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Object recognition is a very important high-level task in surveillance applica-

tions. This dissertation focuses on building appearance models for object recognition

and exploring the relationship between shape and appearance for two key types of

objects, human and vehicle. The dissertation proposes a generic framework that

models the appearance while incorporating certain geometric prior information, or

the so-called geometric context. Then under this framework, special methods are

developed for recognizing humans and vehicles based on their appearance and shape

attributes in surveillance videos.

The first part of the dissertation presents a unified framework based on a

general definition of geometric transform (GeT) which is applied to modeling object

appearances under geometric context. The GeT models the appearance by applying

designed functionals over certain geometric sets. GeT unifies Radon transform, trace

transform, image warping etc. Moreover, five novel types of GeTs are introduced

and applied to fingerprinting the appearance inside a contour. They include GeT



based on level sets, GeT based on shape matching, GeT based on feature curves,

GeT invariant to occlusion, and a multi-resolution GeT (MRGeT) that combines

both shape and appearance information.

The second part focuses on how to use the GeT to build appearance models for

objects like walking humans, which have articulated motion of body parts. This part

also illustrates the application of GeT for object recognition, image segmentation,

video retrieval, and image synthesis. The proposed approach produces promising

results when applied to automatic body part segmentation and fingerprinting the ap-

pearance of a human and body parts despite the presence of non-rigid deformations

and articulated motion.

It is very important to understand the 3D structure of vehicles in order to

recognize them. To reconstruct the 3D model of a vehicle, the third part presents a

factorization method for structure from planar motion (SfPM). Experimental results

show that the algorithm is accurate and fairly robust to noise and inaccurate calibra-

tion. Differences and the dual relationship between planar motion and planar object

are also clarified. Based on our method, a fully automated vehicle reconstruction

system has been designed.
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Chapter 1

Introduction

1.1 Overview

In surveillance applications, object recognition is a very important high-level

task both in itself and for other tasks including event and activity analysis. For

example, if we can identify the object observed in one camera as one of the objects

in the database, we can make inference about the activities near the surveillance

sites based on the time of the observations. Or if this object is the same one as

seen by another camera earlier, we can track this object persistently across camera

networks.

In order to identify and track an object in surveillance videos, there are three

different cues, three major difficulties, and three key types of objects. First we have

a general discussions about these issues and then explain the focus of this thesis

along these issues.

1.1.1 Three Types of Cues

There are three different cues for object tracking and recognition in videos.

They include appearance, shape, and motion. Depending on the application, we

can use different combinations of these cues for identification purposes.

An appearance mainly relates to the intensity pattern of the image of an ob-
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ject. This pattern can be purely based on the statistics of intensity values, such as

the intensity histogram. It can also be combined with spatial distribution of the

patterns, for example textures. Another choice is to extract features as representa-

tion of the appearance, which include wavelet features [7, 36] at feature points, and

representations of feature lines or curves.

The appearance of the object depends on both the intrinsic properties of the

object, such as the albedo and the specular coefficient [2, 62], the illumination

condition of the environment, such as lighting and shadows, and the color calibration

of the camera.

A 2D shape concerns with the geometry of a 3D object projected onto a 2D

image. Ideally, an accurate estimate of the 3D structure of the object can greatly

improve the matching between two objects. Some major ways of reconstructing the

3D shape include structure from motion [23, 28], shape from shading [60, 61], shape

from contour [25], or simply fitting a 3D deformable model to a 2D image [5]. In

some cases where the projection model can be approximated using an affine camera

and the object does not have much out-of-image-plane rotation, a 2D shape model

may suffice for recognition purposes, for example, as in gait recognition [22, 53].

Even though the task is much simpler than processing 3D shapes, complex 2D

deformations or articulated motions may cause difficulty in 2D shape matching [34].

Motion signature is another cue for object identification. It can be inferred by

tracking a set of feature points, or from a dense optical flow field [35]. For example,

when we classify a blob in videos to be a vehicle or a pedestrian, the periodic nature

of the underlying motion can be used [45]. In gait analysis, the dynamics of the
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movements is combined with the shape for improved recognition [53].

The three cues are usually coupled with one another. Structures of feature

points or feature boundaries from intensity patterns are usually used to describe the

shape. Appearance and shape variations over time are used to infer the motion.

In different applications, we will employ different cues. For example, for clas-

sification between vehicles and humans, apart from motion signature, we can also

use the shape of the object [45]. For identifying a vehicle under arbitrary pose, both

appearance and 3D shape information are needed [27, 28].

There are two reasons that appearance is often the most stable and the most

used cue. First, as the intensity pattern is our primary observation while shape

and motion are usually inferred from it, appearance keeps the most basic form of

information and often contains fewer errors from processing. Second, the intensity

pattern possesses a rich representation, while shape and motion are often represented

as distributions of some simplified primitives such as feature points. On the other

hand, the rich representation also causes the curse of dimensionality. So we usually

need to use statistical pattern recognition techniques to reduce the dimension and

study the structure of the data distribution [11].

Therefore the appearance feature is often used for identification whenever pos-

sible or necessary. For example, in the case of persistent tracking, if we assume the

appearance of the object does not change over a short period of time, it becomes the

most reliable cue, whether in human or vehicle recognition. In contrast, for human

identification, gait analysis usually requires side views from the camera [22].

Clearly as the shape and motion of the object change, the appearance will
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change as well. Thus the key in matching two appearances is to establish the

correspondences based on shape and motion information.

1.1.2 Three Types of Correspondences

In general, correspondence is a broad term. Most of the time it means the

spatial mapping between two sets of features from two image planes. The two sets

usually come from the same patch on a 3D object, or similar patches on two objects

that have similar topology. For example, the point in one image can be matched to

another point in another image, which gives the correspondence of points. Similarly,

there are feature curve correspondence and region correspondence. More details of

spatial correspondences are discussed in section 2.1.2.

Correspondence can also mean the temporal alignment between two sequences.

For example, when we have two videos of walking humans, we can temporally align

the two sequences according to the pose of the human. Then if we play the two

videos after alignment, the two people will walk in a synchronized fashion. In gait

analysis, dynamic time warping based on dynamic programming [10] has been used

for finding temporal correspondences [22].

Correspondence can also be used to describe the mapping of intensity values

of two images. For example, in color calibration between two cameras, the color

vector in one image is mapped to another color vector in the second image. The

mapping can be affine or a non-linear function. It relates the two intensity values

correspondingly. Similarly the illumination changes can be compensated if we find
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the intensity correspondences under different lightings.

In this dissertation, we focus on the first type of correspondence. Essentially

we are trying to reduce the variations in appearances due to geometric changes

caused by shape and motion. The appearance is modeled under certain geometric

prior information, or the so-called geometric context, so that the uncertainty due to

spatial correspondence can be reduced. We study how to exploit the characteristics

of the shape and the motion of the object for appearance modeling under geometric

context.

1.1.3 Three Types of Objects

There are three major types of objects of primary importance in surveillance

applications. They include human faces, vehicles, and walking humans. Human

faces and walking humans are considered as two categories because they have very

different properties and are used for human identification in very different scenarios.

For human faces, usually the appearance is represented as a normalized rect-

angular template. Then statistical learning is applied to the vectorized template to

deal with changes in object poses and illuminations [31, 29]. Other model based

approaches such as Active Appearance Models (AAM) [9], Elastic Graph Matching

(EGM) [26], and complete 3D deformable models of faces [5] are also worthy of

consideration.

Because the structure of the human face is relatively stable across different

people, the shape formed by the feature points on the face is easier to model. In
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Active Shape Model (ASM) [9] and AAM, Gaussian distribution is used to model

small deformations of each feature point. But this model does not work for walking

humans, where the topology between body parts changes significantly across poses.

Moreover, since the shape of the face in 3D can be roughly approximated by the

half sphere of an ellipsoid, it does not have an ad-hoc 3D structure like vehicles.

These properties make the appearance of a human face very different from those of

vehicles and walking humans.

Figure 1.1: Examples of walking humans and turning vehicles in surveillance videos.

In Fig. 1.1.3, we illustrate examples of pedestrians and vehicles in surveillance

videos. We can observe the changes in the appearances of these two objects due

to changes in the underlying geometric structures. But each of them has their own

characteristics.

A walking human is a typical example of an object with non-linear deformation

and articulated motion of body parts [30]. These deformations cause difficulties

when two appearances of pedestrians need to be matched. However when different
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people are at the same pose, their body parts topology are roughly the same. This

property can be used to build an articulation-invariant appearance model.

Vehicle is a typical example of objects with complex 3D structures in surveil-

lance videos [27, 28]. In order to identify these objects, we have to take the 3D

structure into account. Appearance matching can only be done after the 3D pose is

estimated, especially when there are significant view changes as the vehicle moves

and turns on the ground plane. We develop a method to estimate the 3D structure

of the vehicle from its planar motion, which helps to identify the vehicle.

1.2 Focus of this thesis

In this thesis, we focus on some of the key issues in human and vehicle identi-

fication. In particular, we build a generic framework that models the appearance of

objects under certain geometric context. Then under this framework, an appearance

model for a walking human is built and used for human identification. For objects

that have complex 3D structures like vehicles, we develop a method to reconstruct

the 3D model of an object from its planar motion. A brief introduction to the three

parts of this dissertation is as follows.

1.2.1 Geometric Transform

In computer vision literature, traditionally the 2D affine transformation is used

to register two rigid rectangular templates before the appearances are matched or

statistical learning algorithms are applied. But quite often, appearance modeling
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inside arbitrary shapes with non-rigid motion is needed. In section 1.1.1, shape and

appearance are discussed as different cues for object recognition. But the shape

of the object provide important geometric prior information for matching the ap-

pearance. Spatial correspondences can be inferred from the shape and help to align

the two appearance patches before matching. This becomes particularly important

when we need to fingerprint the appearance of humans with articulated motion or

vehicles under arbitrary poses. So in Chapter 2, we propose a generic framework

that models the appearance under certain shape context or combines appearance

and shape information. It can be used for object recognition under various kinds of

deformations.

The unifying framework is based on a general definition of Geometric Trans-

form (GeT) [30]. The GeT incorporates the geometric context by applying designed

functionals over certain geometric sets of an image. We show that linear and non-

linear image transformations, Radon Transform, and trace Transform are special

cases of GeT. We also propose some innovative ways of generating the geometric

sets, such as from the contour boundary, or from skeletons of the shape, rather than

simply from some feature points as in Active Appearance Model [8]. In the case

when we only use sets of straight lines as in Radon Transform, we propose a multi-

resolution representation that combines both shape and appearance information.

Chapter 2 is organized as follows. Section 2.1 gives the definition of geomet-

ric transform. The section starts with the motivation of such a transform, then

formulates it mathematically by changing elements in Radon transform. Then we

show that several common methods are special cases of this transform. The sec-
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tion ends with a discussion of general principles for designing GeTs for appearance

modeling. Section 2.2 focuses on GeTs designed to model the appearance inside ar-

bitrary contours. Two types of GeTs are proposed. The first one uses the level set

representation to generate a proper curve set. The second one generates dense corre-

spondences inside the contour through matching the contour boundaries. This GeT

is very useful when modeling the appearances of objects with articulated motion

of body parts. It is crucial for building the geometric appearance model of hu-

mans in Chapter 3. Section 2.3 introduces three additional types of GeTs. Skeleton

based GeT uses the correspondence between two skeletons of the shape to generate

a dense mapping inside two contours. It is complimentary to the GeT based on

shape matching introduced in section 2.2.2 when no canonical poses are available.

An alternative functional is proposed in section 2.3.2 which can deal with occlusions

that do not change the convex hull of the shape. A multi-resolution GeT is proposed

in section 2.3.3 by changing the indicator function into a kernel function.

1.2.2 Articulation Invariant Model for Walking Human

An important type of GeT is the one based on shape matching. It is used as a

generic tool for modeling the appearance inside two contours. In Chapter 3 this GeT

is used to build a geometric appearance model for walking humans. Two important

applications of this method are illustrated in Chapter 3. In section 3.1, we work on

pedestrian appearance matching on a still-image-to-still-image setting. Assuming

that body parts here have been segmented, we test each type of GeT by designing
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them for body part recognition and combined human identification. GeT based on

shape matching without using parts information gives superior recognition results

compared to rigid template matching with body parts information. In section 3.2,

the setting is video-to-video matching, again without prior body parts segmentation.

First, this section give a complete illustration of how to use GeT based on shape

matching for modeling objects with articulated motion. The training phase learns

the shape space of typical poses. Then based on the shape space constructed for each

pose, one can smooth the noisy human silhouette that results due to background

subtraction errors. Second, this section shows how to use GeT for automatic body

part segmentation. Once we have the segmentation, part-based recognition is used

for human identification and surveillance video retrieval. This approach helps to

solve the hard cases when the pedestrian changes only part of clothes such as putting

on a jacket. This section also gives examples of how to use the skeleton based GeT

for synthesis of human appearances at arbitrary poses.

1.2.3 Structure from Planar Motion

In fingerprinting vehicles in videos, we often need to extract a 3D model of the

vehicle before modeling its appearance across different views. Therefore, in Chapter

4, a factorization approach is proposed for structure from planar motion that can

be used to reconstruct the 3D model of a vehicle in surveillance videos [27, 28].

Our method reduces the rank constraints and simplifies the reconstruction into

one singular value decomposition (SVD). It can be implemented efficiently without
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estimating the fundamental matrices or epipoles [47]. Experimental results show

that the algorithm is accurate and fairly robust to noise and inaccurate calibration.

Based on this factorization method, a system that can automatically recon-

struct the 3D model of the vehicles is built. In order to construct a complete model

when some faces are not observed, a priori information of the object can be used.

In this case, an example of using the GeT for registering a 3D vehicle model in a

tracking application is illustrated.

Chapter 4 is organized as follows. Section 4.1 gives the derivation of standard

planar factorization. It presents a motivation for studying planar motion and a lit-

erature review of factorization approach. Then it discusses two key observations for

planar motion and provides the mathematical solution based on these observations.

The section concludes with a comparison of methods for general motion and quan-

titative and qualitative evaluations of our methods. Section 4.2 follows the line of

work by Irani et. al [18], and discusses how to deal with feature points that have

directional uncertainty. We approach this problem in two different ways and find

a linear approximation of the formed measurement matrix using the observations.

The experiment results show improvement over standard planar factorization when

feature points have anisotropic observation noise. Section 4.3 clarifies two confusing

terms, planar motion and planar object, and show they have a dual relation. The

factorization for planar motion proposed in this dissertation has a dual theorem

for a planar object. Section 4.4 introduces the automatic 3D vehicle model recon-

struction system. The system is very efficient and can be easily implemented in

real-time. As an extension, the section discusses how a prior 3D model can be used

11



for 3D tracking. The model-based approach can be combined with the factorization

method for a complete model reconstruction, as discussed in the future work of this

chapter.

1.3 Key contributions

Here are some key contributions of this dissertation:

• A unifying definition of GeT provides a generic framework for appearance

modeling under geometric context. Several existing methods including the

Radon transform, the trace transform, and image warping are special instances

of our definition.

• Five novel types of geometric transforms are proposed, including the GeT

based on level sets, the GeT based on shape matching, the GeT based on

feature curves, the GeT with functionals to deal with occlusion, and the multi-

resolution GeT. Each of these transforms has different properties and can be

designed to model certain types of contoured appearances.

• Modeling the appearances inside arbitrary contours is studied in depth. Dif-

ferent kinds of shapes and motion models are taken into account, so that

the selected transform domain representation has proper alignment for direct

matching.

• GeT based on shape matching and GeT based on skeletons provide interfaces

between shape matching and appearance modeling inside the shape. While the
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representation of the shape usually takes a lower dimensional manifold such

as contour boundaries or shape skeletons instead of the entire masked region

or volume, the shape matching results generally provide correspondences in a

lower dimensional surface, and these correspondences can be used to generate

dense correspondences inside the entire region or volume. So essentially, these

two GeTs use shape matching to obtain registration between two image planes.

• The geometric appearance model for a human provides a way to model the

human appearance with articulated motion of body parts. While the GeT

based on shape matching itself may seem to be a simple image warping tech-

nique, when used properly, this GeT can be applied to model complex motions.

The key steps are: classification of shapes to be different poses, building part

structures for shapes at each typical pose, and building correspondences for

part structures at different poses. After these steps, the appearances inside

any shape that belongs to these poses can be modeled, and each appearance

can be transformed from one pose to another. Another advantage is that this

model is implicit without feature points, unlike many deformable models.

• The GeT based on shape matching also provides an important cue for seg-

mentation. The central idea is to register a new shape with a canonical shape

at the same pose, then based on the shape matching, the segmentation inside

the canonical shape can be transformed to obtain the segmentation inside the

new shape. This method is illustrated in section 3.2 for successful body part

segmentation of pedestrians. Although in some cases the segmentation results
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may be sensitive to errors in shape matching, they can provide an important

initialization based on which other segmentation methods can be used for re-

finement. This idea can be easily extended to applications such as medical

segmentation. For example, if we can match the boundary of a leg bone with

the boundary with a mean shape of the leg bone, then each sub-structure of

this leg bone can be inferred from the substructure of the mean shape.

