) be the output of algorithm B4. According to the
construction of By, By = Ag and B; = A;_; for all 1 < i < t. Note that for
algorithm A, we assume every A; serves request ;. By definition, the cost of solution

<Bo, Bl, BQ, R ,Bt> is equal to Z d(Bi—ly Bl) + 2 Z d(Bz, T'z‘). Since BO = Bl = AO

and Bz = A’i—17
t t—1 t
D d(Bi1,Bi) =Y d(Ai 1, Ai) < d(Air, Ai) = |A(M, p, (P, Py, B)).
=1 =1 =1

(8.4)
Moreover, since every A; servers request r;, d(B;,r;) < d(B;, A;)) = d(A;i_1, A;).

Hence,

t t t
2Zd(Bi7Ti) < QZd(Bi7Az‘) = 2Zd(Az’—l7Ai) =2[AM, p,(P1, Py, ...,)|
i=1 i=1 i=1

(8.5)
Inequality (8.4) along with Equation (8.5) implies
Ba(M, p, (P, Py, P))| < 3JAM, p, (P, Py, ..., P
Since this holds for all requests p ~ (Py, P,, ..., P;), we have
Ba(M, (P1, P, ..., P))| < 3[AM, (P, Py, ..., 1))
and the proof is complete. O

An immediate corollary of Lemma 8.1 is that the optimal request oblivious

algorithm has a cost of at most [3OPT v (p, p,.....py (M, (P1, Py, ..., P,))|. Therefore,

if we only focus on the request oblivious algorithms, we only lose a factor of 3 in
comparison to the optimal online algorithm. The following lemma states a key

structural lemma for an optimal request oblivious algorithm.

130

Lemma 8.2. For every request oblivious algorithm B, there exists a randomized
request oblivious algorithm B’ with the same expected cost which is not only oblivious

to the last request, but also oblivious to all requests that have come prior to this.

Proof. For any given request oblivious online algorithm B, we construct an on-
line algorithm B’ which is oblivious to all of the requests as follows: For an input
(B1, Bs,...,B;_1) of configurations and probability distributions (P, P, ..., P),
draw a sequence of requests (ry,ro,...,r;) from (P, P, ..., P;) conditioned on
the constraint that B would generate configurations (Bi, Bs,...,B; 1) for re-
quests (ri,79,...,7;_1). Now, report the output of B for inputs (By, Bs, ..., B;_1),
(ri,re, ..., 1), and (P, Py, ..., Py).

We define the cost of step ¢ of Algorithm B’ as d(B;_1, B;) + 2d(B;, ;). Due
to the construction of algorithm B’, the expected cost of this algorithm at every
step ¢ for a random sequence of requests is equal to the expected cost of algorithm
B for a random sequence of requests drawn from (P, Ps,..., P;). Therefore, the
expected cost of both algorithms for a random sequence of requests are equal and

thus |B(M,<P1,P2,,Pt>)| = |B/(M, <P1,P2,...,Pt>)|. O

Lemma 9.1 states that there always exists an optimal randomized request
oblivious online algorithm that returns the configurations regardless of the requests.
We call such an algorithm non-adaptive. Since a non-adaptive algorithm is indiffer-
ent to the sequence of the requests, we can assume it always generates a sequence of
configurations just based on the distributions. For an optimal of such algorithms,

all such sequence of configurations should be optimal as well. Therefore, there al-

131

ways exists an optimal non-adaptive online algorithm which is deterministic. By
Lemma 8.1 not only do we know the optimal request oblivious algorithm is at most

3-approximation, but also the same holds for the optimal non-adaptive algorithm.

Theorem 8.7. There exists a sequence of configurations (Bo, By, ..., By) such that
an online algorithm which starts with By and always returns configuration B; upon

arrival of request r; has an opproximation factor of at most 3.

8.4 Fractional Solutions

In this section we provide a fractional online algorithm for the k-server problem
that can be implemented in polynomial time. Note that by Theorem 8.7 we know
that there exist configurations (By,Bo, ..., B;) such that the expected cost of a non-
adaptive algorithm that always returns these configurations is at most 3. Therefore,
we write an integer program to find such configurations with the least expected
cost. Next, we provide a relaxed LP of the integer program and show that every
feasible solution of such LP corresponds to a fractional online algorithm for the
stochastic k-server problem. Hence, solving such a linear program, that can be done

in polynomial time, gives us a fractional online algorithm for the problem.

8.4.1 Linear Program

Recall that given ¢ independent distributions (P, ..., P;) for online stochas-
tic k-server, an adaptive algorithm can be represented by t + 1 configurations

(By, ..., B). Upon the arrival of each request r;, we move the servers from config-

132

uration B;_; to B; and then one server serves r; and goes back to its position in
B;. The objective is to find the configurations such that the cost of moving to new
configurations in addition to the expected cost of serving the requests is minimized.
Therefore the problem can formulated in an offline manner. First we provide an
integer program in order to find a vector of configurations with the least cost.

The decision variables of the program represent the configurations, the move-
ment of servers from one configuration to another, and the way that each possible

request is served. In particular, at each time step 7:

e For each node v there is a variable b., € N denoting the number of servers

on node v.

e For each pair of nodes u and v, there is a movement variable f;,, € N

denoting the number of servers going from u to v for the next round.

e For each node v and possible request node r, there is a variable z,,, € {0,1}

denoting whether r is served by v or not.

In the following integer program, the first set of constraints ensures the number
of servers on nodes at each time is updated correctly according to the movement
variables. The second set of constraints ensures that each possible request is served
by at least one server. The third set of constraints ensures that no possible request is
served by an empty node. By the definition, the cost of a sequence of configurations

(Bo,...,By)is Yi_ d(Bi_1, B)+2":_, d(By,r;). Thus the objective is to minimize

133

the expression

Z Z frupd(u,v) + 2 Z Z Z Tryr Pr(z ~ P =r)d(v,r)

T uv

, where Pr(z ~ P. = r) denotes the probability that r is requested at time 7.

min. SN frandw,0) +23°3" N an, Pr(z ~ Pro=1)d(v, 7)

T

VT7 v b7-+17v = bTaU + Z fT,u7U - Z fT7’U,U'
u u
VT, u,v meﬂ“ > 1.
v

VTa v, T :CT,U,T‘ S br,v-

VT Z bT,v S k

v

V1, 0,7 Tryr € {0,1}.
VT, u,v fruw € N.
VT, v bry € N.

Now we consider the following relaxation of the above integer program.

min. Z Z frupd(u,v) + 2 Z Z Z Trpr Pr(z ~ Pr=1)d(v,7)

T uw
VTa v bT+1,’U = b’T,U + E fT,u,v - E fT,v,u~
u u

VT, u, v E Trpr > 1.
v

VTa v, T Lrov,r < br,v-

\Zs > by <k

v

134

Next, in Section 8.5 we show how a fractional solution can be rounded to an

integral solution.

8.5 Reduction from Integral k-server to Fractional k-server

In this section we show how we can obtain an integral algorithm for the stochas-
tic k-server problem from a fractional algorithm. We first show that every fractional
algorithm for the line metric can be modified to an integral algorithm with the same
cost. Next, we study the problem on HST metrics; we give a rounding method that
produces an integral algorithm from a fractional algorithm while losing a constant
factor. Finally, we leverage the previously known embedding techniques to show
every metric can be embedded into HST’s with a distortion of at most O(logn).
This will lead to a rounding method for obtaining an integral algorithm from every
fractional algorithm on general metrics while losing a factor of at most O(logn).
Combining this with the 3 approximation fractional algorithm that we provide in
Section 8.4, we achieve an O(logn) approximation algorithm for the stochastic k-

server problem on general graphs.

8.5.1 Integrals Are as Strong as Fractionals On the Line

In this section we show every fractional algorithm on the line metric can be
derandomized to an integral solution with the same expected cost. The rounding
method is as follows: For every fractional configuration A, we provide an integral

configuration I(A) such that (i) the distance of two configurations A; and A, is

135

equal to the expected distance of two configurations I(A;) and I(As). (ii) for every
point x in the metric that A has a server mass of size at least 1 on x, there exists a
server on point z in I(A).

Let for every point x in the metric, A(v) denote the amount of server mass on
node v of the line. For every fractional configuration B, we define a mass function
fa:(0,k] =V as follows. fa(x) = v; if and only if j is the minimum integer such
that >>7-1 A(i) < x and 3>7_, A(i) > x. Intuitively, if one gathers the server mass
by sweeping the line from left to right, fa(x) is the first position on which we have

gathered x amount of server mass. The rounding algorithm is as follows:

e Pick a random real number 7 in the interval [0, 1).

e [(A) contains k servers on positions fa(r), fa(r+1), fa(r+2), ..., fa(r+k—1).

Note that the rounding method uses the same r for all of the configurations.
More precisely, we draw r from [0, 1) at first and use this number to construct the
integral configurations from fractional configurations. The following two lemmas

show that both of the properties hold for the rounding algorithm we proposed.

Lemma 8.3. Let A be a fractional configuration and x be a point such that A(z) > 1.

Then I(A) has a server on x.

Proof. Due to the construction of our rounding method, for every two consecutive
servers a and b in [(A), the total mass of servers after a and before b in the fractional
solution is less than 1. Therefore, I(A) should put a server on point x, otherwise
the total mass of servers in the fractional solution between the first server before x
and the first server after x would be at least 1. |

136

The next lemma shows that the rounding preserves the distances between the

configurations in expectation.

Lemma 8.4. Let Ay and Ay be two fractional configurations and |Ay — As| be their
distance. The following holds for the distances of the configurations

E|H(A1) - H(A2)‘ = |A1 - A2|-

Proof. The key point behind the proof of this lemma is that the distance of two

fractional configurations A; and A, can be formulated as follows

1
A= s = [LA - LAl
0

where [,(A) stands for an integral configurations which places the servers on points
fa(w), falw+1), fa(w+2), ..., fa(w+k—1). Since at the beginning of the rounding
method we draw r uniformly at random, the expected distance of the two rounded

configurations is exactly equal to

/0 L(A1) — L(Ay)ld,

which is equal to the distance of A; from As. O

Theorem 8.8. For any given fractional online algorithm A for the k-server problem
on the line metric, there exists an online integral solution for the same problem with

the same expected cost.

8.5.2 Reduction for General Graphs

An HST is a undirected rooted tree in which every leaf represents a point in
the metric and the distance of a pair of points in the metric is equal to the distance

137

of the corresponding leaves in the tree. In an HST, weights of the edges are uniquely
determined by the depth of the vertices they connect. More precisely, in a o-HST
the weight of an edges between a vertex v and its children is equal to ¢"~% where
h stands for the height of the tree and d, denotes the depth of vertex v.

Since HST's are very well structured, designing algorithms on HST's is relatively
easier in comparison to a more complex metric. Therefore, a classic method for
alleviating the complexity of the problems is to first embed the metrics into HST's
with a low distortion and then solve the problems on these trees.

Perhaps the most important property of the HSTs is the following:

Observation 8.9. For every pair of leaves u,v € T of an HST, the distance of u

and v 1s uniquely determined by the depth of their deepest common ancestor.

Note that, the higher the depth of the common ancestor is, the lower the
distance of the leaves will be. Therefore, the closest leaves to a leaf v are the ones
that share the most common ancestors with v. Bansal et al. propose a method for
rounding every fractional solution of the k-server problem to an integral solution

losing at most a constant factor [BBMN11].

Theorem 8.10. [BBMN11] Let T be a o-HST with n leaves, o > 5, and let
A = (Ao, A1, Ay, .o Ay) be a sequence of fractional configurations. There is an
online procedure that maintains a sequence of randomized k-server configurations

S = (Sy, S1,S9,...,5;) satisfying the following two properties:

e At any time 1, the state S; is consistent with the fractional state A;.

138

e [f the fractional state changes from x;_1 to x; at time i, incurring a movement
cost of ¢;, then the state S;_1 can be modified to a state S; while incurring a

cost of O(c;) in expectation.

Embedding general metrics into trees and in particular HST's has been the sub-
ject of many studies. The seminal work of Fakcharoenphol et al. [FRT03] has shown
ologn

that any metric can be randomly embedded to o-HSTs with distortion O(W)'

Theorem 8.11. [FRT03] There exists a probabilistic method to embed an arbitrary

metric M into o-HSTs with distortion %gga”.

Therefore, to round a fractional solution on a general metric, we first embed
it into 6-HSTs with a distortion of at most O(logn) and then round the solution
while losing only a constant factor. This will give us an integral algorithm that has

an expected cost of at most O(logn) times the optimal.

Theorem 8.12. For any given fractional online algorithm A for the k-server prob-
lem on an arbitrary metric, there exists an online integral solution for the same

problem having a cost of no worse that O(logn) times the cost of A in expectation.

139

Chapter 9: Survivable Network Design and Prophets

9.1 Introduction

In an instance of the network design problem, we are given a graph G = (V, E),
an edge-cost function ¢ : E — R=Y, and a connectivity criteria. The goal is to find a
minimum-cost subgraph H of G that satisfies the connectivity requirements. An im-
portant family of this class is the survivable network design problem (SNDP): Given
non-negative integers r,, for each pair u,v € V, the solution subgraph H should
contain r,, edge-disjoint paths for each pair u and v. SNDP arises in fault tolerance
management and thus is of much interest in design community: the connectivity of
nodes u and v in H is resilient to even (r,, — 1) edge failures. This problem clearly
generalizes the Steiner tree! and Steiner forest®> problems.

For a non-empty cut S C V, let §(S) denote the set of edges with exactly one
endpoint in S. SNDP falls in the general class of network design problems that can
be characterized by proper cut functions. A function f : 2V — Z=° defined over

cuts in the graph is proper, if it is symmetric (f(S) = f(V'\ S) for all S C V) and

'In the Steiner tree problem, given a set of terminal nodes T C V, the goal is to find a

minimum-cost subgraph connecting all terminals.

2In the Steiner forest problem, given a set of pairs of vertices s;,t; € V, the goal is to find a

minimum-cost subgraph in which every pair is connected.

140

it satisfies maximality (f(SUT) < max{f(5), f(T)} for all SNT = ¢). For SNDP,
one can choose f(S) = maxyegvgs ruv for every cut S. Given a proper function f

over cuts in the graph, the goal is to find a minimum-cost subgraph H such that
|[E(H)N6(S)| > f(S9) Vnon-empty S C'V .

Over the past decades, the offline SNDP and proper cut functions have been
extensively studied especially as an important testbed for primal-dual and iterative
rounding methods (see e.g. [GGPT94,GW95,GK11,Jai01,RK93,WGMV95]). In this
chapter, we consider SNDP in the online setting: we are given a graph G = (V, E)
and an edge-cost function ¢ in advance. We receive an online sequence of demands
in the form of tuples (u,v,74,) € V x V x Z2°% We start with the empty subgraph
H. Upon the arrival of a demand (u,v,ry,), we need to immediately augment H
such that there exist at least r,, edge-disjoint paths between v and v in H. The
goal is to minimize the cost of H. The competitive ratio of an algorithm is defined as
the maximum ratio of the cost of its output and that of an optimal offline solution,
over all possible input instances.

The online 1-connectivity problems, in which r,, € {0,1} for all pairs, have
been extensively studied in the last decades. Imase and Waxman [IW91] (STAM’91)
were first to consider the edge-weighted Steiner tree problem. They used a dual-
fitting argument to show that the natural greedy algorithm is O(logn)-competitive

where n = |V[>. Their result is asymptotically tight. Later, Berman and Coul-

3In fact, the competitive ratio is O(log min{n, D}) where D is the number of demand requests.
However, to simplify the comparison with results for SNDP, in this chapter we ignore the distinction

between this factor and O(logn).

141

ston [BCI7] (STOC’97) and Awerbuch, Azar, and Bartal [AAB04] (TCS’04) demon-
strated an O(log n)-competitive algorithm for the more general Steiner forest prob-
lem by designing an elegant online primal-dual technique. The latter also shows that
the greedy algorithm achieves the competitive ratio of O(log?n) for Steiner forest.
Indeed, due to the simplicity of greedy approaches, an important open problem is
to settle the competitiveness of the greedy algorithm for Steiner forest. In the re-
cent years, several primal-dual techniques are developed for solving node-weighted
variants [AAAT09, HLP13,NPS11], and prize-collecting variants [QW11, HLP14] of
1-connectivity problems.

Gupta, Krishnaswamy, and Ravi [GKR12] (STAM’12) were first to consider the
online survivable network design problem. They demonstrate an elegant algorithm
with competitive ratio of O(k:log3 n), where k& = max,, 7y. The crux of their
analysis is to use distance-preserving tree-embeddings in an online setting. More
precisely, they first pick a random distance-preserving spanning subtree T" C G.
They satisfy a connectivity demand r,, by iteratively increasing the connectivity
of u and v. In each iteration, they show that it is sufficient to use cycles that are
formed by an edge e = (a,b) ¢ T and the {a,b}-path in T'; hence, reducing the
number of options for satisfying a connectivity demand. This would enable them to
use a set cover approach to solve the problem in an online manner and achieve the
first competitive algorithm for online SNDP.

Single-source SNDP is a variant of SNDP where all demands share a same
endpoint. Naor, Panigrahi, and Singh [NPS11] (FOCS’11) partially improve the
results of Gupta et al. [GKR12] by demonstrating a bi-criteria competitive algo-

142

rithm for single-source SNDP using structural properties of a single-source optimal
solution. A bi-criteria competitive ratio of («, 5) for SNDP implies that the solution
produced by the online algorithm achieves a connectivity of | 7] for every demand
o; and is at most a factor of o more expensive than the optimal offline solution for
connectivity of r;. The algorithm by Naor et al. achieves the competitive ratio of
O(klo%, 2+¢€) for any € > 0. They also study and give bi-criteria algorithms for the
vertex-connectivity problem.

