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Abstract

PROTOSOLID is a solid modeler that represents solids with planar surfaces and manipulates the
solids with regularized set operations. This paper looks at the internal structures and operations
of PROTOSOLID and is intended as a programmer user guide.

A boundary of a solid is represented by a fedge-based data structure. It is developed in Common-

Lisp.
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1 Introduction

PRoTOSOLID is a solid modeler that models a solid in two convenient ways, an unevaluated form
and an evaluated form. The uneveluated form is a sequence of crestion and transformation com-
mands that when evaluated, produce the boundary of a solid; this form is similar to PADL’s design
language. The evelusted form is the boundary representation of s solid.

PROTOSOLID is & facetted modeler. The faces are embedded in planes and the edges lie on
straight lines. Curved analytic surfaces such as cylinders and cones are approximated by some
number of facets. In general, PROTOSOLID models a class of solids that are describable by planar
polyhedra of varying genera, components, and connectivity, and includes the class of solids with
non-manifold boundaries{4, 7).

In representing a boundary of a solid, PROTOSOLID maintains a graph hierarchy that sepa-
rates the topology from the geometry. Each solid maintains unique topological information, but
maintains the associated geometrical information in a global geometrical directory.

The representations of solids are complex data structures. The validity of the representations
is maintained by restricting the creation and manipulation of solids to one of the following ways:

1. A solid is an instantiation of one of several parametrized primitives. The primitives are the
block, the cylinder, the sphere, the torus, and the cone.

2. A s0lid is an extrusion of a non-self intersecting polygonal contour drawn in a plane with an
extrusion vector pointing out of the plane.

3. A complex solid is composed out of a combination of binary Boolean set operators. These
include the union, the intersection, and the subtraction of two solids. The complement of a
solid is not allowed.

Although operators that manipulate the topological structures are provided, their direct use by
the user is discouraged. Instead, new parameterized primitives may be added to the existing set of
primitives. For example, a single validated procedure can be easily added to create a tetrahedron.

PROTOSOLID is a modeler implemented in Lisp on a TI/Explorer. Common Lisp{5] was the
chosen programming language for several reasons:

1. The solid modeler needs to be portable, and easily interfacable to systems needing solid
modeling services, such as the SIPS([3] process planning system, or Newton. Using Common
Lisp allows that.

2. Lisp, as an implementation language, provides the necessary attributes to set up complex
data structures. Programming solid modelers is, to a large extent, a play on the use of
pointers, lists, and symbols. Lisp is a language designed to do just that.

3. Lisp, as a design language, provides a parser, a writer, and an interpreter for reading, writting
and evaluating stored information. A design language module is an essential component of a
modeler. Using an implementation language other than lisp would require additional coding
of such a module. Lisp readily provides the needed interpretive environment.

4. The availability of specialized hardware to execute Lisp programs provides a software en-
vironment well-suited for rapid prototyping of code. The Explorer architecture (similarly,
the Symbolics) has a dedicated 36-bit processor with run-time data-type checking, a high-
resolution color bit-mapped display, and Ethernet based networking. The software environ-
ment includes an excellent editor with advanced features such as interpretation and compila-
tion of code within the editor, incremental compilers, dynamic linking and loadmg, a flexible
dwplay-onented debugging system, and other utilities.

Smce PRoOTOSOLID strictly conforms to the current standards of Common Lisp, object ori-
ented programming, such as Flavors or Portable Common Loops, was not used. As a result,
PROTOSOLID’s Lisp code can be easily translated into a language like C.



Currently PROTOSOLID bas several graphical user interfaces. These include a TI/Explorer
window-based interface, an S-Geometry interface on the Symbolics, and a network-based inter-
face running on & Personal Iris 4D graphics work station. A future goal is to write a machine
independent imterface in X11.

This peper concentrates on the internals of PRoTOSOLID. The various weer interfaces are
discuseed in other papers.

Disclaimer: PROTOSOLID is an experimental tool continuously expanding and changing.
While at the writting of this paper, the description of PROTOSOLID corresponds to what is actually
inside PROTOSOLID, the reader should not view this paper as a user’s manual, but rather as a
guide to understanding. Inevitably, differences will be found between what is stated in this paper,
and what is actually out there.

2 Coding Conventions

The implementation of PROTOSOLID follows several coding conventions:

© The modeler abides by strict Common Lisp as defined by Steele{5]. In this paper, Common Lisp
code appears in a terminal-font.

o All special variables (that is, globally available variables defined by DEFVAR) are enclosed with
asterisks.

o All special constants (that is, those defined by DEFCONSTANT and DEFPARAMETER) are enclosed
in dollar-signs. For example, the constant $EPSILOES.

© Three types of comments appear within the code.

1. Comments at the end of a line beginning with & single semicolon.

2. Comment lines amidst the code beginning with two semicolons and indented with the
code.

3. Outside comments begin with three semicolons and start at the first column of a line.

This paper presents many of the functions provided by ProToSoLID. Functions are given as
follows:

e (functiop (THE type axg) ...) Brief Description
- return-value

Underlined keywords indicate the type or the meaning of the field, as appropriate. Emphasized
notes at the right margin briefly describe the function.

3 Representation of Solids

A solid model is the unambiguous and informationally complete mathematical representation of
the shape of a physical object in a form that a computer can process. From a representational
point of view, there is no known general model by which all solids could be denoted. As such,
mathematical models must be designed that can handle a small describable subset of all solids. It
is representationally convenient to model only a solid’s boundary as opposed to model the volume
occupied by the solid. The boundary is itself conveniently modeled as a collection of faces. The
faces are described by their bordering edges, and the edges by their bordering vertices. Thus the
boundary of a solid can be represented as collections of faces, edges and vertices, and the adjacency
relationships between them(11).
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Figure 1: Two nonmanifold solids and a pseudo-manifold.

Another method for modeling solids is the procedural method. From a few simple parameter-
ised solids, s complex solid can be constructed by the use of transformational and set operation
operators. A solid can thus be modeled in terms of the process by which it was created.

Presently, a variety of representational schemnas have been developed for modeling solids. It
is evident that any one schema alone cannot be used independently because certain operations
are easier to compute from specific schemas, and because various types of information about a
solid cannot be organized efficiently into a single schema. Therefore, many solid modeling systems
incorporate several representations that are either maintained separately or are fused to form
hybrid representations. PROTOSOLID uses both the boundary representation and the procedural
method describe above.

Ordinary physical solids have two-dimensional boundaries (i.e., surfaces that are two-manifolds).
An object is bordered by a two-manifold surface if every point on its surface is topologically equiv-
alent to a disk. If it is a manifold, the boundary described in terms of faces, edges and vertices
satisfies the following three properties:

M1) Every edge borders exactly two faces;

M2) Every vertex is surrounded by a single loop of alternating edges and faces (referred to as the
edge-face loop):

M3) The object is non-self-intersecting. That is, faces may not intersect each other except touch
at common edges or vertices.

It is exactly these manifold objects that are modeled by the Euler-Poincaré formula, and that
can be created and maintained with Euler operators[2, 1]. However, there exist solids that violate
properties M1 and M2. Such solids have a sonmanifold boundary. Two solids touching at a vertex
or an edge form a single solid that is a nonmanifold. In the special case, where the nonmanifold
contains a single interior component, the solid is referred to as a psexdo-manifold. Figures 3a
and 3b show nonmanifolds. A pseudo-manifold is shown in Figure 3c. Unfortunately, such solids
with nonmanifold boundaries cannot be ignored in our modeling space because manifolds are
not closed under the regularized set operations. A set operation on manifolds may result in a
nonmanifold and a representation must be capable of representing these solids also. This means,
however, that the representation must generalize the first two properties for the manifolds stated

above to read:
N1) Every edge belongs to an even number of distinct faces, and
N2) every vertex may be incident on one or more separate edge-face loops (see Figure 3).

Unfortunately, a popular data structure such as the modified winged-edge data structure will not
work under these generalizations. Therefore, PROTOSOLID uses a fedge-based data structure that
is capable of maintaining all solids in a consistent manner.
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Figure 2: The hierarchy of the fedge-based data structure.

4 The Fedge-based Data Structure

The fedge-based data structure represents a solid by its boundary and by the process that created
the solid. The boundary is represented in a graph hierarchy which consists of three types of data:

1. geometric data which consists of basic shape parameters for points, curves, and surfaces.

2. topological data which consists of topological entities such as the vertices, edges, and faces,
and provides the adjacency relationships among these entities, and

3. functionglity and form feature data. This dats is essentisl for modeling manufacturing parts
and is maintained in a separate hierarchy below the topological information.