• For vehicles, we propose a simple planar factorization method that is used

in an automatic 3D vehicle model reconstruction system. In section 4.1, we

explained the importance of planar motion in surveillance applications. This

planar factorization significantly simplifies the factorization for general mo-

tion. It is a key observation for understanding the structure of vehicles in

surveillance videos.

• Planar factorization under uncertainty presents a view on how to deal with

anisotropic noise with feature points, when the formed measurement matrix

is a non-linear function of the observed feature points coordinates. Two dif-

ferent ways of approaching this problem and a proof for the validity of the

approximations are given.

• The relationship between planar motion and planar objects is clarified and a

dual relation is discovered between them. The analysis explores the concept

of spatial and temporal rigidity, and their consequences on the duality rela-

tion between planar motion and a planar object. A dual theorem for planar

factorization is also presented.
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Chapter 2

Geometric Transform

2.1 Definition of Geometric Transform

Researchers familiar with image processing know about geometric transforma-

tion. Usually it is a synonym for image warping which establishes correspondences

between two image planes, since the word transformation comes from coordinates

transformation. In this section, we provide a broader definition of geometric trans-

form, which in general is not necessarily a one-to-one mapping from the image

domain to the transform domain. This definition characterizes a more general view

of geometric corrections required for appearance models. We show under this defini-

tion, how different types of geometric context can be incorporated into the transform,

and provide certain deformation invariant appearance representations.

First we illustrate the intuitive motivations behind the transform. Then the

definition is formulated by changing the two key elements in Radon transform:

geometric set and geometric functional. Special cases of this definition are explained,

including trace transform and image warping. In the end, the general principles for

designing GeTs for appearance modeling are discussed.
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2.1.1 Background

The most common way of modeling the appearance of an object is by using

templates, in which images of objects are usually cropped out from certain regions

before learning algorithms are applied. Usually a 2D affine transformation is used

to align the templates and derive pixel-wise correspondences. However, this is inef-

fective for modeling pose/view variations or large non-rigid motions, which have to

be dealt with by the learning algorithm.

Quite often not enough sample images are available for learning these varia-

tions. In these cases incorporating prior knowledge such as geometric information

can improve the recognition rate as well as tackle the problem of undersampling.

In this section, we propose a generic way to incorporate geometric prior knowledge,

which is also referred to as geometric context, into appearance models. The context

can be based on a model, or inferred from the contour, or derived from prior knowl-

edge of the underlying motion. In particular we want to model the appearance inside

a contour, such as the appearance of humans with articulated motion and vehicles

under different views after background subtraction. In these cases, objects have

very large deformations and self-occlusions, rendering rigid transformations such as

2D affine transform insufficient to capture the correspondences. A general definition

of GeT is introduced and guidelines are given to use it to transform an image for

deformation-invariant modeling.

Many methods of incorporating prior knowledge have been proposed in the

literature. The most comprehensive way is to have a full 3D generative model. Then
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attempts for recovering the imaging process can be carried out. For example, it has

been successfully used in face recognition [5] to deal with pose changes. However

this approach is computationally intensive and requires significant prior information.

Also, there is no guarantee of convergence to the global optimal solution, thus

ineffective for low resolution imagery [62]. A simplified 2D model is found in Active

Appearance Model (AAM) [9]. In AAM, the statistical behavior of a set of feature

points to be tracked is modeled and used to generate a normalized appearance

in the mean shape. It requires explicit detection of feature points and can only

deal with small deformations that obey Gaussian distributions, so it is ineffective

for tasks like modeling the appearance of pedestrians. Elastic Graph Matching

(EGM) [26] is also a popular method of extracting the appearance signature with

some prior knowledge of the geometric structure. Wavelet filters are often used to

extract features at fiducial points that have certain link architectures. Similar to

AAM, it needs feature points and an explicit model. In [20, 41], the authors use

the trace transform to generate invariant features with respect to a group of affine

transformations. Their approach uses the property of the transform to deal with 2D

rigid motions as well as small non-linear deformations. It has the advantage of not

using explicit models, but does not have the capacity to include complicated prior

knowledge.

In this dissertation, we propose a transform based approach. We aim at pro-

viding a general framework that models large object deformations. When modeling

the apperance inside a contour, we wish to incorporate the implicit knowledge in-

ferred from the contour itself. Thus, the transform is used to represent the visual
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pattern with certain invariance before we recognize it.

Inspired by the difficulties in appearance modeling inside a contour and a mo-

tivating example of GeT, Radon transform, a unifying definition is given in section

2.1.3. Many existing methods are shown to be special instances of GeT. Finally

the guidelines for designing GeT that incorporates prior knowledge are given, along

with comparisons with other descriptors such as SIFT.

2.1.2 Inspirations

2.1.2.1 Appearance inside a contour

The idea of geometric transform first comes up when the appearance inside

a contour is to be modeled. The matching of two appearances can be viewed as a

comparison of two 2D functions with compact support regions. For regular image

matching, usually the two images are registered through an affine transform before

the pixel-wise difference is compared. But for appearance inside a contour, since

the support region has an arbitrary shape, it is hard to find a transform for direct

comparison.

The role of such a transform is to align the corresponding parts. The key to

accurate matching is to find the correspondences. Once the correspondences inside

the two regions are established, comparisons can be made directly in the transform

domain. Note that the correspondences do not have to be pixel-wise. They can be

curve-to-curve, region-to-region or even volume-to-volume in the case of 3D data or

videos. In Fig. 2.1, different types of correspondences are illustrated. Therefore,
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correspondences can be viewed as a mapping between two sets. If each set contains

more than one point, certain statistics can be computed over that set yielding fea-

tures such as the mean or the variance, or even the histogram. These ideas are the

basis of geometric set and geometric functional in our unifying definition.

(a) (b)

Figure 2.1: Illustration of different types of correspondences. (a) The correspondence

of curves across different views. (b) The correspondence of regions across different

poses. Marked contours with the same color show the boundary of two corresponding

regions.

Another important fact is that these correspondences can be based on either

explicit or implicit prior knowledge. AAM uses an explicit model for faces [9],

where the feature points are tracked and used to generate the correspondences. But

to model appearances inside an arbitrary contour, quite often there is no explicit

model available. On the other hand, the contour boundary contains very important

information about the correspondence. It can be used to infer the correspondence

implicitly. Further, such knowledge can be combined with feature points to generate

correspondences.

So our goal is to find a transform domain representation, where the support
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region of the two appearance patches are properly registered based on explicit or

implicit knowledge. The registration is not necessarily pixel-wise. In the transform

domain, geometric deformations are taken care of for direct comparisons.

2.1.2.2 Radon Transform

To build a transform that solves the problem discussed in the last section, we

first briefly review a special instance of GeT: the Radon transform, which has all the

key features of our framework. In 2D, the Radon transform (RT) [19, 21] is defined

as

R(θ, p) =
∫ ∫

I(x, y)δ(x cos θ + y sin θ − p)dxdy. (2.1)

RT applies integral operations to image I(x, y) along a set of lines as illustrated

in Fig. 2.2. It can also be viewed as a line projection to obtain the directional

histogram.

RT has been extensively studied in computer tomography (CT) [21]. In CT,

the focus is on image reconstruction from the transform domain. Given enough

resolution in θ and p, the image can be fully reconstructed using filtered back-

projection according to the Fourier slice theorem or using algebraic reconstruction

techniques. In computer vision, the basic use of RT has been for line detection,

which is also referred to as the Hough transform [13]. Usually an edge detector is

applied to an image, then lines are detected through locating peaks in the Radon

transform of the edge map. In Fig. 2.2, an edge map and its Radon transform are

illustrated. By changing the geometric sets into arbitrary shapes such as circles,
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(a)

Edge Detection Using Canny Method, σ = 2

(b)
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Figure 2.2: Illustration of Radon transform and its use for line detection. (a) Radon

transform is essentially a line projection. (b) An edge map. (c) The Radon trans-

form of the edge map in (b). Line detection is through locating the peaks in the

transform domain and finding the lines corresponding to these peaks.

rectangles or even non-parametric shapes, other shapes can be detected in a similar

fashion. Many nice properties of RT such as the Fourier slice theorem are very useful

to GeT as well.

RT carries two important elements: the geometric sets of straight lines, and the

functionals defined over these sets, which are integrals. Through arbitrary choices

of these two elements, we provide a general definition of geometric transform.

2.1.3 A unifying definition

Definition: Given any set S ⊂ Rp and any function defined over it f : S 7→

Rq, a geometric functional GS is a functional that takes as input the f value over

the set S, i.e., GS : f → Rr. We call S a geometric set. If we have a collection of

sets {S(ω)} parameterized or indexed by ω, where each S(ω) ⊂ Rp is a geometric
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set, the geometric transform of the function f : Rp 7→ Rq is the mapping of {S(ω)}

to Rr by applying GS(ω)(.) to f , i.e.,

R(ω) = R(S(ω)) = GS(ω)(f). (2.2)

Remarks:

• Function f : Rp 7→ Rq: Usually it corresponds to the intensity function of an

image. For example, a 2D color image has p = 2 and q = 3. In most cases

considered in this dissertation, f is chosen as the image intensity defined in

a compact region Ω ⊂ R2, which is usually inside a contour. We call f the

appearance inside Ω, sometimes denoted as A. However, the domain of interest

in (2.2) is not limited to an image plane that lies in R2. It can be generalized

to x− y − t plane in the spatial-temporal domain or x− y − n domain where

n refers to the index of the camera when we have multiple cameras.

• Geometric set S(ω): ω can be viewed as the transform domain coordinates.

The mapping from the transform domain to the original image domain is

through S. In other words, S : Π 7→ Θ if Π = {permissible ω} and Θ =

{all subsets ofRp}. Using different choices of mappings S, we can obtain

different types of GeTs. For example, if S(ω) only contains a point, it is called

the GeT based on a point set.

• Geometric functional GS(ω)(.): If we denote the function space as = = {f |f :

Rp 7→ Rq}, then the resulting functional is G : = 7→ Rr. The only difference

of geometric functional from a regular functional is that it is also a function
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of the selected geometric set S(ω). For example, if the functional calculates

the mean of a function, then the geometric functional gives the mean function

value over the set S(ω).

• Dimension of the transform r: The dimension of the transform domain depends

on the dimension of ω. But the dimension of the transformed output is r, which

depends on the transform value. In this dissertation, mostly r = 1, meaning

each set S(ω) is associated with a scalar that depends on the functional G(.)

operating on a function f over set S(ω). Ideally, the scalar gives the signature

of the function f .

• The transform R: Because R depends on both {S(ω)} and f , this definition

is two-fold. If {S(ω)} is fixed, R is the GeT of f . If we fix f , the transform

can be regarded as either the mapping R : {S(ω)} → Rr or the mapping

R : ω → Rr according to the function f and functional GS(ω)(.).

The key to using GeT as a knowledge-based representation is to embed the

geometric context in the selection of sets {S(ω)}. Intuitively, as discussed in section

2.1.2, a geometric set reflects the correspondences, and the functional G(.) extracts

the feature vector by obtaining the desired statistics over the set S(ω). But in

practice, the choices of these two elements may have other interpretations. Details

of how to select the set and functional are provided in sections 2.2, 2.3.1, and 2.3.2.
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2.1.4 Special instances

It is interesting to show that many existing transforms and methods are special

cases of the general definition of GeT in (2.2).

2.1.4.1 Radon transform

As mentioned above, RT is a special GeT. In n-dimensional RT [12, 19, 21],

the collection of sets S(ω) are hyperplanes parameterized by n and p, such that

S(ω) = {x ∈ Rn|xTn − p = 0}. So ω = {n, p}. The functional G is an integral

operating on the set S.

R(n, p) = GS(n,p)(f) =
∫

S
f(x)dx =

∫

Ω
f(x)δ(xTn− p)dx (2.3)

2.1.4.2 Trace transform

In 2D, by changing the functionals defined on the line set, RT is generalized

to the trace transform. The trace transform has been successfully used for object

recognition in [20, 41].

We give some examples of functionals in trace transform. In trace transform,

the geometric set remains as straight lines. Denote points x = (x, y) in the line set

S(s, p) as

x = ps1 + ts2, y = ps2 − ts1,−∞ < t < +∞,

where s is the line normal, then function f(x) = f(t) for x ∈ S. The geometric

functional G can be defined as

GS(f) = (
∫
|f(t)|qdt)r,
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GS(f) = (
∫

tf(t)dt)/(
∫

f(t)dt),

and so on. Different choices of functionals G give different statistics. In [41], the

authors focus on designing the combinations of functionals so that the extracted

features vary or remain invariant under a group of affine transforms, which is very

useful for recognition of appearances inside a contour. However because they limit

the geometric sets to be straight lines, their methods lack the ability to capture

object appearances with large non-rigid motions.

2.1.4.3 Image Warping

Consider the case when point sets are selected as geometric sets, i.e., S(ω) =

{x}. If the functional is an identity mapping, i.e., GS(ω)(f) = f(x), then the def-

inition in (2.2) generalizes the traditional definition of geometric transformation of

images [57], which includes affine transformation, perspective transformation etc.

Usually transformation refers to the type of the transform that only changes co-

ordinates and there is a one-to-one mapping between the original domain and the

transform domain. In this case, ω can simply be the new coordinate in the transform

domain, say, ω = (x̃, ỹ), and the transformation of coordinate system is implemented

in the mapping S(ω) = S((x̃, ỹ)) = {(x, y)}. For example, if




x

y


 =




a11 a12

a21 a22







x̃

ỹ


 +




tx

ty


 , (2.4)

then the GeT becomes a 2D affine transformation. Similarly the GeT becomes a

perspective transformation with the help of depth information.
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Here we further extend the ways of generating point sets so that more compli-

cated image warping can also be included in GeT. Consider the feature point based

warping used in AAM [9], a set of feature points are registered, i.e., in terms of the

geometric set, S(x̃c
p) = {xc

p} for known {xc
p}P

p=1 and {x̃c
p}P

p=1. An equivalent GeT to

image warping is

S(x̃) = {
P∑

i=1

hi(x̃)xc
i}, (2.5)

and the function hi(.) is an interpolator that satisfies hi(x̃
c
j) = 1 for i = j, hi(x̃

c
j) = 0

for i 6= j. In [9], it is shown that by properly choosing hi, the corresponding warping

can be reduced to piecewise affine or thin plate splines. Moreover, from the view of

generating point sets for GeT, we can go beyond feature point based methods and

use feature curves to find the dense correspondences. This is illustrated in section

2.3.1.

2.1.5 Designing GeT for appearance modeling

The special cases discussed above have been proven very useful in appearance

modeling. Here we further exploit the key elements in GeT and develop more

complicated transforms for different purposes. As seen in section 2.1.4, the geometric

set is a crucial aspect of generalization from the RT in (2.3), which can be written

as

R(S(ω)) =
∫

f(x)χS(ω)(x)dx, (2.6)

where the integral takes place in an arbitrary set S(ω) and χ is the indicator function

whether x belongs to S(ω). Equation (2.6) is similar to the Hough transform applied
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to detecting different shapes, but here the integrand is the intensity function so our

model can extract appearance signatures. Proper selection of the set can help to

find a representation with certain invariance. Ideally, the selected set incorporates

meaningful prior knowledge or corresponds to regions of homogeneous distribution.

Mostly S(ω) in (2.2) reflects correspondences inferred from prior knowledge. But

for S(ω) in some variants of RT, the use of line sets is to obtain features with certain

properties.

For modeling appearance inside two contours, our focus is on finding a trans-

form domain representation that is invariant to relative motion between the two

contours. Several typical kinds of motions studied in this thesis and the preferred

GeTs are as follow.

• 2D rigid motion: Use designed functionals in the trace transform as discussed

in [41] or use the property of RT with respect to an affine transform for other

line set based GeT.

• 3D rigid motion: For example, vehicles. Preferably a 3D model can be used

to generate the set as in the example in section 4.4.1. Then the color of each

face can be fitted with a distribution.

• Bending: Such as human arms in Figure 2.4. GeT based on level set can be

used as described in 2.2.1.

• Local deformation: For small local deformations, a multi-resolution GeT dis-

cussed in section 2.3.3 can be applied. For larger ones, we can apply a GeT
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based on shape matching discussed in section 2.2.2 or AAM [9] with a set of

feature points to generate the point sets as discussed in section 2.1.4.3.

• Articulated motion of parts: Objects with articulated motion (walking hu-

man) can be segmented into parts using a GeT based on shape matching as

discussed in sections 2.2.2 and 3.2. The geometric set can be generated from

the segmented parts or from a skeleton model in section 2.3.1.