The competitive ratio of algorithms by Gupta et al. and Naor et al. grows
linearly in k. This seems to be inherent to their methods since they may need to
solve a set-cover-like problem in each iteration of incrementing the connectivity of a
demand; hence, losing a polylogarithmic factor in each iteration. One would need a
new approach to break the linear dependency to k. Indeed, both factors of O(log3 n)
and O(k) are not plausible in practice, and an important open problem in the online
community [NPS11, GKR12] is whether the linear dependency to k can be reduced
to a logarithmic dependency. In this chapter we circumvent this problem by two
main approaches, first by considering the stochastic setting of the problem, and also
by allowing small congestion on the edges.

Allowing small congestion. Interestingly, we show that if the online al-
gorithm is allowed to buy three copies of an edge, then a simple greedy approach
is O(log® nlog k)-competitive. More precisely, we demonstrate a deterministic algo-
rithm with a bi-criteria competitive ratio of (O(log® n log; . k), 2+¢) for any constant
e > 0. For the single-rooted variant, the competitive ratio is (O(log nlog,, k), 2+€).

In our analysis of the greedy algorithm, our main technical contributions are two

143

folds: (i) establishing the connection between online SNDP and the celebrated
Steiner packing problem; and (ii) demonstrating the optimal packing ratio of 1/2
for the relaxed fractional variant of Steiner packing problem; which is a decades old
open problem for the integral variant.

It is worth mentioning that one can think of our bi-criteria algorithm as a
solution to the online SNDP with congestion 2. Relaxing a hard-to-approximate
problem by allowing small congestion is quite natural and has been very fruitful
over the past decade. Perhaps the most important example of such line of research
is the edge-disjoint path problem with congestion [RT87, AR01,BS00, KS04, And10,
Chul2, KK11, Fra85, CKS09, SCS11], for which the work of Chuzhoy and Li [CL]
(FOCS’12) gives a polylogarithmic approximation algorithm with congestion 2.

Stochastic SNDP. For many online optimization problems it is natural and
fruitful to assume that at each online step the online query is drawn indepen-
dently from a known probability distribution. We call this model the i.i.d. model.
This model has been considered for many fundamental problems (see e.g. online
stochastic matching [BK10, DJSW11, FMMMO09, HMZ11, JL13, MOGS12], k-server
[ADGP*10, CL06], set-cover, Steiner network design, facility location [GGLS08],
multi-commodity flow [HKLRO05], among others). There are two important gen-
eralizations of the i.i.d. model. The unknown distribution i.i.d. model, where
the queries are again drawn independently from the same probability distribution,
but the probability distribution is not known, and also the prophet setting. In
the prophet setting, instead of only one distribution for every online query, the
queries are independently drawn from different distributions, inspired by the classi-

144

cal prophet inequality problem. The prophet setting is also studied for many online
problems (see e.g. [AHL12, AHL13, AHL"11,FGL15]). In this chapter we consider
all three variants of the stochastic SNDP and show that we can achieve significantly
more efficient algorithms having a stochastic information about the input. We first
provide an oblivious constant competitive algorithm for the i.i.d. SNDP. Using a
similar approach to Garg et al. [GGLS08] we provide an O(logn)-competitive algo-
rithm for the unknown distribution i.i.d. SNDP. Then we provide a constant com-
petitive algorithm for the prophet SNDP, through a novel technique which leverages
the oblivious algorithm provided for the i.i.d. SNDP.

Interestingly we provide a general framework to obtain competitive algorithms
for online optimization problems in the prophet setting. Indeed it is an interesting
open problem that what is the relation between the i.i.d. setting and the prophet
setting? We show, by a simple but tricky technique that we can obtain a competitive
online algorithm in the prophet setting if we can design an oblivious competitive al-
gorithm for the problem in the i.i.d. setting. Using this technique we provide asymp-
totically tight competitive algorithms for fundamental online problems in prophet

setting, such as set cover and facility location.

9.1.1 Our Results and Techniques

Let 0; = (u;,v;,7r;) denote the i-th connectivity demand. Consider the fol-
lowing intuitive greedy approach. Upon the arrival of o;, we augment the solution

subgraph H, by finding the minimum-cost set of edges whose addition to H cre-

145

ates r; edge-disjoint paths between u; and v;. Awerbuch et al. [AAB04] (TCS’04)
show that if all the demands require 1-connectivity (i.e., ; = 1 for every i), this
algorithm achieves a competitive ratio of O(log2 n). This leads to a natural ques-
tion that whether greedy works for higher connectivity problems as well. However,
we show an instance of online SND in Section 9.3, for which the greedy algorithm
has a competitive ratio of (n). Indeed, the connectivity demands in the instance
are either zero or two, hence greedy is not competitive even for low connectivity
demands.

Interestingly, our results in this chapter show that greedy-like algorithms do
surprisingly well, if we consider the stochastic version of the problem, or if we allow a
small congestion on the edges. In the following we present our algorithms techniques
in a high-level perspective.

Allowing small congestion. We show that a greedy algorithm does sur-
prisingly well, if we relax the connectivity requirements by a constant factor. Let
a denote an arbitrary scale factor. We define an a-scaled variant of the greedy
algorithm in which the goal is to find only | % | disjoint paths between the endpoints
of ¢;. Our main result states that the scaled greedy algorithm is polylogarithmic

competitive.

Theorem 9.1. For any constant € > 0, the (2 + €)-scaled greedy algorithm is
(O(log® nlogy, k),2 + €)-competitive. For the single-source variant, the competi-
tive ratio is (O(lognlog,, k),2+ ¢).

Furthermore, for uniform SNDP, 2-scaled greedy is (O(log*n), 2)-competitive.

146

We start by demonstrating a deep connection between the greedy method
for SNDP and the Steiner packing problems. The Steiner packing problems are
motivated by vast applications in VLSI-layout and has been used as an algorithmic
toolkit in computer science. In the Steiner tree packing problem, we are given
a graph G = (V,E) and a set S of vertices and the goal is to find the Steiner
decomposition number (SDN), the maximum number of edge-disjoint subgraphs that
each connects the vertices of S. We note that a minimal connecting subgraph is a
Steiner tree with respect to S. In the Steiner forest packing problem, we are given
a set of demand pairs u;,v; € V and the goal is to find SDN, the maximum number
of edge-disjoint subgraphs that in each, the demand pairs are connected.

For simplicity, let us assume we have an uniform instance. Let opt denote the
optimal SNDP solution, with the Steiner decomposition number ¢g. In Section 9.3,
we show that the (g)-scaled greedy algorithm approximates opt up to logarithmic
factors. Intuitively, every forest in the Steiner forest decomposition, gives us a
path to satisfy a demand. Hence, we need to bound the overall cost of satisfying
demands in all the ¢ forests. The crux of our analysis is then to charge the cost of the
scaled greedy to that of a parallel set of greedy algorithms that solve 1-connectivity
instances on every forest. Finally, to get a polylogarithmic competitive algorithm,
we need to find a universal lower bound on the SDN number ¢ with respect to k.

It is shown that finding SDN is NP-hard and cannot be computed in poly-
nomial time unless P=NP [CS06] (Algorithmica’06). Given that there exist ¢ dis-
joint Steiner forests connecting a set of demands, it is straight forward to show

the graph is g-connected on the demands. Therefore, a natural upper bound on

147

SDN is the minimum connectivity of the endpoints of demands. For the case of
spanning trees (Steiner tree with S = V/((G)), it is proven that the above upper
bound also provides a good approximation guarantee for the problem. In other
words, any k-connected graph can be decomposed into k/2 edge-disjoint spanning
trees [Kri03] (JCT’03). This is also followed by a matching upper bound. The prob-
lem is much subtler when S does not encompass all vertices of the graph. The first
lower bound for the Steiner tree packing problem was achieved by Petingi and Ro-
driguez [PR00] (CON’03) who proved every S-k-connected? has [(2/3)(IV(@)-1SDg /2]
dijsoint Steiner trees. This was later improved by Kriesell [Kri03] (JCT’03), Jain,
Mahdian, and Salavatipour [JMS03] (SODA’03), Lua [Lau04] (FOCS’04), and De-
Vos, McDonald, and Pivotto [DMP13] (Man’13), the most recent of which shows
for every S-(5k + 4)-connected graph, we can find k edge-disjoint Steiner trees.
However, the main conjecture is that, similar to the case of spanning trees, every
S-k-connected graph admits a k/2-dijsoint Steiner tree decomposition [Kri03]. In
this chapter, we prove this conjecture for the fractional variant of the problem.
For a set of demand pairs (u;, v;)’s, let T denote the set of Steiner forests that
satisfy all the demands. In the fractional Steiner forest packing problem, the output
is a fractional assignment x over 7 such that for every edge e, > ;7. .cr 7 is not
more than one. The goal is to find a fractional Steiner forest decomposition with
maximum ||z||]. In Section 9.2, we prove the fractional variant of the conjecture of
Kriesell. We believe this result can be of independent interest in improving upon

other problems that rely on Steiner packing problems. We would like point out that

4A graph which is k-connected on a set of vertices S

148

the fractional Steiner forest decomposition is also presented in [DMP13].

Theorem 9.2. Given a set of demand pairs (u;,v;), if G is k-connected for every

demand pair, then the fractional Steiner decomposition number is at least k/2.

Indeed, in Section 9.3, we use a dependent rounding method to show that
the connection between SDN and the competitiveness of the greedy approach holds
even for the stronger fractional variant of SDN. Hence, Theorem 9.2 implies that
the 2-scaled greedy algorithm, achieves a polylogarithmic competitive ratio for the
uniform SNDP. Finally, in Section 9.4, we prove Theorem 9.9 by showing that the
scaled greedy is also competitive for the non-uniform variant, if one is willing to lose
an extra log k factor in the competitive ratio.

Stochastic SNDP. A single-source uniform instance of online SNDP is an
instance in which for every demand o;, u; = u, r; = k for some vertex v € V and
integer k. For a non-uniform variant, let kK = max; ;. Let D be a given probability
distribution over V. In i.i.d. SNDP at each online step ¢, a random connectivity
demand o; = (u,v;, k) arrives, where v; is drawn independently at random from
distribution D. We call the problem unknown distribution SNDP if the probability
distribution D is not given in advance. Another interesting generalization of the
i.i.d. model, which we call the prophet SNDP is defined as follows. In prophet
SNDP, instead of only a single probability distribution D, we are given T" probability
distributions Dy, ..., Dp, such that the i-th demand is o; = (u,v;, k), where v;
is drawn independently at random from distribution D;. In all three variants of

the stochastic SNDP, the competitive-ratio is defined as the the expected cost of

149

an algorithm A over the expected cost of an optimal offline algorithm while the
distribution(s) is chosen by an adversary. More precisely let E[A(w)] and Elopt(w)]
denote the expected cost of an algorithm A and the expected cost of an optimal
offline algorithm for an online scenario w, respectively. Thus the competitive-ratio

of algorithm A is defined as follows.

o BornAW))
D E,.plopt(w)]

cr(A) =

We first provide an oblivious algorithm for the i.i.d. SNDP. The algorithm

has two steps. First we realize a random scenario from distribution D. Then we
compute a 2-approximate solution for this random offline instance using Jain [Jai01].
We buy all the edges in the offline solution. Now considering the edges already
selected, for each vertex v we compute a minimum-cost k-flow to the root u. In
the second step, upon arrival of each demand, we buy the computed minimum-
cost k-flow to satisfy the k-connectivity to the root. While the algorithm is similar
to the algorithm in Garg et al. [GGLS08] for the 1-connectivity case, the analysis
needs careful consideration of the k-connected graphs. In fact, despite previous
works on the online survivable network design which do not take the structures of
k-connected graphs into account, we obtain a structural result about k-connected
graphs. Then we leverage the structural result to analyze our algorithm, and to prove

that our algorithm is 4-competitive. This is quite surprising, since it is dramatically

improving the known O(k log® n)-competitive-ratio.
Theorem 9.3. There exist a 4-competitive algorithm for i.i.d. SNDP.

Afterwards, we show that a greedy algorithm is O(logn)-competitive if the

150

input is drawn from an even unknown distribution. This is very interesting since, in

the adversary setting where there is no stochastic information about the input, we

show that a greedy algorithm may be (n)-competitive. Note that due to [GGLS08]
logn

even the 1-connectivity version of this problem is (7=)-hard.

Theorem 9.4. There ezist an O(logn)-competitive algorithm for unknown distri-

bution SNDP.

Then we consider the prophet SNDP. In fact we provide a general framework to
obtain competitive algorithms for online optimization problems in prophet setting.
From oblivious i.i.d. to prophet. We show if there exists a competitive
oblivious algorithm for an online problem in i.i.d. setting, we can obtain a compet-

itive algorithm for the same problem in prophet setting.

Theorem 9.5. Given an oblivious a-competitive online algorithm for problem P in
the i.i.d. setting, there exists a 0462_—61(1 + o(1))-competitive online algorithm for P

in prophet setting.

Roughly speaking, we show that we can combine different distributions in
the prophet setting to obtain a single distribution. Then using the i.i.d. oblivious
algorithm, we may not lose more than a constant factor in the competitive ratio.

Thus the following is a direct corollary of this technique.
Corollary 9.1. There exists a O(1)-competitive algorithm for prophet SNDP.

Using this framework, we can obtain competitive algorithms for many funda-
mental and classical problems in prophet setting. For example define D, ..., Dy be

151

T probability distributions over the elements of a set cover instance. Now let i-th
demand of a set cover problem be an element randomly and independently drawn
from distribution D;. We call this problem the prophet set cover problem. Similarly
one may define prophet facility location the same as the classical facility location
problem, with the difference that the i-th demand is randomly drawn from a known
distribution D;. Garg et al. [GGLSO08] provide oblivious online algorithms for i.i.d.
facility location and ii.d. vertex cover. Grandoni et al. [GGLT08] also provide
an oblivious online algorithm for i.i.d. set cover. Thus we can directly obtain the

following corollaries.

Corollary 9.2. There ezists an O(1)-competitive algorithm for prophet vertez cover.

Corollary 9.3. There exists an O(1)-competitive algorithm for prophet facility lo-

cation.

Corollary 9.4. There exists an O(logn)-competitive algorithm for prophet set

COVEr.

9.1.2 Further Related Work

Over the past decades, SNDP and proper cut functions have been an im-
portant testbed for primal-dual and iterative rounding methods. Goemans and
Williamson [GW95] (STAM’95) were first to consider the case of {0, 1}-proper func-
tions. They used a primal-dual method to obtain a 2-approximation algorithm
for the problem; which later on got generalized to the celebrated moat-growing
framework for solving connectivity problems. Klein and Ravi [RK93] (IPCO’93)

152

considered the two-connectivity problem and the case of {0,2}-proper functions.
They gave a primal-dual 3-approximation algorithm for the problem. Williamson,
Goemans, Mihail, and Vazirani [WGMV95] (Combinatorica’95) were first to con-
sider general proper functions. They too developed a primal-dual algorithm with
approximation ratio 2k, where k = maxg f(.S). Subsequently, Goemans, Goldberg,
Plotkin, Shmoys, Tardos, and Williamson [GGP794] (SODA’94) presented a primal-
dual 2H (k)-approximation algorithm, where H (k) is the k' harmonic number. Fi-
nally, in his seminal work [Jai0l] (Combinatorica’0l), Jain introduced the iterative
rounding method by developing a 2-approximation algorithm for network design
problems characterized by proper cut functions®. We refer the reader to [GK11] for
a survey of results for (offline) network design problems.

Prophet inequality has been first studied in 70s by Krengel and Sucheston
[KS77, KS78]. Hajiaghayi, Kleinberg and Sandholm [HKS07] study the relation
between online auctions and prophet inequality. In particular, they show that al-
gorithms used in derivation of prophet inequality can be reinterpreted as truthful
mechanisms for online auctions. In the prophet inequality setting, an onlooker is
given an online sequence of independent random variables X7, X, ... X, such that
X, is drawn from known probability distribution D;. The onlooker has to choose
at most one variable from the succession of the values. The onlooker can choose
a value only at the time of arrival. The onlookers goal is to maximize her rev-

enue. The onlooker’s revenue is compared with the expected revenue of an optimal

®Indeed, the results in [GGP194] and [Jai01] applies to the more general class of weakly or

skew supermodular cut functions.

153

offline algorithm which known all the realized random variables in advance, like a
prophet. Many online optimization problem have been studied under a prophet type
of stochastic setting (see e.g. [AHL12, AHL13, AHL"11,FGL15]), i.e. at each online

step the demand, or the input is drawn from a specific known distribution.

9.2 Steiner Tree Packing

In this section we study a variant of the Steiner tree packing problem which we
call “the fractional Steiner tree packing problem” and show the conjecture of Kriesell
holds for this variant. We use this tool in Section 9.3 to analyze the behavior of
the greedy algorithm in survivable network design. An immediate corollary of this
theorem is a simple logarithmic approximation algorithm for the Steiner tree packing

problem.

9.2.1 Fractional Steiner Tree Packing

One way to formulate the Steiner tree packing problem is via an integer pro-
gram. Let T5(G) be the set of all Steiner trees of G on the vertices of S. By
definition, the Steiner tree packing problem is the solution of the following integer

program.