The topological and geometrical entities of a solid are represented by a hierarchy that is shown
in Figure 2. The topological data consist of six types of nodes represented as record structures,
namely, the solid node, the face node, the fedge node, the edge node, and the vertex node. In
addition, these record structures are interlinked to represent several of the topological adjacency
relationships. The geometrical data consists of all the points, lines, planes, and surfaces. The
separation of topology and geometry is such that each solid maintains its own topological structure
while all solids share a common geometrical structure. This separation serves a dual purpose.
First and foremost is to facilitate consistent equality checking. Second is to conserve on space and
improve access efficiency.

With regard to the first purpose, consider the set of points existing in object space. Two points
P1 and P2 referred to from different solids are equal if and only if (EQ Pt P2). That is, they are
the same point node. No new point in close proximity to P1 is ever allowed to be created. The
extent of this neighborhood around a given point is controlled by an epsilon value maintained in
two global constants.

o (DEFCONST $EPSILONS 1,0E-12) ¢

o (DEFCOEST $-EPSILONS ~$EPSILONS)



The second purpose for the separation of topology and geometry deals with space conservation.
Consider the points as an example. Any property pertaining to a point applies equally to all solids
that refer to that point. Once a point is determined to lie on one side of a plane, that information
holds true for all solids requesting such a point plane classification.

Since all geometrical entities of a given type are kept in one place and their retrieval is very
frequent, the different geometrical entities are ordered. The ordering allows a set of entities to be
placed in a directory that can be searched in better than linear time. Currently, a directory is
implemented as a binary search tree.

A directory implemented as a binary search tree consists of two node types, a header node and
a tree node. The two nodes have the following structure:

(DEFSTRUCT DIR-TREE
*Geometrical Directory Header Node”

(DIR-ROCT NIL :TYPE DIR-NODE) Root node of tree
(DIR-SIZE 0 :TYPE COUNTER) Number of nodes in tree
(DIR-EVENTS O :TYPE COUNTER)) Number of recent inseriions

(DEFSTRUCT DIR-NODE
*Geometrical Directory Tree Node”

(DIR-LEFT NIL :TYPE DIR-NUDE) Left Subtree
(DIR-RIGET NIL :TYPE DIR-EGDE) Right Subtree
(DIR-PARENT NIL :TYPE DIR-NODE) Parent Node

The DIR-BODE is used by the point, the plane and the vertex nodes. The procedure for inser-
tion into and deletion from a directory is identical for all three node types. As a result, single
locate, insert, and delete routines are used to support all directories. However, since the ordering
mechanism of the nodes for each directory is different, the insertion and location routines must
be provided with a comparison function for the corresponding element type. Assuming that cmpt
is a binary comparison function with the range {: SMALLER, : SAME, : LARGER}, the following three
routines are defined for all directories.

e (DIR-LOCATE (TBE DIRECTORY dir) x cmpf) Find r in directory
— dir-pode or NIL

Given a directory and a node x of the particular type of directory, DIR-LOCATE returns a directory
node that contains p, if any.

o (DIR-INSERT (THE DIRECTORY dir) an cmp?) Insert n into directory
— dir-pode

If another node already exists in the directory that contains the same informational field as n, then
DIR-INSERT returns the one that is already in the directory, otherwise n is inserted and returned.

Because a directory is maintained as a binary search tree, insertion can cause an imbalance,
which reduces retrieval efficiency. As a result, the directory needs to be kept balanced. This can be
done by a self-balancing insertion mechanism, or by a periodic rebalancing method. In the original
implementation, insertions are allowed to occur unchecked, and periodically a global rebalancing
takes place to reduce the average tree depth. Each directory keeps track of how many insertions
occurred in the field DIR-EVENTS. This fields is then used to estimate the need to rebalance the
directory. The rebalancing is performed by an efficient linear time and space rebalancing algorithm
developed by Stout and Warren[6).

o (DIR-REBALANCE (THE DIRECTORY dir) dir-print-name) Rebalance directory
— dir

Rebalancing occurs automatically whenever the tree grows by a prespecified percentage:



Table 1: Geometrical and Topological mnemonics.

o (DEFVAR eDIR-REBALANCEYs 0.25) Percent threshold

Assuming that node n is in the directory, DIR-DELETE removes n from the directory without
destroying n. Note that the structure TREE-NODE includes a parent pointer in addition to the left
and the right child pointers. The need for the parent pointer is to enable an O(1) deletion operation
of a node. This occurs because n is given as an argument, and the deletion occurs without the
need to trace down the tree from the root node.

e (DIR-DELETE (THE DIRECTURY dir) =) Remove n from directory

- B

To allow the visitation of each node in a directory using a traversal direction :INORDER,
:PREORDER, or :POSTORDER, the following macro is provided.

e (FOR-EACH-FODE-OF-DIR (n dir direction) body) Rerate
-+ NIL

4.1 Mnemonics

As a coding convention, access functions have mnemonic prefixes shown in Table 4.1. The use
of such prefixes makes it easier to recognize the main argument of a function.

4.2 Geometry support

A fundamental construct in the geometrical support of PROTOSOLID is the COORDS node. It
represents a row vector [z,y, z,w] which can denote either a point, a vector, or a plane. It has the
following structure:

(DEFSTRUCT COORDS
*3D Aomogeneoxs coordinates or 8 row vector”
(C0-X 0.0 :TYPE DOUBLE-FLOAT)
(CO-Y 0.0 :TYPE DOUBLE-FLOAT)
(C0-Z 0.0 :TYPE DOUBLE-FLOAT)
(CO-¥ 1.0 :TYPE DOUBLE-FLOAT))

In reference to COORDS as a vector (i.e., considering only (z,y, z) with w = 1), a collection of
vector operations exists. i

e (SCALAR-PROD (THE DOUBLE-FLOAT s) v &OPTIONAL (r (MAKE-COORDS))) r=ssv

- T



o (DOT-PROD vi v2) vi- w2
— dogble-float

o (CROSS-PROD vi v2 SOPTIOEAL (v3 (MAKE-COORDS))) v3=v1xv2
- V3

e (WORMALIZE v &OPTIONAL (u (MAKE-COORDS))) u=v/||v]|
- n

e (VEC-NORN v) vl
- uble-float

e (DISTANCE pi p2) llp2 - p1]|
— double-float

e (SUBTRACT-VEC vi v2 &OPTIONAL (vr (MAKE-COORDS))) T=vi—-v2
-t VT

e (ADD-VEC wi v2 &OPTIONAL (vr (MAKE-COORDS))) v=vi4v2
- T

e (INC~VEC v W) Increment v by w
- v )

e (NEGATE-VEC v &OPTIONAL (n (MAKE-COORDS))) n= —v
—n

o (ASSIGN-VEC v w) v:=g
- v

e (ZERD-VEC v) Initialize v to (0,0,0)
e

A stack of COORDS structures is provided for use in vector computations to eliminate the inef-
ficient practice of garbage collecting the temporary structures. The stack is defined as a variable
length array.

o (DEFCONST $VR-REGISTERSS (MAKE-ARRAY B0 :VECTOR-FILL T :ELEMEXT-TYPE *COORDS))

Since the COORDS structures on the stack are preallocated, care must be taken in not leaving a
reference to the stack in permanent places. A new structure can be obtained and one or more can
be returned.

e (GET-VR-REGISTER ) Allocate
-+ coords

o (RELEASE-VR-REGISTERS &0PTIONAL (how-many 1)) Deallocate
— NIL

For an example of using the register stack, the following program prints out the midpoint of
two points P1 and P2:

(LET+ ((S (ADD-VEC P1 P2 (GET-VR-REGISTER)))
(M (SCALAR-PROD 0.5 S (GET-VR-REGISTER))))
(FORMAT T "(2,%,2)" (co-x M) (CO-Y M) (CO-Z N))
(RELEASE-VR-REGISTER 2))



4.2.1 Points

In PROTOSOLID & point is more than just three coordinates. A point has properties, and these
are maintained in addition to the three coordinates in object space. For one, each unique point in
object space is uniquely represented and its existence is retained in s point directory $POINTSS.
This directory is defined as

o (DEFCOXST $POINTS$ (NAKE-DIR-TREE))
and contains points having the following structure:
(DEFSTRUCT (POINT (:INCLUDE DIR-FNODE))

*3D Point”

(PO-VPET (MAKE-COORDS)) World Coordinates
(PO-TINE (i- »CURRENT-TINEe*)) Time Stemp
(PO-DIST 0.0) Distance To Some Plane
(PO-CLASS :NONE)) Classification

All the currently defined points known to PROTOSOLID can be printed.

e (PRINT-ALL-POINTS ) Oxtput points
— NIL

The three fields PO-TIME, PO-DIST and PO-CLASS will be discussed in Section 8.1. In addition
to these three fields, the point structure has four other fields. One is the row vector corresponding
the location of the point in the object space, and the other three are included in the DIR-NODE,
namely, the DIR-LEFT, the DIR-RIGET and the DIR-PARENT.

