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Capillary pumped loops (CPLs) are two-phase thermal control devices
which, like heat pipes, use surface tension forces to circulate a cooling fluid from
an evaporator to a condenser. The pressure difference for fluid circulation is
developed in the pores of a wick structure located in the evaporator. Unlike heat
pipes, CPLs separate the liquid and vapor flows such that counterflow is
eliminated. A key failure mode of a CPL is called deprime. This is where the
liquid feed to the capillaries is interrupted, resulting in the loss of the meniscus
from the pores of the wicking material. CPLs are used in both terrestrial and

space cooling applications. Therefore performance in micro-gravity is of interest



to the satellite community, particularly the recognition of events that precede CPL
deprime.

Visualization in an Experimental Water Capillary Pumped Loop (VIEW-
CPL) was designed and built to investigate the operation of a CPL in a micro-
gravity environment through the use of a capillary evaporator with a window for
flow visualization. The experiment flew on the Middeck of the Space Shuttle
Columbia in November 1996. VIEW-CPL was instrumented with a video
camcorder and sensors for measuring the loop pressure and temperature at
various locations. The datathat was collected from the micro-gravity and ground
tests provide significant insight into the physics of CPL operation.

Heat transfer models of the VIEW-CPL operating modes of pressure prime
and start-up were developed and compared to test data. Video recordings of
bubbles on the liquid side of the capillary evaporator were collected during both
ground and micro-gravity testing. The movement of the bubbles corresponded
with low frequency temperature fluctuations in the range of 0.003 to 0.01 Hz. An
analysis is presented that explains the observed phenomena through pressure
changes in the evaporator resulting from a partially dry wick. Understanding the
source of the temperature oscillations is a necessary step for predicting the

potential for evaporator deprime and impact on system performance.
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1.0 INTRODUCTION

1.1 Thesis Overview

VIEW-CPL (Visualization in an Experimental Water - Capillary Pumped
Loop) refers to a space shuttle flight experiment based on a capillary pumped
loop (CPL). It was flown on space shuttle Columbia during the STS-80 mission
from November 19 through December 7, 1996. The goal of VIEW-CPL was to
develop an understanding of the physics of the fluid flow inside a CPL evaporator
in a micro-gravity environment. VIEW-CPL had a window in the evaporator that
allowed observation and video recording of the life cycle of bubbles. The window
allowed confirmation of theories on the system-level impact of bubbles on the
liquid side of the CPL. Of particular interest was the ability of the evaporator to
continue operating with vapor in the liquid core. The VIEW-CPL results provide
insight into the physics that allowed operation with a bubble in the evaporator.
1.2 CPL Technology

CPL technology is currently under development as an option for
transporting thermal energy within a spacecratft (i.e., thermal management). A
CPL system is a two-phase flow loop that uses heat input and surface tension
forces to circulate a cooling fluid in a closed loop. In place of a mechanical pump,
the pressure difference required to circulate the fluid comes from a capillary
pressure rise across the meniscus separating the vapor and liquid phases in a

fine pore wick located in the evaporator. Figure 1.1 is a generic schematic of a



CPL system. The loop heat pipe (LHP) and the heat pipe (HP) are related to the
CPL; they are shown in Figures 1.2 and 1.3, respectively.

In operation, the working fluid inside the CPL, LHP, or HP evaporator
absorbs energy from a source, such as an electronics assembly, and is
vaporized. The vapor flows to the condenser, where the heat is rejected, and
liquid flows back to the evaporator to complete the loop. In CPL and LHP
systems, liquid and vapor transport lines connect the evaporator and condenser
and provide separate paths for the working fluid to circulate through the system.
Both CPL and LHP systems are similar to heat pipes in that all three use capillary
forces to move the working fluid and all are passive energy transport devices. A
primary difference is that the heat pipe has counter flowing vapor and liquid. The
separation of the liquid and vapor transport lines is a key advantage of a CPL
(and LHP) over a heat pipe since the separation eliminates liquid entrainment
which limits heat pipe capacity.

Thus, the major advantage of both CPL and LHP systems over a heat pipe
is that they can transport energy over a longer distance for the same system
mass. Operating at the same temperature and with the same fluid a CPL can
transport 1.13 kW over 5 m for a heat transport capability of 5.7 kW-m with a
mass of 2.5 kg [Wrenn, 2002a and 2002b] while a system of heat pipes of the
same mass can transport 1.13 kW for only 2.8 m for a heat transport capability

of only 3.2 kW-m [Swales, 2004]. The transport capability advantage is primarily
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due to increased pumping capability of the small pored wick along with the
reduced pressure drop due to the separation of the vapor and liquid phases. The
latter avoids entrainment and counter-flow viscous losses.

The difference between CPL and LHP systems is the combined
thermal/hydraulic connection between the evaporator and the reservoir. In the
CPL, the reservoir is physically separated from the evaporator. In the LHP, the
reservoir is connected to the evaporator, either by co-location (as in Figure 1.2)
or by a secondary wick that provides the thermal and hydraulic link between the
components, as shown schematically in Figure 1.4. The disadvantage
associated with the co-location of the reservoir and evaporator in the LHP is

packaging on the spacecraft. In designs that do not use co-location, the reservoir
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can be placed away from the heat source in areas of the spacecraft that have
more volume available.

The LHP’s link between the reservoir and evaporator has advantages.
One being immediate start-up by ensuring that the wick is always wetted with
fluid (i.e., self-priming), and another being control of bubbles inside the wick by
moving them to the reservoir where they will not affect liquid flow to the wick.
Both the CPL and LHP need to manage bubbles inside the evaporator core. The
choice between using a CPL and a LHP is dependent upon the cooling
application. For the VIEW-CPL experiment, the CPL was chosen because it
facilitated the visualization of the fluid flow inside the evaporator during both
normal operation and during events that can lead to deprime.

Deprime is a CPL or LHP circulation failure mode where a gas or vapor
bubble appears on the suction side of the evaporator preventing normal capillary
pumping operation. An evaporator is said to deprime when the liquid feed to the
capillaries is interrupted by such a gas or vapor bubble, resulting in the loss of the
meniscus from the pores of the wick material. Depriming stops the transport of
energy. Since other systems depend on the CPL to transport energy, a deprime
often impacts other subsystems.

1.3 Research Motivation

CPL technology was pioneered at NASA Lewis Research Center with the

development of a water-based CPL by Stenger [1966]. Since then, CPL

technology has undergone extensive development at NASA Goddard Space



Flight Center (GSFC) and by various aerospace contractors [Ku, 1993]. Several
flight experiments and numerous engineering models have been tested to
demonstrate the capability of CPL systems for space applications. Yet, the
physics of CPL operation is not completely understood and additional testing of
CPL components is required to achieve the expectations of CPL technology for
routine spacecraft thermal management applications and to continue
development of advanced CPL technology.

The need for flow visualization studies on CPL components arises from the
desire to completely understand CPL physics. Physical observation of processes
in the evaporator provides data for verification of theories on CPL operation.
Visualization in the evaporator is key to studying both start-up phenomena and
deprime phenomena. Effective CPL start-ups are necessary for successful
operation. The quantity (if any) of vapor introduced into the liquid core during
start-up and the effects on subsequent operations are both of interest. The
causes of deprime and the ability of the evaporator to withstand vapor bubbles
before deprime occurs is also of particular interest, especially for investigating
CPL robustness. Animportant goal in studying start-up and deprime phenomena
is the ability to predict and consequently prevent failure of CPL systems.

To support application, CPL technology must reach a high level of
confidence through extensive testing and the complete understanding of CPL
physics. Flow visualization experiments have been used to examine fluid flow

phenomena during CPL ground operation (as discussed in Chapter 2).



Experiments for observing the capillary evaporator in a CPL have been designed
and tested at NASA/GSFC and at the University of Maryland (among others) with
very informative results. However, without micro-gravity testing, these results
cannot be automatically applied to spacecraft designs. Comprehensive testing
of CPL systems in micro-gravity is necessary to enable a complete description
of the effectiveness of CPL technology for use in satellite thermal management.
1.4 Investigation Objectives

The goal of this study is to observe and to characterize CPL systems in
typical operation. This includes a detailed description of CPL operational modes
and a focus on defining CPL operational characteristics that lead to deprime. A
typical sequence of CPL operation modes included in this study is as follows: (1)
pressure priming, (2) start-up, (3) standard operation, (4) deprime, and (5) re-
priming.

The ability to prevent deprime can be achieved by recognizing events that
cause the liquid-vapor meniscus in the evaporator, which creates the pressure
rise for circulating the fluid, to leave the porous wick material. “Re-priming”
techniques are also investigated to allow CPL operation to quickly resume after
a deprime event has occurred. The results from both 1-g and micro-gravity
testing of a water CPL with flow visualization capability in the evaporator are used
in determining the sequence of events leading to a CPL deprime.

Visualization In an Experimental Water Capillary Pumped Loop (VIEW-

CPL) was designed to investigate the operation of a CPL in micro-gravity and 1-g



environments through the use of a capillary evaporator with a window for flow
visualization. VIEW-CPL flew in the Space Shuttle Middeck as part of NASA's
In-Space Technology Experiments Program (IN-STEP). The goal of the flight
experiment was to develop a complete understanding of CPL physics in a micro-
gravity environment through flow visualization of a CPL evaporator.

The VIEW-CPL experiment provided recorded data on the life cycle of
bubbles on the liquid side of an operating CPL system and observations of the
ability of the capillary evaporator to continue pumping with vapor in the liquid
core. Thiswas accomplished by recording key system variables during operation
including temperatures, pressures, and power levels and by making a video
recording through the transparent evaporator window. The video images are
interpreted together with the operating data to fully understand the bubble
dynamics.

This research advances the state-of-the-art of CPL technology in the
following ways:

1) VIEW-CPL is the first test of a water CPL in space.

2) VIEW-CPL provided the first visualization of a CPL evaporator during
operation in micro-gravity.

3) The results increase understanding of the consequences of a vapor

bubble in the liquid core of the evaporator during CPL operation.



2.0 BACKGROUND AND LITERATURE REVIEW

2.1  CPL Description

A typical CPL system consists of a capillary evaporator, a condenser, a
reservoir, liquid transport lines, and vapor transport lines, as previously shown
in Figure 1.1. The evaporator is the heart of a CPL system; it provides the
pumping action necessary to move the working fluid. Heat applied to the
evaporator causes the liquid to evaporate from a meniscus between the liquid
and vapor phases in the evaporator wick. The vapor transport lines carry the
vapor to a condenser section where the latent heat is removed and the fluid is
condensed. For a typical spacecraft application, a condenser removes the heat
by radiation to space. The liquid then flows back to the evaporator and through
the wick to start the process again.
2.1.1 Capillary evaporator

Evaporator pump. The system pumping head is provided by capillary

action in a porous wick material that extends the length of the evaporator
housing. The effective radii of the wick pores are on the order of 1 to 10 um, and
thus, the surface tension in the meniscus provides a pressure increase from liquid
to vapor (across the meniscus) and prevents the vapor from flowing back into the
liquid core of the evaporator. The points of lowest and highest absolute pressure
are located on the liquid and vapor sides of the meniscus, respectively. The

magnitude of the pressure rise is related to the radius of the pores, r,, the contact



angle between the fluid and the solid, 8, and the surface tension of the fluid, o by

[Carey, 1992]

2ccosH
APcap = Pvap B Pliq = ri (2.1)
p

For a particular working fluid, note that the maximum pressure rise is achieved
when the wick is perfectly wetted (6=0") and the meniscus has the same radius
of curvature as the wick pore size.

The actual pressure rise across the meniscus, AP, adjusts to balance

the system pressure drop, AP, . The system pressure drop, AP, includes the

sys?

capillary pressure developed in the condenser, AP plus the viscous

cond-cap?’

pressure losses in the evaporator (wick and vapor grooves), condenser and

transport lines [Stenger, 1966].

AP = AP, = AP

cap sys cond -cap

+ AP, + AP, + AP,

wick grooves cond

+ AP,,.q + APvap (2.2)

In order for the working fluid to circulate, the system pressure losses must be
lower than the maximum capillary pressure rise created by the capillary action
(see Eq. 2.1).

Working fluid characteristics. One of the key factors in designing a

successful CPL system is a good working fluid choice. The ideal CPL working
fluid has the following properties: high latent heat, high surface tension,
moderate vapor pressure, and low vapor viscosity [Stenger, 1966]. The high

latent heat allows for the transfer of large amounts of energy while maintaining
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minimal flow rates. Referring to Equation 2.1, it is seen that a high surface
tension provides a greater pressure difference to circulate the fluid through the
loop. For example, an ammonia system with a 10 um wick can create a pressure
rise up to 0.5 psi. Due to the higher surface tension of water, CPL systems using
water as the working fluid can achieve a pressure rise up to 1.5 psi using the
same wick. The relatively low capillary pressure rise from the wick leads directly
to the need to keep frictional losses to a minimum. The low vapor viscosity
serves to reduce the viscous pressure drop in the CPL system. The moderate
vapor pressure provides a balance between high vapor density which reduces
vapor velocity and the wall thickness of the pressure vessel.

Ammonia is a good fluid for CPLs operating at 50°C (typical of spacecraft
cooling systems) because it has all of the properties mentioned above. However,
ammonia is toxic and has a pungent odor. Water is also a good fluid for such
systems, provided that the system is protected from freezing. For a quantitative
comparison between the two fluids, an example calculation was performed where
the diameter of the transport lines and condenser were sized to match the
capillary pressure rise available from a 10 ym wick. Table 2.1 summarizes the
results for ammonia and water at both 50 and 100°C for a 1 kW system with 10
m transport lines that sees an equivalent sink of 200 K. At 50°C, ammonia results
in a lighter system with less volume, while water is better at 100°C. The

evaporator pressure drop was neglected in the system sizing.
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Table 2.1 Comparison of ammonia and water for CPL systems
operating at 50 and 100°C.

Fluid| Ammonia Water Ammonia Water
Saturation Temperature [°C] 50 50 100 100
Capillary Pressure Rise [kPa] 3.20 13.59 1.16 11.78
Condenser Pressure Drop [kPa] -0.39 -1.74 -0.29 -0.30
Transport Line Pressure Drop [kPa] -2.80 -2.37 -0.87 -11.48
System Pressure Drop [kPa] -3.20 -4.11 -1.16 -11.78
Transport Line Volume [cc] 93 180 151 87
92% larger || 73% larger
Transport Line Mass [kg] 1.71 2.17 2.48 1.61
27% heavier|55% heavier

Wick characteristics. The ideal wick material has the following properties:

(1) small pores, (2) high permeability and porosity, (3) low thermal conductivity,
(4) high melting and deformation temperatures, and (5) chemical compatibility
with the working fluid [Ku, 1997]. The wick materials used in CPL evaporators
contain small pores with an effective pore radius, r,, typically in the range of 2 to
20 ym. A smaller pore radius provides a greater capillary pumping pressure, but
also increases the pressure drop as the liquid flows through the wick due to a
decrease in the wick permeability, k,. Permeability is a measure of flow
resistance in the wick material and is defined by the Darcy law approximation of

viscous effects [Arpaci and Larsen, 1984]

dP M,
— =V (2.3)
dr k,

where V, is the superficial velocity and the flow is assumed to be one-dimensional
radial flow through the annular wick. Upon integration, the viscous pressure drop

through the wick is
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AP - _ﬂm( é] r 2.4)

k, \ ri) p2mL

Thus, alow permeability (typical of small pore wicks) increases the pressure drop
through the wick. Porosity, €, is the ratio of void volume to the total volume of a
wick structure. Assuming that the porous material is a random array of particles,
McKetta and Cunningham [1985] reason that a tortuosity factor can be
approximated by 1 / €. They then use the Hagen-Poiseuille law to develop a

relationship for permeability to average pore radius and porosity

2
k, = (7, € (2.5)

Therefore, as pore diameters decrease the porosity must be increased to
maintain comparable permeability. Note that Equation 2.5 uses the average pore
radius which is smaller than the effective pore radius, a measure of the largest
pore in the wick structure which is defined on the next page.

Other important properties include thermal conductivity, melting and
deformation temperatures, and chemical compatibility. Low thermal conductivity
is desirable for CPL wicks because it minimizes the heat transfer to the liquid
core. High melting point and deformation temperatures allow welding of CPL
components (i.e., CPL system assembly) without damaging the wick. Finally,
chemical compatibility with working fluids is essential to prevent the formation of

non-condensable gas and to maintain the wick structure.
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The CPL wicks considered in this study were made from ultra high
molecular weight (UHMW) porous polyethylene. The porous polyethylene is
formed from a sintering process that fuses polyethylene particles under controlled
thermal conditions [Porex, 1989]. The effective pore radius in CPL wick material
is typically measured using the bubble point method [McKetta and Cunningham,
1985] as the minimum pressure required to push a gas bubble through a wetted

wick (with contact angle 6 = 0°) according to

o = 25 (2.6)

The effective pore radius for the UHMW porous polyethylene wick that was used
in the VIEW-CPL experiment was 13.7 ym, with a porosity (€) of 50% and a
permeability of 6.2 x 10™* m? [Nguyen, 1996]. An average pore size of 4.5 um is
implied from Eq. 2.5. The contact angle between water and polyethylene for the
wicks used in VIEW-CPL is unknown because the wicks were bubble-point tested
in alcohol which has a 0° contact angle with polyethylene. Since water does not
readily wet plastics, the contact angle is expected to be larger than 0° but less
than 90° based on previous experience of operating a water CPL with the same
type of wick material [Kolos et al., 1996]. The thermal conductivity is calculated
as 0.49 W/m-K, based on the parallel conductance of liquid water, k,= 0.60 W/m-
K [Incropera and DeWitt, 1990], and solid polyethylene, k, = 0.38 W/m-K
[Callister, 1991]

Kuick = K€ + k(1-€) (2.7)

14



Polyethylene has a melting point of 120°C, which makes it difficult to weld
components containing polyethylene wick materials.

Evaporator design. A typical two-port capillary evaporator is shown in

Figure 2.1. Subcooled liquid enters the evaporator and flows through the core
and into the wick. The liquid must be subcooled in order to prevent vapor
generation in the evaporator core. Heat applied to the evaporator housing is
transferred to the working fluid in the wick causing vaporization. Vapor grooves
channel the vapor to the exit of the evaporator.

Athree-port evaporator [Yun et al., 1996], also known as a capillary starter

pump, is shown in Figure 2.2. In this design, the evaporator has three ports: (1)

Heat input

High pressure
|Low pressure

Liquid inlet line

X Vapor line

Wick Vapor groove
Figure 2.1 Schematic of a typical two-port capillary evaporator.

Liquid inlet line (2)

-— -— -— -— Vapor line (3)

Reservoir

Feed line (1) Wick Vapor groove

Figure 2.2 Schematic of a three-port evaporator, also known as a capillary
starter pump.
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a connection to the reservoir, (2) a liquid line port, and (3) a vapor port. The
reservoir connection is a small diameter tube, called a bayonet tube, that is
inserted inside the core of the wick. The liquid inlet line allows liquid to flow
around the bayonet tube into the evaporator core. The vapor port is at the exit
of the vapor grooves in the same fashion as the two-port evaporator. The benefit
of the three port design is that during start-up cool liquid en route to the reservoir
is forced through the core of the evaporator; the cool liquid can collapse any
vapor bubbles that may be present in the liquid core of the evaporator. Start-up
issues are discussed in detail in Section 4.4.

Subcooling requirements. It has long been recognized that subcooling the

liquid entering the evaporator is important to prevent deprime [Schweickart et al.,
1987]. Without sufficient subcooling, the liquid can evaporate before reaching the
evaporator wick and subsequently block the liquid supply to the evaporator. By
convention, the amount of liquid subcooling is defined as the temperature
difference between the evaporator inlet and the saturated vapor exiting the
evaporator. Since pressure rises across the meniscus, the saturation
temperature of liquid in the evaporator core is lower than the saturation
temperature of the vapor exiting the evaporator. The importance of the meniscus
pressure rise in interpreting the subcooling is a function of the slope of the vapor
pressure curve which can be calculated from the Claypreon equation [Moran and

Shapiro, 1988]

dP A
) -
dT sat T, at Vfg

S
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The required amount of subcooling entering the wick is equal to the pressure rise
across the meniscus times the inverse of the vapor pressure curve. For
ammonia, where the slope of the vapor pressure curve at 20°C is relatively high,
a 500 Pa difference in saturation pressure results in a 0.02 K difference across
the meniscus. This difference is small compared to the 2.87 K temperature
difference for 500 Pa pressure difference in a water system which has a lower
slope. These properties are summarized in Table 2.2.

Table 2.2 Slope of the vapor pressure curve calculated from Eq. 2.8 at T = 20
and 50°C.

Vig (M3/kQ) A (3/9) dP/dT (Pa/K)
T=20°C
Ammonia 0.1475 1186 27440
Water 57.78 2453 144.8
T=50°C
Ammonia 0.06160 1051 52780
Water 12.04 2382 612.4

When the CPL is transporting energy, the temperature of the liquid
returning to the CPL evaporator must be below the saturation temperature of the
evaporator vapor by a minimum temperature difference associated with the
pressure drop specified in Eq. 2.2 or the liquid may flash in the evaporator core
leaving the CPL susceptible to deprime. Heat leaks from the evaporator to the
liquid line compound the situation by increasing the liquid line temperature. The

effect of heat leaks are more significant when the evaporator is exposed to a
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small heat load. The small flow rate resulting from the low power allows axial
conduction from the higher temperature liquid in the evaporator core to the fluid
in the liquid inlet. The Peclet number (Pe) provides a measure of the relative
importance of energy transfer due to bulk motion of the fluid and axial conduction;
the rule of thumb is that axial conduction can be neglected for situations where
Pe is above 100 [Kays and Crawford, 1980]. For a heat load of 15 W, the VIEW-
CPL liquid line Peclet number is 11, indicating conduction from the evaporator
may be significant. Under such low power conditions, the subcooling must
compensate to allow the CPL to operate.

Non-condensable gas and vapor in the evaporator. Non-condensable gas

(NCG) and/or vapor bubbles located in the evaporator core can cause the CPL
to deprime if the bubbles grow and block the flow of liquid to the evaporator wick.
An experimental study by Antoniuk and Pohner [1994] demonstrated that the
lifetime of vapor bubbles, injected into an evaporator core containing subcooled
liquid with dissolved NCG, was longer than the lifetime of vapor injected into a
gas-free system. One conclusion from their study was that bubbles formed from
vapor back-flow through the wick (into the liquid core with dissolved gases) would
be enriched in NCG by diffusion from the liquid. These bubbles would collapse
at a much slower rate as compared to pure vapor bubbles, due to gas diffusing
back into the liquid.

2.1.2 Condenser

For a spacecraft, a condenser rejects heat by radiating to space. Two
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typical condenser designs used in spacecraft are heat pipe heat exchangers and
direct condensation radiators. In the heat pipe heat exchanger, the vapor from
the CPL can flow in smooth walled tubes or through the grooves of an integral
heat pipe extrusion [Chalmers et al., 1986; Butler and Hoang, 1991]. Heat pipes
move the latent heat from the condenser section to the radiator. With the direct
condensation radiator, the vapor flows through smooth walled tubing that is
mounted directly to the facesheet of a radiator. Grooved tubing can increase the
heat transfer area and enhance heat transfer [Braun, 1990]. Both types of
condensers reject heat by radiating to space.

The condenser is sized to ensure that, while itis in its hottest environment,
it can condense all of the vapor flowing from the highest heat load applied to the
evaporator and still provide sufficient subcooling to counter balance both parasitic
heat gains and evaporator inlet subcooling requirements.

Since VIEW-CPL operates in a 1 atm environment the heat is rejected
through forced convection instead of radiation. The condenser is a smooth
walled tube separated into four internal segments using an insert. Fins are
attached to the outside of the tube to increase surface area and allow the
condenser to be packaged in a smaller volume. Section 3.2.2 contains details on
the VIEW-CPL condenser design.

2.1.3 Reservoir
The role of the reservoir in a CPL system is to control the evaporator

temperature (i.e. to control the heat rejection temperature). The user controls
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the temperature of the reservoir by controlling the power to the reservoir heater.
Since the reservoir contains both vapor and liquid, control of the temperature also
controls the pressure. The reservoir controls the loop pressure by supplying or
accepting liquid. This, in turn, controls the evaporator temperature through the
working fluid properties. The reservoir feed line connects the reservoir to the
liquid line of the CPL system. Distribution of the liquid between the reservoir and
CPL is regulated by the pressure balance between the reservoir and liquid line;
changes to the CPL system alter the balance and allow flow into and out of the
reservoir.

Temperature set-point requlation. The reservoir contains both liquid and

vapor phases so that the system pressure can be controlled by controlling the
saturation temperature. Typically, the reservoir operates at a temperature above
the ambient, such that heaters are required to maintain a controlled temperature.
Inthe CPL literature, this is referred to as cold-biasing the reservoir. Cold-biasing
can be achieved in a spacecraft system by (1) mounting the reservoir on a
radiator or (2) by building a shroud around the reservoir that is cooled by the CPL
liquid transport line carrying fluid returning from the condenser to the evaporator
[Ku, 1997].

The evaporator saturation temperature during steady-state operation is
determined by the evaporator pressure, which is equal to the reservoir pressure
minus the viscous pressure drop between the evaporator and the reservoir. With

high vapor pressure fluids, the viscous pressure drop is small compared to the
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absolute pressure of the reservoir so that the evaporator temperature is very
close to the reservoir temperature. Inlow vapor pressure systems, such as those
with water as the fluid (VIEW-CPL), the viscous pressure drop can result in a
more noticeable evaporator temperature difference.

CPL conductance modes. A CPL can be operated as a constant

conductance device, if the reservoir is completely filled with liquid, but is normally
operated as a variable conductance device. This means that the evaporator
temperature stays approximately constant as the evaporator heat load varies
over a wide range. In order for the reservoir to control the CPL operating
temperature, there must be both liquid and vapor present in the reservoir, and the
condenser must be partially filled with liquid [Ku, 1993]. The reservoir must be
sized correctly if it is to control the operating temperature independent of
evaporator heat loads and condenser temperatures. As the CPL operating
conditions change (either heat load and/or sink temperatures), the portion of the
condenser area blocked by liquid increases or decreases to achieve an energy
balance. Hence, the conductance is variable. If more heat is applied to the
evaporator, the vapor area of the condenser will increase in size to allow the
additional heat rejection. If the condenser sink temperature decreases, which
could occur when spacecraft orbits change, the condenser vapor area will
decrease in size to allow the conductance to shift and balance the change in
temperature. In both of these examples, the amount of liquid in the main loop

(evaporator, condenser, and transport lines) varies and the reservoir allows liquid
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to flow in or out to account for the variation in the liquid inventory. To ensure
proper temperature regulation over the full range of possible operating conditions,
the reservoir must be sized so that liquid and vapor are present for the following
two extreme cases: (1) no heat load (in this case the CPL is fully flooded with
liquid, and the amount of liquid in the reservoir is a minimum) and (2) maximum
heat load at maximum condenser temperature (maximum amount of liquid in
reservaoir).

If the reservoir becomes filled with liquid, the CPL switches to constant
conductance mode. Constant conductance refers to the inability to adjust the
condenser vapor volume because there is no volume available in the reservoir.
Once the CPL has made the transition to constant conductance mode, the
reservoir no longer controls the evaporator temperature which will adjust to follow
the operating conditions. A CPL system can be designed to transition between
variable and constant conductance modes by sizing the reservoir to be filled with
liquid during certain operating conditions [Clayton et al., 1997]. Allowing the
system to switch to constant conductance is one method of assuring that there
will always be liquid in the condenser (because there is no volume to displace
liquid into the reservoir) and vapor will not be permitted to pass through the
condenser and into the liquid inlet of the evaporator.

Design requirements. A CPL reservoir should meet the following

requirements for proper operation: (1) discharge only liquid into the CPL, (2)

exhibit temperature stability (i.e. have sufficient heater power and/or thermal
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mass to avoid temperature excursions due to liquid inflow), (3) have a low
pressure drop during liquid exchanges between the reservoir and CPL system
while minimizing pressure oscillations, and (4) minimize liquid expulsion time
[Butler and Hoang, 1991; Buchko, 1992; Hoang and Ku, 1996]. The CPL
reservoir is always connected to the liquid transport line. On Earth, gravity fed
reservoirs can ensure that only liquid exits the reservoir. In space, however, a
wick structure (discussed in Section 3.2.3) is necessary to prevent vapor from
exiting the reservoir and entering the liquid line. The wick structure also ensures
that liquid is fed to the reservoir heater locations to enhance temperature control.
Stable temperature control involves maintaining the reservoir saturation
temperature at the desired set-point through the use of heaters. It is important
to design the internal wick structure to ensure that liquid is available for
evaporation in the heated region to prevent over-temperature conditions.

The reservoir connecting line must be sized to allow fluid to easily transfer
between the reservoir and the loop during rapid changes in the evaporator heat
load or condenser sink conditions. On the other hand, flow restriction in the
reservoir line helps damp out pressure oscillations often seen in CPL systems.
These conflicting requirements make CPL design interesting. Hoang and Ku
[1995] provide a mathematical formulation for analysis of CPL component
designs for minimizing fluid oscillations.

Cold shock. As liquid flows into the reservoir from the CPL liquid line, the

temperature of the inflow is normally colder than the saturation temperature of the
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fluid inside the reservoir due to subcooling in the condenser. The inflow of cold
liquid tends to condense some of the vapor in the reservoir, which lowers the
pressure and pulls in more cold liquid. If the reservoir heaters cannot maintain
the reservoir temperature, the reservoir experiences a failure mode called “cold
shocking” [Cullimore, 1991]. A cold shocked reservoir often leads to CPL
deprime because liquid in the evaporator core flashes due to a sudden decrease
inloop pressure [Antoniuk, 1995]. The displacement of liquid from the evaporator
core to the reservoir, created by the large change in vapor volume inside the
reservoir, thus interrupts the liquid feed to the capillaries.
2.2  CPL Functionality
This section describes the functionality of CPL systems in terms of typical
operating characteristics and testing modes.
2.2.1 Operating features

The fundamental purpose of a CPL is to circulate fluid from the evaporator
to the condenser to transfer energy. There are both beneficial and limiting
features that come naturally with the CPL configuration. The two-phase reservoir
allows precise control of the operating temperature, but requires electrical power
and appropriate ambient conditions to maintain its temperature set-point. The
volume of the reservoir allows collection of NCG (provided NCG can be swept
into the reservoir) thus removing evaporator sensitivity to NCG. The reservoir
can be used to fill the loop with liquid, an operation known as pressure priming.

Since the reservoir is not co-located or connected to the evaporator with a
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thermal/hydraulic link (as it is with an LHP) the pressure prime is a procedure that
must occur prior to CPL start-up but can also be used to recover from an
evaporator deprime. Because the evaporator uses capillary action, it is a self-
regulating device that only moves the amount of liquid that is needed to keep the
evaporator cool. There is no need for a by-pass line or auxiliary pumping during
transient conditions (e.g. start-up, heatload variations, sink temperature changes,
shut-down). The evaporator wick also permits the CPL to exhibit a diode function
[Ku, 1997], allowing heat transfer from the evaporator to the condenser but not
from the condenser to the evaporator, because there is no wick in the condenser
to provide circulation. But the evaporator is sensitive to vapor on the liquid side
of the capillaries; oscillatory temperature fluctuations and deprime can occur
when vapor is in the evaporator core. The above mentioned features are
discussed further in the following paragraphs.

Pressure prime. In a shut down mode, the CPL contains both liquid and

vapor phases. Before the CPL can operate, liquid must saturate the pores of the
polyethylene wick structure inside the evaporator (i.e. it must be primed). This
is done by forcing liquid out from the reservoir into the remainder of the loop.
This procedure is called a pressure prime.

A pressure prime results in filling of the CPL evaporator, condenser, and
transport lines with liquid from the reservoir. Increasing the temperature of the
reservoir drives liquid out of the reservoir until the remainder of the CPL is filled

with liquid [Ku, 1994]. The pressure prime ensures that there is no vapor in the
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evaporator core and liquid lines that could block the flow of liquid to the
evaporator wick [Hoang, 1997]. Pressure priming a CPL requires considerable
time because the energy stored in any vapor in the loop must be transferred out
of the loop as heat. The temperature difference that drive this heat transfer
results from compression heating of the vapor as the reservoir liquid fills the loop.

Start-up. The start-up phase begins after the pressure prime. This phase
consists of heating the evaporator to reservoir temperature. In a test
environment, the heat is supplied by heaters; in an actual application the heat is
supplied by the instrument or equipment requiring the cooling. In both cases, the
energy is transferred through the evaporator walls to the working fluid where it
raises the temperature up to saturation. The time required to initiate boiling
inside the evaporator depends upon the heat load, the initial state of the fluid in
the evaporator and other evaporator characteristics such as available nucleation
sites [Cullimore, 1991].

During the start-up phase, several dynamic events can occur in the CPL
system. First, a certain amount of superheat is necessary for nucleate boiling to
initiate [Cullimore, 1991; Hoang and Ku, 1996] and bubble formation during
boiling can involve significant local effects including pressure spikes. A pressure
spike associated with flashing of superheated liquid in the evaporator can
sometimes exceed the capillary limit of the wick, thus allowing vapor to penetrate
the wick and flow into the liquid core [Antoniuk, 1995; Hoang and Ku, 1996; Ku,

1997]. These pressure spikes are more prominent when the CPL system is
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largely filled with liquid (such as after a pressure prime where the evaporator,
condenser and transport lines are completely filled with liquid) because there are
no vapor bubbles near-by that can be readily compressed to absorb the energy.

Hoang and Ku [1996] describe the calculation of the pressure spike (AP)
as a function of superheat (ATg,) and the bubble radius (r). The growth of the

vapor bubble is described in terms of the superheat and fluid properties by

2
_ dr _n ATSH\/kIpICp,L 2
y=r—=_ (2.9)
a2 o, A

Using the inertial and frictional coefficients between the wick and reservoir line,

o, and B, and the rate of bubble increase, y, the pressure spike is

AP = a,p,( 4nv—:) +B,p(4ryr) (2.10)

Once the pressure spike has occurred and the initial vapor bubble begins
to expand, the pressure must overcome the inertial force of the liquid in the vapor
grooves, vapor transport line, condenser, and reservoir connecting line
[Cullimore, 1991]. During the clearing of the vapor grooves, the liquid is
displaced along the path of least resistance which, depending upon the CPL
design, can be backwards through the wick to the reservoir. This would push
warm liquid into the evaporator core and leave the core susceptible to bubble
initiation and growth from the beginning of operations. The backflow stops after

the vapor grooves are cleared and the liquid/vapor interface is established along
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the length of the wick. Cullimore [1991] describes the start-up of pumping as the
point at which the vapor grooves are cleared, since it is the time where liquid
must flow forward through the wick.

The largest pressure differences in the system typically occur during the
start-up process. In order to clear the vapor grooves in a fully flooded CPL, the
vapor must displace the liquid from the vapor transport line and move it to the
reservoir. Atthe on-set of evaporation inside the evaporator, the liquid inside the
vapor grooves and vapor transport lines must be displaced at a volumetric flow
rate equal to the expansion rate of the vapor. As the vapor line clears, the liquid
is pushed through the vapor line at a velocity equal to the velocity of the vapor
front leaving the evaporator. The displacement results in a liquid mass flow rate

described by
. Q
m, = — (2.11)

This mass flow rate is much greater than that achieved at steady-state for the
same power and results in temporarily large evaporator pressures, typically called
pressure surge [Cullimore, 1991; Hoang and Ku, 1996]. The higher pressure is
sustained as long as it takes to displace the liquid from the vapor line and
condenser to the reservoir.

Steady operations. A detailed thermodynamic analysis of steady-state

CPL operations is provided by Ku [1994]. The analysis presented is valid for the

operation of a variable-conductance CPL within the capillary limit of the wick
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[refer to Eqgs. 2.1-2.3] (i.e., operations resulting in deprime are not included). In
the present study, the model formulated by Ku was used to size the liquid and
vapor transport lines in the VIEW-CPL experiment (see Section 3.2.4). An
example of the thermodynamic state of the working fluid around VIEW-CPL is
presented in the following paragraph.

Once the flow begins in the evaporator, the saturation pressure inside the
evaporator is not exactly the same as the saturation pressure of the reservoir.
The pressure drop in the lines due to the flow of the liquid slightly decreases the
saturation pressure (and therefore temperature) on the liquid side of the
evaporator. Figure 2.3 is an example of the predicted steady-state pressure drop
combined with temperature data collected from VIEW-CPL super-imposed on the
pressure-enthalpy (P-h) diagram of water. The condition shown is for a net
evaporator power of 15 W with the reservoir controlled at 51°C. Due to the
capillary pressure rise within the wick, the evaporator outlet pressure is higher
than the reservoir (P;>P,). For the example based on water in Figure 2.3, the
corresponding temperature difference between the evaporator and reservoir is
only 0.1 K since the viscous pressure drop at 15 W is small.

For a system operating at a temperature near the triple point, the effect of
the pressure drops becomes more critical since the lowest pressure (P, in Figure
2.3) must be greater than the triple point pressure to maintain operation. A
related factor is that the shape of the vapor pressure curve implies that operation

near the triple point results in larger temperature differences between the
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Figure 2.3 Pressure-enthalpy diagram for VIEW-CPL steady-state
operating cycle at 15 W and evaporator temperature of 51.1°C. The lower
plot is an exploded view of the line at 13 kPa in the top plot.

evaporator and reservoir. Those concerns contributed to the decision to operate
VIEW-CPL at a nominal temperature of 50°C, well away from the triple point of

water (0.01°C).

Pressure and temperature oscillations. High frequency (1 Hz) pressure

oscillations have been observed in CPL systems [Ku et al., 1993; Ku and Hoang,

30



1995, O’'Connell etal., 1995]. A mass-spring-dashpot model has been developed
that attributes the oscillations to amplification of thermal disturbances in the CPL
system [Hoang and Ku, 1995]. The perturbation from steady-state results in
flow oscillations between the vapor space in the CPL and the vapor space inside
the reservoir. The model is primarily used to determine the system conditions
under which the disturbance is amplified and the pressure oscillations exceed the
capillary limit of the wick. Oscillation of the differential pressure across the
capillary evaporator has been observed in numerous ground tests performed on
ammonia CPLs [Ku et al., 1986b; Ku, 1993]. In a flow visualization experiment
using ammonia, the differential pressure oscillations were recorded and
corresponded to visual observations of radial liquid motion in and out of the wick
[Ku et al., 1993]. During the same testing, deprime of the evaporator was
normally preceded by large amplitude and high frequency pressure oscillations.

Oscillations during deprime were observed in the condenser during testing
of a water CPL at the University of Maryland [Kolos et al., 1996]. During some
deprimes, the condenser showed a spatial oscillation of the liquid/vapor interface.
In one case when the evaporator began to deprime at low heat load, the fluid in
the condenser did not flow but instead oscillated. This was observed visually
when small non-condensable gas bubbles in the condenser vibrated without
flowing through the condenser. At high heat loads, the onset of deprime from
vapor in the evaporator core was predicted by the advancing and receding of the

vapor/liquid interface in the condenser. At heat loads nearing the capacity of the
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condenser, wavy annular flow was observed moving along the wall of the
condenser, which also made the condensed liquid slug at the liquid/vapor
interface oscillate.

Although high frequency (1 Hz) pressure oscillations were also observed
in the VIEW-CPL experiment, the present study focuses on low frequency
oscillations (0.003 to 0.01 Hz) in temperature measurements and visual
observations as described by Kolos and Herold [1997]. For VIEW-CPL the
evaporator bubble oscillation occurred at 0.003 Hz and the corresponding
evaporator inlet temperature fluctuated by 5 K during each cycle. The power
range over which the oscillatory behavior was observed was 20 to 40 W. In a
separate study, similar amplitudes and frequency were measured by Lin et al.
[1994] (fluid not disclosed in reference) with low frequency temperature
oscillations having 0.0055 Hz and 8 K amplitude during low power operations at
50 W.

Low frequency oscillations have been observed since the early testing of
CPLs. Low frequency temperature oscillations that were observed in CPL-2 (an
early ammonia CPL breadboard tested in the 1980s) were attributed to
conduction from the evaporator body to the liquid inlet and possible non-
condensable gas generation due to brazing materials at the liquid inlet [Kiper et
al., 1988]. Kiper presents a model based on conduction and convection at the
inlet and predicts an unstable region where undamped oscillations can exist. His

results come close to predicting the CPL-2 temperature fluctuations with an

32



amplitude of 2 K and frequency of 0.0005 Hz. The results of Kiper's work do not
apply directly to the VIEW-CPL observations because of the careful design to
reduce heat conduction into the liquid line.