154

maximize: E Tr
)

TeTs(G
subject to: ZxT <1 Ve € E(G)
T>e
xr € {0,1} VT € Ts(G) (9.1)

In Program 9.1, for every Steiner tree T' € Ts(G) we have a variable x7 that is either
0 or 1. The goal is to maximize the number of trees T' with xy = 1 while every
edge appears in no more than one of such trees. One way to relax this problem is
by lifting the constraint of 7 € {0, 1} and instead assume 0 < zr < 1. This results

in the following linear program:

maximize: Z Ty (9.2)
TeTs(G)

subject to: ZxT <1 Ve € E(G)
T>e

We call the optimal solution of LP 9.2 the fractional Steiner tree packing problem.
We show in Section 9.2.2 that for every graph G that is k-connected on a set S of
vertices, the answer of the fractional Steiner tree packing problem on set S is greater

than or equal to k/2.

9.2.2 Fractional Steiner Tree Packing of k-connected Graphs

In this section we show the conjecture of Kriesell for Steiner tree packing holds
when we relax the problem to the fractional case. More precisely, we show any graph

155

which is k-connected on a set S of vertices, has a fractional Steiner tree packing of

at least k/2. We begin the proof by an auxiliary lemma.

Lemma 9.1. Let R be a subspace of R™ that contains all points of R™ with non-
negative coordinates and P be a convex set of points in R. If for every point & =

(x1,22,...,2,) € R there exists a point p € P such that

then P contains a point © such that max} ,r; < k.

Proof. We define P’ as the set of all points in R™ whose all indices are greater than

or equal to the corresponding indices of a point in P. In other words

P'={p € R"3§ € P such that p; > ¢; for all 1 <i <n}.

We show in the rest that (k,k,..., k) € P’ which immediately implies the lemma.
To this end, suppose for the sake of contradiction that (k, %, ..., k) ¢ P’. Note that,
since P is a convex set, so is P’. Therefore, there exists a hyperplane that separates
all points of P’ from point (k,k,..., k). More precisely, there exist coefficients

ho, hi, ..., h, such that

Z hipi > ho (9.3)
i=1

for all points p € P’ and
> hik < ho. (9.4)
i=1

Due to the construction of P’ we are guaranteed that all coefficients hq, ha, ..., h,

are non-negative numbers since otherwise for any index ¢ such that h; < 0 there

156

exists a point in P’ whose i’th index is large enough to violate Inequality (9.3).

Now let & = (hy, ha, ..., h,). By Inequalities (9.3) and (9.4) we have

n

n
pIT = E rip; =
1=1)

1 =1 =1

for every p € P’ which means there is no p € P such that p.z < kY, z;. This

contradicts the assumption of the lemma. O

Now based on Lemma 9.1, we give a lower bound on the fractional Steiner tree
packing of any S-k-connected graph. Let G be a graph which is k connected on a
set S, and R be the set of all randomized algorithms that randomly select a Steiner
tree of G. In other words, every element of R is an algorithm that can be specified
with a distribution of probabilities over the Steiner trees of G. We associate every

element of R to a point in a |E(G)| dimensional space in the following way:

f(A) = (21, s, ..., Tip))

where A is an algorithm and for every edge e € E(G), @, is the probability that e
appears in a random tree of algorithm A. Now, let R = (J,.g f(A) be the set of
all points associated to the elements of R. Convexity of R is a direct consequence of
its definition; For every two algorithms A, B € R, one can construct a randomized
procedure C' that selects a random Steiner tree based on each of the procedures
with probability 1/2 and hence f(C) = (f(A) + f(B))/2. Thus, for every two
points Z,9 € R, (& + 4)/2 is also in R. Moreover, all indices of the points in R are

non-negative. Next, we show the following important property of R.

157

Lemma 9.2. For any point § € RIFGO! with non-negative indices, there exists a
point & in R such that
-y < Z 20/ k.

Proof. To prove this lemma, we assume every edge e of G has a weight equal to
Je. Moreover, let W = ZeeE(G) we be the total sum of the weights of the edges. We
show the minimum Steiner tree of G on set S, has a weight of at most 2W/k. This
implies the lemma since the point associated to an algorithm that deterministically
selects the minimum Steiner tree of G, trivially satisfies the condition of the lemma.
Therefore, it only suffices to show that the minimum Steiner tree of G has a weight
of at most 2w /k. To this end we write the LP relaxation of the Steiner tree problem

as follows:

minimize: ToW,

subject to: Z Te > 1 V cut othat separates the vertices of S

eco

0<z <1 Vec E(G) (9.5)

One feasible solution to LP 9.5 can be achieved by setting z. = 1/k for all
edges of the graph. The reason such a solution is feasible is that every cut that
separates two vertices of S has at least k£ edges and therefore the summation of
x.’s for every separating cut is at least 1. Thus, the optimal solution of LP 9.5 is
bounded by W/k. It has been shown that the integrality gap of the Steiner tree
problem is less than 2 [HRW92|. Therefore, the weight of the minimum Steiner tree
of graph G is at most 2W/k which concludes the lemma.

158

a

According to Lemmas 9.1 and 9.2, and the fact that R is convex, there exists
a point & € R such that . < 2/k for every edge e of the graph. Now, we construct
a solution to LP 9.2 in the following way: Let A* be a randomized algorithm which
is associated to (f(A%) = 2). For every T' € Ts(G), we set xp = k/2A%(T), where
A%(T) is the probability that A? selects tree T. Since the probability that every
edge appears in a tree of A% is bounded by 2/k, then all constrains of LP 9.2 are
satisfied. Note that the objective function of LP 9.2 for solution z is equal to k/2

since we multiplied the probabilities by k/2.

Theorem 9.6. The fractional Steiner tree packing problem for any graph which is

k-connected on a set S of vertices is at least k/2.

9.2.3 Steiner Forest Packing

In this section we generalize the Steiner tree packing problem and again, give
a lower bound for the fractional variant of this problem. Let G be a graph and S be
a sequence of vertex pairs (u1,v1), (u2,v2), ..., (uk, vx). We call a subgraph of G a
Steiner forest for S, if it connects all of the pairs in .S and is minimal (it contains no
cycles). Now, the Steiner forest packing problem is defined as follows: Given a graph
G and a sequence of vertex pairs .S, what is the maximum number of edge-disjoint
Steiner forests in GG with respect to set S7 It is trivial to show that the Steiner forest
packing problem is a generalization of the Steiner tree packing problem and hence

this problem is also NP-hard. Similar to Section 9.2.1, we formulate the Steiner

159

forest problem as follows:

maximize: Z TE
FeFs(G)
subject to: pr <1 Ve € E(G)
F>e
zp € {0,1} VF € Fs(Q) (9.6)

where Fg(G) stands for the set of all Steiner forests of G' with respect to S. Again,

we relax the integer constraints to obtain the following linear program:

maximize: Z TE
FeFs(G)
subject to: Zmp <1 Ve € E(G)
F>e
0<zr<1 YFeFsQ) (9.7)

We call the optimal solution of LP 9.7 “the fractional Steiner forest packing” prob-

lem. A similar analysis to what we present in Section 9.2.2 yields to Theorem 9.2.

9.3 Uniform SNDP

In this section we consider the uniform-connectivity version of the online sur-
vivable Steiner network design problem. The assumption of this version is that all
connectivity requirements are equal to a given number. For this problem we first
give a very simple algorithm and then analyze it using the tools introduced in the
previous section. The next section explains how we generalize our algorithm to make

it work for inputs with non-uniform connectivity requirements.

160

In the online uniform-connectivity survivable Steiner forest problem we are
given an offline graph G = (V(G), E(G)), an integer k, and an online stream of
demands S = (s1,t1), (S2,%2),.... Every time a demand (s;,t;) arrives we have to
add some of the edges of G to our current solution H in order to make k edge-disjoint
paths between s; and ¢; in H. The online uniform-connectivity survivable Steiner
tree problem is a special case of the forest problem in which the second endpoints
of all demands are fixed at some vertex root. The objective of the problems is to
minimize the cost of the selected subgraph H according to a given cost function.

A simple approach to solve these problems is to choose edges based on the
following greedy method: for every demand add a minimum-cost subset of edges
that satisfies the k-connectivity between its endpoints. In this section we show that
this algorithm is not competitive to the optimum offline solution. This is shown by
Lemma 9.6 in which we give an instance graph and a series of demands for which
the greedy algorithm gives a solution of cost €(n) times the cost of the optimum
offline solution.

However, we show a modified version of the greedy algorithm can be a viable
approach for these problems if we lose some factor on the connectivity requirement.
This can be done by satisfying half of the required connectivity. In particular, for
every demand we add a minimum-cost subset of the edges that makes the cur-
rent solution (k/2)-connected between the endpoints of that demand. Let us call
this algorithm GA. In this section we show the cost of the edges GA selects is
poly-logarithmically competitive to that optimum offline solution which satisfies
k-connectivity for every demand.

161

Algorithm 5 2-scaled Greedy
Input: A graph G, an integer k, and an online stream of demands

(s1,t1), (s2,t2), - - ..
Output: A set H of edges such that every given demand (s;, t;) is connected through
k edge-disjoint paths in H.
Offline Process:
1: Initialize H = @.
Online Scheme; assuming a demand (s;, t;) is arrived:
1: P, = A minimum-cost subset of edges, such that s; is k/2-connected to ¢; in
HUP,.

2: Update H = HU P,.

Theorem 9.7. For the online survivable Steiner forest problem, the output of GA

satisfies (k/2)-connectivity for every demand and its cost is O(log® n)-competitive.

Theorem 9.8. For the online survivable Steiner tree problem, the output of GA

satisfies (k/2)-connectivity for every demand and its cost is O(logn)-competitive.

As a direct consequence of adding edges according to GA, the (k/2)-
connectivity is guaranteed for every demand. To complete the proof of the theorems,
we need to show that the cost of the solution produced by GA is upper bounded by
a factor of O(log®n) for forests, and O(logn) for trees.

Let ¢ : E(G) — R=" be the cost function on the edges. With some abuse of
notation, we also use ¢(Y") for a subset of edges Y C F(G) as the sum of the cost of

the edges in Y. With this notation we can say at every step ¢ GA chooses a subset

162

of edges P, that satisfies (k/2)-connectivity and minimizes ¢(P;).

The overall idea of the proofs is as follows. We take an optimum solution and
charge every ¢(P;) to ¢(L;), where L; is a set of edges chosen from the optimum
solution. The way we define L;’s allows them to have overlapping edges, but we
show that their total cost is limited by the desired poly-logarithmic factor of the
cost of the optimum solution. More specifically, we charge ¢(L;) to the cost of a
fractional routing @); between s; and t;. Every (@); is itself a linear combination
of routes on different Steiner forests of the optimum solution. The coefficients of
this linear combination are achieved from an Steiner forest packing of the optimum
solution. In this fashion, the problem boils down to finding an upper bound for
the total cost of routings on each Steiner forest. In the following we formally prove
every step in detail.

Let OPT be an optimum offline solution of the survivable Steiner forest prob-
lem on graph G, a stream of demands S, and the connectivity requirement k. Now
we define L; for every demand 7 as a minimum-cost set of edges in OPT that is
(k/2)-connected between s; and t; assuming the endpoints of every previous de-
mand are contracted. In particular, we call a set of edges a pseudo-path between s;
and t; if there is a path between these vertices using those edges and the edges in
{(s,t;)|V7 < i}. A pseudo-routing between s; and ¢; is hence a set of pseudo-paths
between s; and t;. With these definitions, L; is a minimum-cost pseudo-routing
between s; and ¢; in OPT that consists of k/2 pseudo-paths. The following lemma

shows the relation between the costs of L; and P;.

163

Lemma 9.3. For every demand i, c(P;) < c¢(L;).

Proof. Every time a demand 7 arrives, GA finds a set P; with the minimum cost and
adds it to H in order to satisfy (k/2)-connectivity between s; and ¢;. Note that the
endpoints of every demand j < i are already connected with k/2 disjoint paths in H.
Besides, L; is a pseudo-routing between s; and ¢; which is (k/2)-connected between s;
and t; if we contract the two endpoints of every previous demand. Therefore adding
L; to H makes H (k/2)-connected between s; and ¢;. Since GA finds a minimum-
cost set of edges that satisfies (k/2)-connectivity in H, ¢(F;) never exceeds c(L;).

|

In the remaining we show how to charge the total cost of L;’s to ¢(OPT'). As
a property of an optimum solution, OPT contains k edge-disjoint paths between
the endpoints of every demand (s;,t;) € S. Therefore, according to Theorem 9.2
there exists a solution for the fractional Steiner forest packing of O PT and demand
set S with value at least k/2. Let z be a Steiner forest packing of OPT with value
k/2. In the following we use Fs(OPT') to denote the collection of all Steiner forests
of OPT with respect to demand set S. The theorem states there exists a vector z
such that

> oz =k/2 (9.8)

FeFs(OPT)

> 2 <1 Ve € OPT . (9.9)
FEFs(OPT):ecF

Moreover, the following inequality holds for the summation of the costs of

these forests.

164

Lemma 9.4. > r opr) 2r-c(F) < c(OPT) .

Proof. For each forest we replace its cost with the sum of the cost of its edges.

Yo zpeF)= > > cle)

FeFs(OPT) FeFs(OPT) eck

= Z Z zpc(e)

e€OPT FeFg(OPT):ccF

= > c(e)(> zp) :

ecOPT FeFs(OPT):eeF

Now we use the fact that the load on every edge in the fractional Steiner forest
packing is no more than 1.

Z zp.co(F) < Z c(e) Inequality (9.9)

FeFs(OPT) e€OPT

=c¢(OPT) .

O

Now for every forest F' € Fs(OPT) and every demand ¢ we define Q;(F) as
a minimum-cost pseudo-path between s; to ¢; in F. This definition allows using
an edge e € F multiple times in @Q;(F) of different demands. Note that Q;(F)
can be considered as a fractional pseudo-routing between s; and t; with value zp.
Considering this for all forests in Fs(OPT), we achieve a fractional pseudo-routing
between s; and t¢; that has a value of k/2. We use @); to refer to this fractional
pseudo-routing and ¢(Q;) = > pc 7y 0pr) 2r-c(Qi(F)) to refer to its cost.

For every demand i we have mentioned two different pseudo-routings between

s; and t; in OPT with value k/2: an integral pseudo-routing L;, and a fractional

165

pseudo-routing ();. The following lemma shows the relation between the costs of

these two.

Lemma 9.5. For every L; and Q; pseudo-paths defined as above, we have:

(L) < e(Qi)
Proof. Let P be the family of all pseudo-paths that connects s; to t; in OPT. Now
Consider the following LP:

minimize: Z z,c(p)
peEP

subject to: Z x, <1 Ve € OPT

pEP:e€p
Z x, =k/2
peEP
0<mz,<1 Vp e P (9.10)

A feasible solution to this LP is in fact a pseudo-routing between s; and t;
in OPT with value k/2. Since every F' € Fg(OPT) is a subset of OPT, the set
of pseudo-paths between s; and ¢; in F' is a subset of P. As a result, every Q;(F)
is also a member of P and thus (); corresponds to a feasible fractional solution to
LP 9.10 with an objective function equal to ¢(Q;). Similarly, L; is corresponding
to a feasible integral solution to this LP. Due to the definition, L; is an optimum
integral solution of this LP, meaning that ¢(L;) is the minimum among the objective
functions of all integral solutions. Note that this LP is essentially a minimum-cost
flow which has an integrality gap of 1. Therefore, ¢(L;) equals an optimum solution
of the LP, and thus does not exceed ¢(Q;). O

166

Finally for a particular F' € Fs(OPT) we show an upper bound for the sum
of ¢(Q;(F)) over all demands. First let us take a closer look at every @Q;(F') on a
particular F. Every time a new demand (s;, t;) arrives Q;(F') connects its endpoints
through a pseudo-path in F'. This can be generalized to an algorithm for the online
single-connectivity Steiner forest problem that greedily connects the endpoints of
every demand by fully buying a minimum-cost pseudo-path between s; and ¢;. This
is very similar to the greedy algorithm proposed in [AAB04]. Theorem 2.1 of that
paper states that their greedy algorithm is O(log2 n)-competitive. The statement
of that theorem is slightly different than Claim 9.1, but the same proof verifies the

correctness of the claim.

Claim 9.1. For the online Steiner forest problem, the algorithm that connects every

demand with a minimum-cost pseudo-path is O(log” n)-competitive.

Now we are ready to wrap up the proof of Theorem 9.7.
Proof of Thorem 9.7: Let ALG denote the output of GA. The cost of ALG is
the sum of the cost of P;’s over all demands. Therefore, by applying lemmas 9.3

and 9.5 we have
¢(ALG) Z
Z Lemma 9.3

< c(Qy) Lemma 9.5

167

Now we replace ¢(Q;) with the weighted sum of ¢(Q;(F'))’s with respect to z.

C(ALG) < > Y zpc(Qi(F))

(si,ti)ES FE.Fs(OPT)
= >z Y. c(QiF)) (9.11)
FeFs(OPT) (si,ti)ES

By applying Claim 9.1 to Inequality (9.11) we achieve an O(log? n)-competitive ratio

for GA.
c¢(ALG) < Z 2p (O(log2 n)c(F)) Claim 9.1
FeFs(OPT)
< O(log®n) Z zp.c(F)
FeFs(OPT)
< O(log®n)c(OPT) . Lemma 9.4

|

Finally, for the survivable Steiner tree problem we show that GA is O(logn)-
competitive. In other words, if one endpoint of every demand is fixed at the root,
then the output of GA is at most O(logn) times the optimum offline solution. To
complete the proof of Theorem 9.8 we use a result from [NPS11]. In that paper the
authors prove a competitive ratio of O(logn) for the algorithm which satisfies every
demand using a minimum-cost pseudo-path. The following claim is a restatement

of their result.

Claim 9.2. For the online Steiner tree problme, the algorithm that satisfies each

demand with a minimum-cost pseudo-path is O(logn)-competitive.