A three-way point comparison function needed by DIR-INSERT is

e (PO-CMPR p1 p2) Compare points
— one of :SMALLER, :SAME, or :LARGER

4.2.2 Lines
A line is represented by a point on the line and the direction unit vector:
(DEFSTRUCT LINE

(L¥-YPET (MAKE-COORD) :TYPE COORDS) Point on the Line
(L¥-DI% (MAKE-COORD) :TYPE COORDS)) Direction Unit Vecior
4.2.3 Planes

All planes are maintained uniquely in a directory of planes defined by
o (DEFCONST $PLANES$ (MAKE-DIR-TREE))
and has the following structure:

(DEFSTRUCT (APLANE (:INCLUDE DIR-NODE))
(PL-VECT (MAKE-COORD) :TYPE COORDS)) Eguation of the Plane

The row vector (PL-VECT p) is taken to be a four tuple [A, B,C, D]. One way of computing
the plane equation is from the three points p1, p2 and p3:

e (FIT-PLANE p1 p2 p3) Compute Plane Equation
— (VALUES p 11ip) )
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where the plane p is represented by the coeflicients [~A, —B,~C,-D]if £1ip = ¢, and [4, B, C, D]
if £1ip = NIL. The coefficients reprepresent a normalised general equation of the plane for which
any point q on the plane satisfies q-p7 = 0. Furthermore, the vector (A, B, C) is the plane normal.
The order of the three arguments is important. Consider the two results given the three points:

(MULTIPLE-VALUE-SETQ (PL1 FLIP1) (FIT-PLANE P1 P2 P3))
(NULTIPLE-VALUE-SETQ (PL2 FLIP2) (FIT-PLANE P1 P3 P2))

The plane’s coefficients are such that PL1 = PL2 but FLIP1=(N0T FLIP2). The computed coeffi-
cients of a plane have the property:
A>OV(A=0A(B>0V(B=0AC >0))). 1)

This property is necessary to prevent having both the planes [4, B,C, D] and [-A,~B, ~C, - D),
entered in the plane directory. A three-way plane comparison function needed by DIR-INSERT is

e (PL-CNPR p1 p2) Compare planes
-+ ofie of :SMALLER, :SAME, or :LARGER

with which a new plane p satisfying condition (1) can be placed in the plane directory by
(SETQ P (DIR-INSERT $PLANESS P #'PL-CNPR)).
All the currently defined planes known to PROTOSOLID can be printed by

e (PRINT-ALL-PLAXES ) Ouitput planes
— NIL

This is basically the following program:

(FOR-EACE-NODE-OF-DIR (P $PLANESS :INORDER)
(roraT T “(F,F.F.F)%" (co-x (PL-VECT P)) ...))

Determining if a point q is on the plane p is done by

o (PO-PL-CLASSIFICATION q p) Compare point/plane
-+ one of :BELOW, :0H, or :ABOVE

which returns the point plane relationship. The notion of below or above a plane is with respect to
the plane’s normal. The point is above if q - p7 > SEPSILONS and below if q - p7 < $ ~ EPSILONS.
The point-plane relationship and the distance of the point to the plane is stored in the (PO-CLASS
p) and (PO-DIST p) fields for future reference.

4.3 Extents

Extents of solids are an integral part of the geometrical support. Extents serve the purpose of
quickly determining the minimum rectangular region of space containing a set of points. The
extent of a set of points is the smallest box that encloses those points. Inserting a point p into an
extent e is handled by

o (UPDATE~EXTENT e p) Incorporate point into erient

- @

which updates o to include the point and returns the extent. An extent is defined by the EXTENT
structure which contains two points. The point (EX-MINP @) contains the minimum coordinates of
any point that has been inserted into e. The point (EX-MAXP @) contains the maximum coordinates
of all inserted points. The two points define a diagonal of an axis aligned box that bounds all the
inserted points. The extent has the following structure:

10



vertex ed face

vertex f V:{V} | V: :

edge :{V} : :

e | F:{V} | F:{FE :
oolid | S:{V} I|S: } | §:{F

Table 2: Topological adjacency relationships: the eight adjacency relationships used by the fedge-
based data structure appear in bold.

(DEFSTRUCT EXTENT
*Ezxtent of & solid”
(EX-MI¥P (MAKE-COORDS :C0-X 1.0E10 :C0-Y 1.0B10 :C0-Z 1.0E10))
(EX-RAXP (MAME-COORDS :C0-X -1.0B10 :C0O-Y -1.0E10 :C0-Z -1.0E10)))

An extent is reset to the default values shown above by the function

e (CLEAR-EXTENT extent) Reset exient
— extent

and if given two extents, the first extent can be incorporated into the second extent.

o (IBCORPORATE-EXTENT extenti extent2) Enlarge e by el
- extent2

Given two extents, it can be determined if they intersect. Two extents intersect if their regular-
ised intersection is non-empty. Thus the touching of two extents does not constitute an intersection.

o (EXTENTS-INTERSECT? extenti extent2) Check intersection
- boolean
Also, the center point of an extent can be obtained.

o (EXTENT-CENTER extent &OPTIONAL (c (MAKE-COORD)) Centier point of an exient
- &

4.4 Topological Support

The topological information consists of five different types of topological nodes, namely, the solid,
face, fedge, edge, and vertex. The solid, the face, the edge and the vertex are the familiar com-
ponents of a boundary representation. The fedge node gives a face its edge orientations. Our use
of fedges is analogous to Mantyla’s use of half-edges in the half-edge data structure. The need
for edge loops for representing holes in a multi-connected face has been eliminated as was done in
the bridge-edge data structure used by Yamaguchi [12]. Furthermore, no shell structure is used
for representing multi-shelled solids. Refer to the function SEPARATE-SOLIDS for the separation of
multi-shelled solids into separate solids.

A boundary can be defined as a triple (V,E, F) where V denotes the set of vertices, E de-
notes the set of edges, and F denotes the set of faces. With the four topological entities, there
are sixteen topological relationships. The functional notation a : {5} represents the adjacency
relationship between an entity of type a and a set of entities of type b. For example, F : {E}
specifies the face/edge adjacency relationship. The topological adjacency relationships are shown
in Table 4.4. The topological adjacency relationships maintained explicitly in the fedge-based

11



data structure appear in bold print in the table. It is not necessary to store all the topological
adjacency relationships explicitly since they can be derived. Since there exists a separate node
for each topological entity in the representation, the relationship a : {6} is maintained by double
linking all the entities of type & that are adjacent to an entity of type a. All faces and edges are
maintained by the solid in a doubly-linked list. The vertices of a given solid are maintained in a
spatial directory to allow better than O(n) retrieval.

The fedge-based data structure hierarchy is shown in Figure 2. The labeled boxes in the figure
denote where in the hierarchy the entities reside. The arrows indicate pointers in one direction,
while the plain lines indicate pointers in both directions. Figures 4.4 and 4 contain diagrams of the
fedge-based data structure that show the fedge nodes, the bordering edge nodes, and the vertex
nodes of a single face of a cube. The first figure shows the downward pointing pointers starting
from a face node. The second figure shows the upward pointing pointers starting from the vertex
nodes. In the remainder of this section, the vertex, the edge, the fedge, the face, and the solid
node type and their functional support are detailed.

4.4.1 Vertices

Geometrically, a vertex exists at a point of intersection of three or more planes. Topologically,
s vertex is incident to one or more edge-face cycles. For each vertex, the V : {E} adjacency
relationship is maintained. A vertex node points with the YE-EDGES field to an anchor edge. The
anchor edge is on a unordered double-linked list of all the edges that are incident on the vertex.
The number of incident edges is kept in the VE-NEDGES field.

(DEFSTRUCT (VERTEX (:INCLUDE DIR-NODE))
*Vertez node of & solid.”
(VE-POIXNT NIL :TYPE POINT)
(VE-NEDGES O :TYPE FIXNUN) Number of incident edges
(VE-EDGES NIL :TYPE EDGE) Incident Edges
(VE-ASSOC NIL :TYPE LIST))

The list of edges around a vertex is not ordered. There may be more than one edge-face cycle
around each vertex (this occurs for nonmanifolds) and ordering the edges would greatly complicate
the structure and add unnecessary time-complexity. Therefore, it is not worth the effort computa-
tionally and storage-wise to explicitly differentiate between the various edge-face cycles around a
vertex. As it is, a particular edge-face cycle may easily be traced. Given a vertex v and one of the
fedges g of an incident edge of v where (EQ v (FE-DSTV g)), the edge-face cycle around v that
the edge belongs to may be traced by the following program (refer to Figure 4.4.1):

(po0 ((LG (FE-COFEDGE G) imitialize
(FE-PREV (FE-COFEDGE G)))) step to next fedge
((Eg 16 G)) terminale when G reappears
body) process edge (FE-EDGE LG)

The reason one must start with a fedge node, and not an edge is because the solid need not be
a manifold. Consider the example in Figure 4.4.1. The vertex is adjacent to three edge-face-loops.
Giving one of the adjacent edges with four incident faces as the starting point would not provide
sufficient information as to which of the two touching edge-face cycles was desired.