Deprime. The failure to pump liquid comes from loss of the meniscus from
the pores of the wicking material. If a single pore dries out, vapor back-flow
occurs through the wick which can lead to deprime of other pores and system
deprime. In ground testing, deprime has been caused by factors such as high
liquid evaporator-inlet temperatures, condenser failure, presence of non-
condensable gas, and reservoir set-point fluctuations [Ku et al., 1993; Ottenstein
et al., 1993]. Some investigators have observed temperature oscillations in the
evaporator inlet prior to deprime [Antoniuk and Pohner, 1994]. In some cases,
deprime could not be traced to a particular cause [Ku, 1993]. In addition to the
types of deprime already known, any deprime phenomena inherent in micro-
gravity, such as elimination of stratified flow, need to be investigated. The
important factor in studying deprime phenomena is the ability to predict and
consequently prevent failure of the CPL system.

Diode function. The CPL diode function refers to the transfer of heat in

one direction, from the evaporator to the condenser, and not the reverse. This
function is inherent in the design because there is no wick in the condenser to
pump vapor toward the evaporator. The diode function is a beneficial feature to
prevent heat input to the condenser (e.g., during a spacecraft maneuver that

places the condenser in view of the Sun) from being transferred to the evaporator
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and the space craft electronics. The diode function is accomplished automatically
by deprime when the condenser stops condensing vapor and the liquid supply to
the wick is interrupted. Alternatively, the CPL can be shutdown by raising the
reservoir temperature to initiate a pressure prime of the loop. Either method
stops circulation, and hence heat transfer, through the CPL.

2.2.2 Typical testing modes

The following system performance tests have been adopted by industry
for analyzing CPL systems [Braun, 1990]: (1) system startup test, (2) maximum
transport capability, (3) heat load sharing among two or more evaporators, (4)
diode function of the condensers, (5) rapid power cycling, (6) sink temperature
variation, (7) pressure prime under heat load, and (8) reservoir set-point
temperature variation. A more detailed description of these tests is included as
Appendix A. Due to limited power and available astronaut time for testing, the
VIEW-CPL flight experiment testing was streamlined to focus on investigation of
the CPL physics by exercising multiple start-ups and power variations.

System start-up tests are designed to determine the conditions favorable
to successful start-ups. A start-up is successful when two conditions are satisfied
(1) vapor is present at the outlet of the evaporator and (2) there is forward
circulation of fluid from the evaporator to the condenser. For a successful test,
some researchers also require that in addition to the two conditions, that there be
no vapor bubbles in the core of the evaporator. This requirement was not placed

on VIEW-CPL since the system was designed to facilitate observations of
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bubbles and their effect on operation. VIEW-CPL start-ups were attempted with
powers varying from 10 to 75 W (maximum power available).

After start-up, power variations and heating of the liquid and vapor lines
were performed. Since VIEW-CPL was cooled by ambient air, variation between
the condenser and sink conductance was achieved by turning off one or more
fans. Additional details on the VIEW-CPL testing are discussed in Chapter 4.
2.3 CPL Experiments and Applications

The investigation of CPL technology began at NASA Lewis Research
Center in the mid-1960s [Stenger, 1966]. Stenger built two water CPLs, one with
a copper evaporator and the other with a nickel evaporator. The CPLs
demonstrated transport capability (a product of the evaporator heat load and the
distance between the evaporator and condenser) greater than 1.1 kW-m.

Many CPL experiments have been built and tested since 1966. Figure 2.4
contains a summary time line of CPL and LHP development as distilled from the
references listed in this study. In the early 1980's NASA Goddard Space Flight
Center and aerospace contractors rekindled the CPL development effort with a
proof-of-concept breadboard using R-11 as the working fluid [Ku et al., 1986D].
Following the success of the breadboard feasibility experiment, two engineering
development units (CPL-1 and CPL-2) were built and tested with ammonia as the
working fluid [Ku et al., 1986b]. Transport capabilities up to 70 kW-m were

demonstrated.
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Figure 2.4 Time line of CPL and LHP development, testing, and
applications.

CPL systems have been tested over a wide range of transport capacity
and temperatures. One of the largest systems was the High Power Spacecraft
Thermal Management (HPSTM) System [Ku et al., 1988]. The HPSTM could
transport 500 kW-m (50 kW over 10 m transport line length) as a CPL with
mechanical pump assistance and 250 kW-m without the pump. While most CPL

applications have used ammonia at room temperature, Kroliczek and Cullimore
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[1996] demonstrated a prototype cryogenic CPL using nitrogen at 85 K, carrying
a heat load of 3 W and starting from a supercritical state.

Several representative Loop Heat Pipe (LHP) references are included on
the time line (Figure 2.4) to give the reader a sense of the parallel LHP and CPL
development. The LHP was patented in the U.S. in 1985 [Maidanik et al.]. As
described in Chapter 1, LHPs have the reservoir directly connected to the
evaporator and are filled with the appropriate amount of liquid to keep the
evaporator always wetted [Wolf et al., 1994]. By 1989, an LHP experiment was
flying on the Russian GRANAT spacecraft [Goncharov et al., 2003].

2.3.1 Flight experiments

Flight experiments have focused on proof-of-concept and testing of
advanced CPL features to ready the technology for space applications. In 1986,
a Get Away Special Canister, an experimental carrier for the Space Shuttle
known as a GAS can, that flew on the STS-61C mission contained a CPL [Ku et
al., 1986a]. The CPL consisted of two parallel evaporators, a single multi-pass
condenser (attached to the GAS can cover for a heat sink), and a reservoir. The
working fluid was ammonia. The CPL was operated for short intervals (maximum
five hours) with a cool-down period between intervals. The cool-down period was
needed because the input power to the CPL evaporator was larger than the heat
transfer rate that could be rejected by the radiator. Low power instabilities were
observed in the evaporator inlet during this testing. At 50 W per evaporator, heat

transfer within the evaporator, resulting from the low fluid flow rate, caused liquid

37



in the evaporator inlet to evaporate. The minimum stable power level was 100
W per evaporator.

In 1994, the European Space Agency (ESA) flew a two-phase experiment
with an ammonia CPL having two capillary evaporators [Delil et al., 1995] aboard
the Space Shuttle on the STS-60 mission. The experiment demonstrated
variable evaporator heat load, heat load sharing, and variable set point
operations. Both flat and cylindrical evaporators were flown.

The CAPL-1 flight experiment also flew in 1994 on the STS-60 mission
and is an important example of why flight testing is so important. In CAPL-1,
ground testing masked some basic operating conditions that were uncovered
during micro-gravity testing. In particular, CAPL-1 had start-up difficulties
[Antoniuk, 1995] (with multiple evaporators) due to capillary action in the
evaporator vapor grooves which were not discovered until testing in micro-gravity.
In 1-g, start-up was facilitated by gravity-assisted groove drainage. Although not
successful in demonstrating multiple evaporator start-ups, the three-port
evaporator “starter pump” in CAPL-1 operated as designed. A follow-up flight
experiment was developed and CAPL-2 was flown in 1995 on the STS-69
mission [Butler et al., 1996]. In contrast to the CAPL-1 experiment, the CAPL-2
experiment contained only one evaporator of the three-port design.

CAPL-3 flew on the STS-108 mission in December 2001 [Ottenstein et al.,
2003]. CAPL-3 demonstrated that multiple evaporators and hardware for

deployable radiator assemblies were flight worthy. The start-up issues
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encountered with CAPL-1 were corrected with a back-pressure regulator to
ensure that vapor exiting the three-port starter pump would displace liquid in all
the vapor grooves of the other evaporators prior to attempting their start-up. To
reduce the possibility of deprime, the evaporators also contained a mesh
structure to prevent any vapor bubbles that may exist in the core from entirely
blocking the wick [Kim et al., 1997]. All three CAPL experiments used ammonia
as the working fluid.

Other CPL experiments include the Two-Phase Flow (TPF), tested on
board the STS-85 mission in August 1997 [Ottenstein and Nienberg, 1998]. In
1998 a cryogenic CPL was tested as part of the CRYOTSU experiment during the
STS-95 mission [Bugby et al., 1998]. The HST Orbital System Test (HOST) was
also tested during the STS-95 mission as a flight test of the CPL configuration to
be used on the Hubble Space Telescope [Buchko et al., 1999].

2.3.2 Visualization experiments

Visualization experiments in CPLs began with Stenger [1966], who used
glass condensers for observing the condensate flow. In subsequent experiments,
attention turned to the evaporator. Previously mentioned in Section 2.2.1, Ku et
al. [1993] used a flow visualization experiment to observed radial liquid
(ammonia) motion in and out of the wick that corresponded to differential
pressure oscillations. Observations of bubbles in a glass evaporator, performed

at Martin Marietta, showed bubbles that would grow, shrink, and oscillate
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[Cullimore, 1993]. Decreases in either sink temperature or evaporator load
caused bubble growth which resulted in evaporator deprime.

Glass viewports at the inlet and exit of the CAPL-1 starter-pump were used
by Douglas et al. [1997] to observe vapor back-flow into the evaporator during
start-up. The vapor volume of back-flow was directly related to the superheat
observed during the pressure surge at start-up. The purge superheat disappears
after the vapor line is cleared of liquid during start-up. This visualization
experiment was used to verify the theory that vapor penetrated the wick during
CAPL-1 flight testing during the pressure surge. Vapor penetration was observed
only for high power start-ups.

Other flow visualization experiments have used water to examine fluid flow
phenomena inside CPL components [Kiper, 1991; Kolos et al., 1996]. Water is
a good fluid for flow visualization experiments because the design of transparent
components is less complicated for low vapor pressure fluids (like water) than it
is for high vapor pressure fluids (like ammonia). The use of water at sub-
atmospheric conditions also permits the investigation of CPL phenomena such
as subcooling requirements and system performance limits that are obscured in
high pressure systems. Kiper [1991] operated a water CPL to study transient
behavior in the evaporator. Typical CPL evaporators use cylindrical wicks with
axial vapor grooves. The atypical evaporators used by Kiper were made with
brass screen and felt layers in a cylindrical Pyrex chamber in a vertical

orientation. The brass/felt wick was pressed to the bottom heating plate
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enclosing the chamber and extended into the liquid line to draw the liquid to the
heated plate. The remainder of the loop contained a reservoir to maintain
operating pressure, a condenser, and liquid and vapor transport lines. The loop
was operated at a saturation temperature of 30°C, corresponding to an operating
pressure of 4.25 kPa. Although the CPL operation was successful, results are
difficult to interpret due to the details of the subcooler and evaporator designs.
The VIEW-CPL system uses cylindrical evaporators (similar to flight
hardware) and operates on water at sub-atmospheric pressure. Prior to design
of VIEW-CPL, a flow visualization CPL test facility was constructed at the
University of Maryland and tested with water as the working fluid [Kolos et al.,
1996]. The system was designed as a proof-of-concept experiment to
demonstrate a water CPL system under sub-atmospheric conditions and provided
enough information to design the VIEW-CPL experiment. To create the flow
visualization facility, transparent components were used to make the evaporator,
condenser and reservoir. The evaporator was made from a Pyrex tube encasing
a porous polyethylene wick. The condenser was made from a machined
aluminum block with a Lexan top, making the condensing tube section visible.
To allow for the monitoring of liquid levels, the reservoir was constructed from a
Pyrex vessel. The transparent CPL components allowed for the observation of
phase interfaces and fluid motion to correlate visual data with temperature and
pressure data. Visualization into the evaporator inlet showed that the CPL

system was able to continue running with small vapor bubbles on the liquid side
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of the evaporator. Under certain conditions, the system was able to tolerate a
small vapor bubble in the evaporator core. If the conditions were changed, such
as increased flow rate or additional inlet subcooling, the wick appeared to re-wet.
Equilibrium vapor bubbles were observed in the core, which apparently represent
a dynamic balance between condensation on the surface in contact with the liquid
and vapor generation due to either back flow or conduction through the wick.
2.3.3 Space applications

The Russians have been using LHPs for flight applications since 1994
with the first service on the OBZOR spacecraft [Goncharov et al.,, 1995;
Goncharov et al., 2003]. This particular satellite used three propylene LHPs for
thermal control of various components.

In the United States, the first instruments to use CPLs for thermal control
were on the Earth Observing System EOS-AM (renamed TERRA) spacecratft.
Development of the CPLs began with a ground-tested engineering unit [Kaylor
et al., 1993] and culminated in the CAPL-2 flight experiment [Butler et al., 1996].
The EOS-AM spacecraft was launched in December 1999.

Commercial Experiment Transporter (COMET) Service Module that was
supposed to launch in 1993, was designed with a multi-evaporator CPL to keep
payloads at a constant temperature [Roukis et al., 1992]. The CPL working fluid
was ammonia and there were eight evaporators plumbed in parallel, a starter
pump, and a mechanical pump for ground operations at the launch pad. The

launch was delayed until October 1995 at which time all payloads were destroyed
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during a rocket failure. Another CPL that did not make it to space was designed
and built for the Mars Surveyor Lander [Clayton et al., 1997]. It was designed as
a hybrid variable/fixed conductance CPL with a purposely under-sized reservoir
to allow the condenser to control saturation temperature under certain operating
conditions. The system experienced anomalies (during ground testing) during
transitions from constant conductance to variable conductance and was
subsequently rejected by the Mars Surveyor Program.

During the Hubble Space Telescope (HST) Servicing Mission 3A, the Near
Infrared Camera and Multi Object Spectrometer (NICMOS) was fitted with a
mechanical refrigerator to circulate neon gas to assist the existing detector
cooling system [Mclntosh, 1998]. The operation of the cooler generates 500 W
that is transported by a CPL to a newly installed external radiator. The CPL was
chosen for this application because of the temperature control requirements and
the flexibility for in-orbit assembly onto the existing HST hardware (i.e., there was
limited space for integrating new components) by the Space Shuttle crew.

As of the date of this thesis (2004), industry has largely switched to LHPs
for their self-priming feature. LHPs are routinely flown on commercial satellites.
One example is the Boeing 702 which began flying LHPs in 1998 [Goncharov et
al., 2003]. However, LHPs do not fit all applications and CPLs are still used,
particularly in cases where the LHP reservoir cannot be accommodated as in the

HST application described above.
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2.3.4 Enhancements

CPL technology continues to mature, resulting in continuously improving
CPL performance. In the evaporator, electrohydrodynamic (EHD) techniques
[Ohadi et al., 1997] and vaporization enhancement grooves (VEG) [Pohner and
Antoniuk, 1991] have demonstrated increased evaporation heat-transfer
coefficients. The EHD-assisted CPL also has the benefit of increasing heat
transport capability by increasing the circulation with EHD-pumping that is
additive to the capillary pumping. Heat pipes inside the evaporator wick core also
help distribute energy within the liquid inside the core [Kim et al., 1997; Ottenstein
and Nienberg, 1998]. Wick development is providing wicks with high pumping
capability; with titanium or nickel, sintered metal wicks can achieve an effective
pore radius of 1 to 3 um [Ku, 1997]. Bidisperse wicks with both small and large
pore radii are being developed for high heat flux applications [Ku, 1997].

In addition to evaporator enhancements, system design changes are
resulting in more robust systems with the ability to recover from conditions
leading to deprime. The Advanced-CPL (ACPL) [Hoang, 1997] was been
designed to allow quick start-up of a CPL system and to assure robust operation
with the ability to flush vapor bubbles from the evaporator core on demand. The
ACPL uses a secondary evaporator and condenser, located near the reservoir,
to circulate liquid through the loop. Future CPL development and advancement
will likely result in hybrid loops with LHP or mechanically pumped components

assisting with bubble control in the CPL evaporator core.
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3.0 VIEW-CPL DESIGN

The Visualization In an Experimental Water Capillary Pumped Loop
(VIEW-CPL) payload is a CPL test facility with flow visualization capabilities in the
evaporator. The experiment flew in the Middeck of the Space Shuttle Columbia
during the STS-80 mission. The payload design process involved balancing the
Middeck interface and safety requirements with the CPL functionality
requirements.

VIEW-CPL was designed as a shuttle Middeck experiment, instead of a
GAS can experiment (located in the shuttle cargo bay), for two main reasons: (1)
the Middeck atmosphere and ambient conditions are less extreme than the cargo
bay, and (2) crew operation and manual controls made the design less
complicated, particularly for video taping of the evaporator test section. A

perspective view of the on-orbit configuration is given in Figure 3.1.
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line 486 PGSC

Figure 3.1 VIEW-CPL configuration during operations in the Space
Shuttle Middeck.

45



3.1  Shuttle Interfaces

A summary of the shuttle interfaces and requirements are listed in Table
3.1 with the corresponding VIEW-CPL solution or design parameter. The shuttle
interfaces are defined in NSTS-21000-IDD-MDK Rev. B, the version of the
Middeck Interface Definition Document current at the time of the VIEW-CPL
manifesting. VIEW-CPL was classified as a nonstandard secondary payload
[NASA JSC, 1995]. The nonstandard classification was given because: (1) the
VIEW-CPL storage requirements exceeded one Middeck locker, and (2) the
maximum payload power exceeded the standard power allowance of 130 W
[NASA JSC, 1996a]. The “secondary” payload classification refers to the priority
placed on achieving the payload objectives (compared to the primary payload(s)
that have first priority during the shuttle mission).

Physical Interfaces. The payload was stowed in one large stowage tray

and one small stowage tray that were fit into one-and-a-half Middeck lockers.
The CPL portion of the experiment weighed 18.1 kg (39.7 Ib) and was stored in
one locker with cables and spare fuses. The remainder of the components were
packed in one half of a separate shared locker. All components were snugly
surrounded by fitted isolating foam to protect the payload from transient and
random vibration responses at lift-off. Vibration and acoustic susceptibility tests
were not required of the VIEW-CPL payload because it was stowed in the lockers

for ascent and descent and the loads are dampened by the isolating foam.
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Upon removal of the experiment from the locker for on-orbit testing, the
experiment was mounted to the floor using Velcro. Velcro allowed the crew to
quickly place the experiment in a variety of locations. The on-orbit configuration
(Figure 3.1) was subject to accelerations due to engine firings during Reaction
Control System (RCS) and Orbiter Maneuver System (OMS) maneuvers and
kick/push-off loads from inadvertent contact with the crew. While able to
withstand the on-orbit loads, the Velcro could not hold the experiment in place
during an emergency landing. Since VIEW-CPL requires stowage in a locker for
emergency landing, a “rapid safing” plan was prepared to hasten the stowage
process in emergency situations.

Thermal Interfaces. Due to presence of air in the Middeck, it is possible

for payloads to transfer heat to the Middeck ambient via convection. A passive
heat transfer coefficient of 1.42 W/m?-K (0.25 Btu/hr-"F-ft?) with an allowable
rejection of 60 W for a passively cooled payload is specified in NSTS-21000-1DD-
MDK, Rev. B, Section 6.2 [NASA JSC, 1996a]. Since VIEW-CPL required
rejection of up to 75 W, forced convection via circulating fans was used to cool
the payload. The maximum allowable outlet temperature in the Middeck was
45°C (113°F). Due to the high air flow rate, the VIEW-CPL exit air temperatures
were less than 1 K greater than the inlet temperature (described further in Section

3.2.2).

Electrical Interfaces. During operation, the experiment draws nominal 28

VDC power from either the Middeck Utility Panel (MUP) or the 10 amp Middeck
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ceiling outlets. Radiated and conducted electromagnetic compatibility (EMC)
and susceptibility tests were performed on VIEW-CPL to verify that there would
be no adverse effects on VIEW-CPL operations due to shuttle power
ripples/transient spikes and other shuttle or payload electronics. Conducted and
radiated electromagnetic interference (EMI) tests were also performed to verify
that VIEW-CPL electronics operated within allowable limits for shuttle safety.

The on-orbit video recording system for VIEW-CPL required the use of a
video camcorder, fluorescent light, and Payload and General Support Computer
(PGSC) supplied by NASA Johnson Space Center (JSC). The PGSC was a 486
IBM ThinkPad and was used to monitor the VIEW-CPL temperatures. An AC
powered portable fluorescent light was supplied by JSC to illuminate the
evaporator section during video taping. A Cannon L-1 camcorder and video
interface unit (VIU) allowed video footage to be recorded on Hi-8mm video tapes
and to be downlinked from the shuttle to the customer support room (CSR) for
real-time viewing. The camcorder, light, and PGSC were considered shared
equipment (not dedicated for sole VIEW-CPL use) and, therefore, were not
charged against VIEW-CPL allowable space and weight.

Safety. The safety of the crew aboard the shuttle depends upon the
detection and prevention of hazards that affect both personnel and the shuttle
itself. In order to assure a safe payload, payload safety data packages (PSDP)
were prepared to address potentially dangerous conditions. The items addressed

in the VIEW-CPL safety data packages were issues of: (1) toxicity, (2)
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flammability, (3) material compatibility, (4) structural design, (5) fluid containment,
(6) high operating temperatures and pressures, (8) payload generated acoustic
noise, and (7) rapid safing. In addition to a PSDP, a ground safety package
would normally be prepared for personnel processing the payload at NASA
Kennedy Space Center. Since VIEW-CPL was packed in a Middeck locker at
Johnson Space Center, a ground safety package was not required.

In order to avoid toxicity and flammability, the materials and processes
used in manufacturing the VIEW-CPL payload required approval from the
Materials Branch at JSC. In particular, all materials used in the payload had to
meet the offgassing and flammability requirements for Middeck payloads [NASA
OSMQ, 1991]. Payload off-gas testing was performed at White Sands Test
Facility in New Mexico [WSTF, 1996]. A listing of materials and approved
configurations are presented in Appendix B.

Payloads that can cause injury or damage to the shuttle due to
propagation of pre-existing flaws require fracture control [NASA JSC, 1996a]. A
fracture control plan was not required for VIEW-CPL because: (1) there was no
hazard from leakage of the deionized water contained in the experiment, and (2)
the contents were under subatmospheric conditions, not under pressure.

Surfaces exceeding 60°C are considered high temperature surfaces and
must be covered to prevent crew contact. The heaters at the reservoir and
evaporator on VIEW-CPL had the potential for exceeding 60°C and were,

therefore, covered with cloth insulation (Nomex Aramid brand) and over-wrapped

50



with aluminum foil tape (3M 425 brand); the insulation is A-rated for flammability
in 30% oxygen when layered to the prescribed minimum thickness of 0.15 cm
(0.06 in). The insulation is actually a third level of protection. The first level of
protection is the safety shroud covering the CPL structure, and the second level
of protection is a warning displayed on the data acquisition system with
instructions to remove heater power in the event a temperature sensor reads
above 60°C. With a heater surface temperature of 60°C, the temperatures on the
outside of the insulation will not exceed 45°C based on design calculations and
confirmed by measurements.

In addition to protecting the crew from warm surfaces, the VIEW-CPL
safety shroud also prevented crew contact with the fans and other parts of the
experiment. The experiment was designed with all sharp edges rounded and an
absence of pinch points that could potentially injure the crew or damage
equipment (e.g., putting holes in pressurized suits used for space walks) located
in the Middeck area.

For crew comfort, payload generated acoustic noise is limited [NASA JSC,
1996a]. An acoustic noise measurement was performed on VIEW-CPL with all
three fans turned on. The cooling fans above the condenser and subcooler were
the only components generating noise in the experiment. The measurements
were taken on all sides of the experiment to determine the maximum noise
output. Table 3.2 summarizes the results as compared to the Middeck limits for

a continuous noise source. A continuous noise source is defined as any source

51



which exists for a cumulative total of eight hours or more in any twenty-four hour
period. VIEW-CPL was considered a continuous noise source because the
VIEW-CPL operations were scheduled in 5 to 9 hour blocks of test time. VIEW-
CPL acoustic noise emissions exceeded the maximum limits at most frequencies
and therefore a waiver was requested and granted for the exceedance [NASA

JSC, 1996b]. Itis noted that the Middeck acoustic limits are very restrictive.

Table 3.2 VIEW-CPL acoustic measurement data.
Hz | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | O/A | dBA

Middeck Limits (dB) | 64 |56 |55 [51 |52 53 48 44 66 58

VIEW-CPL (dB) 72° | 65° | 59" | 59" | 56" |53" |48 [41* |85 |61°

#Measured 1 foot above the condenser intake screen
®Measured 1 foot away from the condenser outlet screen
Middeck Limits from NSTS-21000-IDD-MDK Section 4.7 [NASA JSC, 1996a]

The VIEW-CPL payload required stowing in the locker during launch and
landing. This requirement meant that the payload had to be repacked in the
locker in the event of an emergency landing. A “rapid safing” procedure was
written to minimize the time required to repack the experiment in the locker. This
procedure was included in the crew training sessions. The term “rapid safing”
refers to the steps that the crew must take to prepare the shuttle for an
emergency landing.

Heritage Hardware. In order to streamline the payload design and

qualification process, the VIEW-CPL design incorporated designs from previously

flown flight hardware. Safety and performance concerns are reduced by
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choosing designs similar to previously flown experiments. Table 3.3 lists the

components from two flight experiments (HPP and CAPL) that were incorporated

in the VIEW-CPL design. Table 3.3 also lists successful designs drawn from

ground experiments that also contributed to the development of VIEW-CPL. The

design of VIEW-CPL and the utilization of the heritage hardware is described in

detail in Section 3.2.

Table 3.3 Hardware or designs previously used in experiments flown in the
shuttle and ground-based designs.

FLIGHT EXPERIMENTS

Source

Heritage Hardware

Heat Pipe Performance
(HPP) Experiment flown
on STS-66, November
1994

Papst fans, Model 8124G

PIU - Board RDAS 1050

Thermik brand temperature switches

PICO II, very fast acting fuses, type 251 with axial leads

C&K brand locking toggle switches, part no. 7201KZQE

Potter & Brumfield brand Hermetically sealed relay, KHS17D12

Capillary Pumped Loop
(CAPL) Experiment flown
on STS-60 Feb. 3-11,
1994

Ultra-High Molecular Weight Porous Polyethylene (UHMW-PE)
from Porex Technology for capillary wick

GROUND EXPERIMENTS

Source

Heritage Hardware

GSFC

See-through Evaporator Design

Swales Aerospace

Reservoir Design

UMCP

Water-based CPL

3.2 CPL Design

The VIEW-CPL payload was designed for flow visualization during the

operation of a capillary pumped loop (CPL) in a micro-gravity environment

through the use of an evaporator with a window. Deionized water was chosen
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as the working fluid for VIEW-CPL because of its low toxicity and other attributes
favorable for studying CPL physics. Water exhibits high surface tension and high
latent heat with the added benefit of being non-toxic. However, water systems
operate at pressures below atmospheric pressure, and a limit to the system
performance is that the system pressure losses are on the same order as the
absolute system pressure. A benefit of operating at pressures below atmospheric
is that the design of components for flow visualization becomes relatively easy.
The use of water at sub-atmospheric conditions also permits the investigation of
CPL phenomena such as subcooling requirements and system performance
limits that are obscured in high pressure systems.

CPL systems are normally made from aluminum because it is light weight
and has a high thermal conductivity. However, aluminum oxidizes in the
presence of water and air, making it a poor choice for the VIEW-CPL system.
While the CPL system is designed to be leak tight, it was decided that trouble
shooting and leak detection in the early manufacturing stages could potentially
lead to conditions favorable for the corrosion of the aluminum if air was
introduced into the system. In addition, some of the CPL components, such as
pressure transducers, had wetted stainless steel parts. A system with water and
dissimilar metals ran the risk of accelerated corrosion due to electrochemical
effects. Stainless steel was chosen throughout to eliminate corrosion concerns.

A detailed figure of VIEW-CPL is shown in Figure 3.2. VIEW-CPL

incorporates a simple CPL design comprised of four major components: a
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capillary evaporator, a finned condenser, transport lines, and a reservoir. Not
shown in Figure 3.2 are the following items: the insulation covering the transport
lines, the protective polycarbonate (GE Lexan brand) shroud, the payload control
box (PCB), and the fans over the heat sinks. Figure 3.3 is a rendering of the
entire VIEW-CPL system enclosed in the protective Lexan shroud.

Details of the mechanical design of the CPL system are described in
Sections 3.2.1 - 3.2.4. Throughout the mechanical design effort, consultation was
provided by Swales Aerospace to draw upon their extensive experience in

building flight qualified hardware.

VIEW-CPL PROPERTIES

Mass: 18.1 kg (39.7 Ibs)

Center of gravity:
21cm, 18 cm, 7.6 cm
(8.4in,7.1in,3.0in)

19.7 cm

Figure 3.3 Rendering of the VIEW-CPL experiment with protective
shroud, support brackets, and electronics box.
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3.2.1 Evaporator design

Figure 3.4 shows the details of the VIEW-CPL capillary evaporator
assembly. In order to meet the visualization objective of recording the life cycle
of vapor bubbles in the liquid core of the wick, an axially halved capillary
evaporator was used with a design similar to the evaporator in the work of Ku et
al. [1993]. A starter pump (see Section 2.1.1) design was originally considered
in order to observe the flushing action and recovery from deprime. However, the
axially cut evaporator design reduces the wick core flow area to 66 mm? (0.10
in?), making it difficult to include a 3-mm (1/8-in.) diameter bayonet tube without
obstructing the natural flow of bubbles. Thus, a two-port capillary pump, as
shown in Figure 3.4, was chosen for the study.

Mechanical Design. The capillary evaporator base is formed from a block

of stainless steel with a machined groove for placement of a porous polyethylene
wick. A Lexan sheet is clamped and sealed to the stainless steel base as a clear
cover allowing for visualization into the capillary evaporator. To provide rigidity,
a stainless steel cover plate, with a window cut-out, is used on top of the Lexan.
Corners of the base were angled and pockets were cut in places where there was
excess material in order to reduce the weight of the evaporator. Details on the
evaporator construction are summarized in Table 3.4.

The wick was machined from a tube of porous polyethylene with axial

vapor-grooves cut into the outer diameter. The wick pore-size and permeability
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Table 3.4 Characteristic dimensions of components in the VIEW-CPL evaporator.

Component | Characteristic Dimensions

Base Material = 303 Stainless Steel (for machinability of intricate design)
Pocketed and angled corners for reduced weight

Wick Material = Porous Polyethylene

pore size, r, = 13.7 microns (measured value)

permeability, k =6.2 x 10™*m? (measured value)

porosity = 50% (measured value)

Total Length =11.4 cm (4.5 in.)

Outer diameter = 22.2 mm (0.875 in.)

Inner diameter = nominally 13-mm (0.51 in.) tapped to mate with threaded
polyethylene plugs

Core length = 7.62 cm (3.0 in.) after plugs are installed

Vapor Machined axially into the wick, starting 12.7 mm (0.5 in.) from the wick

Channels edge.

12 rectangular-grooves equally-spaced around the OD
e Only 7 grooves (5 whole + 2 halves) remain after wick is cut in half
» Equivalent of 6 whole grooves at final assembly

Active Length = 101.6 mm (4.0 in.)

Groove dimensions = 3.2-mm (0.125 in.) wide x 1.9-mm ( 0.075 in.) deep

Groove wetted perimeter = 1.02 cm (0.40 in.) each

Groove area = 0.0605 cm? (0.00938 in?) each

Groove hydraulic diameter = 0.238 cm (0.0938 in.) each

Clear Cover | Polycarbonate Plastic (GE brand 9034 Lexan)
20.3-cm long x 6.1-cm wide x 0.56-cm thick
(796 in.x 2.4in. x 0.22in.)

Top Cover 304 Stainless Steel 0.48-cm (0.188 in.) thick
Bolted 12 places with #8-32 x 2.22-cm (7/8 in.) long screws

Seals Solid polyethylene plugs heat welded at wick ends
Viton o-ring between Lexan and stainless base
Silicone between plastic fittings and Lexan

Oversized wick compressed against Lexan

are important characteristics and were measured in an alcohol bath using
standard techniques [Nguyen, 1996]. The evaporator core (liquid side) is
separated from the vapor side by a solid polyethylene plug. A second solid
polyethylene fitting (polyethylene inlet plug in Figure 3.2) was machined in the

form of a bulk head fitting and threaded into the wick. The inlet plug was sized
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to have a minimum clearance of 1.3 mm (0.050 in.) between the plug and the
stainless steel base to reduce conduction from the base to the inlet. The wick
end fittings were heat sealed (also known as plastic welding), using a pencil size
stream of hot air, to ensure that flow paths did not exist between the vapor and
liquid side that would be larger than the largest pore size in the wick.

Once the wick and end fittings were assembled, the wick was laid in the
groove in the evaporator base and cut in half with a 0.5 mm (0.019 in.) excess
height. The excess was to allow compression of the wick assembly in order to
form a tight seal with the Lexan cover. Since the polyethylene wick would
compress more than the solid polyethylene end fittings, a line of silicone sealant
was placed on the end fittings (not on the porous wick), with a hypodermic
needle, prior to tightening the Lexan cover.

A viton o-ring is used to seal between the stainless steel base and the
Lexan cover. The bolt pattern for attaching the Lexan and stainless steel cover
plate is uniform with a spacing slightly under 6.4mm (0.25 in.) around the o-ring
groove to achieve uniform compression of the o-ring. Locking devices (Helicoil
inserts) were used to ensure the screws did not back out during the vibrations
associated with launch.

Thermal Design. A conducting tube sleeve assembly was used to reduce

conduction from the stainless base to the subcooled liquid flowing to the
evaporator through the liquid line. The broken conduction path was necessary

based on observations during tests, conducted at Goddard Space Flight Center
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by the University of Maryland, with a see-through evaporator [Ku et al., 1993].
As shown in Figure 3.5, a 9.5-mm (0.375 in.) OD 316L stainless steel tube, with
0.8-mm (0.030 in.) wall, surrounds the 3.2-mm (0.125 in.) OD liquid inlet tube.
The outer tube is welded to the evaporator base while the liquid inlet tube passes
to the polyethylene inlet plug without contacting the hot evaporator base. Thus,
conduction heat leaks from the base to the inlet tube must follow the path of the
outer tube through a cross-section of only 21 mm? (0.033 in.?) over a distance of
25 mm (1 in.).

Three heaters are attached to the base of the evaporator block to enable
various power input conditions specified for the operation of VIEW-CPL. The
heaters are turned on and off manually by activating switches. Four normally
closed thermostats are attached to the evaporator to interrupt the heater power

if the evaporator temperature exceeds 60°C. Details of the evaporator electronic

Step for welding to
evaporator block Threaded to match

polyethylene plug

OO

mmmmmmmm\\
N\

NI T 3: G U  ___ -
DO

7

Liquid feed line
3.2-mm OD x .7-mm wall
(0.125-in. OD x 0.028-in. wall)

Figure 3.5 Cross-section of conducting tube assembly used to increase the
resistance to conduction from the evaporator block to the liquid feed line.
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components are provided in Sections 3.3.1 and 3.3.2.

Since the evaporator body has a low thermal conductivity, a significant
temperature gradient exists between the heater surface and the evaporating fluid
inside the evaporator. The minimum distance between the heaters and the
working fluid is 9.8 mm (0.387 in.) which occurs at the bottom of the semicircular
cut-out for the wick. Assuming 75 W (maximum heater power) is evenly
distributed over the available heater area of 62 cm? (9.6 in.?), the expected
temperature difference between the heated surface and the fluid is 8 K according
to steady-state conduction calculations. This temperature difference was
accounted for in the design of the thermostats to allow nominal operation at 50°C.

The time required to cool-off the evaporator between tests is another
concernwhen using a stainless steel evaporator. A seven-hour cool-down period

for the evaporator was predicted using a lumped capacitance assumption

%(mcr)?hAs(T—Tw) (3.1a)

where m is the mass of the evaporator, c is the specific heat of the evaporator,
h is the convection coefficient inside the cabin, A, is the surface area of the
evaporator T is the final evaporator temperature as a function of time, t, with an
uninsulated evaporator transferring heat to the cabin air resulting in

T-T,
—— (3.1b)
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where T, is the initial evaporator temperature and T, is the air temperature.
Table 3.5 lists the parameters used to model the cool-down period. Since such
a long cool-down period was undesirable, a thermoelectric cooling module was
installed on the evaporator base to decrease the time (see Section 3.3 for details
on the thermoelectric cooling module).

Subcooling requirements. The capillary pressure rise across the meniscus

in the evaporator causes a difference between the saturation temperature of the
vapor and the saturation temperature of the liquid core, as described in Section
2.1.1. At75W, the viscous pressure drop in the VIEW-CPL system is 0.255 kPa
(1.76 psi), resulting in a saturation temperature difference of 0.4 K when the
vapor saturation temperature is 50°C. This requires that the fluid in the liquid
core be cooled 0.4 K below the vapor saturation temperature. If not, then the
possibility of flashing and forcing vapor into the liquid core exists because the
liquid will enter at a temperature above the local saturation temperature of the
liquid. There was a concern that the low flow rate in the loop will not be able to
prevent heat transfer to the liquid inlet via conduction. Peclet numbers for the
liquid line ranged from 4.4 to 33 for 10 W and 75 W, respectively. Since Pe is
less than 100, axial conduction can be important in transferring heat from the
evaporator to the liquid inlet. A fan-cooled subcooler was included in the VIEW-

CPL design as a precautionary step to ensure adequate subcooling.
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Table 3.5. Parameters used to estimate the cool-down time for the uninsulated
VIEW-CPL evaporator transferring heat via convection with ambient Middeck

cabin air.
Symbol Description Value
T. Middeck cabin air temperature 2 29.4°C (85°F)
o Initial evaporator temperature 60°C (140°F)
T Final evaporator temperature 40°C (104°F)
h Heat transfer coefficient for convection # 1.42 W/m?-K
(0.25 Btu/hr-ft*°F)
C Specific heat of stainless steel” 477 Jlkg/K
(0.114 Btu/lb-°F)
A, Evaporator surface area 0.023 m? (36 in.%)
Bottom: 20.3cm x 6.1 cm (8 in. x 2.4 in.)
2 Long Sides: 20.3cmx 2.1 cm
(8in.x0.8251in.)
2 Short Sides: 6.1 cm x 2.1 cm
(2.4in.x0.825in.)
m Evaporator mass 1.67 kg (3.67 Ib)
k Thermal conductivity of stainless steel” 14.9 W/m-K
(8.6 Btu/hr-ft-°F)
L Evaporator length 20.3cm (8in.)
Bi Biot number, Bi = h*L/k 0.02
t Time required to cool-down 7.2 hours

3[NASA JSC,19963]

®[Fox and McDonald, 1985]

3.2.2 Condenser and subcooler design

Condenser. The VIEW-CPL condenser section is a finned tube with forced
air flowing over the outside finned portion of the tube and steam/water flowing
inside the tube, as shown schematically in Figure 3.6. Characteristics of the
condenser components are summarized in Table 3.6. The outside of the

condenser incorporates square copper fins brazed to the outside of a 316L
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N

1-1cm (0.375 in) OD LIQUID LINE

2-2.5cm (1.0 in) OD TUBE, 316L SS

3 - GROOVED POLYETHYLENE INSERT

4 - COPPER FINS (0.8 mm THICK, 2.5 mm BETWEEN FINS)
5 -1 cm (0.375 in) OD VAPOR LINE

6 - CONDENSING FLOW PASSAGES

Figure 3.6 VIEW-CPL copper-finned condenser with polyethylene insert.

Table 3.6 Characteristic dimensions of components in the VIEW-CPL condenser.

Component

Characteristic Dimensions

Copper Fins

Quantity =41

Spacing = 2.5 mm (0.098 in.) between fins
7.2-mm (3.0-in.) square x 0.8-mm (0.032-in.) thick
2.57-cm (1.01-in.) diameter hole, centered

Active condenser length = 13.5 cm (5.33 in.)

Stainless Outer Tube

Length=17.8 cm (7.0in.)
2.5-cm (1.0-in.) OD with 0.9-mm (0.035-in.) wall

60/40 lead/tin solder

Centered on stainless tube over a length of 13.8 cm (5.45 in.))

Polyethylene Insert

Length =14.2 cm (5.6 in.)

4 grooves for vapor channels

Groove wetted perimeter = 2.4 cm (0.945 in.) each
Groove area = 0.368 cm? (0.057 in?) each

Groove hydraulic diameter = 0.61 cm (0.24 in.)

stainless steel tube. The central section of the stainless steel tube was plated

with 60/40 lead/tin solder to coat the area where 41 copper fins were to be

attached. The fins were sheared in strips and cut square to minimize machining

time; the fins were then stacked and a hole, slightly greater than the diameter of

the plated stainless steel tube, was drilled through. A fixture was made to ensure
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that the fins were evenly spaced as they were slipped onto the stainless steel
tube and individually soldered in place.

A grooved solid-polyethylene rod is inserted inside the condenser tube to
reduce the fluid volume and hence reduce the system charge. Short posts are
positioned on the ends of the grooved rod to prevent the rod from moving to the
end of the condenser tube and blocking the flow path at either the vapor inlet or
liquid exit. The polyethylene rod is also sized slightly smaller than the condenser
to prevent it from melting when welding on the endcaps. The condenser inletand
exit tubes are attached to the bottom of the endcaps to prevent liquid puddling in
the bottom of the condenser during ground testing.

