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Recent technologies have enabled the formation of point-to-point directional

wireless networks that are capable of dynamic changes in the network topology. The

process of changing this topology in response to changes in available link capacities

and load demands of various nodes is called topology control. One example of the

type of communication network studied in this context is a Free Space Optical (FSO)

network.

Topology control consists of computing new topologies to dynamically optimize

the network under changing traffic conditions and then carrying out the reconfigu-

ration process to achieve the target topology. This thesis considers the process of

topology reconfiguration and use the packet drops that happen during this process

as a cost metric for this process. It is shown that by implementing the topology

reconfiguration as a series of smaller steps (successive approximation), the num-

ber of packets that are dropped during the reconfiguration are reduced. Using this

knowledge, the topology computation algorithm can be refined to also minimize the

reconfiguration cost along with the typical objective of minimizing congestion.
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Chapter 1

Introduction

Wireless networks have an advantage over wireline networks in that they can

be reconfigured to meet new requirements. Reconfiguration here means the logical -

and physical - change in the network topology[1]. However, not all cases of topology

reconfiguration in wireless networks are useful in the sense of meeting new network

requirements. For example, in a network of mobile wireless nodes that move in an

uncontrolled fashion, topology reconfiguration happens as a matter of fact and can-

not be used as a tool for optimizing network performance. In a similar vein, there

exist wireline networks in which topology reconfiguration is possible. An example

involves Wavelength Division Multiplexing (WDM) networks in which different log-

ical networks can be overlaid on top of a fixed physical network topology based on

transmitter-receiver frequency tuning.

Reconfigurable networks also differ based on the order of link establishment/removal.

In Mobile Ad-hoc Networks(MANETs) for example, the removal of unwanted links

could happen after new links have been established. In the case of point-to-point

directional wireless networks, like Free Space Optical(FSO) networks, the degree

constraints imposed on the nodes imply that unwanted links have to be removed

before new links can be created. Whenever this is this case, the network topology

will be in a transient state after the removal of unwanted links and before the es-
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Figure 1.1: Timeline of the Topology Reconfiguration Process

tablishment of new links. This transient state could exist for a small time interval,

but it nevertheless exists and results in suboptimal network performance during

this time. In this study, we are interested in such reconfigurable networks where a

topology reconfiguration imposes a cost on the network performance.

1.1 FSO/RF Networks

FSO/RF networks are point-to-point broadband wireless networks that use

combined or switchable optical and RF transceivers. In such communication net-

works, a laser beam can be accurately pointed to a receiver upto thousands of kms

away. Reconfiguration in FSO/RF networks involves the physical re-alignment of

the laser and RF transceiver assembly towards different nodes so that new links are

established after the old links are destroyed. The new links are acquired after a pro-

cess called Pointing, Acquisition and Tracking (PAT), The network is in a transient

state during PAT - the time taken for PAT is called the PAT Delay.

Figure 1.1 shows the timeline of the topology reconfiguration process in a

FSO/RF network. The transient state of the network ends when the routing protocol

discovers the new topology and converges to the new routing table. However, as
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we will see below, the new routing table can be predicted at the beginning of the

topology reconfiguration and hence the additional time taken by the routing protocol

convergence can be reduced to zero. This still leaves the network in a transient state

during the PAT delay which is (almost) invariant to the number of links that are

being created - as each link discovery is essentially independent of the establishment

of other new links.

Another example of a network with a similar reconfiguration process is a WDM

network. In a WDM network, network stations are physically connected to, and

communicate over, a passive optical medium and each network station is equipped

with a high speed user access port and a small number of transmitters and receivers

that tap into the fiber transmission medium. The assignment of wavelengths to

transmitter/receiver pairs defines a logical connection diagram among the stations

embedded in the physical network topology. The multihop approach is used to route

traffic from source to destination along the various links of the connection diagram

(each link corresponding to one of the WDM channels), with each station providing

traffic relay in addition to user access. Since all channels are wavelength multiplexed

onto a common optical medium, the logical connection diagram and the topology

of the medium are independent. The use of slowly tunable transmitters and/or re-

ceivers over a large fraction of the optical band allows the logical connectivity among

network stations to be changed, independently of the fiber medium, in response to

varying network conditions such as traffic patterns and station failures. The time

taken for retuning such transmitters is in the order of 500 ms[6]. As can be inferred,

the model of the reconfiguration process of the FSO/RF network outlined earlier
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applies faithfully to the WDM networks as well[2] with the PAT delay of the FSO

network being replaced by the retuning delay of the WDM network.

1.2 Topology Control of FSO/RF Networks

In such free space directional wireless networks, Topology Control is the rapid

changing of the topology in response to changes in the atmospheric obscuration(effective

link capacities) or demands at the various nodes. Atmospheric obscuration or oc-

clusion in the path between a FSO/RF transmitter and the receiver causes the Bit

Error Rate (BER) of that link to increase. This is analogous to a reduction in the

effective data-rate of that link. This might cause congestion in some of the links.

Alternatively, the traffic demand might change over time and could result in con-

gestion in some of the links because of an imbalance in the traffic demand. The

main challenge here is the dynamic, autonomous reconfiguration both in hardware

and software in order to maximize communications availability and capacity in the

network. Topology Control is the ability to optimize the network topology according

to changing traffic demand, changing physical environment or both.

Topology control is a multilayer approach and involves tracking and acquisition

of nodes, assessment of link-state information, collection and distribution of topology

data, and the algorithmic solution of an optimal topology. A core component of the

topology control process is the algorithmic decision making process by which a

topology change is to be made. At the physical layer, a cost measure can be defined

in terms of bit-error-rate and at the network layer the cost measure is typically
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Figure 1.2: Autonomous Topology Control Process

congestion, flow-rate or end-to-end delay given the traffic demand matrix. The

processes involved are depicted in figure 1.2(extracted from [33])

The solution computation, link assessment and topology dissemination are all

executed by a Designated Topology Control Node (DTCN)[1] that interfaces with

the TCP/IP stack as shown in the topology control architecture (figure 1.3). In

short, the DTCN takes the current network topology as input (based on Link State

Updates) and other relevant parameters like the traffic demand matrix and calculates

the optimal network topology. This computation can be shown to be NP-complete

and therefore several heuristics are used to compute the target network topology.

We will show in our work that the heuristics previously proposed[19] have not taken

the topology reconfiguration cost into account. Taking this cost into account will
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Figure 1.3: Topology Control Architecture
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result in solutions superior to existing solutions. The setting we have in this work

is a ring network - each node in the network has a degree of 2 and any topology

reconfiguration removes and adds an equal number of links so that a new ring is

formed at the end of the topology reconfiguration. In other words, we will develop

methods to

1. characterize the reconfiguration cost and calculate the minimum possible re-

configuration cost in a setting and

2. incorporate this characterization into the heuristics that the DTCN uses to

calculate the optimal network topology.

1.3 Overview

The overview of the rest of the chapters is as follows.

• Chapter 2 discusses the background of this problem and related work. We

first look at the heuristics proposed for calculating the optimal topology for

FSO/RF networks. Related problems in WDM networks are considered next

and we show how the approach used there doesn’t quite solve the problem for

FSO/RF networks.

• Chapter 3 focusses on characterizing the topology reconfiguration cost and

shows that the minimum reconfiguration cost is achieved when the target

topology is achieved in successive approximations.

• Chapter 4 modifies the optimal topology computation problem by taking the

7



reconfiguration into account and proposes new heuristics based on this model.

• Chapter 5 describes the simulation methodology we used to evaluate the pro-

posed heuristics and discusses the obtained results.

• Chapter 6 summarizes and concludes the report.
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Chapter 2

Background and Related Work

An autonomous topology control scheme for a reconfigurable network should

answer the following questions

1. What should be the target topology for the reconfiguration?

2. When to trigger the reconfiguration?

3. How to perform topology reconfiguration to achieve a target topology?

Several previous studies([3], [4], [5]), have been carried out on the problem of de-

signing an optimal topology given the traffic demand and the network conditions.

This is called the static topology design problem, so called because while forming

an optimal topology, calculations can be done offline because no parameters are dy-

namically varying. This problem is computationally intensive and several heuristics

have been developed[19] in the literature to obtain the optimal topology in real-time.

Introducing dynamicity in the network operations entails solving problems

(2) and (3). In particular, several previous studies([6], [7], [8]) have attempted to

solve (1) and (2) together by trading off between the resource utilization and the

disruption in the traffic caused by the reconfiguration. This introduces the notion

of cost of reconfiguration and we will see how previous work has failed to take into

account the differences between various schemes of reconfiguration to calculate the
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Figure 2.1: An example of a Branch Exchange

reconfiguration cost. The scheme of reconfiguration is specified by problem (3) and

an obvious method to reconfigure is to delete all unwanted links and create the new

links simultaneously. In the case of FSO networks, this would mean all the relevant

transceivers start their PAT operation simultaneously and in the case of WDM

networks, this would mean all the transmitters and receivers are retuned at the

same time. However, this operation would disrupt a major portion of the network.

