THE INSTITUTE FOR SYSTEMS RESEARCH

ISRTECHNICAL REPORT 2011-01

Studying Real-time Traffic in Multi-hop Networks
Using the EMANE Emulator: Capabilities and
Limitations

Kaustubh Jain

Ayan Roy-Choudhary
Kiran K.Somasundaram
Baobing Wang

John S. Baras

ISR develops, applies and teaches advanced methodologies of design and

IIlStltl.lte fOl' analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
Sys emS lems of engineering technology and systems for industry and government.
RebedrCh ISR is a permanent institute of the University of Maryland, within the
i, A. James Clark School of Engineering. It is a graduated National Science
@& A. JAMES CLARK Foundation Engineering Research Center.
Q.gvi,gﬁso SCHOOL OF ENGINEERING

www.isr.umd.edu

Studying Real-time Traffic in Multi-hop Networks Using the
EMANE Emulator: Capabilities and Limitations

Kaustubh Jain, Ayan Roy-Chowdhury, Kiran K. Somasundaram,
Baobing Wang, John S. Baras
Institute for Systems Research
University of Maryland
College Park, MD, USA
{ksjain,ayan,kirans,brainkw,baras}@umd.edu

ABSTRACT

In this paper, we study the fidelity of an open-source soft-
ware emulator to provide reliable estimation of performance
for real-time traffic in mobile ad-hoc networks. We emu-
late the IEEE 802.11 MAC/PHY (DCF) using the EMANE
software emulator deployed on a cluster and run experiments
for different multi-hop wireless scenarios with the Optimized
Link State Routing (OLSR) protocol. As an instance of real-
world usage scenario, we study the performance of real-time
streaming media over a mesh network supported by OLSR.
In particular, we study the effect of mobility and background
traffic on carried load, delay and jitter. As another appli-
cation, we analyze the impact of the wireless network on
the self-similarity of aggregate traffic. Using traffic source
models with high variability, we show that the aggregate
traffic in the wireless network is self-similar and hence pre-
serves its burstiness at larger time scales. The results are
consistent with those obtained from high-fidelity simulation
within some limitations of the emulator.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—uwireless communications

General Terms
Experimentation, Performance, Measurement

Keywords

Software Emulation, MANETS, Performance Evaluation

1. INTRODUCTION

In recent years, there has been growing interest in both mil-
itary and commercial spaces to deploy Mobile Ad-hoc Net-
works (MANETS) for real-time traffic applications. For ex-
ample, the authors in [16] report the implementation details
of a community mesh network deployment in Vienna, Aus-
tria. With increased proliferation of such community net-

works and other application-specific MANET deployments,
it becomes essential to obtain estimates of real-time perfor-
mance metrics of these networks before deployment.

Most of the work in estimating the performance has been
done using network simulators such as ns-2/ns-3 [9] and OP-
NET Modeler [11], which are relatively inexpensive to collect
statistics in comparison to field tests. However, these sim-
ulators are not capable of providing statistics of real-time
performance. A distinguishing characteristic of real-time
applications is user interaction, and simulators are handi-
capped to capture this; simplistic traffic sources used in sim-
ulators to model such user interaction, such as http traffic
models [4], cannot capture the high variability in real-time
traffic. Detailed and precise statistics of real-time network
statistics can be measured using testbeds [3, 8], which are
prohibitively expensive. Network emulation provides a suit-
able alternative to both simplistic simulators and expensive
testbeds. It can provide real-time performance measure-
ments of production-ready prototype technologies in a labo-
ratory abstraction of real-world networks. The primary ad-
vantage of emulation is the time savings in prototype testing.
Further, the ability to port emulators into general purpose
clusters offers a scalable solution. Among network emula-
tors, there are two different approaches: hardware emula-
tion [7] and software solutions [2,5,14]. with the later being
significantly less expensive than the former. We believe that
a high-fidelity software emulation is an attractive solution to
obtain the performance metrics of MANET protocols before
deployment.