The solid of a vertex is given by:

e (VE-SOLID v) Get solid of vertez
~+ (FA-SOLID (FE-FACE (ED-FEDS (VE-EDGES v))))
4.4.2 Edges

Geometrically, an edge corresponds to a line segment lying on the line of the intersection between
two (or an even number of) planes. Topologically, an edge is incident to two vertices and an even
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Figure 3: Diagram of the fedge-based data structure showing only the down pointers of the top
face of a block. FA, FE, ED and VE stand for face, fedge, edge and vertex respectively.

ED FE FA FE ED

L\ FE

Figure 4: Diagram of data structure showing the up pointers only.

13



A
el

Figure 5: A single edge-face cycle around a vertex. Here, each edge has two incident fedges.

Figure 6: Multiple edge-face cycles incident on vertex v.

pnumber of faces. The E : {V} and the E : {F} adjacency relationships are maintained. The edge
has the following structure:

(DEFSTRUCT EDGE
®Edge belween two vertices”

(ED-VRTA  NIL :TYPE VERTEX) A First vertez
(ED-VRTB NIL :TYPE VERTEI) Second vertez
(ED-FEDS NIL :TYPE FEDGE) Incident Fedges
(ED-NFEDS © :TYPE FIXNUX) Number of Incident Fedges
(ED-FVRA  NIL :TYPE EDGE) Nezt Edge of VRTA
(ED-PVRA NIL :TYPE EDGE) Previous Edge of VRTA
(RD-NVRB  NIL :TYPE EDGE) Nezt Edge of VRTB
(ED-PVRB BIL :TYPE EDGE) Previous Edge of VRTB
(ED-NEXT NIL :TYPE EDGE) Nezt Edge of Solid
(ED-PREV NIL :TYPE EDGE) Previous Edge of Solid
(ED-PSEUDO? NIL  :TYPE BOOLEAN)

(ED-LINE (MAKE-LINE) :TYPE LINE) Line passing from VRTA through VRTB

(ED-ASSOC FIL :TYPE LIST))

The two vertices of an edge are ED-VRTA and ED-VRTB. The incident edges around vertex A, for
example, are linked together cyclically by the ED~NVRA and the ED-PVRA fields. The incident edges
around vertex B are likewise maintained by the ED-NVRB and the ED-PVRB pointers. These four
pointers support the V : {E} adjacency relationship. Figure 7 shows the pointers maintained by
the edge node.

The S : {E} relationship is supported by the ED-NEXT and ED-PREV pointers.

The E : {F} relationship is kept in each edge by linking together the fedges of the faces
adjacent to the edge. The anchor fedge of the fedge loop is kept in the ED-FEDS field. ED-NFEDS is
the number of fedges in this loop which is also the number of faces incident on this edge.

o (ED-LXPC o) Point on line of edge
—~ (LX-WPNT (ED-LIXE e))

14
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(ED-L¥DIR o) Direction of line of edge
— (L¥-DIR (ED-LINE o))

(ED-PETA o) 1st endpoint of edge
— (VE-POINT (ED-VRTA o))

(ED~PXTB o) 2nd endpoint of edge
~ (VE-POINT (ED-VRTB e))

(ED-SRCV ¢ a2b?) Source verter
—+ (IF a2b? (ED-VRTA ¢) (ED-VRTB o))

(ED-DSTV ¢ a2b?) Destination vertez
—+ (IF a2b? (ED-VRTB ¢) (ED-VRTA o))

(ED-NVRE v o) Nezt edge around vertez
— (IF (EQ v (ED-VRTA ¢)) (ED-NVRA ¢) (ED-EVRB o))

(ED-PVRE v o) Previous edge around vertez
— (IF (EQ v (ED~VRTA o)) (ED-PVRA ¢) (ED-PVRS o))

4.4.3 Fedges

Geometrically, a face is represented by the plane in which it is contained, and by the polygon on
that plane that demarcates the boundary of the face. Topologically, the polygon is given by the
edges. The edges are oriented in a counterclockwise order around the face when viewed from just
above the face and outside the solid. However, having an cyclically ordered list of edges itself is not
sufficient if it is also desirable to obtain the vertices bordering the face in a counterclockwise order.
This is because the edge can have one of two orientations. It can either have the orientation from
ED-VRTA to ED-VRTB or from ED-VRTB to KD-VRTA. A face handles the ordering and orientation of
edges with the aid of the fedge nodes. A fedge node belongs exclusively to a face/edge pair, and
provides the needed ordering and orientation of edges around the face. The link fields of a fedge
are shown in Figure 8. A fedge has the following structure:

(DEFSTRUCT FEDGE o
"Directed Edge: Face-Edge®
(FE-EDGE JNIL :TYPE EDGE)
(FE-FACE UNIL :TYPE FACE)

15
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Figure 8: Fedge Topology

DSTV [ ED |~{SRCV
EE]

Figure 9: The source and destination vertices of a fedge.

(FE-A2B?7 NIL :TYPE BOOLEAN) Orientation of edge
(FE-FEXIT KIL :TYPE FEDGE) Nezt Fedge around face
(FE-PREV NIL :TYPE FEDGE) Previous Fedge of face
(FE-NEDF FNIL :TYPE FEDGE) Nezt Fedge of Edge
(FE-PEDF NIL :TYPE FEDGE) Previous Fedge of Edge

(FE-ASSOC ¥IL :TYPE LIST))

The fedge imposes an orientation on its edge. A source vertex of a fedge g is obtained from
the edge, (FE-EDGE g), as either vertex A or vertex B depending on the orientation flag (FE-A2B?
g). Figure 4.4.3 shows the source and the destination vertices with respect to a given fedge. The
following four macros are provided to obtain the source and destination vertices and the source
and the destination points of a fedge.

e (FE-SRCV g) Source vertez
— (IF (FE-A2B? g) (ED-VRTA (FE-EDGE g)) (ED-VRTB (FE-EDGE g)))

o (FE-DSTV g) Destination vertezr
— (IF (FE-A2B? g) (ED-VRTB (FE-EDGE g)) (ED-VRTA (FE-EDGE g)))

o (FE-SRCP g) Source Point
— (VE-POINT (FE-SRCV g))

e (FE-DSTP g) ) Destination Point
— (VE-POINT (FE-DSTV g))

An important topological relationship which is not represented directly for nonmanifold solids
is the pairing of two faces incident on a given edge bordering a solid volume. For manifold solids
given a fedge g corresponding to a given face-edge relationship, the other face incident on that
edge is simply (FE-FACE (FE-NEDF g)). Nonmanifold edges are rare, and so the fedges around
an edge are not kept ordered. ‘

Since the fedges of an edge can be paired up so that each fedge has one co-fedge; a FE-COFEDGE
function is provided to obtain the corresponding co-fedge. From the two co-fedges, the co-faces
can be easily obtained.

16



o (FE-COFEDGE g) Find cofedge
— fodge
‘Two useful operations on fedges is the invector, and the convex predicate. The vector lying in
the face and pointing into the face from an edge is called the invector.

o (FE-INVECTOR g &OPTIONAL (v (MAKE-COORDS))) Compxte invector
—_v

o (FE-CONVEX? g) Determine convezily of sector
— beoolean

Given that 2 is the face (FE-FACE g), the invector is computed as follows:

(IF (X0R (FE-A287 g) (FA-FLIP? 2))
(CROSS~PROD (PL-VECT (FA~PLANE f)) (ED-LNDIR (FE-EDGE g)) v)
(CRoSS-PROD (ED-LEDIR (FE-EDGE g)) (PL-VECT (FA-PLANE 1)) v))

The convexity of a sector is similarly computed as:

(LET ((v (get-vr-register)))
(PROG1
(IF(FE-A2B? g)
(>= (DOT-PROD (ED-L¥DIR (FE~EDGE g))
(FE-INVECTOR (FE-PREV g) v)) ¢-EPSILONs)
(<= (DOT-PROD (ED-LNDIR (FE-EDGE g))
(FE-IBVECTOR (FE-PREV g) v)) sEPSILONs))
(RELEASE-VR-REGISTER)))

4.4.4 Faces

A face is a single connected edge-vertex loop in a plane. A face is represented by the following
structure:

(DEFSTRUCT FACE
*Face of a solid”
(FA-SOLID FNIL :TYPE SOLID)
(FA-NEXT NIL :TYPE FACE) Nezxt Face of Solid
(FA-PREV NIL :TYPE FACE) Previous Face of Solid
(FA-PLANE J§IL :TYPE APLANE)
(FA-SURF NIL :TYPE SURFACE)
(FA-FLIP? BKIL :TYPE BOOLEAN)

(FA-FEDS NIL :TYPE FEDGE) Fedge Loop of Face
(FA-¥FEDS © :TYPE COUNTER) Number of Fedges
(FA-NFRF nil :TYPE FACE) Nezt Face of Fragment

(FA-ASSOC NIL :TYPE LIST))

The number of fedges bordering the face is FA~-NFEDS. The fedge loop around the face is anchored
at FA-FEDS.