Another possibility - in the other extreme - is to carry out the reconfiguration

by obtaining the sequence of exchanges of two links (called a branch-exchange) to

migrate from the current topology to the target topology[2]. This scheme, again,

suffers from a long transition period and hence, resources are inefficiently utilized

for a long duration. An example of a branch exchange is given in 2.1 - the links

between node pairs (1, 2) and (3, 4) are exchanged in this example.

10



2.1 Static Topology Design

The static topology design problem has involved different approaches in RF

networks and in the point-to-point networks in which these problems first appeared.

2.1.1 Topology Control in RF Networks

The topology control schemes in RF networks primarily yield topologies with

reduced interference between adjacent nodes. Since omni-directional antennas are

usually used to transmit data, interference effects are prominent in RF ad-hoc net-

works. Thus controlling the transmitter power to a minimum level while maintaining

a connected topology usually increases the throughput of the network. Hence al-

most all RF topology control algorithms focus on reducing the average degree of

nodes in the network (See 2.2[9]). One important feature of RF networks is that

as a node increases its power, it induces more edges in the graph (by connecting

to nodes which are farther from it). However, while communicating to any specific

node, it causes interference at all other nodes to which it is connected The average

degree of a node is the number of incident edges (or the number of nodes to which it

is connected) on that node. Thus if the average node-degree is smaller, there will be

less interference in the network. To reduce the average node degree, only the node

power is reduced, which is why all RF topology control algorithms are power-control

algorithms.

Studies that have been done to-date in RF topology control include Ra-

manathan et al. [10], Wattenhofer et al. [11], Li - Hou et al. [12] and V. Rodoplu

11



Figure 2.2: Topology Control in RF networks

et al. [13]. In Ramanathan et al.’s approach, a centralized algorithm is given to

form a topology that solves the CMP (Connected Min-Max Power) problem. In

their problem formulation, nodes are distributed in space and power assignments

are done so that the maximum power spent by a node is minimized across all pos-

sible connected topologies. A connected topology is one where removing at least

one link might cause a disconnection in the network topology. The algorithm used

is a simple greedy algorithm [14] and uses a clustering mechanism on the list of

node-pairs organized in non-decreasing order of physical distance. It was shown

that this algorithm, after removing redundant edges, solves the CMP problem and

hence minimizes the average node degree.

This earlier work was followed by some advanced versions [11] and [12] in which

distributed algorithms were found to achieve objectives similar to [10]. The challenge

in forming an efficient topology by distributed algorithms is that the topology must

12



be connected globally and be power-efficient at the same time, but it is assumed that

the nodes only have local knowledge. The simplifying assumption that is used is that

all nodes are considered to be in a 2D space. Under this assumption, Wattenhofer

et al.([11]) showed that if a node finds a neighbor in every cone of the 2-D space, the

topology will be connected. Li et al.’s approach [12] was to let each node build its

own local spanning tree to build a minimum spanning tree in a distributed manner

(A Spanning Tree topology is one where each node in the graph is connected to any

other node by exactly one path). The main problems with all of these approaches

is that there are no models to predict the throughput of a network based on the

average node degree. In fact, reducing the average node-degree means average packet

hop count increases and this could lead to reduced throughput. Also Gupta and

Kumar have delineated certain fundamental limitations of RF networks[15]. They

have shown that the throughput per node in these networks falls proportional to

1√
N

(N being the total number of nodes). Due to the prominent interference effects

in RF network, they do not perform as well as a base-station oriented architecture,

as shown by Milner et al.([16]). In this base-station oriented architecture, all the

nodes connect to the base stations in one hop and the base-stations are connected

with a point-to-point wireless network, FSO connections providing one example.

Topology design of a point-to-point wireless network has occurred in different

contexts in the literature before. One such example is the LAN design problem

[17][18]. In this problem, the traffic demand matrix is assumed to be known. That

is, the average traffic rate expressed in bps from one LAN to any other LAN is known

a priori. The average end-to-end delay between any two LANs is constrained below a
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specific value and the objective is to connect LANs with bridges so that the network

of LANs and bridges form a Spanning Tree topology. The optimizing function is

chosen to be a cost function of the bridges and this has to be minimized. This is a

nonlinear integer-programming problem where the real-variables are average flows

on the bridges and the integer variables are bkl, which are either 1 or 0 (bkl = 1

if a bridge is put between LANs k and l). Since interconnecting several LAN’s is

accomplished by laying out a spanning tree, routing is trivialized as there exists

only one path between any two LANs. The main limitation of this approach is

that the network is only minimally connected and any link failure results in network

partition. To design a more robust topology, the problem has to be generalized to

include topologies that are not just a spanning tree. A natural formulation of this

problem follows the approach of Desai et al.([19]).

Variables:

• Rsd is the average flow-rate of traffic from source s to destination d.

• All links are bidirectional and maximum node degree is d.

• cij is the capacity of the potential link between nodes i and j.

• λsd
ij is the average flow-rate from source s to destination d on link (i, j).

• bij is the decision variable - 1 if a link exists between i and j and 0 if it does

not.

Assuming M/M/1 model for the queueing, the problem can be formulated as mini-

mizing the end-to-end delay.

14



min
∑

all(i,j)

bij

{
cij

cij −
∑

(s,d) λsd
ij

}
(2.1)

Constraints:

∑
j

λsd
ij −

∑
j

λsd
ji = Rsd if s = i (2.2)

= −Rsd if d = i (2.3)

= 0 otherwise (2.4)

λsd
ij < bijRsd∀i, j, s, d (2.5)

∑
(s,d)

λsd
ij < cij∀i, j (2.6)

bij ε {0, 1} (2.7)

∑
j

bij = d (2.8)

∑
(i,j)

cij = c (2.9)

The above problem is a Mixed Integer-Programming (MIP) problem. It can

be observed that the number of flow-rate variables is O(N4). The number of integer

variables is O(N2) where N is the number of nodes. This is because there are O(N2)

possible links and O(N2) possible source-destination (SD) pairs; making the flow

variables O(N4). It is also observed that the problem simultaneously attempts to

solve routing (flow-rate variables λ) and topology design(integer variables b). This

problem is computationally difficult to solve, and further distributed implementation

of this approach is extremely difficult. Also, the node-degrees can be different in

the optimal solution and the topology may not be regular. To make the solution

computationally easier, the problem formulation can be modified to use shortest
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hop routing. Even though this simplifies the problem, the problem remains NP-

complete. The most computationally efficient heuristic is based on LP-relaxation

and is described by Ramaswamy et al.[20].

The heuristics for congestion minimization problem in the literature can be

broadly classified into 2 categories as link insertion and link deletion. In link inser-

tion heuristics, the idea is to insert the links according to some sequence whenever

interfaces are available. In link deletion heuristics, the starting point is a maximally

connected graph, and links are removed according to some sequence until no node

has more links attached to it than its available number of interfaces. This insertion-

deletion philosophy is discussed by E. Leonardi et al [21]. The algorithms they have

proposed are based on representing the topology as a bipartite graph and solving

1-maximal weight matching problem repeatedly until all the nodes are unmatchable.

These algorithms have a complexity of O(N4 log N) and O(N5 log N) respectively,

which can be compelling for a large number of nodes. It is also pointed out that in

the insertion case, the algorithm doesnt guarantee connectivity (and bi-connectivity)

and in the deletion case, it doesnt guarantee feasibility because the node degree can

be higher than the number of available interfaces. Both of these are drawbacks[21].

It is possible to modify these algorithms to reduce their computational complexity

and guarantee biconnectivity and feasibility simultaneously. In this case, instead

of adding multiple links in one round, links are added one by one. One classic ex-

ample is the Heuristic Logical (Topology) Design Algorithm (HLDA)[20], which is

extremely fast but yields poor quality solutions, since it only considers single hop

flows. It is possible to modify it to take into consideration multihop flows as we will

16



see in the next section.

Heuristics can also be distinguished based on their degree of greediness. One

approach to forming a topology is based on selecting a predetermined order of the

source-destination (SD) flows and inserting links one by one. However it is possible

to change the order of SD pairs to yield better quality solutions, by a technique called

rollout [22]. However large computational complexity is a serious shortcoming of

such a technique (We estimate that for ring topologies, it is at least O(N6)). Finally,

heuristics can be designed to make incremental changes in an already established

topology as opposed to a complete reconfiguration of a topology. Narula-Tam[23]

et al. described a simple algorithm based on branch exchange techniques.

2.2 Scalable Congestion Minimization Heuristics

The congestion minimization problem for ring topologies can be formulated as

in eqn (2.1), except that the objective function to minimize is the congestion on the

maximally congested link[19].

min max
(i,j)

bij

∑
(s,d)

λsd
ij (2.10)

and the degree for each node is constrained as 2. Again, if no assumption is made

about the routing scheme, this formulation attempts to find the optimal topology

and optimal routing at the same time. Modifying the problem by selecting shortest

path routing reduces the problem to the optimal linear ordering problem, which has

proven to be NP-complete [24]. Desai et al.[19] evaluated several heuristics that

minimize the congestion in terms of their scalability properties. These heuristics
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were derived from the well-known multihop, rollout and branch exchange heuristics

and were applied to minimize congestion in ring topologies.

• Single-hop:

The single-hop heuristic is designed to connect SD pairs with heavy traffic by a

single hop. The single-hop flow(given below) is maximized with this heuristic.