In this paper we describe the use of an open-source soft-
ware emulator for real-time traffic analysis. We setup a
software emulator called EMANE [5], which emulates the
IEEE 802.11 MAC/PHY, on a cluster. Our setup provides a
scalable platform that can emulate large wireless networks.
To illustrate the limitations and capabilities of this setup,
we study two scenarios. First, we study the video-streaming
performance of multi-hop 802.11 network using Optimized
Link State Routing (OLSR) [6], a popular MANET routing
protocol [16]. Apart from the standard metrics of bitrate,
delay and jitter, we look at the perceptual performance of
the streaming media. Second, we study burstiness of traf-
fic in wireless network with different traffic source models,
which model real-time user interactions. Our objective here
is to verify whether the emulator can provide reliable esti-
mates of self-similarity in wireless network traffic. We use

Ethernet Frame Ethernet Frame

Actual

+ Data Flow l %
Transport Logical 2 Transport
NEM " NEM
MAC {4 MAC
: A
PHY Logical PHY
\ OTA |

Figure 1: EMANE Architecture. Source [5].

OPNET Modeler, which is generally accepted as a mature
network simulator, to compare the results of our emulator
setup. These studies illustrate the limitations and capabili-
ties of our emulation setup.

The rest of the paper is organized as follows. In section 2, we
describe EMANE and provide implementation details of the
emulator setup on a general purpose cluster. In section 3, we
use EMANE to study the impact of OLSR and 802.11 MAC
on a video streaming connection. In section 4 we study the
aggregate traffic characteristics with different source traffic
models. Finally, in section 5 we discuss the results obtained
so far and propose future work.

2. EMULATION SETUP

2.1 Wireless Network Emulator

We use the Extensible Mobile Ad-hoc Network Emulator
(EMANE) [5] as the framework for wireless network em-
ulation. EMANE is an open source project developed by
CenGen Inc. and freely available under the BSD license. It
is modular and highly scalable. It can inter-operate with
other modeling tools and real hardware systems. It allows
for heterogeneous network emulation using a pluggable Me-
dia Access Control (MAC) and physical (PHY) layer archi-
tecture. The emulator can be extended with custom-built
physical and link layer models.

A detailed description of EMANE is provided in [5], but
we summarize it here. EMANE provides a set of applica-
tion programming interfaces (APIs) to allow independent
development of network emulation modules (NEMs), emula-
tion/application boundary interfaces (transports), and emu-
lation environmental data distribution mechanisms (events).
Each node in the emulator is represented by an instance
of an emulation stack. This stack encapsulates the func-
tionality necessary to transmit, receive and operate on data
routed through the emulation space. As shown in Figure 1,
each emulation stack has three components: (i) Transport -
Mechanism responsible for transporting packets to and from
the emulation space (emulation stack entry/exit point); (ii)
NEM - Emulation implementation logic for a given radio
model; and, (iii) OTA - Over-The-Air Manager provides the
mechanism emulation nodes use to communicate.

EMANE creates a virtual interface (labeled emane0) on
each machine emulating a user node. Any traffic sent over
the virtual interface goes through the NEM and the EMANE
platform server. The wireless network is modeled by the

Ethernet

Gateway

Head

Host1

Host2

Sta

Figure 2: Virtual Nodes in the Cluster

NEM and the server. EMANE has a well developed TEEE
802.11 a/b/g model which emulates IEEE 802.11 MAC layer’s
DCF channel access scheme on top of IEEE 802.11 DSS and
OFDM PHY. It features unicast and broadcast packets with
support for RT'S/CTS mode. The PHY layer computes the
packet probability of error based on the specified pathlosses
and BER curves. Time-varying pathlosses can be assigned
to account for node mobility.