• Occlusion: When a section of the contour is occluded, but its convex hull does

not change much, an occlusion invariant GeT can be used with line sets and

selected functionals as shown in section 2.3.2.

In summary, the set generation can be from the contour itself, using feature

curves, and from an explicit model as discussed in sections 2.2, 2.3.1 and 4.4.1

respectively. Other possible ways of finding the geometric set can be through an

analysis of appearances such as color-based segmentation, from dynamic relations

across time such as using a motion model, or from multi-view relations when we

have multiple cameras. They are beyond the scope of this dissertation.

In Fig. 2.3, we illustrate the relations of all the GeTs discussed in this dis-

sertation. Three different elements in the original RT are changed: the geometric

functional, the indicator function, and the geometric set. By changing the indicator

function from a Dirac delta function to a Gaussian kernel, a multi-resolution GeT is

introduced in section 2.3.3. According to the size of the geometric set, we have point

set and curve set based GeTs. According to different applications of the transform,

we have contour-driven GeT and traditional image warping. Detailed discussions
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Figure 2.3: The hierarchical graph of GeT families illustrates the relations between

different types of GeTs.
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on how to design each part of the framework are provided later.

It is interesting to compare GeT with other local descriptor based appearance

modeling such as SIFT [37][38]. There are three major differences: 1) Both meth-

ods can be used for deformation-invariant appearance models. GeT is generally

a top-down approach designed for a global representation that incorporates prior

knowledge and is invariant to certain deformations and articulations, while SIFT

is generally used as a bottom-up approach that matches some local feature points

before comparing the two images. 2) In the following sections, our method is shown

to be specially suitable for modeling the appearance inside a contour, since the con-

tour itself can provide useful knowledge for establishing correspondences. 3) As a

general framework, GeT does not require feature points. But the matched feature

points using SIFT can be incorporated in the GeT framework.
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2.2 Contour-driven GeT

As mentioned in section 2.1.2, the idea of GeT first comes up when we try to

model the appearance inside arbitrary contours. Since the relative motion between

two shapes can be arbitrary deformation or even contains the articulated motion of

parts, existing methods such as affine transformation or AAM cannot be directly

applied. Essentially the spatial correspondence between the regions inside two ar-

bitrary shapes needs to be implied. In this section, we propose two types of GeTs

that make such inference based on the contour itself. In these methods, neither

explicit models or feature points are required. Both curve sets and point sets can

be generated from the contour.

The first one uses the level set representation to generate a proper curve set.

The second one generates dense correspondences inside the contour through match-

ing the contour boundaries, which is very useful when modeling the appearances

of objects with articulated motion of body parts. The application is illustrated

extensively in Chapter 3 for building the geometric appearance model of humans.

2.2.1 GeT based on level set

The Level set is an implicit way of representing the contour. Usually {x|φ(x) >

0} corresponds to the region inside the contour, {x|φ(x) < 0} is the outside region,

and {x|φ(x) = 0} is the contour boundary. Though for a given contour, such a

φ(x) is not unique, mostly φ(x) is selected as the signed distance transform, where

the contour boundary is fixed and φ(x) is the solution of the Eikonal equation [40]:
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‖∇φ‖2 = 1.Another choice of φ(x) is from the Poisson equation with the same

boundary condition [14]: 4φ = φxx + φyy = −1, which gives a smoother solution

since the equation is of second order.

If the Eikonal equation is used, each level set corresponds to the point with

equal distance to the contour boundary. The geometric set can be generated from

these level sets. Then the GeT becomes

R(c) =
∫

f(x)δ(φ(x)− c)dx. (2.7)

For c > 0, the integral is over the level set inside the contour. Because when the

contour translates or rotates, the relative position of each level set does not change,

so the transform in (2.7) is translation and rotation invariant, and it can be easily

made scale invariant by changing c. In addition, it is not sensitive to the bending

of the contour as shown in Fig. 2.4.
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Figure 2.4: Illustration of the contour-driven GeT applied to bending. Images (a)

and (b): using the level set as the geometric set makes it insensitive to bending.

Images (c) and (d): two arm images, and the average intensities of the r, g, and b

color components along each level for the two arm images.

We show that this selection of set is particularly useful for modeling the appear-
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Figure 2.5: Illustration of modified GeT based on level set designed for human arms.

(a)(b) The skeleton of the contour is obtained by thinning the contour, and the

skeleton is divided into upper and low parts. (c)(d) The geometric sets consist of

points with equal distance to the upper or lower skeletons. Each color represents a

geometric set. (e) The GeT finds the average intensity of the two arm images in

Fig. 2.4 over the geometric sets for the upper part of the arm. (f) GeT for the lower

part of the arm.
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ance of a single component contour with bending and small distortion, for example

when it is applied to modeling human arms in section 3.1. In Fig. 2.4, we plot

the curves of R(c) displaying the average intensity of arm images along different

levels c. We observe that these curves are clustered together. This indicates that

our transform is somewhat insensitive to bending. The essence of this GeT is the

rough correspondences of these curves generated from the level set.

In practice, since the contour boundary is noisy and it may change the topology

of the level set, so a modified version can be used instead. First, the contour region

is thinned to a skeleton as in Figs. 2.5 (a) and (b). Then the level set curve is

generated from the distance transform with respect to the skeleton. The modified

level set still keeps the topology shown in Fig. 2.4, but each set contains points

with equal distance to the skeleton instead of the contour boundary. These sets are

marked with different colors in Figs. 2.5 (c) and (d).

The above method is good for the contour with a single skeleton. For improved

modeling of the appearance of human arms, these sets are further divided into upper

and lower parts according to whether the point is closer to the upper or the lower

skeleton. The functional calculates the average intensity over these sets. In Figs.

2.5 (e) and (f), we see that the resulting transforms of the two arm images are very

close to each other. This modified transform is used for bending invariant matching

of human arms in section 3.1.
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2.2.2 GeT based on shape matching

Point sets can be generated by matching two contours [54]. In this case, the

transform domain coordinate is denoted as x̃ ≡ ω and the mapping S(x̃) = {x} re-

flects the dense point-to-point correspondences inferred from shape matching. Here

we focus on contour based shape matching [32], among which a descriptor called

shape context raises the benchmark in [3][34] and finds correspondences without

feature points. We incorporate this idea into a GeT and use it to model the ap-

pearance of pedestrians, where the objects have articulated motion of parts and self

occlusions.

A GeT based on shape matching is defined as follows: suppose we have two 2D

regions Γ0, Γ1 bounded by two contours C0 and C1 respectively. Denote the intensity

function in region Γ0 as A0. Let the two contours be represented by the sampled

points on them, i.e., C0 = {xc
i |i = 1, ..., N0}, C1 = {x̃c

i |i = 1, ..., N1}. Then by

applying any shape matching method to the two sets of points, one-to-one mapping

of their subsets are found as x̃m
i ↔ xm

i , for i = 1, ..., M and M ≤ min(N0, N1).

Design geometric sets for the interpolated dense correspondences as

S(x̃) = {
M∑

i=1

hi(x̃)xm
i }, (2.8)

for x ∈ Γ0, x̃ ∈ Γ1 and hi(.) satisfies hi(x̃
m
j ) = 1 for i = j, hi(x̃

m
j ) = 0 for i 6= j

as shown in section 2.1.4.3. Identity mapping is used as functionals over these sets.

Then the corresponding GeT, denoted as RΓ0Γ1 , is the GeT of the function A0 based

on shape matching between Γ0 and Γ1. RΓ0Γ1 transforms the appearance A0 inside

the contour C0 to the appearance A1 inside the contour C1. Although here we still
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use point based image warping as in (2.5), xm
i ’s are not necessarily points at places

with distinctive features such as corners or points with large curvatures.

This GeT can be used to obtain a pose-invariant representation of a pedes-

trian’s appearance. Suppose two images of pedestrians are to be matched after

background subtraction. It is difficult to compare directly because of differences in

poses and sizes of the silhouettes. However, if we focus on the side view of the per-

son, a walking human usually has six typical poses as in Fig. 2.6(a). Although each

person may have a different shape and walk differently, the topology of body parts

remains roughly the same for different people at the same pose. We can use this

property to normalize appearances at the same pose. By normalization we mean

warping the appearance to be inside a canonical shape through GeT for pixel-wise

comparison. This way, shape variations of different people are handled in a fashion

similar to obtaining a normalized appearance of a face inside a mean shape in the

AAM.

So given only one image of a pedestrian with an arbitrary pose, we can ob-

tain the normalized appearance of pedestrians at all other poses as illustrated in

Fig. 2.6(d), by using GeT based on shape matching. We assume to have canon-

ical silhouettes at six typical poses {Γi|i = 1, ...6} as shown in Fig. 2.6(a), along

with eight-part segmentation {γk
i |i = 1, ...6, k = 1, ..., 8}. We first normalize the

pedestrian’s appearance inside the canonical silhouette for the closest pose, before

synthesizing the pedestrian’s normalized appearance at other poses. Denote the

appearance inside the pedestrian’s silhouette Γ0 as A0. Here are the two steps:
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(a) (b)

(c)

(d)

Figure 2.6: (a) Canonical silhouettes of six typical poses of a walking human along

with segmentation of body parts taken from the USF database [42]. (b) Shape match-

ing between a pedestrian’s silhouette and the canonical silhouette at a similar pose.

The corresponding points are used for the GeT RΓ0Γj
. (c) Shape matching between

parts at different poses used to generate the GeT Rγk
j γk

i
. Here we show the matching

of head, left arm and left lower leg. By applying GeT to each part in a certain order,

the appearance can be transformed from one pose to another. (d) The first image is

the sample image and the second image is the synthetic image at the closest pose,

followed by synthesized normalized appearance at the remaining five typical poses.
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1. Use shape matching to find the most similar pose:

j = argmini=1,...6 MatchCost(Γ0, Γi). Use GeT RΓ0Γj
to find the normalized

appearance Aj inside Γj, as illustrated in Fig. 2.6(b).

2. Synthesize from pose j to pose i. For body part k, transfer the appearance ak
j

inside γk
j to appearance ak

i inside γk
i by applying Rγk

j γk
i

to ak
j , as illustrated

in Fig. 2.6. Transform each part in the order from the part farthest from the

camera to the part closest to the camera, so that self-occlusions are dealt with.

The final representation of the appearance does not depend on the initial pose.

Results in Fig. 2.6 show that the designed GeTs capture the structure and deforma-

tion of the parts very well. After applying GeT, appearances inside two contours can

be compared directly in the transform domain. Here for shape matching, we use the

inner distance based shape context method [34], which is insensitive to articulations.

hi(.)’s are chosen to generate thin plate spline interpolations.

Fig. 2.6 shows how GeT can deal with large deformations and articulations

without feature points, while AAM is known to be ineffective for dealing with large

deformations of feature points that do not obey Gaussian distributions [9]. The idea

of modeling appearances based on shape matching has been illustrated in [3], but

here we formulate using a GeT that can handle articulations and self-occlusions,

and apply it to model the appearances of real world objects. This method is applied

to appearance based pedestrian recognition in section 3.1.

From the above example, we summarize in Fig. 2.7 the GeT based on shape

matching for deformation invariant models that serve as an interface between shape
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matching and appearance modeling. The key assumption is: for the contour of

an object at a given time, one can always find the contour of any other object at a

corresponding time, and the regions inside these two contours have similar topology.

These two contours are considered to be of the same pose.

a. Construct a normalized shape space for each typical pose. This has three steps.

a1: All the training shapes are classified based on their corresponding poses. a2: For

each pose, an examplar shape is selected as the reference shape. All the masks of

the shapes are normalized using the GeT based on matching between these shapes

and the reference shape. a3: The normalized masks are used to construct the shape

space, and the mean shape of each pose is found as {Γi|i = 1, ...,K}.

b. Define correspondences between regions bounded by the mean shapes. These regions

are segmented into parts. Then the shape matching between the corresponding parts

is used to find dense correspondences.

c. Given a new appearance A0 inside a contour Γ0, classify its pose and normalize

the appearance for this pose. The pose can be found by finding the closest match Γj

among the mean shapes. The normalized appearance Aj is from Aj = RΓ0Γj [A0].

d. Synthesize the appearance for other poses through the GeT based on the matching

of parts, or obtain parts segmentation from the GeT of the segmentation of the mean

shapes.

Figure 2.7: GeT based on shape matching for deformation invariant models.

This whole framework is illustrated in section 3.2. In the GeT used in Fig. 2.6,

the training phases of steps (a) and (b) are simplified by using canonical contours

instead of learning the shape space. The construction of shape space is explained in
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section 3.2.1. The segmentation in step (d) is performed as follows: the binary mask

of each part is generated from part γi of Γj. Based on the shape matching between

Γj and Γ0, the mask image χγi
is transformed using RΓjΓ0 , then the transformed

mask gives the segmentation of part γi of Γ0. Body parts segmentation is illustrated

in section 3.2.2.

A final note is about the interaction between shapes and appearances. Here

the focus is to obtain an appearance model independent of the shapes, so pixel-

wise comparison can be made. It is good for application such as appearance based

recognition of pedestrians at different poses. In some applications, shape information

needs to be combined with appearance information for identification purposes.
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2.3 Miscelaneous GeTs

We introduce three additional types of GeTs. Instead of using the contour

boundary, the feature curve/skeleton based GeT uses the correspondence between

two skeletons of the shape to generate dense correspondences inside two contours.

It can be viewed as an interface between skeleton-based shape matching and ap-

pearance modeling. It is also complimentary to the GeT based on shape matching

proposed in section 2.2.2 when no canonical poses are available.

In section 2.3.2, an alternative functional is proposed to deal with occlusions

that do not change the convex hull of the shape. This section concludes with a

presentation of multi-resolution GeT (MRGeT) which is formed by changing the

indicator function into a kernel function.

The application of skeleton based GeT is illustrated in section 3.2.3 for syn-

thesizing the appearance of human with arbitrary poses. The other two GeTs are

illustrated in section 3.1 and designed to model the appearance of body parts.

2.3.1 Feature curve/skeleton based GeT

Point sets are used in GeT based on shape matching and AAM. These sets

are generated from matched contour points or feature points. But sometimes we

only have correspondences of some feature curves or skeletons. Direct interpolation

becomes difficult since the points on the curve may be nearly colinear, as illustrated

in Fig. 2.8(b). In this section, a feature curve based point set generation is pro-

posed. The feature curves can be curves along the intensity edges of the image as
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in Fig. 2.1 (a). Or it can be curves inferred from the shapes such as the skeleton.

The GeT based on the latter is used as an interface between the skeleton based

shape matching [46] and appearance modeling. The skeleton can be generated from

morphological operations, the medial axis space[46], principal curves or some prior

models space[50].

For example in Fig. 2.8, in order to deal with bending, we can also use the

correspondence between two skeletons of the shapes. The local coordinate system

along the skeleton can be specified through differential geometry. For example in

Fig. 2.8, at every point on the skeleton, the y-axis in Fig. 2.8 is the tangent vector of

the curve, while the x-axis is the normal vector. This coordinate system can be used

to generate dense point-to-point correspondences by retaining the local coordinates

at each point.

A GeT based on feature curves is defined as follows. Suppose we have two

matched curves as in Fig. 2.8, C0 = {(x(s), y(s))|s ∈ [0, 1]}, C1 = {( ˜x(s), ˜y(s))|s ∈

[0, 1]} and for s ∈ [0, 1],

S((x̃(s), ỹ(s))) = {(x(s), y(s))}. (2.9)

Then one simple way of generating S((x̃, ỹ)) for any (x̃, ỹ) inside the contour

is as follows:

1. Define the local coordinate system for every point on C and C̃ that reflects

local correspondences. For example, the tangent and normal vectors of the

curve at that point can be chosen as bases. But for end points, joints, or
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Figure 2.8: Illustration of mapping through local coordinate systems defined by skele-

tons. Images (a,b) show how to map P1 to P0 according to the local coordinate system

at Q1, which is the closest point to P1 on curve C1. C0 and C1 are matched curves

and Q0 corresponds to Q1. Image (c): The skeletons of arm images in Fig. 2.4 and

the synthetic appearance generated using the skeleton based GeT from one arm to

another are shown.

discontinuities, the system needs to be chosen carefully.

2. For each P1 = (x̃, ỹ) inside the contour, find Q1 = argmin
Q∈C1

|Q−P1|. Then

find the local coordinate of P1 at point Q1, denoted as (xloc, yloc).

3. S((x̃, ỹ)) will be P0 = (x, y) that has the local coordinate (xloc, yloc) (rescale if

necessary) at point Q0, which is the corresponding point of Q1 on curve C0.

The corresponding GeT is denoted as RC0C1
. In Fig. 2.8, we illustrate syn-

thetic images of human arms from a skeleton based GeT. Here the skeleton is ob-

tained by thinning the shape. The synthetic images are very close to the real ones.