∑
i

∑
j

bijRij (2.11)

It was proven in [21] that matching theory can be used to solve this problem.

However, as the solution could be a disconnected set of rings, the HLDA

heuristic was proposed in [20]. The heuristic inserts links between source

destination pairs beginning with the pair with the most traffic and working

down the sorted list of source destination pairs - sorted according to the traffic

between them. Though the complexity of the heuristic is less (O(N3)), it is

not very effective because multi-hop traffic is not considered.

• Multi-hop:

Desai et al. [19] developed a heuristic to take multihop traffic into account

based on related development in [21]. In this heuristic, SD pairs are again or-

dered in decreasing order of traffic between them. In the single-hop heuristic if

a direct connection between a SD pair is not possible, that entry is skipped and

the next SD pair in the ordered list is considered. However in this heuristic, an

attempt is made to create a multihop path from the source to the destination

by adding a link across some other SD pair in the already partially connected

18



network. The computational complexity for this heuristic is again O(N3).

• Rollout:

Rollout heuristics were suggested in [22] to improve the performance of the

congestion minimization heuristics described above. A description of the roll-

out heuristic is excerpted from [19] here.

1. Sort the SD pair list in the order of non-decreasing magnitude of traf-

fic. Let this order be called as {SD[0], SD[1], ..., SD[M-1]}, where M

represents the number of SD pairs.

2. Create M topologies by SD-indexing. SD-indexing means that some SD

index is fixed as the first index to be considered and the rest of the indices

will be taken in the decreasing magnitude of traffic. Sub-steps a and b

illustrate this point.

(a) Create a topology T[0] by either single-hop or multi-hop heuristic

using the order: {SD[0], SD[1], ..., SD[M-1]}. Note that this topology

is the same as the single-hop/multi-hop heuristic would obtain.

(b) Create T[1] by using following order: SD[1], SD[0], SD[2], ..., SD[M-1]

and so on.

3. Choose SD[k] to be the first index, which finds topology T[k] with mini-

mum congestion. Add a link by single-hop/multi-hop heuristic to create

a path between s[k] (source) and d[k] (destination).

4. Repeat steps 1-3 until the ring topology is completed. If the index SD[j]
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cannot be used to add a link in the topology, pass to the next index.

The complexity of this algorithm was shown to be O(N5) after restricting the

running of steps 1-3 to only a few times.

• Branch Exchange:

The branch exchange algorithm can be used to improve upon the congestion

performance of an existing ring[23]. In case of ring topologies, it can be noted

that if we exchange 2 non-node-sharing links with another pair, a new ring can

be obtained. In a given ring, N(N−3)
2

such exchange sequences are possible to

obtain a new ring. A simple branch exchange algorithm will create N(N−3)
2

new

ring topologies from a given ring and pick the one with minimum congestion.

It was shown that the computational complexity of this algorithm is O(N5),

but its average running time was much less than that of rollout algorithms

as subsequent branch exchanges do not result in significant improvement in

performance.

It was shown that while Rollout(multi-hop) took the longest time to execute,

it produced the most effective improvement in end-to-end delay among the heuris-

tics evaluated. Generating a topology using the multihop heuristic and then run-

ning the branch exchange heuristic 3 times over the obtained topology (Multihop +

Branch Exchange (3 iterations)) was found to have comparable performance to the

rollout(multi-hop) heuristic but with significantly lesser running time.
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2.3 Dynamic Topology Reconfiguration

Introducing dynamicity into the network that has to be autonomously recon-

figured brings us the problems (2) and (3) mentioned at the beginning of this chapter

- when do we trigger the reconfiguration and how do we achieve the reconfiguration.

An example of a study that solves problem (2) is [25] where the time to reconfig-

ure is determined when the improvement in resource utilization metric outweighs

the reconfiguration cost. Several studies, particularly for WDM networks, have at-

tempted to solve the problem of determining when to reconfigure together with the

problem of determining the target topology. In [8] for example, a Mixed Integer

Linear Programming (MILP) formulation for the target topology best suited to the

changed traffic matrix and achievable by minimal disruption to the existing topol-

ogy is presented. No tradeoff between the resource utilization and traffic disruption

is given in this formulation, however. A more flexible model that constrains the

number of changes from the existing virtual topology to a target virtual topology is

presented in [26].

If the network state is considered to be the current topology and the traffic

matrix, a change in the traffic matrix changes the state of the system and a decision

has to be taken if the current topology has to be reconfigured to make it nearly

optimal for the new traffic matrix. The set of all such decisions for all network states

constitutes a reconfiguration policy [27]. If the future is completely predictable, then

the reconfiguration decisions can be computed beforehand for all possible states

based on the reconfiguration policy. For example, a topology that optimizes for
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the sequence of traffic matrices instead of just the current traffic matrix can be

calculated, totally avoiding the need for reconfiguration in the future. A Markov

decision process formulation is used in [6] where each state is given by a two tuple

(load balancing metric, cost of reconfiguration). The probability of transition from

one state to another is calculated based on previous traffic patterns. The virtual

topology can either be reconfigured to achieve near optimal load balancing or remain

unchanged and take a transition to another state. A drawback with this approach is

that the topology is designed to be optimal for the initial traffic matrix even if it is

known that a reconfiguration will be not be carried out if the traffic matrix changes.

The transition probabilities can also be learned when the network is in operation, but

this would result in re-computing the reconfiguration decisions based on the updated

transition probabilites. Sinha and Murthy[28] propose an information theoretic

approach where the design of the topology is optimized for a set of traffic matrices

based on either the fully predicted series of traffic matrices or the estimated series

of traffic matrices. A sequence of such traffic matrices are clustered as a set and the

topology design is optimized over this set. Again, the expectation that the entire

series of traffic matrices will be known is an onerous requirement and neither is it

easy to probabilistically predict the traffic matrices based on stochastic processes.

2.3.1 Reconfiguration Cost

The success of all of the reconfiguration schemes discussed above are predicated

on the accuracy of the reconfiguration cost estimates. [26], [27], [7] and [29] treat

22



the reconfiguration cost as the total number of lightpaths being added and removed

during the reconfiguration. Though this simplistic model effectively compares the

reconfiguration cost in migrating to two different virtual topologies, it fails to differ-

entiate between the various possible reconfiguration schemes that can be used. For

example, it might be easier and cheaper to migrate to a specific target topology (as

compared to other target topologies) over a series of branch-exchanges[2] but the

same target topology might have higher (as compared to other topologies) recon-

figuration cost - measured in terms of packets lost - if the reconfiguration is done

in one step. The packet drops that happen due to incorrect routing is taken to be

the reconfiguration cost in [8] but again this fails to account for the variation in the

reconfiguration schemes.

2.4 Summary

To summarize this section, we note that the static topology design for point-

to-point networks can be applied to reconfigurable networks as well, but the problem

formulation has to be considerably simplified to compute the solutions in real-time

that are necessary for the dynamic environment of the reconfigurable networks. We

hence have several heuristics that can be used to compute the optimal topology for

a given traffic demand matrix. Dynamic topology reconfiguration involves decid-

ing not just on the optimal topology but also the time for reconfiguration. This

is necessarily a tradeoff between the expected performance gain and the reconfig-

uration cost, but most of the previous work assumes that the complete sequences
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of traffic matrices are known or can be predicted. Also, the reconfiguration cost -

an essential part of the tradeoff calculation - has to be estimated depending on the

reconfiguration scheme in use. We will see further why successive approximations

are a better way of implementing a target topology and because of that reason, why

reconfiguration cost has to be calculated using successive approximations.
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Chapter 3

Successive Approximation

Successive Approximation is, in its essence, a reconfiguration scheme to achieve

a target topology starting from a current topology. To evaluate the quality of

any reconfiguration scheme, we need a notion of the reconfiguration cost and the

reconfiguration scheme should attempt to minimize this reconfiguration cost. If we

consider a biconnected topology structure such as a ring as both initial and target

topologies, any reconfiguration deletes (and creates) at least 2 links. This causes

the network to be in a transient disconnected state for the duration of the PAT

Delay as noted in the chapter 1. A natural measure of the reconfiguration cost is

the packet drops that happen during this interval due to unavailability of paths.

3.1 Motivation

To see why the number of links that are deleted (and created) cannot act as

a measure of the reconfiguration cost, we see in figure 3.1 a simple counterexam-

ple where a reconfiguration that deletes (and creates) more links actually results

in fewer packet drops. We assume that nodes are connected in a ring, with traffic

flowing between any two source destination pairs at the same rate. If the links de-

picted as gray lines in the network(s) are the links that are deleted during topolog

reconfiguration, the number of traffic flows that will be affected during the reconfig-
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Figure 3.1: Number of flows affected during Topology Reconfiguration

uration can be calculated as shown in the figure. Because the topology is a ring, if

p links are changed during reconfiguration, this creates p partitions in the topology

in the transient state. As can be seen, the traffic loss during a TR for a fixed p will

be minimized when the changes are in, in some sense, in a restricted area of the

network.