2.2 Cluster Setup

We use a cluster of 28 Sun Fire v60 machines/nodes run-
ning the Debian Lenny Linux distribution. Each node is
equipped with an Intel Xeon dual-core 2.80GHz processor
with 1 GB RAM. Our cluster configuration is shown in Fig-
ure 2. The physical nodes form a LAN over ethernet, and
these physical nodes are accessible via a Gateway node, as
shown in the figure. Rest of the nodes are labeled Head,
Host1, Host2,..,HostN. Our objective is to use the physical
cluster for emulation of a large wireless network. Conse-
quently, we use the Xen hypervisor [21] to create virtual
nodes. Among the physical nodes, Gateway, Head, Host1
and Host2 are not virtualized because these nodes are ded-
icated to handle processor-intensive tasks. The remaining
nodes, Host3,.. HostN, have 4 virtual nodes each. The virtual
nodes for Hostn are labeled VN,,, VN,,, VN, and VN,,.

We use a centralized deployment of EMANE: all user node
NEMs are connected to a single platform server, and the
communication between different nodes is channeled through
the central server. The EMANE server is run on the head
node. The remaining nodes, hostl, host2 and the virtual
nodes, form the nodes of the ad-hoc network.

2.3 Limitations of the Emulator

The current release of EMANE (release 0.6.4) is a beta re-
lease. While it has most of the important features of our in-
terest included, there are certain limitations relevant to this
study, which are listed here. In 802.11 MAC models, the
simulation of packet collisions are not modeled accurately:
in the interest of making the calculations in real-time, ap-
proximations are made on the message durations as well
as the retry attempts. Backoff and RTS/CTS timings are
incorporated in the message duration, but collisions are ap-
proximated at the level of RTS/CTS exchange. In addition,

Emulated Wireless
Network /' Audio and Video
Tunneling !

Virtual
Nodes

(" Streaming Flow
\

\

s---

Ethernet

Figure 3: Audio and Video Tunneling over Ethernet
and Wireless Network over Virtual Interface

the emulator does not model interference based on Signal-
to-Interference-and-Noise-Ratio (SINR), but simply drops a
packet if there is a collision. In the absence of collision,
the packet error rate is calculated based on Signal-to-Noise-
Ratio (SNR)and not SINR.

3. VIDEO STREAMING ANALYSIS

In this section, we study the effectiveness of OLSR running
on the emulator in establishing routes and how it affects
real-time performance. We run OLSR with default param-
eters on each emulated user node, with the protocol using
the virtual interface emane0. We use the open-source olsrd-
0.5.5 [10] implementation. We study the video streaming
performance under varying network conditions - path-loss
changes due to node mobility and multipath propagation,
and increasing network load. We use VLC player [19] to
stream videos between two user nodes in the cluster in a
client-server setup. Since the physical nodes of the cluster
are not equipped with sound cards, we use Pulseaudio [15]
for audio tunneling. We use X Server for tunneling the dis-
play. The audio and video are tunneled from the client and
server cluster nodes to a remote lab node. The overall net-
work setup is illustrated in Figure. 3.

The video streaming VLC server is hosted on host!, while
the VLC client is on host2. A subset of the remaining nodes
in the network carry some background traffic. We use an in-
house traffic generator tool, which we call Traffic App. For
this video-streaming analysis, Traffic App generates Con-
stant Bit Rate (CBR) UDP traffic, i.e, generates packets
of constant size and constant inter-request time. We use a
packet size of 1500 bytes, and change the inter-request times
for changing the offered traffic rate. For the MAC and PHY,
we use 802.11b at 11 Mbps, and use RTS-CTS mechanism
for sending data packets. For each scenario, we capture and
decode all UDP packets using Wireshark [20] and analyze
the carried load, delay and jitter using Matlab scripts.

We study two scenarios - a 6-node clique, and a 26-node
network with a mobile VLC client. The clique scenario does
not need OLSR routing, but is studied mainly to verify the
emulation setup without the complexities of a multihop net-
work. We also compare the results of the emulation setup
with results obtained from OPNET. For simulating the video
streaming traffic flow in OPNET, we use the actual bit-rate
trace obtained at the VLC server, as a traffic flow imported
in the OPNET scenario.