Proof of Theorem 9.8: Note that the tree problem is a special case of the forest
problem, hence Inequality (9.11) also holds for it. By applying Claim 9.2 to that

168

inequality the proof is complete.

c(ALG) < Z 2 (O(log n)c(F)) Claim 9.2
FeFs(OPT)
< O(logn) Z zp.c(F)
FeFs(OPT)
< O(logn)c(OPT) . Lemma 9.4

a

The following Lemma shows that there exists a graph G and a sequence of
demands o such that Greedy algorithm performs 2(n) times worse than the optimal

solution.

Lemma 9.6. The competitive ratio of the greedy algorithm for survivable Steiner

network design is Q(n), even if every connectivity requirement is exactly 2.

Proof. First we provide an online instance of the survivable network design problem
where every connectivity requirement is exactly 2 and show the greedy algorithm
performs poorly in comparison with the optimal solution. We construct a graph G
of size n as follows. For each 1 <i < n — 1, there exist two undirected edges from
node 7 to node i + 1 of weights 1 and n — 7 — € for some small € > 0. There exist two
undirected edges from node n to node 1 with weights 1 and n —e. Thus G is the
union of two cycles of size n. Figure 9.1 illustrates graph GG. We construct a set of
demands S as follows. For each 1 <i <mn—1, let (7,74 1) be the i’th demand in S.

Now we analyze the output of the greedy algorithm for the input instance. We
claim that after satisfying demand 7 the greedy algorithm has selected both edges
between j and j + 1 for every j < i. We prove this claim by induction. For the

169

Figure 9.1: An example graph illustrating that the greedy algorithm has Q(n)-

competitive ratio.

base case, when the first demand arrives the greedy algorithm chooses both edges
between nodes 1 and 2 which costs n — e. Now assume the greedy algorithm has
selected every edge between j and j + 1 for every j < ¢ before the arrival of the
1’'th demand. When the i'th demand arrives, the set of edges with minimum cost
that provides two edge-disjoint paths from ¢ to ¢ + 1 is the two edges between 7 and
1 + 1 which costs n — i — e. Thus the total cost of the greedy algorithm at the end
is @ — en. However, the optimum offline solution chooses the cycle containing

all edges of weight 1. Thus the competitive ratio of the greedy algorithm is Q(n).

|

170

9.4 Non-Uniform SNDP

In Section 9.3 we considered uniform online survivable network design, where
all connectivity requirements are the same, or in other words, for every o; =
(si,t;, 1), ;i equals some fixed integer k. Theorems 9.8 and 9.7 show a greedy algo-
rithm which satisfies k/2 edge connectivity of the demands, is O(logn)-competitive
for online survivable Steiner tree, and O(logn) competitive for online survivable
Steiner forest, respectively. Now we consider the non-uniform case where connectiv-
ity requirements are arbitrary numbers between 1 and some value k. In particular,
each demand o; = (s;, t;, r;) indicates an r; edge-connectivity requirement between s;

and t;. Theorem 9.9 shows one can use algorithms provided in Section 9.4 to obtain

T

2+4-€

an online competitive algorithm that satisfies connectivity of the demands.

Theorem 9.9. Given an a-competitive online algorithm A for online survivable

Steiner network design with equal connectivity demands, which partially satisfies

every demand of k connectivity with g edge-disjoint paths, there exists an O(l(f“gl(cﬁi))-
competitive algorithm for online survivable Steiner network design that provides a

T

2+e€

solution that partially satisfies every demand of r; connectivity with edge-disjoint

paths.

Proof. Let [be [%1 + 1. Roughly speaking we define [subgraphs of G,
Hi, ..., H;, such that H; is supposed to maintain a [(1 + €/2)’~!]-connected graph

on the subset of demand pairs with connectivity requirement (1 + €/2)77! < r; <

(14 €¢/2).

171

We use [parallel and independent greedy algorithms Ay, ..., A;, such that H;
is the solution of A; at every time. Let o; = (s;,t;, ;) be the i-th demand. Assume
(1+¢/2)7t < r; < (1+¢/2), then we use A; for demand i. At arrival of o;, we
define another request o/ as follows. Set o} = (s;, t;,7}), where vl = [(1 +€/2)771].
Now we use A; to satisfy demand o]. Let the solution of the algorithm S be the
union of the selected edges in Hy, ..., H;.

Ti

First we prove S partially satisfies every demand of r; connectivity with 57

edge-disjoint paths. Since A; provides k/2 edge-disjoint paths for a connectivity

[(14€/2)7~

demand of k , if o] is assigned to A;, A; provides 5

edge disjoint paths
between s; and t;. Moreover, since we assign o, to A; only if (1 +¢€/2)771 < r; <

(1+¢€/2)7, e < (14 ¢/2). Thus W > 5, hence there are at least

T

5+, edge-disjoint paths between s; and ¢; in H;. Since H; C S, there are at least

T

7. edge-disjoint paths between s; and ¢; in S.

Let opt denote the cost of an optimal offline solution which maintains edge-
connectivity of r; for each demand i. Let |(| H) denote the total cost of edges in
graph H, where H is a subset of G. We prove (| S) is no more than O(%) -opt.
Let opt; denote the cost of an optimal solution for maintaining edge-connectivity of

r; for each demand 7 such that (1 +¢/2)7~! <r; < (1+¢/2)7. Since the set of such

demands is a subset of all demands opt; < opt. A; is a-competitive to opt;, thus
(| H;) < a-opt; < a-opt . (9.12)
Since S = J;_, H;, [(|S) = X", [(| Hj). Thus by Equation (9.12),
1 !
1(]S) < Z i < Z a-opt .
: j:l

172

. log k
Since | < O(jA%k -,

(19) < Of alog’“)»opt

log(1+ €

Using Theorems 9.8 and 9.7 for online survivable Steiner tree and forest in

Section 9.3 and Theorem 9.9, we can immediately imply the following corollaries.

Corollary 9.5. There exists an algorithm for the Survivable Steiner tree network

design problem that: (1) provides a solution that partially satisfies every demand of

lognlogk
log(1+e€)

r; connectivity with 3 edge-disjoint paths, and (ii) is O()-competitive to an

2+

optimal solution that maintains r;-connectivity for every demand.

Corollary 9.6. There exists an algorithm for the Survivable Steiner forest network

design problem that: (i) provides a solution that partially satisfies every demand of

7 connectivity with 5 edge-disjoint paths, and (ii) is O(bﬁ;f%f)k)—competitwe to

an optimal solution that maintains r;-connectivity for every demand.

9.5 From Oblivious I.I.D. to Prophet and Applications to Online

Problems

In this section we show how one can use an oblivious competitive algorithm
for an online optimization problem in the i.i.d. setting to obtain a competitive
algorithm for that problem in the prophet setting. We first define and formulate
a general set of online problems. Note that for simplicity, we only consider cost

minimization problems, but one can similarly obtain the same statements for welfare

173

maximization problems as well.

Let P be an online problem. Let () be a set of queries or demands. Let £ be
a set of elements, such that each response of an algorithm to a demand o € @) is a
subset of £. At each online step 7, an online algorithm is given a demand o; € Q.
Then the algorithm needs to provide a response R; C & that satisfies the given
demand. Finally let C' : 2 — R denote a monotone and sub-additive cost function
that maps each subset of £ to a real number denoting the cost. The overall cost of
an online algorithm that responds Ry,..., Ry to demands oy, ...,0r is computed
as C(UJL, R:). To clarify the notations, consider the online SNDP. Given a graph
G = (V,E), @ is the set of triples (u,v,r) such that uw,v € V and r is an integer
such that there exist at least r edge-disjoint paths from u to v in GG. Let £ be the set
of edges E. Now R; C F is a feasible response to a given demand o; = (u;, v;,1;), if
adding R; to the existing graph guarantees r; edge-disjoint paths from u; to v;. The
overall solution of an algorithm up to time 7"is R = U;il R;. The cost function is
defined as the total cost of edges in the solution, i.e. C(R) :=)_ ., C(e), where C(e)
denotes the cost of a single edge e. Similarly one can formulate other fundamental
online optimization problems such as online set-cover, online facility location, etc.
in this way.

For an online problem in the i.i.d. setting we are given a probability distri-
bution D over (). At each time i, a random demand o; is drawn randomly and
independently from distribution D. Let PZL, denote problem P in the i.i.d. setting
given probability distribution D). For an online problem in the prophet setting we
are given T probability distributions over @, D = (Dy,..., Dy). At each time 1,

174

a random demand o; is drawn randomly and independently from distribution D;.
Let Pﬁlt denote problem P in the prophet setting given the sequence of probability
distributions D. Now given Pﬁlt, we define a corresponding i.i.d. instance of the
problem as follows. Define D* to be the average of all distributions D1, ..., Dp,

ie. D* =31, Di Let A be an oblivious a-competitive algorithm for P2;. In the

following we show that A is 2% (1 + o(1))a-competitive for PJ; .

1

First we need to define another problem Wp’:,’lt, which is the same as Pﬁm but in

1

) .
the beginning, with probability e”— 5 we do not provide any demand at all, and

with the remaining probability we remove (1 — 1) fraction of the 7' distributions

uniformly at random, i.e. we do not provide any demands at those times.

Consider a subset of demands o = o7, ... O1a-1 in sz,)n. We prove that the
probability that a super set of o is an online scenario for P2, is no less than the
probability that ¢ is an online scenario for W;ff)m or roughly speaking if one ignores

the order of the online demands, Wlfzt is an easier problem than P2 .

Lemma 9.7. For every subset of demands o = o1,...0 (1-1y, the probability the

1
2

online scenario for PE; is a super set of o is no less than the probability that the

. . D .
online scenario for Wy, is o.
Proof. Without loss of generality we can assume the demands in Dy, ..., Dy are

different. In other words each demand either arrive at a specific time, or never
arrives. We can easily add dummy demands, if a demand can possibly arrive at two
or more different time steps. For drawing a random online scenario in P2, | we define

an equivalent random process as follows. At each time, first we draw a distribution

175

from all T" distributions uniformly at random, and then we draw a random demand
from that distribution. Now for every subset S of distributions of size %(1 — %)T
we show that the probability that S is drawn in W;fi)n is less than or equal to the
probability that a super set of S is drawn in PL;. Note that this shows that for
every subset of demands o = oy, ... O1a-1y, the probability that a super set of o
is an online scenario for Wp%t is less than or equal to the probability that o is an
online scenario for P2;. Since if the set of distributions is fixed, we can use the same
random coin for drawing random demands from the same distributions in W]ﬁt and
PE;.

Using a Chernoff bound we show that with probability e_T(lT_%) there are at
least 3(1—2)T distinct distributions drawn by P72 . Let Y be the number of distinct

distributions that are drawn. Let X; be 1 if distribution ¢ is drawn and 0 if not. We

have

(T -1)"

EMz}3Mﬁz§:ﬂ&:H:T—fﬁ7—zﬂhé) (9.13)

Since X;’s are negatively correlated we can use a Chernoff bound to bound the

probability that we have less than 37°(1 — 1) distinct distributions in P2, .

1 _Ta-h

PﬂY<%Tﬂ——ﬂ<e = (9.14)

Since there is a symmetry across distributions in the random process, the probability
for every subset of distributions of size k£ to be drawn is the same. Thus for every

subset of distributions S of size £(1 — 2)T the probability that S is drawn in wpo,

is less than or equal to the probability that a super set of S is drawn in PL;. O

176

Let CE.(A) and CL; (A) denote the expected cost of algorithm A for online
random scenarios drawn by W7, and P[/, respectively. By Lemma 9.7, since A is

oblivious and indifferent to the order of the input,

CP(A) <CP(A). (9.15)

1

(1-2) .
Recall that in W;ﬁt with probability e~ 5 ~ we do not provide any demand at all,
1-1)

and with probability 1 —e~~ s~ we remove (1 — 2) fraction of the T distributions

uniformly at random. Moreover A is oblivious and the cost function is monotone

and subadditive. Thus

(A) < CE(A), (9.16)

where C7},(A) is the expected cost of algorithm A for an online random scenario
drawn by PL,.

Now we are ready to prove that one can use A to obtain a competitive algo-
rithm for PJ),. Let optl), and opt},; denote the expected cost of an optimal offline

solution for a random online scenario drawn in PJ), and P[;, respectively.

T(1-1) T(1-1)
l—e 8 D l—e 8 D
%(1_%) Cpht(A) %(1 1) Cpht(A> S D < D
15} T nce opt;;; < optpht
Optop optiza
Civ(A) :
p— By Inequality (9.16)
Chi (A)
e A By Inequality (9.15
p_—" y Inequality (9.15)
< a. Since A is a-competitive
D
Thus C;pp’j,ﬁ“‘” < 22 (1+o(1))en.

pht

177

Theorem 9.10. Given an oblivious a-competitive online algorithm for an online
problem in the i.i.d. setting, there exists a 2% (1 + o(1))a-competitive online algo-
rithm for the problem in the prophet setting, where the competitive ratio approaches

%a exponentially fast as the number of online steps T' grows.

Interestingly, we can use Theorem 9.10 to obtain online competitive algorithms
for other fundamental problems in the prophet setting. Using the oblivious i.i.d.
algorithms in [GGLS08] for i.i.d. vertex cover and i.i.d. facility location, we may
obtain O(1)-competitive online algorithms for prophet vertex cover and prophet
facility location. Moreover using the oblivious i.i.d. algorithm for i.i.d. set cover
in [GGLT08], we can obtain O(log n)-competitive algorithm for the prophet set cover

problem.

9.6 Stochastic Survivable Network Design

In this section we study the stochastic variant of survivable network de-
sign. Recall that in this model, the input consists of both offline and online
data. The offline input is given in advance to the algorithm and specifies a graph
G = (V(G), E(G)), a source node s, an integer k denoting the connectivity require-
ment, a distribution D of probabilities over the vertices of the graph, and an integer
[denoting the number of demands. Next, an online stream of demands t1,%s,...,1;
arrive one by one, upon every arrival of which we are required to update our solution
to make sure the newly arrived vertex is k-connected to the source node s. No prior

information about the demands is given in advance, however, we're guaranteed that

178

the demands are randomly and independently drawn from the given distribution D.

In this section we show that a slight variation of the greedy algorithm per-
forms almost optimally in this setting. This improves upon the result of Garg et
al. [GGLS08] which is a constant bound for the case where the connectivity is equal
to 1. This is surprising since the proven bounds of the online algorithms for surviv-
able network design are much worse than that of single the connectivity [GKR12].
From a high-level perspective our method is similar to the greedy algorithm in Garg
et al. [GGLSO08], however, such a generalization requires a deep and innovative study
of the k-connected graphs. In Section 9.6.2 we present a structural lemma which

basically simplifies the analysis of our greedy algorithm.

Theorem 9.11. There exists an oblivious 4-approximation algorithm for the

stochastic survivable network design problem.

Moreover, we generalize the algorithm to the setting in which the demands are

drawn from independently from an unknown distribution D.

Theorem 9.12. There exists an oblivious O(logn)-approximation algorithm for the

stochastic survivable network design problem with an unknown distribution.

Note that achieving a constant factor approximation algorithm is not possible

for an unknown distribution due to the work of Garg et al. [GGLSO08]. In particular,

logn

they show there is an Q(y

) lower bound for Steiner tree, therefore our greedy
algorithm is almost tight.

The rest of this section is summarized in the following. In Section 9.6.1 we
describe our algorithm and show a sufficient condition for obtaining the constant

179

approximation factor. We also prove the approximation factor of the algorithm for
unknown distribution. Finally, in Section 9.6.2 we provide a study of k-connected

graphs and prove the structural lemma.

9.6.1 Algorithm

In this section we explain our algorithm and outline the analysis. The algo-
rithm is as follows. Before any demand arrives, we simulate a stream ¢,%5,...,t; of
demands by drawing [random vertices from probability distribution D. Next, we
find a 2-approximation Steiner network of the graph that k-connects all the simu-
lated demands to the source node via the algorithm of Jain [Jai01]. Let H denote
this network. Based on this solution, for every node v of the graph, we find a mini-
mum cost k-flow from v to s that uses the edges of H for free and call that the partial
solution of v. Now we're ready to run the algorithm on the actual demands. We
start with an empty graph for our initial solution. Every time a demand ¢; arrives,
we update our solution by adding all of the edges of the partial solution of ¢; to our
current solution. Notice that our solution is oblivious in the sense that the k-flow
of each demand is regardless of the queries that have arrived prior to that demand.

In the rest we show that the approximation factor of our algorithm is bounded
by 4. Let for every list L of vertices, sol(L) be the set of all subsets of E(G) that
k-connect all vertices of L to s. Moreover, let for a subset of edges @, |(] @) denote

the total cost of the edges in (). We define a pseudo-cost function for a list of vertices

180

L = (v1,v9,...,v)z) and another vertex u as follows:

L = i o\ F
Bllou)= max min 1A\ F)

In words, B(L,u) is the smallest cost that we need to pay in order to k-connect u
to the source in any solution that already k-connects all vertices of L to the source.
Monotonicity of 3 follows from its definition; the more vertices we add to L, the less
costly it will be to satisfy another node in any solution that satisfies L. In other
words, by adding more vertices to L, the max in the formulation of 5 will be more
constrained.

The main observation that enables us to prove a constant approximation factor
for our algorithm is a bound on the psudocost of a pair (L, u). More precisely, in

Section 9.6.2 we prove the following theorem.

Theorem 9.13 [to be proven in Section 9.6.2]. For any set S of vertices we have

> B(S\ {v},v) < 2¢(opts)

veS

where optg is a minimum cost Steiner network that k-connects all vertices of S to

the source node s.