If the number of nodes in the network is N , and if the kth partition created

during the TR process contains nk nodes, the number of affected traffic flows is

given by

N2 − [n2
1 + n2

2 + . . . + n2
p] (3.1)

where n1 + n2 + . . . + np = N by definition. Clearly, the maximum number

of flows are affected when n1 = n2 = . . . = np = N
p

and the maximum number of

affected flows in such a case is

p− 1

p
N2 (3.2)
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Figure 3.2: Bounds on the number of affected flows. N=100

Similarly, the minimum number of flows are affected when all partitions except one

have only one node each. In this case, the minimum number of affected flows will

be

(2N − p)(p− 1) (3.3)

Figure 3.2 shows the maximum and minimum number of flows affected as the

number of partitions vary from 2 to 100 in a 100 node network. Note that when the

number of partitions is 2, if one of the partitions doesn’t have a size of at least 2,

it is not possible for the target topology to be different from the current topology.

Because of this, when the number of partitions is 2, the minimum bound achieved

is not 2N − 2 (substituting p = 2 in eqn 3.3), but 4N − 8. This situation does not
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arise for other p’s because all but one partition can have size one and at least two

unique topologies can result from such a disconnected network.

Clearly, figure 3.2 illustrates the wide variability within the possible TRs for

a given number of link changes. In this example, a topology reconfiguration that

results in 20 link changes could drop as much as 9500 flows or as little as 3200 flows.

Similarly, a topology reconfiguration that results in 10 link changes could drop as

few as 1500 flows. If the target topology differs from the initial topology in 20 links

then 9500 flows could be dropped and if we could achieve the target topology instead

in two steps where in each step only 10 links are changed (and each step drops only

around 1500 flows), it is cheaper in terms of the reconfiguration cost to achieve the

target topology in two steps. We generalize this problem below.

3.2 Problem Model

The current topology is given by graph Gs = (V, Es) and the target topology

is specified by Gd = (V, Ed) where V is the set of vertices and Es and Ed are the set

of edges in the current and target topologies respectively. The cost C of this TR is

given by

f(V, Es − (Es − Ed), T ) (3.4)

Here f(.) is a function of the set of edges that are present in Es and not deleted

during the TR and T is the traffix matrix for the network. For a ring network and

if the traffic is assumed to be uniform (that is, each node sends traffic at the same

rate to every other node), the cost function is just a function of the number(p) and
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size of each connected component in Es − (Es − Ed).

C = f(p,N ) (3.5)

where N is the set containing the sizes of each connected component in Es − (Es −

Ed). This is known and can be computed directly from the current topology Gs and

given target topology Gd, and this C will fall into one of the points in the vertical

line corresponding to p in a graph similar to that of figure 3.2 (for appropriate N).

We aim to generate a sequence of graphs G1, G2, . . . GK such that

K∑
i=0

f(pi,Ni) < f(p,N ) (3.6)

and is minimized(pi and Ni are defined appropriately) with Es being E0 and Ed

being EK+1. In other words, the target topology is achieved through K intermediate

topologies. We define the gain G

G = f(p,N )−
K∑

i=0

f(pi,Ni) (3.7)

and aim to maximize it. We have the constraints that

K∑
i=1

pi ≥ p (3.8)

1 < pi ≤ p (3.9)

That is, the number of link changes in each step should sum up to at least p, the

required number of link changes to reach the target topology Gd from Gs. And the

number of link changes at each step is between 1 and p.

We analyze the bounds of this quantity G to gain an understanding of what

kind of topology reconfigurations are required in each step to minimize the packets

29



dropped. The upper bound of G is achieved when f(p,N ) is the maximum and we

can find the intermediate graphs such that f(pi,Ni) is the minimum possible. That

is,

f(p,N ) =
p− 1

p
N2 (3.10)

f(pi,Ni) = (2N − pi)(pi − 1) (3.11)

The gain then becomes,

G = N2 − N2

p
− (2N −K)

K∑
i=1

pi +
K∑

i=1

p2
i + 2NK (3.12)

For every K, G is a convex function and therefore is maximized at the bound-

aries of pi’s. The boundaries are (a) all pi’s are p (b) all pi’s except one are 2, with

the boundary conditions satisfied. Which of these two boundary conditions maxi-

mize G depends on parameters like p,N and K. Obviously, if boundary condition

(a) maximizes G, we can fix K to be one and this means we execute the topology

reconfiguration in one step. We do not have any successive approximations in this

case and the gain G is 0. We are more interested in the situation where condition

(2) maximizes G. In that situation, G becomes a convex function of K and again,

the maxima occur at the boundary conditions - K being 1 or as large as possible.

For obvious reasons, we are not interested in K being 1. So, to maximize G, K must

be as large as possible. But for K > p
2
, G is always maximized by the boundary

condition (a) for pi. In conclusion, we see that the upper bound for G is maximized

under the following conditions.

1. The TR process takes place in p
2

steps.
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Figure 3.3: Upper bound of the possible Gain. N=100

2. At each step, two links are changed(branch-exchange), creating two links from

the target topology and destroying two unwanted links from the current topol-

ogy.

3. This branch-exchange has the lowest cost possible among all branch-exchanges.

We can compute the upper bound for G as,

G = N2 − N2

p
− 2pN + 4p (3.13)

Figure 3.3 plots the upper bound on the gain for a 100 node network. As we can

see, for p > N
2

it is more expensive to carry out the reconfiguration in successive steps

as against doing the reconfiguration in a single step. Based on these observations,

we can propose an algorithm for generating the sequence of branch-exchanges that

will achieve the target topology given a traffic matrix and the current topology.
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3.3 Branch Exchange Sequence Generation

If there exists a sequence of branch exchanges that minimizes the reconfig-

uration cost - the packet drops during reconfiguration - then the order in which

the branch exchanges are executed does not matter. This is because each branch

exchange has to change the connectivity across 4 unique nodes to satisfy the re-

quirement that the total number of branch exchanges required is p
2

for the optimal

reconfiguration with successive approximations. This guarantees that the individ-

ual branch exchanges do not interfere with each other and therefore the order in

which they are executed does not matter. At every step, from the list of such pos-

sible branch exchanges, we are free to choose any branch exchange. Selecting the

branch exchange with the minimum reconfiguration cost is one strategy. We use the

method outlined in [2] to generate the list of possible branch exchanges. This essen-

tially consists of generating an auxiliary graph where nodes are created based on the

difference matrix (obtained by taking the difference between the target matrix and

the original matrix representations of the topology). The required branch exchanges

can be identified by looking for cycles in this auxiliary graph with a length of 4. The

steps of the algorithm for generating the branch exchange sequence is as follows.

1. Calculate the cost of the reconfiguration from the initial topology to the tar-

get topology (if executed in one step). This can be done by identifying the

connected components in the topology when the network is in the transient

state. The traffic flows between different components will be affected during

this transient state, so the cost of reconfiguration can be calculated by adding
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up these traffic flows (obtained from the traffic matrix). This is the start cost.

2. Generate the least cost branch exchange from the auxiliary graph as in [2].

and calculate the cost of this branch exchange as outlined above. This is the

br-ex cost.

3. Obtain the topology that will result after the lowest cost branch exchange

has been executed. Calculate the cost of reconfiguring the topology from this

topology to the target topology in one step. We call this the next cost.

4. If start cost > br-ex cost + next cost, execute this branch exchange. Other-

wise, implement the target topology directly.

5. If the target topology is still not achieved, repeat steps 2 − 5 with next cost

as the new start cost.

Figure 3.4 shows the results of a simulation illustrating the achievability of

the upper bound of G. Several target topologies were generated for each p and the

branch-exchange sequences were generated using the above algorithm for each of

the target topologies. The gain G was calculated based on an uniform traffic matrix

and the maximum G is plotted for each p. The results show that the algorithm is

successful in generating the optimal set of branch exchange sequences.
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Figure 3.4: Upper bound of the possible G - Achievability N=100
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Chapter 4

Topology Reconfiguration with Successive Approximations

4.1 Topology Reconfiguration Architecture

A dynamic topology control architecture incorporating the branch exchange

sequence generation as discussed in the previous section is depicted in figure 4.1.

The Dynamic Topology Control Node, as discussed in chapter 1(fig 1.3), collects the

traffic flow-rate information and decides on the time to reconfigure and also calcu-

lates the target topology for this reconfiguration. This target topology computation

can be done using a static topology design approach[19] and the resultant target

topology can then be expected to minimize congestion - the load on the maximally

loaded link in the network assuming shortest path routing. However, the solution

computation algorithm in the DTCN can be modified to also take the reconfigura-

tion cost into account to calculate the new target topology. The example in figures

4.2 and 4.3 illustrates the differences between the two approaches in calculating the

target topology.