Background Traffic (in Mbps)| 0 |1.5| 2 |2.5| 3 |[3.5| 4

Percentage of Packets Lost [0.1]2.2/4.1(9.6/19.4(30.6|41.3

Table 1: Packet Loss for the Clique Scenario

Before presenting the results, we would like to point out one
important limitation of the OLSR code used in the emula-
tor. For the OLSR codes released so far (upto release 0.6.0),
the MPR selection algorithm / topology control mechanism
does not work efficiently. The topology control mechanism is
responsible for optimizing the link state information flooded
in the network. So currently, all the link state information
are flooded in the network. While the nodes potentially
get a better view of the network, this leads to an increased
overhead and also, in some cases, larger convergence time
for finding fresh routes.

3.1 Single Cell Network

= Emulator
= = —OPNET

______ [-]

I
S

with 90% confidence intervals
-
N

Carried Media Traffic Rate (in Mbps)

0 0‘.5 i 1.‘5 ‘2 2.‘5 C‘i 3.‘5 1‘1
Background traffic (in Mbps)

Figure 4: Carried rate of media stream for 6-node
clique.

We set up the 6-node clique network (every node can listen
and transmit to every other node) with low path-loss values.
Video is streamed between a client-server pair, while the
other four nodes send constant bit rate (CBR) background
traffic in two source-destination pairs. We scale the back-
ground traffic uniformly and study how the streaming video
quality is affected. When a low quality video (~350 Kbps
MPEG video) is streamed, we see very little performance
degradation in video quality for our setting. However, when
a high quality video (~1.5Mbps) is used, we observe per-
formance variation. Figures 4, 5 and 6 illustrate the degra-
dation of the bitrate, delay and jitter, respectively, at the
client with increasing background traffic. We also notice a
perceptual difference in the streamed video quality (screen-
shots omitted due to space constraints). The streaming rate
at the server is on an average 1.465 Mbps (with a 90% con-
fidence interval of [1.402, 1.528] Mbps). The percentage of
packets lost are shown in Table 1. Since the path losses
are low, the physical layer losses play a minimal role here.
The performance degradation is primarily due to the con-
tention and collision at the 802.11 MAC layer. When we
compare the emulator results with that of OPNET, we see
that the emulator under-estimates the capacity of the net-
work because of the approximations in modeling collisions.
However, the significantly lower delay in OPNET results is
because it does not model the packet processing time.

Emulator

Delay (in sec)
with 90% confidence intervals

0 05 1 15

2 25 3 35 4
Background traffic (in Mbps)

Figure 5: Delav of media stream for 6-node clique.

35

Jitter (in msec)
with 90% confidence intervals

0 0‘5 i 1‘.5 é 2‘5 C‘i 3‘5 1‘1
Background traffic (in Mbps)

Figure 6: Jitter of media stream for 6-node clique.

3.2 Grid Network with Mobile Client

A mesh network of backbone static wireless nodes consisting
of 25 nodes is deployed as a grid network, i.e., in a 5 X 5
grid topology. Let the 4 corners of the grid be annotated as
A,B,C,D counterclockwise. A mobile client is also deployed
alongside the grid network. For the video streaming, a serv-
ing node is chosen as one of the corner nodes of the grid, say
A. The mobility pattern of the mobile client, which receives
the video stream is defined so that it moves from corner B
to corner C. Path-loss values are set such that each node
can talk to its adjacent nodes on the grid. Hence at any
point of time, the client is within the communication range
of two grid nodes. We study two scenarios: static, when the
client is stationary at its initial position, and mobile, when
the client moves at a constant speed. We use a low quality
video (~350 Kbps) because we observed that capacity is low
for the multi-hop connection. In this scenario, we study the
impact of mobility on the streaming capabilities of OLSR.
We set 5 different connections in the grid, each sending traf-
fic at 500 Kbps. Figures 7, 8 and 9 respectively show the
bitrate, delay and jitter between the streaming server-client.
For the mobile scenario, we observe long periods of discon-
nectedness. This is due to link changes and route-detection
delays of OLSR. During these periods, the delay and jit-
ter values cannot be obtained since no packets are received.
In the static scenario, we observe 28% packet drops due to
background traffic. The packet drop increases to 48% when
the client is mobile.