Air-side pressure drop. For the air-cooled condenser, the operating

condition can be determined from the fan curve. The air-flow over the condenser
fins is driven by two fans, PAPST Model 8124G [PAPST, 1994]. The fans are
mounted on top of the condenser, and the air is directed over the fins using
Lexan ducts. The arrangement is shown schematically in Figure 3.7. The
pressure drop calculations and fan curves were evaluated to determine the fan
operating point as shown in Figure 3.8.

For the VIEW-CPL condenser, the pressure drop for air flowing through
the condenser system includes:

(1) pressure drop in the duct surrounding the condenser,

(2) pressure drop in accelerating flow at contractions (i.e., duct to fins),

(3) pressure drop due to expansions (i.e., fins to duct),
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(4) pressure drop between fins,
(5) pressure drop due to flow around a cylinder at the condenser tube,
(6) pressure drop due to bends, and

(7) pressure drop due to screens or filters.

SCREEN
FAN
- DUCT
FINNED q
CONDENSER
TUBE
/ ]

Figure 3.7 Schematic of the VIEW-CPL air-cooled condenser with fans
and duct.

60 -

- - - .Fan characteristics

Condenser pressure drop

50 1=,
40

30 4

(0.016 m®/s, 24 Pa)
20 T

Pressure Drop (Pa)

10

0 ] T T T T T T T T T T T T T T T T
0.000 0.010 0.020 0.030 0.040
Volume Flow Rate (m3/s)
Figure 3.8 Fan performance and system curves for the VIEW-CPL
air-cooled condenser. Volume flow rate reflects rate available from two
fans.
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Determining the appropriate pressure drop for the seven components described
above involves determining the appropriate loss coefficients, K, and velocities to

characterize the pressure drop using

V2
AP = pK— (3.2)

2
Table 3.7 gives loss coefficients for the flow conditions described in (1) through
(7) along with the values for the VIEW-CPL geometry. The intersection of the
pressure drop on the fan characteristic curve, shown in Figure 3.8, determines
the flowrate of air flowing through the condenser. The flow rate can then be used

to find the pressure drop and heat transfer coefficients for the finned condenser.

Heat transfer coefficients for finned condenser. Two overall heat transfer

coefficients, U, and U,, are determined for the air-cooled condenser. U, is the
overall heat transfer coefficient for the condensing length of the condenser, and
U, is the overall heat transfer coefficient for the remaining length. The difference
between U, and U, is the change in the internal heat transfer coefficient, h, as the
fluid transitions from two-phase flow to single-phase flow after the condensing

length. The remainder of the condenser resistance is the same for both the
condensing and non-condensing sections, and the overall heat transfer

coefficient is calculated from [Incropera and DeWitt, 1990]:

1 1 , In(dy/d) 1

UA  (nhA)  2mkl  (hA),

(3.3)
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Table 3.7 Loss coefficients for determining pressure drop for flow through the
VIEW-CPL finned condenser system.

Loss Coefficient Parameters Pressure
Drop (Pa)
Ducts 64 L Lexan duct after the fans 0.04
inar = - D,=3.87in,L=3in
laminar Re Dh h
Kipuent = 0-3164 Re 025 L Vet = 1.60 m/s, Re, = 9970
b, K =0.025
Re based on hydraulic diameter, D,
Contractions Contraction from duct to fins 0.31
« determined graphically [Fox and Vins=2.12 m/s ; K=0.12
McDonald, 1985] Contraction from between fins 0.88
 velocity based on smaller flow area before tube to fins after tube
Vipe= 3.19; K=0.15
Expansions Expansion at exit of condenser 0.26
» determined graphically [Fox and Area ratio = .7
McDonald, 1985] K=.1
« velocity based on smaller flow area V=212m/s
Fins . Po L Fins before tube: 2.06
Kins = 4o D D, =0.189in, L = 1 in,
Dp™=h V;n=2.12 m/s, Po = 24,
* Po=CRey, Re=642, K=0.79 3.50
¢ can be determined graphically for a Fins at tube
given aspect ratio [White, 1991] D,=0.178in,L=11n,
Viins=3-19 m/s, Po = 24,
Re=906, K=0.59
Flow around cylinder: K =C, V=212m/s 3.93
* C,isthe drag coefficient determined K=15
graphically based on Reynolds
number [Fox and McDonald, 1985]
Bends 90° bend between fins 7.83
e same as ducts using equivalent (after the tube)
length, L /D L/D =20
¢ Fox and McDonald [1985] provide K=3.0
L./D for bends based on deflection Viins=2.29 m/s
angles
Screens 20 x 20 Square mesh screens 5.23
wire diameter =0.49 (for two
K found from charts based on screen Duct flow area ratio = 1 screens)
free area ratio and screen to duct area K=1.76
[ASHRAE Fundamentals, 1997] V=1.60 m/s
TOTAL PRESSURE DROP 24.04 Pa
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The firsttermin Eq. 3.3 is the air-side resistance and depends upon the geometry
of the fins. The second term is the conduction through the condenser tube, and
the final term is the internal heat transfer coefficient.

The square-finned condenser shown in Figure 3.6 can be described as a
single finned row of the plate fin geometry. The important dimensions for
determining the air-side heat transfer coefficient are the tube outer diameter, d,
the spacing between the fins, s, the fin thickness, t;,, and the heat exchanger
depth, w (same as the fin width for a single row). Webb [1980] summarizes
various correlations for the j factor (j = St Pr?®) as a function of the Reynolds

number for air flow through the flow passage area, A,,

G.D,

Re = (3.4)
v
B 4A w .
h y (3.5)
The Nusselt number is
Nu = jRePr'? (3.6)

with the j factor is determined graphically for the given fin pitch. Webb [1980]
suggests that the j factor for single row tubes is 30% lower than deep tube
bundles; therefore, the j factor determined graphically was reduced by 30% for
the VIEW-CPL condenser. The air-side heat transfer coefficient is then

determined from the definition of the Nusselt number
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h = (3.7)

The overall surface efficiency, n,, is calculated from the finned surface area, A;,

the total surface area, A,, and the fin efficiency, n;:

=1 A’<1 )
No A Ny (3.8)

The fin efficiency for annular fins of rectangular profile are plotted by Incropera
and DeWitt [1990] based upon fin parameters of length, thickness, and thermal
conductivity; tube outer radius; and heat transfer coefficient. The fin efficiency
curves for various values of (L, + r))/r; are plotted versus the parameter
L 2(h/KLt)”* where L, is the corrected fin length calculated from L + t/2. As
shown in Figure 3.9, the fin length is not constant in the case of a square fin. The

fin length varies according to

W -r, 0<8< T, Esesﬂ, T 9<2
L(e) - 2|cos8| 4 4 4 4 (3.9)
w -r, Esesﬂ, ﬂses-’—
2|sinB| 4 4 4 4

The efficiency for the square fin is approximated by averaging the maximum and
minimum efficiencies based on the minimum and maximum fin length,
respectively. For the VIEW-CPL geometry the minimum fin length is 25.4 mm (1
in.) resulting in a fin efficiency of 86% and the maximum length is 41.1 mm (1.62

in.) for 75% efficiency, which averages to a total efficiency of 81%. Since the
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Figure 3.9 Geometrical characteristics of a square fin.

ratio of fin area to the total surface area is nearly unity, the overall surface
efficiency n, is also 81%.

Table 3.8 summarizes the heat transfer through the VIEW-CPL condenser
components for the external conductance. The air-side heat transfer coefficient
is 49 W/m?-K, determined from Egs. 3.4 through 3.7. The conductance, per unit
length on the air side and through the tube wall is 130 W/m-K and 1160 W/m-K,
respectively, resulting in a total external conductance of 117 W/m-K.

For a typical air-cooled condenser, the inner heat transfer coefficient for
the two-phase flow is much larger than the heat transfer coefficient for the air
side. However this is not the case for VIEW-CPL which operates with a low flow
rate and under micro-gravity conditions. The condenser is divided into an active
length, L,, and a liquid-covered length, L-L,. Therefore, there are two different

internal heat transfer coefficients. Carey [1992] derives a formulation for the heat
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Table 3.8 External conductance calculations through VIEW-CPL condenser
components on a per unit length basis.

Component Governing Equation(s) Values
Air side . 13 j =0.007 (degraded from 0.010)
Nu = iRePr (36) | Re =713, Pr= 0.71, Nu =6.49
Nuk
h = Lt 3.7) | k = 401 Wim-K, s =0.33 cm / fin,
S- t=0.81 mm (0.032in)
h = 49 W/m?-K
Fins A n; =0.86 for L = 2.82 cm (1.11 in.)
=1-211 - n; =0.75 for L =4.11 cm (1.62 in.)
No At( Ny (3.9) o = 0.805
hA,  n,hA A :.0.435 m?, A, = 0.443 m? .
= — (From 3.3) | Active Length =0.135 m (5.33in.)
L L AlL =327 m%m
n, =0.81, hA_, / L = 130 W/m-K
Tube UA,pe . 2k k =13.4 W/im-K [l\_lote 1]
L In(d/d) (From 3.3) | d,=2.54 cm (1.0in.)
i d;=2.36 cm (0.931in.)
UApe / L = 1160 W/m-K
Total UA L -1 UA,, =117 W/m-K
External et - + (From 3.3)
Conductance L UAype UAa:

transfer coefficient if it is dominated by conduction through the liquid (of thickness
d) at the heat transfer surface. The derivation is based on the momentum
balance of a differential element (dz in the axial direction and y distance from the
tube wall) in the liquid that includes the hydrodynamic body force, pg, and the
interfacial shear stress, 1, and dP/dz for the total axial pressure gradient (gravity,

friction, and deceleration)

dP
P9 dz

+TidZ = H,( ﬂ) dz (310)

0-y)dz
5-y) dy
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with inertia and downstream diffusion contributions neglected, for downwards flow
in a vertical tube. In this derivation, radial effects from the round tube geometry
are neglected and the terms in Equation 3.10 are based on one-dimensional two-
phase separated-flow analysis. For VIEW-CPL operations in micro-gravity, the
body force term is neglected. The pressure gradient is constant along the tube
diameter and can be determined from a sum of the frictional and deceleration

pressure gradients for the vapor

dP _ 41, 2xDG2? dx
dz  (D-23) p,(D-25)dz

(3.11)

where D is the tube diameter, 7, is the interfacial shear stress approximated by
a single-phase correlation in a round tube for the vapor (because liquid flow is

much slower than the vapor flow)

2
u 2,2
A 2 S e S (3.12)
2 2p (1-43/D)
and G is the mass flux
m
G = —
A (3.13)
The deceleration term (last term in Equation 3.11) is approximated from
2 )2
(E) - g x (U (3.14)
dZ ) joc dzipa pf1-a)
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by assuming that the liquid density is much larger than the vapor density, that the
film is thin, and that the variation in the void fraction, o, along the tube is small
compared to the variation in quality, x. The quality gradient is evaluated from an
energy balance with the amount of heat transferred to the wall equal to the

amount of vapor condensed

(3.15)

2
hD(T,-T,,) - M2 - g P2\ &
dz 4 ) dz

and the local condensation heat transfer coefficient is a function of the axial

distance, z, and the local film thickness, 6(z)

k,
h(z) = m (3.16)

for conduction-dominated laminar flow. The local film thickness is found at each

location along the length of the condensing section by satisfying

= KM (Tgy = Tyay )2 (3.17)

i =

oA T; . XGk( wall ~ Tsat ) 54
(D-20) V)\G(D - 20)

where the interfacial shear stress (1;) and the mass flux (G) are determined by
Equations 3.12 and 3.13, respectively. The average heat transfer coefficient over
the condensing length is determined by

_ fL h(z)dz
h=="2— (3.18)

foLdz
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and is plotted as a function of net evaporator power in Figure 3.10. The net
evaporator power is the electrical heat minus the heatloss. The traces in Figure
3.10 were calculated for the VIEW-CPL condenser geometry and saturation
temperature 50°C with air temperature at 25°C. The internal heat transfer
coefficient is weakly dependent on the air temperature resulting in an
approximate change of 1.3% per degree variance from 25°C over the power
range (based on calculations, not shown in Figure 3.10). Curve fits to the heat
transfer coefficient and the condensing length are shown and are used in bubble

dynamic models developed in Chapter 4.

1400 T ‘ ‘ ‘ ‘ 1
T r 0.12
1300 3 . -t
< TAvg h = 8.2091E-04Q° - 0.1929Q2 + 19.864Q + 438.61 L 011
N I 2 L
§ 1200 | | | R =999 \ L 0.1
T_: 1100 ; _ 2 - 0.09 ~
= IL = -4.444E-06Q” + 1.516E-03Q P T E
k5] ] R? = 9969 - Loos =
£ 1000 & 7 - 4 <
© 1 , -~ to07 2
© 900 F o - T -
3 1 -~ 1006 2
é 800 T s - Hydraulic diameter for a . | 0.05 'g
= T - single groove = 0.61 cm (0.24 in) i
g T F0.04 §
£ 700 T /, s Total condensation area for all four ©
Iy T 4 condenser grooves (only half the r 0.03
S 600 7 diameter is actively cooled) per
z 1 v unit length = 3.85 cm¥cm (L.51 in%in) | -02
500 /
V24 F0.01
Y [=——h (W/m2-K) == L (M)| |AT for the length calculation is 25 K
400 1 1 1 1 : ‘ ‘ ‘ ‘ 0
0 10 20 30 40 50 60 70 80 90 100

Net Evaporator Power, Q (W)

Figure 3.10 Condensation film coefficient and condensing length as a
function of net evaporator power (total power minus heat loss to ambient)
for VIEW-CPL.
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For the non-condensing portion, the inner heat transfer coefficient is
determined from Nu = 4.36 for a circular tube with uniform heat flux in the laminar
flow regime [Incropera and DeWitt, 1990]. The resulting heat transfer coefficient
for the single-phase liquid flow is 458 W/m?K. The thermal capacitance of the
air is much larger than that of the water because of the high flow rate driven by
the fans. The air temperature rise is so small that it is not noticeable for all cases
within the design range of 10 to 75 W evaporator heater power. The steady-state
temperature profile of the water in the condenser is plotted in Figure 3.11 for 5,
25, and 75 W net evaporator heat-loads. As shown in Figure 3.11, sufficient
subcooling will be developed because the liquid exiting the condenser is at the

same temperature as the air. The wall temperature (not shown on figure) over

55 T

50 +
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. ]
o |
Tg’ T 125 W
S 40 +
g T ]
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g 4
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= 1
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o + \
307 ; \
‘5W \
N

25 1
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Axial Position in Condenser (cm)

Figure 3.11 Water temperature profile in the condenser for net evaporator
power of 5, 25, and 75 W.
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the condensing portion is 28.8, 30.4, and 32.0°C for 5, 25, and 75 W,

respectively. These values are well below the safety limit of 60°C.

Two-phase pressure drop. A one-dimensional separated-flow model is
used to estimate the steady-state two-phase pressure drop [Carey, 1992]. For
the one-dimensional assumption, the fluid properties are considered constant
over the cross-section of the tube and the velocities of the liquid and vapor
phases are uniform over the portion of the channel occupied by each (that does
not necessarily mean that the liquid and vapor phase velocities are equal). For
steady flow, the interfacial shear forces balance and the resulting momentum

balance is a combination of frictional terms and acceleration terms as follows

2,2 274 _W\2
(f) _ (f) . 4 8% G1-x) (3.19)
0z ) oo daz). dz| pa p,(1-a)

The body forces are neglected and the tube is assumed to have a constant
cross-sectional area. Using a two-phase multiplier

(dPldz), |2

b = (dP/dz),

(3.20)

that is based on the ratio of the two-phase frictional pressure drop to the pressure
drop if only liquid (lo = liquid only) were flowing in the tube at the same total mass
flow rate and a pressure gradient determined by single-phase flow, the frictional

pressure gradient is

f A2
(E) ) ¢2’°(£) - o ¥ (3.21)
fr lo

dz dz
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where f, is the Darcy friction factor. The two-phase multiplier for round tubes is

2 =1 + (CIX,) = (1/%2) (3.22)

where ¥, is the Martinelli Nelson parameter which is a function of quality, x, and
may be approximated by

0.5 0.14

0.9
1-x

X

o,
Py

L}
My

Xg = (3.23)

and C is 20 for turbulent vapor — turbulent liquid flow, 12 for turbulent vapor -
laminar liquid flow, 10 for laminar vapor — turbulent liquid flow and 5 for laminar
vapor — laminar liquid flow. The relationship between the liquid two-phase
multiplier (in the area occupied by liquid) and the liquid-only two-phase multiplier
is

b2 = dF(1-x)""° (3.24)

The acceleration term can be approximated by

—-— 3.25
o b, (3.25)

d{ G%* G (1-x| . g2 1.1
dz{ pa p(1-a)

[Fredley and Braun, 1988]. The resulting pressure gradient over the length of the

condenser is

AP - -

2 p,b, P, B

f,
o G A ‘¢,02(1-x)1-75dz] v 62[1—1] (3.26)

Most derivations assume a linear relationship between quality and length. A
comparison of various fluids, temperature and powers during VIEW-CPL analysis

indicated that this assumption over-predicts the pressure drop by 5 to 15% with
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the error decreasing as temperature increases. Since the error is on the same
order as the accuracy of the calculation of heat transfer coefficient, the
assumption is also used in this study and the pressure drop determined from
Equation 3.26.

Subcooler. A subcooler was added to the VIEW-CPL evaporator inlet as
extra protection against any unpredicted on-orbit conditions that would allow the
liquid line temperature to increase. Because the condenser was sufficiently sized
and the evaporator inlet design protected the liquid from heat conduction from the
evaporator, the subcooler was not necessary and did not affect the VIEW-CPL
operations. The subcooler fan was used to provide adequate air circulation to
cool the VIEW-CPL electronics box. The following paragraphs summarize the
subcooler design for completeness.

The air-cooled aluminum subcooler, shown in Figure 3.12, is attached to
a reducer fitting on the liquid line just before the evaporator. The reducer fitting
connects the 9.5-mm (0.375 in.) OD liquid line to the 3.2-mm (0.125 in.) OD
evaporator liquid inlet line. Air is pulled over the subcooler with the same style
fan, PAPST Model 8124G, that is used on the condenser. However, the intake
air is used for multiple cooling purposes before it is used to cool the subcooler.
Figure 3.13 is a flow diagram of the path the intake air follows as it flows to the
subcooler. The air comes from the far side of the experiment and is drawn
across the electronics box, reservoir, and evaporator. As the air passes

underneath the evaporator it is drawn through the finned TEC heat sink and into
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tube with Stycast

w&ngth =1.9cm (0.75in.) Fins bonded to reducer
TR 2850FT epoxy

Fin thickness
=0.318 cm
(0.125in.)

Reducer OD =
1.27 cm (0.501

n.)

' V) 0.79 cm (0.31 in.)
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\
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Figure 3.12 Air-cooled subcooler attached to VIEW-CPL liquid line.

the Lexan duct surrounding the TEC heat sink and subcooler. After passing
through the subcooler, the fan on top of the duct forces the air into the
surrounding atmosphere.

The purpose of this flow path was to save space and weight by having one
fan perform the following tasks: (1) subcool liquid flowing into the evaporator, (2)
cool the TEC module during evaporator cooldowns, and (3) keep the electronics
box from getting hot during operations. Since the air flow path is irregular,
determining the fan operating condition is complicated. Based on Table 3.7 and
observing that the high pressure drop regions of the condenser air flow were the
flow between fins, flow around the cylinder, the 90 ° bend, and flow through the

screens, the pressure drop in the subcooler/heat sink circuit is approximated by
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Figure 3.13 Flow path of air used to cool the electronics box, reservoir,
thermoelectric cooler heat sink, and the liquid line subcooler.

neglecting the pressure drop as the air flows from the intake to the heat sink.
Table 3.9 contains summary information on the subcooler/heat sink fan operating
condition.

The air-side heat transfer coefficient for the subcooler is 29.8 W/m?-K
using the correlations from Webb [1980]. The overall conductance of the
subcooler is 0.21 W/K, including the contribution from the external heat transfer
coefficient, the internal heat transfer coefficient, and the wall resistance. Noting

that the liquid-side capacitance is much smaller than the vapor-side capacitance
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and using the NTU value based on the liquid mass flow rate at 75 W, the
subcooler effectiveness is 0.81.

Table 3.9 Subcooler fan operating conditions.

Geometry Parameters Pressure drop (Pa)
1 Flow between fins of subcooler V4ins=9.6 M/s 7.87
Po=18
Re=4060
K=0.15
2 Flow between fins of heat sink Viins=5.1 m/s 5.87
Po=20
Re=1950
K=0.40
3 20 x 20 Square mesh screens K=1.57
wire diameter =0.49 Vereenn=1.20 m/s 1.46
Duct flow area ratio = 1 Ve reen=0.60m/s 0.36
4 | 90° bend between fins of heat sink L/D =20 9.90
K =0.66
Viins=5.1 m/s
TOTAL PRESSURE DROP 25.46 Pa

3.2.3 Micro-gravity reservoir

A stainless steel reservoir with an internal polyethylene wick structure, as
shown in Figure 3.14, is used to regulate liquid level within the loop. The design
was patterned after one of the reservoirs evaluated for the CAPL-1 flight
experiment [Buchko, 1992]. The reservoir is formed from tubing that is
hermetically sealed with flat welded endcaps. The flat endcaps save space over
hemispherical endcaps and are allowable from a stress consideration since the
maximum pressure differential is 1 atm. A valve on the end of the reservoir is for

charging the CPL; the valve is plugged during normal testing and while on orbit.
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1 — Stainless steel shell, 5.72 cm OD x 13.2 cm long x 0.089 cm wall
(2.25 in. OD x 5.2 in. long x 0.035 in. wall)

2 — Flat end caps 0.312 cm (.125 in) thick

3 - 20 um wick, 5.54 cm OD x 4.78 cm ID (2.18 in. OD x 1.88 in. ID)
grooved at heater locations for venting vapor

4 — 5 W heater (attached to temperature controller)

5 — 20 W heater (attached to temperature controller)

— Liquid feed line to loop

-~ >
-z

2 N / 5 2
{urging port
|

475

Figure 3.14 Two-phase, temperature controlled reservoir for VIEW-CPL
with internal polyethylene wick for restricting vapor flow through the liquid
feed line.

A liquid feed line to the loop is positioned over a cut out in the reservoir wick,
which is designed to let only liquid pass to and from the reservoir.

As introduced in Section 2.1.3, the reservoir always has a liquid/vapor
interface, such that the pressure of the closed loop is controlled by the saturation
pressure of the water in the reservoir. The wick material inside the reservoir
prevents the release of vapor into the liquid line by creating a barrier around the
liquid port and allowing only the passage of liquid through the wick under normal

conditions. Figure 3.15 shows the details of the wick design. Vapor grooves are

84



Indented to prevent
blockage of the liquid
port

Grooves to channel vapor
to center cavity
3.8 cm (1.5in) long

Outer diameter of wick compressed
against reservoir shell

Figure 3.15 Internal wick structure for the VIEW-CPL reservoir made
from porous polyethylene with 20 um pore radii.

machined into the wick at the location of the reservoir heaters. The grooves
permit vapor generated by the heaters to vent into the reservoir cavity. As the
pressure increases inside the reservoir due to generation of vapor at the heaters,
liquid is forced through the wick to the liquid port.

The volume of the reservoir is designed to satisfy the two extreme
conditions described in Section 2.1.3; mainly that there be liquid and vapor
presentin the reservoir when: (1) the CPL evaporator, condenser, and transport
lines are fully flooded with liquid, and (2) the CPL condenser is fully open. A third
condition, that the reservoir contain liquid and vapor when the rest of the CPL is

completely filled with vapor, was imposed by NASA as a safety requirement for
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the VIEW-CPL system. The last condition ensures that the internal pressure is
always regulated by the reservoir saturation temperature which has a limit of
50°C set by the temperature controllers and dual thermostats (i.e., two-fault
tolerant). The VIEW-CPL reservoir volume is 264 cc (16.1 in.®) after the wick and
compression fittings are subtracted from the shell volume. The total volume of
the CPL components, other than the reservoir, is 115 cc (7.0 in.%). The system
was charged with 240 cc (14.6 in.°) of deionized water. These data are
summarized in Table 3.10. At the start-up condition, with the CPL system filled
with liquid, the reservoir volume is 51% filled with liquid.

The reservoir controls the operating pressure of the system through the
saturation temperature which is regulated with the use of heaters attached
around the circumference of the reservoir. The heaters are connected to on/off
temperature controllers to maintain a constant reservoir temperature of 50°C. To

assist with temperature regulation of the reservoir, the air passing through the

Table 3.10 Reservoir fluid inventory calculation.

CPL Component Volume Start-up at 25 °C
liguid temp mass
(cc) (in3) fraction (C) (gms)
Evaporator (vapor side) 7.26 0.44 1.00 50 7.2
Evaporator (liquid side) 9.70 0.59 1.00 50 9.6
Vapor transport line 21.85 1.33 1.00 25 21.7
Condenser (vapor side) 41.19 251 1.00 25 40.9
Condenser (liquid side) 5.57 0.34 1.00 25 5.5
Liquid Transport Line 11.07 0.68 1.00 25 11.0
Reservoir Free Volume 246.13 15.02 0.51 50 123.5
Other volumes 20.69 1.26 1.00 25 20.6
TOTAL 363.46 22.18 240.0
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subcooler is directed across the reservoir to provide a small load (cold biased).
Thermostats are located on the reservoir to keep the internal temperature of
VIEW-CPL below 60°C (140°F) and the corresponding internal pressure below
19.9 kPa (2.88 psia). Details on the reservoir electronic components are
described in Section 3.3.1.

The two reservoir heaters (5 and 20 W) were sized to provide: (1)
elevation of the reservoir temperature from 25 to 50°C in a 30 minute period for
rapid pressure priming, (2) minimal power to maintain 50°C saturation
temperature by balancing heat leaks to ambient, and (3) power necessary to heat
liquid displaced to the reservoir during start-up. Using a lumped capacitance
model, the first heater was sized to raise the temperature of 240 g of water and
1 kg of stainless steel by 25 K in approximately 30 minutes for pressure priming.
Thus, a heater with 39 Q resistance was chosen to provide 20 W at the shuttle
supply voltage of 28 VDC. However, the 20 W heater draws too much power to
use during normal testing, so a second smaller heater for maintaining the
reservoir temperature during tests was added.

The second heater was sized at 5 W to offset heat loss from the reservoir
to ambient. The size was determined using a conduction model of a composite
cylindrical wall. The main resistance to heat transfer is layers of Nomex
insulation, k = 0.13 W/m-K [McMaster-Carr Catalog, 1996], that are wrapped
around the reservoir for a total thickness of 0.5 in. Assuming a forced convection

heat transfer coefficient of 10 W/m?K, resulting from the subcooler fan blowing
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across the reservoir, the estimated heat loss from the 50°C reservoir to the 25°C
ambientis 4 W. If the subcooler fan is not operating, the expected heat loss from
the reservoir to ambient from the 1.42 W/m?-K convection heat transfer
coefficient (specified for the shuttle Middeck) is 1 W.

The third condition considered in sizing the second heater was the effect
of cold-shocking, or rapidly dropping the saturation temperature inside the
reservoir, during start-up. The volume of liquid displaced during a start-up is
equal to the vapor line volume plus the portion of the condenser volume occupied
by vapor for the given heat rejection rate. Adding the subcooled liquid (displaced
from the vapor line to the reservoir at typical saturation temperature for VIEW-
CPL tests) will result in a decrease in saturation temperature when the two fluids
mix. The effect on the reservoir temperature was roughly calculated assuming
instantaneous and ideal mixing. The drop in reservoir temperature is plotted as
a function of the condenser vapor volume in Figure 3.16 along with the energy
required to restore the reservoir to its initial temperature. The analysis indicated
that the 5 W heater would be too small for a quick recovery to saturation
temperatures. For instance, if 50% of the condenser was filled with vapor during
the start-up, then it would take 4.4 kJ to recover from the 6 K temperature drop.
This would take 15 minutes with a 5 W heater. The time lag between start-up
and restoring the reservoir temperature is a condition that could lead to deprime,
therefore arecovery plan was added to the VIEW-CPL operating procedures after

each start-up that would allow the use of the 20 W heater. A more detailed cold-
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Figure 3.16 Reservoir temperature drop based on the percentage of the
condenser that is filled with vapor during the VIEW-CPL start-up along
with the energy required to restore the reservoir to its initial temperature
(50°C). Perfect mixing is assumed between the reservoir fluid and the
incoming liquid from the vapor line and the condenser (at 25°C).

shock analysis is presented in Chapter 4 with consideration given to the transient
clearing of liquid from the vapor line during start-up.
3.2.4 Transport lines

The liquid and vapor transport line sizes are typically designed to keep
viscous pressure losses below the capillary limit during both start-up and steady-
state operations at maximum power. Since the capillary limit of water is large,
neither steady-state nor start-up operations were expected to be a factor in the
transport line sizes at the low powers for which VIEW-CPL was operated. Since

the contact angle for water and the polyethylene wick is unknown, the actual
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capillary limitis also unknown (see Section 2.1.1) causing some uncertainty in the
design of the transport line diameters.

Table 3.11 summarizes the transport lines used in VIEW-CPL. All lines
were 304L stainless steel. Pressure containment was not an issue because the
internal CPL pressure was below atmospheric pressure at all times. All joints
were welded and valves between the CPL internals and atmosphere were
plugged with welded fittings (Cajon VCR brand), consistent with NASA safety
requirements. Standard tubing bend radii were used to reduce both the number

of welds and the viscous pressure drop. Minor losses from flow through bends

Table 3.11 Transport line dimensions and associated fittings.

Dimensions Fittings
Liquid line Evaporator inlet tube: * Area change in condenser
OD =3.18 mm (0.125in.) A/R =0.1, K=0.5, loss is negligible
ID =1.75 mm (0.069 in.) because of low velocity
Length = 69 mm (2.7 in.) » Sharp 90° bend out of condenser,
L/D =60
Tubing: » Gradual 90° bend with
OD =9.53 mm (0.375in.) r/D=25,L/D=12
ID=7.75 mm (0.305 in.) »  Subcooler fitting with 120° reducing
Length= mm (in.) angle
e Polyethylene fitting: ID change from
Effective Length =26.9 m (1060 inlet tube to poly fitting
in) for 7.75 mm ID » 90° bend in poly fitting, and area

reduction to evaporator core

Vapor line OD =9.53 mm (0.375in.)
ID =7.75 mm (0.305 in.)
Length =394 mm (15.5in.)

Evaporator outlet

Condenser tube

Two 90° bends

Area change in condenser, A/R =

Effective Length = 63 cm 0.1, K=0.8, loss is negligible
(25in.) for 7.75 mm ID because of low velocity
Reservoir OD =6.35mm (0.25in.) * Flow through bend in Tee, L/D = 60
ling seeNote ID = 4.57 mm (0.180 in.) + 90°bend, L/ID=12

Length =165 mm (6.5 in.)

Note: Reservoir line does not contribute to steady-state pressure drop
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and tees were accounted for using effective lengths (L/D = 12 for bend with r/D
= 3, L/D = 60 for 90° corner, etc. [Fox and McDonald, 1985]).

The steady-state pressure drop as a function of power is plotted in Figure
3.17. The major component at lower power is the back pressure in the
condenser due to the meniscus across the cross-section of the groove. The back
pressure is similar to the pressure developed in heat pipes that are overcharged.
The dimensions relevant to calculating the pressure drop of the VIEW-CPL
components, other than transport lines, are summarized in Table 3.12.

An increase in pressure drop at start-up, known as the pressure surge,
occurs during the displacement of liquid from the vapor line and is plotted in

Figure 3.18 as a power-dependent pressure drop. The velocity of the liquid is
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Figure 3.17 Predicted steady-state pressure drop components for VIEW-
CPL.
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Table 3.12 Summary of dimensions from CPL components.

Component Dimensions

Condenser Grooves Number of Grooves = 4
Length = 127 mm (5.0 in.)
Area = 32.9 mm? (0.051 in.?)
WP=24.0 mm (0.945 in.)
Hydraulic Diameter = 6.12 mm (0.241 in.)
Radii of Curvature = 2.5 mm & 6.5 mm (0.1 in. & 0.245in.)

Evaporator wick Permeability = 6.2 x 10™* m?
r,=13.7 ym
OD = 22.2 mm (0.875 in.)
ID = 13.0 mm (0.51 in.)
Active length = 76.2 mm (3.0 in.)

Vapor Grooves Number of Grooves = 6
Width = 3.2 mm (0.125 in.)
Depth = 1.9 mm (0.075 in.)
Hydraulic Diameter = 2.4 mm (0.0938 in.)
Length = 101.6 mm (4.0 in)

equal to the velocity of the vapor at the flowrate corresponding to the power used
for evaporation (i.e., not including power for sensible evaporator heating). From
Figure 3.18 it would appear that the energy for evaporation will be limited to
powers below 2 W at the onset of nucleation in order to remain below the
capillary limit of the wick. However even this power limit would leave the liquid
in the liguid line (typically at 25°C) and the evaporator core superheated because
the local pressure (equal to 500 Pa for the example of 50°C saturation
temperature and corresponding pressure of 10500 Pa minus the pressure drop
of 10000 Pa for pressure surge at 2 W from Figure 3.18) will be below the vapor
pressure (3170 Pa at 25°C). In order to prevent nucleation, the evaporation

power is limited to 1.6 W. This power corresponds to a pressure drop equal to
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Figure 3.18 VIEW-CPL predicted pressure drop during start-up as a
function of power contributing to evaporation. Capillary limit for water is
calculated for a 0° contact angle. For contact angles greater than 0°, the
capillary limit is calculated using Eq. 2.1.

the difference in vapor pressure between the vapor and the liquid sides of the
evaporator. A transient model presented in Chapter 4 more fully describes the
system dynamics during the pressure surge.

Valves. Flight qualified valves and fittings, similar to the ones flown in the
CAPL flight experiment, were selected for charging and purging ports. The
valves were Nupro brand, 6.35-mm (1/4 in.) H series bellows sealed valves with
a tube extension on one end and a Cajon Brand VCR fitting attached to the other
end. VCR fittings with nickel gaskets were used instead of stainless steel
because the nickel is softer and the fittings are less likely to be damaged during

assembly. The valves were plugged during the shuttle flight to prevent the
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inadvertent release of water into the cabin. In-line liquid and vapor line valves
were desired for flow control during ground testing, however pressure drops
through the vapor side valve were high and space was limited. Since the liquid
and vapor line valves were not to be used during flight testing, they were not
included in the final design.
3.3 Electrical Components and Data Acquisition

VIEW-CPL requires electric power for the electronics and for the heaters
and fans. Throughout the electrical design effort, consultation was provided by
the Thermal Engineering Branch at Goddard Space Flight Center to draw upon
their extensive experience in managing Space Shuttle experiments. The Payload
General Support Computer (PGSC) and PGSC Interface Unit (PIU) for data
collection are auxiliary components that are powered through the VIEW-CPL
payload control box (PCB). The PIU is the data acquisition system connecting
to the PGSC via an RS232C cable and connectors. Together, the PIU and
PGSC collect and display temperature, pressure, power, and voltage data.
Figure 3.19 is a layout of the electrical connections made between VIEW-CPL
and auxiliary hardware. The shuttle supplies DC voltage, in the range of 28 to 32
VDC, to the PCB. The PCB then distributes power to the evaporator heaters,
reservoir temperature controllers, fans, and data acquisition system (PIU and
PGSC). A wiring diagram of the PCB and a layout of the wiring for electronics on
the CPL are presented in Appendix C. A 37-pin connector links the electronics

in the PCB to the electronics on the loop as shown in the two wiring diagrams.
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PCB — Payload Control Box CONNECTORS
PGSC - Payload General Support Computer 1 - 37 Pin, Fuse Plug Receptacle
PIU — PGSC Interface Unit 2 - Bendix MS3470L-14-12P,

Orbiter power connection
3 - Bendix MS3470L-14-12S,
CABLES PGSC power connection
a - Orbiter DC Power cable (P/N 10108-10082-07) 4 - 37 Pin, PCB to Loop connection
b - PGSC Power cable (P/N SED33103334-311) 5 - 25 Pin, PIU/DATA Connection
c - VIEW-CPL PIU/DATA cable 6 - 25 Pin, PIU/DATA Connection on PIU
d - RS232C Data cable (P/N SED33103335-305) 7 - RS232C, Data Connection on PIU
8 - RS232C, Data Connection on PGSC
9 - PGSC power connection

Figure 3.19 VIEW-CPL electrical layout with auxiliary equipment
connections.

Figure 3.20 is a schematic showing the location of the heaters, fans, temperature
sensors, thermostats, thermoelectric cooling module, and pressure transducers
on the CPL hardware.
3.3.1 Electronic control box and power distribution

In the shuttle, VIEW-CPL connects to either the Middeck Utility Panel
(MUP) or the Middeck ceiling outlet for 28 to 32 VDC power with a maximum 10
Arating. The cables for carrying the power to the experiment are supplied by the
Johnson Space Center (JSC). For ground testing, a 6 Amp-28VDC power supply

was used.
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The controls of the CPL are contained in the payload control box (PCB).
The PCBisa20.3cm x 15.2cm x 8.9 cm deep (8 in. X 6 in. x 3.5 in.) aluminum
chassis. The box was anodized to make it non-conductive and to protect both the
experiment operator and the electronics inside. Figure 3.21 shows the layout of
the switches on the PCB. From the PCB, the reservoir temperature controllers
are activated; switches controlling the power to the evaporator heaters and
switches for turning on the fans are accessible. Details on the electrical design
for distributing power to the experiment are described in the following paragraphs.

Switches. All commands to VIEW-CPL are issued through manual
switches. Locking toggle switches are used to turn on the temperature
controllers, heater, and cooling fans. The locking feature of the toggle switches
prevents inadvertent switching while in orbit due to the increased possibility of

bumping into the experiment in the microgravity environment.

LOCKING TOGGLE SWITCH (15 TYP.)

MAIN POWER 5vDC TEC —
ON ON ON
LED (12 TYP.)\ (o) o} o é
OFF OFF OFF m
\LINE HEATERS (3W) EVAPORATOR HEATERS E
o} o} Lo} o} o g
LH1-LIQUID ON LH2-VAPOR ON  MH1-40W ON  MH2-25W ON  MH3-10W ON
7 — OFF OFF OFF OFF OFF [ [—
O RESERVOIR HEATERS FAN1 FAN2 FAN3
e © o o} (o} o} —
z ON ON ON ON ON
e} SHUTTLE POWER
:
e OFF OFF OFF OFF OFF -
% TC1-20W TC2-5W SPARE LINE HEATERS
(o]
8 —
z LH3-LIQUID ON  LH4-VAPOR ON
g 1 PGSC POWER
™ OFF OFF —

DIMENSIONS: 15.2 cm X 20.3 cm X 8.9 cm DEEP (6in X 8in X 3.51in)
Figure 3.21 VIEW-CPL payload control box (PCB) switch layout.
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LEDs. Each switch has an associated light-emitting diode (LED) to
indicate when power is applied to the electronic components. There are a total
of 15 LEDs and each uses 0.4 W when on.

Heaters. Electrical resistance heaters are located on both the reservoir
and evaporator. The heaters are thermofoil heaters with Kapton Insulation and
are glued to the evaporator and reservoir surfaces with epoxy (STYCAST
2850FT). To avoid heater burnout, the design watt density is less than 2.3
W/cm? (15 W/in?). A nominal supply voltage of 28 V (from the shuttle) was used
to size the heaters. Details on the heater selections are included in Appendix C.

The area available on the evaporator for attaching the heaters is 10.2-cm
long by 6.1-cm wide (4 in. x 2.4 in.) on which the three main heaters are installed.
The main heaters (MH1, MH2, MH3) are used to supply heat (hominally 40, 25,
and 10 W, respectively) to the evaporator. The three-heater arrangementis used
to provide a wide range of power (10, 25, 35, 40, 50, 65, and 75 W) under the
control of on/off switches.

The reservoir heaters are connected to temperature controllers to maintain
the temperature of the reservoir at the desired set point. The heaters are
attached to the outside of the cylindrical surface of the reservoir housing and are
located directly adjacent to the portion of the internal wick with vapor venting
grooves.

In addition to the evaporator and reservoir heaters, two (prime and

backup) 3 W heaters are attached to both the liquid and vapor return lines. The
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two liquid-line heaters are mounted on the evaporator inlet line, and the two
vapor-line heaters are attached to the evaporator exit line using epoxy and heat-
shrink plastic. The vapor-line heaters were added to mitigate start-up difficulties
in micro-gravity; they are used to help displace liquid from the evaporator vapor
plenum and the vapor line if the evaporator heater power is not sufficient to start
the loop. The liquid-line heaters were also added as a precautionary action to
ensure the VIEW-CPL could be deprimed. The liquid-line heaters are available
to intentionally nucleate on the liquid side of the wick by reducing the subcooling.