4.2 An Example

Figure 4.2 shows the traffic matrix for a 5-node network and the current topol-

ogy of the network. The traffic flow-rate between any two source-destination pair is
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Figure 4.1: Topology Control Architecture with Successive Approximations

Figure 4.2: Traffic Matrix and link loads in a 5-node network
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(a) (b)

Figure 4.3: Target Topology with (a) optimal congestion (b) sub-optimal congestion

given in packets per second and assuming shortest-path routing, the links are loaded

with traffic as illustrated in the figure. As this is a 5 node network and shortest path

routing is used, each link carries three end-to-end traffic flows. For example, for the

from 4 to 0(37), the load on the link is the sum of the traffic flow from 4 to 0(11),

3 to 0(11) and 4 to 1(15). The congestion metric is the load on the most heavily

loaded link in the network and in the current topology, the most heavily loaded

link is the link 1 to 2 and the congestion measure is 48. For this traffic matrix, the

optimal topology that minimizes congestion is given in 4.3(a) and for this topology,

the maximally loaded links are links 4 to 2 and 3 to 1, both having a load of 45

each. However, implementing this target topology results in 3 partitions during the

transition - nodes 0 and 4 is one connected components, nodes 1 and 2 form another

connected component and node 3 is the third component. These components are
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not connected to each other and any end to end traffic demand with the source and

destination nodes being in different components will be dropped. The sum of such

dropped traffic demands will be 198 packets per second for implementing this target

topology. Figure 4.3(b) illustrates another topology that is not optimal with respect

to congestion - the maximally loaded link is 3 to 1 with the maximum load being

46. This topology creates only 2 partitions during the implementation with a total

of 151 packets per second being lost during the PAT delay. Though the topology

in fig 4.3(a) has a lower congestion measure compared to the topology in fig 4.3(b)

(45 versus 46), the latter topology can be expected to have fewer overall packet

drops compared to the former depending on the time spent before another topology

reconfiguration is carried out. It is also possible to avoid a topology reconfigura-

tion if the expected congestion reduction does not justify the packet drops due to

reconfiguration during the PAT delay.

4.3 Problem Formulation

The problem formulation that minimizes congestion cost and the reconfigura-

tion cost in selecting a new target topology can be described as follows.

Variables:

• Rsd is the average rate of traffic from source s to destination d in packets per

second.

• All links are bidirectional and maximum node degree is 2.

• cij is the capacity of the potential link between nodes i and j.
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• λsd
ij is the average flow-rate from source s to destination d on link (i, j).

• bij is the decision variable - 1 if a link exists between i and j and 0 if it does

not.

• Current topology is given by graph Gs = (V, Es) and the target topology is

given by the graph Gd = (V, Ed).

• T is the traffic matrix with entries Tsd that specifies the traffic demand from

source s to destination d.

• f(V, Es−(Es−Ed), T ) is the cost C of a topology reconfiguration from topology

Gs to Gd specified in lost packets per second.

• TPAT is the time taken for the pointing, acquisition and tracking process.

• TMTBR is the mean time between reconfigurations.

• The reconfiguration is carried out in K steps with each intermediate topology

specified by Gi.

Constraints:

∑
j

λsd
ij −

∑
j

λsd
ji = Rsd if s = i (4.1)

= −Rsd if d = i (4.2)

= 0 otherwise (4.3)

λsd
ij < bijRsd∀i, j, s, d (4.4)

∑
(s,d)

λsd
ij < cij∀i, j (4.5)
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bij ε {0, 1} (4.6)

∑
j

bij = d (4.7)

∑
(i,j)

cij = c (4.8)

K∑
i=1

f(V, Ei−1 − (Ei−1 − Ei), T ) < f(V, Es − (Es − Ed), T ) (4.9)

GK = Gd (4.10)

G0 = Gs (4.11)

The objective function to be minimized need to be obtained as a combination

of the congestion measure and the packet drops that happen due to reconfiguration.

The key challenge in combining the two costs is in expressing both quantities in the

same units so that the costs can be added together.

4.3.1 Reconfiguration Cost

As chapter 3 describes, the minimum reconfiguration cost can be obtained by

executing the reconfiguration in successive approximations and the minimum such

reconfiguration cost can be obtained by generating the sequence of intermediate

branch exchanges and the final reconfiguration by using the algorithm outlined in

section 3.3. This reconfiguration cost is expressed as the lost packets per second.

PDGs,Gd
= min

K,E1,...,EK

K∑
i=1

f(V, Ei−1 − (Ei−1 − Ei), T ) (4.12)

where E0 = Es and EK = Ed as shown in constraints 4.10 and 4.11. This quantity

can be calculated directly as the outcome of the algorithm described in section 3.3

by calculating the sum of all br-ex costs and the start cost of the final step. The
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reconfiguration cost can be directly expressed as lost packets by multiplying the lost

packets per second with the PAT duration - TPAT .

4.3.2 Congestion Cost

Congestion is the traffic flow-rate on the link with the maximum load in the

network. This metric is a useful quantity for assessment because the packet drops

in the network first happen in the most congested link. The total packet drops in

the network are dominated by the packet drops in the most congested link because

this link acts as a bottleneck in the network and reduces the load on the other links

further.

λmax = max
(i,j)

bij

∑
(s,d)

λsd
ij (4.13)

(I, J) = arg max
(i,j)

bij

∑
(s,d)

λsd
ij (4.14)

An estimate of the expected packet drops on this link can be arrived by model-

ing the link as an M/M/1/1 queue. In the M/M/1/1 queue, the arrivals are modeled

as a Poisson random process, the service times are exponential. There is one server

and the system has capacity to hold just the packet in service in the queue. When

a packet is in service, any other arriving packet is dropped on arrival. If there are

no packets in service on a packet arrival, the packet enters service immediately. The

blocking probability - the probability of dropping an arriving packet - is an impor-

tant metric for this system. If λ is the arrival rate and the average service time is

given by 1
C

where C is the capacity in packets per second of the outgoing link, the
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blocking probability Pb is given by the Erlang-B formula [30]

Pb =
λ

λ + C
(4.15)

The M/M/1/1 model may not be an accurate model of the packet drops at

the congested link because a queue of finite size might exist for the outgoing packets

in the most congested link. In this scenario, a more appropriate model could be

M/M/1/K, but with this queueing model, we have a measure of the end-to-end

delay in addition to the blocking probability. However, as the reconfiguration cost

is expressed in terms of packet drops, it is useful to express the congestion metric

in terms of just expected packet drops. Using the M/M/1/1 model, the average

packets lost per second can be calculated using the blocking probability. We can

also assume a mean time between reconfigurations - the average time for which the

network topology does not change - TMTBR. The average number of packets lost due

to congestion can be calculated from the mean time between reconfigurations and

the blocking probability. It is likely that the chosen topology has a different flow-

rate on the most congested link for a future traffic matrix. As the chosen topology

is expected to be optimal with respect to the congestion metric, the changed traffic

demand will result in higher congestion and therefore, a higher blocking probability.

But information about the future traffic demands is not assumed to be available and

by only using the mean time between reconfigurations, the calculated packet drops

due to congestion is lower than actual number of packet drops due to congestion.

From eqn 4.14, the packet drops due to congestion can be calculated as follows.
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λmax

λmax + CIJ

λmax.TMTBR (4.16)

The objective function to be minimized can be obtained by combining the

reconfiguration cost from 4.12 and 4.16

Objective function:

min
Gd

{
λmax

λmax + CIJ

λmax.TMTBR + PDGs,Gd
.TPAT

}
(4.17)

4.4 Heuristics

The minimization problem in equation 4.17 is similar to the congestion mini-

mization problem in eqn 2.10 in that it is an optimal linear ordering problem which

is NP-complete [24]. To obtain heuristics to solve this problem, we start from well-

known heuristics such as the single-hop heuristic, the single-hop rollout heuristic

and the branch exchange heuristic[19]. The key difference between this minimiza-

tion problem and the congestion minimization problem is that calculating the recon-

figuration cost requires the current topology and the complete target topology. For

the congestion minimization problem, some of the link insertion heuristics insert an

edge in the network at each step minimizing a local objective function. Therefore,

at each step, we only have a partial topology and this cannot be used to calculate

the reconfiguration cost. A similar argument holds for the link deletion heuristics.

Heuristics that evaluate complete topologies at each step can be modified to take

reconfiguration cost into consideration when selecting the target topology as illus-

trated below.
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• Rollout

The rollout method described in section 2.2 adapted to include reconfiguration

cost has the following steps.

1. Sort the SD pair list in the order of non-decreasing magnitude of traf-

fic. Let this order be called as {SD[0], SD[1], ..., SD[M-1]}, where M

represents the number of SD pairs.

2. Create M topologies by SD-indexing. SD-indexing means that some SD

index is fixed as the first index to be considered and the rest of the indices

will be taken in the decreasing magnitude of traffic. Sub-steps a and b

illustrate this point.

(a) Create a topology T[0] by either single-hop or multi-hop heuristic

using the order: {SD[0], SD[1], ..., SD[M-1]}. Note that this topology

is the same as the single-hop/multi-hop heuristic would obtain.

(b) Create T[1] by using following order: SD[1], SD[0], SD[2], ..., SD[M-1]

and so on.

3. Choose SD[k] to be the first index, which finds topology T[k] with mini-

mum expected packet drops - the combination of congestion cost and re-

configuration cost as outlined in eqn 4.17. Add a link by single-hop/multi-

hop heuristic to create a path between s[k] (source) and d[k] (destination).