When we compare the emulator results with OPNET, we see
that the delay and jitter is significantly higher in OPNET,
but there are no long periods of zero bitrate at the client

in mobile scenario. In the emulations, due to the absence
of topology control and frequent changes in the topology,
the OLSR algorithm takes more time to converge to fresh
routes. This results in the zero bitrate for more than 10 sec
duration in the mobile client scenario. We believe that the
differences in delay and jitter are because of the differences
in modeling of collisions in EMANE and OPNET.

500
450
400
350
3001
2501
2001

150

Average Bitrate (in Kbps)
with 90% confidence intervals

100

50

0

0 20 40 60 80 100 120 140 160 180 200 220
Time (in sec)

(a) Offered Bitrate

500
= Emulator
450 = = =OPNET
400
350
300
250
200

150

Average Bitrate (in Kbps)
with 90% confidence intervals

100+

50

0

0 20 40 60 80 100 120 140 160 180 200 220
Time (in sec)

(b) Carried Bitrate: Static scenario

Emulator
450} - = —OPNET

Average Bitrate (in Kbps)
with 90% confidence intervals

»
]
S

0 20 40 60 80 100 120 140 160 180 200 220
Time (in sec)

(c) Carried Bitrate: Mobile scenario

Figure 7: Streaming rate at server and client for
26-node scenarios.

4. AGGREGATE TRAFFIC ANALYSIS

Given the limitations of the emulator, how useful is it in its
current form? We try to answer this question by investi-
gating aggregate traffic behavior at larger time scales using
the emulator setup. In particular, we check whether we can
identify traffic self-similarity in the emulated wireless net-
works. We verify the reliability of the results by comparing
with those obtained from OPNET for similar network and
source traffic models.

Delay (in sec)
with 90% confidence intervals

Delay (in sec)
with 90% confidence intervals

Figure 8:
scenarios.

Jitter (in msec)
with 90% confidence intervals

Jitter (in msec)
with 90% confidence intervals

Figure 9:

scenarios.

—— Emulator
I, = = —OPNET
1
25 ,I \
L}
7 \ I\
E AR\
1 1 1
2] vy
1 [
M ! \
15 ! I '
-) 1
1 1 “
1} 1
7o : L
-1 f
I| ,I \ 1 ‘!
05\‘_’/\/““\1‘—1\.—/_’(\/\;\:
0 S S R S
0 20 40 60 80 100 120 140 160 180 200 220
Time (in sec)

(a) Static scenario

w
o

Emulator
- - —OPNET

w
|
S

I
~ 2

=
»

,'I
1 }I’ 1 \ ,’ ‘I
k‘ " \i 'l
05 =3 ‘I a:,:l:
T~ s K

o

80 100 120 140 160 180 200 220
Time (in sec)

(b) Mobile scenario

o
N
S
IS
3
@
3

Streaming media client delay for 26-node

= Emulator
= = = OPNET

0 20 40 60 80 100 120 140 160 180 200 220
Time (in sec)

(a) Static scenario

900
800 - - —OPNET
700
600
500
400

[}
[}
300 1
1

h

A}

1

1 N 1

200 I‘ 'l 8 N
\
II T ¥ i
w0 /[7 , A (ERTARN
i Sl L N S G Y

0 20 40 60 80 100 120 140 160 180 200 220
Time (in sec)

(b) Mobile scenario

Streaming media client jitter for 26-node

The importance of traffic self-similarity is that it signifi-
cantly impacts network performance [13,17] through the
related phenomenon of long-range dependence (LRD). Be-
cause of LRD, the Markovian queuing models do not hold
and give inaccurate performance results. Furthermore, self-
similarity preserves the burstiness of traffic even at large
timescales and hence needs to be accounted for in network
provisioning and control. The source of self-similarity in
many networks has been shown to be the high variations
in file sizes and inter-arrival times. However the underlying
network protocols also play a significant role [12,13]. Here
we study the existence of self-similarity in wireless networks.