For a more complicated skeleton based GeT that can be used for synthesizing

the appearance of a human with arbitrary articulations, the following steps can be
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(a) (b) (c)

Figure 2.9: (a,b) Illustration of skeleton based transform for the appearance of human

with articulations: (a) The skeleton of a human silhouette. (b) The part segmen-

tation. (c) Illustration of reconstructing the convex hull from the support of the

transform. Ω is the original contour. Π is the convex hull of this contour. From the

support of the transform R along each direction, the convex hull Π can be found.

followed. First, associate each segment of the skeleton with a body part, then the

human silhouette is divided into parts according to which skeleton each point is

closest to. This is illustrated in Fig. 2.9. Second, for each body part, the GeT

discussed above is used. The transform of each part is applied in the order of from

the part farthest from the camera to the closest part, to deal with occlusions. Also

note that, in order to have smooth synthesis near the boundary between body parts,

a small margin is added to each part boundary. This method is illustrated in the

experimental section.

The transform near the end points and joint points has special properties.

Retaining the local coordinates near the end point leads to a rigid transformation of

the nearby region. For example, in Fig. 2.10(a), at the end point Q, the coordinate

system is selected the same way as in Fig. 2.8, then the region marked in blue is
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(a) (b)

Figure 2.10: Illustration of coordinate systems near the end points and joint points.

(a) At end points, the blue region has rigid transformations according to the location

and normal direction of Q. (b) At joint points, the X axis is selected to be the

bisector of the two tangent lines. Expansion and shrinking is through the mappings

from A1 to B1 and from A2 to B2. The angle corresponding to these four regions

are: A1 : 2(θ̄0 − θ̄1) + 2φ,A2 : 2φ, B1 : 2φ,B2 : 2(θ1 − θ0) + 2φ. Bending is handled

through linearly warping these regions along the angler direction. The rest of the

region follows the original scheme.
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transformed rigidly according to the position of Q and the normal of the curve at

Q. The blue region contains points whose closest point on the curve is Q.

The first order derivatives at joints may be discontinuous. For example, Fig.

2.10(b) shows the joints Q0 on C0 and Q1 on C1. In this case, the angle changes

due to bending, and some regions near the joint have non-rigid distortion. The

goal is to find proper selection of these regions A1,A2,B1 and B2, as well as the

mapping between A and B. A selection scheme is proposed in Fig. 2.10(b). The

x-axis is chosen to be the bisector of the angle between two tangent lines at the

joint point. The green line marks this bisector. θ1 > θ0 is assumed, then the area

is expanded from A2 to B2. If the original scheme is used, for C1 on the right, the

region inside the angle θ0 marked with red color finds its corresponding part as the

region inside the angle θ0 on the left. However, for region inside the angle 2(θ1−θ0),

the appearance information is missing. In order to fill in this gap, the region A2 to

be expanded is selected to be inside the yellow angle 2φ, where φ is a free parameter

called the marginal angle here. It determines the area of A2. Since points in A2

do not follow the original scheme, the gap region on the right needs to include the

marginal angle. So B2 is selected as the region inside the angle 2(θ1 − θ0) + 2φ.

Points outside these two regions follow the original scheme. The mapping from A2

to B2 expands A2 linearly along the angler direction. The mapping between A1 and

B1 is similar.

Not all GeTs are invertible. Recall that the basic RT is fully reconstructible

with proper selection of the resolution of the projection [19, 21]. However, when

the geometric sets are changed into arbitrary ones as in (2.6), the inverse transform
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may not be available. Intuitively, we need to have enough number of projections

along these sets to make an invertible transform. In this case, it is possible to form

algebraic equations of pixel values and apply algebraic reconstruction techniques

[21] to solve these equations. For some applications such as image synthesis, the

transform needs to be inverted so that the appearance can be reconstructed from

the transform. A simple way of building an invertible transform is to select point

sets that carry a bijective mapping 1 from (x, y) to (x̃, ỹ) in the transform domain.

This is discussed in sections 2.2.2 and 2.3.1. But the inherent problem with imposing

point-to-point correspondence is that when the resolution is low, the correspondence

is not reliable. In that case using a geometric set that contains more than one point

may be more reliable. The multi-resolution representation in section 2.3.3 also helps

to solve this problem.

Feature curve based GeT is complementary to GeT based on shape matching

when no canonical shapes are available or when feature curves can be more reliably

tracked. For example, the appearance of a human with arbitrary articulations cannot

be handled by methods in section 2.2.2. But it is possible to use the skeleton based

GeT and the result is shown in section 3.2.3. One may argue that the feature curves

can be represented by a set of points, then similar interpolation as in Eq. (2.8) can

be used. But all the interpolation methods including thin plate spline only work

well for region inside or near the convex hull of these points. So when the convex

hull of the feature curves does not cover most of the contour region, such as the case

in Fig. 2.8 (a), simple interpolations are not effective.

1A mapping which is one-to-one and onto and thus invertible.
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2.3.2 Selection of geometric functional

In (2.6), the geometric functional can be changed along the geometric set as in

trace transform [41] to obtain different statistics. Some examples of the functionals

are listed in section 2.1.4. We now show a useful geometric functional that helps to

deal with occlusions.

The following geometric functional can be used to find the average intensity

over set S.

Gs(f(x)) =

∫
s f(x)dx∫

s H(f(x))dx
, (2.10)

where H(.) is the Heaviside function and we set H(0) = 0. Here f corresponds to

the intensity in a contour, and f(x) > 0 for x ∈ Ω, and f(x) = 0 outside Ω. So

H(f(x, y)) is equivalent to χ(Ω) and gives the mask of the contour region.

Now we show why the functional in (2.10) makes a GeT insensitive to occlu-

sions that do not change the convex hull of the shape. First, the set S is selected

to be straight lines, so the GeT is

R(θ, p) =

∫
f(x, y)δ(x cos θ + y sin θ − p)dxdy∫

H(f(x, y))δ(x cos θ + y sin θ − p)dxdy
. (2.11)

In (2.11), if f is constant inside Ω, then the transform will be constant when

the line passes through the contour region and zero otherwise as shown in Fig. 2.9(c).

Therefore, the shape information is partly lost. From the support of the transform,

we can only reconstruct Π, the visual hull of the contour. This reconstruction is

well studied in computational geometry. For all the contours that have the same

convex hull and the same intensity inside, their GeTs are identical.

So the GeT in (2.11) is unable to differentiate these appearances. However
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it becomes useful when the appearance inside the convex hull instead of the exact

shape is to be modeled. For example, part of the contour is missing but the visual

hull does not change much. Fig. 2.11 illustrates cases like this, when a human walks

sideways to the camera and the torso is partly occluded. If the average intensity

along each line does not change much because of occlusions, such a GeT can be used

for occlusion invariant appearance models.

To illustrate the accuracy of such a representation, we study the reconstruc-

tions from two different transforms in Fig. 2.11. The first one is from the original

RT of a function f(x) inside Ω as in (2.1). The construction is through filtered

back-projection. As observed from the figure, the exact shape and appearance are

recovered. But the appearance in the missing part is not inferred. The other one

is from the GeT defined in (2.11), which finds the average intensity along each line.

From the the support of GeT, the binary mask of convex hull is obtained as χ(Π).

Then the RT of f(x) inside the convex hull Π is estimated as

R̃(θ, p) = R(θ, p)
∫

χ(Π)δ(x cos θ + y sin θ − p)dxdy, (2.12)

which is the product of the average intensity along each direction and the corre-

sponding RT of the binary mask. Finally reconstruction is achieved by applying

the filtered back-projection to the estimated RT R̃. This reconstruction gives an

estimate of the appearance inside the convex hull. A comparison of this estimate

with the true appearance inside the convex hull in Fig. 2.11 shows fairly accurate re-

construction. Thus using such a GeT helps to represent the appearance with partial

occlusions. In section 3.1, a method based on this GeT is used for fingerprinting tor-
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sos with occlusions. It essentially gives a very good estimate of the average intensity

along each line even for regions of non-uniform intensities.

Figure 2.11: Two illustrations of partially occluded human torsos as examples of

when the contour changes but the convex hull remains similar. Images 1 to 4 con-

tain a partially occluded torso, the ground truth appearance inside the convex hull

containing the torso, the reconstructed appearance from the RT in image 1, and the

reconstructed appearance by using filtered back projection from the average intensity

times the RT of the convex hull as in (2.12). Images 5 to 8, show another set of il-

lustration as in 1 to 4. Note in image 6, the ground truth image has outliers because

the arm occludes the torso.

2.3.3 Multiresolution GeT (MRGeT)

The resolution problem becomes a primary concern when using explicit model

based methods, because it is not reliable to impose point-to-point correspondences.

Here we propose a multiresolution geometric transform (MRGeT) that can deal with

noisy observations and inexact contour extraction at the proper scale space, as well

as properly combine the appearance and shape information. Specifically, we can

change the χ(.) in (2.6) into the following kernel function:

δε(x) =
1√
2πε2

exp(− x2

2ε2
),
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where ε determines the resolution of the kernel. Note limε→0 δε(x) = δ(x). If x is

the distance of the point from the geometric set S, then by replacing χ(.) with δε

in (2.6) will produce a weighted integral in the neighborhood of the set S. Such a

kernel is also denoted as χε
S(x). In the case of basic RT, δε corresponds to a line

spread function and ε determines the width of the spread.

The multiresolution representation can be used to combine the shape and

appearance information. Consider introducing a kernel to the functional defined in

(2.10). The key is to use different resolution parameters in the numerator and the

denominator. For the basic geometric set of straight lines, we have

R(θ, p) =

∫
f(x, y)δε1(x cos(θ) + y sin(θ)− p)dxdy∫

H(f(x, y))δε2(x cos(θ) + y sin(θ)− p)dxdy
. (2.13)

By changing ε1 and ε2, we achieve different representations for various pur-

poses.

• When ε1 → 0, ε2 → 0, R(θ, p) corresponds to the average intensity over a

straight line, as discussed in section 2.3.2.

• When ε1 → 0, ε2 → +∞, the denominator will be almost constant. So R(θ, p)

will be a scaled RT of f(x, y). It can be fully reconstructed using filtered

backprojection.

• Other combinations of ε1 and ε2 will give combined representations of shape

and appearance at different resolutions. ε1 adjusts the resolution of the ap-

pearance. ε2 depends on if we need to model the appearance in the actual

shape or its convex hull. Using a bigger ε2 allows a more accurate description
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of the shape, since R(θ, p) is closer to a scaled RT. Using a smaller ε2 will

make R(θ, p) closer to the average intensity along the line, thus modeling the

appearance inside the convex hull. It will help to handle occlusions that do not

change the convex hull of the shape. When the shape is closer to its convex

hull, ε2 can be bigger so that the GeT is close to being fully reconstructible.

Another nice property of R(θ, p) is that it still carries properties of a basic RT

with respect to the similarity transform. Suppose f̃(x, y) = f(T (x, y)), where

T (x, y) = s




cos(α) sin(α)

− sin(α) cos(α)







x

y


 +




tx

ty


 ,

then the transform of f̃ can be easily shown as

R̃(θ, p) = R(θ − α, tx cos(θ − α) + ty sin(θ − α) + sp). (2.14)

Following (2.14), the registration with respect to the similarity transform can

be easily obtained. If we register two contours by first aligning their centroids and

then scale them according to the ratio of area, the only unknown in (2.14) is α,

which simply corresponds to a translation in the transform domain. Thus it is very

easy to match the appearances inside two contours when they are related by a 2D

similarity transform.
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Chapter 3

Modeling objects with articulated motion

3.1 Human Identification

Chapter 2 mainly dealt with the theoretical basis of GeT. In Chapter 3, we

apply all the proposed GeTs to real world scenarios. We show how GeT can be used

as a generic tool for modeling the appearance inside various contours.

In this section, GeTs are designed to incorporate geometric context into ap-

pearance modeling for objects with articulated motion, bending, and local deforma-

tions. The identity of objects is linked to the representation of appearances in the

transform domain. The appearances of human and body parts provide very good

examples for our study. We use them to illustrate all the methods introduced in the

last chapter. It is useful to model the appearance of a human because sometimes the

appearance is more reliable than gait, for example, in the application of persistent

tracking.

In this section appearance matching is set in a still-image-to-still-image frame-

work. Segmented body parts are assumed to be given, and we test each type of GeT

by designing them for body parts recognition and combined human identification.

We show that GeT based on shape matching without parts information gives su-

perior recognition results compared to rigid template matching with body parts

segmentation.
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Figure 3.1: Sample of USF database from 3 classes. Walking pedestrians with man-

ually segmented body parts. The first image for each class is in the gallery. The

second image is in the probe set.

We compare three approaches with the same setting using the USF database

[42] as in Fig. 3.1, where the body parts have been manually segmented and the

size of each image is around 125× 72. The first two use the part information while

the third one does not. Approach I: we design GeT for each body part and study

the matching of the exact appearances of parts as well as combined recognition

of humans. The task of matching the exact appearances of parts is still not easy

because of low resolution, poor quality imagery and errors in segmentation. We

apply different transforms for each body part according to their motions and possible

occlusions. Because the right arms and right legs are often occluded in the dataset,

we did not match these parts for recognition purposes. Approach II: as a comparison,

we directly match each part using rigid templates, then combine them for human

identification. Approach III: without using the information of manually segmented

parts, we apply GeT based on shape matching to deal with articulation, as discussed

in Section 2.2.2.

The experimental setting is as follows. There are 71 classes in this dataset. For

each class, we have one image in the gallery and 28 in the probe set that are taken
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under different conditions. We classify the probe image according to its distance to

the gallery image either in the transform domain as in approach I and III, or in the

pixel domain as in approach II. For approach I, each part is represented using the

designed GeTs before distances are calculated. The properties of MRGeT in (2.14)

are used to align the two parts.

Figure 3.2: Sample results for matching body parts using GeT. Probe images from

three classes are illustrated, corresponding to subjects in Fig. 3.1. Here each class

has five images for one part. The first image is the probe image. The second image

is the correct match in the gallery using GeT for parts. The next three images show

the top 3 matches in the gallery. The ranks of the correct match for each class and

each part are: from top to bottom, 2,1,58 for head. 3,1,1 for torso, 18,11,1 for the

left arm, 5,16,3 for the left upper leg and 2,5,11 for the left lower leg. The ranks of

the correct match of human by combining parts are 1,1,4 for approach I, and 6,13,10

for approach II.
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For approach I, our choice of GeT is as follows.

• Head: Use MRGeT in (2.13) with ε1 = 2, ε2 = 4. Choose ε2 = 4 because the

actual shape is close to its convex hull.

• Torso: Since occlusion needs to be considered while the convex hull of the

shape does not change much, we use MRGeT in (2.13) with ε1 = 2, ε2 = 2 so

that the transform is close to the average intensity along the line.

• Left Arm: We use the modified GeT based on level set as discussed in section

2.2.1 and illustrated in Fig. 2.5.

• Left Upper Leg: Mainly 2D rigid motion, choose ε1 = 2 and ε2 = 3 in (2.13).

Small ε2 can allow a certain degree of occlusion.

• Left Lower Leg: Mainly 2D rigid motion, choose ε1 = 2 and ε2 = 4.

For approach II, each part is matched using the sum of squared distances by

only allowing rigid transformations. Note for the torso region, we use the appearance

inside the convex hull to reduce the effect of occlusion. For the above two methods,

the distances of each part are normalized to a standard log-normal distribution as

illustrated in Fig. 3.3(c). For combined recognition, we classify the probe image to

the class that has the least weighted distance. The results for matching each body

part as well as their heuristically chosen weights are shown in Fig. 3.2 and Table

3.1. The part numbering is in the order shown in Fig. 3.2. Figures 3.3(a)(b)(d)

show the CMC curves for matching each body part and the combined recognition

results.
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For approach III, the image in the gallery set is transformed to the normalized

appearance at all six poses using the GeT described in Section 2.2.2. The image in

the probe set is transformed to the normalized appearance at its closest pose and

the corresponding mirror pose. By the mirror pose, we mean two similar silhouettes

with different topology of parts, such as pose 1 and 4 in Fig. 2.6(a). This helps to

obtain more robust matching results. Then we match the transformed image with

the normalized gallery image at the same pose and choose the closest match. This

way we accomplish human identification without part segmentation.

Part No. 1 2 3 4 5 All

GeT 45.3 65.6 27.0 31.1 26.8 87.9

Templates 36.4 52.4 21.6 20.4 26.2 64.9

GeT(no parts) - - - - - 69.0

weights 0.2 0.4 0.13 0.13 0.13

Table 3.1: Top One Recognition Rate (%)

As we can see, approach I outperforms approach II for each body part and both

I and III do better than II for combined recognition of humans. Comparing approach

I and II for part recognition, we observe that GeT gives 10% higher recognition rates

for parts 2 and 4. It is mainly due to the ability of GeT for handling occlusions.