4. Repeat steps 1-3 until the ring topology is completed. If the index SD[j]

cannot be used to add a link in the topology, pass to the next index.
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• Branch Exchange

The branch exchange algorithm can be used to improve upon the congestion

performance of an existing ring[23]. In the case of ring topologies, it can be

noted that if we exchange 2 non-node-sharing links with another pair, a new

ring can be obtained. In a given ring, N(N−3)
2

such exchange sequences are

possible to obtain a new ring. A simple branch exchange algorithm will create

N(N−3)
2

new ring topologies from a given ring and pick the one with minimum

expected packet drops - the combination of congestion cost and reconfiguration

cost as outlined in eqn 4.17. This step can be repeated several times to obtain

better topologies but with diminishing returns[19].
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Chapter 5

Simulation Results

The topology reconfiguration heuristics that were developed in chapter 4 can

be evaluated by comparing the topologies that are generated by these heuristics

with the topologies that will be generated by the heuristics which do not take re-

configuration cost into account. This comparison can be made with respect to end

to end packet delay and dropped packets in a TCP/IP network.

5.1 Simulation Methodology

The TCP/IP network that is used for evaluating the topology reconfiguration

heuristics is the FSO/RF network and the network operation is simulated using dis-

crete event simulations in OPNET Modeler[31]. The main challenges in simulating

the FSO/RF networks with topology control are

1. Interfacing the topology control processes with the TCP/IP stack.

2. Simulating point-to-point wireless links using the broadcast wireless links pro-

vided in OPNET Modeler.

The topology control processes such as link state assessment, link state dis-

semination, target topology generation using the topology reconfiguration heuristics

and target topology dissemination are all implemented as a process module which
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represents the Dynamic Topology Control Node (DTCN). These topology control

processes are interfaced with the TCP/IP stack through the routing protocol - cho-

sen to be Open Shortest Path First (OSPF) in this case. The DTCN uses the link

state advertisement (LSA) mechanism of the OSPF protocol in obtaining the link

state information and for disseminating the target topology. It is also possible for

the DTCN to precompute the routing table for a future target topology and dissem-

inate the information along with the topology control information to the nodes[32].

However, for the purposes of comparing the performance of the topologies generated

by the heuristics before and after incorporating reconfiguration cost, the time taken

for the routing table convergence after a topology change does not matter because

it remains the same in both cases. The DTCN can also be configured with the

heuristic that is to be used for the target topology generation and if successive ap-

proximations have to be enabled during the reconfiguration. As the reconfiguration

cost is calculated using successive approximations, enabling successive approxima-

tions modifies the selected heuristic to also take the reconfiguration cost into account

when calculating the target topology. All the heuristics were evaluated in networks

with 10 nodes. Figure 5.1 shows a network consisting of 10 nodes along with the

DTCN, labeled as manager in the figure along with the configuration options for

the DTCN.

There are two approaches to simulating point-to-point wireless links in OP-

NET Modeler [32]. In the first approach, wireline links are used to simulate each

possible wireless link in the network and a failure/recovery mechanism can be used

to fail and recover appropriate links to obtain any required topology based on the
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Figure 5.1: Illustration of the DTCN with the Simulated Network
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network nodes. The disadvantage with this approach is that the number of links

required in the network increases as O(N2) if N is the number of nodes in the net-

work because it is possible for a link to exist between any two nodes. This model

does not scale with increasing number of nodes in the network and therefore it is

imperative to use wireless links in OPNET to model the point-to-point wireless links

in the FSO/RF network. However, the OPNET wireless links are omnidirectional

and cannot be used directly to model point-to-point wireless links. A solution to

this problem is to use dynamic receiver groups to derive point-to-point wireless links

from broadcast wireless links.

Dynamic receiver groups are provided by the OPNET Modeler mainly as an

optimizing mechanism. The simulation being a discrete event simulation, any packet

transmitted out of a wireless link has to be replicated for every possible recipient

in the simulated network so that wireless parameters like gain, signal to noise ra-

tio and bit error rate can be calculated for each possible recipient independently.

However, this results in highly inefficient simulations when the number of nodes in

the simulated wireless network increases. As an optimizing mechanism, it is useful

to limit this packet replication to a set of recipient nodes if it is known ahead of

time that some recipients cannot receive packets from particular senders during the

course of the simulation. These are called receiver groups and if the receiver groups

for each sender can be modified during the course of the simulations, these are called

dynamic receiver groups. To emulate a point-to-point link in a FSO/RF network,

we can configure the dynamic receiver groups to include only the neighbors for each

wireless transceiver based on the network topology at any given time. When a topol-
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ogy has to be reconfigured, the new links in the topology can be obtained simply

by updating the dynamic receiver groups of the senders with the appropriate new

neighbors. A similar operation can be carried out to remove links in the network.

In addition, the routing protocol - OSPF in our example - has to be notified of the

update to the topology so that the new topology can be discovered using the link

state update mechanism.

5.2 Traffic Demand Generation

The key requirement for the traffic matrix generation mechanism is to dynam-

ically update the traffic matrix over time so that the network topology becomes

non-optimal resulting in the triggering of a topology reconfiguration. We start with

a uniform traffic matrix - every node sends traffic to every other node in the network

at the same rate - and vary the entries in the traffic matrix uniformly. That is, each

entry in the traffic matrix indicates the traffic flow-rate demanded from the source

to the destination and this value is increased or decreased at each unit time with

equal probability. For a N node ring topology, if shortest-hop routing strategy is

used (which will be the case with OSPF if all interface costs are the same), each

link carries (N+1)(N−1)
8

end to end (SD) flows in either direction (for odd values of

N). If we set l to be the link loading factor and C is the capacity of the link, each

end-to-end flow has a traffic rate of

8lC

(N + 1)(N − 1)
(5.1)

The simulations were carried out with wireless links of capacity 1 Mbps and the
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Figure 5.2: Total Number of Packets Sent in the Network

link loading factor was set at 50% corresponding to a moderately loaded network.

The above formula was used to calculate the traffic rate of each end to end flow

and an exponential traffic generator is used to generate the traffic at the calculated

rate. After every 10 seconds, each entry in the traffic matrix is either increased

or decreased by 10% of the original traffic rate for the end to end flow with equal

probability. In increasing or decreasing the entries in the traffic matrix, a minimum

value of 0 packets per second is an obvious lower limit. There is no limit on the

maximum value for the traffic rate for an end-to-end flow but everytime the lower

limit is hit on any traffic matrix entry, the next increase is skipped as well so that

the total traffic remains constant. As each entry is increased or decreased with the

same value and with equal probability, the total number of packets sent per second

can be modeled as a random walk. This implies that the expectation of the total
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number of packets per second is a constant but the variance increases over time.

Also, the traffic load on the links become non-uniform over time and this creates an

imbalance in the traffic distribution in the network. Some of the links are loaded

close to or more than the capacity of that link due to this imbalance in the traffic

demand. This results in congestion in that link and is observed as packet drops at

the output queue of the corresponding wireless transmitter. Figure 5.2 shows the

total number of packets sent per second in the network during one simulation run.

With this traffic pattern, the packet drops that happen due to the imbalance in

the traffic demand can be seen in figure 5.3. During this simulated two hours, an

average of about 40 packets per second were lost due to congestion with the peak

occurring around 4000 seconds with close to 100 packets per second lost. This peak

coincides with the increase in the number of packets sent at that time to 300 packets

per second as can be seen from figure 5.2.

The packet drops due to congestion increases over time as the topology be-

comes suboptimal with respect to the traffic demand matrix. To update the network

with optimal topologies, a new topology is computed whenever one or more of the

links have 100% or more link utilization. When this occurs, a topology computation

is triggered and this phase uses one of the heuristics to calculate the new target

topology. The execute phase implements this target topology directly or by using

successive approximations based on the configuration. This process model for the

DTCN can be seen in figure 5.4.
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Figure 5.3: Packet drops due to Traffic imbalance

5.3 Simulation Setup and Verification

The rollout heuristic(with singlehop as the base heuristic) and the branch

exchange heuristic along with the successive approximations module were all imple-

mented as C functions in OPNET Modeler. Appendix A includes the pseudo code

for the successive approximations module. All simulations were run in a Intel Pen-

tium 4 3.60 GHz CPU with 1GB of RAM running Windows XP. Each simulation

used one of the two traffic patterns from figure 5.2. As noted above, the heuristic

to be used in calculating the target topologies can be configured as a parameter to

the process model (figure 5.4). For each heuristic, the end to end packet drops were

calculated as the sum of reconfiguration drops and congestion drops.

• Reconfiguration Drops:

When a topology reconfiguration is executed by the DTCN, the network is
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Figure 5.4: Dynamic Topology Control Node Process Model
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partitioned and each node loses the route to some of the destinations. The

packets that are transmitted for such destinations will be dropped by the IP

layer after failing to find the next hop for this destination. Such drops are

called reconfiguration drops and they are measured as packet drops at the IP

layer.

• Congestion Drops:

The packet drops that happen when the network is in normal operation, but

when the traffic demand on some links are very high relative to its capacity,

are called congestion drops. These drops occur at all times as against the

reconfiguration drops that happen only when a topology reconfiguration is

executed. The IP layer routes all the packets correctly but these drops happen

because the output queues of the wireless transmitters are of finite size.