Two basic methods exist for representing multi-connected faces (i.e., faces with holes). In one
method, the edges of each hole are maintained separately as loops, and each face keeps track of
the loops. One loop, usually the first one, is always the outside loop. The other loops are the
holes. In the other method, no loop structure is used. Instead, bridge edges connect the outer
edge loop with each inner edge-loops [12]. Thus, a single edge loop results. There is no restriction
on where the bridge-edges occur as long as a single complete loop connects all the edges of the
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Figure 10: Three bridge edges connect the outer edge loop with three inner edge loops resuiting
in a single edge loop. The face has 29 fedges, 6 of which correspoond to the 3 bridge edges.

face. Figure 10 shows a face with two holes and two bridge edges. The three edge-loops are labeled
as L, L3, and L. This second method of using bridge-edges is adopted in the fedge-based data
structure.

The plane can be computed from the points of the face by using Newell’s averaging method.

o (FIND-PLANE-OF-FACE 1) Compute plane equation
—+ (VALUES plane boolean)

When the face is multi-connected, the number of inner holes can be computed by tracing around
the face and noting the bridge edges.

e (FA-NUM-HOLES f) Find number of inner loops
— gounte

PROTOSOLID is a facetted modeler. In order to provide some indication of the nature of the
curvature of the boundary, faces are tagged with implied surface information. For example, a face
that is a result of a cylinder is given the parameters of the cylinder, namely, a point on the axis
of the cylinder, the axis, and the radius. This information can be used for a variety of reasoning
and display purposes. The implied surface is kept in the FA-SURF field. In case that the implied
surface is a plane, the two fields FA-SURF and FA-PLAKE are identical structures of the plane.

4.4.5 Solids
Each solid is represented by a header node with the following structure:
(DEFSTRUCT SOLID

*Solid Header siructure”

(SO-HISTORY NIL :TYPE LIST) Program for the solid
(SO-FACES NIL  :TYPE FACE) Unordered set of faces
(SO-NFACES O :TYPE FIXNUM) Number of faces
(SO~EDGES FIL :TYPE EDGE) Unordered set of edges
(SO-BEDGES 0 :TYPE F1XNUX) Number of edges
(SO-VERTICES (MAKE-DIR-TREE) :TYPE DIR-TREE) Vertez directory
(SO-CLEAN? T : TYPE BOOLEAN) Fragmentation flag

(SO-NAME “No Name™ :TYPE STRING)
(SO-EXTENT (MAKE-EXTENT) :TYPE EXTENT)
(S0-ASSOC FIL  :TYPE LIST))

*

The number of vertices in a solid are kept in the vertex-directory header.
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e (SO-NVERTICES s) Number of vertices of solid
=+ (DIR-SIZE (SO-NVERTICES s))

$0-EISTORY coutains the unevaluated program code which creates this solid. S0-FACES, and
SO-EDGES ate the anchor nodes for the corresponding doubly-linked circular lists. 80-VERTICES is
the directory hesder node for the vertex directory.

Internally, all existing solids are kept on a stack of solids.

o (DEFVAR #SOLIDS* NIL) Currently eristing solids

The currently existing solids can be visited by iterating of the list of solids.

e (DOLIST (s *SOLIDS#) body) Iterate
- NIL

It is assumed that this list is never manipulated by the user. Many of the operations on solids
maintain this list implicitly and its integrity should not be jeopardized by the user. To allow
control of the list, several functions are provided.

o (ROTATE-SOLID-STACK ) Pxt top solid on bottom
— golid
This function rotates the stack of solids by moving the top solid to the bottom and by returning
the new top solid.

o (SVAP-SOLIDS~ON-STACK ) Ezchange top two solids’
— 20lid

This function swape the top two solids on the stack and returns the new top solid. The entire
stack of solids can be properly deleted.

o (CLEAR-EVERYTRING ) Reset everything
- NIL

Solids that are dejeted are removed from the list of solids and its nodes are returned to corre-
sponding free pools. Once a solid has been deleted by the DELETE-SOLID function, it is assumed
that there are no outside pointers referring to any of the nodes of that solid.

5 Programming with PROTOSOLID
5.1 Looping

Frequently used flow control structures are the for-cach macros. These macros allow a piece of
code to execute once for every adjacent node of a specified node. The syntax is analogous to the
DOLIST macro in Lisp. Each looping macro allows a single variable to be bound over the scope
of the body. The body is treated like a block which allows abnormal exits via the RETURN-FROX
command.

e (FOR-EACH-VERTEX-OF-SOLID (vertex solid orxder) bodz) Herate
- NIL

Since the vertices of a solid are organized in a directory, the vertices are spatially ordered by
the x, then the y, and finally the 3 coordinates of the point corresponding to vertex. Furthermore,
the vertices can be visited according to the specified order, namely, the : PREORDER, the : INORDER
or the : POSTORDER. :

o (FOR-EACH-EDGE-OF-SOLID (edge solid) body) Iterate
— NIL
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(POR-EACE-FACE-OF-SOLID (face solid) bodz) Herate
- NIL

o (FOR-EACH-FEDGE-OF-FACE (fedge face) body) ) Iterate
— NIL

o (FOR-RACH-EDGE-OF-FACE ((edge a2b?) 2face) bodz) Herate
— KNIL

o (FOR-EACH-EDGE-OF-VERTEX (edge vertex) bodz) Iterate
— NIL

o (FOR-EACE-FEDGE-OF-EDGE (fedge edge) body) Herate
— NIL

o (FOR-EACHE-FACE-OF-EDGE (face edge) body) Iterate
- NIL

6 Memory Management

One nice property of Lisp is that it provides a garbage collector that reclaims dead space. Un-
fortunately when a large number of big structures is allowed to die after a short use, the increase
in core image and the need for a very large swap space is the only thing accomplished. Conse-
quently, PROTOSOLID avoids this problem by maintaining its own memory manager that reuses
once deallocated structures.

Because of the design of the fedge-based data structure, free nodes are retained as lists of nodes
or as trees.

(DEFSTRUCT FREE-LIST
(FL-HEAD mnil)
(FL-SIZE 0))

(DEFSTRUCT (FREE-DIR-TREE (:INCLUDE DIR-TREE))) Once a structure is allocated from the
system, it is either in use in a solid, or it resides on a free list or tree. It is not allowed to die.
Each of the topological and geometrical entities are kept on an appropriate list or tree.

o (DEFCOEST $$FREE-PO$$ MAKE-FREE-DIR-TREE) Points
o (DEFCONST $$FREE-PL$$ MAKE-FREE-DIR-TREE) Planes

(DEFCONST $$FREE-VE$$ MAKE-FREE-DIR-TREE) Vertices
o (DEFCONST $$FREE-ED$$ MAKE-FREE-LIST) Edges
e (DEFCONST $$FREE-FA$$ MAKE-FREE-LIST) Faces
o (DEFCONST $$FREE-FE$$ MAKE-FREE-LIST) Fedges
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e (DEFCOEST $$FREE-SO$$ NAKE-FREE-LIST) Solids

Each of the structures can be allocated and deallocated by:

e (ALLOCATE-type )
= type-nede

o (DEALLOCATE-type n) Return n 10 the free pool
— fype-node

7 Creating Simple Solids

PROTOSOLID currently provides several functions for creating simple solids. Since PRoTOSOLID
provides for the construction of complex solids to be evaluated from set operations, simple param-
eterized solids must be provided as the initial building blocks. The parameterized solids are easily
parameterised, such as the block, the cone, and the cylinder. In addition to the parameterized
solids, a class of primitives consisting of extruded solids is also provided by lifting a face into a
solid.