Temperature controllers. On/off temperature controllers are used to

control the reservoir heaters [Minco Products, 1994]. The controllers were
chosen because they operate with a DC supply voltage in the range of 8 VDC to
32 VDC, which matches the voltage supplied by the shuttle. The controller uses
special heaters to sense the heater temperature by measuring the heater
resistance; thus, it incorporates the sensing function and the heater in one
component. The controller properties are detailed in Appendix C.

The controller set points were calibrated using a digital thermocouple
thermometer and a type T thermocouple attached to the reservoir. The reservoir
temperature controllers were set to maintain the temperature of the reservoir at
50°C by cycling the heater power on as temperature decreased below 50°C and
cycling power off when temperatures above 50°C were sensed. The set-point

was adjusted for both controllers by adjusting the set-point screw until the heaters
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were cycling on and off when the reservoir was at 50°C. The set-point was not
varied during the on-orbit testing.

Fans. Fans are used to cool the condenser and liquid line. In accordance
with shuttle requirements for Middeck experiments, the fans have brushless
motors. The Lexan shroud, wire fan guards, and screens are used to make the
fans inaccessible during operation for safety. Fan curves are presented in
Section 3.2.2.

Thermoelectric module. Athermoelectric cooler (TEC) module is included

to reduce the cool-down time of the evaporator. The TEC module is a semi-
conductor chip that has good thermoelectric properties and a low thermal
conductivity. In operation, one side of the chip gets hot and the other gets cold.
By placing the chip in the right location, it is possible to pump energy out of the
evaporator body, when needed, by turning on the TEC module. The TEC
operates at 5 VDC and draws approximately 15 W while cooling at 5 W. Thus,
the heat rejection is 20 W and the efficiency is 33%. These values are nominal
values; the actual performance depends on the temperature of the module.

The TEC module was assembled between the evaporator and a finned
heat sink. Aninsulating spacer was placed between the heat sink and evaporator
to prevent the TEC from being crushed during installation. Thus, the only contact
between the heat sink and the evaporator is the bolts and TEC.

Relay. A hermetically sealed relay is used to make sure that neither the

high power reservoir (RH1) heater nor the thermoelectric cooler (TEC) can be
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activated when the 40 W (MH1) evaporator heater is on. The relay is normally
closed in the RH1 and TEC circuits, but opens when the MH1 switch is toggled
on. The purpose of the relay was to ensure that maximum power consumption of
VIEW-CPL was limited to 190 W.

Power supplies. Two DC/DC converters were necessary to supply

regulated power to certain electronic components. The converters take 28 to 32
VDC and output £15 VDC and/or 5 VDC.

Summary of power requirements. During the design phase, the VIEW-

CPL power requirements were estimated for a supply voltage of 28 V. In reality,
the shuttle power supply during operations ranged from 24 to 32 V with a mean
value of 29 V. However, this information was not available until after the mission.
Based on previous experimenters recommendations, the power consumption was
measured for 30 V and is summarized in Table 3.13. The measured power
values in Table 3.13 were taken on ground using a digital multimeter with
sensitivity of 1 uV, 1 nA, and 1 mQ for a 0.011 % basic accuracy. The multimeter
was used to check the current draw of the VIEW-CPL components. The power
consumed by each component was calculated by multiplying the voltage read
from the VIEW-CPL data acquisition system (30 VDC) and the current measured
from the multimeter.

During non-testing segments (stand-by periods), a minimal amount of
power is required (11 W) to maintain the reservoir temperature above ambient

conditions using the 5 W heater. In order to monitor the reservoir temperature,
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Table 3.13 Power distribution for VIEW-CPL with 30 VDC power supply.

(MAIN PWR, 5VDC, TC2)

Switch Components Powered 30 VvDC Measured
Design Power (W)
Value (W)
MAIN PWR | LED (2 kQ, 30V) 0.5 0.4
5vDC Power Supply 1 (PS1) 80% efficient: 4.2 4.0
e LED
* Panel meter (3mA, 5V)
» AD590 (Qty 11, 15V, 13kQ)
» Absolute Pressure Trans.
« Differential Pressure Trans.
 Pull-up Resistor (600Q, 5V)
PIU PIU 5 4.7
TEC Power Supply 2 (PS 2) 80% efficient: 19.3 24.6
« LED
* TEC (3A, 5V)
FANL, 3 LEDs, 3 FANs 12.6 12.8
FANZ2,
FAN3
MH1 LED, MH1 (19.4Q), 30V) 46.8 47.0
MH2 LED, MH2 (30.5Q), 30V) 30.0 29.2
MH3 LED, MH3 (83.5Q), 30V) 11.2 11.0
TC1 LED, RH1 (39Q, 30V), TC1 23.6 22.7
TC2 LED, RH2 (156Q, 30V), TC2 6.3 5.5
LH1, LH2, | 4LED,4LH 15.2 14.8
LH3, LH4
- PGSC (NASA JSC supplied equipment) 40 NA
- Video Camcorder (NASA JSC equipment) 15 NA
Total Power of VIEW-CPL component 174.7 176.7
Total Power including SSP equipment 229.7 231.7
Maximum Power during testing 186.8 184.4
(using relay to remove power from TC1 and
TEC circuits) including JSC equipment
Stand-by power 11.0 9.9
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the temperature panel meter is also powered during the stand-by periods,
therefore requiring that power supply PS1 be powered on. Power is not required
during launch and landing.
3.3.2 Circuit protection

The electronics were mounted inside the PCB chassis, either directly on
the chassis or on a circuit board that was secured to the chassis with screws. A
card edge connector was used to make connections from the circuit board to the
appropriate circuits. The electronics were assembled by technicians at Goddard
Space Flight Center. In addition to good workmanship, other modes of ensuring
safe circuits included proper material selection, overload protection, EMI filters,
and grounding.

Conformal coating. To eliminate offgassing from the electronics,

components were sealed with a coat of urethane (Uralane brand) that conforms
to the shape of the components. The coating also protects the circuitry from
damage if contacted with water or other fluids that may be floating in the shuttle
Middeck.

Euses. To protect the shuttle, all circuits are wired with very fast-acting
fuses. The fuses were packaged in a connector, potted with urethane, and
covered with copper tape to reduce EMI/EMC issues. Spare fuse assemblies
were flown with the experiment but were not used.

Fuses used in micro-gravity are derated, meaning that the fuse will blow

at a current lower than the rated amperage, due to the lack of natural convection.
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While circulating fans inside the Middeck provide some convection, electronics
enclosed in boxes experience minimal convection. Derating guidelines [NASA
GSFC, 1995] were followed when choosing proper fuse sizes for VIEW-CPL.

Thermal switches. Temperature activated switches (Thermik -05 series)

designed to open at 60+5°C and reset automatically at 45°C were used. The
switches open circuits to remove power from heaters if the temperature of the
CPL surfaces exceeds 60°C. Two thermal switches are used in series with all
heaters on the evaporator, reservoir, and return lines for redundancy in the event
that one switch fails.

In order to verify that the switches function properly, each switch was
tested by immersion in a water bath to determine the actual open and re-close
set points. A continuity meter was connected in series with the thermal switches
to observe when the switch opened or closed. All of the thermostats chosen for
use in VIEW-CPL opened within the range of 59°C to 62°C and reset at
temperatures above 38°C. Details on the thermostat selection and other
verification procedures are included in Appendix C.

EMI filters and capacitors. Filters and capacitors were used in the VIEW-

CPL electronics to reduce electromagnetic interference and susceptibility. In-line
EMI filters (RF Interonics model 13619/RF5005-2) were attached to the +28 VDC
power and return lines, and then grounded to the chassis. EMI filters (Interpoint
model FM-461) were placed in both power supply circuits along with 0.1 pF

capacitors attaching the 5 VDC and return lines to the chassis. In order to reduce
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both EMI and RF interference, resin sealed EMI/RFI suppression filters (Spectrun
Control Inc. P/N 51-717-001) were attached across the +28V DC supply and
return lines (for both the shuttle input power and the PGSC power) and grounded
to the chassis. These capacitors were placed on the lines immediately as they
entered the control box and were essential to eliminating the common mode
noise resulting from the RF susceptibility observed during initial EMI testing of
VIEW-CPL.

Grounding. The EMI filters located inside the VIEW-CPL control box
require a high frequency chassis ground in order to eliminate common mode
noise. Since the experiment is mounted to the shuttle with Velcro, a ground strap
is used to ground VIEW-CPL to the shuttle. A solid copper chassis ground also
exists inside the VIEW-CPL control box that ties directly to the ground wire in the
shuttle DC power cable. However, a braided ground strap was found to be
required because the internal chassis ground is inductive and does not provide
an adequate ground at high frequencies. The ground strap has a copper alligator
clip attached to each end of a tinned copper braided strap. One clip attaches to
a toggle switch or fuse plug screw while the other end attaches to any metal
portion of the shuttle.

A 3.6 V Zener diode (Motorola part number 1N4739) was placed between
the power return and the signal return to tie the signal return to the same level as

the ground return.
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3.3.3 Data acquisition system

Pressure and temperature transducers are used to monitor the CPL
operation and to collect data useful for explaining CPL physics. Voltage and
power information are recorded to identify the CPL operating conditions. The
data were collected from the CPL using a data acquisition system connected to
a Payload and General Support Computer (PGSC). The PGSC stores data
received from the experiment through the PGSC Interface Unit (PIU) in a process
shown schematically in Figure 3.22. In addition to the numeric data collected with
the PIU, a shuttle video camcorder was focused on the evaporator during
operation to record all visual data through the Lexan plate of the evaporator.

AD590 (Analog Devices) solid state temperature transducers read the
temperature at various locations around the loop; the temperatures are constantly
displayed on the computer screen while the data acquisition system is operating.
The absolute system pressure and the differential pressure across the evaporator
are recorded using pressure transducers (Sensotec brand). Figure 3.20 shows
the location of the AD590 sensors and pressure transducers on the CPL.

UMAC-1050/PIU. The PIU is an analog-to-digital converter that takes the

EXPERIMENT DATA PGSC Interface Unit (P1U) Payload General Support
. Temperature . Collects signals Computer (PGSC
. Absolute . Sends data to PGSC . Displays Data
Pressure — —p . Write data to floppy
Differential
Pressure
Line voltage

Figure 3.22 PGSC and PIU functional process.
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analog signals from the VIEW-CPL and converts them into digital signals before
sending them to the PGSC. The data acquisition system uses a JMAC-1050
board (Cyber Research). The board was a flight-qualified spare for the HPP-2
experiment flown on STS-66 in November 1994, and was borrowed for VIEW-
CPL. The system is connected to the PGSC via a RS232C serial link. Table
3.14 lists the PIU channel numbers and instrumentation.

The analog-to-digital converter is15 bit (Azonix Corp., 1995) with an input
signal range of +10 V for a resolution of 20 V / 2™ bit, or 0.0006104 V/bit. An

uncertainty analysis and analysis of propagation of error from the transducers

Table 3.14 yMAC-1050 channel assignment.

Channel number Sensor
8and9 Bus Voltage Monitor
10 and 11 Heater Power

12 Absolute Pressure
13 Differential Pressure
14 AD590 Temperature Transducer, T1 - Reservoir line
15 AD590 Temperature Transducer, T2 - Condenser exit
16 AD590 Temperature Transducer, T3 - Condenser inlet
17 AD590 Temperature Transducer, T4 - Evaporator inlet
18 AD590 Temperature Transducer, T5 - Evaporator exit
19 AD590 Temperature Transducer, T6 - Evaporator block
20 AD590 Temperature Transducer, T7 - Subcooler exit
21 AD590 Temperature Transducer, T8 - Reservoir
22 AD590 Temperature Transducer, T9 - Condenser air
23 AD590 Temperature Transducer, T10 - Subcooler inlet
60 Board Temperature Sensor
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through the data acquisition board is discussed in Appendix E.

PGSC. The PGSC used during the shuttle flight was an IBM ThinkPad
755C laptop computer that was supplied by NASA Johnson Space Center. For
ground testing, a compatible laptop was used. The PGSC runs the VIEW-CPL
software.

Software. The data are collected using a program written in QuickBasic
that stored the data every 5 s to a binary file on a floppy disk. The program is
compiled with the yMAC-1050 library QB1050.QLB [Azonix Corp, 1995] into a
stand-alone executable that runs directly from the floppy disk under MS-DOS.
The software reads the PIU channels for voltage output from the experiment
transducers, converts the voltages to physical quantities, and prints the data to
the screen and/or a binary data file. Options available include listing the data,
plotting a time series of the data, or displaying the data on a CPL schematic in
appropriate locations. Appendix H contains a listing of pseudo-code, the
QuickBasic code and a software user’'s manual. Post-testing data manipulation
programs were written in QuickBasic to read the binary file and write to ASCII
data files for transfer into spreadsheets.

Video camcorder. The video camcorder (Canon L1 Hi-8mm) was supplied

by NASA Johnson Space Center (JSC). In addition to the camcorder, a Video
Interface Unit (VIU) and a VIU cable were required so that the camcorder could
operate using the Middeck 28 VDC power supply and an AC powered fluorescent

light was provided to illuminate the VIEW-CPL evaporator during video recording.
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During operation, the camcorder and light were mounted to the VIEW-CPL
shroud using a JSC supplied multi-use bracket (mounting arm). Fifteen Hi-8mm
video tapes were also supplied by JSC; each tape could hold up to 2 hours of
video.

For post-test analysis, the bubble measurements are taken from single
images obtained from the video tapes (Appendix F). The zoom and camcorder
distance from the evaporator cause the size of the picture to vary, so a method
of scaling was developed to ensure the measurements between different
photographs are comparable. For each image, the length between the extreme
edge of the evaporator inlet hole and the vapor plug was compared to the actual
length of 10.80 £ .05 cm. The ratio of the measured length to the actual length
is the scaling factor for the subsequent measurements necessary to find the

volume of the bubble.

AD590 temperature sensors. The temperature measurements in key
locations on the CPL are made with solid-state AD590K temperature transducers
(Analog Devices). Appendix G details the operation and calibration of the
transducers. The transducers are in series with a 13 kQ resistor powered with
15 V for a power draw of 0.017 W each. In addition to the 10 temperature data
collected with the PIU, a temperature panel meter mounted on the top of the
protective shroud constantly displays the temperature of the reservoir using a
single AD590 circuit with a 1 kQ resistor and a 2000 mV digital voltmeter (Acculux

model DP-652). This meter permits monitoring of the system temperature,
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without the PGSC, while 5 W is applied to the reservoir to maintain a primed
condition during stand-by periods.

Pressure transducers. The pressure transducers (Sensotec) are light

weight stainless steel transducers. Both transducers were powered with matched
inline-amplifiers to regulate the supply voltage. Table 3.15 lists the range and
accuracy of the transducers. An offset of -0.65 kPa was determined from

measured values using the differential pressure transducer.

Table 3.15 Manufacturer’s accuracy data for the pressure transducers.

Model | Transducer | Range Error
Type
MA Absolute 0to 172 kPa Accuracy £0.3% FS 0.5 kPa (+0.08 psi)
Pressure 0 to 25 psia Nonlinearity +0.2% FS | +0.3 kPa (x0.05 psi)
Hystersis £0.1% FS +0.2 kPa (£0.03 psi)
Non-repeatability: 0.2 kPa (+0.03 psi)
+0.1% FS
P-30-P | Differential -35 kPa to +35 kPa | Accuracy £0.3% FS 0.2 kPa (+0.03 psi)
Pressure -5to +5 psi Nonlinearity £0.2% FS | £0.1 kPa (£0.02 psi)
Hystersis £0.1% FS 0.1 kPa (+0.01 psi)
Non-repeatability: 0.1 kPa (x0.01 psi)
+0.1% FS

Voltage and power measurements. A voltage divider circuit, shown in

Figure 3.23 and built with precision resistors, was used to measure the voltage
input to the experiment. The supply voltage measured by the PIU was verified
using a multimeter (Fluke 77) and found to be accurate within 0.05 V.

The power displayed by the PGSC is a measurement of the power applied

to the evaporator and connecting lines through the film heaters and resistor
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Figure 3.23 Voltage divider circuit for monitoring 28 V bus.

heaters, respectively. A current shunt was used to measure the power drawn by
the heaters by measuring the voltage drop across a 0.1 Q resistor. The voltage
measurement, V,,,, was converted to a current measurement and then multiplied
by the measured supply voltage, V,,, to determine the power draw across the
heaters. The power measurement was compared to the design power (V,.*/R)
according to the measured heater resistance value with the results presented in
Table 3.16.

Table 3.16 Heater power measurements using the PIU compared to expected
values.

Heater Heater Measured Power? Design Power % Difference
resistance (W) (V,s2IR)
(Ohms) (W)
MH1 19.4 40.1 40.3 0.468%
MH2 30.5 25.5 25.7 0.660%
MH3 83.5 9.59 9.37 -2.40%

*Measured at 27.97 supply voltage using V... (V,/R)
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Voltage differences were observed in the recorded data each time
switches were changed in the experiment as it was operated in the shuttle. The
voltage changes proved useful for determining the sequence and timing of
switching events. When switches were toggled on or off, the voltage supply from
the shuttle would drop and rise, respectively, in a magnitude proportional to the
power consumed by the component being controlled. Appendix | provides details
on the voltage differences and the implication on the VIEW-CPL results.

3.4  Johnson Space Center (JSC) Supplied Equipment

Some equipment required to operate VIEW-CPL was supplied by JSC.
A detailed list of the equipment, dimensions, and weight is found in the “Orbiter
Crew Compartment Interface Control Annex”, NSTS 21343 ICA [NASA JSC,
1996b] and is summarized in Table 3.17. Dedicated equipmentindicates that the
equipment is flown specifically for use with VIEW-CPL, while shared equipment
is flown for more than one purpose and is not only used for VIEW-CPL.

3.5  System Preparation Procedures

The flowchart for VIEW-CPL processing is presented in Figure 3.24. The
mechanical (1) and electrical (2) fabrication and assembly efforts were started in
parallel. Final integration (4) of the electronics occurred after the loop was
completely processed and charged (3). Verification testing (5) included initial
start-up tests, EMI/EMC testing, acoustic noise measurement, off-gas testing,

and external temperature measurements. Two astronaut training sessions (6)
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Table 3.17 Equipment supplied by NASA Johnson Space Center for VIEW-CPL

use on STS-80.

Part number Description - use Quantity
Dedicated Equipment
10108-10082-07 DC power cable - 7.3 m (24 ft) long 1
SED33103334-311 PGSC DC power cable - 7.3 m (24 ft) long 1
SED33103335-305 PGSC RS232C data cable 1
SED33104076-302 Multiuse bracket assy - for mounting camcorder 2
and light
SED33103757-303 Hi-8mm cassette assy - video cassettes for 15
recording observations
Shared Equipment
SED33104331-xxX Cannon L-1 camcorder 1
SED33104774 Camcorder lens, 3X 1
SED39122893-301 Camcorder power/video cable 1
SED39122650-303 VIU-CM - Video Interface Unit for down linking 1
video to customer support room at JSC during flight
SED39122650-301 VIU to shuttle cable 1
SED39126968-305 PGSC 755C computer assy 1
SED39123751-302 LCD monitor - for watching video without having to 1
use the camcorder eyepiece
SED39122260-315 LCD monitor cable 1
SED33103311-301 Fluorescent light - for illuminating the VIEW-CPL 1
evaporator during video recording

were held at JSC. The experiment was sent to JSC for a Bench Review (7),

which is a final lookover of the experiment by astronauts and JSC safety

personnel, before JSC sent the experiment to KSC for loading into the shuttle.

Helium leak check and proof pressure test.

A helium leak test was

performed on the VIEW-CPL prior to proof pressure testing. A helium detector
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Figure 3.24 VIEW-CPL manufacturing and verification processing flow
diagram.

(VEECO brand, model MS-170) was connected to the loop and used to evacuate
it. The detector sensitivity was set to detect helium leak rates above 8x10® cc/s
concentrations. Helium was blown over all joints in the loop. No leaks were
detected.

A proof pressure test was performed by filling the loop with helium to 34
psia (note for future proof testing: dry nitrogen should be used because helium
is difficult to evacuate). Pressure was maintained for 10 minutes without a
change in the pressure gauge measurement. The helium leak check was

repeated after pressure testing to confirm that there was no propagation of leak
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paths. Afterwards, the loop was evacuated for a minimum of 12 hours and
charged with deionized water.

Charging. VIEW-CPL was weighed before and after charging in order to
ensure that the correct amount of water was charged into the loop. A turbo
vacuum-pump was connected to the loop (through the liquid line, vapor line, and
reservoir valves) and the lines connecting to the charge station. The system was
evacuated for a minimum of 12 hours prior to charging. Figure 3.25 is a
schematic of the charge station set-up.

Deionized water (16 MQ resistivity) was refluxed (boiled and condensed)

u :_.p VENT
| | —>
BURET | 0

N 0

] 0 DEIONIZED
u WATER
] HOT PLATE

|_—_

Hi DRAIN LIQUID

LINE
PORT

% VIEW-CPL VAPOR
RESERVOIR LINE

PORT ;Q PORT

TO TURBO
PUMP
Figure 3.25 Schematic of water charging station for VIEW-CPL.
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in a flask to remove air. The refluxed water was evaporated and condensed in
the charge station lines and burette. The loop valves were opened to allow water
to flow into the loop. Volumetric control was maintained at the burette by keeping
a meniscus in the graduated portion. A total of 240 g of water was charged to
VIEW-CPL.

Shake down testing. The initial pressure prime of VIEW-CPL was

performed at GSFC. At this time, the reservoir temperature controller set-points
were adjusted to 50°C. As expected, liquid filled the evaporator. The evaporator
heaters were then turned on and vapor filled the vapor grooves, confirming that
the water CPL would operate. A series of pre-flight tests were performed at the

University of Maryland. Results of these tests are further discussed in Chapter 5.
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4.0 VIEW-CPL TEST PLAN AND ANALYSIS

The VIEW-CPL testing occurred in three different phases: (1) pre-launch
ground testing, (2) flight testing, and (3) post-flight ground testing. The ground
testing was performed at the University of Maryland, with the exception of crew
training at Johnson Space Flight Center. Flight testing of VIEW-CPL was
performed by two astronauts, Dr. Tamara Jernigan and Commander Kent
Rominger, in the Space Shuttle Orbiter Middeck during the STS-80 mission
(November 19 through December 7, 1996). In order to achieve consistency
between different test operators, detailed test plans were written with appropriate
follow-up actions depending on the operator’s interpretation of the real-time test
results and the objectives of the test.

Since shuttle planning begins years before launches actually occur, the
planning for VIEW-CPL operations was required (August 1995) before any
hardware fabrication began (April 1996). In order to assist in scheduling
astronaut time for flight testing, estimates of time required for VIEW-CPL testing
were analyzed for several operating conditions. These analyses were described

in Chapter 3 and used to design VIEW-CPL. They included:

. Determination of the pressure prime duration

. Time requirements for sensible heating of the evaporator prior to
nucleation

. Pressure drop experienced during start-up (known as pressure
surge)
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. Time to recovery from reservoir temperature drop (known as cold-
shock) after start-up

. Cool-down requirements.
Refinement of these analyses and an additional analysis on bubble life cycles
were performed after the ground and flight test data were reviewed. In order to
enhance understanding, individual segments of the testing process were modeled
separately due to the complex characteristics observed in testing.
4.1 Payload Commands (Astronaut Instructions)

Astronautinvolvementin VIEW-CPL activities included the following tasks:
(1) remove the experiment from the locker and set it up in the Middeck area, (2)
perform testing sequence and record data, and (3) stow experiment in the locker
after testing is complete. Instructions for performing all of VIEW-CPL activities
were listed in the Payload Operations Checklist [JSC, 1996c] for STS-80. The
documentation included instructions for test preparation, operation, and
conclusion. Tables 4.1 and 4.2 summarize the procedures to prepare for and
conclude testing. Table 4.3 summarizes the tests, listing test objectives and
commands to be exercised by the astronauts. The same tests were repeated
during ground testing.
4.2 Test Plan Objectives and Expected Observations During Testing

Ground testing [Cullimore, 1993; Ku et al., 1993; Kolos et al., 1996] has
indicated that a CPL system can operate, at least temporarily, with vapor bubbles

on the liquid side of the wick. Due to gravity, these bubbles tend to consolidate
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Table 4.1 Procedures for preparing VIEW-CPL testing.

Title Objective Command Summary
ASSEMBLY Set-up payload in Remove CPL and data acquisition system from
Middeck Area for locker and attach to Middeck area with Velcro.
Testing Attach fuse plug, power cables, and data cables.
Attach video camcorder.
TEST Begin collecting data Attach PGSC, insert floppy disk and activate data
PREPAR- (video and acquisition system. Begin recording video of
ATION instruments) from evaporator area.
payload
PRESSURE Fill the evaporator, Turn on temperature controllers with a total of 25
PRIME condenser and W heater power. Wait 45 minutes.
transport lines with
liquid by elevating the
reservoir temperature

Table 4.2 Procedures for concluding VIEW-CPL testing.

Title Objective Command Summary
PARTIAL Stop collecting data Deactivate data acquisition system and
PWRDN or after testing is finished | camcorder. Turn off all power to experiment.
TEMPORARY | or if power is
PWRDN interrupted
STANDBY Prepare experiment Turn off power to the experiment. Turn off PGSC
MODE for non-test periods by | power and remove if needed elsewhere. Turn on
minimizing power the 5 W reservoir temperature controller and the
while maintaining reservoir temperature meter.
reservoir temperature
above the rest of the
loop (pressure
priming)
COOL- Cool the evaporator Turn on fans, thermoelectric cooler, and 20 W +
DOWN and pressure prime 5 W reservoir temperature controller. Wait 30
(30 minutes) to minutes.
prepare for the next
test
STOWAGE Repack the Stop collecting data and disconnect the PGSC
experiment in the and data acquisition system. Remove the
locker for landing. camcorder. Disconnect power cables and fuse
plug. Stow the experiment in the locker.
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Table 4.3 VIEW-CPL test objectives and procedures (continued on next page).

TESTING Objective Command Summary

TEST 1S40 To start the CPL with | Complete TEST PREPARATION. Pressure prime

and the specified amount | with 20 W temperature controller for 5 minutes.

TEST S10 of power and observe | Turn on heater power according to Test Plan

(S25, S35, the CPL operations Matrix. Note observations and chose next step

S40, S50, with a vapor bubble (Wait 10 minutes, go to HANDLING VAPOR IN

S65, S75) in the core EVAP CORE, or go to NO VAPOR IN

EVAPORATOR) according to observations. Power
off and go to COOL-DOWN or PARTIAL PWRDN.

TEST PV- To observe the effect | Complete TEST PREPARATION. Pressure prime

LOW of decreasing with 20 W temperature controller for 5 minutes.
evaporator power. Turn on 35 W evaporator heater power. Note

observations and chose next step according to
observations. Decrease power to 25 W and note
observations. Decrease power to 10 W and note
observations. Power off and go to PARTIAL
PWRDN.

TEST PV- To observe the effect | Complete TEST PREPARATION. Pressure prime

GRAD of gradual power with 20 W temperature controller for 5 minutes.
variations on the Turn on 35 W evaporator heater power. Note
evaporator observations and chose next step according to

observations. Decrease power to 25 W. Increase
power to 40 W. Increase power to 50 W. Increase
power to 65 W. Power off and go to PARTIAL
PWRDN.

TEST PV- To observe the effect | Complete TEST PREPARATION. Pressure prime

JUMP of drastic power with 20 W temperature controller for 5 minutes.
variations on the Turn on 50 W evaporator heater power. Note
evaporator observations and chose next step according to

observations. Decrease power to 25 W wait 10
minutes. Power off and go to PARTIAL PWRDN.

TEST SS-25 To maintain Complete TEST PREPARATION. Pressure prime
evaporator power at with 20 W temperature controller for 5 minutes.

25 W until steady- Turn on 25 W evaporator heater power. Note

state is reached. observations and chose next step according to
observations. Maintain power for 120 minutes or
until evaporator temperature reaches 60°C. Power
off and go to PARTIAL PWRDN.

TEST SC To observe the effect | Complete TEST PREPARATION. Pressure prime
of reduced with 20 W temperature controller for 5 minutes.
subcooling Turn on 65 W evaporator heater power. Decrease

power to 25 W. Note observations and chose next
step according to observations. Increase power to
35 W. Turn off subcooler fan. Power off and go to
PARTIAL PWRDN.
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Table 4.3 VIEW-CPL test objectives and procedures (continued from previous

page).
TESTING Objective Command Summary
TEST CV To observe the effect | Complete TEST PREPARATION. Pressure prime
of decreased heat with 20 W temperature controller for 5 minutes.
transfer coefficient at | Turn on 25 W evaporator heater power. Turn off
the condenser one condenser fan. Wait 10 minutes and turn off
the other condenser fan. Wait 10 minutes or until
there is no liquid in the evaporator core. Power off
and go to PARTIAL PWRDN.
HANDLING To modify test Turn off evaporator heaters and turn on 20 W
VAPOR IN procedure to handle reservoir temperature controller to pressure prime
EVAP CORE | avapor bubble inthe | the system. Turn on 25 W evaporator heater when
core liquid fills one-third of the evaporator core. Log
observations and adjust evaporator heater power
as instructed. (This procedure is performed only if
a vapor bubble in the core is larger than 1 inch and
one of the following tests are in progress 1S40,
S10, S25, S35, S40, S50, S65, or S75)
NO VAPOR To modify test Turn on vapor line heater to assist with clearing the
IN procedure if the vapor line and vapor grooves. Turn on all
EVAPORAT evaporator will not evaporator heaters if vapor line heater does not
OR start pumping and clear grooves of liquid.
liquid will not boil in
the vapor plenum

and localize. A key objective of VIEW-CPL was to determine if the bubbles cause
more extensive operational problems in micro-gravity as compared to ground
testing experience. Specifically, it is of significance to determine if the presence
of small bubbles cause rapid wick failure or if the wick tends to be bubble tolerant
as found in ground testing.

Typical CPL functionality tests were performed with VIEW-CPL. The test
sequence included: (1) several start-up procedures, (2) high and low power limit
investigation, (3) incremental and sudden power variations, (4) extended steady-
state testing, and (5) subcooling variation. The start-up testing was designed to
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determine successful procedures for starting the CPL in a micro-gravity
environment. The power variation tests are used to simulate varying cooling
requirements of the loop. The high and low power limits investigate the limiting
factors in CPL operation. Extended steady-state testing is to investigate the
reliability of a CPL system to supply cooling for extended periods of time.
Subcooling variation is intended to investigate the restrictions placed on the loop
due to the small slope of the vapor pressure curve of water. Test procedures,
including instructions for intentionally creating conditions favorable for bubble
growth on the liquid side of the wick (in the evaporator core), were included in the
test sequence to visually record the effect of bubbles on the system performance.

The typical sequence of VIEW-CPL operation was as follows: (1) pressure
priming, (2) start-up, (3) steady-state operation, (4) deprime and (5) re-prime.
The objectives are to provide a comprehensive analysis of all five modes.

Pressure priming.  As previously described in Section 2.2.1, the purpose

of a pressure prime is to fill the CPL with liquid and to collapse vapor bubbles.
Reservoir heaters are used to raise the reservoir pressure, forcing liquid to flow
from the reservoir to the CPL. After the pressure begins to rise, vapor bubbles
in the CPL begin to shrink in size as condensation occurs on surfaces adjacent
to the bubble. The process occurs slowly due to the large latent heat and the
small temperature difference available to drive the heat. A thermoelectric cooler
on the evaporator assists in rejecting heat from the loop, as do the subcooler and

condenser fans. When the pressure prime is complete, the loop is filled with
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liquid. A detailed analysis of the pressure prime process is presented in Section
4.3.

One of the two different pressure prime procedures listed in Table 4.4
were used to prepare the CPL for testing, depending upon the state of the CPL.
The times in Table 4.4 were estimated, from experience, as the time to complete
the pressure prime. The analysis described in Section 4.3 predicts that the
pressure prime could be completed within four minutes in the absence of NCG,
which would indicate that pressure prime periods of thirty and forty-five minutes
are conservative. The main difference between the two types of pressure prime
is the time duration. Selection of the time duration used depended upon the
reservoir temperature and the test plan. A regular pressure prime (45 minutes)
was performed if the reservoir temperature dropped below 30°C. The cool-down
pressure prime (30 minutes) was only used if another test was to be performed
immediately following the preceding test and time limitations did not allow the

astronaut to follow the regular pressure prime procedure.

Table 4.4 Description of pressure prime procedures used on the VIEW-CPL
experiment.

Type Purpose Description

Regular To fill the loop with liquid. Performed | 25 W reservoir heaters and

Pressure after an extended unpowered period evaporator thermoelectric cooler

Prime (i.e. no standby heater used to powered for 45 minutes. Both
maintain reservoir above 30°C ) condenser and subcooler fans active.

Cool-down | Fills loop with liquid while cooling the 25 W reservoir heaters and

Pressure evaporator. Performed at the end of a | evaporator thermoelectric cooler

Prime test in preparation for the next test. powered for 30 minutes. Both

condenser and subcooler fans active.
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Start-up. Start-up procedures were performed after a pressure prime. The
first part of the start-up involved a warm-up period to increase the reservoir
temperature to 40°C (required for proper testing conditions). Increasing the
reservoir temperature to 40°C provided a consistent starting point for tests.
Additionally, the fluid properties of water below 40°C are not as suitable for VIEW-
CPL testing since the shape of the vapor pressure curve increases subcooling
requirements at low temperature (see Section 2.1.1). During the reservoir warm-
up period, 25 W is applied to the reservoir heaters for 5 minutes while the
condenser and subcooler fans are active.

The start-up period is defined as the time from when the evaporator heater
power is first turned on to the time when the vapor line is cleared of liquid and the
vapor front is established in the condenser. The length and characteristics of the
start-up period are dependent upon the start-up power and can be described in
terms of the three segments listed in Table 4.5.

Steady-state operation. Steady-state CPL operation is characterized by

the ability of the evaporator to maintain the load temperature at the reservoir set
point. The existence of a vapor bubble during steady-state operations depends
on the local energy balance within the evaporator. If the bubble size is constant,
steady-state operations can still occur with a bubble in the evaporator core,
although changes to the energy input to the evaporator are more likely to cause

deprime when a bubble is present.
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Table 4.5 Segments of the start-up period in VIEW-CPL testing.

Description Observations

1 | Sensible heating: the time required | ¢ Increasing evaporator temperature
to bring the evaporator up to * No change in visual observations, or small
saturation temperature. (Details in increases in the size of pre-existing gas
Section 4.4.1) bubbles

2 | Evaporation and bubble growth: « Boiling begins in the vapor grooves
energy used for evaporation and  Pre-existing vapor bubbles in the evaporator
critical bubble radii are established core expand rapidly through surface
to support boiling evaporation

3 | Stabilization: the period for » Decrease in the rate of temperature increase
displacing liquid from the loop to the for evaporator body.
reservoir as vapor fills the vapor » Sharp increase in the vapor line temperature.
plenum and vapor line. Stabilize « Visually, the liquid inside the vapor plenum
evaporator temperature. Heater boils away.
power causes bubble growth » Pre-existing vapor bubbles in the evaporator
(Details in Section 4.4.2) core continue to expand and/or new bubbles in

the core are formed
» Decreasing reservoir temperature

Deprime and bubble life cycle. Under steady-state operations, a bubble

is not expected to exist in the core of a CPL evaporator. Liquid return line
heaters were included in VIEW-CPL to enable bubble generation inside the
evaporator core so that the effect of a bubble on stable CPL operation could be
observed. If bubble growth leads to blockage of liquid flow into the evaporator,
a sudden increase in the rate of evaporator temperature rise (indicating a
deprime) will be observed due to sensible heating of the evaporator body. During
the testing of VIEW-CPL, intentional deprimes were caused.

Re-priming the evaporator normally requires removal of the evaporator
load to allow the evaporator to re-wet. However, an oscillatory condition was

observed in the VIEW-CPL testing that demonstrated a partial recovery of the
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evaporator while still under load. Section 4.6.3 is devoted to explaining a theory
for the observed phenomena.
4.3  Analysis of Pressure Prime

A pressure prime model was developed to investigate the energy transfer
mechanisms in a CPL pressure prime and to predict the time required to collapse
all the vapor in the CPL. A thermal analysis of the fluid within the CPL was
performed including heat input to the fluid inside the reservoir and heat rejection
from the loop as the vapor bubble condenses. Figure 4.1 shows the control
volumes used for the analysis.

The reservoir control volume (denoted CV1) contains both liquid and vapor
phases at all times. CV1 has constant volume but variable mass. The fluid
phase leaving the reservoir is always liquid since the reservoir wick acts as a
vapor barrier. The enthalpy, h, , of the liquid exiting the reservoir is taken as the
saturated liquid value associated with the reservoir pressure. This assumes that
the fluid in the reservoir is perfectly mixed. In reality, there may be temperature
gradients in the liquid and the assumption of perfect mixing is a simplifying
approximation.

The second control volume (CV2) is the liquid space inside the loop. The
volume of CV2 expands to accommodate the liquid flowing from the reservaoir,
while the vapor space (CV3) contracts. The control volume CV2 is variable in
mass and volume, but the vapor quality is equal to zero. The control volume

CV3is variable in volume and quality, but the mass is constant and equal to the
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Figure 4.1 Control volumes for the pressure prime model (see Figure 1.1
for details on loop components).

mass of the vapor occupying the initial volume of CV3. This control volume
choice led to simplifications in defining the momentum balance of fluid flow in
CV2 and the resulting work that the fluid exerts on CV3.

Unsteady energy balances were written on the control volumes in the form

du.,
dt

= Qg Wy, +Y_mh-Y mh, (4.1)

where contributions from kinetic and potential energy have been neglected. To

relate the flow rate of liquid from the reservoir to the pressure difference between
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the reservoir and loop, the momentum equation

amvy F . +F (4.2)
dt X,V X,p

is used, where F, , represents the viscous force for fully-developed, laminar flow

In a pipe, F,, =tnDL = pf— —
p p X,V X P D 4

D2v?/2 , with the friction factor for laminar flow,
f = 64/Re, and F,, represents the pressure forces, F,, = APA, acting on the
control volume. During a pressure prime of VIEW-CPL, the flow regime in the
transport lines is laminar and the inertial term in the momentum balance is small
compared to the pressure and viscous forces. Therefore Eq. 4.2 reduces to
@ ) 7. 128 uL; @

o = oDt o (4.3)

The flow resistance, c{nj 128“L", is determined from the sum of the resistances

i=1 ‘_')2'|1D,,4

in the transport lines of the path that the fluid takes as it leaves the reservoir.

Table 4.6 summarizes the effective flow resistance for the two parallel paths, one
through the vapor line and the other through the liquid line. The wick flow
resistance is not added to the overall resistance because this is expected to be
the point of no flow since it has the largest resistance, meaning that the liquid will
flow through the vapor and liquid lines and bound a vapor space that has the wick
enclosed within it.

During the pressure prime, the flow starts from rest so there is a period of
time over which the core of the flow inside the lines and grooves must be

accelerated while the flow near the wall is restrained by friction [White, 1991].
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Table 4.6 Effective flow resistance in VIEW-CPL components.

For Laminar Flow Only.
. L/D Fluid Properties at 25°C.
Length Hydraullc including
VIEW-CPL Component Diameter , c-_128uL
(cm) (cm) minor o>riD*n
losses
<m?/kg-s>
Common Path
Reservoir line| 16.51 0.457 48.1 18.47
Tee (branch) 0 0.775 60 4.73
Common Reservoir Path Coonmn = 23.20 |
Path 1
Liquid line| 20.97 0.775 39.0 3.08
Evaporator inlet tube| 6.86 0.175 39.1 266.68
Evaporator inlet fitting (poly)| 2.54 0.635 4.0 0.57
Path 1 Total CpaThi = 270.33
Path 2
Liquid line| 3.81 0.775 64.9 5.12
Condenser tube| 5.00 2.36 2.14 0.01
Condenser (4 flow channels)| 12.70 0.613 20.72 0.83
Vapor Line| 39.37 0.775 74.82 5.90
Evaporator (6 vapor grooves)| 10.16 0.238 42.67 19.32
Path 2 Total CpaThz = 31.18
Effective Flow Resistance = ccoumon + 1/(1/Cpptrn +1/Cpptiz) 51.16
Evaporator (wick) 2546*

*Flow resistance in the evaporator is calculated using Darcy’s law (Eq. 2.7) for half the wick

White [1991] presents Szymanski's [1932] solution for the velocity profile of fluid
flow in along pipe with a sudden, uniform and constant pressure gradient applied
at time zero. From Szymanski’s velocity profile, a transient friction factor was

determined from

64/Re

f(t) =

1-32 exp| 42,15 (4.4)

1
1 d? |

I ™M8

n
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where A, are the roots of Bessel function J,and v, is the liquid viscosity. The
solution indicated that the velocity profile approached Poiseuille flow for t* =0.75,

where

*_" t
t _—rz (4.5)

For liquid water at 20°C, the velocity profiles across the flow area of the vapor
grooves, reservoir line, condenser grooves, and vapor line would approach the
Poiseuille paraboloid after 1.1, 3.9, 7.0, and 11.2 s, respectively. These times are
relatively short compared to the duration of the pressure prime. During the
transient, the frictional terms are larger than those listed in Table 4.6 which were
predicted for fully developed flow.