The simulation was then repeated for each heuristic using the same traffic

pattern with successive approximations enabled and the total packet drops were

measured using the same method as above. The packet drops thus measured in the

two cases can be compared to evaluate the effect of enabling successive approxima-

tions on each heuristic. For all the simulations, TPAT was chosen to be 2 seconds

and TMTBR was 10 seconds. TMTBR was chosen to be 10 seconds because this is

the minimum possible time between reconfigurations as in these simulations, the

traffic matrix changes every 10 seconds. Choosing the minimum possible time for

TMTBR ensures that the reconfiguration cost contributes the maximum possible to

the total cost (equation 4.17) and this is useful in studying the impact of successive
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approximations.

The implementation of the heuristics were verified using the example traffic

matrix and the current topology shown in fig 4.2. There are 12 possible rings that

can be constructed out of 5 nodes. Table 5.1 lists all possible ring topologies in

the first column (when the nodes are labeled 0, 1, 2, 3 and 4) and their congestion,

reconfiguration and total costs. MATLAB was used to generate all possible rings

that can be constructed with 5 nodes and for each ring, the congestion measure was

calculated as the maximum link load and the reconfiguration cost was calculated

assuming 012340 as the current topology. The final column shows the total cost

calculated based on equation 4.17 that combines the reconfiguration cost and the

congestion metric with the assumption that TPAT is 2 seconds[33] and TMTBR is

10 seconds. From the table, it can be seen that the optimal topology with respect

to congestion is 023140 and the optimal topology with respect to the total cost is

012340. That is, if total cost is considered, the most optimal topology is the current

topology itself and the optimal topology control decision will be to not reconfigure at

all. To verify the implementation of the heuristics, the topologies computed by the

heuristics can be compared with the optimal topologies identified above. The target

topology computed using the rollout(singlehop) heuristic was 031240. This topology

had a congestion measure of 45, only a little worse than 44 - the congestion measure

of the optimal topology. The branch exchange heuristic computed 021340 as the

target topology and this topology too has a congestion measure of 45. As discussed

earlier, enabling successive approximations in the simulation process model modifies

the heuristics to minimize total cost. After enabling successive approximations,
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Rings Maximum Load (pkts/s) Reconfiguration drops (pkts/s) Expected pkt drops

012340 48 0 480

012430 49 165 820

013420 47 212 894

014230 47 202 874

014320 47 158 786

021340 49 160 810

021430 49 206 902

023140 44 196 832

024130 45 250 950

031240 45 198 846

032140 51 130 770

013240 46 151 762

Table 5.1: Possible Ring topologies and the corresponding costs

both heuristics computed 012340 as the target topology which is consistent with

the observation that the current topology is the optimal one when total cost is

considered. These observations verify that these heuristics do minimize congestion

cost but minimize total cost when successive approximations are enabled.
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5.4 Rollout - Singlehop

During each simulation run, a 2 hour operation of a 10 node network that

uses the rollout(singlehop) heuristic for calculating target topologies was simulated.

Five such simulation runs were made with each run differing in the way the traffic

demand matrix is changed. For each run, the total packet drops were measured as

the sum of reconfiguration drops and congestion drops. The average packet drops

were calculated as a simple average of the results from the five simulation runs.

Figure 5.5 shows the running average of the average total packet drops when the

rollout heuristic is used with and without successive approximations. The basic

observation that can be made is that enabling successive approximations reduces

the overall packet drops. To verify this assertion statistically, a cubic polynomial

function can be used to fit both the running average curves in the graph in figure

5.5. The leading coefficient for the cubic polynomial was 1.8059e-10 and 5.1472e-

11 respectively for the rollout and the rollout with SA average packet drop curves

(error variances were 0.26 and 0.21 respectively). The coefficients of the cubic terms

- the leading coefficients - of the two curves determine if the two curves converge or

diverge or if there are no differences between them. In this case, it can be seen that

the coefficient for the cubic term in the first function is larger than for the second

one and this means the first function will have larger values than the second function

and this difference will increase with time. In other words, the two functions diverge

with time and as the sum of the error variances is smaller than the difference between

the two functions, the average packet drops without successive approximations are
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Figure 5.5: Average Packet Drops with Rollout - Singlehop heuristic with
and without Successive Approximation - Average from 5 simulation runs

statistically higher than the average packet drops with successive approximations

when the rollout(singlehop) heuristic is used.

• Reconfiguration Drops:

The reconfiguration drops - the packet drops measured at the IP layer - was

averaged over the five simulation runs and figure 5.6 shows the running average

of the average reconfiguration drops. Clearly, modifying the rollout heuristic

to incorporate successive approximations reduces the packet drops that hap-

pen during reconfiguration as expected. This reduction in packet drops is
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Figure 5.6: Average Reconfiguration Drops with Rollout - Singlehop
heuristic with and without Successive Approximation - Average from 5
simulation runs
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(a) (b)

Figure 5.7: Reconfiguration Activity with (a) Rollout (singlehop) (b) Rollout (sin-

glehop) with Successive Approximations - Traffic Pattern as in Figure 5.2

primarily due to a reduction in the number of topology reconfigurations in the

network. A dynamic view of the topology reconfigurations in the network is

seen in figure 5.7 where the number of links changed during a topology re-

configuration is plotted across time for one of the five simulation runs. The

total packets sent for this traffic pattern is as in figure 5.2 and figure 5.7(a)

shows the reconfiguration activity with the rollout(singlehop) heuristic and fig-

ure 5.7(b) shows the reconfiguration activity with successive approximations

enabled. The increase in reconfiguration activity after about 3000 seconds

when successive approximations is not enabled(figure 5.7(a)) is absent when

successive approximations are enabled(figure 5.7(b)). As the number of recon-

figurations are lower with SA, the drops that happen due to reconfiguration

is lower.

The average number of topology recomputations and topology reconfigurations
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Top. Computations Top. Reconfigurations Links Changed

Rollout 236.6 217 552

Rollout with SA 269.8 42.8 108

Table 5.2: Topology Recomputations - Averages from five simulation runs using

Rollout heuristic

for the five 2-hour simulations are tabulated in table 5.2. The average number

of topology reconfigurations is 42.8 when successive approximations is enabled

while that number is 217 when SA is disabled. In other words, on an average,

a topology reconfiguration is implemented in the network every 168 seconds

in the network with the rollout heuristic when SA is enabled whereas a topol-

ogy reconfiguration is implemented in the network every 33 seconds when the

rollout heuristic is used without SA (A note of caution is that these numbers

cannot be directly applied in a practical scenario because the traffic matrix

in the simulations are changed every 10 second which are not necessarily the

case in a practical setting). This reduction in the number of reconfigurations

happens in spite of an increase in the number of times a topology computation

is triggered. As topology computations are triggered whenever one or more of

the link utilizations reach 100%, this means the network operates with more

maximum link load when SA is enabled. This contributes directly to more

packet drops due to congestion.

• Congestion Drops: Figure 5.8 shows the average over 5 simulations of these
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congestion drops that are measured as layer 2 packet drops in the simulations.

The average packet drops actually increase when successive approximations

are used because the optimizing function is the combination of reconfigura-

tion drops and congestion drops when successive approximations are used (eqn

4.17). If successive approximations are not used, the objective function mini-

mizes the congestion cost and any topology other than the one computed by

the congestion minimization heuristic is expected to result in increased conges-

tion cost - expressed in this case as packet drops. In other words, the network

topology is not reconfigured as frequently when SA is enabled as it would oth-

erwise have been. This keeps the network topology suboptimal with respect

to the traffic matrix for a longer duration and this results in the increase in

congestion drops.

However, as shown in figure 5.5, the total of the reconfiguration packet drops

and congestion drops is reduced when successive approximations are used. This

happens because the decrease in reconfiguration drops compensates for the increase

in congestion drops and reduces the total further. It was also observed that the

impact of using successive approximations on the end-to-end delay is to increase it

slightly. The average end-to-end delay was about 0.35 seconds and this increased to

about 0.4 seconds when successive approximations were used.

The total packet drops - with and without SA - from the individual simulation

runs are shown in figures 5.9 and 5.10. For each run, the total number of packets sent

and the running average of total packet drops is shown. The decrease in the number
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Figure 5.8: Average Congestion Drops with Rollout - Singlehop heuristic
with and without Successive Approximation - Average from 5 simulation
runs
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(a)

(b)

Figure 5.9: Total Packets Sent and Average Packet Drops with traffic patterns (a)

1 and (b) 2 with the Rollout heuristic
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(a)

(b)

(c)

Figure 5.10: Total Packets Sent and Average Packet Drops with traffic patterns (a)

3, (b) 4 and (c) 5 with the Rollout heuristic
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of packet drops by using SA is marked in the simulation runs where the load on the

network is higher. For example, figure 5.10(b) shows the results from a simulation

run in which the packet drops are an order of magnitude smaller than the packet

drops in the simulation runs shown in figures 5.10(a) or 5.10(c). This difference can

be explained by the fact that the traffic matrix is initialized to load each link to 50%

of the capacity and then each entry of the traffic matrix is increased or decreased

by 10% every 10 seconds. For every random seed, the traffic matrix evolves in a

unique manner so that in some cases, the link utilization for some links reaches 100%

resulting in a large number of packet drops. If the load on the links are lower than

100%, the packet drops will also be very low. Higher loads in the network result in

more number of topology reconfigurations when the rollout heuristic is used. When

successive approximations are enabled, the packet drops due to reconfigurations are

reduced and this is reflected in the fewer packet drops. In other words, the impact

of enabling successive reconfigurations can be seen when there are a large number

of topology reconfigurations and this happens is a heavily loaded network than in a

lightly loaded one.