7.1 Lifted Solids

CREATE-LIFTED-SOLID is a general primitive for creating solids by lifting a non-self-intersecting
planar polygon into a solid. For example, the block and the cylinders are created by this lifting
primitive. The primitive takes two required parameters. The first parameter :LIFT specifies a
vector that gives the direction and distance to lift the face containing the polygon. The second
parameter :POINTS gives a list of points around the bottom face. The order of the points should
be counterclockwise when the face is viewed from the outside of the solid. Reversing this order
will create a complement of a solid, a hole in space. Such a reversed solid has an infinite volume
and is not considered a physical object. An optional third parameter : TRANSLATE is a vector that
specifies a translation to be applied to the list :POINTS. (See the CREATE-BLOCK primitive for an
example).

e (CREATE-LIFTED-SOLID &KEY 1ift points (TRAENSLATE '(0.0 0.0 0.0)))
— go0lid

For all the crestion primitives, including the CREATE~LIFTED-SOLID, the resulting solid is cre-
ated by making and then gluing into the solid the appropriate faces of that solid. This face creation
is driven by the XAKE-FACE-OF-SOLID routine.

o (MAXE-FACE~OF-SOLID s points &OPTICNAL plane £1ip?)
— face

This routine accepts a list of unique points lying in a common plane and given in a counterclockwise
order around the face when viewed from the outside, creates a face whose vertices correspond to
the points given, and glues the face to the solid 8. The second argument, points, is 3 list of point
nodes which are assumed to reside in the point directory $POINTSS. If a plane equation, plane is
specified with the orientation of the normal vector, £1ip?, then the points should lie in that plane.
If the plane equation is not specified, the equation of the plane is computed from the points. This
is done by the use of FIND-PLANE-OF-FACE function.
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7.2 Block

The create-block primitive generates 3 rectalinear block whose sides are translations of the z, the
9, and the s planes. The block is specified by a corner point and three non-sero dxmennonal values
corresponding to the length, the width, and the height of the block.

o (CREATE-BLOCK &KEY
(CORNER °(0.0 0.0 0.0))
(DINEESIOES ’(1.0 1.0 1.0))
(NAME "Block™))

— golid

(CREATR-BLOCK :DIMENSIONS ‘(,x ,y ,z)) is a valid specification if x > 0 and y > 0 and
2 > 0. As an example of using the creation routines, consider the use of the CREATE-LIFTED-SOLID
procedure to create the block. The CREATE-BLOCK procedure can be easily coded as

(DEFUN CREATE-BLOCK (&XEY
(CORNER ’(0.0 0.0 )>
(DIMENSIONS (1.0 1.0 1.0)))
(CREATE-LIFTED-SOLID
:LIFT ‘(0.0 ,(SECOND DIMENSIONS) 0.0)
:TRANSLATE CORNER
:POINTS ‘((0.0 0.0 0.0)
(,(FIRST DIMENSIONS) 0.0 0.0)
(,(FIRST DINENSIONS) 0.0 ,(TEIRD DIMENSIONS))
(0.0 0.0 ,(THIRD DIMERSIONS)))))

7.8 Cone

A CREATE-CONE primitive generates an approximation of a cone whose bottom center point is
given by the : CENTER parameter, and whose radius, height, and number of sides are given by their
corresponding parameters. The cone is aligned along the positive Y-axis

o (CREATE-CONE &KEY
(CEXTER '(0.0 0.0 0.0))
(HEIGHT 1.0)
(RADIUS 0.5)
(SIDES 8)
(MAJOR-AXIS :Y)
(DEGREES 360.0)
(NANE "Name"))

— golid

(CREATE-CONE :HEIGHT H :RADIUS R :SIDES S) is a valid cone if 0 < H and 0 < Rand 3 < s.
The base of the cone is created by inscribing a regular polygon of s sides in a circle of radius r.
Although the cone is facetted, the implied surface of the cone is maintained for each of the walls
of the cone within the FA-SURF fields. The cone has the following structure.

(DEFSTRUCT CONE
(CE-APEX  NIL :TYPE POINT)
(CE-AXIS  NIL :TYPE COORD)
(CE-A-COS 0.0 :TYPE DOUBLE-FLOAT))
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7.4 Cylinder

A CREATE-CYLINDER primitive generates an approximation of s cylinder whose bottom face is
centered at a given point which is aligned along the positive Y-axis. The height, the radius, and
the number of sides are given by their corresponding parameters.

e (CREATE-CYLINDER &KEY
(CENTER (0.0 0.0 0.0))
(ERIGET 1.0)
(RADIUS 0.5)
(SIDES 8)
(MAJOR-AXIS :Y)
(BAME “Cylinder"))

- golid

(CREATE-CYLINDER :HEIGHT B :RADIUS R :SIDES S) is a valid cylinder if 0 < H and 0 < R and
3 < S. The cylinder is created by lifting a regular polygon of s sides inscribed (or circumscribe) in
a circle of radius r a distance of height h. Although the cylinder is facetted, the implied cylindrical
surface is maintained for each of the walls of the cylinder within the FA-SURF fieids. A cylinder
has the following structure.

(DEFSTRUCT CYLINDER
(CY-POINT NIL :TYPE POINT)
(CY-AXIS BIL :TYPE COORD)
(CY-RADIUS 1.0 :TYPE DOUBLE-FLOAT))

7.5 Sphere

A CREATE-SPHERE primitive generates an approximation of a sphere with a given center and a
radius.

o (CREATE-SPHERE RKEY
(CENTER '(0 0 0))
(RADIUS 0.5)
(SIDES 8)
(LAYERS 8)
(DEGREES 380)
(NAME “Sphere™))
— solid
(CREATE-SPHERE :RADIUS R :SIDES S :LAYERS L) if a valid sphere if R > 0, S>2and L > 1.
The sphere bas the following structure.

(DEFSTRUCT SPHERE
(SP-CENTER NIL :TYPE POINT)
(SP-RADIUS NIL :TYPE DOUBLE-FLOAT))

7.6 Torus
A CREATE-TORUS primitive generates an approximation of a torus.

o (CREATE-TORUS &KEY
(CERTER *(0 0 0))
(axIs *(o 1 0))
(MINOR 0.28) Minor Radius
(MAJOR 1.0) Major Radius
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(SECTIOES 18)
(SIDES 8)
(DEGREES 360)
(NAME “Torus™))
— golid
The torus has the following structure.

(DEFSTRUCT TORUS
(TR-CEETER NIL :TYPE POINT)
(TR-AXIS FIL :TYPE COORD)
(TR-NIFOR  NIL :TYPE DOUBLE-FLOAT)
(TR-MAJOR FIL :TYPE DOUBLE-FLOAT))

¢ eo oo

7.7 Tetrahedron

A CREATE-TETRAHEDRON primitive generates a simplex given its four distinct and not all planar
points.

e (CREATE-TETRAEEDRON p1 p2 p3 pd)
— golid

8 Operations on solids

PROTOSOLID provides many operations that manipulate solids. In this section, these operations
are presented.

8.1 Boolean Set Operations

The regularized set operations on two solids are the backbone of PROTOSOLID. To get a detailed
exposition of the algorithm used in evaluating the set operations, refer to Van&tek and Nau[10, 8, 9).
Here I present only a short exposé on the use of the set operations.

For three dimensional objects, a classification of faces of one solid is required with respect to the
other solid. This can become quite complex, especially if the solids modeled cannot be assumed to
be manifolds. In general, solids are not closed under pure set theoretic operations. A set theoretic
operation applied to two valid solids does not necesarily result in a valid solid. This occurs when
the two solids touch in particular ways. Requicha and Voelcker have shown that set theoretic
operations must be regularized. Conceptually, the regularization of a object removes all lower
dimensional entities such as isolated vertices and dangling edges that do not border the interior of
the object (an object is regular if it is equal to the closure of its interior). As a result, a simple
approach for performing set operations on two solids is to perform a set-theoretic set operation and
then to regularize the result. The efficient approach used by PROTOSOLID is to directly perform
a regularized set operation. This is done in two steps. Step one cuts up the boundaries of the
two solids so that a face of one of the solids intersects the other solid only at bordering edges or
vertices (and therefore each face can be homogeneously classified with respect to the other solid).
Step two constructs the desired solid by combining the appropriate faces of the two solids. Each
of the following three functions accepts two solids and returns a regularized solid as the result.

e (UNION-SOLIDS si s2)
— polid

Tbe union of solids s1 and 82 is a solid whose interior is the combination of the interiors of s1
and s2.
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e (IFTERSECT-SOLIDS si 82)
— golid
The intersection of solids s1 and 82 is a solid whose interior is common to both s1 and s2.

o (SUBTRACT-SOLIDS s1 s2)
— selld

The subtraction operation results in a solid in which the interior of solid 82 is removed from
the interior of solid s1.

The classification step leaves the original two sets of faces partitioned into eight classification
sets used subsequently by the construction step. The eight classification sets are subsets of a face
set called fragments.