Roughly speaking, the idea is to consider a minimum weight subgraph that
k-connects all vertices of S to the source node. Next, we find a k-flow for each node
in S that k-connects this node to other vertices of the set. We do this in a way that
k-flows use only the edges of the Steiner network, and that every edge appears in
at most two k-flows. This in turn implies that summation of the [functions for all
nodes is bounded by two times c(optg). This is discussed in details in Section 9.6.2.

181

An immediate corollary of Theorem 9.13 is that if we randomly draw [demands
dy,ds,...,d; from D, 5({dy,ds,...,d;_1},d;) is no more than 2/[times the minimum
cost of k-connecting all vertices of dy,ds, ..., d; to the source.

Now, recall that before the stream of demands arrives, our algorithm ran-
domly draws [demands ¢7,%5,...,¢; and finds a 2-approximation solution for these
demands. We refer to this subgraph as H. Since we use a 2-approximation algo-
rithm and all demands are drawn from D, the expcted cost of H is bounded by
2¢(opt). Moreover, for every actual demand t;, the total cost of the edges in the
partial solution of ¢; that are not in H is bounded by S({t},t5,...,¢ '}, ¢;) which is
by monotonicity bounded by S({t],t5,... . t;_,t71,..., %}, t;). Notice that all ¢;’s
and t;’s are independently drawn from D and thus the expected cost of such edges
in the partial solution of a demand ¢; is no more than 2c(opt)/l in expectation.
Therefore, if we add the cost of all such edges for all of the demands to the cost of

H | it yields an upperbound on the total cost of our algorithm as follows

co(T)+1

2 t
@ < 4c(opt) .

This proves a 4-approximation bound on the cost of the greedy algorithm.

Now suppose the distribution of demands is unknown. In this case, the greedy
algorithm is simply k-connecting new demand ¢; to the source by buying a minimum
cost set of edges. Let T; denote the set of these edges. We show that as we serve

more demands the expected cost of T; decreases for larger ¢. For every demand i let

Li={t1,...,t;} and p(i) = 2llogi] We have

c(T;) < B(Li—1,t:) < B(Lpay-1,ti) -

182

Using Theorem 9.13 and the fact that all items are drawn from independently from

the same distribution, in expectation we have

/B(Lp(i)*lv t’L) S QC(OptLP(i),l)/pi °

Now we use c(opt) as an upper bound for ¢(opt Lp<¢)_1)' Therefore,

S e(r) <3 P < slog(t)e(ont)

=1 =1

The number of demands is at most n, and thus the greedy algorithm is

O(logn)-approximation for unknown distribution.

9.6.2 Structural Lemma for k-connected Graphs

In this section we provide a study of k-connected Steiner graphs. Roughly
speaking, we state a lemma that shows the k-connectivity property suffices for the
existence of concurrent k-flows for all the vertices such that the congestions on the
edges are bounded by a factor of 2. We formally define k-flows in the remainder.
As a result of this lemma, we can prove the following theorem, which has been used

in Section 9.6.1.

Theorem 9.13. For any set S of vertices we have

> B8\ {v},v) < 2¢(opts)

veES

where optg is a minimum cost Steiner network that k-connects all vertices of S to

the source s.

The theorem states that the overall cost of k-connecting every vertex v € S
to the optimum solution that k-connects S\ {v} is no more two times the cost of

183

the optimum solution that k-connects all vertices in S. We prove this theorem via
a structural lemma on unweighted k-connected Steiner graphs. To this end let us

first define k-flows.

Definition 9.1. Consider an S-k-connected graph G which is undirected and un-
weighted. A k-flow for a vertex v € S in G is the union of k edge-disjoint directed

paths that k-connects v to S\ {v}.

Let optg be a minimum cost solution that k-connects every vertex to the
source node s. Since every vertex is k-connected to s it follows that every other
pairs of vertices are k-connected too. Therefore optg is an S-k-connected graph.
Now for every v € S let F(v) be a k-flow in optg from v to S\ {v}. We note that
B(S\ {v},v) < e(F(v)) because one can k-connect v to S\ {v} through F(v). As a

result we have

Y B\ {v}0) <Y e(F(v) .

vES vES

The following structural lemma states that one can find such k-flows in an
S-k-connected graph for every vertex in S in a way that every edge appears in at
most two k-flows. Therefore, for such set of k-flows in optg we have

> " e(F(v)) < 2c(opty)

vES

which completes the proof of Theorem 9.13.

Lemma 9.8. In every S-k-connected graph G there ezists a set of k-flows {F'(v)|v €

S} such that every edge is used at most once in each direction.

184

Proof. Without loss of generality we can assume that the graph is minimal, i.e.
removing any edge decreases the connectivity of S to £k — 1. This minimality as-
sumption implies that every edge participates in a separating cut of S with size k.
As a result, every minimum size separating cut of S has exactly k edges. We prove
the lemma by induction on the number of vertices in G. In particular, we find a

minimum size separating cut on S and considering the following two cases:

e Basis: In every min-cut C' = [A, B] either A or B has one vertex. Recall that
every edge e belongs to a min-cut of S. For such cut, we now that one of the

sides has size one, therefore at least one endpoints of e belongs to S.

Now we explain how to find the k-flows for every v € S. Take a neighbor u
of v. If u € S then we draw a direct flow from v to u. If u ¢ S, then every
neighbor of u belongs to S, because every edge (u,w) has to have at least one
endpoint in S. Without loss of generality assume that the neighbors of u are
ordered such that each of them has a unique next. Let w be the next vertex
after v. We draw a flow from v to u and from u to w. Since the degree of
v is at least k the total number of outflows from v to S\ {v} is at least k.

Moreover, in this manner every edge has at most one flow in each direction.

o Inductive step: There exists a min-cut C' = [A, B] of S such that both A
and B have more than one vertex. In this case we proceed with the following
two actions. We once contract all the vertices in B into a vertex vg. Let
Sa = {SNA}U{vp} be the set of Steiner vertices in the new graph. As a

consequence, this contracted graph is S4-k-connected and its size is smaller

185

than G. Therefore, due to the induction we can find k-flows for every v € Sy
to Sa \ {v} such that every edge in A has a flow of at most one in each
direction. Similarly, we can find flows in B by contracting A and then using

the induction.

In this way, for every v € S we get k flows that leave v, but may not end up
to a vertex in S\ {v}. This is because there are some flows that go to vg or
v4 in the contracted graphs, and become incomplete after mapping them to
the original graph. However, we show that the flows of the other side can be

used in order to continued the incomplete flows to reach S.

Consider the graph achieved from contracting B. Let ina(vg) be the set of
flows from Sy \{vp} to vp and out 4(vp) be the set of flows from vg to Sx\{vs}.
Note that out,(vp) is of size k and ina(vg) is of size at most k, because there
are k edges in the cut. Likewise, we we define ing(v4) and outg(va) for the

graph achieved from contracting A

Now consider a flow of in4(vg). This flow ends up to an edge (z,y) of the cut,
where © € A and y € B. Since outp(va) is of size k, for every such y there
exists a flow from y to Sp. Therefore, we can continue that flow in A such
that it reaches a vertex of S. By doing this for all such flows in in4(vg) and
ing(va) every v € S has a k-flow such that every edge of G is used at most

once in each direction.

186

Appendices

A Online Degree-Bounded Edge-weighted Steiner Tree

Below we present a graph instance G = (V, E) for online bounded-degree edge-
weighted Steiner tree in which for any (randomized) online algorithm A there exists
a demand sequence for which A either violates the degree bound by a large factor
or generates a much larger weight than the optimum.

Consider a graph G as shown in Figure 2, which has n = 2k 4+ 1 nodes and
3k edges. Every node i (1 < i < k) is connected to the root with a zero-weight
edge and to node k + i with weight n’. In addition, there exist zero-weight edges
connecting node i (k+1 < i < 2k) to node i+ 1, and there exists a zero-weight edge
that connects node 2k to the root. We assume that all node weights b, are equal to

one and the degree bound b for OPT is equal to 3.

root

Figure 2: The graph G consists of 2k + 1 nodes and 3k edges.

Proof of Theorem 4.3: The adversary consecutively presents terminals starting

187

root

Figure 3: The highlighted subtree represents an optimum solution OPTsj.

from node 1. At each step i the algorithm A adds some edges to its current solution
such that the i*" terminal ¢; = i gets connected to the root.

We use X; to denote the subset of edges chosen by A after step i. We also use
0 <pi <1land 0 < g; <1 to denote the probability that the edges {7, 700t} and
{i,k+1}, respectively, are in X; . After each step j, all terminals ¢; (« < j) must be
connected to the root by at least one of {7, root} or {i, k+i}. Therefore p;;+¢;; > 1.
In addition, for every j; < jo we have ¢;;, < gij, and p;;, < pyj,, because X; C Xj,.
The adversary stops the sequence at the first step r for which ¢, > 1/2. If this
never happens the sequence is stopped after requesting £ nodes.

We use OPT, to denote the weight of a minimum Steiner tree with maximum

degree b = 3. In order to find an upper bound for OPT}, consider the following tree

188

T={{i,k+i}]1<i<r—1}
U{{i,i+ 1}k <i< 2k}
U {{2k, root}, {r, root}}.

As we can observe in Figure 3, T" meets the degree bounds and connects the first r

terminals to the root, so forms a valid solution. We have
w(OPT) < w(T Z n' € O(n" 1)

Back to algorithm A, the adversary causes one of the following two cases:

1. The process stops at step r with ¢, > % Then

T

E[U}(Xr)] - Z%‘r) ni = Qrr n" > —
=1

Hence, E[w(X)] > Q(n) - w(OPT).

2. The process continues until step k, i.e., for every ¢ < k, q;; < %

k k k
E[deg(root)] Z B> Z ;> Z — i)

Hence, E[deg(root)] > Q(n) - b.

This shows that for any online algorithm A there is a demand sequence on which A

either generates a large weight or violates the degree bound by a large factor. O

189

B Online Degree-Bounded Group Steiner Tree

In this section, presenting an adversary scenario, we show there is no de-
terministic algorithm for ONLINE DEGREE-BOUNDED GROUP STEINER TREE with

competitive ratio o(n) even if G is a star graph.

Proof of Theorem 4.4: For any integer n > 1, we provide a graph instance G
of size n and an online scenario, in which no deterministic algorithm can obtain a
competitive ratio better than n — 1. Let G be a star with n — 1 leaves vy to v,, and
vy be the internal node. For an algorithm A, we describe the adversary scenario as
follows.

Let vy be the root. Let the first demand group be the set of all leaves. When-
ever A connects a node v; to vy in H, adversary removes the selected nodes v; from
the next demand groups, until all leaves are connected to vy in H. In particular let
C denote the set of all nodes connected to vy in H so far. Let the demand group be
the set of all leaves in {vg, vs,...,v,}\ C. We do this until {ve, v3,...,v,}\ C =0,
which means every leaf is connected to v; in H. G is a star, thus a leaf v; is con-
nected to vy in H iff H includes the edge between v; and v;. Thus after all demands
A add all edges in G to H. Hence deg(v;) =n — 1.

Now for the optimal offline algorithm, let g; denote the ¢-th demand group.
Assume we have k demand groups. By construction of the demand groups g, C
gk—1 C ... C g1. There is a single node that exists in all group demands. The optimal
offline algorithm only needs to connect that node to the root in H. Therefore, the

degree of each node is at most 1 and the competitive ratio is n — 1. O

190

C Omitted Proofs

Proof of Lemma 6.2: For every # € R=? we have:

Primax X; > z] =1— F(x)"

=1-(1-G()"

()

(17)
We complete the proof by proving for every € > 0 that there exists an n, such that
for every n > n. and 0 < z < 1, the ratio between A(n,z) =1 —exp(—nz/(1 — 2))

and B(n,z) =1 — exp(—nz) is no more than 1/(1 — ¢).

For every n and z there are two cases:

e If in(n)/n < z <1 then we have:

A(n, z) 1 < 1 1
B(n,z) — 1 —exp(—=In(n)) 1—1/n "

IN

(18)

o If 0 < z < In(n)/n, we use partial derivatives of the functions to find an

upper bound of their ratio. In the following the derivative of a function is

191

with respect to variable z.

An,z) _ Jy A'(n, w)dw
B(n,z) [B'(n,w)dw
B
Iy B'(n,w)dw

exp(—nz/(1 - 2))/(1 — 2)2}

{
~ oswss { nexp(—nz)
{

exp(—nz?/(1 - 2))
i

IN

= T 2n(n)/n + () fn? (19)

Note that the denominators of both (18) and (19) become greater than 1 — € as n

becomes greater than some n,, thus the proof of the lemma follows. O

Proof of Lemma 6.3: Recall that s(z) = j(z)/n is a number from 0 to 1. We
prove the correctness of the lemma by analyzing it for two different ranges of s(z).
For simplicity we may refer to s(x) as s in different parts of the proof. Suppose

so = min(0.5,a)e. For 0 < s < sy we have:

1 — h(s) + nG() / h(r)dr > nG(z) / h(r)dr

> nG(x)(/0 h(r)dr — o) - (20)

From the second property of a-strong functions we have fo r)dr > «. Also, for
every z € R=" it holds that z > 1 — exp(—z2). By using these two inequalities in

Inequality (20) the lemma is proved for this case:

1 — h(s) + nG(x) / h(r)dr > nG(x)(/0 h(r)dr — so)

> (1 = exp(—=nG(x)))(a — o)

> (1= exp(=nG(2)))a(l - =)
> (1 —exp(—nG(x)))a(l —¢) s < e

Now what remains is the case that sy < s < 1. Again, for this case we want the

following inequality to hold:

1— h(s) +nG(z) [h(r)d o
1 — exp(—nG(z)) Z (1=€)er. (21)

Recall that for every z > 6, s(z) = j(x)/n where j(z) is the greatest index for
which 6; > « > 6;,;. Since G is a strictly decreasing function, we have G(6;) <
G(x) < G(6;41). Recall that for every 1 < i < n we have ¢; = ¢;_1(1 — G(6;)), or

equivalently G(60;) = 1 — ¢;/q;—1. Therefore we can bound G(x) as follows:

1—-¢i/qj-1 <G(x) <1—qin1/q; - (22)

Now, finding a lower bound for 1 — ¢;/¢;—1 and an upper bound for 1 — ¢;41/¢; in
Inequality (22) gives us a lower bound and an upper bound for G(x). For the lower

bound we have

g1 —q; =g —g—1) _ —(h(s) = h(s—1/n))
G<0)=1- qj/q] b qj—1 B qj—1 B h(s —1/n) .

193

By multiplying this fraction by n/n we get:

_<W) —h’(s—l/n)

n his—1/n) ~— n h(s—1/n) "’

G(0;) = (23)

where the last inequality in (23) comes from the concavity of h. From the second
property of threshold functions there exists some oy < s¢ such that for every n >
1/60, 80 + 1/n < s <1 the following inequality holds:

—h'(s —1/n)
h(s—1/n)

(s

=05

(24)

By using Inequality (24) in Inequality (23), and by using that inequality in Inequality
(22), we get:

—h'(s
n h(s

~—

G(z) > (1 —so)

~—

Similarly one can show the following upper bound on G(x):

G(2) < G(By41)

—q1_ 9
q;j
~ —(h(s+1/n) —h(s))
B h(s)
_W .
A ltinlvine by —
" h(s) multiplying by -

__h(s+1/n)—h(s)
1/n

S (s + 1n)
—h'(s+1/n)
= n h(s+1/n)
1 —=h(s)
“1—s9n h(s)

since h is decreasing

concavity of b (26)

second property of threshold functions (27)

Using these bounds and the following auxiliary lemma we prove the correctness of
Inequality (21).

194

Lemma .9. For every z < 0 and t > 1 we have: (1 —exp(zt))/(1 —exp(z)) < t.

Proof. Let A(z) = 1 — exp(zt) and B(z) = 1 — exp(z). In the following the

derivatives are with respect to z. For the ratio of these functions we have:

Alz) _ Jo A(w)dw
B(z) foz B'(w)dw
B Iy B’(w)%dw
B foz '(w)dw
[X)) g B
= 2<w<0 | B'(w) }foz B'(w)dw

Since w < 0 and ¢ > 1 the exp(w(t — 1)) < 1, and the proof follows. O By applying

the bounds of Inequalities (25) and (27) to the left hand side of Inequality (21) we

have:

S

1 —h(s) +nG(zx) fl h(r)dr > 1 —h(s) — (1 —s0)h'(s)/h(s) f h(r Inequality (25)
)

1 —exp(— nG(x)) - 1 — exp(—nG(x))
(1 = 50)(1 = h(s) = K(s)/h(s) [h(r) e
- 1 —exp(—n (a:)) 1—h(s) >0
(1= s0)(1 = h(s) = ()/h(s) J. h(r) |
> Inequality (27) .
- L= eXp(h(s])léS—)so))) el 1

By applying Lemma .9 to the denominator we have:

1 — h(s) — W(s)/h(s) [h(r)dr
1 —exp(h/(s)/h(s))) .

1 —h(s)+nG(z fh
1—6Xp(nG(z))

2 (1 — s0)°.

From the third property of a-strong functions, the fraction at the right hand side of
the above inequality is at least a. Moreover, since sq < 0.5¢ it holds that (1 —sg)? >
(1 —¢), and thus Inequality (21) holds and the proof of the lemma is complete. O

195

Proof of Lemma 6.4: Let us first take a look at the first three derivatives of

A(w) which are all continuous and bounded in range [0, tan(a)]:

Al(w) = 2aa(1l — exp(—aw))(1 — a + caw + aexp(—aw)) — 2w,
A"(w) = 2aa* exp(—aw)(1 — 3a + aaw + 2aexp(—aw)) + 2(a?a® — 1),

A" (w) = —2aa® exp(—aw)(1 — 4o + caw + 4o exp(—aw)) .