Overall, matching the exact appearances of parts is a difficult task, as we see in

Fig. 3.2. Part 3 usually contains very few pixels and is very blurred, thus the

contour-driven GeT only gets 6% higher rate than rigid templates. For part 5, the

GeT method is only slightly higher, because part 5 displays mostly 2D rigid motion
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Figure 3.3: (a)(b) Cumulative matching curves (CMC) of matching parts for two

methods. (c) Illustration of normalizing the distance for part 1(head). We observe

that the distance has similar distribution as a log-normal distribution with the shape

and scale parameters σ,m. The data is normalized to have m = σ = 1 and shown

along with the scaled target distribution. (d) Combined recognition rate of human

appearance for all three cases.
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with no occlusion. For overall recognition, despite the non-rigid motion that the

probe images have with respect to the gallery images, GeT’s top one recognition

with part information is as high as 87.9%, while the contour-driven GeT without

part segmentation gives 69.0%. The superior performance of approach III over II

shows that the designed GeT handles the articulation better even though approach

II uses the part information.
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3.2 Body Part Segmentation and Video Retrieval

In the last section, we showed that the GeT based on shape matching gives

better recognition results even without using any information on body parts. In this

section, we apply the GeT to video-to-video setting without prior segmentation of

body parts. We will follow the framework proposed in Fig. 2.7 for automatic body

parts segmentation, part-based human identification, and surveillance video retrieval

using the Honeywell database. First, this section gives a complete illustration of

the framework in Fig. 2.7, showing how to use GeT based on shape matching for

modeling objects with articulated motion. It starts with a training phase that learns

about shape space of typical poses. Then based on the shape space constructed for

each pose, the noisy human silhouette due to background subtraction errors can

be smoothed. Second, this section shows how to use GeT for automatic body part

segmentation. Once we have the segmentation, color features for each body part

can be extracted and used for human identification and surveillance video retrieval.

That helps to solve difficult cases when the pedestrian changes only part of clothes

such as putting on a jacket. Third, as an extensive discussion, this section gives

examples of how to use the skeleton based GeT for synthesis of human appearance

at arbitrary poses.

In the Honeywell database, there are 30 subjects in one camera where they walk

along similar paths as illustrated in Fig. 3.4. People change part of their clothing in

different videos, so that there are two different kinds of identity: clothing identity

ID1 and person identity ID2. ID1 requires the same person with the same clothing.
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ID2 requires the same person but allows different clothing. Each subject has one

or two non-overlapping short sequences of about 21 frames each. In total, there are

54 short sequences. Based on ID1, there are 30 classes and based on ID2, there are

only 9 classes. Our goal is to match these short sequences. Given one short video,

we try to retrieve similar videos from the database according to both ID1 and ID2.

A system that automatically segments the body part and extracts the signature of

its appearance is used to accomplish this goal.

Figure 3.4: Honeywell database along with background subtraction results. It con-

tains 54 short sequences. There are 30 classes (each considered as a subject) based

on ID1 and 9 classes based on ID2. From left to right, except for subjects one and

six, the neighboring four subjects are the same person, i.e., having the same ID2.

For example, subjects two to five are the same person with different clothing.

Compared with the USF database, this set is more difficult because of noisy

background subtraction and the absence of good canonical templates of typical poses

like the one in Fig. 2.6(a). But the key assumption for the algorithm in Fig. 2.7

still holds: each body part has similar topology for different people with the same

pose.
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The outline of our method is as follows. Step (a) in Fig. 2.7 is carried out to

construct a normalized shape space, followed by step (b) of manual part segmen-

tation of the mean shapes. These steps form the training phases of our algorithm.

Following the ideas in steps (c) and (d), when a query sequence comes in, first these

frames are temporally aligned with the mean shapes, then the silhouette is normal-

ized and projected onto the shape space to be smoothed. The smooth silhouette

is again matched with the mean shapes and GeT based on this matching is used

to produce parts segmentation. Finally, since each part has many samples from all

the frames, instead of the small region in a single image as in section 3.1, the color

features can be more reliably extracted. Video retrieval and human identification

are done based on these features. Implementation details of each step in Fig. 2.7

are given below.

3.2.1 Shape Space Construction

Because the silhouettes are very noisy, the left and right boundaries of the

mask along each row are used for shape representation, as illustrated in Fig. 3.5.

One video sequence is taken from each subject for training purposes. Step (a1)

of Fig. 2.7 is implemented through the temporal alignment of these 30 training

sequences. The alignment takes two steps. First, the period is estimated through

matching the shapes within one sequence, then the length of each sequence is cut to

one period. Second, dynamic time warping (DTW) is used to find the best sequence

alignment. Both methods have been well studied in the gait recognition literature
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[53]. Subject ten is selected as the reference. The alignment results with respect to

the reference are shown in Fig. 3.5.

Figure 3.5: Each sequence is temporally aligned with respect to subject ten using

dynamic time warping. Illustrated here are six typical poses along with background

subtraction results and contour representations using row boundaries.

In step (a2), all the binary masks corresponding to the same pose are normal-

ized using the GeT based on shape matching between the contours of each subject

and subject ten. In other words, the normalization step applies R̃Γs
pΓ10

p
to binary

mask χΓs
p
, where s indexes the subject and p indexes the pose. Note the transform

is denoted as R̃ because the matching between Γs
p and Γ10

p is based on their row

boundaries. This normalization, as illustrated in Fig. 3.6(a), accounts for the varia-

tion in sizes, and it essentially reduces the factor of non-linear deformations between

the shape of different people so that a linear learning method such as the principal

component analysis (PCA) can be applied .

In step (a3), six typical poses are selected and the PCA is used to construct

a shape space for each pose in the normalized domain. In Fig. 3.6(b), the mean

shapes found by thresholding the average masks are illustrated. For each pose,

63



thirty normalized masks, one from each subject is used to learn the shape space

using PCA. Since all these masks are very noisy, we only keep one eigen-vector

and the mean shape in each constructed shape space. Though this construction

is limited, but with the noisy data available, it is a fair approximation which can

generate fairly smooth masks when noisy masks are projected into this space, and

is better than using merely mean shapes since it leaves room for the projected mask

to have customized shapes.

(a) (b)

Figure 3.6: Illustration of how to construct the shape space. (a) For pose one, all the

appearances and masks in the training data are ’normalized’ using the GeT based

on shape matching. These masks are used to construct a shape space. (b) Top

row: average masks for each typical poses. Middle row: appearance inside the mean

shapes, which is obtained by thresholding the first row. Bottom row: manual part

segmentation for the mean shapes. It contains eleven parts as listed in Table 3.2.
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3.2.2 Body Part Segmentation

Once the mean shape of each pose denoted as Γ̄p is found, they can be manually

segmented into part γq
p as shown in Fig. 3.6(b) and described in step (b) of Fig.

2.7. q is the index for each part. The one-time manual segmentation result is used

as the reference for the automatic segmentation below.

Now for the probing phase, given a short walking sequence, the following

procedures are carried out. The shape matching algorithm used in this section is

based on the standard matching technique using shape context [3].

• Following step (c), align the new sequence with the mean shape through DTW

for pose classification. The pose p for each frame f is determined.

• Normalize the noisy masks and project into the shape space of the correspond-

ing pose to obtain a smooth silhouette. The normalization uses R̃Γf
p Γ̄p

(.). The

normalized masks are projected onto the eigen-shapes to obtain the smooth

silhouette Γ̃f
p . The normalized appearance Ãf

p inside the smooth silhouette Γ̃f
p

is also obtained and illustrated in Fig. 3.7(a).

• Following step (d), based on the shape matching between the mean shape Γ̄

and the smooth mask Γ̃, part segmentation can be obtained. That is, apply

RΓ̄pΓ̃f
p

to χγq
p

to obtain the part segmentation for Γ̃f
p . Note this transform R

is through the matching of exact contours bounding Γ̄p and Γ̃f
p , unlike that of

row boundaries in R̃ above.

• Color features of each part are obtained and used as the signature for matching
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during video retrieval and human identification tests. All the pixels of each

body part across time are counted. In Fig. 3.7(b), the results of part seg-

mentations and two dominant colors for each body part are illustrated. The

two dominant colors are the two means of a Gaussian mixture model. In the

matching test, the color histogram is used for a more accurate description of

color distribution.

(a) (b)

Figure 3.7: Normalized appearance of pedestrians along with parts segmentation and

appearance signature extraction. (a) The original image, background subtraction,

and ’normalized’ appearance Ãf
p in the smooth silhouette. (b) Each column of the

original image is followed by two columns showing the part segmentation for the

smooth silhouette marked with the two dominant colors for each body part estimated

through a Gaussian mixture model.

As seen in Fig. 3.7(b), the segmentation and the color signature are pretty

accurate. The video retrieval tests based on the color histogram of each body parts

are shown in Fig. 3.8. In the tests, the query video is matched with the remaining

53 sequences and the top three matches based on the color of each body part are

illustrated. The Bhattacharayya distance [4] is used as the measure between his-
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tograms. The part-based retrieval gives very interesting results. For example, the

leg based retrieval finds other subject wearing jeans of similar colors. The changes

in clothing for the lower body do not affect the retrieval results based on the torso

or the arm.

Figure 3.8: Illustration of retrieval results based on the color of each body part. The

triplet of images in the first column includes a sample image from the query video

along with the image showing two dominant colors of each body part. The other two

columns show the top three retrieval results based on each body part in the following

order: 1. head, 2. right lower arm, 3. torso, 4. right upper leg, 5. right lower leg,

and 6. right shoe.

To give some quantitative analysis of our method, two experiments are carried

out. Experiment I uses one sequence from each subject as the gallery. Note that

these thirty sequences are selected from the same walking videos used for shape

space construction, but each sequence is only partially overlapping with the selected

sequences for shape learning. The remaining twenty-four sequences make up the

probe sets. The correct match is according to ID1, so there are thirty classes in

total. Experiment II matches each sequence with other fifty-three sequences. The

correct match is decided using ID2, so there are nine classes and fifty-four test
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data. The matching results for each body part and the combined recognition rates

are shown in Table 3.2. The weights for the combined recognition are heuristically

chosen, based roughly on the area of each body part.

Part No. 1 2 3 4 5 6 7 8 9 10 11 All

A 75.0 70.8 79.2 62.5 87.5 66.7 50.0 62.5 58.3 45.8 62.5 95.8

B 87.5 100.0 87.5 83.3 100.0 75.0 62.5 79.2 79.2 70.8 75.0 100.0

C 87.5 100.0 91.7 83.3 100.0 83.3 79.2 83.3 79.2 75.0 79.2 100.0

D 100.0 96.3 85.2 87.0 98.1 81.5 79.6 75.9 85.2 83.3 77.8 96.3

E 100.0 96.3 87.0 94.4 100.0 88.9 90.7 88.9 90.7 87.0 88.9 98.1

F 100.0 98.1 90.7 94.4 100.0 94.4 94.4 92.6 92.6 88.9 92.6 100.0

G 85.2 72.2 51.9 61.1 66.7 59.3 48.1 55.6 55.6 55.6 44.4 66.7

H 79.6 38.9 18.5 31.5 42.6 31.5 22.2 33.3 27.8 31.5 25.9 42.6

I 0.161 0.081 0.081 0.048 0.161 0.081 0.161 0.048 0.048 0.065 0.065

Table 3.2: Recognition rates for the Honeywell database. The order of the column

is: 1. head, 2. right upper arm, 3. right lower arm, 4. left arm, 5. torso, 6. upper

right leg, 7. lower right leg, 8. upper left leg, 9. lower left leg, 10. right foot, 11. left

foot, and 12. all parts combined. Each row represents the following. A-C: top one,

two, three recognition rates for Exp I. D-F: top one, two, three recognition rates for

Exp II. The above rates show the percentage of query videos whose correct match is

in the top n matches. G-H show the percentage that all top two or top three matches

are correct ones in Exp II. I gives the heuristically chosen weight of each part for

combined recognition.

For experiment I, we observe that torso, the right lower arm, head and the

right upper arm give the best recognition results, meaning they are reliable cues to

identify the same person with the same dress. For experiment II, head shows the
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highest rate, because subjects with the same ID2 have the same hair color, making

it the most reliable cue to determine ID2. Torso and the right upper arm regions

also give very high rates. Since there may be more than one sample belonging to

the same class in the gallery during queries, the rates that all top two or top three

matches belong to the correct class are also listed. The combined top one recognition

rates are 95.8% and 96.3% respectively.

The role of GeT in the algorithm is very important. The first transform

R̃ reduces the effect of different sizes, and makes sure that the appearance of a

pedestrian can be compared at the same scale. The normalization also helps to

build a linear shape space. The second transform R is used to infer body parts

segmentation. This idea can be used broadly in other segmentation methods.

3.2.3 Synthesis

In section 2.3.1, we introduce a way of generating point sets from the skeletons.

Here we apply the corresponding GeT to image synthesis.

Figure 3.9: Images 1 and 2: The original image and its skeleton. Images 3,4 and 5:

Synthesis results, the ground truth and the skeleton. Next 3 images: Another set of

synthetic imagery.
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For this experiment, we assume that the corresponding skeletons across frames

are already found. Then we use the skeleton based GeT proposed in section 2.3.1 for

image synthesis. The appearance of a human with articulated motion in subsequent

frames can be generated from the GeT of the appearance in the first frame. The

results are shown in Fig. 3.9 together with the ground truth, following the methods

illustrated in Fig. 2.9.

We observe that the curve based GeT can handle articulated motion with large

nonlinear deformation and occlusions. Also in many cases feature curves are easier

to track or can be generated from the contour boundary. Then a curve based GeT is

more desirable for image synthesis. Although synthetic images have artifacts due to

out-of-plane rotation etc., our method uses a very simple model and can be further

developed for image based rendering.

3.2.4 Conclusion

In summary, a general definition of geometric transform is given to unify Radon

transform, trace transform and image warping. We show how to design each element

of GeT, particularly the geometric set and functional, to incorporate geometric

context into appearance modeling. GeT is shown to be useful in a broad range of

applications. Future work includes further exploration of contour driven GeT and

designing GeT for multi-view sequences.
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Chapter 4

Structure from Planar Motion

4.1 Planar Factorization

In Chapter 4, we study the characteristics of vehicles in surveillance videos.

It is crucial to study the 3D geometry of planar motion in perspective cameras

to understand the correspondence problem for vehicles. A very efficient planar

factorization method is proposed and implemented in a complete automatic vehicle

reconstruction system.

This section gives the derivation of standard planar factorization. We start

with the importance of studying planar motion and present a literature review of

factorization approach. Then we present two key observations for planar motion

which enable a simple mathematical formulation. The formed measurement matrix

has lower rank than general motion, and it is a non-linear function of the observed

feature point coordinates. We obtain the 3D structure of the vehicle through ap-

plying SVD over this measurement matrix. Our method is compared with methods

for general motion and quantitative and qualitative evaluations of our methods are

provided.
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4.1.1 Background

Structure from planar motion is motivated by applications such as parking lot

surveillance and traffic scene analysis. Planar motion is ubiquitous in surveillance

videos, simply because most objects can be assumed to move on the typically planar

ground. However, an approach that fully exploits the constraints of motion on the

ground plane has not been reported. Planar motion is also quite often confused with

the motion of a planar object. Throughout this thesis, planar motion means that

the motion of a 3D object is constrained to lie on a plane. In a later section, we

clarify the differences and elaborate on a dual relationship between planar motion

and planar object. In this dissertation, we focus on a monocular sequence captured

by a stationary perspective camera, in which a rigid object moves on the ground

plane.

Among all structure from motion (SfM) methods, the factorization approach

[51] has been very popular because as a batch processing method, the reconstruction

can be easily carried out through singular value decomposition (SVD). Generally, the

observation matrix is factorized as a bilinear product of motion and shape matrices.

SVD is then used to find the factorized components, at the same time denoising the

data. Our goal is to find a factorization method specialized for planar motion.

The factorization approach for SfM has been studied extensively in the last

decade [23]. The essence of factorization approach lies in finding the right rank

constraint, which corresponds to the lowest rank among all the factor matrices. The

main goal is to find a lower rank condition by exploiting the property of certain
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camera model, shape or motion [1]. Rank constraints have been found for different

camera models, or different types of objects such as planar objects, rigid, and non-

rigid objects. Another branch of study has focused on the rank constraints for

certain kinds of motion, such as linear and planar motions.

The study of rank constraints for certain types of motion can be found in [15]

[39] [44] [55] etc. In [15], Han et al. study the case of linear motion with constant

speed for multiple objects, and develop a method of scene reconstruction through

factorization. In [44], Quan et al. proposed a method for decomposing a 2D im-

age into two 1D images, so that the structure can be reconstructed from images

captured under constrained planar motion, but they restrict the image plane to be

perpendicular to the motion plane. In [39] and [55], matrices formed by displace-

ments of feature points are shown to have a lower rank condition under constrained

motion. Then iterative estimation of motion and depths is carried out. Although

these methods can be used to recover the motion plane, they do not support a direct

factorization. We propose a generic factorization method for structure from planar

motion under perspective projection. A measurement matrix specialized for planar

motion is formed in order to lower the rank condition. We exploit the constraint

of planar motion to find a simple scaling method instead of using the fundamental

matrix and epipoles as in [47], where the authors propose a factorization approach

for a perspective camera.