67



Figure 5.11: Average Packet Drops with Branch Exchange heuristic with
and without Successive Approximations - Average from 5 simulation runs

5.5 Branch Exchange

The branch exchange heuristic outlined in section 4.4 was used to identify the

optimal topology that differs from the current topology by one branch exchange.

This operation is repeated 4 times to obtain the target topology for topology re-

configuration. A simulation run, as outlined in the previous section, consists of

simulating the network for a duration of 2 hours while the traffic demand matrix

is changed every 10 seconds as described in section 5.2. Five different simulation
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Figure 5.12: Average Reconfiguration Drops with Branch Exchange
heuristic with and without Successive Approximations - Average from 5
simulation runs
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Figure 5.13: Average Congestion Drops with Branch Exchange heuristic
with and without Successive Approximations - Average from 5 simula-
tion runs
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Top. Computations Top. Reconfigurations Links Changed

Br-Ex 335.2 178.6 471.2

Br-Ex with SA 372.8 43 154.5

Table 5.3: Topology Recomputations - Averages from five simulation runs using

Branch Exchange heuristic

runs were made with each run differing in the pattern of traffic demand changes.

The running average of total packet drops, averaged over the five simulation runs,

is shown in figure 5.11. The figures 5.12 and 5.13 show the running average of the

average reconfiguration drops and the average congestion drops respectively. As

noted in the previous section, while the congestion drops increase when successive

approximations are enabled, the reconfiguration drops decrease and this results in a

lower total packet drops. Fitting the running average of the packet drops to a cubic

polynomial function, the leading coefficients obtained are 1.5081e-10 and 1.3479e-

10 respectively for the branch exchange heuristic and the branch exchange with

successive approximations heuristic (with error variances 0.21 and 0.20). Clearly,

the packet drops are shown to be statistically lower with successive approximations

enabled because of the lower leading coefficient.

Table 5.3 shows the decrease in the number of topology reconfigurations that is

achieved when successive approximations is used with the branch exchange heuristic.

The average number of topology reconfigurations is 43 when successive approxima-

tions is enabled while that number is 178.6 when SA is disabled. In other words, on
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an average, a topology reconfiguration is implemented in the network every 168 sec-

onds in the network with the branch exchange heuristic when SA is enabled whereas

a topology reconfiguration is implemented in the network every 40 seconds when the

branch exchange heuristic is used without SA (Again, a note of caution is that these

numbers cannot be directly applied in a practical scenario because the traffic matrix

in the simulations are changed every 10 second which are not necessarily the case

in a practical setting). This decrease in the number of reconfigurations happens in

spite of an increase in the number of times a topology computation is triggered.

The total packet drops - with and without SA - from the individual simulation

runs are shown in figures 5.14 and 5.15. For each run, the total number of packets

sent for each traffic pattern is shown along with the running average of the packet

drops. The packet drops for the different simulation runs differ by an order of

magnitude or more, similar to the packet drops when the rollout heuristic was

used. For every simulation run, however, the average packet drops are decreased

when successive approximations are enabled and it was also shown statistically that

enabling SA results in fewer packet drops based on the averages from the individual

simulation runs.
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(a)

(b)

(c)

Figure 5.14: Total Packets Sent and Average Packet Drops with traffic patterns (a)

1, (b) 2 and (c) 3 with Branch Exchange heuristic
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(a)

(b)

Figure 5.15: Total Packets Sent and Average Packet Drops with traffic patterns (a)

4 and (b) 5 with Branch Exchange heuristic
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Chapter 6

Summary and Conclusions

The twofold goals of this research were to a) understand how a topology re-

configuration can be implemented with minimum cost and b) to further refine the

topology control process so that the computed target topologies lend themselves to

easier reconfiguration. A natural metric for the reconfiguration cost is the packet

drops that happen during a reconfiguration. Intuitively, these packet drops are min-

imized when the changes that happen in the network topology are localized. This

observation leads to the proof in section 3.2 that the minimum reconfiguration cost

is achieved when the topology reconfiguration is replaced with sequences of branch

exchanges that exchanges two edges in the graph in each step. Section 3.3 describes

the algorithm that can be used for generating these branch exchange sequences. The

reduction in packet drops when this algorithm is used can be upper bounded in the

case of a uniform traffic matrix and simulations verify that this upper bound can

be achieved by the proposed algorithm(fig 3.4).

In a dynamic setting, the changes in traffic demand trigger topology recom-

putations that minimize the congestion cost. As the example in fig 4.2 and fig 4.3

shows this computed target topology could have a high reconfiguration cost. An-

other target topology that has a much lower reconfiguration cost but only a slightly

worse congestion metric could exist. An objective function that minimizes the over-
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all cost is needed where the cost has to be appropriately defined. The expected

packet drops are chosen as the cost metric and section 4.3.2 shows how the conges-

tion metric were converted to the expected packet drops. Assuming a PAT duration

and a mean time between reconfigurations, the reconfiguration cost and congestion

cost can be combined to obtain the objective function(eqn 4.17).

The heuristics that are typically used for congestion minimization can be

modified to reflect the different minimization objectives. As examples, the roll-

out(singlehop) heuristic and the branch exchange heuristics were chosen and the

effect of using successive approximations on these heuristics were studied using sim-

ulations of a FSO network operation under a time-varying traffic demand. The

entries of the traffic matrix are increased or decreased with equal value and prob-

ability over time. This imbalance in the traffic demand loads some of the links to

their capacity and this triggers a topology recomputation. The packet drops that

happen in this situation were observed for the various heuristics and the results

are discussed in sections 5.4 and 5.5. It was observed that total packet drops are

decreased when successive approximations are used and this happens in spite of the

increase in packet drops due to congestion. Based on the observed packet drops in

five simulation runs, it was statistically shown that using successive approximations

decreases the total packet drops. More simulation runs and statistical analysis will

help in evaluating the effectiveness of successive approximations with more preci-

sion. It was also observed that using successive approximations resulted in fewer

topology reconfigurations and hence, a more stable network.
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Chapter A

Pseudocode for Successive Approximations

/*

* Input - Current and Target ring represented as a list of edges

* Traffic matrix

* Returns - Minimum possible reconfiguration cost

* Also generates branch exchange sequence to achieve target topology

*/

static float calculate_satr_cost(int **c_ring, int **n_ring, float **tr_matrix)

{

//Represent the topologies in matrix form

convert c_ring to orig_matrix;

convert n_ring to target_matrix;

disconnected_matrix = orig_matrix && target_matrix;

start_cost = calculate_reconfiguration_cost(disconnected_matrix, tr_matrix);

while(1)

{

brex_cost = get_br_exchange(orig_matrix, target_matrix,

disconnected_matrix, tr_matrix);
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//orig_matrix is updated with the branch exchange

disconnected_matrix = orig_matrix && target_matrix;

next_cost = calculate_reconfiguration_cost(disconnected_matrix,tr_matrix);

if (start_cost > brex_cost + next_cost)

{

start_cost = next_cost;

total_cost += brex_cost;

}

else

{

total_cost = start_cost + total_cost;

break;

}

}

return total_cost;

}

/*

* Input - The transient topology represented in matrix form.

* Traffic demand matrix.

* Returns - the total packets per second that will be dropped during this reconfiguration

*/

static float calculate_reconfiguration_cost(int **c_matrix, float **tr_matrix)
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{

cost_graph = init_graph();

insert_nodes(cost_graph);

insert_edges(cost_graph, c_matrix);

cost = 0;

for (i=0; i<no_nodes; i++)

for (j=0; j<no_nodes; j++)

{

if (!path_exists(i,j))

cost = cost + tr_matrix[i][j];

}

return(cost);

}

/*

* Input - Current and Target topology in matrix representation

* Traffic demands matrix

* Output - The branch exchange with minimum reconfiguration cost

*/

static float

get_br_exchange(int **orig_matrix, int **target_matrix, int **top_matrix, float **tr_matrix)

{
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top_matrix = orig_matrix - target_matrix;

//Generate Auxiliary Graph - A node whenever top_matrix[i][j] is 1 or -1

aux_graph = init_graph();

insert_nodes(aux_graph, top_matrix);

//Insert edges from -1 to 1 in the same column and from 1 to -1 in same row

insert_edges(aux_graph, top_matrix);

//From cycles of size 4 in aux_graph, select cycle with minimum reconfiguration cost

for all cycles in aux_graph

{

top_matrix = get_cycle(aux_graph);

cost = calculate_reconfiguration_cost(top_matrix, tr_matrix);

if (min_cost > cost)

{

min_cost = cost;

min_br_exchange = top_matrix;

}

}

top_matrix = min_br_exchange;

return(min_cost);

}
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