4.1 Self-Similarity

Depending on the choice of source traffic models, the aggre-
gate traffic in the network can show very different charac-
teristics. The popular Markovian models with exponential
file sizes and Poisson arrivals have bursty traffic at small
time scales, but the burstiness is averaged out at large time
scales. However, high variability in the traffic demands can
lead to self-similarity, hence preserving the burstiness even
at large time scales. In particular, source models with finite
mean, but infinite variance (either in the file sizes, or inter-
request times) lead to self-similarity in aggregate traffic in
many network scenarios. A commonly used model for gen-
erating files sizes or inter-request times with high variability
is the Pareto distribution.

The self-similar nature of the traffic is characterized by it’s
Hurst Exzponent (H). There are many statistical tests for self-
similarity [13,17]. Two of the commonly used tests - R/S
method and Variance-time method - give a rough estimate of
the H. However, the wavelet analysis method of [1] gives a
more robust estimate of H. For practical scenarios, a value
of H between 0.5 and 1 is obtained and higher H implies
burstier traffic.

4.2 Scenario for Studying Self-Similarity

We emulate a 10 node clique scenario with 9 connections.
We use our traffic generator tool Traffic App to generate
UDP traffic with different distributions for file-sizes and
inter-request times. The tool can generate UDP packets
with constant, exponential or Pareto distribution for sizes or
inter-requests. We study the following scenarios and com-
pare the results with OPNET -

1. Exponential file sizes and exponential inter-request times
2. Pareto file sizes and exponential inter-request times

3. Exponential file size and pareto inter-request times

4. Pareto file size and pareto inter-request times

In each of the 4 scenarios, all the 9 connections use identical
distributions. The mean packet size is 1500 Bytes and the
mean inter-request time is 60 msec. Using Wireshark, we
capture all the packets received at the destination and find
out the aggregate traffic rate (in bps). The Hurst estimates
of the corresponding time-series using the Wavelet method
are given in Table 2. We obtain similar Hurst estimates from
R/S method and Variance-time method. We can see that
heavy-tails in the distribution leads to higher values of H
implying stronger self-similarity and long-range dependence.
In particular, the value of H for scenario 1 is close to 0.5
implying absence of long-range dependence and absence of
burstiness at larger time scales.

Scenario 1 2 3 4
Emulator | 0.518 | 0.572 | 0.631 | 0.687
OPNET | 0.506 | 0.625 | 0.702 | 0.625

Table 2: Hurst Parameter Estimates

Even though the values of the Hurst estimates vary between
the emulator and OPNET, they predict similar behavior in
terms of the presence or absence of self-similarity. But a
more detailed analysis of the impact of the protocols and
network load will need correct modeling of protocol func-
tioning. Whereas correct modeling of many different higher
layer protocols in simulators like OPNET will take a lot of
time, improving the MAC models in EMANE seems to be
easier. Once that is achieved, the emulator setup can be
used with real applications for a more accurate study.

S. CONCLUSIONS AND FUTURE WORK

In this paper, we described an emulation setup to study
the impact of MAC and routing on the performance of real-
time traffic in wireless networks. We presented our work
with a new open-source software emulator called EMANE.
Our objective was to analyze how reliable are the results of
experiments on the emulator, and, therefore, how useful the
software emulator will be for high-fidelity wireless perfor-
mance tests. Comparing our results from the emulator with
those from OPNET, we see that they are in good agreement
within the differences of certain implemented features.

However, there are significant limitations with the current
versions of EMANE, which we have described in the pa-
per. The same holds true for the OLSR code we used. We
are trying to fix the issues together with the respective au-
thors. We will implement detailed path loss and channel
fading models in EMANE to study the impact of the wire-
less channel. For the study of routing protocols, we are also
working on implementing the Stable Path Topology Control
(SPTC) [18] modifications to OLSR, which we believe will
give better real-time performance in realistic wireless sce-
nario. For traffic self-similarity analysis, we plan to use more
realistic traffic models and actual applications like VoIP and
VBR video-streaming. The detailed modeling of the wireless
channel together with real applications will provide more re-
alistic results than simulations and help study the impact of
the wireless setting.