To check the assumptions of fully developed flow and no flow through the
wick, a sensitivity analysis was performed for the flow resistance term, c in Eq.
4.3. The sensitivity of the pressure prime duration to flow resistance was very
small (within the resolution of the 5-s time step) for a 20% change in the flow
resistance term (c=51.2+/-10.2 m?¥kg-s). The resistance term was increased 10
and 100 times with an increase in the pressure prime duration of less than 1%
and 8%, respectively. The insensitivity to the resistance term supports the use of
the fully developed assumptions.

The equations describing the pressure prime are summarized in Table 4.7

with a list of assumptions for all three control volumes. Using property relations
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for the liquid and vapor, these equations can be solved to obtain the time
dependent operating conditions of the reservoir and loop.

The pressure prime model predicts the transient response of temperature
and pressure of the loop to the reservoir heat input and loop heat rejection. The
inputs to the model for the VIEW-CPL system are listed in Table 4.8. The starting
point for the model is assumed to be an equilibrium two-phase state at ambient
temperature.

The output of the model is a time series of control volume properties that
are presented in Figure 4.2. The integration stops when the quality and volume
of CV3 approach zero. The time step size governs how close to zero the model
can integrate. A time step of 5 s was chosen for the analysis shown here; the
accuracy of the time integration was verified by repeating calculations with a 2.5
s time step resulting in a change in temperature and time to complete the
pressure prime of less than 0.05%.

The model results predict that the time required to collapse the vapor
inside the loop is 225 s given the flow conditions and the heat transfer
characteristics described by the flow resistance, ¢, and the heat transfer
coefficient on a unit length basis, UApL, in Table 4.8. However, the predicted
time to complete the pressure prime is less than that observed in both VIEW-CPL
and previous water CPL experiments tested at the University of Maryland [Kolos
et al., 1996] which was on the order of 20 minutes. The input value for the heat

transfer coefficient UApL, of 0.097 W/m-K represents heat transfer on a unit

131



Table 4.7 Governing equations for the pressure prime control volumes.

Cvl1 dm, }
Mass Balance — = —m, (4.6)
dt
dm du .
u,-h, )—+m,— = Q 4.7
Energy Balance (uy=hy ) et 1 (4.7)
), = C 9T _uAL(T,-T
Heat Transfer Rate @1 = Qhoater™ mSSCpE_ r(T-T.) (4.8)
. Energy is added to the control volume from the reservoir heaters
. The reservoir volume is fixed volume, therefore only flow work is performed
on the control volume
. Only liquid can exit the reservoir; h, , is saturated liquid enthalpy at
reservoir temperature
. Mg C, is the thermal capacitance of the stainless steel reservoir housing
CV2 | Mass Balance am, am,
— = -—— (4.9)
dt dt
dm, du, . av,
E Bal Uy~hy ) —=+m,—==Q,- P;—= 4.10
nergy balance (u, 1,L) ot Ty 2 T3y ( )
- 2
Force Balance PPy B4 LV _ dm,
o] Re D 1228uL dt (4.11)
where ¢ =
2.|-|.D4
. Energy, Q,, could be added to the control volume from interaction with CV3
but was neglected for this analysis
. The volume is variable and increases according to the liquid displaced from
the reservoir; work is performed on CV3 as CV2 increases in volume
. Only liquid can enter from the reservoir
Cv3
Mass Balance %=1 dm,
(4.12)
da p dt
Heat Transfer Rate Q; = -UA,(T,-T,) (4.13)
du, . dv.
Energy Balance m3—3=Qa+ p3_2 (4.14)
dt dt
. No mass change in control volume, only quality and volume change
. Energy is transferred from the control volume from interaction with ambient
. The overall heat transfer coefficient, UA;, is a combination of condensation
film coefficient and insulation resistance and is dependent on the surface
area of the vapor space
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Table 4.8 Inputs to the pressure prime model representing VIEW-CPL.

Variable Value Description

dt 5s Time step for integration

T,, Tamb  25°C Initial reservoir and ambient temperature

V, 264.1 cc Reservoir volume, calculated from VIEW-CPL
dimensions

charge 0.240 kg Charge of fluid into loop, measured from VIEW-CPL

fiig 0.9087 Volume liquid fraction in reservoir, calculated from charge
and reservoir volume assuming all liquid is contained in
the reservoir

Q, 25W Reservoir heater power

MgsC,, 0.25 kJ/IK Thermal mass of reservoir housing

c 27.7 m?/kg-s The sum of the liquid flow resistance from fluid flowing
through the VIEW-CPL tubing (see Table 4.6)

UApL, .0973 W/m-K Conductance from the vapor space to ambient. Includes

(without NCG) appropriate values for condensation film coefficient,

insulation, and free convection to ambient on a per unit
length basis.

UApL, .0059 W/m-K Condensation conductance is degraded with the

degraded presence of noncondensable gas

for effect of

NCG

Vi, 94.9e-6 m* Vapor space volume, calculated from the VIEW-CPL loop
volume

m, 2.19e-6 kg Mass of vapor in CV3, calculated from vapor volume and
density at initial temperature

UAR 0.29 W/K Heat loss from the reservoir (see Section 5.1.3)

length basis for a vapor space without any noncondensable gas, which may not

be correct for a water system operating at subatmospheric pressure. It is well

known [Wang and Tu, 1988; Minkowycz and Sparrow, 1966] that even small

amounts of noncondensable gas can significantly decrease the heat transfer rate

during a condensation process. Since the results of the pressure prime are
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Figure 4.2 Results of pressure prime model using VIEW-CPL inputs from
Table 4.8 (assuming no noncondensable gas).

sensitive to the heat transfer coefficient, a parametric study was performed to
evaluate the effect on the length of time required to complete the pressure prime.
The results are presented in Figure 4.3, which shows a sharp increase in
pressure prime duration for overall conductance below 0.01 W/m-K. For the
extreme case of a perfectly insulated loop, without the ability to reject the latent
heat, the vapor space does not collapse. For larger conductance values only a
small temperature difference between the loop and ambient is required to reject
the energy and the pressure prime occurs quickly (less than 100 s for values
greater than 1 W/m-K).

Figure 4.4 contains the results of the pressure prime model for an overall

conductance of 0.00585 W/m-K (6% of the expected conductance without NCG),
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Figure 4.3 Predicted effect of overall conductance on the duration of the
pressure prime.

which based on previous experience are more representative of actual pressure
primes. The predicted pressure prime was complete at 1080 s when the vapor
quality of CV3 was less than 2x10™* and the vapor volume less than 0.005 cc.
The temperature difference between the reservoir and loop at the end of the
collapse is 18.3 K. A comparison of test data to the pressure prime model
prediction is presented in Section 5.1.2.
4.4  Start-up Analyses

The start-up analyses cover the period from initial heat application to the
evaporator to the establishment of a vapor interface within the condenser. The
first analysis is a transient conduction analysis to determine the time required to

heat the evaporator to a temperature necessary to initiate boiling. The second
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Figure 4.4 Prediction from pressure prime model with heat transfer
coefficient modified for effect of noncondensable gas.

analysis is the pressure surge calculation to determine if the capillary limit of the
wick was exceeded as vapor displaces liquid from the vapor grooves and vapor
line to the reservoir. A cold shock analysis is also performed to explain the
observation of bubbles inside the evaporator core during the VIEW-CPL
operation.
4.4.1 Sensible heating of the evaporator

In the VIEW-CPL testing, the start-up begins by applying power to the
evaporator heaters. Prior to nucleate boiling and evaporation, the temperature
of the stainless steel evaporator block, saturated wick material, and liquid must
rise up to the saturation temperature. The analysis of this process is based on

thermal conduction within the evaporator. The results of the analysis provide a
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prediction of the time for boiling to initiate for a given evaporator heater power
and saturation temperature.

The conduction analysis was performed with a finite element model. The
stainless steel evaporator block was analyzed in a two-dimensional domain, as
shown in Figure 4.5, which contains a saturated wick in close contact with the
block and a liquid filled core inside the wick. Insulated boundary conditions are
imposed on the outer boundary except at heater locations. Constant material
properties were used for all materials in the domain. Node 30 (refer to Figure
4.5) in the domain corresponds to the location of the VIEW-CPL temperature
sensor (T6) on the side of the evaporator block (see Figure 3.20).

The transient model was exercised using a Crank-Nicholson solution
method with various combinations of heater powers (to simulate the VIEW-CPL
heaters) for boundary conditions. The normalized temperature, T, is defined by

T-T-T, (4.15)
where T, is the initial temperature of the evaporator block. Normalizing
temperature in this manner allows comparison with experimental data having
different initial conditions.

The grid in Figure 4.5 contains 268 elements with 156 nodes and was
solved with a maximum time step of 10 s. Adequate spatial resolution was
verified by refining the grid to 1072 elements with 579 nodes and running at 10

s. Temporal resolution was verified by solving the original grid with a maximum
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BOUNDARY CONDITIONS

(A) Insulated from Ambient: Flux=10
(B) Liquid to Ambient: dT/dy =0
(C)11W/11.24 cm?

(D) 28 W /24.13 cm?

(E) 43 W /25.13 cm?

MATERIAL PROPERTIES
(1) 304 Stainless Steel (6.1 cm x 2.2 cm):

k=14.9 W/m-K, ¢ = 477 J/kg-K, p= 7900 kg/m?
(2) Saturated polyethylene wick (50% porosity):

k =0.49 W/m-K, c,= 3140 J/kg-K, p= 970 kg/m3
(3) Liquid water:

k =0.60 W/m-K, cp = 4179 J/kg-K, p=997 kg/m?3

All material properties are from Incropera & DeWitt [1990]
except for polyethylene properties which are from Callister
[1991].

Figure 4.5 Two-dimensional finite element grid for the VIEW-CPL
transient conduction analysis.

time step of 1 s. Both checks on resolution gave results identical to two
significant digits as compared to the coarser grid and time step.

The end of the conduction phase is determined when any location along
the outside of the wick reaches saturation temperature. This assumes that no
superheat is required to initiate boiling. Such an assumption may be valid for the

VIEW-CPL experiment since it is a low-vapor pressure system and other tests of
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similar two-phase systems have indicated that noncondensable gas reduces the
amount of superheat required to begin nucleate boiling [Wrenn et al., 2000].

Figure 4.6 is a plot of the predicted normalized wick temperature at the warmest
node, T, as a function of time. The traces on Figure 4.6 correspond to the power
available from the VIEW-CPL heaters. Since the heaters are installed
asymmetrically, the location of the warmest wick node (identified parenthetically
next to the heater power on Figure 4.6) varies according to the heaters selected.
When the 43 W heater is used, the warmest wick nodes are located on the right
side of the grid where the 43 W heater is located. The 11 W and 28 W heaters

and the combination of the two results in the warmest wick node located on the
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Figure 4.6 Normalized wick temperatures predicted for the VIEW-CPL
heater combinations. Temperature traces were selected from the
warmest node at the wick/stainless steel interface (refer to Figure 4.5) for
each given heater combination.
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left side of the grid. The VIEW-CPL evaporator typically starts from room
temperature (25°C) and must reach the reservoir set-point (saturation
temperature) of 40°C for boiling to occur. This corresponds to a normalized wick
temperature, T, equal to 15 K. The resulting warm-up period ranges from 100
s for the 77 W heater combination (all three heaters with reduced voltage due to
extra load on the power supply) to 500 s for the 11 W heater.

Figure 4.7 is a plot of the predicted normalized-evaporator temperature at
node 30 corresponding to the VIEW-CPL temperature sensor location T6. This
plot is important for comparing model predictions to the measured temperature

values. The symbols on the plot indicate the time at which any node on the wick
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Figure 4.7 Normalized evaporator temperatures predicted at node 30
(refer to Figure 4.5) for VIEW-CPL heater combinations.
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reaches a normalized temperature of 15 K (corresponding to a saturation
temperature of 40°C and an initial temperature of 25°C, typical of VIEW-CPL
tests). Depending upon the heater combination, the temperature sensor can read
as low as 13 K below the wick temperature for the worst case of 43 W, or as high
as 2 K above wick temperature for the case of 11 W. The difference between the
evaporator body temperature and the wick temperature is due to the thick
stainless-steel evaporator housing, and the uneven heating on the evaporator
due to the discrete heater locations.
4.4.2 Vapor line clearing

The larger than normal pressure drop, known at the pressure surge, that
is typically experienced during CPL start-up as liquid is displaced from the
evaporator vapor grooves and vapor line to the reservoir is described in Section
2.2.1. A design estimation of the pressure surge for VIEW-CPL that was
presented in Figure 3.18 predicted that the capillary limit of the evaporator (10
kPa for water at 50°C for the 13.7 ym pore radius in the wick, assuming a 0°
contact angle) would be exceeded during start-up if the net power for evaporation
was greater than 2 W, thus allowing vapor into the evaporator core. Additionally,
the core could become superheated if the pressure drop causes the local vapor
pressure to decrease below the saturation temperature (for the example
presented in Section 3.2.4 with a typical saturation temperature of 50°C and local
core temperature of 25°C, a pressure drop greater than 7330 kPa would pass the

local saturation pressure).
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In order to more accurately predict the amount of energy used for
evaporation, the magnitude of the pressure surge and the duration over which the
high pressure drop is experienced, a model of the pressure surge was adapted
from the work of Hoang and Ku [1996] and used to analyze the VIEW-CPL start-
up. The mass, momentum, and energy balances for the control volumes in
Figure 4.8 were solved to find the pressure difference between the evaporator
and reservoir that is required for liquid to flow into the reservoir. Note that the

control volume labels (CV1, CV2, and CV3) for the pressure surge model

(N piinininisbrtninintetnininisteininintsinininistelnininttnintntstetetntntetetnt Cv2
Lo .. / (liquid)
oo Liquid displacement, m, +m,
P1 o
1
i 4 _—cvi1 Ccvs3
T ad (liquid & o3 (vapor)
Heat } vapor) 1 !
Input E’: 5:_ “______' ~ Heat
T ! Rejection
P4 :\ 2

i Liquid flow to

1 - .
Liquid return,to i t reservoir, m,
evaporator, m, e M

P2
CV 1: Fluid in evaporator (initially all liquid) [fixed mass, variable volume, variable quality]
CV 2: Volume of liquid between evaporator and reservoir [fixed mass, fixed volume, quality = 0]
CV 3: Reservoir vapor space [fixed mass, variable volume, variable quality]

P1
AP < AP¢pp

P2 P4

PRESSURE
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POSITION IN LOOP

Figure 4.8 Control volumes for the pressure surge model (see Figure 1.1
for details on loop components).
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correspond to different CPL components than the control volumes with the same
labels in the pressure prime model (in Section 4.3). The control volume change
results from the different location of energy input to the loop between the two
models. Energy input to the loop is at CV1, which in the pressure prime model
is at the reservoir and in the pressure surge model it is at the evaporator. Vapor
compression occurs in CV3, which in the pressure prime model is around the
loop and in the pressure surge model is around the vapor in the reservoir. CV2
is the same for both models.

At the onset of nucleation in the vapor grooves, liquid can flow to the
reservoir through two paths: (1) through the vapor grooves and into the vapor
line, or (2) back-flow through the evaporator wick and into the liquid line. The
flow resistance through the wick and liquid line (back-flow) is an order of
magnitude greater than the flow resistance through the vapor line and therefore
the preferential flow direction is through the vapor line. Once a meniscus is
established in the evaporator wick, the fluid cannot locally flow back into the wick
unless the maximum capillary pressure is exceeded. Therefore the back-flow
area through the wick decreases as the vapor grooves clear which further
increases the resistance to back-flow into the core of the wick. Finally when the
vapor grooves are filled with vapor, there is no path for back-flow into the core.
Since the back-flow is small compared to the forward flow through the vapor line,

it is neglected in this analysis.
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Following the same methodology used for the pressure prime model,
governing equations for the control volumes are summarized in Table 4.9. The
energy balances on the control volumes are derived from Eq. 4.1. The

momentum balance (from Eq. 4.2) is rewritten in terms of the CV2 mass, dm/dt,

as
o I dt)dt| a2
L Y, (4.16)
with , = — 11 apg o - 3 221
! 2 .2 - 2
D;2a2 n T A2N

I 1

In EQ. 4.16, the inertial coefficient, a, and the frictional coefficient, 3, are functions
solely of the VIEW-CPL flow channel geometry (number of parallel flow paths n,
length L, diameter D, area A, and volume V) and are summarized in Table 4.10.
Equivalent L/D (refer to Table 3.12) were used for flow through bends and fittings.

The liquid flow through the loop remains in the laminar flow regime
provided that the flow rate does not exceed 7 g/s. The maximum flow rate
predicted during the start-up is 3.5 g/s when using the 75 W heater. Therefore,
laminar flow is assumed for all of the start-ups. By nature of the laminar friction

factor for smooth wall tubes, the frictional term of Eq. 4.3 is directly proportional

to the mass flow rate. The proportionality constants, %B(%) , given in column

3 of Table 4.10, show that the reservoir line dominates in the flow resistance term

by accounting for 74% of the total flow resistance. The frictional termsin Eq. 4.16
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Table 4.9 Conservation equations of energy, momentum, and mass for the
pressure surge control volumes (continued on next page).

CV1 (Liquid

Vol : du, . . av,
olume in m—t = Qo = FQuy - P—" (4.17)
Evaporator dt dt
and Volume dT
of vapor in MssCp —> = Qp ~UA(T-Top) - Qo (4.18)
evaporator dt
and vapor . Evaporation film coefficient from a correlation for boiling in free
line) convection [Stephan, 1992] applied to the groove surface area
bound by the evaporator block. Qgy.p = NeyapW L (T - Ty)
. Since there is no mass flow exiting the control volume, and the
mass flow rate in is small, the mass balance gives
am, .
7 = minzo (419)
. Assuming that all of the input power is used to evaporator liquid at

40°C, then by neglecting the energy carried into the control volume
the maximum error introduced is 3.5% of the input power

. Since the change in fluid specific volume is small, the rate of vapor
expansion is determined from the amount of vapor generated

av. av, dv -
— - mx— o+ mvvﬂ +m(1-x)— + mv,—d(1 X)

dt dt dt dt dt
av, dx
- 0~ m V —V _
dt v) dt

(4.20)

. Pressure drop due to vapor flow is neglected in CV1

. Heat loss UA was determined from experimental data (see section
5.1.2)

. The wall of the vapor line is heated as the vapor front advances. F

is a flag to indicate when the vapor enters the vapor line:

F=0if V<=15.9x 10° m?

F=1ifV>159x10°m?
The energy stored in the vapor line wall is a function of the amount
of wall exposed. A condensation film coefficient of 500 W/m?2-K
(approximated for low flow rate from Figure 3.10) is applied around
the inner diameter of the tube. The volume of wall exposed during a
time step is related to the rate of volume change of the control
volume using the geometry of the vapor line.

mc

ss wall

daT - dm
dv;a// -Q _ UA(T1_Tamb) + Wcss(Tamb - Twall) (421)

Quan = h m DL(T,-T )
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Table 4.9 Conservation equations of energy, momentum, and mass for the
pressure surge control volumes (continued from previous page).

CV2 (Liquid No mass flow into or out of the control volume and no heat transfer
volume in energy balance (neglect frictional heat transfer), therefore the
between energy balance is trivial.
vapor spaces
in the vapor Control volume moves due to vapor expansion; relative to the
line and vapor line wall, the liquid mass flow rate is determined from Eq.
reservoir 4.20
Momentum balance for the accelerating control volume is
determined from Eg. 4.16 where AP=P,-P,, B and a values are
from Table 4.10.
Ccv3 No liquid/vapor mixing inside of the reservoir
(Reservoir
gas and Heat transfer from the gas to the reservoir wall is limited to
vapor conduction through the polyethylene wick between the vapor and
volume) the wall, Q,,=UA(T s - T5)

du . oVv.
m37t3 =Quep- P37t3 (4.22)

No change in mass (i.e., vapor compression results in temperature
rise, and quality change)

Volume inside the CPL is fixed and CV2 is incompressible,
therefore any volume change in CV1 is balanced in CV3

dv,  dv,

— 4.23
dt at (4.23)

Reservoir wall temperature is a function of heater power (5 W) and
heat loss to ambient, where UA . is determined from test data.

daT
Mg 0337,63 =UAamb(Tfes - Tamb) - Qvap + Qheater (4.24)

146




Table 4.10 Frictional (B) and inertial coefficients () from Eq. 4.16 for liquid flow

in VIEW-CPL geometry.

For Laminar Flow Only.

VIEW-CPL Component B Liquid Properties at 20°C. o
<10° 1/m*> —fB dam) _ 64£ABn <10® 1/m>
P at pD
<10° 1/m-s>

Vapor grooves (n=6) 7.73 7.58 2.67
Vapor line (n=1) 16.84 6.59 9.97
Condenser Inlet 0.00 0.00 0.06
Condenser Grooves (n=4) 0.48 0.74 0.86
Condenser Exit 0.16 0.19 0.06
Liquid Line (to tee at reservoir 111 0.43 0.81
line)
Reservoir Line 200.56 46.31 11.99

b

$

Wick* - 1426.10 -

Inlet plug 34.30 11.00 1.76
Conduction tube line 3361.81 297.58 28.43
Liquid line (0.775 cm D) 12.74 4.98 4.85
Reservoir line 200.56 46.31 11.99
Path 2 Total** 1785.97 47.03

*The frictional coefficient for the wick is calculated using Darcy’s law.
*Path 2 is not included in the pressure surge model because the resistance is 28 times larger
than path 1 and there will only be a small amount of back-flow

are applicable for fully-developed Poiseuille flow. During the pressure surge, the

flow starts from rest so there is a period of time over which the core of the flow

inside the grooves and lines must be accelerated while the flow near the wall is

restrained by friction [White, 1991].

As in the pressure prime analysis, the

transient friction factor is determined by Eg. 4.4 and the solution indicated that the
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velocity profile approaches the Poiseuille paraboloid after 1.1, 3.9, 7.0, and 11.2
s for the vapor grooves, reservoir line, condenser grooves, and vapor line,
respectively. This indicates that the frictional terms are larger than those
predicted in Table 4.10 for the above times. However, the transient friction factor
for the reservoir (since this was the dominant pressure drop) caused no change
(within two significant digits) in predicted transient values for the vapor volume
and temperature solutions compared to the solution using the Poiseuille flow
frictional term, even when using a time step 20 times smaller than the time
required for the flow to fully develop. The solution using the transient friction
factor is the same as the solution using the fully developed friction factor because
the pressure surge process is dominated by heat transfer, not viscous pressure
drop.

For comparison with test data, the pressure surge is divided into two time
segments. The first time segment is the clearing of the vapor grooves and vapor
plenum, the time for which can be obtained from VIEW-CPL video data. The
second segment is the clearing of the vapor line; these data are inferred from
temperature measurements at the entrance to the condenser (T3 in Figure 3.20).
Table 4.11 contains a summary of initial conditions and volumes for the pressure
surge calculation and the VIEW-CPL geometry. The total pressure surge is over
when the vapor line is filled with vapor.

The results from exercising the model with 35 W applied to the evaporator

are shown in Figure 4.9. The plot contains time traces of the evaporator wall
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Table 4.11 Initial conditions and volumetric summary for VIEW-CPL pressure
surge calculation.

Initial conditions

Conditions during calculations

Initial quality =0

[nitial volume (time = t):
CV3(t,) =121.3 cc
[Free volume in
reservoir, 246.1 cc -
Volume of liquid in
reservoir, 124.8 cc]

CV1 | Initial fluid mass =8.59 g Constant fluid mass = 8.59 g
[nitial volume (time = t,): For comparing to video (time =t,):
CV1i(t,) =8.68 cc CV1i(t,) =13.63 cc
[Volume of core, 4.73 cc + [CV1(t,), 8.68 cc +
Volume in wick, 3.95 cc] volume of vapor grooves, 3.51 cc +
Vapor volume =0 cc volume of vapor plenum, 1.44 cc]
Initial quality =0 Vapor volume = CV1 - Initial vol = 4.95 cc
For allowing condensation in vapor line (time=t,):
CV1(t,) =15.94 cc
[Volume CV1(t,) 13.63 cc +
volume of evaporator exit, 2.31 cc]
Vapor Volume = CV1 - Initial vol = 7.26 cc
At completion of pressure surge (time=t,):
CV1i(ty) =37.79 cc
[Volume CV1(t,), 15.94 cc +
volume of vapor line, 21.85 cc]
Vapor volume = CV1 - Initial vol = 29.11 cc
CV3 | Initial fluid mass =0.008 g Constant fluid mass = 0.008 g

At completion of pressure surge (time=t,):
CV3(t;) =92.2 cc
[Volume CV3(t,), 121.3 cc -
(CV1(t)-CV1(ty)), 29.1 cc]

temperature, evaporator vapor temperature, vapor line wall temperature, vapor
volume, pressure difference between reservoir and evaporator, and the
evaporation rate. As evaporation occurs in the evaporator, the vapor space
(CV1) expands and pushes liquid (CV2) into the reservoir and compresses the

vapor in the reservoir (CV3). There is initially a pressure spike (140 Pa) between
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Figure 4.9 Pressure surge prediction for 35 W on VIEW-CPL evaporator.

the reservoir and the vapor space because the vapor volume is limited. The
evaporator wall temperature increases steadily during the pressure surge. This
occurs because the amount of fluid that is evaporated is limited by the pressure
difference between the reservoir and evaporator, resulting in sensible heating of
the evaporator. The temperature difference that results from the pressure
difference is present in all CPL systems, but is more apparent with a fluid having
low vapor pressure.

The pressure spike ends as the vapor from CV1 expands into the vapor
line. Prior to the vapor entering the vapor line, there is no heat sink for the vapor
space and the vapor temperature is nearly the same as the evaporator wall
temperature. Once the vapor enters the vapor line, condensation occurs on the

vapor line wall and the temperature of the vapor space is decreased as energy
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is removed from the control volume. Figures 4.10 and 4.11 are exploded views
of the initial 10 s of the vapor groove and vapor line clearing. Figure 4.10is a
plot of the evaporator, vapor, and reservoir temperatures and Figure 4.11 is a
plot of the pressure drop and liquid flow rate. At 5.9 s, the vapor temperature
begins to oscillate as the vapor space expands into the vapor line and then
contracts due to condensation on the vapor line wall. The oscillations decrease
as more fluid is evaporated until the rate of evaporation equals the rate of
condensation on the wall. This is shown in Figure 4.9 between 5.9 and 50 s
where the vapor volume remains nearly constant. As the vapor line wall

temperature approaches the vapor temperature, the condensation rate decreases

50.8 - - 8.0
50.7 = Vapor temperature decreases
at 5.9 s because liquid vapor Vapor volume T70
50.6 4 interface enters the vapor line T
(at volume 7.26 cc) and T
50.5 g condensation occurs 7; 6.0
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e 50.3 ] Evaporator wall 1 5.0 %
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Figure 4.10 Temperature prediction during pressure surge as the vapor /
liquid interface moves from the VIEW-CPL evaporator to the vapor line.
The vapor temperature decreases to within 0.1 K of the internal reservoir
temperature after the oscillations are damped.
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and the vapor volume expands. The increase in evaporation rate (Figure 4.9),
results from the increased temperature difference between the evaporator wall
and the fluid in CV1. The oscillations in the temperature would not register on
the data acquisition because the frequency (2.5 Hz) is an order of magnitude
larger than the scan rate (0.25 Hz).

As indicated in Figure 4.9, the model predicts that the reservoir
temperature continuously decreases during the pressure surge. Although one
might expect that the pressure in the reservoir would increase as CV3 is
compressed, condensation occurs and the heat of condensation is rejected to
ambient. A 5-W heater on the reservoir was supposed to maintain the
temperature, but the heat transfer from the reservoir wall at 50°C to ambient
temperature of 25°C is 7 W. Therefore the reservoir temperature and
corresponding pressure decrease during the pressure surge and would continue
to decrease until the temperature is 43°C at which point the heat transfer rates
would be balanced.

During the period that the vapor temperature (CV1) is oscillating, the
pressure difference between the reservoir and evaporator is also oscillating
because the vapor space contains both liquid and vapor phases and the pressure
and temperature are not independent along the saturation curve. The pressure
difference and the liquid mass flow rate (flowing through the vapor line) are
plotted in Figure 4.11. The flow rate in Figure 4.11 is the rate of the liquid flowing

through the vapor line. The maximum liquid flow rate is 0.22 g/s, which indicates
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Figure 4.11 Pressure surge prediction during the movement of the vapor /
liquid interface from the VIEW-CPL evaporator grooves into the vapor line
for 35 W heater power. Pressure decreases with the corresponding
decrease in temperature of the vapor space as the vapor transfers heat to
the wall of the vapor line.

that the flow is laminar for the duration of the pressure surge. The flow rises
rapidly to a maximum at 5.9 s and then decreases as the pressure surge
proceeds. The liquid mass flow rate decreases with time because of the heat

transfer with the vapor line wall.

vapor mass flow rate is equal to the liquid mass flow rate multiplied by the ratio
of vapor to liquid density. The vapor mass flow rate (not shown in Figures 4.9-
4.11) is significantly lower than the steady-state mass flow rate for the same

heater power because of the sensible heating of the evaporator.

Since the fluid velocities are equal for the liquid and vapor phases, the
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approximate heat loss of 11 W from the evaporator to ambient, the steady-state
vapor mass flow rate is 1x107 kg/s for a 35 W applied heat load (net heat load of
24 W). The vapor mass flow rate during the pressure surge is almost 700 times
less. The thermal mass of the evaporator keeps the flow rate low by reducing the
amount of heat available for evaporation. The thermal mass of the vapor line
also contributes through condensation in the vapor line which limits the pressure
rise as well.

The pressure surge code was exercised for the seven different possible
combinations of heaters for the VIEW-CPL experiment. Figure 4.12 is a plot of
the time required to displace liquid from both the evaporator grooves and the
vapor line, and the maximum pressure gradient across the wick as a function of
evaporator power. For all cases, the initial reservoir temperature was 50°C, the
evaporator was assumed to be the same temperature as the reservoir (i.e., no
gradient due to heater location), and ambient temperature was 25°C. The 10 W
case is not plotted because the model predicted that there would not be any
vapor generation due to heat loss for the conditions specified.

The conclusion from the pressure surge analysis is that start-up of VIEW-
CPL should not result in a deprime. Based on the results presented in Figure
4.12, the maximum pressure drop during the pressure surge is 215 Pa which is
well below the capillary limit of 10 kPa (for 0° contact angle) and the vapor
pressure limit of 7 kPa. Even if the water and wick were not perfectly wetting, the

contact angle would have to be at least 89.994° for the capillary limit to be
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Figure 4.12 Predicted pressure surge results for VIEW-CPL geometry and
available evaporator power combinations.

degraded to 215 Pa, which is unlikely based on previous test experience.

Therefore vapor back-flow through the wick is not possible since the pressure
difference never exceeds the capillary limit. Nucleation in the evaporator core is
not possible because the vapor pressure in the core is not less than the local
saturation pressure (assuming the core is at the subcooled temperature of 25°C).
The pressure surge prediction presented here is less than the pressure drop
predicted using a mass-less system (Figure 3.18) because sensible heating of
the CPL components, such as the evaporator and transport line, limits the rate
at which the vapor / liquid interface moves from the evaporator to the condenser.
Section 5.2.3 includes a comparison of the pressure surge predictions to the data

obtained from the VIEW-CPL experiment.

155



4.4.3 Cold-shock analysis

The reservoir discussions presented earlier in Sections 2.1.3 and 3.2.3
indicate that a sudden decrease in reservoir temperature, known as reservoir
cold-shock, could occur during start-up if all of the liquid in the evaporator and
vapor line is assumed to be instantaneously mixed with the fluid in the reservoir.
However, the pressure surge analysis shows that the liquid is notinstantaneously
mixed. The results (Figure 4.12) predict that it is displaced over a period of time
ranging from 180 to 480 s with power ranging from 75 to 25 W, respectively. The
5 W heater on the reservoir was designed to offset heat loss from the reservoir
to ambient and to maintain the reservoir temperature as cold liquid is displaced.
However based on experience and the pressure surge model, it was found that
the heater was slightly undersized and did not balance the heat loss to ambient
(as predicted by the decrease in reservoir temperature during the pressure
surge). Therefore the reservoir will not maintain temperature control as cold
liquid is mixed in during start-up.

Since the 5 W heater is undersized, the effect on the reservoir temperature
is dependent upon the temperature of the incoming liquid. During the initial stage
of the pressure surge, liquid entering the reservoir passes through the reservoir
wick (refer to Figure 3.15) where it displaces warm liquid into the reservoir vapor
space. Considering only the annular region around the reservoir wick (in Figure
3.15) and the volume of liquid in the segment of wick with area in contact with the

incoming liquid, there is 5.3 cc of saturated liquid that will be displaced before
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cold liquid enters the reservoir vapor space. The amount of liquid that is
displaced inside the evaporator vapor grooves, plenum, and evaporator exit
before vapor enters the vapor line is 7.26 cc. Therefore the rapid displacement
of the liquid from the evaporator vapor grooves during start-up will displace
mostly saturated liquid into the reservoir vapor space and only 2 cc of cold liquid.
Based on this model, the saturation temperature would drop 0.5 K with this
amount of fluid displacement.

If there is mixing in the reservoir during the remainder of the vapor line
clearing (contrary to the assumption used in the pressure surge model), then the
reservoir temperature drop (or cold-shock) can be as large as 3.6 K over the
duration of the vapor line clearing when coupled with the heat loss. This

temperature was determined from a transient energy balance on the reservoir

dr  du , d
msscssE + E = mhi - UAres(T_Tamb) + Qheater (4.25)

with 75 W evaporator power (worst case), an initial reservoir temperature of
49.5°C (0.5 K less than 50°C to account for the initial temperature drop due to
displacement of fluid from the evaporator), an ambient temperature of 25°C, a
liquid inlet temperature of 25°C, and an average mass flow rate of 0.12 g/s. The
average flow rate was determined by dividing the mass of fluid in the vapor line
(22 g) by the time to clear the vapor line (180 s from Figure 4.12).

A 3.6 K decrease in saturation temperature amounts to a 2.0 kPa change

in saturation pressure. The pressure that can be supported by the evaporator
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wick is 10 kPa and therefore the decrease in saturation temperature will not allow
vapor to back-flow through a fully-wetted wick. A contact angle of 79° or greater
would reduce the capillary limit to 2.0 kPa and allow vapor back-flow. In order for
liquid to flash inside the evaporator core, the temperature of the liquid would need
to be higher than the reservoir temperature. This is unlikely since the evaporator
heat would have to conduct through the polyethylene wick to heat the core. The
conclusion from this analysis is that VIEW-CPL will not deprime due to cold shock
during start-up unless the contact angle between the water and wick is greater
than 79°.
45 Steady-State operation

The expected steady-state pressure drop was documented previously in
Figure 3.17 in Section 3.2.4. The maximum pressure drop at 75 W is 162 Pa,
which is significantly less than the capillary limit of 10 kPa at 50°C. Also, a
capillary pressure increase of 162 Pa across the liquid/vapor interface in the wick
results in a saturated vapor temperature difference of less than 0.5 K. Since the
condenser is only 65% active at 75 W (refer to Figure 3.9), the evaporator liquid
inlet temperature is within 1 K of the sink temperature which provides adequate
subcooling to prevent nucleation in the evaporator core. Therefore, VIEW-CPL
steady-state conditions are not expected to result in a CPL deprime when using
typical CPL analysis techniques. However, the hydrophobic nature of
polyethylene requires special consideration that might lead to deprime even

under nominal operating conditions. Hysteresis in the pressure required to fill a
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wick with a non-wetting fluid is greater than the pressure required to drain the
wick [Connor et al., 1984]. If the results of Connor’s study are extrapolated to
VIEW-CPL, then it may be possible to have portions of the wick that are not fully
wetted during pressure priming, and that those dry areas would not grow once
power was applied because the capillary pressure is large enough to prevent the
pores from draining along the wetted portion of the wick. Additionally,
observations of a gravity-induced filling of the core were made in which the liquid
column switched from a convex liquid/vapor interface to a concave liquid/vapor
interface and back. These observations indicate that some portions of the wick
are more readily wetted than others. The following section describes the
operating conditions if a portion of the wick is not wetted.
4.5.1 Operating with a partially dry wick

Stable operations with a bubble in the core can exist if the energy required
to heat the subcooled liquid returning to the evaporator core balances the energy
supplied for bubble growth. In order for this to occur, the wick must continue
pumping liquid through partially-wetted areas while vapor back-flows through the
dried-out portions of the wick. The vapor flow through a dry portion of the wick
can be described by Darcy’s law (Eq. 2.5), where the flow of vapor is driven by
the capillary pressure developed across wetted portions of the wick. As long as
there is enough subcooling to balance the vapor flow, the CPL should continue

to operate with a bubble in the core. The equations for determining the steady-
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state operating condition are listed in Table 4.12 and the control volumes are
sketched in Figure 4.13 with an exploded view of CV1 in Figure 4.14.

The vapor leak through the wick does not change the mass flowrate of
liquid circulating through the loop (m,) since the overall evaporator energy
balance is still satisfied for the steady-state condition. Fluid temperature
boundary conditions are known, because the saturation temperature is set by the
reservoir temperature at 50°C and the condenser is oversized to ensure that the
exiting liquid is within a degree of the 25°C ambient air.

Determining the condensation heat transfer coefficient between the liquid
and the bubble is beyond the scope of this work, especially since the effect of
noncondensable gas will create additional uncertainty. The effect of the heat
transfer coefficient was studied parametrically with values of 500 and 3,000
W/m?-K to check the sensitivity of the results to the heat transfer coefficient. The
condensation occurs over the cross-sectional area of the core (0.66 cm?),
assuming that the bubble plugs the core with a flat interface.

A plot of the predicted steady-state bubble length that can exist, when the
vapor leak through the wick is perfectly balanced by the inlet subcooling, is given
as a function of length of dry wick with evaporator power as a parameter in Figure
4.15. Note that the bubble length does not have to be equal to the length of the
dry wick. The major difference between the prediction for the two heat transfer
coefficients is that the bubble length can be longer (for any amount of dry wick)

when the heat transfer coefficient is 500 W/m?-K. This is because there is a
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Table 4.12 Conservation equations of energy, momentum, and mass for the
vapor leak through the wick (continued on next page).

Cvl . Assume that only liquid exits the control volume through the saturated
(Portion of portion of the wick at a constant flow rate
the Lore~L bubbie )
evaporator m =, +m, = ™ dx 4.26
core that Y v { Leore~Lpubie (4.26)
supplies L core = Lpuere
liquid to m, h .
. = —h(x)dx = m
the wick) Q, { Looro-Luboi (x) vhavg (4.27)
. Pressure drop due to liquid flow is neglected in CV1
. Assume subcooled liquid entering CV1 completely condenses the

vapor leaking through the wick; then the average temperature of the
liquid exiting CV1 can be solved from the energy balance

m1hl1 + mzhv B mvhavg =0

m m
T/2avg - 7-/1_1 * (Tsat|P3+A) -2 (4.28)
m, c,) m,
. There is a temperature drop from the condensation heat transfer

coefficient, h (on the order to 500 W/m?-K based on condensation
analysis for low flow rate in Section 3.2.2)

rhz)\
a7 = = (4.29)

hA

. Also assume that the latent heat from condensation is conducted
through the liquid
T, - (T -dT_.)
M\ = —kAﬂ - KA I satlP3 sat (4.30)
dx L,

where L,,; is the length of the heat transfer zone over which
conduction dominates.

. One-dimensional temperature profile (neglecting radial effects) inside
the wick is assumed to be linear as shown in Figure 4.14

b's
for0 <x <L, T(x = (Tsat|P3_deat)+(TI1_(Tsat|P3_dtsat))L—
HT (4.31)

for Ly <x<L L

wick

ay 1,00 =T,

(note the x axis is zero at the right end of CV1 and that the T,
temperature is the liquid temperature outside of the heat transfer
zone)
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Table 4.12 Conservation equations of energy, momentum, and mass for the
vapor leak through the wick (continued from previous page).