Other methods for structure from planar motion (SfPM) such as [39][49][55]

have been proposed. Many of them need non-linear optimizations or iterative

schemes and sometimes cannot guarantee a global optimal solution. Our method
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only requires SVD and linear operations with no iterations. Our formulation is

similar to [49], where the authors consider the reconstruction of perspective depths

from correspondences across only two frames.

In our method, the camera does not have to be calibrated. For an uncalibrated

sequence, our method requires the estimation of the focal length and ground plane

constraints (GPC), so that the motion plane is known. We use vanishing points and

lines [16][33][56] to find the GPC.

In this dissertation, planar factorization refers to the factorization method for

structure from planar motion. The rest of Chapter 4 is organized as follows. Section

4.1.2 gives the derivation of the standard planar factorization, followed by a com-

parison with factorization for general motion and both quantitative and qualitative

analysis of the algorithm. Since the measurement matrix is formed differently, the

algorithm has different properties. The detailed theoretical analysis is given in sec-

tion 4.2 along with a method for handling directional uncertainties in observations.

Section 4.3 clarifies the difference between planar object and planar motion and

explains their dual relationship. Section 4.4 shows how to use our method to build

a fully automated vehicle reconstruction system. Section 4.4.2 concludes Chapter 4.

4.1.2 Standard planar factorization

In this section, we derive the factorization method for structure from planar

motion and present the detailed algorithm. Then we compare our method with the

factorization method for general motion under a perspective projection.
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We do not assume that the camera is calibrated. The calibration and ground

plane constraints can be estimated through a number of ways. In the next section,

we show a simple semi-automatic calibration scheme using vanishing points and

lines. Other automated calibration methods can also be applied here. Once the

calibration and GPC is estimated, a matrix is constructed from the observations,

which after properly scaling has a rank of at most 3.

4.1.2.1 Derivation of our method

Consider the selection of the camera coordinate system (CCS) and the world

coordinate system (WCS) shown in Figure 4.1, where the x-y plane in WCS lies on

the ground plane. We focus on the typical case that the image plane is not parallel

to the ground plane.

Figure 4.1: Selection of world coordinate and camera coordinate systems. O is the

camera center.

In CCS, denote the direction of x- y- and z-axis of WCS as gx, gy and gz

respectively, and the origin of WCS as g0. f is the focal length. As mentioned

above, all of these vectors can be estimated.
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Suppose a point p is the image of a point P in the 3D space. Its representation

is pc = (x, y, f)T in the CCS. Then Pc = λ(x, y, f)T , where λ is the perspective

depth. Its representation in WCS is,

Pw =




gT
x

gT
y

gT
z




(λ




x

y

f




− g0), (4.1)

and we denote

[
gx gy gz

]
=




ρT
1

ρT
2

ρT
3




for convenience.

According to our assumption, the only unknown in the above equation is λ.

Here are some key observations about the factorization method. If the feature points

are from a rigid object moving on the ground plane, then each of them will move

on a plane parallel to the ground plane, and hence their z-coordinates in WCS will

remain constant across all frames. Because of rigid motion, its x- and y-coordinates

in WCS will take a 2D Euclidean Transform.

Note in [49], similar constraints are used for only two frames. In [49], quadratic

equations of perspective depths are formed using two facts: the displacement vectors

between corresponding 3D feature points at two time instants are parallel to the

ground plane, and the 3D distance between any pair of feature points at each time

instant does not change over time because of rigidity. But since they only consider

a pair of frames and there is no denoising process, the coefficients of the equations

are very sensitive to noise, yielding solutions that are often unstable and sometimes
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even imaginary. As shown below, our method makes use of multiple frames and

the factorization approach, and therefore, is more robust to noise and incorrect

calibration.

Suppose we have an image sequence from a stationary perspective camera, in

which a rigid object moves on the ground. Assume that N visible image points lie on

the object, such as a vehicle being tracked over M frames. We will use factorization

to estimate the structure of the vehicle.

Let λti be the perspective depth of point i in frame t. Then from (4.1), all

points should satisfy

P ti
w =




gT
x

gT
y

gT
z




(λti




xti

yti

f




− g0) ≡ λti




uti

vti

wti




− s (4.2)

s should be the same for all points across all frames. Then if we form a matrix from

the x and y components of P ti
w , and using the fact that they take a 2D Euclidean

transform, we will have

W as




λ11u11 λ12u12 ... λ1Nu1N

λ11v11 λ12v12 ... λ1Nv1N

... ... ...

... ... ...

λM1uM1 λM2uM2 ... λMNuMN

λM1vM1 λM2vM2 ... λMNvMN



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=




r1
11 r1

12 t1x

r1
21 r1

22 t1y

...

rM
11 rM

12 tMx

rM
21 rM

22 tMy







x1 x2 ... xN

y1 y2 ... yN

1 1 ... 1




(4.3)

where W is the rescaled observation matrix. Rt =




rt
11 rt

12

rt
21 rt

22


 is an or-

thogonal matrix and corresponds to the rotation matrix for frame t.

[
tkx tky

]T

corresponds to the translation vector for frame k.

[
xi yi

]T

are the x-y coordi-

nates of point i, but because of the ambiguity in selecting the reference coordinates

for motion and structure, they are not necessarily defined as WCS. Also note that

the contribution from s is absorbed into

[
tkx tky

]T

.

Therefore the rescaled matrix W will have a rank of at most 3. To find the

scale, we use the fact that the z-component of each feature point in WCS remains

constant across all frames, i.e. z(P ti
w ) = z(P si

w ) for s = 1, ..., M . Then we can obtain

λtiwti = λsiwsi. Thus the ratio of λs can be recovered along each column in W.

Based on this equality, we can set λtiwti = ci, for t = 1, ..., M , and i = 1, ..., N .

Typically wti 6= 0 and ci 6= 0 unless the feature point lies on the vanishing line of

the ground plane. So we substitute λti and move all the unknowns to the right hand

side, which results in,
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W̃ as




u11/w11 u12/w12 ... u1N/w1N

v11/w11 v12/w12 ... v1N/w1N

... ... ...

uM1/wM1 uM2/wM2 ... uMN/wMN

vM1/wM1 vM2/wM2 ... vMN/wMN




(4.4)

=




α11 α12 ... α1N

β11 β12 ... β1N

... ... ...

αM1 αM2 ... αMN

βM1 βM2 ... βMN




=




r1
11 r1

12 t1x

r1
21 r1

22 t1y

...

rM
11 rM

12 tMx

rM
21 rM

22 tMy







x1/c1 x2/c2 ... xN/cN

y1/c1 y2/c2 ... yN/cN

1/c1 1/c2 ... 1/cN




=




mT
1

nT
1

...

mT
M

nT
M




[
s1 s2 ... sN

]
(4.5)

as M̃S̃ (4.6)
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where

mt =

[
rt
11 rt

12 ttx

]T

,nt =

[
rt
21 rt

22 tty

]T

,

si =

[
xi/ci yi/ci 1/ci

]T

, and




αti

βti


 =




uti/wti

vti/wti


 . (4.7)

The symbols in (4.7) are not used in this section. But they facilitate discussions in

section 4.2.

The matrix W̃ can be directly calculated from observations, calibration pa-

rameters, and GPC. It is a bilinear product of motion and shape matrices on the

x-y plane in WCS. Its rank is at most 3.

Once we have the rank constraints of an observation matrix, factorization

methods [51] can be applied as follows. Because of noise, the rank of W̃ is generally

higher. So the estimation of the true observation matrix is through the following

optimization

argmin ˆW
||W̃− Ŵ||F . (4.8)

subject to the constraint that the rank of Ŵ is 3. In (4.8), ||.||F denotes the

Frobenius norm, which gives the sum of squared differences between the elements

of two matrices. Suppose the SVD of W̃ is W̃ = Udiag(σ1, σ2, ..., σs)V
T and σ1 ≥

σ2 ≥ ... ≥ σs, then the solution to (4.8) is Φ̂ = U2M×3diag(σ1, σ2, σ3)V
T
N×3, where

only the three largest singular values and singular vectors are retained. So the

SVD is applied to find the rank three matrix Ŵ which is closest to a noisy W̃

in terms of the Frobenius norm. Set M̂ = U2M×3diag(σ0.5
1 , σ0.5

3 , σ0.5
3 ) and Ŝ =

diag(σ0.5
1 , σ0.5

3 , σ0.5
3 )VT

N×3.
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Because Ŵ = M̂Ŝ = (M̂T)(T−1Ŝ) for any 3x3 non-singular matrix T, we

need additional constraints to eliminate the ambiguity. Rewrite T = [T1T2], where

T1 and T2 are 3x2 and 3x1 matrices respectively. Suppose the correct motion matrix

M = M̂T, then

M̂T1 =




R1

R2

...

RM




(4.9)

Using the orthogonal property of Rt, certain elements along the tri-diagonals in

(M̂T1)(M̂T1)
T = M̂(T1T

T
1 )M̂

T
are known. So the linear least square estimate

(LLSE) can be used to recover Q ≡ T1T
T
1 . Then T1 can be estimated through

SVD of Q and it is unique up to a 2x2 rotational matrix. The ambiguity comes

from the selection of the reference coordinate system. If we select the first frame as

the reference frame, namely R1 = I2×2 and t1x = t1y = 0, then T1 can be uniquely

recovered and T2 can be recovered up to a scale factor. T2 can be solved using the

known elements in M̂T2. The scale factor can be arbitrarily chosen and it is an

inherent ambiguity when a monocular sequence is used.

After T is found, the desired shape matrix is S = T−1Ŝ. Using the the last row

of S, we can easily find the perspective depth of each feature point, thus recovering

the 3D structure. It is only recovered up to a scale factor because of the ambiguity

in T2.

The algorithm can be summarized as follows,
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Standard Planar Factorization:

a. Calculate the matrix W̃ from (4.2) and (4.4), using the observations,

estimated calibration, and GPC.

b. Use SVD to get W̃ = Udiag(σ1, σ2, ..., σs)V
T , where s =

min(2M,N). Use the 3 largest singular values and the corresponding sin-

gular vectors to get an initial estimate of motion and shape matrices, i.e.,

set M̂ = U2M×3diag(σ0.5
1 , σ0.5

3 , σ0.5
3 ) and Ŝ = diag(σ0.5

1 , σ0.5
3 , σ0.5

3 )VT
N×3.

c. Find T = [T1T2] and eliminate the ambiguity. First find LLSE

of Q ≡ T1T
T
1 from known elements in M̂(T1T

T
1 )M̂

T
according to Eq.

(4.9). Set the first frame as the reference frame, then use R1 = I2×2 and

t1x = t1y = 0 to further remove the ambiguity in T1 and find T2 up to a

scale. Set an arbitrary scale for T2.

d. Reconstruct the shape and motion matrices as S = T−1Ŝ and M =

M̂T respectively. Then 1/s3i = λtiwti are used to find λti, the perspective

depth, and hence the structure is reconstructed.

4.1.2.2 Comparisons with the factorization method for general mo-

tion

The factorization method was originally developed for orthographic projection

[51] and then extended to paraperspective projection [43]. It was generalized for

perspective projection in [47], in which the measurement matrix of rank at most

4 was formed. The key factor in factorization under perspective projection lies in
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the scaling of the measurement matrix according to perspective depths. In [47],

the authors use epipolar constraints to recover the ratio of scalings. However, the

estimation of the fundamental matrix and epipoles is not an easy task.

The general method can be used to handle the special case of planar motion.

However, we find a simpler and more efficient formulation which is tailored to deal

with the constrained case. In summary, our method is different from the general

method in the following ways,

1. We form the measurement matrix using only the x-y coordinates in WCS in-

stead of CCS. The measurement matrix is shown to come from points taking

a 2D Euclidean transform, which has a rank of at most 3. In [47], the homoge-

neous coordinates of projections scaled by the depths are gathered together to

form a matrix of rank at most 4. So the rank condition is reduced for planar

motion.

2. We use the property that the z-component for each feature point is constant in

WCS to find the right scaling factor, which is a lot easier than estimating the

fundamental matrix and epipoles. However, we do need one-time calibration

and estimation of the motion plane, which can be done fairly easily using

vanishing points and lines.

3. We have an Euclidean reconstruction instead of a projective reconstruction,

because more ambiguities are removed in our formulation. The structure can

be recovered up to a scale, while in [47], it is recovered up to a 4x4 non-singular

matrix.
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4.1.2.3 Experiments

We first explain the simple calibration method we use in our experiments.

Then we do quantitative and qualitative analysis of our method by applying it to

some real and synthetic sequences.

4.1.2.4 Calibration through vanishing points and lines

Many methods are available for automatic or semi-automatic calibration and

recovery of the ground plane constraints. We use vanishing points and lines [16][33][56][58].

We make use of parallel and perpendicular lines, which are very often present in

man-made environments.

In a perspective camera model, the images of parallel lines typically will in-

tersect at the vanishing point corresponding to these lines. Geometrically, it is the

intersection of the image plane with a ray passing through the camera center and

parallel to those lines. Algebraically, the direction of the ray d and the vanishing

point v is related as v = Kd [16], where K is the calibration matrix.

The angle between two such rays is,

cos θ =
vT

1 (K−TK−1)v2√
vT

1 (K−TK−1)v1

√
vT

2 (K−TK−1)v2

(4.10)

The vanishing line for the ground plane corresponds to the intersection of the

image plane with the plane passing through the camera center and parallel to the

ground plane. Once calibration is done and the vanishing line is known, the ground

plane normal can be calculated.
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Figure 4.2: Illustration of the calibration results. Left: Locating vanishing points by

forming parallel lines. Right: The WCS used in our work.

We assume a pinhole camera model, and the image center to be the central

projection point. Then the only unknown in K is the focus f .

First, to find f , two vanishing points v1 and v2 for two perpendicular lines

on the ground plane are located semi-automatically. Using Eq. (4.10), in which

cos θ = 0, f can be found by solving a quadratic equation. Second, the line passing

through the two vanishing points is the vanishing line of the ground plane. Hence

the plane normal is known. We can set the WCS as gx = K−1v1/‖K−1v1‖, gy =

K−1v2/‖K−1v2‖, and gz = gx ⊗ gy. g0 can be selected by arbitrarily setting the

perspective depth of the image of a point that lies on the ground plane. Results are

shown in Figure 4.2.

4.1.2.5 Quantitative Analysis on Synthetic Data

Using the calibration data, we synthesize very realistic tracking results. We

do some quantitative analysis on these sequences by adding noise to the tracked

feature points and changing the calibration.

Figure 4.3 shows a typical example of the synthetic data. Twenty-six points
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are tracked over forty frames. Note that the feature points on the vehicle are chosen

to be points that can be tracked on a real vehicle, shown in Figure 4.6.

Figure 4.3: A typical synthetic sequence. Top: The projected model. The car makes

a 900 turn. Bottom: Synthetic tracking results of feature points with complete data.

The noise we add to each feature point is drawn from an i.i.d. isotropic

Gaussian distribution. We vary the standard deviation σ to test how robust the

method is to noise. Two kinds of calibration error are studied here: error from the

focal length f , and from the angle between gx and the ground plane, denoted as φ.

Here we assume that gy can be reliably estimated, i.e., gy lies on the ground plane.

That requires very accurate estimation of one vanishing point, which comes from

only one set of parallel lines and is very plausible in man-made environments.

First, we consider the case that all the feature points are tracked over all

the frames. The reconstruction results under two conditions are shown in Figure
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4.5. Here we consider the relative shape reconstruction error instead of the error

in the estimation of perspective depth, because in most applications we care more

about the error in the reconstructed 3D vehicle model . Besides, The error between

the estimated shape matrix S and the ground truth gives a more comprehensive

evaluation of the results than using perspective depths. The relative errors in shape

and motions are calculated through comparing S and M respectively with ground

truth matrices after scale normalization. For correct calibration f = 690, φ = 0o,

and for wrong calibration f = 690, φ = −4.6o. The same condition applies to

Figures 4.4 (a) and (b). As can be seen in Figure 4.5, the reconstruction does not

change much visually when noise and incorrect calibration are considered.