(DEFSTRUCT FRAGNENT
(FR-FRONT ¥IL :TYPE FACE)
(FR-REAR NIL :TYPE FACE)
(FR-SIZE O :TYPE COUNTER)
(FR-CLASS :UNKNOWN))

o (DEFCONST $AinB$ (MAKE-FRAGMENT)) Faces of A inside B
o (DEFCONST $BinA$ (MAKE-FRAGMENT)) Faces of B inside A
o (DEFCONST $AoutB$ (MAKE-FRAGMEXT)) Faces of A oxtside B
e (DEFCONST $Bouti$ (MAKE-FRAGMENT)) Faces of B outside A
o (DEFCORST $ionB$ (MAKE-FRAGMENT)) Faces of A with B
o (DEFCONST $BonA$ (MAKE-FRAGMENT)) Faces of B with A
o (DEFCONST $ion-B$ (MAKE-FRAGMENT)) Faces of A anti B
o (DEFCONST $Bon-A$ (MAKE-FRAGMEXT)) Faces of B anti A

The faces in each fragment are linked together in a singly linked list by the FA-NFRF field. A
face can be added to and removed from a fragment.

o (FR-ADD-FACE ¢ fr) Add e face to fragment
- £y

o (FR-REMOVE-FACE £r) Remove front face
— face

e (FR-APPEND-FACES sfr 4fr) Move faces from one to another
— dfr



o (FR-COLLECT-FACES solid fr) Get all faces of a solid

- £

The two solids that are classified are kept in the variables:
o (DEFVAR *ASolide NIL)  Last solid classified in relation to B
o (DEFVAR sBSolids NIL) Last solid classified in relation to A

Deleting either of these two solids automatically clears the eight classification sets and the two
variables. This can also be accomplished explicitly by

o (CLEAR-CSETS ) Clear the classification sets
— NIL

or individually by

e (FR-CLEAR f1) Clear a fragment
- fr

Do to the nature of the algorithm that computes the set operations, both s1 and 82 are modified
by having some of their faces split into subfaces. Since this face splitting is purely a topological
modification of the solid, the split faces of a solid may again be merged to yield the original
boundary by the following operation:

o (CLEAN-UP-SOLID s) Apply topological reduction

-t 8

Each solid s maintains an indication of whether or not its faces have been split within the
(S0-CLEAN? 8) field. Using a solid as an argument to one of the set operations sets this field to
true. Since the set operations expect a clean solid, a solid is automatically cleaned up if it is used
in a set operation.

When merging faces during a clean-up operation, PROTOSOLID takes into account the face
properties and the implied surfaces. A question as to the merging of coplanar and touching faces
arises when the two face properties differ. Consider for example a stock from which two notches
have been removed, one inside the other. The top notch is ]arge, the inside notch is smaller,
but one face is coplaner with a vertical face of the upper notch. The question that arises during
merging is, should the two vertical and coplanar faces be merged, and if so, whose property should
they inherit? The convention is that if the two faces have different properties or different implied
surfaces, they cannot be merged. Thus, two faces can be merged if they have the same planes,
FA-PLARE, the same plane orientation flags, FA~FLIP?, and the same surfaces, FA-SURF.

For a closer view of the set operations, consider the union operation. A simplified version of
the union set operation code follows:

(DEFUN UNION-SOLIDS (Si S2)
*Return the union of two solids”
(UNLESS (SO-CLEAN? S81) (CLEAN-UP-SOLID S1))
(UNLESS (SO-CLEAN? S2) (CLEAN-UP-SOLID S2))
(LET ((S (MAKE-SOLID)))
(CLASSIFY-FACES-OF-SOLIDS Si S$2)
(FOR-EACE-FACE~OF-FRAGMENT (F sioutBs)
(COPY-FACE-INTO-SOLID F S))
(FOR-EACE-FACE-OF-FRAGMENT (F #Boutd)
(COPY-FACE-1NTO-SOLID F S))
(FOR-EACE-FACE-OF-FRAGMENT (F slionBs)
'~ (COPY-FACE-INTO-SOLID F S))
(PUSH S #SOLIDS#)
(RETURXY (CLEAN-UP-SOLID S))))
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After the two solid s1 and s2 have been classified, the resulting solid s is created by system-
atically gluing together the desired faces. This glueing of faces together is performed by the
COPY-FACE-INTO-SOLID procedure which, when given a face of some other solid, duplicates the
face in the destination solid.
e (COPY-FACE-INTU-SOLID £ 8)

- Zace

The operation for taking the complement of & solid has not been provided. There are several
reasons for this:

1. The complement of a solid is not considered a solid, because the interior is unbounded.
2. There is no practical use of the complement of a solid.

3. The set operations must handle the complement of a solid differently than solids. However,
this is a minor reason, as the representation and coding can be easily modified to handle the
complement.

8.2 Separation of solids

The results of set operations on two solids is not necessarly a solid consisting of a single component.
A solid does not need to be a single component. This is convenient since the set operations do not
need not know about multi-component solids (i.e., solids with more than one shell). As a result,
if a solid is known, or suspect, to consist of multiple-components, one must be able to separate
the solid into several solids consisting of a single components. The SEPARATE-SOLID operation
performs this separation. It accepts a single solid and returns a list of one or more solids.

o (SEPARATE-SOLID s &0PTIONAL (number n))
— list of solids

The need for an explicit separation of a solid operation is in part due to the convention that
each solid maintains its own topology. A solid consisting of several components has a combined
topology of each of the components. The separation of a given solid s having several components,
results only in the partitioning of the sets (SO-VERTICES s), (SO-EDGES s), and (SO-FACES s).
As an example of separation, Figure 3 shows three solids. When separated, the first two solids
each separate into two tetrahedral solids. The third one, the pseudo-manifold, does not separate.

When discussing the separation of components the issue of what exactly is meant by a compo-
nent cannot be ignored. If the class of solids being modeled was strictly the class of solids bounded
by two-manifolds, a component could be simply defined topologically as the set of all connected
faces. However, in the world of nonmanifolds, solids become a bit more difficult. Intuitively, a
solid having two components can be separated if the two components are topologically disjoint,
or if they touch only at isolated points or along lines. The components cannot share a common
interior. That is, for any point in the interior of one component, and for any point in the interior of
the other component, there cannot exist a path between the two points that are contained entirely
in the interior of the solid. The SEPARATE-SOLID operation correctly handles nonmanifolds in the
sense that it returns a list of non-separable solids.

When two solids do not intersect in space, they can be combined by a union operation. However,
this is an expensive operation.

e (ADD-SOLID srcs dsts) Add src solid to dst sohd
— dsts "

This operation copies the source solid into the destination solid without all the overhead of
performing a full eight-way classification. Of course, if the two solids intersect, the resulting solid
will be invalid, so use this operation with caution.

27



The ADD-SOLID operation is useful in the following setting. Assume that a given solid consists
of several components and you wish to remove some of these components. First separate the solid
and then combine the desired ones.

8.3 Transforming Solids

Two basic transformations can be applied to solids, a rotation and a translation. Both transfor-
mations are rigid in the sense that the solid is repositioned in object space and maintains its shape
without undergoing any deformation. The transformations affect only the geometry of a solid, the
topological structure remains unchanged. Unlike the same operations in other modelers, however,
these operations are non-destructive. A transformation creates a new solid in the newly desired
place, and so the solid is copied.

o (TRANSLATE-SOLID s &KEY (VECTOR *(1 0 0)))
- polid

The TRANSLATE-SOLID operation performs the translation by the specified vector. If a null vector
is specified, this operation acts like the DUPLICATE-SOLID command.

A rotation can be preformed three different ways. The first way is by specifying the degrees
of rotation about each major axis. The object space in which the transformations take place is a
right-handed coordinate system. This is important, as the difference between a left-handed and a
right-handed coordinate system dictates the rotational direction about a given axis. The rotation
about each axis is counterclockwise when viewing the solid along the desired axis towards the
origin. Figure 8.3 shows the direction of a positive rotation about each axis.

o (ROTATE-SOLID-IYZ s &KEY (CENTER *(0 0 0)) (DEGREES ’(0 90 0)))
— solid

Rotating a solid this way is not very intuitive. The other two ways are essier to use. The
second way performs a rotation about a single point and a vector.

o (ROTATE-SOLID-ABOUT-AXIS s &KEY
(POINT *(0 0.5 0))
(DEGREES '90)
(AXIS (1 0 0)))

— golid

The third way of rotating is by specifying a point and two vectors. The solid is rotated around
the point so that the first vector comes in alignment with the second vector.

e (ROTATE-SOLID-TO-AXIS s &KEY
(POINT *(0 0.5 0))
(sax1s ’(1 0 0))
(pax1s *(0 1 0)))

— goljd

8.4 Sectioning

The sectioning of a solid by a single cut is provided by the SPLIT-SOLID command. The form of
this command is:

° (spi.x'r-sot.m n s &OPTIONAL (WEICH :BOTH))
— s olid
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4
Figure 11: Positive rotation is counter<clockwise in a right-banded coordinate system.
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Figure 12: Cutting solid S by plane P by using a box B.