In this part of the proof we frequently use one of the implications of interme-
diate value theorem: if f(x) and f’(x) are two continuous and bounded functions,
then there exists a root of f'(z) between every two roots of f(x). This also implies
that the number of the roots of f(x) is at most one plus the number of the roots of
/().

0.06 | Po—

n,u-&i
n,n-:z
n,u‘_’E

Figure 4: The plot shows function A(w) for values of w from 0 to tan(a) ~ 3.7.

We claim that A”(w) has at most two roots. The reason for this is because
—2aa® exp(—aw) is always non-zero, and 1 — 4o + caw + 4o exp(—aw) has at most
two roots, because its derivative, aa(1 — 4 exp(—aw)) has exactly one root, which is

196

In(4)/a.

The fact that A”(w) has at most two roots implies that A”(w) has at most
three roots, which are w; ~ 0.28157, wy ~ 1.24251, and w3 ~ 2.27082. We note
that A’(w) is positive at all these points. Therefore A’(w) has at most two roots,
because otherwise there would be a point in which A’'(w) < 0 and A”(w) = 0 which
is impossible.

Note that A’(0) = 0, therefore A’(w) has at most one root in R*. Now we
note that A(0") > 0 because A’'(0) = 0 and A”(0) = 2(aa®(1 — a) + a?a®* — 1) > 0.
Also A(tan(a)) > 0. Now if A(w) < 0 for some 0 < w < tan(a), then A(w) would
have at least two roots in range (0, tan(a)) which results in A’(w) having two roots

in R*. Since this is not true, we have A(w) > 0 for every 0 < w < tan(a). O

Proof of Lemma 6.5: Let Xy,...,X,, be random variables representing the
items, and let Y7,...,Y}, be iid random variables with distribution function F'(z) =

Hle F;(x). For the expectation of the maximum of these variables we have:
k > k
E[malx Y] = / Pr[malei > x]dx
1= 0 1=

m

- /OOO (1 _EF@;))M

:/Ooo (1—ﬁﬁﬁ}(m))dm

i=1 j=1

/Ooo (1-}15@))%

[e.9]

Pr[mrélx X; > x]dx
0 =

= E[I?ZalxXi] : (28)

197

This shows that the optimum solution is the same for both sets of items. Let 7y
and 7y be random variables that denotes the index of the picked items in Y7,...,Y,,
and X; ..., X, respectively. Theorem 6.5 states that there exists some s such for
every m > s, we have F[Y, | > (1 — ¢/2)aF[max!", Y;]. In the following we show
that there exist some mgy such that for every m > msy, E[X,| > (1 —€¢/2)E[Y,].

This proves the lemma for every m > m. = max{s, my}, i.e.

E[X,.] > (1—¢/2)E[Y,,] > (1—6/2)204E[I?EXY;] > (1—¢)aE[max ;] = (1—e)aE[r?ZalxXi] :

i=1

Since for every non-negative random variable Z, E[Z] = [* Pr[Z > z]dz,

therefore, in order to show E[X, . | > (1 — ¢/2)E[Y,,] we show Pr[X,.] > (1 —
€/2)Pr[Y,,] for every z > 0.

In the following, we use G;(x) to denote 1 — Fj(z). For every non-negative x

we have:

Pri X, >ux|l = Pr| X, > x|ltx =1 Pritx =1
X X
i=1

n 1—1

- Z H Ej(0r5/k) Gi(max{z, Opi/n1 }) -

i=1 j=1

By rewriting the above sum with respect to the m partitions we have:

m—1 k ik+j—1
PriX,, >] = Z H Fy(Oruk1) v (max{z, 011 })
=0 j=1 I=1
m—1 k ik Jj—1
= Z Z (Ei(Oriym) HFin(GiH)GikH(max{x, 9¢+1}))
i=0 j=1 “i=1 p=1

=3 (T i) S TL FtenOie)Gones it 611 - (29)

=1 j=1 p=1

Note that X,..., X, are m-partitioned, hence for every partition 0 < i < m
and z > 0 we have [[[}*),, Fi(z) = F(x). Therefore [*, Fi(0rym) = [1j—, F ().

198

By this replacement, Inequality (29) can be written as follows:

PriX;, >a] = Z (HF (01) Z1:[Fz’k+p(9i+1)Gz’k+j(maX{$79i+1})> - (30)

=0 = 7j=1p=1

Moreover, for every 0 <7 < m and 1 < j < k we have:

HFik—&-p(ei—&-l) > HEk+p(¢9,~+1) every Fi(x) is at most 1
. =1

= F(0;11)

=1-G(0i41)

atan(a) , :
>1—-—--= inequality 26 for h(s) = cos(as)
m
2at
>1—¢€/2 for every m > my = 2atan(a) : (31)

Inequality (31) shows that for a large enough m, the left hand side of the

inequality becomes close enough to 1. By using this inequality in Inequality (30) we

have:
PriXe 2 a2 3 (T1F00 30 - /26 tmox(o 1))

=(1—-¢/2) Z (HF (6)) Zszﬂ (max{z, ‘91+1})) (32)

Let r = max{z,60;51}. By multiplying every term in Inequality (32) by

199

Note that Pr[Y,

PriX,, >z] > (1- 6/2

> (1—¢/2)
=(1—¢/2)
=(1—-¢/2)
=(1—-¢/2)
=(1—¢€/2)

=(1—-¢/2)

Y

-1

3

»;»M

(HF (6)

m—1
(F()
=0
m—1
(F(6)
=0
m—1
Z(F(6))
=0
m—1 %
Z(F(6))
=0
m—1)
(ITro
=0 =1
m—1 1
[1F®)
=0 [=1
>zl = 35

[I- 7Y Fyeyp(r), which is less than or equal to 1, we have:

1> Gt)
Z H Fikyp(r)

lel

Z H Figesp(7)

lel

< H szer
k
(1 - H sz+p

p=1

()

Hll

(1)

Fus))

_ HF<>)>

)

F(0,)G(max{z, 0;41}).

telescoping series

(33)

Using this in

Inequality (33) results that Pr[X,, > z] > (1 —€¢/2)Pr[Y, > x|, hence the proof

is complete. O

Proof of Lemma 6.6: Let p and p’ be random variables that denote the index

of the maximum with the smallest index amongst Xi,..., X, and Xg,,..., Xg,,

respectively. Then,

_ .y .y
Bl X = S B = Pri =)
> E[Xi|i = p] Prli = p]
€S
Do . .
> 2D B[Xili = p]Prli = p]
=1
_P .
= ZElmax X;] .

200

Therefore, the proof is complete. a

D Missing Calculations in Example 7.1

It is a key observation that the probability that the item is sold before ¢ can
only go down by conditioning on 7; = ¢t. The reason is that this effectively removes
buyer 7 from the process. Furthermore, if buyer 7 arrives at time ¢ then the event

that the item is sold before time t cannot depend on v;. This gives us
E[uz | ,I'z - t] - E[litem not sold before t * (Ui - a<t) : b)+ | T; - t]
= Pr[item not sold before ¢ | T; = t] - E[(v; — a(t) - b)T]

> Prfitem not sold before ¢] - E[(v; — a(t) - b)*].

E Extension of FTA’s to Bipartite Matchings

Here we study the set of algorithms that use m fixed thresholds 7, ..., 7, for
the items and have a recommendation strategy which at the arrival of every buyer
offers her an item at its fixed price. In particular, when buyer i arrives the algorithm
recommends an unsold item k to her and she accepts to buy it if v;, > 7, i.e. her

valuation for the item is greater than or equal to its price.

Lemma .10. For every instance of matching prophet secretary there exists a se-
quence of fixed thresholds Ty, ..., T, and a randomized algorithm which is (1 —1/e)-

approximation in expectation.

Proof. Our general approach is to extend the methods we have for single item
FTA’s to an algorithm for matchings. This generalization is similar to a reduction

201

from matchings to single items. However, there are some details that we have to
consider. We first show a stronger claim than the statement of Theorem 7.4 which
holds for a specific inputs class of prophet secretary. Then we propose a randomized
algorithm which exploits the single item algorithm for that class in order to find such
fixed thresholds that lead to a (1 — 1/e)-approximation algorithm for matchings.
We note that the analysis of Theorem 7.4 indicates we can find a single thresh-
old such that every item will be seen with probability at least 1—1/e. More precisely,
the analysis shows Z?:l % > 1 —1/e, and consequently Inequality (7.13) shows
the algorithm gets the same approximation factor from the utility of every buyer,
i.e. E[Utility] > (1 —1/e)> " | Efv; - 1,,>,]. Now, if an input instance guarantees

S Priv; > 0] <1 then we will have

E[Revenue] — (1 _ é) > (1 _ %) Tipr[w > 0] > (1 _ %) iE[vi]

This results in

E[Alg] = E[Revenue] + E[Utility]

> (1- 1) Sl Lucd] + B L)

_ (1 _ é) :ilE[vz]

The following claim formally states the above result.

Claim .3. If the input of prophet secretary guarantees Y ., Pr{v; > 0] < 0, then

there exists an F'TA such that

E[Alg] > (1 - é) Zn:E[vi] .

202

Now we demonstrate how the matching problem reduces to the instances de-
scribe above. Let us assume we already know thresholds 74, ..., 7, for the m items.
Upon the arrival of buyer ¢ and realizing v; we use the following algorithm to rec-
ommend an item k to buyer i. We first calculate probabilities py,...,p, where
pe(vi) == Pry_.[(i, k) € M(v;Uv_;)] and M(B) is the maximum matching ¢ of a bi-
partite graph B. These are in fact the probabilities of each of those edges belonging
to the maximum matching. Then, by drawing a random number r € [0, 1] we select
a candidate item k if Zf;ll p<r< Zle pi. In this way, we dependently select
a candidate such that every k£ becomes selected with probability pi. Note that the
algorithm might sometimes select none of the items, in which cases there will be no
candidate. Finally we recommend item k to buyer 7 if the item is still unsold, and
she buys it if v; ;, > 7.

The above method for candidate selection has a close relationship with the
optimum solution. To put it into perspective, let us define a new distribution D;
R™ — [0, 1] for every buyer . This distribution is supposed to show the valuations of
1 on the items when they are selected as candidates. In other words, for every vector
T = (T1,...,ZTm) in which at most one of x;’s is non-zero we have Pr _p [0; = 7] :=
E,.~p; [11,1.’ v=ar Lk is a candidate) - quivalently, lA?, can be interpreted as the distribution
of the value of the edge incident to ¢ in the maximum matching. This is true because

we select a candidate with the probability that it belongs to the maximum matching.

SWLOG we can assume it is unique for every graph.

203

Therefore:

n m

E[OPT] = Ey.p[M(v)] = Z Eo 51> Okl - (34)

k=1

Now we reduce the problem to the single item case. By looking at a scenario of
the problem from the viewpoint of item k we notice that the whole scenario and the
algorithm run equivalent to the single item case. This item observes the buyers in
a random order such that the valuation of buyer i comes from D;. These scenarios
occur in parallel for all the items, because no two items are offered to buyers at the

same time. In addition, every item k is offered to a buyer with an overall probability

of

Z Pro p,[0ix > 0] = ZEw,vﬂv[1vi,k>0'1(z',k)eM(viUv_i)] = Pry.plk is matched] <1 .
i=1 i=1

Now we can use the result of Claim .3. The right hand side of Equality (34) can
be written as Y " >0 Eo g [054]. The claim states that there exists a threshold
7, such that the FTA achieves at least (1 —1/e) > " E 5 [Vi] for every item &.

Therefore our algorithm is (1 — 1/e)-approximation for the matching of all items.

O

F Correlated Setting

In this section, we study the k-server problem when the probability distribu-
tions are not independent. Recall that in the independent setting the sequence of
requests is referred to by p = (rq,...,r). In the correlated model we assume all

different possibilities for p have been given in the form of a set R = {p1,..., pm} of

204

m sequences p; = (r51,...,7¢). Moreover, we assume the probability of each sce-
nario p; is denoted by p; and given in advance. Given the list of different scenarios
and probabilities, the goal is to design an online algorithm to serve each request r; ;
prior to arrival of the next request such that the overall movement of the servers is
minimized.

We model this problem by an integer program. We first write an integer
program and show that every solution of this program is uniquely mapped to a
deterministic online algorithms for the problem. Moreover, every online algorithm
can be mapped to a feasible solution of the program. More precisely, each solution
of the program is equivalent to an online algorithm of the problem. Furthermore,
we show how to derive an online algorithm from the solution of the integer program.
These two imply that the optimal deterministic online algorithm can be obtained

from the optimal solution of the program.

G Program

To better convey the idea behind the integer program, we first introduce the
tree T" which is a trie containing all sequences p; to p,,. Let us use w(v) to denote
the path from the root to a node v. With these notations, a node v € T represents
a request which may occur conditioning all requests in w(v) occur beforehand. Be-
sides, every leaf of T" uniquely represents one of the p;’s. Let us use I(v) to denote
the set of those indices i for which p; is a leaf of the subtree of v. At each step ¢, only

those p;’s can be a final option for R that (p;1,...,pit) = (r1,...,7:). Hence, a new

205

request r; can be informative since we know that none of the p;’s in I(r;_1)\l(r;au)
will occur anymore. For a node v we define Pr(v) as the probability of all requests

in w(v) happening i.e. Pr(v) =3, Pr(R = p).

i€l

We extend the tree T' by adding k£ — 1 additional nodes. As shown in Figure
1, these nodes form a path leading to the root of 7. These nodes plus the root
represent the initial configuration of the k servers. Let us call these nodes the initial
set . Now we can show the movement of the servers in our metric space by means
of k tokens in T. To do so, we begin with putting one token on each of the k
nodes of I. Each token corresponds to one of the servers. After a server moves to
serve a request r;, we move its corresponding token to a node of T" which represents
the request ;. Note that at this step, there is no discrimination between any of
the sequences in [(r;) in terms of occurrence. This causes a deterministic online
algorithm A to serve the first |w(r;)| requests of R in the same way if R is going to
be one of p;’s (i € I(ry)). A result of this uniquely serving is that we can use some
downward links on 7T in order to show how each request v gets served. In the next
paragraphs we explain about these links and how we construct the integer program.

Let us use z,,, to denote a link from a node u € T to its descendant v. z,, is
one if and only if A uses the same server to serve u and then v without using that
server to serve any other request between u and v. This consecutive serving may
occur with probability Pr(v) = Pr(u)Pr(v|u). In this case, the algorithm moves a
server from u to v and pays |u — v| as the distance cost between the two points of
the metric space corresponding to u and v.

There are two conditions for these links that we must care about. First, since

206

each request v should be served with a server, at least one of the z,,’s should be
one for all u in w(v). Without loss of generality, we assume this is exactly one of
them, i.e. there is no need to serve a request with more than one server. Second,
after serving a request u, a server can go for serving at most one other request.
That is, for each i € {(u), there should be at most one v € p; such that z,, = 1.
This condition guarantees that in serving the sequence of requests R, a server which
serves 1, € R has always at most one other request 7, € R as the next serving
request.

The following integer program maintains both conditions for z,,’s and has

the expected overall movement of all servers as the objective function:

min. Z Pr(v)|u —v|x,,

u,veT;ucw(v)

Yo € T\I > tup=1
Vu e T,i € l(u) wa<1.

Vu,v € Tyu € w(v) x,, € {0,1}

Next, we can relax the constraints of the program to make it linear. Therefore,
instead of assigning either {0} or {1}, to each z,,, we let it be a real number between

0 and 1. Thus, the integer program turns to the following linear program with the

207

same objective function but more relaxed constraints.

min. Z Pr(v)|u — v|@,,

u,veT;ucw(v)

Yo € T\I > my=1
VueT,i€l(u) quﬂ,gl.

Vu,v € Tou € w(v) Xy, <1

Vu,v € Tou € w(v) Xy, >0
Note that every feasible solution of the linear program is corresponding to a frac-
tional solution of the problem. Since the optimal solution of the linear program
can be found in polynomial time, using the rounding methods presented in Sec-
tion 8.5 we obtain an optimal online algorithm for the line metric and a O(logn)

approximation algorithm for general metrics as stated in Theorem 8.6.

H Experimental Results

The goal of this section is to make an evaluation of our method for the line
on a real world data set. The line can be an appropriate model for a plenty of
applications. For example, it could be sending road maintenance trucks to different
points of a road or sending emergency vehicles to accident scenes along a highway.
For this experiment, we take the case of car accidents.

Data sets. We use Road Safety Data’ to find the distribution of the accidents

"https://data.gov.uk/dataset /road-accidents-safety-data/

208

along the A1® road in Great Britain. In 2015, over 1600 accidents occurred on this
highway, with an average of 140 accidents per month. We assume a point every 10
miles along the highway. That is 40 points in total. Then we build the distributions
with respect to how the accidents are spread over the days of month. In this way,
we achieve 30 distributions for 40 points along the line.

Algorithms. We compare the performance of our method to that of the
optimum algorithm. To find the optimum solution we use backtracking. The running
time of the algorithm is exponential to k. However, we use techniques such as branch
and bound and exponential dynamic programming to get a fast implementation.

Results. We run different experiments with k& from 2 to 11 on the line and
distributions explained above. In previous sections we showed an upper bound of 3
for the approximation factor of our algorithm. Interestingly, in these experiments
we can observe a better performance as shown by Figure 5. We compare the running
time of the algorithms in Table 1. Note that the size of our LP our method solvers
does not vary by k. This is in fact the reason behind why its running time remains
almost the same. In contrast, the running time of the optimum algorithm grows

exponentially.