In Figure 4.4 (a), the relative construction error is plotted as a function of σ

for both correct and wrong calibrations. For each σ, the experiments are repeated

40 times and the average error is plotted. For correct calibration, the structure can

be reconstructed perfectly with small σs. When the noise level σ increases to about

7 pixels, performances under correct and incorrect calibrations become almost the

same. (c) and (d) show how the reconstruction error changes as the calibration

error varies. In both cases, noise with σ = 2 is added to all the feature points. The

reconstruction error is less than 2% when δf = ±50 or φ = ±5o. (b) shows the rank

condition by using the ratio of the 3rd to the 4th largest singular value of the scaled

measurement matrix. Ideally, the 4th singular value should be zero and the ratio

approaches infinity, which is true when σ is close to zero with correct calibration.

When σ is large or the calibration is incorrect, the ratio decreases. As can be seen

from these figures, the algorithm degrades gracefully with increasing noise level and
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Figure 4.4: Quantitative analysis of reconstruction error and rank condition. Sup-

pose during estimation of GPC, gy lies on the ground plane, and the angle between

gx and the ground plane is φ. For correct calibration φ = 0. (a) plots the reconstruc-

tion error in the case of correct and wrong calibrations. Here for wrong calibration,

φ = −4.6o and the focal length f is correct. (b) The ratio of the 3rd to 4th largest

singular values is shown to analyze the rank condition of scaled measurement ma-

trix. The calibration condition is the same as in (a). (c) Reconstruction error as

the estimated focal length f deviates and φ remains zero. The true focal length is

f = 690. (d) Reconstruction error as estimation of gx changes and gy is assumed

to be on the ground plane. f is set as 690. Noise of σ = 2 is added in (c) and (d).
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Figure 4.5: 3D reconstruction results for synthetic data. The first two rows are

results from observations with no missing data. First row: correct calibration with

no noise. Second row: wrong calibration with additive noise of σ = 5. The third

row shows the reconstruction results from observations with missing data. So some

feature points are not tracked over all the frames. Texture mappings from three

frames with different views are fused together to generate a more complete 3D model.

incorrect calibration.

Second, we also consider the case when some points are occluded in some of

the frames. Thirty-four points are tracked in sections of the forty frames. We apply

SVD with missing data reported in [6] [63] so that we can have a more complete

reconstruction. The reconstruction results for the case with missing data are shown

in Figure 4.5. 1

1The video of the results can be found at the author’s website www.cfar.umd.edu/∼lij.
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The 3D models shown in Fig. 4.5 and the rest of the thesis are generated

from the depths of the feature points as follows. The factorization method is ap-

plied to obtain the perspective depth of each feature point. To map the texture

image onto the 3D model, first the dense depth map can be interpolated from the

depths of the feature points, so given one frame, each pixel inside the convex hull

of the tracked feature points can be associated with a depth value and color. Then

using (4.2), the corresponding 3D point of each pixel in WCS can be found. The

neighboring four pixels can form a quadrilateral mesh which makes up a 3D model

with colors. This 3D model is rotated for qualitative analysis of reconstruction re-

sults. For generating reconstruction results with missing data, texture mappings

from several different views have to be fused together to construct a complete 3D

model. This requires generating the 3D model for two or three selected frames,

followed by a transformation of these 3D models to the same reference coordinate

system for display. The example with missing data corresponds to noise free and

correct calibration. Fig. 4.5 shows that the reconstructed model correctly captures

the structure of the vehicle, such as parallel and perpendicular faces.

4.1.2.6 Qualitative Analysis on Real Data

The reconstruction for a real sequence is shown in Figure 4.6. Note that the

image of the object is of low resolution and it is taken on a rainy day, making the

image more blurry. Thirty points are tracked over forty frames on the vehicle with

missing data. Because of the low resolution and blurry effects, many of them cannot
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be reliably tracked even manually. However, our method still correctly captures the

structures of most faces. The reconstruction is visually realistic. In Fig. 4.7, we

show more reconstruction results with manually marked feature points.

Figure 4.6: Reconstruction results for a real sequence. Top row: The real sequence

taken on a rainy day and the tracked feature points. Bottom row: Reconstruction

with texture mapping.

Figure 4.7: Illustration of reconstruction results. The leftmost column are sample

input images, followed by examples of reconstruction results.
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4.2 Planar factorization with uncertainty

In [18], the authors study how to deal with anisotropic noise associated with

observations in the context of factorization algorithms. In this section, we also

develop an algorithm to deal with noisy observations, which is closely related to the

error analysis of the factorization approach discussed in [48].

In [18], each element of the matrix to be factorized is a linear function of the

observations. So if we assume that the observations are corrupted by Gaussian noise,

these elements take Gaussian distributions. Then instead of minimizing the Frobe-

nius norm, one can minimize the Mahalanobis distance. But in planar factorization,

the elements are not linear function of observations, which makes it difficult to di-

rectly use the Mahalanobis distance. Approximations are made in order to recast

the planar factorization problem into the form in [18].

In order to make things clear, two approaches are illustrated in the following

subsection. In the first approach we consider the distribution of elements of W̃. In

the second approach the factorization problem is viewed as a parameter estimation

problem and the solution is obtained using maximum likelihood estimation (MLE).

4.2.1 Approach I

If

[
αti βti

]T

takes the Gaussian distribution N(




mT
t si

nT
t si


 ,Qti), then as

shown in [18], the following Mahalanobis distance can be minimized to give the

MLE of m,n and s.
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D(M,S)=
∑

t,i

[

[
αti−mT

t si βti−nT
t si

]
Qti




αti−mT
t si

βti−nT
t si


] (4.11)

However, since

[
αti βti

]T

is not a linear transformation of

[
xti yti

]T

, and if

we assume that

[
xti yti

]T

is corrupted with Gaussian noise, the distribution of

[
αti βti

]T

is no longer Gaussian.

Our assumption is: Each feature point is corrupted with mutually independent

anisotropic Gaussian noise such that




xti

yti


 =




x̃ti

ỹti


 +




nx
ti

ny
ti


 , (4.12)

where




x̃ti

ỹti


 is the mean and also the true location of each feature point while




nx
ti

ny
ti


 is distributed as N(0, Λti).

Then the probability distribution function of

[
αti βti

]T

can be found as

shown in Appendix I,

fαti,βti
(ξ1, ξ2) = (

f

ρT
3 ξ

)2 1

2π|Λti| 12
· (4.13)

exp[−1

2
(

f

ρT
3 ξ




ρT
1

ρT
2


 ξ−




x̃ti

ỹti


)T Λ−1

ti (
f

ρT
3 ξ




ρT
1

ρT
2


 ξ−




x̃ti

ỹti


)]
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where ξ =

[
ξ1 ξ2 1

]T

. Equation (4.13) helps us to understand the statistical

behavior of elements in matrix W̃. But there are two major difficulties in using

(4.13) in the factorization approach. First, x̃ti and ỹti cannot be directly cast in the

form of mT
t si and nT

t si, so the MLE based on (4.13) cannot be changed into the

form of (4.11). Second, there is no analytical form for the covariance matrices of

this distribution. In the second approach, the MLE is transformed to the form in

(4.11), and essentially an estimate of the covariance matrix is given to consider the

directional uncertainties.

In Fig. 4.8, we illustrate the distribution of α and β under our assumptions.

These samples are generated from the same synthetic data in section 4.1.2.5. The

distributions of seven points at same time instants are shown. If the distribution of

Gaussian noise is N(0, Λ), and suppose the eigenvalues of Λ are λ1, λ2 and λ1 ≤ λ2.

Its ellipticity is e =
√

λ2/λ1. Here Gaussian noise with elipticity 2 and
√

λ1 selected

randomly between 1 to 3 is added to the observation, then (4.2) and (4.7) are used

to generate samples of α and β.

4.2.2 Approach II

In this approach, instead of finding the distribution of (α, β) from the distri-

bution of (x, y), (α, β) is taken as unknown parameters to be estimated. This way

we can find an expression similar to (4.11). A similar approach is used in [18]. If

we denote ξti = [αti, βti, 1]T , then
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(a) (b) (c)

Figure 4.8: Illustration of distribution of α and β. The samples are generated from

the same synthetic data as in section 4.1.2.5. Gray ellipses in each figure illus-

trate the estimated covariance matrix using different methods. The eigen-values and

eigen-vectors of the estimated covariance matrix determine the size and the orienta-

tion of each ellipse. Once all covariance matrices are estimated, Eq. (4.26) is used

to decompose the ensemble covariance matrix, so that planar factorization with un-

certainty can be used. In this step, the covariance matrices are approximated again.

Black ellipses correspond to the final approximation. (a) Simply use the covariance

matrix of observation noise Λti as the estimation. Black ellipses overlap with gray

ellipses in this case because for each feature point, the covariance matrix of noise

is assumed to be constant over time. (b) With Q̃ti in Eqs. (4.22) and (4.25), but

in Eq. (4.22), (xti, yti) is replaced with (x̃ti, ỹti), i.e., it is replaced with observation

with no noise. (c) With original Q̃ti in Eqs. (4.25).

ξti =




αti

βti

1




=




uti/wti

vti/wti

1




=




mT
t si

nT
t si

1




, (4.14)
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where mt, nt and si can be regarded as the unknown parameters we wish to estimate.

If we still make the same assumption as in the last section, the distribution of a

feature point can be written as

fxti
(xti, yti) =

1

2π|Λti|0.5

exp(−1

2

[
xti − x̃ti yti − ỹti

]
Λ−1

ti




xti − x̃ti

yti − ỹti


) (4.15)

where




x̃ti

ỹti


 is the mean and also the true locations of feature points which depends

on parameters mt, nt and si. Since




uti

vti

wti




=




gT
x

gT
y

gT
z







x̃ti

ỹti

f




, (4.16)




x̃ti

ỹti


 = f




ρT
1 ξti/ρ

T
3 ξti

ρT
2 ξti/ρ

T
3 ξti


 . (4.17)

After some algebraic manipulations, the log-likelihood of a tracked feature

point can be derived as

ln(fxti
(xti, yti|mt,nt, si))=− ln(2π|Λti|1/2)− 1

2(ρT
3 ξti)

2
·

ξT
ti




xtiρ
T
3 − fρT

1

ytiρ
T
3 − fρT

2




T

Λ−1
ti




xtiρ
T
3 − fρT

1

ytiρ
T
3 − fρT

2


 ξti. (4.18)
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The MLE of the parameters are

argmin

mt,nt, si

∑

t,i

ξT
ti




xtiρ
T
3−fρT

1

ytiρ
T
3−fρT

2




T

Λ−1
ti




xtiρ
T
3−fρT

1

ytiρ
T
3−fρT

2


 ξti

(ρT
3 ξti)

2
(4.19)

where t = 1, ...M , i = 1, ..., N and ξti is related to the parameters through (4.14).

If we look at each element in the summation in (4.19), the minimization prob-

lem is similar to a generalized eigen-decomposition problem, after it is rewritten as

ξTAξ
ξTBξ

with A =




xtiρ
T
3 − fρT

1

ytiρ
T
3 − fρT

2




T

Λ−1
ti




xtiρ
T
3 − fρT

1

ytiρ
T
3 − fρT

2


 and B = ρ3ρ

T
3 . Recall that

in general such a minimization will have a solution as shown in [11] using linear dis-

criminant analysis: minξ
ξTAξ
ξTBξ

= λ where λ is the smallest generalized eigenvalue

and the minimizer is the corresponding eigen-vector such that Aξ̃ = λBξ̃, where B

is non-singular. Then the term in (4.19) can be approximated by
∑

f,p ||ξti − ξ̃ti||.

However, in this case, rank(B) = 1, so a different approximation is developed.

Essentially an approximation in the form of (4.11) is needed. Note that,




xtiρ
T
3−fρT

1

ytiρ
T
3−fρT

2


 ξti =



−f 0 xti

0 −f yti







ρT
1

ρT
2

ρT
3







α

β

1




, (4.20)

so that



α0

β0


 =




gT
x γ/gT

z γ

gT
y γ/gT

z γ


 (4.21)
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corresponds to the zero point of each element in the summation, where γ = [xti, yti, f ]T .

Factorize Λ−1
ti = QTQ and denote

Q




xtiρ
T
3 − fρT

1

ytiρ
T
3 − fρT

2


 = Q

[
P1 p2

]
=

[
A a2

]
, (4.22)

where A is a 2x2 matrix. Then from (4.21), each element can be rewritten as

L =

(




α

β


−




α0

β0


)TATA(




α

β


−




α0

β0


)

([q1 q2]




α

β


 + q3)2

(4.23)

We propose using

L̃ =

(




α

β


−




α0

β0


)TATA(




α

β


−




α0

β0


)

([q1 q2]




α0

β0


 + q3)2

(4.24)

as the approximation. In Appendix II, we show that L−L̃ = o[(α−α0)
2]+o[(β−β0)

2].

So L̃ is a fairly robust approximation to L when (α, β) is close to (α0, β0). Denote

Q̃ti = Ã
T

tiÃti where Ãti = Ati/([q1 q2]




αti
0

βti
0


 + q3). Our algorithm attempts to

minimize

D(M,S)=
∑

t,i

(

[
mT

t si−αti
0 nT

t si−βti
0

]
Q̃ti




mT
t si−αti

0

nT
t si−βti

0


) (4.25)

Compared to (4.11), this minimization replaces the covariance matrix of (αti, βti)

with Q̃ti. So by minimizing (4.25), we essentially approximate the distribution of
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(α, β) with a Gaussian distribution of covariance matrix Q̃ti. In Fig. 4.8, we il-

lustrate the estimated covariance matrix along with samples of (αti, βti). Three

estimation methods are compared. As we can see, Λti gives the wrong estimate in

(a). Q̃ti and its modified version both give estimates very close to the true covari-

ance matrices. After further approximations in step (a) of our algorithm summarized

below, the estimates are still good.

Given the suboptimal solution in (4.25), the algorithm can be summarized as

follows,
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Planar Factorization with Uncertainty:

a. Form and decompose the ensemble covariance matrix E.

E =




Q̃11 . Q̃1N

. . .

Q̃M1 . Q̃MN




≈




A1

.

AM




2M×2

[
C1 . CN

]

2×2N

(4.26)

The approximation is arrived at by keeping only the two largest singular

values and setting the rest to zero in SVD of E.

b. For each t and i, compute




α̃ti
0

β̃ti
0


 = AT

t




αti
0

βti
0


. Then follow proce-

dures in [18] to form matrices C and

[
α̃0

˜β0

]
. Impose rank 6 con-

straints on the covariance weighted data,

[
µ ν

]
=

[
α̃0

˜β0

]
C,

and obtain

[
µ̂ ν̂

]
. If C is well conditioned, find

[
α̂ ˆβ

]
=

[
µ̂ ν̂

]
C−1, then impose rank 3 constraints on




α̂

ˆβ


 = M̃2M×3S̃3×N ,

otherwise impose the same constraints with the least square minimization

as shown in [18].

c. Recover the motion matrix,




m̂′T
t

n̂′
T

t


 = (AT

t )−1




m̃T
t

ñT
t


. Follow step

(c) in section 4.1.2 to eliminate the ambiguity and obtain the final recon-

structions M̂ and Ŝ.
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4.2.3 Experimental analysis

In Fig. 4.9, we compare the results of planar factorization with and without

uncertainty. This quantitative analysis uses the same synthetic data as in section

4.1.2.5. There is no error in calibration. Anisotropic Gaussian noise N(0, Λ) is

added to the observation data xti and yti. We set
√

λ1 = 3 and change the ellipticity

e =
√

λ2/λ1, while allowing random orientation of the covariance ellipse but keeping

Λ constant for each point over time. For each ellipticity, the experiments are run

for 200 times and the average error is shown in Fig. 4.9. Note that factorization

with uncertainty does better than direct factorization, especially in terms of motion

estimation errors. The motion error varies slowly with the ellipticity for factorization

with uncertainty.

Note that in our approach, as Q̃ti is not directly related to Λti, the uncertainty

may be directional even if λ1 = λ2 for Λti. That is, Q̃ti may still have unequal

eigenvalues.
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Figure 4.9: Comparison of direct factorization and factorization with uncertainty.

Ellipticity corresponds to the ratio of eigen-values of the noise covariance matrix Λ.
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4.3 Duality between Planar Motion and Planar Objects

Now we would like to discuss the differences between our work [27] and those

in [17, 59] and derive a dual relationship between these approaches. In Appendix A2

of [17], the rank constraints of a planar scene under multiple views are studied. It

may appear that our method is a direct derivation from these rank constraints. This

is because of confusion between the 3D motion of a planar object (PO) and planar

motion (PM) of a 3D object. In [59], the authors use planar motion to refer to the

motion of a planar object, while throughout this thesis, planar motion means that

the motion of a 3D object is constrained on a plane. The definitions and detailed

comparisons are given later. The term Planar scene can also be confusing, but

mostly it refers to a planar object.

For a planar object, all the feature points lie on one plane, but there is relative

motion between the camera and that plane. While for planar motion, there are a

set of parallel planes, and each feature point is moving on its own plane, and in our

setting there is no relative motion between each plane and the camera. In Appendix

A2 of [17], only planar objects are discussed and the conclusion is not applicable to

planar motion. However, there is some duality between PO and PM as discussed

below.