Cv2 . Mass rate from evaporation at the wick surface is equal to the liquid
(Saturated flow into the wick
part of the | e Pressure drop through the wick is determined by Darcy’s law and the
wick) capillary pressure at the vapor interface is the sum of all system
pressure drops
h
APwick=P1_P2=ﬂ2 : -
0 2M(Ly~ Ly K, | D; (4.32)
APt:;ap=P3_PZ=§:APsys
. Neglect heat loss, by assuming that all heat applied to the evaporator

is consumed in sensible heating and evaporating the fluid over the
saturated portion of the wick

Qevap+ rﬁ\ﬁl2 B rh\ﬁv =0

: , , (4.33)
Qevap + mvcp(le_Tsat) - mv)‘ =0
CvVv3 . Mass balance is the same as CV1
(Vapor . There are two components to the viscous pressure drop
Groove b P o f yz(Lwick_Ldry) rhv 2
3 3 “Pylge
2D, |pA
. ., N7 (4.36)
V2L ( 2m,—-m,
Py - Py =P fre—
2D, ( pA
. Assume adiabatic vapor groove
mvhv B rh1hv B rhzhv =0 (4.37)
CV4 (Dry . Assume saturated vapor enters the wick and superheated vapor exits
part of the the wick, therefore a simple mass balance and a simple energy
wick) balance
. Mass flow rate is determined from the equation for pressure drop

across the wick. The pressure from the vapor groove is assumed as
the average pressure over the dry portion of the wick

P; + P,
2

AP, -

wicK g,

n| =2 (4.38)

larger dT, (refer to Figure 4.14) between the saturation temperature of the core
and the temperature of the vapor back-flow for 500 W/m?-K, which reduces the
average temperature of the liquid portion of the core (CV1). Therefore the length

of liquid needed to balance the vapor back-flow is less (bubble is longer) than that
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m,, (liquid to be evaporated)

N

I . .
(subcooled liquid) M =—————+p ~So- (CV1) 4T m,, (vapor from dry wick)

T Pihy I L o e e e 1 Tg. Py h

Maximum temperature profile
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Probable profile \ 4 TeardTey
Assumed Linear profile __\ - ;
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<
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X

Figure 4.14 Temperature profile in the liquid control volume inside the

wick core (refer to Figure 4.13).
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Figure 4.15 Length of bubble resulting from a dry portion of the wick at
powers ranging from 15 to 75 W and for condensation heat transfer

coefficients of 500 and 3000 W/m?-K.
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required for a higher temperature liquid portion that occurs with higher heat
transfer coefficients. The results for heat transfer coefficients ten times greater
than 3,000 W/m?-K (data not shown) are within 10% of the values plotted in
Figure 4.15, indicating that the analysis is not sensitive to large heat transfer
coefficients.

Focusing on the 500 W/m?-K predictions, one observation made from
Figure 4.15 is that no steady-state bubble will exist for dry wick lengths less than
0.75 cm. The amount of subcooling entering the core will collapse bubbles
because there isn’t enough vapor to keep a bubble filled. Another observation
is that a bubble will fill the core for dry lengths greater than 3.8 cm. This means
that the evaporator will be liquid starved if the dry length of wick is greater than
50% of the wick. The conclusion from the analysis is that the wick will continue
to provide the capillary pressure difference for steady-state forward flow, even
with large portions of the wick dry.

The predicted bubble lengths are closely grouped for different evaporator
powers. Recall that the vapor leak is dependent upon the loop pressure drop.
At low powers where there is very little subcooling, the pressure drop is
dominated by the back pressure in the condenser (shown in Figure 3.17). At
higher powers, the percentage of the pressure drop attributed to the back
pressure is less, but the increase in mass flow rate increases subcooling to
balance the increased vapor leak from the pressure drop. Therefore the

predicted bubble length is independent of the amount of subcooling.
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The sensitivity of the approximated linear temperature profile (refer to
Figure 4.14) was also evaluated. The probable (parabolic) temperature profile
was calculated for a given heat leak through the wick by integrating the energy
equation, including convective terms for flow of liquid, over the liquid filled length
of the core. The temperature profiles shown in Figure 4.16 validate that the linear
approximation is a reasonable estimate. The profiles are for 15 W heater power
and are an example of one of the larger differences between the temperatures.
The error in the core energy balance due to the different temperature profiles is

less than 1.5% for all of the VIEW-CPL cases that were predicted using the

model.
50 - . 2
Condensation heat transfer coefficient = 500 W/m*-K
Evaporator Power = 15W
45 Saturation Temperature = 50°C
Sink Temperature = 25°C
Length of Dry Wick = 0.88 cm
8 40
9
=
c
2 35
§ Integrated Temperature
S 30
o Approximated (Linear) Temperature x\/‘
25 S
20 T T T T T T T
0 1 2 3 4 5 6 7 8

Axial Length (cm)

Figure 4.16 Comparison of approximated core temperature profile with
the profile determined from integrating the energy balance over the length
of the core.
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The above analysis includes two key assumptions. The first is that the
heat applied to the evaporator is consumed only over the saturated portion of the
wick. Actually, the evaporator heaters provide constant flux over the entire area
covered by the heaters. Therefore, if there is a dry portion of wick, the evaporator
temperature will have an axial temperature gradient. The temperature of the
evaporator housing will stabilize at a point where the temperature gradient is
large enough to conduct heat through the stainless steel housing to the saturated
portion of the wick. The gradient can become very large even for small portions
of dry wick. For example, the axial temperature gradient is 15 K when a
continuous length measuring 20% of the total wick length is dry and the 25 W
heater is on. For the same power, the gradient is 35 K when 30% of the wick is
dry. Since the temperature sensors are set to open the power circuit at 60°C, it
is unlikely that the evaporator power will remain on with a continuous segment of
more than 20% of the wick dry even for the 10 W heater. Of course, this does
not indicate that multiple wick segments summing to 20% of the wick will have
similar gradients and temperature limitations.

The second approximation is that there is no heat loss from the
evaporator. Heat loss will reduce the mass flow rate through the liquid return line
since less heat is used for evaporation. Figure 4.15 can still be used to check
that operating with a dry portion of wick is feasible, provided that an effective

evaporator power is the dependent variable instead of the applied power.
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4.5.2 Fluid pumping axially in the wick

The fluid flow in the cylindrical evaporator wick is normally in the radial
direction. However the wick can pump fluid in any direction, provided that the
pressure drop in the wick does not exceed the capillary pressure that can be
developed (see Eq. 2.1). Therefore a dry portion in the wick can exist only if the
pressure drop axially along the length of the saturated wick over the core bubble
(refer to Figure 4.13) exceeds the capillary pressure. Figure 4.17 is a plot of the
axial transport capability (power X distance) that the polyethylene wick is capable
of pumping as a function of contact angle. The transport capability is calculated

from Darcy’s law in the form

AP kpA pPA
QL=—P° " (4.39)
H
250
Ex: Contact angle = 76° for
— transport capacity limited to 15 W
g 20 over the effective length of the ||
s wick (57 W-cm)
2150 \ \
Q
@
Q.
©
2100 \
'g_ Maximum transport capacity = 243 W-cm \,
2 NG
C 0-— . 3
© S Maximum power transported over the effective length
= of the wick = 243 W-cm / (7.62 cm / 2) = 64 W
O T T T T T T T T
0 10 20 30 40 50 60 70 80 90

Contact angle (degrees)
Figure 4.17 Axial transport of liquid water at 50°C in the VIEW-CPL wick
as a function of contact angle.
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From Figure 4.17, the maximum amount of heat that can be transported axially
along the effective length of the wick (L = 7.62 cm / 2) is 64 W if the wick is
perfectly wetted with water (0=0°). This axial transport indicates that there would
be no dry sections along the wick for net evaporator powers up to 64 W even if
liquid is supplied to only one end of the wick (i.e. not fed radially through the
wick). Difficulty in wetting the polyethylene wick with water may result in lower
pumping capability. The actual value of the contact angle would have to be
determined experimentally and was beyond the scope of this work. However a
minimum value can be inferred from test observations by noting that there were
portions of dry wick for evaporator powers of 30 W (discussed further in Chapter
5) resulting in approximately 15 W net power for evaporation. If this power were
transported along the length of the wick, the transport capacity would be 57 W-cm
which from Figure 4.17 corresponds to a contact angle of 76°. This implies that
the contact angle between the water and wick is at least 76°.

Connor et al. [1984] described a hysteresis in which the amount of
pressure required to fill a wick with a non-wetting fluid is greater than the
pressure required to drain the wick. If the same phenomena were experienced
by VIEW-CPL then it would be possible that the contact angle at some portion of
the wick is 90° (resulting in a dry portion) and that there is no axial transport. Also
that there may be no further axial drying because the wetted portion of the wick

is experiencing a different contact angle (<76°) that develops a large enough
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capillary pressure to prevent draining. Observations were made in which a liquid
column inside the core switched from a convex liquid/vapor interface to a
concave liquid/vapor interface and back, supporting the theory that some portions
of the wick are more readily wetted than others.

4.6 Deprime and Bubble Life Cycle

As described in Chapters 1 and 2, a deprime is a CPL circulation failure
mode where a gas or vapor bubble exists on the suction side of the evaporator
wick preventing normal capillary pumping operation. A deprime is normally
indicated by a rapid temperature rise in the evaporator due to a transition from
evaporation of the working fluid to sensible heating of the evaporator housing.
A deprime is also recognized by the condenser and vapor line filling with liquid
due to the loss of capillary pumping in the evaporator. Although the pressure
surge, cold shock, and steady-state analyses indicate that the VIEW-CPL should
not experience a deprime under the nominal operating conditions with a contact
angle of 0°, deprimes were observed.

If the contact angle between the water and the polyethylene wick is large
then the wick has limited pumping capability. For instance, if the contact angle
in the wick is 89.5° then, based on Eq. 2.1 and surface tension of water at 50°C,
the pressure rise across the meniscus is limited to 93 Pa. No pressure rise will
occur for contact angles greater than 90°. Given the hydrophobic nature of
polyethylene, it is possible that VIEW-CPL experienced deprimes because the

pumping capability was significantly reduced below the 10 kPa that can be
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achieved with a fully-wetted wick. Additionally, previous experience with water

CPLs has indicated that a deprime is likely to be triggered by adverse effects of

NCG and bubbles within the core of the evaporator.

The most likely theory for deprimes observed in VIEW-CPL were a result

of bubble growth from vapor flow through dry portions of the wick. Using the

results from Figure 4.15 for the case with a 500 W/m?-K condensation film

coefficient, a steady-state bubble will occupy 90% of the core if a 2-cm (0.8-in.)

segment of wick is dry. If a larger portion of the wick is dry, then the bubble can

fill the entire core. When this happens, a series of events (that can lead to

deprime) occurs as follows:

1.

2.

The bubble blocks the flow of liquid into the evaporator.
The fluid remaining in the wick begins to evaporate (see Section 4.6.1).

Evaporator temperature increases as more of the heater power goes into
sensible heating of the evaporator. This is a result of the conductance
change between the evaporator wall and the fluid due to the liquid
receding into the wick (see Section 4.6.1).

Mass flow rate of fluid circulating in the CPL decreases due to the
sensible heating of the evaporator (see Section 4.6.1).

Liquid exits the reservoir to fill the condenser, because the rate of vapor
flow to the condenser is decreased (see Section 4.6.2).

Pressure drop in the loop decreases due to decreased circulation, and
therefore the vapor back-flow through the dry wick decreases (see
Section 4.6.2).

Finally, one of two events occur

a. |If all of the liquid in the wick is evaporated, then the evaporator
temperature increases sharply as all of the heater power goes into
sensible heating of the evaporator. The wick no longer supports a
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capillary pressure because there is no meniscus in the wick. The
evaporator is deprimed.

b. The bubble shrinks and allows liquid to flow into the core and re-wet
the wick, pumping resumes and the bubble life cycle (bubble growth
and collapse) repeats itself.

Details on these events are analyzed in the following sections culminating with
a dynamic model of the bubble life cycle in Section 4.6.3.
4.6.1 Radial dry-out of the wick during deprime

A time lag is expected between the bubble blockage and the temperature
excursion on the evaporator as the fluid inside the wick is evaporated. Assuming
that there is no liquid feeding the wick, then the time required to dry-out the wick
is dependent only on the heat load and the amount of liquid absorbed in the wick.

The time, t, to evaporate all of the liquid with an applied heat load, Q, is described

with a lumped capacitance model by

dT (4.40)

where the volume, V, of liquid in the wick is 3.0 cm®. Operating at 50°C with the
highest VIEW-CPL power of 75 W, it is predicted to take up to one-and-a-half
minutes before a measurable increase in the evaporator temperature is
registered on the data acquisition system. Therefore the VIEW-CPL video is
instrumental in understanding the events during this lag leading to CPL deprime.

As the wick is starved of liquid and begins to dry-out in the radial direction,
the conductance inside the evaporator changes. Instead of evaporating fluid on

the outside of the wick, heat is required to conduct through the porous
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Figure 4.18 Schematic of heat transfer within the capillary evaporator.

polyethylene wick to reach the fluid. Figure 4.18 contains a schematic of the
conductance path from the evaporator surface to the evaporating fluid. In normal
operation the fluid evaporates at the edge of the wick in contact with the
evaporator body, and therefore there is no conduction through the wick if it is
wetted to the outer diameter. The evaporation conductance is approximated
using an evaporation film coefficient of 19000 W/m3-K [Wolf, 2004]. This value
was translated from ammonia test data (125000 W/m?-K) from an LHP to the
VIEW-CPL water system with a larger wick diameter using the ratio of liquid
thermal conductivity and the wick outer diameters. The evaporation conductance
is 663 W/m-K. As the meniscus recedes, the wick conductance controls the heat
transfer rate since its conductance (2.3 W/m-K through the thickness of the wick)
is much lower than the conductance through the stainless steel and the
evaporation conductance.

The effective wick thermal conductivity, k,, = 0.20 W/m-K, was
determined from Eq. 2.7 with the vapor conductivity (k,,, = 0.02 W/m-K) in parallel

with the polyethylene (k. = 0.38 W/m-K). Making the approximation that the

poly
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evaporator temperature is uniform such that T,,,, = T,,(r,) the change in vapor
mass flow rate exiting the evaporator is determined from the heat transfer
equation,

Qvap = UA wick( Tevap B Tsat) (4.41)

an energy balance with the capacitance of the evaporator as,

dE dT
E = (mcp)evap ;;ap =Q - Qvap (4.42)
and a mass balance as
, Qvap dv dr
m = = p— = prirelL  — 4.43

The mass flow rate is a function of the heater power, Q, and wetted wick length,
L, Itis important to know the mass flow rate as the wick dries out in order to
determine the evaporator temperature, the position of the vapor front in the
condenser, and the pressure drop. This information is used later in Section
4.6.3.
4.6.2 Pressure drop change due to slowed circulation

Since VIEW-CPL operates in the laminar flow regime, the pressure drop
is a linear function of the mass flow rate. Referring to Figure 3.17, the overall
pressure drop for VIEW-CPL with a slope of A, = 1.695 Pa/W and a condenser

capillary pressure drop is

m
AP = A17 + APcond—cap (4.44)
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where AP is 40.5 Pa for a meniscus at 50°C in the condenser groove having

cond-cap
an effective radius of 3.6 mm (0.14 in.).

The condenser capillary pressure drop is only included in the system
pressure drop if the vapor front is positioned in the condenser groove. There is
approximately 1 W of heat lost to ambient from the vapor line. Therefore the
vapor front will recede out of the condenser and into the vapor line any time the
heat load is less than 1 W. Due to the uncertainty of the position of the grooved-
polyethylene insert in the condenser, there is a range of heat loads over which
the vapor front may not be in the condenser groove. Figure 4.19 contains a
schematic that shows the two extreme cases for the insert location. One is with
the insert against the vapor endcap on the condenser and the other is with the
insert against the liquid endcap. If the insert is against the vapor endcap, the
condenser capillary pressure will always exist. If however, the insert is against
the liquid endcap, there can be a 3-cm (1.2 in.) active condenser length
(corresponding to 17 W heat rejection, see Figure 3.11) where the vapor front is
not inside a groove and there is no condenser capillary pressure. Therefore any
power below 17 W runs the risk of having the meniscus recede out of the grooves
resulting in a sudden decrease in pressure drop of 40 Pa which in turn decreases
the driving pressure for back-flow through the wick.

4.6.3 Bubble life cycle
Bubbles in the VIEW-CPL evaporator core that oscillated in size without

any observed changes in operating conditions were observed during both ground
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Case 1: Grooved polyethylene insert shifted against vapor inlet of the condenser.
Axial location of vapor front will be in the grooved portion of the insert

Condenser tube
First Fin Located 2.4 cm (0.94in.) 17.5 cm (6.88 in.) long
from edge of condenser vapor inlet

Grooved Polyethylene insert
14.0 cm(5.5in.) long including

0.64 cm (0.25 in.) stop tabs on ends

Liquid endcap
L=1.3cm (0.50in.)

Case 2: Grooved polyethylene insert shifted against liquid exit of the condenser.
Axial location of vapor front will not be in the grooved portion of the insert,
unless the net heat is 19W or greater.

[ ]
e L=30cm(12in)

Q=17W

Figure 4.19 Two options for the positioning of the grooved polyethylene
insert inside the condenser.

and flight tests. This section describes atheory explaining the changes inside the
VIEW-CPL evaporator that allow bubbles in the core to expand and shrink.
The pressure distribution in the VIEW-CPL during typical operation is
schematically shown in Figure 4.20 (pressure differences are exaggerated for
clarity). The pressure distribution shown in Figure 4.21 is an example of the
pressure distribution that would allow liquid to flow from the reservoir into the

evaporator. In the explanation proposed here, the pressure change is due to a
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Figure 4.20 Schematic of a pressure profile for VIEW-CPL normal
operations.
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Figure 4.21 Proposed pressure profile due to the loss of meniscus in the
capillary evaporator.

decrease in the condenser pressure from a reduction in vapor supply caused by
dry-out of the evaporator wick. As a result, the pressure is also reduced in the
evaporator core because the core is connected to the vapor line through the dry

portion of the wick. It is this reduction in core pressure that allows liquid to flow

from the reservoir into the evaporator core.

bubble is an important parameter.
remains constant when there is a sufficient interface area between the bubble

and the liquid to conduct away the energy released during condensation. The

In understanding the bubble life cycle, condensation at the boundary of the
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calculations performed in Section 4.5.1 were for steady-state conditions with the
condensation at the bubble surface perfectly balanced with the energy carried
with the vapor leaking through the wick into the bubble. In cases where the vapor
leakage is greater than the condensation rate, the bubble will grow and eventually
fill the core. During transient (oscillatory) bubble cycles, the heat transfer from
the bubble to the liquid in the core varies with time due to changes in area and
changes in temperature of the liquid adjacent to the bubble. Figure 4.22 is a
sketch of a bubble cycle with a description of the changing boundary conditions
which are expanded upon in the following paragraphs.

Initial bubble growth. As the bubble initially grows, the heat of

condensation is transferred to the liquid surface layer at the growing bubble
boundary following Egs. 4.29 and 4.30. As in the steady-state analysis of Section
4.5.1, the bubble boundary is assumed to be the cross-sectional area of the core
(i.e. bubble fills the cross-section of the core and liquid contact is only on the
expanding side) and the condensation film coefficient is 500 W/m?-K. Since the
bubble is growing, the convection assumption previously used in Section 4.5.1,
for determining the temperature of the fluid, may not be valid. Instead, the liquid
is treated as a semi-infinite medium with convective heat transfer at the edge
adjacent to the bubble. Ozisik [1980] provides a solution for the temperature of

the fluid as

T = (T.-T,)| erfc erfc

X | -exp(Hx+H?af)
védat

Hyats W%t)]) +T, (4.45)
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Figure 4.22 Description of bubble life cycle and changing boundary
conditions between the bubble and the adjacent liquid.
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where H is the ratio of the convective heat transfer coefficient (in this case the
condensation film coefficient = 500 W/m?3-K) and the thermal conductivity of the
medium (k=0.64 W/m-K for liquid water). The temperature of the liquid adjacent
to the bubble is of interest since the rate of condensation is governed by the
condensation film coefficient and the temperature difference between the bubble
saturation temperature and the adjacent liquid. In order to show the effect of time
on the liquid temperature, the temperature at the liquid boundary, T(0,t) is plotted

in Figure 4.23 along with the expected heat transfer rate between the liquid and

the bubble in the core. If the bubble expansion occurs, because the liquid

temperature is elevated, there is a minimal amount of heat transfer that can occur

at the bubble boundary and the bubble can expand to fill the entire core.

Bubble growth in the evaporator inlet tube (core filled 100%). The liquid

flow into the evaporator is blocked once the bubble expands into the inlet. The
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area of the liquid/vapor interface is reduced to 25% that of the core interface
area. Further bubble expansion is retarded by the capillary pressure (64 Pa for
water at 50°C and perfect wetting conditions) exerted by the meniscus at the
edge of the inlet fitting. Since the fluid in the liquid line becomes stagnant and the
interface area is reduced, the heat transfer between the bubble and the adjacent
fluid is neglected in the bubble life cycle analysis. Therefore there is no potential
for shrinking the bubble via condensation. With the liquid blocked at the
evaporator inlet, there is no flow to the wick and the evaporator power causes
sensible heating of the evaporator body and evaporation of the remaining liquid

inside the wick. The evaporation rate is governed by the equations presented in
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Figure 4.23 Plot of liquid temperature and heat transfer rate at bubble
interface inside the core of the evaporator.
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Section 4.6.1. This rate along with the condensation rate at the condenser,
determines the rate of change of internal energy and the resulting pressure in the
vapor line. The bubble and the vapor in the vapor line are connected by the dry
portion of the wick and the pressure of each is equal because there is no flow
between them. Therefore, when the pressure of the vapor line decreases, the
pressure of the vapor bubble will also decrease.

Bubble Collapse. After the bubble in the evaporator core blocks the flow

of liquid to the core, the liquid in the wick will continue to evaporate until (1) the
pores in the wick dry-out or (2) the capillary limit of the wick is exceeded. The
second condition may occur because the viscous pressure drop of the vapor
exiting radially through the wick can be up to 200 times greater (by the ratio of
vapor to liquid kinematic viscosities) than the viscous losses of liquid flowing
through the wick. Even so, exceeding the capillary limit will only happen if the
contact angle between the water and wick is very high (~89°). If this occurs then
a local pressure rise occurs in the wick (because the vapor cannot be vented)
which in turn increases the local fluid temperature and reduces the rate of
evaporation.

In either case, wick dry-out or pressure drop limit, the pressure will
decrease in the vapor line due to the suction from the condenser which continues
to operate and condense the vapor in the vapor line. The lower pressure created
in the vapor line will cause liquid to flow from the reservoir which has essentially

constant pressure. Since there are two flow paths from the reservoir (high
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pressure) to the evaporator (low pressure), liquid exiting the reservoir will flow in
both directions. The flow rate between the three components, the reservoir,
condenser, and evaporator, can be determined from pressure drop and laminar
flow calculations. When the liquid flows back into the evaporator and re-wets the
wick, the meniscus is recovered and the pumping will begin again (until the next
dry-out).

A similar type of oscillatory behavior was described by Borodkin et al.
[1995] with a system that they called an “autooscillation two-phase loop”. In their
loop, pressure activated valves regulate the flow of liquid in the loop. Dry-out of
the evaporator is ensured by blocking incoming flow with a valve until all fluid is
evaporated and the pressure drops below the reservoir temperature, at which
point the valve is opened and liquid flows from the reservoir. In VIEW-CPL the
valve is simulated by the bubble in the core. As the bubble expands it blocks
liquid flow to the evaporator causing the pressure to decrease. When the
pressure decreases the bubble collapses and liquid is free to flow back into the
evaporator where the cycle can begin again.

Using the proposed theory, the VIEW-CPL evaporator temperature and
bubble volume for a period of the bubble life cycle was predicted and plotted in
Figure 4.24. For the case presented, the loop was operating in 25°C ambient air
with heater power of 30 W and a reservoir saturation temperature of 54°C. The
dry length of the wick was set at 4.7 cm (1.85 in) in order to assure that the

bubble would expand due to lack of subcooling (refer to Figure 4.14). The initial
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Figure 4.24 Prediction of evaporator temperature and bubble volume for
VIEW-CPL operating at 30 W with a dry portion of wick. A bubble volume
prediction is provided for a water and polyethylene contact angle of 0° and
89.3".

volume of the bubble was assumed to be 30% of the volume of the core. Atime
of 1050 s was used in Eq. 4.45 to set the boundary condition of the liquid
temperature adjacent to the bubble at 52.4°C. This was the lowest temperature
that would allow the bubble to expand using the proposed bubble life cycle
model.

As shown in Figure 4.24 the bubble expands for 126 s at flow rate of 0.1
to 0.2 mg/min. Once the bubble fills the core and liquid flow into the evaporator
is blocked, the liquid from the wick is evaporated. For the condition of 0° contact
angle, the evaporation continues for 2577 s until the wick is dry. If the contact

angle is 89.3° (chosen as the angle that will match test data presented in Section
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5.4) then the capillary limit of the wick will be exceeded at 450 s and the rate of
evaporation is reduced until the liquid interface in the wick moves closer to the
outer diameter (to reduce viscous losses). For this analysis, the rate is assumed
to be that which can be supported by 10% of the capillary pressure.

The mass flow rate from the reservoir to the evaporator during the collapse
is 0.5 and 0.35 g/s for contact angle 0° and 89.3°, respectively. The resistance
to mass flow in the other direction (reservoir through condenser) is less and the
flow rate is 100 times higher. With this model, the collapse continues until all of
the vapor in the vapor line is condensed. Which occurs when the bubble volume
reduces to 46% of the core volume.

The increase in evaporator temperature is a result of sensible heating the
evaporator body which is necessary in order to conduct heat through the wick to
the liquid interface. The high temperature limit set on VIEW-CPL was 60°C. The
temperature for the case of 0° reaches 72°C before the bubble collapses. Given
that bubble collapses were observed for the conditions presented in Figure 4.24
implies that the contact angle between water and the wick is closer to 89.3° than

0"
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5.0 VIEW-CPL TEST RESULTS AND DISCUSSION

The VIEW-CPL Test matrix in Appendix J lists the tests performed during
the Space Shuttle flight which are also representative of the ground tests. A
discussion of the trends observed during the testing is presented in Sections 5.1
through 5.5, including implications for the understanding of CPL physics.
Comparisons of the test results to engineering models are also discussed in
Sections 5.1 through 5.4.

VIEW-CPL operation included the following key modes: (1) pressure
priming, (2) initial start-up, (3) bubble growth and deprime, (4) re-priming, and (5)
bubble oscillations. Quasi-stable operations and evaporator overheating were
also observed. The objective of this chapter is to document these modes with
typical flight and ground test data. Comparison to the CPL operational modes
(described in Chapter 2) is made through the analysis of the numerical and visual
data obtained from the various tests.

5.1 Pressure Prime Test Results

The process of pressure priming from an unpowered state typically begins
with the CPL containing both liquid and vapor at an isothermal, vapor-liquid
equilibrium state. Figure 5.1 is a plot of a typical pressure prime (described as
regular pressure prime in Table 4.4) during flight testing, while Figures 5.2 and
5.3 are plots of pressure primes performed during ground testing. A note on the
x-axis of data plots that are presented in this chapter: The secondary scale at

the top of the data plots is the Elapsed Time scale. Time of day was chosen for
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the primary scale in this chapter in order that the visual data and testing
commands (that were recorded in terms of Time of Day) could be included on the
plot. The secondary x-axis scale does not start at zero in order that the primary
scale (Time of Day) may have round starting and stopping times. In the flight
pressure prime (Figure 5.1), the reservoir heaters were turned on by the
astronaut at time 22:30. The temperature sensors on the reservoir indicate a
temperature increase approximately 2 minutes after the heaters and temperature
controllers are turned on. The lag in temperature response is due to axial
conduction along the stainless steel reservoir and the lack of fluid circulation
inside the reservoir.

The increase in loop absolute pressure can be seen to follow the shape
of the reservoir line temperature very closely. This demonstrates that the
reservoir temperature effectively controls loop pressure. The pressure prime is
complete when the reservoir temperature is above the loop temperature and
there is no indication of flow (either through temperature changes or variations
in differential pressure). For the test in Figure 5.1, the pressure prime took 16
minutes to complete.

As the reservoir is heated, the pressure inside the reservoir increases and
liquid flows out into the loop. Fluid flow from the reservoir is inferred from the
temperature increase on the reservoir line and on the liquid line at the condenser
and subcooler. The increase in loop absolute pressure is another indicator of

flow. The evaporator liquid line temperature decreases because the fans and the
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thermoelectric cooling module (TEC) are in operation. The hot air drawn across
the TEC heat sink at the evaporator inlet causes the increase in the subcooler
liquid line temperature.

The liquid flowing out of the reservoir and into the loop compresses the
vapor space, thereby raising the temperature of the vapor space. There is a
slight temperature increase of 1.7 K measured on the vapor line from the
beginning to the end of the test. The latent heat must be rejected from the vapor
to allow condensation to occur. The energy is transferred as heat to the liquid
and the solid walls surrounding the bubble. As described in Section 5.3 covering
the pressure prime model, the heat transfer rate determines the speed of the
pressure prime process. There must either be a large driving temperature
difference, a good conductance from the loop to ambient, or a long time period
to allow the energy to leave the system as heat.

In the pressure prime shown in Figure 5.1, the evaporator core was initially
filled with vapor. It was observed from the video data that the vapor began to
condense on the wick surface at time 22:38, thus decreasing the vapor volume
until the evaporator core was approximately 50% liquid (volume basis) at 22:42.
At that point, a large slug of gas flowed into the evaporator core from the liquid
line and pushed the liquid already in the core through the wick such that the core
was completely filled with gas again. Eventually, the liquid flowed back into the
core at 22:43, but a few bubbles were still visible. The remaining bubbles are

believed to be noncondensable gas.
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The same bubbles inside the core were observed to oscillate after the
absolute pressure leveled off at 22:47 (16 minutes after start). From Figure 5.1,
the oscillations are seen to correspond to oscillations in the reservoir line
temperature, evaporator inlet temperature, and absolute pressure measurements
at an average frequency of 0.035 Hz. The amplitude of the oscillations in
measured data and the visual observations reduced suddenly at the same time
(22:57). It is likely that the oscillations are caused by nucleate boiling in the
reservoir. The oscillations appear after the loop is largely filled with liquid and
may represent volumetric oscillations of the noncondensable gas bubbles.
Oscillations of a similar frequency (0.053 Hz) were also measured in a second
pressure prime during flight operations.

The ground test pressure primes (in Figures 5.2 and 5.3) showed
temperature trends similar to the flight test pressure prime (in Figure 5.1). One
difference is the lack of oscillations in the ground test data. In the ground tests,
the vapor grooves in the reservoir wick (refer to Figure 3.15) will drain. In micro-
gravity, the reservoir wick keeps liquid in contact with the reservoir wall, therefore
it may be possible to have oscillations as vapor bubble vent from the grooves in
the wick.

Another explanation for such a significant difference between ground tests
and flight tests is also based on the location of the liquid inside the reservoir. In
ground tests, the phases in the reservoir are stratified, thereby guaranteeing that

the T8 temperature measurement device is measuring the vapor temperature.
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In flight tests, the liquid is expected to be distributed throughout the internal wick
structure. Thus, the wall temperature may not represent the saturation
temperature, but rather a subcooled liquid temperature since the wick inside the
reservoir, by design, will tend to pull liquid towards the reservoir walls. From
Figure 5.2, the dT/dP slope is 3.1 K/kPa when measured between times 11:08
and 11:23 which closely matches the slope (3.3 K/kPa) from the saturation curve
for water at the same temperature [Haar et al., 1984]. Similarly, the dT/dP slope
for the post-flight data shown in Figure 5.3 is 3.2 K/kPa over the same
temperature range. The same is not true of the flight test (Figure 5.1) , where the
reservoir temperature is nearly linear and the measured dT/dP is 1.9 K/kPa
compared to the saturation curve where it is 3.3 K/kPa. The slope comparison
is made, rather than a temperature/pressure equilibrium point, because any
partial pressure contribution of noncondensable gas (see section 5.1.1) is
removed by the slope calculation.
5.1.1 Indications of noncondensable gas

Another observation made from the three pressure primes (presented in
Figures 5.1, 5.2, and 5.3) is the difference between measured pressure and
saturation pressure based on measured temperature, thus indicating a certain
amount of noncondensable gas (NCG) inside the system. In VIEW-CPL,
noncondensable gas is most likely introduced either through very small air leaks
around the o-ring seal at the evaporator, through the reaction of stainless steel

and water (to form hydrogen gas), or air coming out of solution from the initial

192



charge. The beginning of the pressure primes, when the loop is nearly isothermal,
provide an opportunity to quantify the amount of NCG in the system. The amount

of gas, n, is calculated with the ideal gas law
n = ﬂ/

o (5.1)

where T is the loop temperature, P is the partial pressure of the gas (measured
pressure minus saturation pressure of water at temperature T), R is the universal
gas constant, and V is the volume occupied by the gas (which is the volume not
occupied by liquid water, calculated by subtracting the volume of liquid charge
from the total VIEW-CPL volume). The amount of NCG calculated using this
method is plotted in Figure 5.4 for the three tests shown in Figures 5.1 through

5.3. The shape of the curve-fit to the data supports the theory of an initial
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increase in NCG from air coming out of solution in the first couple of days after
charging, and then a nearly constant increase in NCG due to a small air leak at
6.7 x 107 mole/day equivalent to 0.015 ml/day at standard atmospheric
conditions.

In 17 out of 18 flight pressure primes for which video data are available,
bubbles suspected to be NCG were observed in the evaporator after the pressure
primes were completed. The observations were made after sufficient time had
elapsed for all water vapor to condense based on the pressure prime analysis
presented in Section 4.3. In general, bubbles were often present in the
evaporator core prior to the start of the pressure prime. Only three flight tests
were started with bubbles in the core that were longer than 2.5 cm (approximate
volume greater than 1.4 cm?®). Only one test, CV-1, was started with all liquid and
no bubbles in the evaporator. For that test, it is thought that the NCG was
located elsewhere in the loop.

The time required to dissolve the suspected NCG into the liquid would be
on the order of hours, rather than the minutes for which the pressure primes were
performed. A mass diffusion analysis was performed to determine the time
required to dissolve the NCG into a semi-infinite pool of liquid [Ozisik, 1980],
assuming that the wick core is filled with nitrogen gas at the same pressure and
temperature as the evaporator. A constant molar concentration was assumed at
the free surface, which was 25.3 cm? based on the area of a 12.7 cm (5 inch)

long semi-circular bubble filling the core of the wick. The diffusion area was not
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varied during the analysis, therefore the actual time for the gas to diffuse into the
liquid is greater than the results that are presented since the area will decrease
as the bubble shrinks. The binary diffusion coefficient of nitrogen and water was
D=1.5x10® m?%s [Incropera & DeWitt, 1990]. Figure 5.5 indicates that the NCG
will initially dissolve quickly, but the bubble volume will still be visible even after
24 hours. Thus the length of the pressure primes would not be sufficient to
completely dissolve NCG into the liquid.
5.1.2 Data comparison to pressure prime model

The results of the pressure prime model (Section 4.3) showed that the time
required to collapse the vapor inside the loop is 1080 sec given the heat transfer

characteristic between the vapor space and ambient, UApL, = 0.00585 W/m-K.
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Figure 5.5 Predicted noncondensable gas bubble volume based on mass

diffusion into a semi-infinite pool of water.
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The first pressure prime during flight testing (Test Name: PRIME-1 in Figure 5.1)
iscomplete at 22:47:11, 937 sec after applying heater power. The pressure prime
is determined to be complete based on the video data (a negligible decrease in
bubble volume) and the condenser exit temperature (T2) which stops increasing,
both indicating that there is no flow from the reservoir. The oscillations in the
reservoir line temperature that take place after the pressure prime is complete are
likely due to further compression of NCG bubbles during the boiling mode
changes in the reservoir which is a detail not included in the pressure prime
model. The reservoir inlet temperature sensor is located too close to the
reservoir to determine the end of the pressure prime because it is influenced by
the reservoir temperature.

Although there were no video recordings of the pressure primes from the
ground tests, information on the pressure prime can be observed from the
temperature traces. The highest flow resistance is in the evaporator wick, and
therefore the flow from the reservoir will follow two paths (described in Table 4.6)
that meet at the evaporator wick. The bulk of the flow is through the vapor line
and condenser since this is the path of least flow resistance. The first
temperature sensor encountered by the liquid as it flows from the reservoir to the
evaporator is the sensor (T2) at the (normal) exit of the condenser. The warm
liquid exiting the reservoir heats the line as it passes through. Therefore, a good
indicator that the pressure prime is complete is when the condenser exit

temperature peaks at a maximum value. The temperature of the line decreases
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when the flow stops because of heat loss to ambient. In Figures 5.2 and 5.3, the
maximum temperature at the condenser exit is found between 11:20:34 and
11:25:26 (909 and 1201 s) for test “PRESHIP PRIME-1" and between 19:49:50
and 19:54:52 (1025 and 1327 s) for test “POSTFLIGHT 0202971". The pressure
prime completion is given as a range because the temperature measurements
are only accurate to +/-0.1 K.

Table 5.1 lists the predicted and measured durations for all VIEW-CPL
pressure primes. The predicted values differ between pressure primes because
they start with different initial reservoir temperatures. The predicted and
measured values are within the experimental uncertainty and model sensitivity
in all instances except for the pressure prime 0226971, where the minimum
measured and maximum predicted values differ by only 3%.

Figure 5.6 contains a comparison of the temperature traces predicted by
the pressure prime model to the test data for the flight pressure prime that was

Table 5.1 Measured and predicted duration of VIEW-CPL pressure primes.

Test Title | Measured Pressure Prime Predicted Prediction sensitivity to vapor space
Duration [sec] Duration [sec] heat transfer (UA = -/+ 20%) [sec]
Preship-1 1055 +/- 146 995 -110 / +160
Preship-2 743 +/- 171 1005 -110 /+160
Prime-1 936 +/- 67 1080 -120 /+180
Prime-2 957 +/- 57 1055 -120 /+170
0202971 1176 +/- 151 975 -105 /+155
0226971 1150 +/- 48 920 -100 /+145
0410971 1165 +/- 66 960 -105 /+155
0804971 986 +/- 39 1140 -130 /+190
AVERAGE 1021 +/- 93 1016 -113 / +164
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Figure 5.6 Comparison of temperature predictions to test data for VIEW-
CPL flight pressure prime PRIME-1.

presented in Figure 5.1. Similar results were obtained for the pre-flight and post-
flight data. In Figure 5.6, the measured reservoir temperature has an 80 sec lag
before responding to the heater power. This is due to the location of the
temperature sensor relative to the heater. The sensor is located 38 and 51 mm
(1.5 and 2 in.) from the 5 W and 20 W heaters, respectively. The reservoir is
made from thin walled stainless tubing (57 mm OD x 0.9 mm wall) and therefore
is not a good conductor from the heat source to the temperature sensor location.

A one-dimensional transient analysis was performed on the reservoir using
pure conduction as the heat transfer mode from the heater location to the
temperature sensor. Figure 5.7 shows the results of the conduction analysis,

indicating that the temperature at a location 38 mm away from the source
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Figure 5.7 Results from a one-dimensional conduction analysis on the
temperature lag from the reservoir heater location to temperature sensor.

temperature will lag by the same difference as the pressure prime reservoir
temperature and the measured reservoir temperature.

In Figure 5.6, the maximum difference between the predicted loop
temperature (CV2) and the measure loop temperature is 3 K. The shape of the
loop temperature traces are similar. The end of the pressure prime is indicated
by a reduction in the slope of the loop temperature trace. Since the loop
temperature increases are due to vapor compression and there is no more vapor
compression, the temperature stops changing when the pressure prime is

complete and the loop is filled with liquid. The slopes of the predicted
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temperature traces in Figure 5.6 are nearly the same as the slopes of the
measured temperatures.
5.1.3 Heat loss from the reservoir

The heat loss from the reservoir during the pressure prime is small
compared to the power input. The test data can be used to find the heat loss
because the 5 W reservoir heater operated at steady-state between tests. For
example, the reservoir temperature at the start of three tests where the
experiment had remained off for several hours (with the exception of the 5 W
reservoir heater) are listed in Table 5.2 along with the calculated conductance to
ambient. Based on these results, the average heat loss to ambient from the
reservoir is 0.29 W/K. This conductance is used in the reservoir models

discussed in Section 4.3 and 4.4.2.

Table 5.2 Heat loss from the reservoir in the shuttle cabin during flight testing.