8https://en.wikipedia.org/wiki/A1 road_(Great_Britain)

209

milas)

Expacted Movment of Sarvers
0
3
J
A

Road Safety - Accidents

L

—ip— Our algorithm

—— Cptimum

Number of Servers

[f=]

Figure 5: Performance of our algorithm compared to the optimum. The dashed curve

indicates two times the optimum.

Number of Servers | 2 3 4 5 6 7 8 9 10 11
Algorithm 6576677175 |83 |8&H 8.4 9.3 8.2
Optimum 021083184294 1|57.9|126.3 | 406.7 | 1477.1 | 6173.6

Table 1: The time performance of our algorithm vs. the optimum algorithm.

Bibliography

210

[AAAT09]

[AABY6]

[AABO4]

[AAF*97]

[ABFP13]

[ACNOO]

[ADGP*10]

[AEE*17]

[AFGO02]

[AHL*11]

Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph
Naor. The online set cover problem. SIAM Journal on Computing,
39(2):361-370, 2009.

Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line generalized
steiner problem. In Proceedings of the seventh annual ACM-SIAM sym-
posium on Discrete algorithms, pages 68—74, 1996.

Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line generalized
steiner problem. Theoretical Computer Science, 324(2):313-324, 2004,

James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts.
On-line routing of virtual circuits with applications to load balancing
and machine scheduling. Journal of the ACM (JACM), 44(3):486-504,
1997.

Yossi Azar, Umang Bhaskar, Lisa Fleischer, and Debmalya Panigrahi.
Online mixed packing and covering. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
85-100. STAM, 2013.

Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive
analysis of randomized paging algorithms. Theoretical Computer Sci-
ence, 234(1):203-218, 2000.

Aris Anagnostopoulos, Clément Dombry, Nadine Guillotin-Plantard,
loannis Kontoyiannis, and Eli Upfal. Stochastic analysis of the k-server
problem on the circle. DMTCS Proceedings, (01):21-34, 2010.

Melika Abolhassani, Soheil Ehsani, Hossein Esfandiari, Mohammad-
Taghi HajiAghayi, Robert Kleinberg, and Brendan Lucier. Beating
1-1/e for ordered prophets. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 61-71. ACM,
2017.

Susanne Albers, Lene M Favrholdt, and Oliver Giel. On paging with
locality of reference. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 258-267. ACM, 2002.

Saeced Alaei, Mohammad T Hajiaghayi, Vahid Liaghat, Dan Pei, and
Barna Saha. Adcell: Ad allocation in cellular networks. In Algorithms—
ESA 2011, pages 311-322. 2011.

211

[AHL12]

[AHL13]

[AKRO1]

[Alall]

[AMOG]

[And10]

[ARO1]

[BBK9Y)]

[BBMN11]

[BBN12]

[BBSO06]

[BCYT]

Saeced Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. Online
prophet-inequality matching with applications to ad allocation. In Pro-

ceedings of the 13th ACM Conference on FElectronic Commerce, pages
18-35, 2012.

Saeced Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. The
online stochastic generalized assignment problem. In Approzrima-
tion, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 11-25. Springer, 2013.

Ajit Agrawal, Philip Nathan Klein, and R Ravi. How tough is the
minimum-degree steiner tree?”: A new approximate min-max equality.
Technical Report CS-91-49, Brown University, 1991.

S. Alaei. Bayesian combinatorial auctions: Expanding single buyer
mechanisms to many buyers. In FOCS. 2011.

Lawrence M Ausubel and Paul Milgrom. The lovely but lonely vickrey
auction. Combinatorial auctions, 17:22-26, 2006.

Matthew Andrews. Approximation algorithms for the edge-disjoint
paths problem via raecke decompositions. In Foundations of Computer
Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 277—
286. IEEE, 2010.

Yossi Azar and Oded Regev. Strongly polynomial algorithms for the
unsplittable flow problem. In Integer Programming and Combinatorial
Optimization, pages 15-29. Springer, 2001.

Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging.
In Foundations of Computer Science, 1999. 40th Annual Symposium
on, 1999.

Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A
polylogarithmic-competitive algorithm for the k-server problem. 2011.

Nikhil Bansal, Niv Buchbinder, and Joseph Seffi Naor. A primal-
dual randomized algorithm for weighted paging. Journal of the ACM
(JACM), 59(4):19, 2012.

Douglas Bauer, Hajo Broersma, and Edward Schmeichel. Toughness
in graphs—a survey. Graphs and Combinatorics, 22(1):1-35, 2006.

Piotr Berman and Chris Coulston. On-line algorithms for steiner tree
problems. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 344-353. ACM, 1997.

212

[BCLOO]

[Bec04]

[BEY05]

[BHZ13]

[BIKO7]

[BIRS95]

[BINO7]

[BK04]

[BK10]

[BKNO9]

[BNOY]

[BS00]

Yair Bartal, Marek Chrobak, and Lawrence L. Larmore. A randomized

algorithm for two servers on the line. Information and Computation,
158(1):53-69, 2000.

Luca Becchetti. Modeling locality: A probabilistic analysis of Iru and
fwf. In Algorithms—ESA 2004, pages 98-109. Springer, 2004.

Allan Borodin and Ran El-Yaniv. Online computation and competitive
analysis. cambridge university press, 2005.

MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and
Morteza Zadimoghaddam. Submodular secretary problem and exten-
sions. ACM Transactions on Algorithms, 9(4):32, 2013.

Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids,
secretary problems, and online mechanisms. In Proceedings of the eigh-

teenth annual ACM-SIAM symposium on Discrete algorithms, pages
434-443. Society for Industrial and Applied Mathematics, 2007.

Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch
Schieber. Competitive paging with locality of reference. Journal of
Computer and System Sciences, 50(2):244-258, 1995.

Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-
dual algorithms for maximizing ad-auctions revenue. In ESA, pages
253-264. Springer, 2007.

Yair Bartal and Elias Koutsoupias. On the competitive ratio of the
work function algorithm for the k-server problem. Theoretical computer
science, 324(2):337-345, 2004.

Bahman Bahmani and Michael Kapralov. Improved bounds for online
stochastic matching. In Furopean Symposium on Algorithms, pages
170-181. Springer, 2010.

Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Addi-
tive guarantees for degree-bounded directed network design. STAM J.
Comput., 39(4):1413-1431, 20009.

Niv Buchbinder and Joseph Naor. The design of competitive online
algorithms via a primal: dual approach. Foundations and Trends® in
Theoretical Computer Science, 3(2-3):93-263, 2009.

Alok Baveja and Aravind Srinivasan. Approximation algorithms for
disjoint paths and related routing and packing problems. Mathematics
of Operations Research, 25(2):255-280, 2000.

213

[BV95]

[CEKP15]

[CFH*17]

[CG82]

[CGMS0]

[CHKO7]

[CHMS10a)

[CHMS10b)]

[Chul2]

[Chv73]

[CKPV91]

Fred Bauer and Anujan Varma. Degree-constrained multicasting in
point-to-point networks. In INFOCOM’95. Fourteenth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Bringing Information to People. Proceedings. IEEE, pages 369-376.
IEEE, 1995.

Deeparnab Chakrabarty, Alina Ene, Ravishankar Krishnaswamy, and
Debmalya Panigrahi. Online buy-at-bulk network design. In FOCS,
2015.

José Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and
Tjark Vredeveld. Posted price mechanisms for a random stream of
customers. In Proceedings of the 2017 ACM Conference on Economics
and Computation, pages 169-186. ACM, 2017.

Paolo M Camerini and Giulia Galbiati. The bounded path tree prob-
lem. SIAM Journal on Algebraic Discrete Methods, 3(4):474-484, 1982.

Paolo M Camerini, Giulia Galbiati, and Francesco Maffioli. Complexity
of spanning tree problems: Part i. Furopean Journal of Operational
Research, 5(5):346-352, 1980.

Shuchi Chawla, Jason D. Hartline, and Robert D. Kleinberg. Algo-
rithmic pricing via virtual valuations. In Proceedings of the 8th ACM
Conference on Electronic Commerce, pages 243-251, 2007.

Shuchi Chawla, Jason Hartline, David Malec, and Balasubramanian
Sivan. Multi-parameter mechanism design and sequential posted pric-
ing. 2010.

Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubrama-
nian Sivan. Multi-parameter mechanism design and sequential posted
pricing. In Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June
2010, pages 311-320, 2010.

Julia Chuzhoy. Routing in undirected graphs with constant congestion.
In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing, pages 855-874. ACM, 2012.

Vasek Chvatal. Tough graphs and hamiltonian circuits. Discrete Math-
ematics, 5(3):215-228, 1973.

Marek Chrobak, H Karloff, T Payne, and S Vishwnathan. New ressults
on server problems. STAM Journal on Discrete Mathematics, 4(2):172—
181, 1991.

214

[CLO6]

[CRRTO6]

[CRRT09]

[CS06]

[DEH*15]

[DEH*17a]

[DEH*17b)]

[DEHL16]

[Dens83)

Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. Edge-
disjoint paths in planar graphs with constant congestion. SIAM Journal
on Computing, 39(1):281-301, 20009.

Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm
for edge-disjoint paths with congestion 2. In FOCS 2012.

Marek Chrobak and Lawrence L. Larmore. An optimal on-line algo-
rithm for k servers on trees. SIAM Journal on Computing, 20(1):144~
148, 1991.

Randy Cogill and Sanjay Lall. On decentralized policies for the stochas-
tic k-server problem. arXiv preprint math/0605188, 2006.

Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal
Talwar. A push-relabel algorithm for approximating degree bounded
msts. In Proceedings of the 33rd international conference on Automata,
Languages and Programming-Volume Part I, pages 191-201. Springer-
Verlag, 2006.

Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal
Talwar. What would edmonds do? augmenting paths and witnesses
for degree-bounded msts. Algorithmica, 55(1):157-189, 2009.

Joseph Cheriyan and Mohammad R Salavatipour. Hardness and ap-
proximation results for packing steiner trees. Algorithmica, 45(1):21—
43, 2006.

Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid
Liaghat, and Saeed Seddighin. Online survivable network design and
prophets. 2015.

Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid
Liaghat, Harald Racke, and Saeed Seddighin. Online weighted degree-
bounded steiner networks via novel online mixed packing/covering.
arXw preprint arXw:1704.05811, 2017.

Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid
Liaghat, and Saeed Seddighin. Stochastic k-Server: How Should Uber
Work? In ICALP 2017, 2017.

Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, and Vahid
Liaghat. Online degree-bounded steiner network design. In Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 164-175. Society for Industrial and Applied
Mathematics, 2016.

Peter J Denning. The working set model for program behavior. Com-
munications of the ACM, 26(1):43-48, 1983.

215

[DFKL16]

[DHO9]

[DJSW11]

[DK15]

[DMP13]

[DNS10]

[Dyn63]

[EHKS17]

[EHLM15]

[EKM15]

[EV14]

[Fei06]

Paul Diitting, Michal Feldman, Thomas Kesselheim, and Brendan
Lucier. Posted prices, smoothness, and combinatorial prophet inequal-
ities. arXiv preprint arXiw:1612.03161, 2016.

Nikhil Devanur and Thomas Hayes. The adwords problem: Online
keyword matching with budgeted bidders under random permutations.
In EC, pages 71-78, 20009.

Nikhil R Devanur, Kamal Jain, Balasubramanian Sivan, and Christo-
pher A Wilkens. Near optimal online algorithms and fast approxi-
mation algorithms for resource allocation problems. In Proceedings of
the 12th ACM conference on Electronic commerce, pages 29-38. ACM,
2011.

Paul Diitting and Robert Kleinberg. Polymatroid prophet inequalities.
In Algorithms-ESA 2015, pages 437-449. Springer, 2015.

Matt DeVos, Jessica McDonald, and Irene Pivotto. Packing steiner
trees. arXw preprint arXi:1307.7621, 2013.

Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation
algorithms for combinatorial auctions with complement-free bidders.
Mathematics of Operations Research, 35(1):1-13, 2010.

Eugene B Dynkin. The optimum choice of the instant for stopping a
markov process. In Soviet Math. Dokl, volume 4, 1963.

Soheil Ehsani, MohammadTaghi Hajiaghayi, Thomas Kesselheim, and
Sahil Singla. Prophet secretary for combinatorial auctions and ma-
troids. arXww preprint arXiv:1710.11213, 2017.

Hossein Esfandiari, MohammadTaghi Hajiaghayi, Vahid Liaghat, and
Morteza Monemizadeh. Prophet secretary. In Algorithms-ESA 2015,
pages 496-508. Springer, 2015.

Hossein Esfandiari, Nitish Korula, and Vahab Mirrokni. Online allo-
cation with traffic spikes: Mixing adversarial and stochastic models.
In Proceedings of the Sixteenth ACM Conference on FEconomics and
Computation, pages 169-186. ACM, 2015.

Alina Ene and Ali Vakilian. Improved approximation algorithms for
degree-bounded network design problems with node connectivity re-
quirements. STOC, 2014.

Uriel Feige. On maximizing welfare when utility functions are subad-
ditive. In STOC, pages 41-50, 2006.

216

[FGL15]

[FKL*91]

[FMO7]

[FMO3]

[FMMMO9]

[FR90]

[FR94]

[FR12]

[Fra85]

[FRT03]

[FSZ15]

Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial
auctions via posted prices. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 123-135. STAM,
2015.

Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D
Sleator, and Neal E Young. Competitive paging algorithms. Journal
of Algorithms, 12(4):685-699, 1991.

Amos Fiat and Manor Mendel. Truly online paging with locality of
reference. In Foundations of Computer Science, 1997. Proceedings.,
38th Annual Symposium on, pages 326-335. IEEE, 1997.

Amos Fiat and Manor Mendel. Better algorithms for unfair met-
rical task systems and applications. SIAM Journal on Computing,
32(6):1403-1422, 2003.

Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and S Muthukrish-
nan. Online stochastic matching: Beating 1-1/e. In Foundations of
Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on,
pages 117-126. IEEE, 2009.

Martin Fiirer and Balaji Raghavachari. An NC approximation algo-
rithm for the minimum degree spanning tree problem. In Allerton Conf.
on Communication, Control and Computing, pages 274-281, 1990.

Martin Fiirer and Balaji Raghavachari. Approximating the minimum-
degree steiner tree to within one of optimal. Journal of Algorithms,
17(3):409-423, 1994.

Takuro Fukunaga and R Ravi. Iterative rounding approximation algo-
rithms for degree-bounded node-connectivity network design. In Foun-
dations of Computer Science (FOCS), 2012 IEEE 53rd Annual Sym-
posium on, pages 263-272. IEEE, 2012.

Andras Frank. Edge-disjoint paths in planar graphs. Journal of Com-
binatorial Theory, Series B, 39(2):164-178, 1985.

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound
on approximating arbitrary metrics by tree metrics. In Proceedings of

the thirty-fifth annual ACM symposium on Theory of computing, pages
448-455. ACM, 2003.

Moran Feldman, Ola Svensson, and Rico Zenklusen. A simple o (log
log (rank))-competitive algorithm for the matroid secretary problem.
In Proceedings of the Twenty-Sizth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1189-1201. SIAM, 2015.

217

[FV06]

[FZ15]

[GGL*08]

[GGLS08]

[GGP+94]

[GHK*14]

[GK11]

[GKR12]

[GMOS]

[GMKSS]

Uriel Feige and Jan Vondrak. Approximation algorithms for allocation
problems: Improving the factor of 1-1/e. In 2006 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’06), pages
667-676. IEEE, 2006.

Moran Feldman and Rico Zenklusen. The submodular secretary prob-
lem goes linear. In Foundations of Computer Science (FOCS), 2015
IEEE 56th Annual Symposium on, pages 486-505. IEEE, 2015.

Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen,
Piotr Sankowski, and Mohit Singh. Set covering with our eyes closed. In
Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual
IEEE Symposium on, pages 347-356. IEEE, 2008.

Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski.
Stochastic analyses for online combinatorial optimization problems. In
SODA, pages 942-951. Society for Industrial and Applied Mathematics,
2008.

Michel X Goemans, Andrew V Goldberg, Serge A Plotkin, David B
Shmoys, Eva Tardos, and David P Williamson. Improved approxima-
tion algorithms for network design problems. In SODA, volume 94,
pages 223-232, 1994.

Oliver Gobel, Martin Hoefer, Thomas Kesselheim, Thomas Schleiden,
and Berthold Vocking. Online independent set beyond the worst-case:
Secretaries, prophets, and periods. In International Colloguium on Au-
tomata, Languages, and Programming, pages 508-519. Springer, 2014.

Anupam Gupta and Jochen Konemann. Approximation algorithms
for network design: A survey. Surveys in Operations Research and
Management Science, 16(1):3-20, 2011.

Anupam Gupta, Ravishankar Krishnaswamy, and R Ravi. Online and

stochastic survivable network design. SIAM Journal on Computing,
41(6):1649-1672, 2012.

Gagan Goel and Aranyak Mehta. Online budgeted matching in random
input models with applications to adwords. In Proceedings of the Nine-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
982-991, 2008.

Hector Garcia-Molina and Boris Kogan. An implementation of reliable
broadcast using an unreliable multicast facility. In Reliable Distributed
Systems, 1988. Proceedings., Seventh Symposium on, pages 101-111,
1988.

218

[Goe06]

[GRST10]

[GS17]

[GWO5]

[HGMO3]

[HKS2]

[HKLRO5]

[HKP04]

[HKS07]

[HLP13)]

[HLP14]

Michel X Goemans. Minimum bounded degree spanning trees. In
Foundations of Computer Science, 2006. FOCS’06. 7th Annual IEEE
Symposium on, pages 273-282, 2006.

Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Ku-
nal Talwar. Constrained non-monotone submodular max-
imization: offine and secretary algorithms. available at
http://www.cs.cmu.edu/alroth /submodularsecretaries.html, 2010.