Acknowledgment

The authors would like to thank CenGen Inc. for answer-
ing our questions about EMANE and troubleshooting our
emulation setup.

Research supported by the US Army Research Office through
MURI awards with numbers W911-NF-08-1-0238 and W911-

NF-07-1-0287, and by the Defense Advanced Research Projects

Agency (DARPA) under award number 013641-001 for the
Multi-Scale Systems Center (MuSyC), through the FRCP
of SRC and DARPA.

6. REFERENCES
[1] P. Abry and D. Veitch. Wavelet analysis of long-range
dependent traffic. IEEE Transactions on Information
Theory, 44(1):2-15, Jan. 1998.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]
(10]

(1]

(12]

(18]

(19]
20]
(21]

A. Alvarez, R. Orea, S. Cabrero, X. G. Pa neda,

R. Garcia, and D. Melendi. Limitations of network
emulation with single-machine and distributed ns-3. In
SIMUTools ’10: Proceedings of the 3rd International
ICST Conference on Simulation Tools and Techniques,
2010.

L. Barolli, M. Tkeda, G. D. Marco, A. Durresi, and

F. Xhafa. Performance analysis of olsr and batman
protocols considering link quality parameter. Advanced
Information Networking and Applications,
International Conference on, 0:307-314, 2009.

J. Cao, W. Cleveland, Y. Gao, K. Jeffay, F. Smith,
and M. Weigle. Stochastic models for generating
synthetic http source traffic. In INFOCOM 200.
Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, 2004.
CENGEN. Emane - extendable mobile ad-hoc network
emulator. http://labs.cengen.com/emane/.

T. Clausen, P. Jacquet, C. Adjih, A. Laouiti,

P. Minet, P. Muhlethaler, A. Qayyum, and L.Viennot.
Optimized link state routing protocol (OLSR). RFC
3626, October 2003. Network Working Group.

G. Judd, X. Wang, M.-H. Lu, and P. Steenkiste. Using
physical layer emulation to optimize and evaluate
mobile and wireless systems. In International
Conference on Mobile and Ubiquituous Systems, 2008.
E. Macias, A. Suarez, J. Martin, and V. Sunderam.
Using olsr for streaming video in 802.11 ad hoc
networks to save bandwidth. International Journal of
Computer Science, 2007.

NS-3. Network simulator 3. http://www.nsnam.org/.
OLSR. Olsr routing protocol implementation version
0.5.3. http://www.olsr.org.

OPNET-Modeler.
http://www.opnet.com/solutions/network_rd /modeler.html.
K. Park. On the relationship between file sizes,
transport protocols, and self-similar network traffic. In
In Proc. IEEFE International Conference on Network
Protocols, pages 171-180, 1996.

K. Park and W. Willinger. Self-Similar Network
Traffic and Performance Evaluation. John Wiley &
Sons, Inc., New York, NY, USA, 2000.

M. Pudar and T. Plagemann. Neman: A network
emulator for mobile ad-hoc networks. In 8th
International Conference on Telecommunications
ConTEL 2005, 2005.

Pulseaudio. http://www.pulseaudio.org.

H. Rogge, E. Baccelli, and A. Kaplan. Packet sequence
number based etx metric for mobile ad hoc networks.
IETF Draft, March 2010.

O. Sheluhin, S. Smolskiy, and A. Osin. Self-Similar
Processes in Telecommunications. John Wiley & Sons,
Inc., New York, NY, USA, 2007.

K. Somasundaram, J. Baras, K. Jain, and

V. Tabatabaee. Distributed topology control for stable
path routing in mobile ad hoc networks. In Conference
on Decision and Control, 2010.

VideoLAN. http://www.videolan.org.

Wireshark. http://www.wireshark.org.

XEN. http://www.xen.org.