Test (following 5 W Temperatures UA (WIK)
reservoir heating) Reservoir T8 ("C) Ambient T9 (°C)
S-75 44.7 26.8 0.28
S-10 45.6 29.4 0.31
S40R-1 449 27.9 0.30
Average: 0.29

5.2 Observations of VIEW-CPL Start-up

After the pressure prime at the start of each test was complete, power was
switched on to the evaporator heaters. Section 4.4 described two segments of
the start-up of a CPL system as the sensible heating period followed by the vapor
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line clearing. These two start-up segments are illustrated in Figures 5.8, 5.9, and

5.10 for typical flight, pre-flight, and post-flight tests with 35 W of evaporator

power.

General trends that were observed in the temperature profiles during start-

up are:

1.

Once the 20 W reservoir heater is turned off (end of pressure prime), there
is a decrease in the temperature of the reservoir line. The temperature
sensor on the reservoir line (T1) is close to the reservoir and is influenced
by heat conducted from the reservoir. The post-flight test does not show
a decrease in the reservoir line temperature at the beginning of the start-
up because the 20 W reservoir heater remained on through-out the test.
After the evaporator heater is turned on, there is an increase in the
temperature of the evaporator body (T6), evaporator liquid inlet (T7), and
evaporator vapor exit (T5) to the vapor line. The liquid inlet and vapor exit
temperatures increase due to conductive heat leak from the evaporator
body; the slope of the temperature traces for these locations is
significantly smaller than the rate of rise of the evaporator body.

The boiling observation (visual) corresponds with a distinct rise in the
vapor line temperature (T5) and a distinct drop in the reservoir line
temperature (T1) from cold liquid flowing to the reservoir. There is a
sharper increase in the vapor line temperature for the post flight test. This

may have been a result of a liquid filled core along with the continued 20
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W heating on the reservoir (in the other tests, the 20 W heater is turned
off when the evaporator power is turned on). There is normally an
increase in both fluctuation amplitude and frequency of the differential
pressure signal at the time of boiling. The flight and pre-flight data show
the change occurring at the time of boiling, while the post-flight data shows
the change after vapor reaches the condenser. The reservoir heater that
was on during the post flight testing may have influenced the differential
pressure measurement since the amplitude of the signal is very small and
within the noise range of the transducer. In four of the 18 start-ups
observed during flight testing (Tests S50-1, SS25-1, JUMP-1, S40-2), the
change in the differential pressure signal occurred before the sudden
increase in the vapor line temperature (T5); in the remaining start-ups the
change occurred at the same time the temperature increased at the vapor
exit. It is possible that the start-up for the four cases was such that the
boiling was contained in the vapor grooves and vapor did not exit the
grooves for a couple of minutes. In all cases, there was less than a two
minute lag between the differential pressure oscillations and increase in
temperature of the vapor line.

The slope of the temperature trace for the evaporator body (T6) decreases
after boiling begins, indicating that some of the evaporator power is used
for boiling the water rather than sensible heating of the evaporator. The

reservoir temperature (T8) also decreases when the boiling begins
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because room-temperature liquid is displaced from the vapor line by

vapor. The decrease in reservoir temperature causes only a slight

decrease in the absolute pressure due to the shallow slope of the vapor

pressure curve of water at 50 °C.
5. In all three plots for the 35 W evaporator power, the vapor reaches the

condenser inlet (T3) approximately 5 minutes after boiling starts.
In general, the start-up profiles for the flight, pre-flight, and post flight tests are
very similar for the 35 W power level. Other power levels also show similarity
between the ground and flight tests. One difference observed between ground
and flight tests is the change in reservoir temperature during the vapor line
clearing. For the ground tests the slight decrease in reservoir temperature
corresponds to a slight decrease in absolute loop pressure. However, in the flight
tests the reservoir temperature decreases by 5 K during the vapor line clearing
while the absolute loop pressure decreases by the same amount as it did during
the ground tests. The reason for the difference in the reservoir temperature
sensor response is that during flight testing, the temperature sensor is likely
measuring a liquid temperature rather than a vapor temperature, due to effects
of micro-gravity.

During CPL startup, the sensible heating period ends when a vapor bubble
is formed in the evaporator vapor grooves or vapor plenum. The vapor line
clearing period is the time required to replace the liquid in the vapor grooves,

vapor plenum, and vapor line with vapor. The following sections compare test
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data to the system models introduced in Sections 4.4.1 and 4.4.2 that describe
the sensible heating and vapor line clearing, respectively.
5.2.1 Sensible heating

Figures 4.6. and 4.7, from the conduction analysis in Section 4.4, provided
expected temperature profiles of the evaporator block, at the same location as
the temperature sensor T6 (see Figure 4.5), and the temperature profile of the
warmest node in the wick structure during the sensible heating period. Figure
5.11 compares the predicted sensible heating time that is required to heat the
wick to saturation temperature (as determined by the reservoir temperature) with
the actual time that a vapor bubble was observed in the evaporator vapor

grooves or vapor plenum. The predicted time was read from the plot in Figure

800 -
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Figure 5.11 Comparison of predicted and observed time for fluid in the
VIEW-CPL evaporator to boil after heater power is turned on.
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4.6. The values were determined by selecting the curve that matches the heater
power and finding the normalized wick temperature (T, T,) location thatis equal
to the measured reservoir temperature normalized with the initial evaporator
temperature (T8-T6). The associated time is the prediction for the start of boiling.
The error bars in Figure 5.11 on the observed time correspond to -60 s since this
is the maximum deviation that the camcorder time may deviate from the PGSC.
The data scatter in Figure 5.11 indicate that boiling is sensitive to a number of
variables. Of the 14 tests that are plotted, the time to boil is over-predicted in 4
cases, under-predicted in 4 cases, and predicted within 20% in 6 cases (if cases
with error bar overlap are counted).

The under-predicted outliers, for which the boiling observation exceeded
300 s, may result from the heater position. In particular, the 25 W heater is
located in the middle of the evaporator away from the grooves that are visible.
The visual observations are limited to the two edge grooves (of seven vapor
grooves) and the vapor plenum. Bubbles may form in other grooves that are not
visible and provide heat spreading which would delay the observed boiling.
Superheat requirements and availability of nucleation sites can cause the
observed time to be longer than the predicted time. The over-predicted outliers
may also be experiencing unusual transient effects due to noncondensable gas.

The noncondensable gas is not always in the same place in the loop; in
fact some tests do not start with gas bubbles in the core. The boiling

observations that are made before the predicted time may actually be
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noncondensable gas bubbles expanding in the vapor grooves rather than vapor
bubbles forming. This is supported by the visual observation that, for the under-
predicted tests, the bubble growth is very slow and not characteristic of a boiling
mode.

Since the sum of the partial pressures in the evaporator is equal to the
reservoir pressure, Py + P (Teaevap) = Puap(Tsarres), the saturation temperature
in the evaporator is less than the reservoir saturation temperature if
noncondensable gas is presentin the evaporator. Therefore the working fluid will
evaporate at a temperature lower than the saturation temperature corresponding
to the system pressure (controlled by the two-phase reservoir). The temperature
at which the working fluid inside the evaporator boils is a function of the system
saturation pressure and the amount of noncondensable gas present in the
evaporator.

If noncondensable gas is present in the evaporator core but not in the
vapor grooves, then boiling can occur in the core before the fluid inside the
grooves has reached the necessary temperature to nucleate. For fluids with a
low vapor pressure (such as water) even a small amount of gas can cause the
fluid inside the core to evaporate before the fluid inside the grooves. The ideal
gas law can be used to determine partial pressure of the noncondensable gas
given a known amount of gas and bubble volume. Subtracting the gas partial
pressure from the pressure of the reservoir gives the partial pressure of the vapor

inside the evaporator. The saturation temperature inside the evaporator is then
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determined from the vapor pressure curve for water. As an example, Figure 5.12
contains a plot of the effect that noncondensable gas has on the temperature at
which a bubble inside the core can expand due to evaporation. The plot shows
the subcooled temperature (temperature below the reservoir saturation
temperature) at which evaporation can occur as a function of the amount of
noncondensable gas contained within a bubble. Figure 5.12 contains two curves
in order to show the effect at two different reservoir saturation temperatures. For
lower reservoir temperature, there is a larger impact of noncondensable gas due
to the lower slope of the vapor pressure curve. For example if 2.0x10™" kmol of
gas is contained inside a 0.02 cm?® the bubble, the gas would cause the fluid

inside the core to boil at an apparent saturation temperature 5 K below the

50 c Subcooled AT =Tg - T
45 1+ where
B Tr = Reservoir temperature (system saturation
40 + temperature)
. Te = "Saturation" temperature inside evaporator core
< 35 ¢ Te = P(Tg) *V,/ (R * NCG)
— 30 [ / P(Tg) = System saturation pressure
g c / NCG = # moles of noncondensable gas inside evaporator
2 o5 core
[« L
3 F -
S 20 | .-
n r «——|Tg=48°C Le "
15 ’E - - -
s _ =" " «——[Tg=100°C
10 + =
L / - -
5 : - -
0 A S L . . . . . . L L L |
0.0.E+00 5.0.E-09 1.0.E-08 1.5.E-08 2.0.E-08

Concentration of noncondensable gas per bubble volume [kmol/cm?]

Figure 5.12 Effect of noncondensable gas concentration on evaporator
saturation temperature.
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saturation temperature for a 48 °C reservoir and only 1 K below saturation
temperature for a 100 °C reservoir.

The conduction model presented in Section 4.4.1 was used to predict the
evaporator temperatures prior to the onset of boiling. Figure 5.13 is a plot of the
predicted normalized core temperature for the different heater powers as a
function of time. The time at which boiling is observed in the evaporator for the
flight tests and the predicted normalized temperature at the wick outer diameter
at those times are also plotted in Figure 5.13. Bars extend from the predicted

wick temperature points to the appropriate curve for the core temperature and
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Figure 5.13 Predicted normalized temperatures for the evaporator core
and wick outer diameter at the measured time of observed start-up in the
VIEW-CPL flight tests. Temperature differences called out on the plot
correspond to the gradient between the outer diameter of the wick to the
core at the time when either evaporation or boiling is observed in the
evaporator core or vapor grooves.
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the temperature gradient across the wick is noted on the plot. The significance
of the plot is that it helps quantify the gas concentration in the core that will allow
the potential for evaporating in the evaporator core before boiling occurs in the
vapor grooves. For the VIEW-CPL flight tests, a gas concentration in the core
from 1.1 to 2.5 x 10° kmol/cm?® (determined from Figure 5.12 for reservoir
temperature 48°C and corresponding to a temperature difference between core
and wick ranging from 5.0 to 15.5 K) would allow bubbles in the core to expand
before nucleation in the vapor grooves. Consequently, predicting the exact start
of boiling with the conduction model described in Section 4.4 is limited by
knowledge of the NCG concentration in the evaporator.

The conduction model predicts the temperature profile of the evaporator
during the pure conduction phase of the start-up (i.e. no evaporation in bubbles
or nucleation). Figure 5.14 shows the predicted evaporator temperature with the
measured evaporator temperature from the VIEW-CPL flight tests. The predicted
temperature is the same plot from Figure 4.7 (without the 11 W trace because
there is no data available at 11 W for comparison) with the addition of VIEW-CPL
evaporator temperature data from flight testing. The data points correspond to
the evaporator wall temperature (T6) at the time of the first observed bubble
growth inside the evaporator core or vapor groove. The actual heater power
used in the tests is noted in Figure 5.14 and was dependent upon the voltage

supply to the experiment at the time of the test.
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Figure 5.14 Comparison of predicted evaporator temperatures with
VIEW-CPL flight data (temperature sensor 6) at the time of start-up.

For those tests where boiling occurred within the first three minutes after
heater power was turned on, all data points fall on the predicted temperature
curve. For later times, the test data falls below the predicted temperatures. The
most likely reason for the deviation is that the model does not account for heat
loss to ambient because it assumes that the evaporator is perfectly insulated.
However, the insulation on the evaporator is not perfect. In addition, it is possible
that some of the heater power is used for evaporation in a section of the
evaporator that is not observable. The predicted temperatures are for the case

where all of the heat input goes towards sensible heating of the evaporator and
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saturated wick. Thus the model would over predict the evaporator temperature
for any case where some of the heat is used for evaporation.

A comparison of the conduction model to actual test data is presented in
Figure 5.15 for the three 38 W start-up cases presented in Figures 5.8 - 5.10. As
shown in Figure 5.15, the data closely match the predicted temperature at the
beginning of the conduction phase. As the warm-up continues, the slope of the

test data curve is less than the predicted slope, for reasons previously explained.

%07 — MODEL =38 W
i 4 PRESHIP DATA =34 W (Test PRESHIP PV-GRAD?2, Sept. 10, 1996)
50 1| ™ FLIGHT DATA = 38 W (Test S35-1, Nov. 24, 1996)
e POST FLIGHT DATA =39 W (Test 027972, Feb. 7, 1997)

End sensible heating period for POST FLIGHT data:

:@ i
jg ,
% 40 1 Boiling in vapor plenum at 668 s
2 .
£ 30
= i
3 ] End sensible heating period for
X 7 FLIGHT data: Boiling in vapor
< 20 - v
£ 1 plenum and bubble expanding in
S} ] core at 400 s
pd i
10 - _ i _
] End sensible heating period for PRESHIP data:
1 Boiling in vapor plenum at 401 s
O; L L L L L L L L L L L L L
0 60 120 180 240 300 360 420 480 540 600 660 720 780

Elapsed time (sec)

Figure 5.15 Comparison of predicted evaporator temperatures with VIEW-
CPL data for pre-flight, flight, and post-flight start-up tests.

5.2.2 Heat loss from the evaporator
Heat loss from the evaporator was determined by fitting curves to the data

using a lumped capacitance heat transfer model in the form of
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mcp%- = c'.)e - UA(T- Tamb) (5.2)

Assuming that the evaporator power, thermal mass (800 J/K for the VIEW-CPL
evaporator) and overall heat transfer coefficient (UA) are independent of

temperature and time, then equation 5.2 provides a temperature profile

: : UA
Q Q.| |"me!
T(t) = U—; + To—Tamb—U—:\ e( °P) (5.3)

from which UA can be found by comparing to test data.  The validity of the
lumped capacitance model was verified by calculating a Biot number (Bi = hL/k)
of 0.007 for the stainless steel evaporator using a characteristic length calculated
from volume divided by surface area for a rectangular box 20 cm long x 6 cm
wide x 2 cm thick. The lumped capacitance model is accurate for Biot number
less than 0.1 [Incropera and DeWitt, 1990].

The evaporator temperature profiles for the transient deprime periods of
flight Tests S25-1, S50-1, SS25-1, and JUMP-1 are plotted in Figure 5.16 along
with predicted temperature profiles using a UA heat loss value of 0.54 W/K. The
UA value was determined by a least-squares fit to the flight data; the pre-ship
data (S40-1) and the 10 W case for PV-LOW-2 were used to confirm the validity
of the analysis. The 25 W heater power was chosen in determining the heat loss
factor since the 25 W heater was located in the center of the evaporator and
provides more uniform evaporator heating than the 10 and 40 W heaters that are

located on the evaporator sides (see Figure 3.20). Since the evaporator
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Temperature (°C)

with the appropriate heater power and émperatures taken 7
from test data, and mcp = 800 J/K and UA = 0.54 W/K

1 ol

T Ca
52 ’;"W —
50 ’

T Qe 1(Qe [ (To U Tamp)UA) exp(L ;U4 t))

T Solid lines are from 1) Tamb
48

46 -+ttt L A o L B S L s e e L B o e
0 60 120 180 240 300 360 420 480 540
Time (sec)
¢ S25-1Q=28.2W 4 SS25-1Q=279W X S50-1 Q =30.9 W
o JUMP-1Q =29.6 W +LOW-2Q =104 W = Preship S40-1 Q =27.2 W

Figure 5.16 Least-squared fit to flight data to determine heat loss (UA =
0.54 W/K) from the VIEW-CPL evaporator by the lumped capacitance
analysis. DATA from LOW-2 and Preship S40-1 were used to check the
correlation. They were not included in the sample for least-squares
determination of the UA value.

temperature sensor is located on the side of the evaporator, the data for tests
that used the 10 W and 40 W heaters is skewed and more difficult to interpret,
especially for the start-up cases. The deprime data were selected because the
measured evaporator temperature is more likely to read the average evaporator
temperature than during the start-up transient period. Since the deprime occurs
after the loop has started, the vapor in the vapor grooves evenly transfers the
heat to all parts of the evaporator. The deprime periods were identified by (1) the
vapor line filling with liquid as indicated by the condenser inlet temperature at

least 10 K less than the saturation temperature (T3 << T8), and (2) the
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evaporator temperature increasing above the saturation temperature (T6 > T8).
The conclusion from the analysis is that the average heat loss from the
evaporator is characterized by a conductance of UA = 0.54 W/K.
5.2.3 Vapor line clearing observations

After the sensible heating period, evaporation begins in the evaporator.
In the start-up figures (5.8 - 5.10) an increase in the rate of the evaporator exit
temperature (vapor line temperature T5 just after the time where nucleation
occurs in the vapor grooves) corresponds to the liquid displacement from the
evaporator vapor spaces and vapor line. The liquid interface is visible through
the evaporator and tracked by the evaporator and vapor line temperature
measurements. The transient pressure surge of liquid displacement is described
in Section 4.4.2. The purpose of the pressure surge analysis was to determine
if the liquid in the core would flash due to the pressure drop. The model provided
evidence that the pressure surge experienced during VIEW-CPL start-ups did not
exceed the capillary limit of a fully-wetted evaporator wick (10 kPa) or the vapor
pressure of the fluid inside the core of the wick (refer to Figure 3.18). The
maximum pressure drop predicted by the model was 215 Pa, which would only
exceed the capillary limit of the wick if the contact angle between the
polyethylene and water was greater than 89.994° which is considered unlikely.
The pressure surge would result in a bubble expansion in the core only if there

was portion of wick that was not fully wetted after the pressure prime.
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To check the validity of the pressure surge model, a comparison was
made with the experimental data. The comparison is based on the length of time
required before the vapor front enters the vapor line (indicated by vapor exiting
the evaporator vapor plenum) and the elapsed time for the vapor front to pass
through the vapor line (indicated by vapor flowing into the inlet of the condenser).
Figure 5.17 summarizes the experimental data for these parameters. Heat loss
from the evaporator to the surrounding air was estimated from the conductance
calculated in Section 5.2.2. A curve fit was made using a hyperbola with time
duration (from the displacement of liquid from the evaporator vapor plenum to the
arrival of the vapor front at the inlet of the condenser) as a function of net heater

power. The hyperbola model is a logical fit to the data since the volume
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Figure 5.17 Plot of the time required to move the vapor front from the

beginning (exiting evaporator) to the end of the vapor line (inlet of

condenser) measured during VIEW-CPL flight and ground (pre-ship) tests.

Note that the curve fits overlap for the flight and pre-ship data of the vapor

front exiting the evaporator.
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displacement for laminar flow is inversely proportional to the mass flow rate.
The time required for clearing the evaporator vapor plenum is nearly
identical for the flight and the pre-ship data. The time required for clearing the
vapor line is 15% shorter for the pre-ship data compared to the time for the flight
data at the same power. This may be a gravity effect, where the vapor front in
1-g may not be as sharply defined as in micro-gravity. In 1-g, the vapor/liquid

interface inside the vapor line is expected to stratify because the Bond number,

_ 9(pp,)D?
o

Bo (5.4)

is equal to 8.6 for water at 50 “C inside a tube with a 7.9 mm inner diameter. The
Bond number must be less than four for a meniscus to be maintained in the tube
to prevent stratification. Since the end of the pressure surge is indicated by a
temperature measurement, stratification in 1-g is expected to allow vapor to reach
the temperature sensor (located on top of the tube) before all of the fluid is
displaced from the vapor line, which leads to shorter times.

The large scatter may be due to several factors including different
operating temperatures. Additionally, the pressure surge model indicates that the
duration is sensitive to heat loss from the CPL during the pressure surge. This
makes the temperature of the evaporator at the start of boiling and the ambient
temperature important parameters.

The sensitivity to evaporator temperature and ambient temperature was

determined by exercising the model for the 35 W start-up case shown in Figure
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5.8 (Flight Test: S35-1, Nov. 24, 1996). By varying the evaporator and ambient
temperature, the sensitivity to the duration of the pressure surge was found to be
7 sec/K and 6 sec/K, respectively, which is approximately 4% change in time for
a 1 K change in temperature difference. The nominal case shown in Figure 5.18
for an initial evaporator temperature of 54.0 °C and ambient temperature at 24.9
°C (not shown in figure).

In Figure 5.18, it is shown that the pressure surge model over predicts the
reservoir and evaporator temperatures. Additionally, the predicted vapor volume
initially expands faster than what was observed, resulting in an under prediction

of the time to clear the vapor grooves (5 s compared to 118 s measured). The
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Figure 5.18 Pressure surge analysis for VIEW-CPL compared to start-up
data for flight test S35-1. Vapor volume required to displace all liquid from
the vapor grooves is 4.95 cc and volume to displace all liquid from the
vapor line is 29.11 cc.
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time to clear the vapor line is over predicted (334 s compared to 300 s
measured). The difference for clearing liquid from the vapor grooves may be
attributed additional thermal mass, of the evaporator block at the vapor plenum
which is heated only by conduction through the block, that is not accounted for
in the model. This time is relatively short compared to the clearing of the vapor
grooves which is predicted by the model within 12%. Another difference between
the model and actual system is that the vapor and liquid phases inside the
reservoir are assumed to be separated in the model (although condensation is
permitted inside of the vapor space). This approximation is rationalized because
the reservoir contains an internal wick structure intended to control the phases
and prevent vapor from exiting the reservoir. However, the decrease in reservoir
temperature that is observed in the measured data (T8) may indicate mixing of
the reservoir fluid with incoming liquid, which is subcooled at ambient
temperature, resulting in a decrease in reservoir temperature. The temperature
gradients and absolute pressure measured during the VIEW-CPL pressure
surges do not indicate that VIEW-CPL was cold-shocked during startup even
though there was a 4 K temperature drop. Although the 4 K reservoir
temperature drop that is observed during the flight Test S35-1 (Figure 5.18)
corresponds to a pressure drop of 2.25 kPa, the absolute pressure transducer
only registered a 0.7 kPa decrease. ltis likely that the temperature sensor on the

reservoir is measuring a liquid temperature and not a saturation temperature.
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Figure 5.19 is a comparison of the pressure surge model results to the
flight data for varying heater power. The open symbols were obtained by
exercising the model with the measured evaporator power, ambient temperature,
reservoir temperature, and evaporator temperature as model input parameters.
The prediction results were fit to a hyperbola (the dashed line on Figure 5.19)
because the time to displace liquid is inversely proportional to the net heater
power. The flight data (solid line) was previously shown in Figure 5.17 and is
repeated here for comparison purposes. As shown in the bottom two curves of
Figure 5.19, the model significantly under predicts the actual response for the
The curve fit to the predicted data for the time

clearing of the evaporator.

required to move the vapor front to the end of the condenser closely matches the
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Figure 5.19 Comparison of predicted (open symbols) to measured (solid
symbols) time required to move the vapor front from the beginning to the
end of the vapor line during the VIEW-CPL flight tests. The curve fit to the
predicted times is a dashed line while the curve fit to the actual data is a
solid line.
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curve fit of the measured data. The accuracy of the measured data is +0/-10 s
due to the frequency of the data collection (4 to 6 s per scan). While the model
does not accurately predict the time to clear the vapor line of liquid, it provides a
general description of the pressure surge physics.

The purpose of creating the pressure surge model was to determine if a
deprime was inevitable for a water CPL operating at 50 °C. The model indicates
that the pressure required to displace the fluid from the vapor line was well below
the capillary pressure of 10 kPa for a fully-wetted wick. The differential pressure
data obtained from the experiment also indicated that pressure drop was so low
that it was within the noise of the sensor. However, vapor was observed in the
core of the evaporator by the end of all pressure surges, even for start-ups that
began with a liquid filled core. This supports the hypothesis that the evaporator
wick is not fully wetted, and had dry portions that allowed vapor to back-flow into
the core.

5.3 Steady-State Operations

Atthe end of start-up, vapor bubbles were observed in the evaporator core
for all flight and ground tests. As described in Section 4.5 the CPL can still
circulate the working fluid provided that the bubble does not block the flow of
liquid to the wick. Backing up this theory are observations of extended periods
of steady-state operations made during the VIEW-CPL testing.

Steady operations in this study are defined by two conditions: (1) steady

evaporator temperature (less than 0.5 K change in temperature at T6 for a
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minimum period of 10 minutes) and (2) a constant temperature difference
between evaporator body and evaporator exit (temperature sensors T6 and T5,
respectively). The latter condition is included because the heater location can
influence evaporator temperature readings and mask an unsteady condition.
Maintaining a constant temperature difference between the evaporator body and
the exit implies that there is no change in evaporator conductance (i.e. radial dry-
out in the wick). Ten minutes was chosen as the time for observing steady-state
based on a ground testing experience where VIEW-CPL appeared to be
operating steadily with 28 W on the evaporator for 10 minutes, but then deprimed
(preship test #S65-2). Note that the two steady-state criteria conditions do not
exclude periods where the core bubble oscillates. In fact there was a vapor
bubble in the core of the evaporator at some point during all of the tests.

The steady-state conditions were satisfied in six of the 23 pre-ship tests,
none of the flight tests, and five of eight post-flight tests. Since steady-state
conditions were only observed in ground testing, it suggests that gravity or
another condition from testing in the shuttle (i.e. reduced convection, higher
ambient temperature, or longer test durations) influenced the tests. The time
span between the pre-ship and post-flight tests implies that the noncondensable
gas was not a factor in obtaining a steady-state condition. There is a higher
percentage of post flight tests with steady-state operations because three of the

eight tests were performed with additional subcooling provided at the evaporator
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inlet and, during most of the post-flight tests, the 20 W reservoir heater was left
on (itwas turned off during flight tests because of power limitations in the shuttle).

The plots in Figures 5.20 and 5.21 are examples of the steady-state data
collected during preship and post-flight testing. The data from the preship test
(Figure 5.20) shows steady-state operations for nearly one hour. Although video
footage of the bubble in the evaporator was not recorded, notes on observations
that were made during the test indicate that a bubble was flowing in and out of
the evaporator inlet during the entire test. The observations are consistent with
the oscillating temperatures measured at the evaporator inlet (T7) and the
reservoir line (T1). Since the bubble expanded into the evaporator inlet but did
not block flow to the wick (deduced from the steady evaporator temperature), it
is likely that stratification in the evaporator allowed liquid to pass under the bubble
to keep the wick wetted.

Figure 5.21 is a plot of the post-flight test 0228971 during which power
changes were made on the evaporator. Note that liquid filled the condenser
during the 14 W segment of the test, confirming that the heat loss from the
evaporator to ambient is approximately 10 W. This type of test, with several
power changes is sometimes used in industry to check for bubbles in
evaporators. The test sequence for VIEW-CPL used small variations due to the
limited heater power. Based on the evaporator temperature response to the
power changes as shown in Figure 5.21 it is not obvious that there is a bubble in

the evaporator core. The visual observations in the evaporator indicate that a
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bubble is oscillating in the core throughout the entire test, emphasizing the
importance of the visualization aspect of the experiment.

Changes in temperature at various locations of the CPL are indicators of
oscillatory fluid flow in the system. One example is the indication of flow to and
from the reservoir by the change in the temperature at the reservoir inlet (T1).
Since the reservoir temperature is greater than that of the liquid exiting the
condenser, flow out of the reservoir results in an increase in the reservoir inlet
temperature. In Figure 5.20 this occurs at 22:40:16 when the core bubble
completely collapses and at 12:32 in Figure 5.21 during the power decrease from
32 Wto 14 W. Similarly, the reservoir inlet temperature decreases due to flow
of cool liquid from the liquid line into the reservoir. This always occurs at start-up
when vapor displaces liquid from the vapor line (e.g.,at 22:30:48 in Figure 5.20
and at 11:02 in Figure 5.21).

Similarly, the condenser and evaporator temperatures vary with flow in and
out of those components. A relationship is apparent between the flow of liquid
from the reservoir and the flow of liquid to or from the condenser where there
appears to be a phase shift between the changes in the condenser and reservoir
temperatures. This occurs as the vapor front is established in the condenser in
Figure 5.20 at time 22:41 through 22:44. 1t is also observed during the steady
operating period between 13:00 and 13:17 in Figure 5.21, although the
magnitude of the condenser temperature change is much smaller than that of the

reservoir. The flow between the reservoir and evaporator is detectable by the
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temperature oscillations at the reservoir line (T1) and the evaporator inlet (T7)
that occur at the end of the plots in both figures.
5.4  Observations of Bubble Growth in the Evaporator Core

While there were no flight tests that satisfied the steady-state conditions
described in Section 5.3, oscillations were observed where a bubble in the core
alternately expanded and collapsed in an apparently stable oscillation. The flight
tests revealed 33 instances of liquid flow into the evaporator following apparent
dry-outs of the evaporator wick. Other instances of liquid flow into the evaporator
were caused by a decrease in the power input to the evaporator, but the power
input to the evaporator remained constant during the 33 instances of evaporator
refills described above. Figure 5.22 contains a series of three data plots (for the
S35-1 test) which show a typical example of a bubble life cycle observed during
flight testing. In this test, the bubble in the core collapsed twice (at 2459 and
2793 s) while a constant power of 30 W was applied to the evaporator. The two
pauses in heater power (bottom plot at 1200 sec and 1890 sec) were specified
in the testing procedures in an attempt to prevent the wick from dry-out by giving
the evaporator time to refill after the vapor bubble filled most of the evaporator
core.

As with the ground tests (described in Section 5.3), the bubble collapses
in Figure 5.22 (top plot) appear to correlate with oscillations in the reservoir inlet,
evaporator inlet, and condenser temperature data. The period between the

observed bubble cycles (peak #3 to peak #4) is 330 seconds for a frequency of
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Figure 5.22 Fluctuation in core bubble volume and temperatures during
VIEW-CPL flight test S35-1.

0.003 Hz. This is corresponds to the frequency range of temperature oscillations
ranging from 0.003 to 0.005 Hz that have been observed in other CPL systems

[Kiper et al., 1988; Lin et al., 1994; and Ku et al., 1986b].
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A theory was presented in Section 4.6.3 that describes a decrease in
pressure in the evaporator as the mechanism governing the bubble collapse
while the heater power is still applied to the evaporator. A plot comparing the
predicted bubble cycle to the actual evaporator temperature and bubble volume
data is shown in Figure 5.23. The prediction is not started until 6:20 because the
loop had just experienced a power transition from 3 to 30 W at 6:18. As in
Section 4.6, an offset of 1050 s was used to set the initial boundary condition on

the liquid temperature in the core.

The continual increase in the evaporator body temperature seen in Figure

Elapsed Time (s)
1955

2075 2195 2315 2435 2555 2675
65 | 1 1 1 1
Predicted Volume T
| ) T+1
64 \ / Fraction O
63 - l Rt
| /08 & o
(I T .
~ 624 J/ Measured ! 7 33
g) 1 , Iy ’ o QO
> 61 ! ,/ Evaporator \ / i > 2
= | Temperature (T6) | / I (e
S | | ’ 06 5 3
§ 60 1 | // B O -
g ol 1 t 52
£ 59 | 7 + c 5
© . ',/ 104838
[ I + 2
58 711 [ \ © (@)
Predicted L Measured_ =
57 i+ Volume Fraction T 0.2
Evaporator I[II I
56 - Temperature : T
Y S — -+ 1o
6:18 6:20 6:22 6:24 6:26 6:28 6:30
Time (hh:mm)

Figure 5.23 Comparison of flight data from test S35-1 to the bubble
volume and evaporator temperature predictions made using the theory of
vapor back-flow through a dry portion of the evaporator. Matching the
model to the test data was achieved by setting the contact angle between
water and polyethylene at 89.3".
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5.23 seems to indicate that there are dry portions in the wick (i.e. not all sections
of the wick are saturated with liquid even after the evaporator refills with liquid).
The second indicator of a non-saturated wick is the time required for the pores
to dry-out. For the VIEW-CPL system, the calculated time required to dry out a
fully saturated wick with heater power of 30 W is 510 s, which is 3 minutes longer
than the period between the evaporator refills. Since the measured evaporator
temperature on the evaporator temperature continues to increase during the test
it is likely that the evaporator would eventually deprime. The model predicts an
increasing evaporator temperature only for the case where there is not enough
subcooling to keep the bubble within the evaporator. The evaporator will
eventually deprime because of difficulty rewetting the wick under power. A
contact angle of 89.3° was used to predict the correct time for bubble collapse (by
determining the time that the capillary limit is exceeded). This is a large contact
angle for a fluid/wick combination. Ability to operate VIEW-CPL at powers above
47 W would not be possible (see steady-state pressure curve in Figure 3.17) if
89.3° is the true contact angle. However, steady operations were not performed
with power greater than 45 W because the large gradient in the stainless steel
evaporator caused over-temperature conditions and the tests were prematurely
shut down. The over-temperature conditions could have also been caused by
evaporator deprimes which would support the 89.3° contact angle determination.

Figure 5.24, based on ground test #0227971, is another example of

deprime that is proceeded by a period of bubble oscillations. The data collected
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during this test supports the dry wick theory because the wick became visibly dry
on the inner diameter appearing “blotchy” in sections at around 19:47. This was
followed by a bubble collapse 4 minutes later at 19:51. While the loop appears
to be running at steady-state between 19:46 and 20:05, there was a change in
operating conditions at 19:59 when the 20 W reservoir heater was turned off.
The power was removed from the reservoir to see if the system would deprime
as the reservoir temperature drifted down, which in fact it did at 20:06. A possible
explanation for this observation is that the decreased reservoir pressure did not
provide enough of a pressure difference to fully wet the wick during the last
bubble collapse.

In summary the correlation of temperature oscillations with the apparent
dry-out of the evaporator wick was visually verified with VIEW-CPL. The
frequency (0.01 to 0.003 Hz) of the temperature oscillations measured in the
VIEW-CPL system was similar to the low frequency oscillations observed in other
CPL systems during low power operations. Refilling of the evaporator core with
liquid after the expansion of a vapor bubble was observed repeatedly in both
micro-gravity and ground testing. The explanation for the observed oscillatory
bubble phenomena due to a dry-out in the evaporator wick has not been reported
on for other CPL systems. The occurrence may be attributed to the combination
of high thermal mass of the VIEW-CPL evaporator and low heater power that
prevented rapid temperature excursions, providing enough time for the wick to

dry-out and the pressure to drop in the vapor line.
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5.5 Comparison of Micro-gravity and Ground Results

All of the differences observed between micro-gravity and ground tests can
be attributed to stratification of the liquid and vapor phases inside the VIEW-CPL.
The first observation was during the flight pressure prime where low frequency
(0.035 Hz) temperature and bubble oscillations, that were not present in ground
testing, were observed. Also, the reservoir temperature sensor measured
temperature below saturation. This is evidence that the reservoir wick was
working in micro-gravity by pulling liquid to the reservoir walls. Liquid in the
reservoir was stratified during ground testing.

Another difference observed between ground and flight testing that was
attributed to stratification was the time required for the vapor to reach the
condenser during start-up tests. The comparison of times, shown in Figure 5.17,
revealed that this occurs faster in ground testing than in flight testing. The large
diameter of the vapor line allowed stratification that was not present in
micro-gravity, so that the temperature sensor located on the top of the tubing
measured a vapor temperature even if liquid was located at the bottom of the
tube.

Lastly, steady-state conditions were not satisfied in micro-gravity. Bubble
oscillations that were tolerated in ground tests lead to deprime (continuous
increase in evaporator temperature) during flight tests. Stratification between the
liquid and vapor phases in the core of the evaporator, due to gravity forces,

allowed liquid to remain in contact with the wick for longer periods of time during
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ground testing. This assisted with wetting the wick and with increasing the heat
transfer area between the liquid and the bubble.

One of the objectives for micro-gravity testing was to determine if bubbles
in the evaporator core would cause rapid wick failure. This did not occur because
oscillatory bubble cycles, similar to those observed during ground testing,
prolonged the deprime process by allowing a portion of the heat load to be
evaporated. This coupled with the large thermal mass of the evaporator body
and the low power (typically 30 W) led to slower evaporator temperature rises

than those typical observed during CPL deprime.
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6.0 CONCLUSIONS

At the beginning of the VIEW-CPL project, our contacts at NASA and
Swales expressed some doubts whether a water CPL would provide insight into
the physics of CPL operations. In fact some wondered if it was even possible to
operate a water CPL at sub-atmospheric pressure. This work dispels any such
doubts although it does point to a series of limitations and difficulties in
implementing a CPL using water.

The primary objective of the work described in this thesis was to obtain a
more complete understanding of CPL physics through experiments on a flow
visualization test facility. The effort involved design, fabrication and testing of the
experiment (VIEW-CPL) and subsequent modeling and data analysis. Four
modeling tasks were undertaken to explain the VIEW-CPL behavior and the flow
visualization capability proved to be crucial in the understanding of operation of
a CPL with a bubble on the liquid side of the wick. The results from the work were
discussed in Chapter 5 and the conclusions from that discussion are repeated
here in summary form.

6.1 General Observations

* One of the objectives for micro-gravity testing was to determine if bubbles in
the evaporator core would cause rapid wick failure. Based on results of
Section 5.3, this did not occur because oscillatory bubble cycles, similar to
those observed during ground testing, prolonged the deprime process by

allowing a portion of the heat load to be evaporated. This coupled with the
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6.2

large thermal mass of the evaporator body (Table 3.5) and the low power
(typically 30 W) led to slower evaporator temperature rises than those
typically observed during CPL deprime.
As shown in Figure 5.19, the pressure surge model accurately predicts the
time to clear the vapor line, suggesting that the model correctly represents
the physics of the pressure surge. Thus, it is concluded that the pressure
surge is primarily due to the viscous pressure drop associated with clearing
the vapor line of liquid.
As shown in Figure 3.17, the capillary pressure drop (40 Pa) at the
liquid/vapor interface in the condenser was larger than the viscous pressure
drops. This unexpected result was mainly because VIEW-CPL operates at
low power and viscous pressure drops were low. However, designers of
small CPLs with small diameter transport lines and micro-channel condensers
need to be aware of the liquid/vapor interfaces in the system and take into
account the pressure exerted by them during all stages of operation.
Micro-gravity Observations
As discussed in Section 5.1, temperature and bubble oscillations (0.035 Hz
frequency), that were not present in ground testing, were observed during
flight pressure primes. These oscillations were attributed to vapor venting
from the reservoir wick grooves which were filled with liquid in micro-gravity
but drained in 1-g.

Evidence that the reservoir wick was keeping the liquid in contact with the
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6.3

heated walls in micro-gravity was presented in Section 5.1. This evidence
was that the reservoir temperature sensor indicated a temperature below
saturation.

A comparison of times to clear the vapor line during start-up, shown in Figure
5.17, revealed that vapor line clearing occurs faster in ground testing than in
flight testing due to stratification that was not present in micro-gravity.
Based on the criteriain Section 5.3, steady-state conditions were not satisfied
in micro-gravity. From the data presented in Sections 5.3 and 5.4, bubble
oscillations that were tolerated in ground tests led to deprime (continuous
increase in evaporator temperature) during flight tests. For the ground tests,
stratification between the liquid and vapor phases in the core of the
evaporator assisted with wetting the wick and with increasing the heat
transfer area between the liquid and the bubble.

Noncondensable Gas

While precautionary steps were taken to ensure a leak tight system, through

careful design and processing, the test results indicate the VIEW-CPL had a

small but non-negligible amount of noncondensable gas.

As indicated in Section 5.1.1, pressure measurements over a time period of
several months indicate a noncondensable gas accumulation rate of 6.7 x
10" moles per day. This is assumed to be the system leakage rate.

Based on the pressure prime model in Section 4.3 and the results in Table

5.1, the pressure prime should have collapsed all vapor bubbles in 17
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minutes. The fact that stable bubbles existed in VIEW-CPL even after 30
minutes indicates noncondensable gas was present in the system.

* As discussed in Section 4.3, the reduction in evaporator-to-ambient
conductance, from 0.0973 to 0.0059 WI/K, that is required to achieve
comparable results between predicted and measured pressure prime duration
is attributed to noncondensable gas decreasing the rate of condensation.

* Predicted temperature differences between the wick inner and outer diameter
(Figure 5.13) range from 5.0 to 15.5 K at the time of start-up. Based on the
results of Section 5.2.1, noncondensable gas concentrations as low as
1.1x10° kmol/cm?® can reduce the saturation temperature in the vicinity of a
gas bubble by 5 K and allow boiling to occur inside the evaporator wick. Thus
itis possible that noncondensable gas contributed to bubble growth inside the
wick. The low slope of the vapor pressure curve for water at the VIEW-CPL
operating temperature (50°C) intensify the impact of noncondensable gas by
reducing the local saturation temperature (Figure 5.12).