The solid s is cut by a plane specified by a point on the plane (which is currently taken to
be the center of the object’s extent) and the plane’s normal vector a. By default, the operation
returns both halves of the solid in a list. Optionally, the fourth argument can specify which half to
return, either :BELOW or : ABOVE the plane, in which case only that half is returned. This operation
is non-destructive. That is, s itself is not cut. Rather its two halves are partial copies of s.

The separation is performed using the set operators. A block B is constructed that completely
encompasses solid s below the splitting plane P. Refer to the diagram in Figure 12. Then, the solid
above the splitting plane is obtained by subtracting B from s, and the solid below the splitting
plane is obtained by intersecting B and s.

8.5 Copying and Deleting

A copy of a solid can be created by the DUPLICATE-SOLID command which clones a solid s and
returns the new solid. It bas the following form:

o (DUPLICATE-SOLID s)
— golid

The new solid is created by the use of the COPY-FACE-INTO-SOLID routine which duplicates a face
of solid s in the new solid.

What comes must go, and so the destruction of solids is also mandated. Although the im-
plementation is in Lisp, it is not allowed to simply lose all pointers to a solid and let the system
reclaim the space through garbage collection. The removal of a solid requires the updating of other
data structures dependent on the knowledge of the existence of all created solids. This is primarily
required due to the global sharing of geometrical data. A solid can be properly deleted by the
delete-solid command which removes the solid from existence and returns nil. It has the following
form:

e (DELETE-SOLID s) Deallocate all its nodes
— NIL



8.6 Storing and Loading Solids

Each solid is kept in two forms; the unevaluated CSG form and the evaluated boundary form. A
solid can be stored in either of these forms. Storing only the unevaluated form is very concise,
however it requires reevaluation to convert back into the explicit boundary form. On the other
band, storing the evaluated form requires no reevaluation except the proper reconstruction of the
solid; however it could require large amounts of space. Both forms are valid for externally storing
a solid. The following operation writes a solid to a file.

e (SAVE-SOLID S &KEY
(BREP? FIL)
(FILE-NANE *DEFAULT-PART-NAMEs)
(DIRECTORY PARTS-DIRECTORY#))
- boolean

Writing out a solid does not delete, or modify it in any way.
(SAVE-SOLID S :BREP? T) is equivalent to producing a file which contains the call to

o (CREATE-SOLID history points faces)
— solid

which when evaluated takes the list of points and the list of faces to recreate the solid. The list of
faces is a list of lists, where each sublist contains the indices of the bordering vertices of one face.
As an example, a unit block can be created as follows:

(CREATE-SOLID
?(create-block :so-name "Unit Block")
'((0 (000)) (1 (100)) (2(010)) (3(110))
(4(01))(6(101)) (6 (011)) (7T (111)))
'((0231)(0462) (0185 4)
(2673)(4576)(1378)))

What’s written can also be read back in. However the file was written by the SAVE-SOLID
command, the content of the file is Lisp code. To obtain the solid in a file, simply load the file by
the LOAD command.

So lets consider in more detail the unevaluated form and how it is manipulated. Programs for
creating solids have one of the two following Lisp forms:

1. (CREATE-primitive ...)

2. (LET (S1 ... Sn)
(SETQ S1 (CREATE-primitive...))

iS.FI'Q Sn (binaryop-SOLIDS Si Sj)))

In form 2, the variable names are assumed to be S1 to Sa for some n > 0. Merging two such
programs, say PR1 and PR2, with names S1..Sn and S1..Sm respectively, requires that all the names
of PR2 be renamed Sn+1..Sn+n. This unevaluated form for solid description was chosen for three
reasons. One, it can be simply evaluated to return the desired solid. Two, it is easier to read than
is a deeply nested binary tree representing the equivalent CSG form. And three, it is easier to
automatically simplify and insert (DELETE-SOLID Si) commands prior to saving the program in
a file.

The unevaluated programs are kept in by the SO-BISTORY fields of the solids and are created
by the following functions: '

o (COMBINE-PROGS binary-op progl prog2)
— preg
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o (APPLY-PROG unary-op prog &REST args)
= B¢

e (OC-PROG prog) Insert DELETE-SOLID calls
andl -3 1

GC-PROG is called by SAVE-SOLID prior saving the program to insert the DELETE-SOLID calls in

the right places. This is because each program is supposed to create a single solid. However in

the process of creating that solid, many temporary solids might be created. It is therefore space
efficient to delete any temporary solids that are no longer needed.

8.7 Detecting intersections of two solids

A useful operation on solids is the operation that detects the interference between two solids. This
operation replies affirmatively to the query *Do the two solids intersect?” if there is some volume of
space that is occupied by both solids. The touching of two solids does not constitute an intersection
of the two solids. The answer to the non-empty intersection of two solids could be obtained by
computing the actual intersection, and checking to see if the resulting intersection is empty or a
solid. However, there is a price paid for constructing the intersection explicitly. The knowledge
of whether or not the two solids intersect can be obtained long before the two solids can be fully
intersected. For this reason, the following command returns the answer without constructing the
intersecting solid:

o (SOLIDS-INTERSECT? si s2)

— one of T, NIL or :TOWCH

Another usefu] operation is detecting whether or not two solids are equal. Here equality means
that a boundary A and B share a common interior. Thus A itself does not have to be identical to

B. The following command returns true if and only if the two solids represented by S1 and S2 are
equal:

o (EQUAL-SOLIDS? s1 s2)
— boolean

9 Mass Properties of solids

PROTOSOLID computes mass properties of solids such as the volume, the surface area, the centroid,
and the moments of inertia.

8.1 Volume and Surface Area

In 2D, the area of a polygon can be computed by choosing a line and summing up the trapezoids
formed by projecting each edge onto the line. This leads to an algorithm in 3D. Instead of using
trapesoids, sum up the signed volumes of all the tetrahedrons formed by four points consisting of
two adjacent points on a face, s fixed point on a face, and a point outside the solid.

o (SO-VOLUME s) Volume of a solid
— double-float

The function is now given.

(LET ((cp (extent-center (so-extent s) (get-vr-register)))
(volume 0.0))
(INCF (vx-x cp) (- (vr-z (ex-maxp (so-extent s)))
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(vr-z (ex-minp (so-extent 8)))))
(for-each-face-of-solid (£ s)
(LET ((zp (po-wpnt (fe-srcp (fa-feds 2)))))
(for—each-tedge—of-tace (g 1)
(INCF volume (tetrahedron-svolume cp rp (po-wpnt (fe-sxcp g))
(po~wpnt (fe~dstp g)))))))

(release-vr-register)
volume)

‘The function to compute the signed volume of a tetrahedron is a needed function for computing
most of the mass properties.

o (TETRAEEDRON-SVOLUME pi p2 p3 p4) Signed Volume of a tetrahedron
— double~float

The absolute value of the result returned by TERTAREDRON-SVOLUME is the volume. The result
is positive when the points p2, p3, and p4 appear clockwise when viewed from p1. The result is
negative when the three points are counter-clockwise. The signed volume v is the determinant:

(za—=z1) (zs-21) (z4—21)
v==| (r=-3) (-n) @W—n)
(2-21) (3s—21) (24— 21)

The surface area of a solid is computed similarly to that of the volume.
o (SO-SURFACE-AREA 8)
— doyble-float

9.2 Center of Mass

The center of mass of a tetrahedron is the point

1
= ;(p; + P2+ ps+ pa).

e (TETRAHEDRON-CENTROID pi p2 p3° pé) The center of mass of a tetrahedron
-+ goords

The centroid of an arbitrary solid is computed by dividing the first moment by the volume.
o (SO-CENTROID s) Center of mass of a solid
— ord

9.3 Moments of Inertia
e (so~tirst-moment s R0PTIONAL (m (make-coords)))

-t B

o (so-second-moment s EOPTIONAL (m (make-coords)))

ﬁ.

o (so-product-of-inertia s X0PTIONAL (p (make-coords)))
- P
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o (so-moment~of-inertia s &0PTIONAL (m (make-coords)))

- B

If most or all of the properties are desired, it is more efficient to compute them all simultaneously
rather than one at a time.

o (so~mass-properties s) ‘ Return all mass propertics
— (VALUES v ¢ s 1 m2 pi mi)

The returned values are the volume, the centroid, the surface area, the first moment, the second
moment, the product of inertia, and the moment of inertia.
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