Guru Prashanth Guruganesh and Sahil Singla. Online matroid intersec-
tion: Beating half for random arrival. In International Conference on
Integer Programming and Combinatorial Optimization, pages 241-253.
Springer, 2017.

Michel X Goemans and David P Williamson. A general approximation
technique for constrained forest problems. SIAM Journal on Comput-
ing, 24(2):296-317, 1995.

Yonggiang Huang and Hector Garcia-Molina. Publish/subscribe tree
construction in wireless ad-hoc networks. In Mobile Data Management,
pages 122-140, 2003.

Theodore P Hill and Robert P Kertz. Comparisons of stop rule and
supremum expectations of iid random variables. The Annals of Prob-
ability, pages 336-345, 1982.

MohammadTaghi Hajiaghayi, Jeong Han Kim, Tom Leighton, and Har-
ald Récke. Oblivious routing in directed graphs with random demands.
In Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing, pages 193-201. ACM, 2005.

Mohammad Taghi Hajiaghayi, Robert Kleinberg, and David C. Parkes.
Adaptive limited-supply online auctions. In EC, pages 71-80, 2004.

Mohammad T. Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm.
Automated online mechanism design and prophet inequalities. In
AAAI pages 58-65, 2007.

Mohammad Taghi Hajiaghayi, Vahid Liaghat, and Debmalya Pani-
grahi. Online node-weighted steiner forest and extensions via disk
paintings. In Foundations of Computer Science (FOCS), 2013 IEEE
94th Annual Symposium on, pages 558-567, 2013.

MohammadTaghi Hajiaghayi, Vahid Liaghat, and Debmalya Pani-
grahi. Near-optimal online algorithms for prize-collecting steiner prob-
lems. In Automata, Languages, and Programming, pages 576-587. 2014.

219

[HMZ11]

[HRW92

[IKP96]

[TW91]

[Jai01]

[JL13]

[TMS03]

[Ken85)

[Ken87]

[Ker86]

[KK11]

[KKN13]

[KKRR04]

Bernhard Haeupler, Vahab S Mirrokni, and Morteza Zadimoghaddam.
Online stochastic weighted matching: Improved approximation algo-
rithms. In International Workshop on Internet and Network FEco-
nomaics, pages 170-181. Springer, 2011.

Frank K Hwang, Dana S Richards, and Pawel Winter. The Steiner tree
problem, volume 53. Elsevier, 1992.

Sandy Irani, Anna R Karlin, and Steven Phillips. Strongly competitive
algorithms for paging with locality of reference. SIAM Journal on
Computing, 25(3):477-497, 1996.

Makoto Imase and Bernard M Waxman. Dynamic Steiner tree problem.
SIAM Journal on Discrete Mathematics, 4(3):369-384, 1991.

Kamal Jain. A factor 2 approximation algorithm for the generalized
steiner network problem. Combinatorica, 21(1):39-60, 2001.

Patrick Jaillet and Xin Lu. Online stochastic matching: New al-
gorithms with better bounds. Mathematics of Operations Research,
39(3):624-646, 2013.

Kamal Jain, Mohammad Mahdian, and Mohammad R Salavatipour.
Packing steiner trees. In Proceedings of the fourteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 266-274. Society for
Industrial and Applied Mathematics, 2003.

DP Kennedy. Optimal stopping of independent random variables and
maximizing prophets. The Annals of Probability, 13(2):566-571, 1985.

DP Kennedy. Prophet-type inequalities for multi-choice optimal stop-
ping. Stochastic Processes and their Applications, 24(1):77-88, 1987.

Robert P Kertz. Comparison of optimal value and constrained maxima
expectations for independent random variables. Advances in applied
probability, pages 311-340, 1986.

Ken-ichi Kawarabayashi and Yusuke Kobayashi. Breaking o (n 1/2)-
approximation algorithms for the edge-disjoint paths problem with con-
gestion two. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 81-88. ACM, 2011.

Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. On some network
design problems with degree constraints. Journal of Computer and
System Sciences, 79(5):725-736, 2013.

Philip N Klein, Radha Krishnan, Balaji Raghavachari, and R Ravi.
Approximation algorithms for finding low-degree subgraphs. Networks,
44(3):203-215, 2004.

220

[K1e05]

[KMT11]

[KMZ15]

[KP95]

[KP09]

[KPROO]

[KROO]

[KRO5)

[Kri03]

[KRR94]

[KRTV13]

[KS77]

Robert Kleinberg. A multiple-choice secretary algorithm with applica-
tions to online auctions. In SODA, pages 630-631, 2005.

Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bi-
partite matching with unknown distributions. In Proceedings of the

forty-third annual ACM symposium on Theory of computing, pages
587-596, 2011.

Nitish Korula, Vahab Mirrokni, and Morteza Zadimoghaddam. Online
submodular welfare maximization: Greedy beats 1/2 in random order.
In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing, pages 889-898. ACM, 2015.

Elias Koutsoupias and Christos H Papadimitriou. On the k-server con-

jecture. Journal of the ACM (JACM), 42(5):971-983, 1995.

Nitish Korula and Martin Pal. Algorithms for secretary problems on
graphs and hypergraphs. In International Colloquium on Automata,
Languages and Programming, pages 508-520. Springer, 2009.

Anna R Karlin, Steven J Phillips, and Prabhakar Raghavan. Markov
paging. SIAM Journal on Computing, 30(3):906-922, 2000.

Jochen Konemann and R Ravi. A matter of degree: Improved approx-
imation algorithms for degree-bounded minimum spanning trees. In
Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 537-546, 2000.

Jochen Konemann and R Ravi. Primal-dual meets local search: ap-
proximating msts with nonuniform degree bounds. SIAM Journal on
Computing, 34(3):763-773, 2005.

Matthias Kriesell. Edge-disjoint trees containing some given vertices
in a graph. Journal of Combinatorial Theory, Series B, 88(1):53-65,
2003.

Howard Karloff, Yuval Rabani, and Yiftach Ravid. Lower bounds for
randomized k-server and motion-planning algorithms. SIAM Journal
on Computing, 23(2):293-312, 1994.

Thomas Kesselheim, Klaus Radke, Andreas Tonnis, and Berthold
Vocking. An optimal online algorithm for weighted bipartite matching
and extensions to combinatorial auctions. In European Symposium on
Algorithms, pages 589-600. Springer, 2013.

Ulrich Krengel and Louis Sucheston. Semiamarts and finite values.
Bull. Am. Math. Soc, 1977.

221

[KST78]

[KS04]

[KVV90]

[KW12]

[KWW16]

[Lac14]

[Lau04]

[LB10]

[LNSS09]

[LRS11]

[LS13]

[MD79]

U. Krengel and L Sucheston. On semiamarts, amarts, and processes
with finite value. In In Kuelbs, J., ed., Probability on Banach Spaces.
1978.

Stavros G Kolliopoulos and Clifford Stein. Approximating disjoint-path
problems using packing integer programs. Mathematical Programming,
99(1):63-87, 2004.

Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal
algorithm for on-line bipartite matching. In Proceedings of the twenty-
second annual ACM symposium on Theory of computing, pages 352—
358, 1990.

Robert Kleinberg and Seth Matthew Weinberg. Matroid prophet in-
equalities. In STOC. ACM, 2012.

Robert Kleinberg, Bo Waggoner, and E. Glen Weyl. Descending price
optimally coordinates search. In Proceedings of the 17th ACM Confer-
ece on Economics and Computation, pages 2324, 2016.

Oded Lachish. O (log log rank) competitive ratio for the matroid sec-
retary problem. In Proceedings of the Fifty-Fifth Annual IEEE Sym-
posium on Foundations of Computer Science, pages 326-335, 2014.

Lap Chi Lau. An approximate max-steiner-tree-packing min-steiner-
cut theorem. In Foundations of Computer Science, 200/. Proceedings.
45th Annual IEEE Symposium on, pages 61-70. IEEE, 2004.

Brendan Lucier and Allan Borodin. Price of anarchy for greedy auc-
tions. In Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete Algorithms, pages 537-553. Society for Industrial and Ap-
plied Mathematics, 2010.

Lap Chi Lau, Joseph Naor, Mohammad R Salavatipour, and Mohit
Singh. Survivable network design with degree or order constraints.
SIAM Journal on Computing, 39(3):1062-1087, 2009.

Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods
in combinatorial optimization, volume 46. Cambridge University Press,
2011.

Lap Chi Lau and Mohit Singh. Additive approximation for bounded
degree survivable network design. SIAM Journal on Computing,
42(6):2217-2242, 2013.

R Garey Michael and S Johnson David. Computers and intractability:
a guide to the theory of np-completeness. WH Freeman € Co., San
Francisco, 1979.

222

[Meh12]

[Mey01]

IMGZ12]

[MMS90]

[MOGS12]

[MRS+98]

[MS91]

IMSVV07]

IMY11]

INPS11]

[Nut12]

[OPOS]

Aranyak Mehta. Online matching and ad allocation. Theoretical Com-
puter Science, 8(4):265-368, 2012.

Adam Meyerson. Online facility location. In Foundations of Computer
Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 426-431.
IEEE, 2001.

Vahab S Mirrokni, Shayan Oveis Gharan, and Morteza Zadimoghad-
dam. Simultaneous approximations for adversarial and stochastic
online budgeted allocation. In Proceedings of the twenty-third an-
nual ACM-SIAM symposium on Discrete Algorithms, pages 1690-1701.
STAM, 2012.

Mark S Manasse, Lyle A McGeoch, and Daniel D Sleator. Competitive
algorithms for server problems. Journal of Algorithms, 11(2):208-230,
1990.

Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online
stochastic matching: Online actions based on offline statistics. Mathe-
matics of Operations Research, 37(4):559-573, 2012.

Madhav V Marathe, R Ravi, Ravi Sundaram, SS Ravi, Daniel J
Rosenkrantz, and Harry B Hunt III. Bicriteria network design prob-
lems. Journal of Algorithms, 28(1):142-171, 1998.

Lyle A McGeoch and Daniel D Sleator. A strongly competitive ran-
domized paging algorithm. Algorithmica, 6(1-6):816-825, 1991.

Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani.
Adwords and generalized online matching. J. ACM, 54(5):22, 2007.

Mohammad Mahdian and Qiqi Yan. Online bipartite matching with
random arrivals: an approach based on strongly factor-revealing LPs.
In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 597-606, 2011.

Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online node-
weighted steiner tree and related problems. In Foundations of Com-
puter Science (FOCS), 2011 IEEE 52nd Annual Symposium on, pages
210-219, 2011.

Zeev Nutov. Degree-constrained node-connectivity. In LATIN 2012:
Theoretical Informatics, pages 582-593. 2012.

Carlos AS Oliveira and Panos M Pardalos. A survey of combinatorial

optimization problems in multicast routing. Computers € Operations
Research, 32(8):1953-1981, 2005.

223

[PROO]

[PS97]

[PS06]

[PY82]

[QW11]

[Rag96]

[RK93]

[RMR*01]

[Rot07]

[RS06]

[RS17]

[RTS5)

Louis Petingi and J Rodriguez. Bounds on the maximum number of

edge-disjoint steiner trees of a graph. Congressus Numerantium, pages
43-52, 2000.

Alessandro Panconesi and Aravind Srinivasan. Randomized distributed
edge coloring via an extension of the chernoff-hoeffding bounds. SIAM
Journal on Computing, 26(2):350-368, 1997.

Konstantinos Panagiotou and Alexander Souza. On adequate perfor-
mance measures for paging. In Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pages 487-496. ACM, 2006.

Christos H Papadimitriou and Mihalis Yannakakis. The complexity of
restricted spanning tree problems. Journal of the ACM, 29(2):285-309,
1982.

Jiawei Qian and David P Williamson. An o (logn)-competitive algo-
rithm for online constrained forest problems. In Automata, Languages
and Programming, pages 37-48. 2011.

Balaji Raghavachari. Algorithms for finding low degree structures. In
Approximation algorithms for NP-hard problems, pages 266—295. PWS
Publishing Co., 1996.

R Ravi and Philip Klein. When cycles collapse: A general approx-
imation technique for constrained two-connectivity problems. In 3rd
Conference on Integer Programming and Combinatorial Optimization,
pages 39-56, 1993.

R Ravi, Madhav V Marathe, SS Ravi, Daniel J Rosenkrantz, and
Harry B Hunt III. Approximation algorithms for degree-constrained
minimum-cost network-design problems. Algorithmica, 31(1):58-78,
2001.

Michael H Rothkopf. Thirteen reasons why the vickrey-clarke-groves
process is not practical. Operations Research, 55(2):191-197, 2007.

R Ravi and Mohit Singh. Delegate and conquer: An lp-based approx-
imation algorithm for minimum degree msts. In Automata, Languages
and Programming, pages 169-180. Springer, 2006.

Aviad Rubinstein and Sahil Singla. Combinatorial prophet inequalities.
In Proceedings of the Twenty-FEighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1671-1687. STAM, 2017.

Prabhakar Raghavan and Clark D Thompson. Provably good routing
in graphs: regular arrays. In Proceedings of the seventeenth annual
ACM symposium on Theory of computing, pages 7987, 1985.

224

[RT87]

[Rub16]

[SCS11]

[SLO7]

STS5]

[Tiir05]

[VoB392]

[WeiT9]

[WGMV95]

[Wing9]

[Yan11]

[You9s|

Prabhakar Raghavan and Clark D Tompson. Randomized rounding: a
technique for provably good algorithms and algorithmic proofs. Com-
binatorica, 7(4):365-374, 1987.

Aviad Rubinstein. Beyond matroids: Secretary problem and prophet
inequality with general constraints. arXww preprint arXiw:1604.00357,
2016.

Loc Séguin-Charbonneau and F Bruce Shepherd. Maximum edge-
disjoint paths in planar graphs with congestion 2. In Foundations of
Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on,
pages 200-209. IEEE, 2011.

Mohit Singh and Lap Chi Lau. Approximating minimum bounded
degree spanning trees to within one of optimal. In Proceedings of the
thirty-ninth annual ACM symposium on Theory of computing, pages
661-670, 2007.

Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM, 28(2):202-208,
1985.

Duru Tiirkoglu. The k-Server Problem and Fractional Analysis. PhD
thesis, Masters Thesis, The University of Chicago, 2005. http://people.
cs. uchicago. edu/ duru/papers/masters. pdf, 2005.

Stefan Vof. Problems with generalized steiner problems. Algorithmica,
7(1):333-335, 1992.

Martin L. Weitzman. Optimal search for the best alternative. Fcono-
metrica, 47(3):641-654, 1979.

David P Williamson, Michel X Goemans, Milena Mihail, and Vi-
jay V Vazirani. A primal-dual approximation algorithm for generalized
steiner network problems. Combinatorica, 15(3):435-454, 1995.

Sein Win. On a connection between the existence ofk-trees and the
toughness of a graph. Graphs and Combinatorics, 5(1):201-205, 1989.

Qiqi Yan. Mechanism design via correlation gap. In Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2011, San Francisco, California, USA, January 23-25,
2011, pages 710-719, 2011.

Neal E Young. Bounding the diffuse adversary. In SODA, volume 98,
pages 420-425, 1998.

225

	Dedication
	Acknowledgement
	Table of Contents
	List of Figures
	Overview
	Introduction
	Online vs Offline
	Prophet Setting vs Online Setting

	Outline
	Online Network Design
	Prophet Inequalities
	Online Problems in Prophet Setting

	Online Degree-Bounded Steiner Network Design
	Introduction
	Our Contributions
	Related Degree-Bounded Connectivity Problems
	Related Online Problems
	Preliminaries

	Online Degree-Bounded Steiner Forest
	Analysis

	An Asymptotically Tight Lower Bound

	Online Weighted Degree-Bounded Steiner Networks
	Introduction
	Our Results and Techniques
	Preliminaries
	Overview of the Chapter

	Finding the Right Integer Program
	Online Bounded Frequency Mixed Packing/Covering IPs
	Putting Everything Together

	Beating 1-1/e for Ordered Prophets
	Introduction
	Our Contribution
	Applications in Mechanism Design
	Other Related Work

	IID Distributions
	Non IID Distributions

	Prophet Secretary for Matroids and Combinatorial Auctions
	Introduction
	Our Techniques
	Related Work

	Our Approach using a Residual
	Prophet Secretary for Combinatorial Auctions
	Bipartite Matching
	XOS Combinatorial Auctions

	Prophet Secretary for Matroids
	Fixed Threshold Algorithms
	Single Item Prophet Secretary
	Impossibility for IID Prophet Inequalities

	Stochastic k-Server Problem
	Introduction
	The Stochastic Model
	Our Results
	Further Related Work

	Preliminaries
	Structural Characterization
	Fractional Solutions
	Linear Program

	Reduction from Integral k-server to Fractional k-server
	Integrals Are as Strong as Fractionals On the Line
	Reduction for General Graphs

	Survivable Network Design and Prophets
	Introduction
	Our Results and Techniques
	Further Related Work

	Steiner Tree Packing
	Fractional Steiner Tree Packing
	Fractional Steiner Tree Packing of k-connected Graphs
	Steiner Forest Packing

	Uniform SNDP
	Non-Uniform SNDP
	From Oblivious I.I.D. to Prophet and Applications to Online Problems
	Stochastic Survivable Network Design
	Algorithm
	Structural Lemma for k-connected Graphs

	Appendices
	Online Degree-Bounded Edge-weighted Steiner Tree
	Online Degree-Bounded Group Steiner Tree
	Omitted Proofs
	Missing Calculations in Example 7.1
	Extension of FTA's to Bipartite Matchings
	Correlated Setting
	Program
	Experimental Results

	Bibliography