Another key difference between [17] and our work is the use of affine camera

vs. perspective camera. Because for PM discussed in this thesis, there’s no relative

motion between each plane and the camera, this leads to a simplified approach

for perspective cameras. Appendix A2 in [17] discusses affine cameras, and for
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perspective cameras, such as in Appendix A3 and A4, they use approximations to

obtain the rank constraints. As seen in the literature, most perspective factorizations

require either estimating the fundamental matrix, or some approximations. But for

PM estimation using a perspective camera, our algorithm is exact.

4.3.1 Formulating Duality

To clearly understand the relation between PO and PM, consider the general

setting in structure from motion: a set of feature points p = (xti, yti) belonging to

one object is tracked over time, where t = 1, ..., M is the time index, and i = 1, ..., N

is the spatial index for each point. Then our goal is to recover their corresponding

3D points denoted as Pti = (uti, vti, wti) in a stationary world coordinate system.

The tracked object is a planar object if and only if for any fixed t, points in

Θt ≡ {Pti|i = 1, ..., N} lie on the same 3D plane Γt. The tracked object is undergoing

planar motion if and only if for any fixed i, points in Ωi ≡ {Pti|t = 1, ...,M} lie on

the same 3D plane denoted as Γi and all Γis have the same normal for i = 1, ..., M .

Note that the second definition requires the WCS to be stationary.

The definitions given above are general, but we focus on rigid objects and

assume that the camera is stationary. Rigidity leads to important restrictions on

the duality between PO and PM. The key to finding the duality is to understand the

time and space indices. For PO, the points are spatially distributed on a plane at

each time instant, while for PM, each point in space is distributed on a plane across

time. It looks as if by swapping the temporal and spatial indices, or transposing an
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observation matrix properly, we can interchange the conclusions for PO and PM.

However, this proposal is not correct because of two restrictions. First, Γts have to

be parallel, so that PO and PM can share the same set of planes. Second, spatial

rigidity in both PO and PM prohibits the swapping between time and space. Spatial

rigidity means that for any t1 and t2, there exists a rigid transformation between

corresponding points in Θt1 and Θt2 . Literally it means that the points distributed

in space have a rigid relationship across time. This kind of rigidity is what we see

in the real world. Its dual part can be called temporal rigidity, which means that

for any i1 and i2, there exists a rigid transformation between corresponding points

in Ωi1 and Ωi2 . It suggests that the distribution of each point over time have a

rigid relationship across the spatial index. Such rigidity does not belong to any

meaningful object in the real world. Since both PO and PM have spatial rigidity,

the matrix for decomposition in (4.6) has to be formed the same way and cannot

be transposed. The only interchangeable component in PO and PM is the plane

related index. In PO, the plane is indexed temporally while in PM it is indexed

spatially. Thus we have the following property.

Duality property between PO and PM: Any theorem for a planar object with

parallel Γts has a dual theorem for planar motion through the following changes:

keeping the spatial and temporal index of each point but changing the plane related

index from t to i. And vice versa by changing the plane related index from i to t.
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4.3.2 Dual theorem for planar factorization

The property in the last section is used to find the dual theorem of our planar

factorization. The rank constraints for PM proposed in this thesis can be applied

to PO under dual condition.

Dual theorem: A planar object moves in the scene but does not change its

plane normal gz (in CCS) over time with respect to a perspective camera. Suppose

gz and the camera calibration are found. Then the following matrix W̃ has a rank

of at most 3.

W̃ ≡




u11/w11 u12/w12 ... u1N/w1N

v11/w11 v12/w12 ... v1N/w1N

... ... ...

uM1/wM1 uM2/wM2 ... uMN/wMN

vM1/wM1 vM2/wM2 ... vMN/wMN




(4.27)

=




r1
11/c1 r1

12/c1 t1x/c1

r1
21/c1 r1

22/c1 t1y/c1

...

rM
11/cM rM

12/cM tMx /cM

rM
21/cM rM

22/cM tMy /cM







x1 x2 ... xN

y1 y2 ... yN

1 1 ... 1




(4.28)
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where



uti

vti

wti




=




gT
x

gT
y

gT
z







xti

yti

f




. (4.29)

and gx,gy and gz forms an orthonormal basis in R3.

In this case, ct has the plane related index and the constraint becomes λtiwti =

ct. Substituting it back in (4.3), we see that these coefficients become part of the

motion matrix instead of being part of the shape matrix as in (4.6).

This theorem simplifies the perspective reconstruction of a planar object that

does not change its normal over time and is potentially useful.
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4.4 A system for automated vehicle model reconstruction

Planar motion is interesting because it is pervasive in surveillance videos. So

one important application of our methods is a completely automated vehicle re-

construction system from surveillance videos. In this section, we describe such a

system, which is useful for many applications such as object modeling and vehicle

identification. In our system, a camera is used to monitor the parking lot; then the

system automatically reconstructs the 3D vehicle models from the video input. The

system is very efficient and can be easily implemented in real-time. As an extension,

we discuss how a prior 3D model can be used for 3D tracking. The model-based

approach can be combined with the factorization method for a complete model

reconstruction.

In Fig. 4.10, the flowchart of the automatic system is given. It contains four

parts:

1. Background subtraction: Here the background image is estimated using the

median of each pixel over 40 frames. Then regions with significant variations

from the background image are grouped together as possible foreground blobs.

In order to deal with illumination changes, in some part of the image, the vari-

ations in gradient directions, instead of pixel intensity values, are considered.

This is a prototypical block, and other background subtraction algorithms can

be applied. The subtraction results are shown in Fig. 4.10 (b).

2. Vehicle Detection: Here we simply consider the size of the blob to remove

undesirable blobs such as pedestrians. Again other detection techniques can
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be applied here.

3. Feature Points Tracking: Within the region of detected vehicle, the KLT

tracker [52] is used to detect and track feature points over time. To im-

prove the reliability of these tracked feature points, irregular trajectories are

removed. Sample tracking results are shown in Fig. 4.10 (c) and (d).

4. Factorization: Finally our factorization method is applied to reconstruct the

vehicle model from the tracked feature points. In Fig. 4.11, we illustrate the

reconstructed model. Note the calibration step is done beforehand, and the

calibration does not change as long as the camera is stationary. Here we apply

direct factorization and the directional uncertainty is not considered.

Although the results are still not as good as the manually reconstructed results,

it is very promising and other dense depth estimation approaches can be integrated

in this framework.

4.4.1 Registration and Tracking

As can be seen from Fig. 4.11, the reconstructed vehicle is only partial be-

cause some faces of the vehicle are not observed. In this case, prior 3D models can

potentially be used and combined with the reconstructed model to give a complete

reconstruction, using properties such as symmetry. But since each type of vehicle

has different structures, we can change the geometric parameters and obtain a prior

model for each type of vehicles as proposed in [24]. In Fig. 4.12, we illustrate
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(a)
(b)

(c) (d)

Figure 4.10: (a) Flow chart of the system. (b) Result of background subtraction. (c)

and (d) KLT tracking results.

six types of vehicles, including a sedan, truck, hatchback, wagon, mini-van, and an

SUV.

In this section, we discuss how to use a 3D model for 3D tracking of vehicles

moving on the ground plane. Our approach is another illustration of the GeT cast in

a form that relates to model registration. This GeT resembles the Hough transform

for shape matching, but here it is viewed from a different perspective and the notion
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Figure 4.11: The leftmost column are sample input images, followed by examples of

reconstruction results.

of multi-resolution is included in the matching process.

Specifically, we show that the cost function used for model registration is from

MRGeT. For example, if we define the geometric set as the image of a 3D wire-frame

model after hidden line removal, and apply the multi-resolution transform over the

image of gradient magnitude, then the registration parameters can be found by

locating the peak in the transform domain. Mathematically, the transform is defined

as,

R(Sp) =
∫
|∇I(x)| 1√

2πε2
exp(−d(x, Sp)

2

2ε2
)dx =

∫
|∇I(x)|χε

Sp
(x)dx, (4.30)

where Sp corresponds to the projection of the model with its 3D location parameter

as p. The value arg maxp R(Sp) is the desired registration parameter. The intro-

duction of ε allows inexact matching of the model, which has similar advantages as

in the case of Hausdorff distance applied to shape detection. The registration result
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Figure 4.12: Examples of 3D vehicle models for sedan, truck, hatchback, wagon,

mini-van, and SUV respectively. These models are projected onto a real image taken

from a surveillance site.

is illustrated in Fig. 4.13. If we register the model over time, this method can be

used for 3D tracking. Here the type of the vehicle is assumed to be a SUV.

4.4.2 Conclusion and future work

A factorization method for structure from planar motion is proposed and illus-

trated with experiments. The method fully exploits the constraints, and uses SVD

to batch process the data to obtain the shape and motion matrices. It greatly simpli-

fies the factorization approach for general motions under the perspective camera by

reducing the rank constraints, as well as avoiding the estimation of the fundamental

matrix or using iterative or approximate techniques. Because the planar motion

studied in this thesis is very common in surveillance videos and this method is very

efficient, it has good potentials in surveillance applications, especially for systems
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Figure 4.13: Left: Image of gradient magnitudes. Right: Registration results. In

this example, the ground plane constraint is estimated, so the parameters for set

Sp as in (4.30) are (tx,ty,φ), corresponding to translation and rotation motions on

the ground plane. The maximum is found by using a deterministic pattern search

method.

related to vehicles, such as vehicle identification or activity analysis. A fully auto-

mated vehicle reconstruction system based on this method has been presented. It

contains several modular blocks that can be replaced with other background sub-

traction and tracking algorithms.

Based on experiments done using the vehicle reconstruction system, we feel

that feature point tracking is very crucial to the final results. Though factorization

with uncertainty has been proposed here to deal with uncertainty in tracking feature

points, in real applications, the uncertainty may not be estimated accurately. An

alternative direction for future work is to combine the rank constraints with feature

point tracking, which can impose some global prior constraints on the feature points

and potentially yield improved results.
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As seen from section 4.4.1, prior 3D models can be registered with 2D images

and used for 3D tracking of the vehicle. Alternatively, the 3D model can potentially

be registered with the reconstructed 3D model, to make a complete reconstruction,

as well as to determine the type of the vehicle. This approach can be further

extended to establish the identities of vehicles across multiple cameras so that the

vehicle can be persistently tracked in camera networks. The GeT used in section

4.4.1 can potentially be used to transform a vehicle image into images at different

views, based on the geometric models, which makes 2D matching of the appearances

possible.

Viewed from a different perspective, the planar factorization can also be used

to reconstruct a 3D stationary scene when the camera is moving on a planar plat-

form. For example, if a camera is mounted on a vehicle, and the vehicle is moving

on a roughly planar ground, and the scene in the camera is stationary like build-

ings and road signs etc., then we can track some feature points on these stationary

objects, and use the results of this section for 3D reconstruction of these objects.

That can provide an interesting way for urban metrology.

Other future work includes possible generalization of our approach to non-

rigid motion on the ground plane, SfPM for video captured on moving platforms,

and study of motion constrained on non-planar surfaces.

113



Chapter 5

Summary and future research directions

This dissertation addresses a fundamental problem in appearance modeling:

how can we incorporate the geometric prior information based on the shape and mo-

tion of the object? The framework we propose essentially transforms the appearance

representation geometrically so that in the transform domain, certain correspon-

dences are taken into account for properly aligning the representation. Therefore,

in the transform domain, the effects of pose and view variations are reduced and

direct matching of appearances is feasible, especially when the appearance inside an

arbitrary contour is to be modeled.

Two major types of objects are studied, human and vehicle. Human is an

example of an object with articulated motion and vehicle is an example of an ob-

ject with a complex 3D structure. A geometric appearance model is built for the

human based on the geometric transform, and planar factorization is proposed to

reconstruct the 3D structure of a vehicle.

This dissertation can be summarized as follows.

• A generic framework for appearance modeling is proposed using a unifying

definition of GeT which can incorporate different geometric context.

• Five new types of GeTs are proposed and applied to fingerprinting the ap-

pearance inside an arbitrary contour.
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• GeT based on shape matching provides a tool for modeling the appearances

of humans with articulated motion of body parts.

• GeT based on shape matching also provides a method for segmentation.

• For vehicles, a simple planar factorization method is proposed and used in an

automatic 3D vehicle model reconstruction system.

• Planar factorization under uncertainty deals with anisotropic noise with fea-

ture points.

• The difference and duality between planar motion and planar objects are clar-

ified.

Our work can be extended in a number of ways, as already discussed in the

conclusion section of each part. Here we briefly summarize them:

• In-depth study of all the proposed GeTs will lead to a better understanding of

their performance and limitations. It can also possibly lead to new GeTs. For

example, the effect of shape matching errors on GeT based on shape matching

can help us to understand what kind of shape matching is more desirable in

this GeT. Another example is to find ways to combine the explicit model with

shape matching for an improved appearance models.

• GeT based on other cues such as multi-view geometry and temporal corre-

spondence can be explored.
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• The geometric appearance model in section 3.1 can be potentially extended

to multi-view cameras. Then our methods can be used for persistent tracking

of humans using camera networks.

• The part segmentation for human in section 3.2 can potentially be used to

segment a carried object or to segment body parts when the pedestrian is

partially occluded. The geometric appearance model is potentially useful for

human identification in crowded environments.

• The reconstructed 3D model of vehicles can also be used for vehicle identi-

fication and persistent tracking of the vehicle across cameras. The prior 3D

vehicle model used in section 4.4.1 can be combined with the reconstructed

model for a complete 3D model or classification of the vehicle type.

• Also videos captured by a camera moving on a plane can be used to reconstruct

3D stationary scenes for urban metrology.

• The rank constraints for planar motion can be used to improve tracking results

and thus contribute to improved reconstruction.

• Finally, similar rank constraints can be derived for non-rigid objects moving

on a ground plane, or rigid objects moving on a non-planar but known surface.

In all, appearance modeling for human and vehicle can be further studied using

the framework and methods proposed in this dissertation.
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Appendix A

Distribution of matrix elements

Following the assumption in 4.2.1, and since




x

y

f




=




ρT
1

ρT
2

ρT
3







u

v

w




, (A.1)

so by change of variables from (x, y, f) to (u, v, w), the joint distribution of u, v, w

is derived as

fuvw(ζ1, ζ2, ζ3) =
δ(ρT

3 ζ − f)

2π|Λ|0.5
·

exp[−1

2
(




ρT
1

ρT
2


 ζ−




x̃

ỹ


)T Λ−1(




ρT
1

ρT
2


 ζ−




x̃

ỹ


)], (A.2)

where ζ = [ζ1, ζ2, ζ3]
T and δ(.) is the Dirac delta function. The subscripts t, i are

omitted for simplicity. Again using a change of variables from (u, v, w) to (α, β, w) =

(u/w, v/w, w), and integrating out w we get the marginal distribution of (α, β) as

f u
w

, v
w
(ξ1, ξ2)

=
∫ +∞

−∞
fu/w,v/w,w(ξ1, ξ2, ξ3)dξ3
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=
∫ +∞

−∞
ξ2
3δ(ξ3ρ

T
3 ξ − f)

2π|Λ|0.5
exp[−0.5(ξ3




ρT
1

ρT
2


 ξ −




x̃

ỹ


)T ·

Λ−1(ξ3




ρT
1

ρT
2


 ξ −




x̃

ỹ


)]

=
f 2

(ρT
3 ξ)22π|Λ|0.5

exp[−0.5(
f

ρT
3 ξ




ρT
1

ρT
2


 ξ −




x̃

ỹ


)T ·

Λ−1(
f

ρT
3 ξ




ρT
1

ρT
2


 ξ −




x̃

ỹ


)],

where ξ = [ξ1, ξ2, 1]T . This is the distribution shown in Eq. (4.13).
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Appendix B

Approximation to MLE

In order to prove that L − L̃ = o[(α − α0)
2] + o[(β − β0)

2] in Eqs. (4.23)

and (4.24), it is equivalent to show L and L̃ have the same Taylor expansion up to

second order at (α0, β0). Obviously,

L|v=v0 = L̃|v=v0 , (B.1)

where v = (α, β) and v0 = (α0, β0). For the first order,

∂L

∂v
=

2ATA(v− v0)

(q1α + q2β + q3)2
− 2

(v− v0)
TATA(v− v0)




q1

q2




(q1α + q2β + q3)3
, (B.2)

∂L̃

∂v
=

2ATA(v− v0)

(q1α0 + q2β0 + q3)2
, (B.3)

so ∂L
∂v |v=v0 = ∂L̃

∂v |v=v0 = 0. For the second order, it is easy to show that

∂2L

∂vT ∂v
|v=v0=

∂L̃

∂vT ∂v
|v=v0=

2ATA

(q1α0 + q2β0 + q3)2
. (B.4)

Thus, L− L̃ = o[(α− α0)
2] + o[(β − β0)

2].
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