6.4 Heat Transfer Effects

» Based on the results of the two-dimensional conduction heat transfer model
of the evaporator cross-section in Section 4.4.1, the temperature sensor
location did not provide a representative measurement of the evaporator
temperature at the interface between the evaporator and the wick. There
were significant temperature differences (from Figure 4.7 and Figure 5.13)

between the evaporator body at the temperature sensor location and the
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6.5

wick, ranging from -13 to +2 K at the time of startup.
The predictions obtained from exercising the pressure surge model of Section
4.4.2 indicate that the pressure on the vapor side of the evaporator peaks
during the clearing of the vapor grooves. The liquid flow rate into the
reservoir is reduced from 2 to 0.5 g/s due to condensation on the walls of the
vapor line as the vapor front moves out of the evaporator. Thus, the thermal
capacitance of the vapor lines contributes very significantly to minimizing the
magnitude of the pressure surge.
As described in Section 4.6, both a reduction in evaporation and an increase
in sensible heating of the evaporator body occur as the wick dries out. Radial
dry-out in the wick reduces the conductance of the wick from 489 W/m-K for
a fully wetted wick to 2.3 W/m-K for a meniscus that has receded to the inner
diameter of the wick.

Bubble Oscillations
Based on numerous test runs (Section 5.3) itis concluded that the VIEW-CPL
evaporator can tolerate bubbles on the inside of the wick, provided that there
Is sufficient subcooling to balance the vapor leakage through the wick. Itis
unclear if this mode of operation is unique to VIEW-CPL or common in other
CPL systems.
Based on the detailed analyses of Section 4.5, and a range of observations
from VIEW-CPL (Section 5.3 and 5.4), it is concluded that vapor leakage

through the wick occurs through dry segments of the wick with dry length
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ranging from 0.75 to 3.8 cm (0.13 to 1.5 in).

When the dry segment of the wick is relatively short (0-3.8 cm), a bubble will
collapse in the core because the vapor leakage (backflow through the wick)
is less than the condensation on the liquid surface. For dry lengths longer
than 3.8 cm (1.5 in.) the condensation rate is not sufficient to keep bubble
growth in check. The analysis in Section 4.6, combined with the observations
discussed in Section 5.4, describe the events occurring when a bubble blocks
the liquid flow into the evaporator. The bubble grows into the evaporator inlet
where it is stalled by a capillary pressure of 64 Pa developed by a meniscus
in the fitting.

As determined in Section 4.6, a bubble in the evaporator core will collapse as
the pressure in the vapor line drops below the reservoir pressure due to an
imbalance between the evaporation rate and condensation rate in the loop.
Low-frequency (0.003-0.01 Hz) temperature oscillations are attributed to
bubble oscillations on the liquid side of the wick (Section 5.3). Based on the
data presented in Sections 5.3 and 5.4, flow visualization in the VIEW-CPL
evaporator confirmed that temperature oscillations correspond to bubble
movement in the liquid core of the capillary evaporator. This had been
postulated in the literature to account for low power temperature oscillations
in several CPL systems, and VIEW-CPL provides evidence to support those

claims.
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6.6 Water and Wick Contact Angle
One unknown in the design and analysis of VIEW-CPL is the contact angle
between water and the polyethylene wick. Normally a perfectly wetting fluid is
selected to achieve the maximum capillary pressure rise across the wick. While
it was known that water does not fully wet polyethylene, previous tests results
indicated that the CPL could pump with water (therefore contact angle was less
than 90°) and the full limitations of the pumping capability were not realized until
the analyses of Section 4.5.2 and 4.6 were performed.

* The contact angle is bounded on the lower end by the axial flow analysis in
Section 4.5.2. The analysis suggests that the contact angle is at least 76°
based on observations that the wick does not fully wet when there is any
liquid in the evaporator core.

» Based on the frequency of bubble oscillations (0.01 to 0.003 Hz) a contact
angle of approximately 89 between the water and polyethylene is required
to create the imbalance by reducing the capillary limit of the wick and forcing
a reduction in vapor flow prior to total wick dry-out. Two other unknowns in
the analysis, the length of dry wick and the core temperature, contribute to
uncertainty in determining the contact angle.

» Based on the pressure surge model presented in Section 4.4.2 the maximum
pressure drop experienced during the start-up is 215 Pa. The meniscus in
the 13.7 m wick can support this pressure drop even if the contact angle

between water and polyethylene is large (>89.994 ).
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7.0 RECOMMENDATIONS FOR FUTURE RESEARCH

7.1 Enhanced Design

The VIEW-CPL experiment could provide even more insight into CPL
operations if several modifications were made to the hardware in the areas of (1)
instrumentation, (2) CPL enhancement, and (3) operational controls.

7.1.1 Instrumentation

In terms of instrumentation, both the temperature and pressure
measurements can be improved. The current AD590 circuits require rewiring
with precision resistors in order to reduce the temperature error associated with
resistor drift. As with most experiments, additional temperature sensors at key
locations in the loop would assist with model verification (it is noted that the data
acquisition systems employed had a limit of 14 channels, all of which were used).
One example is the addition of sensors to monitor the cooling air inlet and exits
to provide information on the heat rejection capability of the subcooler and
condenser. A series of temperature sensors along the condenser exit would
assist with verification of the pressure analysis by indicating the active length of
the condenser.

The differential pressure measurement is more useful if two differential
pressure transducers are used. One transducer should be used to measure the
capillary pressure rise across the evaporator and a second one to measure the
direction of the flow in the liquid line. Also, proper sizing is critical to measure the

small pressure differences expected during VIEW-CPL operation.
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Temperature sensors should be positioned on both the top and side of tubes
to indicate flow stratification in 1-g testing. If telemetry is limited for flight testing,
then temperature sensors should be placed on the side.

7.1.2 CPL enhancements

The CPL could be enhanced with the use of a working fluid that readily wets
the porous polyethylene wick inside the evaporator. An alcohol would be
compatible with the stainless steel CPL structure while still maintaining a low
pressure and low toxicity in terms of the shuttle environment. Alcohol has the
disadvantage that it has reduced surface tension compared to water. Another
option would be to use a metal wick such as those now used in LHPs. Metal wick
technology was not available at the time VIEW-CPL was fabricated.

If water is chosen, further attention to degassing the water would help with
operations. Noncondensable gas (NCG) in the loop may have helped create
conditions conducive for bubble formation, but the presence of NCG is not typical
of CPL operations. Heat transfer coefficients were difficult to determine because
of the effect of noncondensable gas.

The subcooler at the evaporator inlet could have been more effective.
Instead of having the cooling air drawn across the payload control box, the air
should not have been preheated. The photo-flood light used for lighting the
evaporator section also caused an increase in cabin temperature in the vicinity
of VIEW-CPL. This affected the air around the subcooler. The combination of

these two factors meant a lack of control of the evaporator inlet temperature that
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would have increased operational flexibility considerably.

Another recommended change to the hardware is to switch the carrier for
testing VIEW-CPL in space from the middeck to a GAS can. Power constraints
in the middeck prevented testing the CPL at high powers while maintaining a
constant temperature in the reservoir. This mode of operation caused the CPL
to deprime due to the changing set point and masked any oscillatory behavior
that may have been observed with a constant reservoir temperature. In addition
to increased power availability in the GAS can, the safety requirements are less
stringent than operating in the crews inhabited middeck. High temperature limits
are increased and a wider variety of working fluids can be explored, including
ammonia so that the CPL would be operating with the same working fluid used
in currently designed systems. The difficulty with this is the need for a remote
control camera system instead of the astronauts as cameramen.

7.1.3 Control

Changing the carrier from the middeck locker to a GAS can would also
increase control over the flight testing procedures and allow for real time
commanding to facilitate data reduction. The reaction of the CPL to the
micro-gravity environment was uncertain with the first flight, so the test
procedures included many options for running the CPL incase one procedure did
not work. The procedures also relied heavily on visual observations and the
astronauts judgements, and therefore the procedures were not always consistent

between similar tests (the astronauts did a good job but they had several tasks
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to perform and VIEW-CPL was not always the top priority). Test repeatability
would be increased if decisions were based on numerical data and occurred at
fixed times. The GAS can would allow a more intensive test sequence that could
be adjusted from the ground, including repeated tests.

Time synchronization between the camcorder and data acquisition system is
also important. Audible time signals on the video tape at the beginning of tests
would assist in matching the data between the video tapes and the temperature
data from the computer. For automated systems, a beep noting the start of
testing could be used to synchronize the data.

Some tests would have provided more valuable information for understanding
CPL physics if they were run for a longer period of time. Timing constraints with
the astronauts schedules resulted in tests designed for the minimum amount of
time. Also, many tests ended early from high temperatures on the evaporator.
7.2  Visualization in Loop Heat Pipes

Loop heat pipes are designed to work with bubbles in the evaporator core
because they contain a secondary wick. The theories on the conduction energy
transfer from the outside to the inside of metal wicks in loop heat pipes do not
currently explain performance degradation that is observed at low powers.
Visualization into the loop heat pipe evaporator would provide information on the
heat transfer to and inside the core, as well as provide insight on the performance

of the secondary wick.
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APPENDIX A: TYPICAL TESTING MODES FOR CPLs

Industry has adopted the following system performance tests for analyzing CPL

systems [Braun, 1990]:

(1) System Start-up Test
The start-up follows a pressure prime at a set saturation temperature and
for a prescribed duration. Power (to simulate payload or a starter heater)
is applied to the evaporator. A start-up is successful when two conditions
are satisfied (1) vapor is present at the outlet of the evaporator and (2) there
is forward circulation of fluid from the evaporator to the condenser.

(2) Maximum Transport Capability
Maximum transport capability defines the maximum amount of heat that can
be transported the distance of the vapor line before the system deprimes;
it can be limited by pressure drop and/or condenser capacity.

(3) Heat Load Sharing
Heat load sharing tests, performed only on systems with multiple parallel
evaporators, demonstrate the ability of moving heat to unheated
evaporators to distribute the heat load among multiple evaporators.

(4) Diode Function of the Condensers
Condenser diode tests measure the ability of the system to shut down and
prevent evaporator heating when the condenser temperature exceeds the

system satu ration tem perature.
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(5) Rapid Power Cycling and (6) Sink Temperature Variation
Rapid power cycling and sink temperature variation determines the
robustness of the system during evaporator heat load transients and
changes to the condenser conditions; both tests examine the ability of the
reservoir to quickly adjust to changes in the loop liquid inventory.
(7) Pressure Prime under Heat Load and (8) Reservoir Set-point Temperature
Variation
The reservoir function tests are pressure priming under heat load and set-

point variations to verify the reservoir control of the system set-point.
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VIEW-CPL As-Built Materials

APPENDIX B:
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APPENDIX C: ELECTRONICS

LEGEND

R - Relay (Normally Closed) Fan — Fan
MH — Main Heater - Fuse
RH — Reservoir Heater S — Switch

TS - TEMP. Activated Switch
TC — TEMP. Controller

LED - Light Emitting Diode

LH — Line Heater

TEC — Thermo. Electric Cooler

%;T
s 4 A |
IN-LINE A®————————4
¢ S e
PRESSURE, SAMPLIFIER® | -

TRANS co—@¢ o

L rer—er sor p TR

PHYSICAL
THERMOSTATS NUMBERING ON
THERMOSTATS
TS1 RH1 TS25 .
TS2 RH2 Ts12
TS3 RH Return TS1 ’7 — T
0-2000 mMVDC | +5 VDC
TS M3 159 Panel Meter | RETURN
TS5 MH Return Ts18 L h
TS6 TEC TS13 —
TS7 TEC Return TS14
TS8 MH2 TS21 1 kohm
TS9 MHI TS16
TS10 LH4 TS10
> |
TS11 LH3 TS15 o
TS12 LH2 TS20 o
TS13 LH1 TS23 g
TS14 LH Vapor Ret TS7 =
TS15 LH Lig Ret TS6 . _ >
- ode, \ I
8" IN-LINE ¢ s DELTA °
S - g e
sren__d CAMPLIFIERD PRESSURE| ©
L g c®®: TRANS o
s Ses o R | &
— o
common | |5V I
)
c
SUBCOOLER 2
L | S
2

I
T

NOTES:

1. ALL WIRE IS TEFLON INSULATED

2. WIRE FOR AD590 IS 26 AWG

3. WIRE FOR MH1, MH2, MH3 IS 26 AWG TEFLON INSULATED
(LEADS ARE LESS THAN 2 INCHES ) AFTER INSTALLATION,
LEADS WERE INSPECTED, STAKED, AND COVERED WITH
NOMEX INSULATION AND 3M ALUMINUM TAPE TO PROTECT)

4. ALL OTHER WIWRE IS 22 AWG OR LARGER; LARGER WIRES
ARE NOTED BY HEAVY LINES

Figure C.1 VIEW-CPL wiring diagram for electronics attached to
the CPL (page 1 of 2).
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9 *

RETURN

1] +1svoe

2] 1svoc

4| r2

5] Fa

6 | rH2

7] teo2

8] swiTcHED RETURN

9] RHL

10] LeD1

11| SWITCHED RETURN

33 | CONTROLLER RETURNS

127 MHL

13| LED3

15| MH2

16 | LEDA

187 M3

197 LEDSA

I ]
l I
T T
RH2 I j7s1
5w | f
AD590 |
, f
g 1" LEDS
S |l o | ;
@ RH1 |
2 | 20 W | |
= [
=] | ‘
o Y [
c _ — —_— ——— —— —T
o
©
) o e T
2 Tsa| |rsg| | Ts9 EVAPORATOR
o ! = Tt
%) | LED3 ]
3 ' LED4 —H
S Odohm LEDS)|
S RETURN MH1 MH2 V3 !
I
S | ‘
2 |
S
2

20 | LED'S 3,45

21| unevoLr

22 | UNEvOLT

23] +5vDC

24| RETURN

25 | RETURN

LHL

28 | 2

29 | TeC+
30 | TECRETURN

40w 25W 0w
‘ 1 |
‘ TSS' | ‘
L

LH3

Ha
AD590 RETURN
RETURN
RETURN
37 | RETURN

AD590 Temp Sensor

o
*/\/\\ o +15V 5
1.3 kohm o
&

Pins 1-10 from 10 AD590 sensofs
DB25 MALE

20 AWG

-4 —

26_| COMMON DC/DC - TRANSDUCERS

VIEW-CPL

LOOP WIRING SCHEMATIC
PAGE 2 OF 2

K.E. HEROLD, K.R. KOLOS
FINAL: SEPT. 15, 1996

Figure C.1 VIEW-CPL wiring diagram for electronics attached to the

(page 2 of 2).
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LK J L K. J__
I PescPwr | [ SHUTLEPWR |
Ms3470L-14-125 | | wms3470L-14-12P ‘
\Lc s Mc: 1 cgsss ‘
ZOAJWG /_W.;[H ) 20AWe ‘f\‘ 7 M 600 OHMS
EMIRFI FILTER! - +
SWITCH COMPONENT H N G
12 . L — TT
L y
- e b e L]
A ‘ s9 @ common Jsvoe
; LED | 4 oK pS1 orar
s3 | TC1 MAIN PC’;S@ . N (=] POWER SUPPLY
NS A VAR — #—=| +5VCD, +/-15VDC|
v || L, s I ] o oice__ voer
S5 | TC2 5 il I |
W POWER SUPPLY EMIFLTER 4 ¢ EMIFILTER - | 2kohms 15, 115
s6 | FANG * +5VDC (MATCHED) |— ————(MATCHED)} -1
o Tom T e g gt
0.1 microF B = = E -/
S8 | FAN1
F R|S
S9 | POWERSUPPLY 20 AWG s ¢
S10 | Evap. MH1-40W 25 kohm 10 kohm R
S11 | Evap. MH2- 25 W |
S12 | Evap. MH3—10W
S$13 | Main Power Switch +15V0C 1
1svoe [
S14 | LH1 (VApor) s8 5
s :
S15 | LH2 (Vapor) ss [ 5]
S16 | LH4 (Liquid) — LED2 [
Tc22 6 SNET REDg
S17 | Thermo. Electric (02 ’ had y TC2
Cooler fewn 2 d BLACK®- .
— ORANGE
S18 | LH3 (Liquid) re1 s
o1 [0 T +
Return ity REDY
LEDY
FUSE|POWER AMPS = 2K ohm, TCE{N: -
:;’” ; ORANGE —1e
[ e
su
-
20 20 - 7 R1(NC)
s [ ]
o BN
0 | 1. ole
50 | 10 S| e vorraat
30 | 075 7] svoc Fib
30 | 0.75 -
20] comvion c/0c
su [z
30 |0.75 sis
Tecr
2 |20 rec
o] e
f0| 40 | 50 sie . :
fl1| 25 | 30 S12 s11 S10 20AWG
£ £ £
fl2| 10 | 20 £ £ £
4
f13| 30| 075 R & & o
f14| 30| 075 3 o
LEDS LED4 LED3
f15| 30| 075 [
f16| 30| 0.5 I
f17| 25 | 30 A
fi8| 30| 075
LEGEND
R — Relay (Normally Closed) FAN - Fan
NOTES MH — Main Heater f—Fuse
RH — Reservoir Heater S — Switch
1. ALL WIRE IS TEFLON INSULATED TS — TEMP. Activated Switch
2. CARD EDGE CONNECTOR NOTED BY DASHED LINE TC— TEMP. Controller
3. UNLESS SPECIFIED, ALL WIRE IS 22 AWG LED - Light Emitting Diode

Joins next page along this edge

Figure C.2 Payload control box (PCB) diagram for VIEW-CPL (page 1 of 2).
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2K ohm| 2
[%2] S
>
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> %
3 t::%
= I
> 2K ohm 9
[%2) Q
£ N
5
S
VIEW-CPL
CONTROL BOX FOR ELECTRONICS
PAGE 1 OF 2
K.E. HEROLD, K.R. KOLOS
FINAL DWG: SEPT 15, 1996
UNIVERSITY OF MARYLAND

Figure C.2 Payload control box (PCB) diagram for
VIEW-CPL (page 2 of 2).
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Table C.1 Brand names and sources for electronic components.

Generic Name

Source

Purpose / Notes

Ground support equipment

6 A - 28 VDC Power
supply

Acme Electric Corporation Model
SPS/CPS 220

Ground testing power supply

microvolt digital
multimeter

Keithley 197 Autoranging

Measuring power
consumption

VIEW-CPL experiment equipment

Aluminum chassis,
8in.x6in.x3.5in

BUD P/N CU-3000A

PCB container

Circuit board

Vector

Secured to chassis with
SCrews.

Wire ties

Tyton ties or lacing cord

Tie wires inside the PCB

Conformal coating

Uralane

Fuses

PICO I, type 251 series with axial
leads

Very fast acting

Fuse package
25-pin Male D connector

Amplimite, P/N 206803-2 sealed
with Uralane and copper tape

Copper tape for EMI

Locking Toggle Switches,
rated for 5 A at 28 V

C&K part number 7201 KZQE

Prevent switching by
inadvertent contact

Light emitting diode
(LED)

Chicago Miniature Lamp, part
number CMD5024

Indicate switch on. Are wired
in series with 2 kQ resistors

to achieve the appropriate
current draw.

Resistance heaters

Minco Products, Inc.

Electrical heat on reservoir
and evaporator

Temperature Controllers

Minco Products, Inc.

3-W line heaters

Ohmite resistors

P/N 233270, 270 Q

0.5 cm (0.20 in.) diameter x 1.2 cm
(0.47 in.) long

On/off temperature
controllers

Minco brand, model CT198
controllers

Operate with 8 to 32 VDC
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Generic Name

Source

Purpose / Notes

Fans
are all metal construction
with brushless motor

Papst, 8124G model axial fans

» DC powered,drawing 3.0 W of
power at 24 VDC and
operational range of 18 to 30
VvDC

+ Service life of 50,000 hours

e 79cmx7.9cm x 3.8 cm deep
(3.1in.x3.1in.x1.5in.)

* Impeller rotation at 3450 rpm

All metal construction.
Brushless motor

Thermoelectric cooling
module

Melcor model
CP1.0-31-06L

Hermetically sealed relay

Potter-Brumfield model KHS17D12,

Prevents RH1 and TEC from
being on at the same time
MH1 is active

In-line EMI filters for
+28 VDC

RF Interonics, model
13619/RF5005-2

EMI filters

Interpoint, model FM-461

were placed in both power supply
circuits along with 0.1 yF capacitors
attaching to the 5 VDC and return
lines

EMI/RFI suppressison
filters

Spectrun Control Inc.
Model 51-717-001

3.6 volt Zener diode

Motorola part number 1N4739

Placed between the power
return and the signal return
to tie the signal return to the
same level as the ground
return.

Temperature activated
switches

Thermik -05 series
Open at 60+5 °C and reset at 45 °C

Area for heaters:

. Evaporator heaters is 10.2 cm long x 6.1 cm wide (4 in. X 2.4 in.)

. Reservoir heaters must be over the venting grooves and attached to the
circumference of the reservoir which is 17.95 cm (7.07 in.). The venting
grooves are 3.81 cm (1.5 in.) long for an available area of 68.4 cm? (10.6
in.?) for attaching the heaters on the reservoir.
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Table C.2 VIEW-CPL heater specifications for evaporator and reservoir.

Heater Minco Part No. Q Power | Dimensions Effective Watt density
at 28 cmx cm Area, cm? W/cm?
VDC (in. Xin.) (in.%) (W/in.?)
MH1 HK5301R19.6L22 19.4™ 40.4 2.06x12.2 21.5 1.9
(0.81 X 4.81) (3.33) (12.1)
MH2 HK5282R30.6L.22 30.5™ 25.7 19x12.7 14.5 1.8
(0.75 X 5.0) (2.24) (11.5)
MH3 HK5234R76.4L22 83.5™ 9.4 1.14 x9.86 7.5 1.2
(0.45 X 3.88) (1.17) (8.0)
RH1 special order 39+5% 20 25x17.8 45.2 0.4
(1.0 X 7.0) (7.0) (2.9)
RH2 special order 156+5% 5 1.3x17.8 22.6 0.2
(0.5 X 7.0 (3.5 (1.4)

™ Measured resistance

Table C.3 Reservoir temperature controller specifications.

VIEW-CPL MINCO Part Number Scan rate Power Sensing pulse
Part No. duration

TC1 CT198-1009R44L1 1 sec 20 W 0.010 sec

TC2 CT198-1016R175L1 1 sec 5W 0.010 sec

Temperature controllers. The on/off temperature controller uses special heaters

to sense the heater temperature by measuring the heater resistance; thus, it

incorporates the sensing function and the heater in one component. The heaters

are powered for a minimum duration of 0.010 seconds to check the resistance.

If the heater resistance indicates that the heater is below the setpoint, the heater

remains powered and constantly checks the resistance until the heater element
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>

1 ENSING PULSE
0 msec SENSING PULS HEATER ON

HEATER POWER

TIME

1SEC
SCAN
RATE

SET-POINT

HEATER TEMPERATURE

TIME
Figure C.3 On/off temperature controller profile.

temperature reaches set point. Figure C.3 shows an example of the heater
response for a given heater temperature.

Power supplies. Both power supplies were manufactured by Computer Product

Inc. The ES12T12/250XC model supplies 5 or £ 15 VDC and is designated as
PS1 in the electrical schematics. In order to achieve the full 5 VDC, a pull up
resistor of 600 ohms was connected across the 5 VDC output. The NFC25-
2470515 model supplies 5 VDC and is designated as PS2 in the electriacl

schematics. Table C.4 summarizes the components attached to each power

supply.
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Table C.4 Components attached to power supplies and corresponding power
consumption.

Supply  Output Component Power
PS1 +5VDC PIU 40W
+5VDC Panel meter 0.24 W
+15VDC  Absolute pressure transducer 1.35W
+15VDC Differential Pressure transducer 1.35W
+15VDC AD590 temperature transducers 0.17W
Total (80% efficient) 8.5
PS2 +5VDC Thermoelectric module 20W
Total (80% efficient) 24 W

Fuse Derating. Fuses used in micro-gravity are derated, meaning that the fuse

will blow at a current lower than the rated amperage, due to the lack of natural
convection. While circulating fans inside the middeck provide some convection,
electronics enclosed in boxes experience minimal convection. Derating
guidelines [NASA GSFC, 1995] were followed when choosing proper fuse sizes
for the VIEW-CPL experiment. The proper derating for a given fuse depends
upon the fuse size. For example, a fuse with a rating of 2 A or more is derated
50% while a 0.5 A fuse is derated 15%. This means that a 2 A fuse will blow at
1 A, while a 0.5 A fuse will blow at 0.08 A in a microgravity environment. Table
C.5 lists the fuse sizes for the VIEW-CPL electronics with the corresponding
derating requirement and Figure C.4 show the location of the fuses within the
fuse plug connector.
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Figure C.4 Location of fuses within the VIEW-CPL fuse plug connector.

Wire. The wire used in the circuits was 22 AWG wire, with the exception of 20
AWG at the evaporator heater return, 20 AWG leading to the Shuttle power
connector, and the smaller size leads on the evaporator heaters. The 22 AWG
meets the requirements of NASA Memo TA-92-038 [NASA JSC, 1992] for
selection of wire such that the wire manufactures' recommended operating
temperature limit for the wire insulation will not be exceeded for any possible
loading or fault condition of the circuit under worst-case environmental conditions.
The evaporator heater lead wires were 26 AWG for the 10 and 40 W heaters and
24 AWG for the 25 W heater; while not complying with the requirements of NASA
Memo TA-92-038, they were approved by JSC safety as complying with the intent
of the memo because they were (1) staked in place, (2) had lengths less than
two inches, and (3) proven to be of good workmanship by ground testing. All wire

was covered with teflon insulation rated at 200 °C, as required for flight safety.

PGSC Interface Unit (PIU). Figure C.5 shows the channels corresponding to the

DB25 connector on the PIU.
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Figure C.5 DB 25 connector and corresponding channels for VIEW-CPL
PGSC Interface Unit (PIU).

Pressure transducers. The absolute pressure transducer was a Model MA serial

number 520157, with a range from 0 to 173 kPa (0 to 25 psia) . The transducer
was powered with +/- 15 VDC from a VAB inline amplifier serial number 498488.
The differential pressure transducer was a Sensotec Model P-30-P with range of
-5 psi to +5 psi. The transducer was powered with 10 VDC from a VAB inline
amplifier. The differential pressure transducer zero has an offset of -0.65 kPa,

as determined from the collected data.
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APPENDIX D: VERIFICATION DOCUMENTS

UMCP-VER-001-VCPL

VIEW-CPLPROOF PRESSURE TEST AND LEAKCHECK
Performed:  June 5, 1996

Swales & Associates, Inc.

Thermal System Group

11313 Frederick Avenue

Beltsville, MD 20705

Contacts: Kimberly Kolos (301) 405-5320
Marc Kaylor (301) 586-1264

Helium Leak Check

Equipment:  VEECO MS-170, Helium leak detector
Rejection set point 8x10- cc/s

Procedure:  Sweep detectorover all joints inthe VIEW-CPL system. Perform proof pressure test
and repeat leak check.

Results: No leaks detected prior to proof pressure test. No leaks detected after proof pressure
test.

Proof Pressure Test

Equipment:  Helium tank with pressure gauges

Procedure: ~ Charge VIEW-CPL with 34 psia of Helium and monitor changes in pressure.
Results: 3:25 PM charged with helium, 3:38 PM released helium. No leaks

Figure D.1 UMCP-VER-001-VCPL: VIEW-CPL proof pressure test and
leak check (page 1 of 3)
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Figure D.1 UMCP-VER-001-VCPL: VIEW-CPL proof pressure test and

leak check (page 2 of 3).

269




Table 1. Helium Leak Test Data Sheet

Helium Leak Testing (Std CC/Sec)
Serial Number
LRCS IMCS Time Start | Time End A Pass/Fail
Univers, ¥ B - "
;mﬂ’g,grof:” 4,1 210~ ¥ L1xio-%| [0:00 | jo:30 qus
S
LRCs - Certified Leak Rate of Calibrated Source
IMCs - Indicated Measurement of Calibrated Source

~ = - Size CAGE Drawing No.
_5-\% = A 020W3 SAI-HP-024

=3 Scale Rev. C Sheet 7 of 9

Figure D.1 UCMP-VER-001-VCPL: VIEW-CPL proof pressure test and
leak check (page 3 of 3).
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UMCP-VER-003-VCPL

VIEW-CPL INITIALPRESSURE PRIME
Performed:  June 11, 1996

Goddard Space Flight Center

Code 724.2 /| Thermal Lab

Contact; Kimberly Kolos (301) 405-5320

Equipment:  VIEW-CPL hardware, surge protector power strip, HP power supply

Procedure: ~ Turn on the reservoir heaters to fill the CPL with liquid from the reservoir. Check
liquid in the evaporator by applying heat to the evaporator.

Data (from lab book pg. 33):

2:45PM

2:56

3:00

3:10

3:12

3:30

3:32
3:35
3:38

Liquid is in the vapor plenum of the evaporator

Increased TC1 (20W) set point using the screw adjustment to raise the
reservoir set point. An indication of at the heater has reached the set-point
value is that the LEDs begin to cycle on and off.

Increased TC2(5W) set point using the screw adjustment to raise the reservoir
set point

Increased TC1(20W) set point using the screw adjustment to raise the
reservoir set point

Increased TC2(5W) set point using the screw adjustment to raise the reservoir
set point

Decreased TC1(20W) and TC2(5W) set point so the heaters are cycling at
50°C. The evaporator is filled with liquid, indicating that the liquid was
forced from the reservoir to the evaporator and there is no blockage between
the reservoir and the remainder of the CPL

Turned on MH2 (25W) on the evaporator

Turned on MH1 (40W) on the evaporator for a total of 65W.

Vapor was generated in the grooved and the vapor plenum was cleared of
liquid.

Results: There is no blockage between the reservoir and CPL as indicated by the filling of the
evaporator with liquid. Inthis configuration, the reservoir temperature will regulate the pressure in

the CPL.

Figure D.2 UMCP-VER-003-VCPL: VIEW-CPL initial pressure prime.
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UMCP-VER-005-VCPL

VIEW-CPL Thermalswitch and reservoir temperature controllerverification

Performed:  Thermal switches on May 8, 1996 at UMCP

Resenvoir temperature controller on June 11, 1996 at GSFC
Test operator: Kimberly R. Kolos

Department of Mechanical Engineering

University of Maryland

College Park, MD 20742

(301) 405-5320 PHONE

(301) 314-9477 FAX

krkolos@glue.urmd.edu

1.0  Thermal switch test configuration

The Thermik brand thermal switches were selected from the 05 series to open at 60+5°C and
reset at 45°C. In order to verify that the switches function properly, each switch was immersed in
water baths to determine the actual open and re-close set points. A flexible strip heater was taped
around a 500ml flask filled with 350ml of tap water. A type T thermocouple was used to
monitor the temperature of the water in the flask. A magnetic stirrer was used to maintain a
uniform temperature throughout the flask.

The thermal switches were physically labeled with the numbers 1-25 with a black marker and
tested individually. The thermocouple was twisted around the thermal switch and immersed in
the tap water. A continuity meter was connected in series with the thermal switch to determine
when the switch opened and reclosed. Power was applied to the heater to raise the temperature
of the water in the flask. When the continuity meter indicated that the thermal switch opened, the
temperature was recorded and the heater was turned off. Cool water was slowly added to the
flask to bring the temperature down. The flask was air cooled for the final stage of the cooldown
to determine the reset temperature of the thermal switch.

20 Data

The calibration of a type T thermocouple with a Barnant 115 Thermocouple readout device was
checked with a 3" immersion thermometer and determined to provide accurate temperatures

within #0.5°C.
Thermocouple  Thermometer Difference  Thermocouple ~ Thermometer Difference

(9 (9 (0 ()

247 252 -0.5 32.0 320 0.0
26.3 26.3 0.0 34.0 33.7 0.3
273 274 -0.1 35.3 35.2 0.1
2838 289 -0.1 36.2 36.0 0.2
30.8 30.7 01

Figure D.3 UMCP-VER-005-VCPL: VIEW-CPL thermal switch and reservoir
temperature controller verification (page 1 of 5).
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Thermal

a A~ W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

. Switch

Open

59.7
59.0
62.3
59.2
60.8
59.8
59.4
59.6
61.5
59.9
59.3
59.0
61.1
61.7
61.3
60.7
61.1
61.1
60.7
59.1
59.1
62.1
60.4
59.9

59.9

Close

45.0
374
36.1
357
38.0
38.0
39.7
36.9
46.5
38.1
37.0
44.1
38.6
38.6
38.2
46.3
34.0
39.6
37.7
38.6
44.1
37.3
38.8
34.6

453

Open

59.9

61.3
59.7
59.6
59.6
60.9
60.5
59.5
59.1

61.5
61.8
60.8

61.1
60.5
59.3
59.3

60.3
60.5

Close

445

37.4
38.1
39.7
36.4
457
38.6
36.9
442
38.6
38.7
38.1
46.2

39.7

37.6

38.6

43.7

38.7

452

Avg Avg Accept/
Open  Close  Reject
59.8 44.8 Accept
59.0 37.4 Reject
62.3 36.1 Reject
59.2 35.7 Reject
61.1 37.7 Reject
59.8 38.1 Accept
59.5 39.7 Accept
59.6 36.7 Reject
61.2 46.1 Accept
60.2 38.4 Accept
59.4 37.0 Reject
59.1 44.2 Accept
61.1 38.6 Accept
61.6 38.7 Accept
61.6 38.2 Accept
60.8 46.3 Accept
61.1 34.0 Reject
61.1 39.7 Accept
60.6 37.7 Reject
59.2 38.6 Accept
59.2 43.9 Accept
62.1 37.3 Reject
60.4 38.8 Accept
60.2 34.6 Reject
60.0 453 Accept

Location

Reservoir

Vapor line

Liquid line

Evaporator

Vapor line
Reservoir
TEC

TEC
Vapor line
Evaporator

Evaporator

Liquid line

Evaporator

Liquid line

Reservoir

Figure D.4 UMCP-VER-005-VCPL: VIEW-CPL thermal switch and reservoir
temperature controller verification (page 2 of 5).
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The reservoir temperature controllers were calibrated using an Omega digital thermocouple
thermometer and a Type T thermocouple. The lab book, pg. 33 documents the temperature
controller calibration and initial pressure prime.
2:45PM Liquid is in the vapor plenum of the evaporator
2:56 Increased TC1 (20W) set point using the screw adjustiment to raise the
reservoir set point. An indication of at the heater has reached the set-point
value is that the LEDs begin to cycle on and off.

3:00 Increased TC2(5W) set point using the screw adjustment to raise the
reservoir set point

3:10 Increased TC1(20W) set point using the screw adjustment to raise the
reservoir set point

312 Increased TC2(5W) set point using the screw adjustment to raise the
reservoir set point

3:30 Decreased TC1(20W) and TC2(5W) et point so the heaters are

cycling at50°C. The evaporator is filled with liquid, indicating that the
liquid was forced from the reservoir to the evaporator and there is no
blockage between the reservoir and the remainder of the CPL

3:32 Turned on MH2 (25W) on the evaporator

3:35 Turned on MH1 (40W) on the evaporator for a total of 65W.

3:38 Vapor was generated in the grooved and the vapor plenum was cleared of
liquid.

1 Summary

The criteria for selecting the thermal switches was that the switch open in the range of 59°C to
62°C and reset at a temperature above 38°C. Fifteen switches were selected (TS 1, 6, 7, 9, 10,
12,13, 14, 15, 16, 18, 20, 21, 23, and 25) to be placed in series with the heaters and
thermoelectric cooler on the VIEW-CPL payload. The switches are placed in series with the
heaters with one switch on the positive voltage side and a redundant switch on the return line as
specified in the VIEW-CPL electrical drawings.

The temperature controllers were shown to regulate the temperature of the reservoir. The
controllers were set to switch off power to the heaters at 50°C.

Figure D.3 UMCP-VER-005-VCPL: VIEW-CPL thermal switch and reservoir
temperature controller verification (page 3 of 5).
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Figure D.3 UMCP-VER-005-VCPL: VIEW-CPL thermal switch and
reservoir temperature controller verification (page 4 of 5).
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Figure D.3 UMCP-VER-005-VCPL: VIEW-CPL thermal switch and
reservoir temperature controller verification (page 5 of 5).
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UMCP-VER-006-VCPL

VIEW-CPL Surface temperature measurement on Sept. 13, 1996

The insulation surface temperature was measured on the VIEW-CPL payload while operating the
evaporator heaters. The measurement was made with a type T thermocouple and found to be
32°C. This temperature is on the aluminum tape enclosing the insulation on the vapor line (hot
side) which is only accessible by opening the VIEW-CPL shroud cover. External VIEW-CPL
temperatures on the lexan shroud are at room temperature.

Kimberly R. Kolos

University of Maryland

Department of Mechanical Engineering
College Park, MD 20742

(301) 405-5320

Figure D.4 UMCP-VER-006-VCPL: VIEW-CPL surface temperature
measurement on Sept. 13, 1996.
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VIEW-CPL Weight, Dimensions, and Center of Gravity
Kimberly R. Kolos ~ (301) 405-5320

Univ. of MD, Dept. of Mech Eng. 20742

Final: August 27, 1996

Weight measured on OHAUS DS20L (calibrated by factory Oct. 1995)

1805 kg = 39.71 Ibs
Dimensions (inches)
width (x) 17.1 including connections r
depth (y) 13.6 including bracket
height (z) 7.75 including toggle sw o ‘

1 2 3 Average
X 9.0 7.8 8.5 8.4 in
X 73 7.0 7.0 7.1 in
z 28 3.5 26 3.0 in

Figure D.5 VIEW-CPL weight, dimensions, and center of gravity.

278



APPENDIX E: MEASUREMENT UNCERTAINTY ANALYSIS

Uncertainty exists in the measurements and the degree to which the
uncertainty affects the conclusion is an important issue. The propagation of
measurement uncertainty is determined from the uncertainty of the individual
measurements. If a statistical interpretation of uncertainty is adopted, the
uncertainty is calculated using a root-sum square formulation and the overall
uncertainty (dU,, takes on a probabilistic meaning. The root-sum square

expression can be written as

NCof )2
oU _ = —-0x; (E.1)
rss Ei( oX; ’]

where 0x; represents the most probable errors in each of the measured quantities
(x) that are variables in a function (f) used to determine a variable. A summary
of the measurement uncertainties calculated using Eq. E.1 is presented in Table
E.1.

E.1 Resolution from the PGSC Interface Unit (PIU)

The PIU board resolution is required when calculating the uncertainty of
the measurements collected with the VIEW-CPL data acquisition system. The
PIU contained a 15 bit analog-to-digital converter [Azonix Corp., 1995] with an
input signal range of +10 V for a resolution of 20 V / 2*° bit, or 0.0006104 V/bit.
In the measurement uncertainty calculations, the voltage uncertainty, dV, is the

board resolution of + 3.052 x 10 V.
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Table E.1 Measurement uncertainties for data from the VIEW-CPL experiment.

Measurement

Transducer Uncertainty

Total Measurement
Uncertainty

PIU resolution, 6V

+3.05 x 10 V/bit

N/A

Temperature, 0T

+3.05x 10"V, £ 0.29 kQ

+0.74 K ( at 60°C)

Absolute pressure, 8P,

+3.05x10*V
0.15% Full Scale = + 0.26 kPa

+ 0.30 kPa (at 20.0 kPa)

Differential pressure, OP 44

+3.05x10*V
0.3% Full Scale =+ 0.21 kPa

+0.21 kPa (at 0.20 kPa)

Supply Voltage, 0V

+3.05x 10"V, £10 Q, +25 Q

+0.032 V (at 32 V)

Heater Power, 8Q

+3.05 x 10 V (signal),
+0.032 V (supply), £ 0.0010 Q

+0.10 W (at 10 W) + 0.14
W (at 75 W)

Bubble Volume, dV

See Appendix F

See Appendix F

E.2 Temperature measurements

The temperature data was collected with AD590 [Omega, 1987]

temperature sensors (see Appendix G for details on the sensors) and calculated

from

where C = 1.0 K/pA represents the transducer characteristic.

(E.2)

The factors

affecting the temperature calculation are the voltage, V, and the value of the

resistance, R,

in the AD590 circuit (see Figure G.1 in Appendix G).

The

uncertainty for the temperature measurement is calculated as

2 2
5T - C (%w) +(l5R)

R2
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The resistance and tolerance of the resistors used in the experiment were
13.0+£0.65 kQ. The resistance uncertainty is assumed equal to the resistance
tolerance. A typical voltage at 60 ‘C was 4.331 V + 3.05 x 10 V resulting in
0T=16.7 K. If the resistance values were certain (i.e. dR = 0), the temperature
uncertainty would only be 0.05 K due solely to the uncertainty of the voltage, dV,
resulting from the board resolution. Thus, the temperature measurements are
sensitive to the variation of the resistance values in the AD590 circuits. A curve-
fit to resistance data is used to reduce the uncertainty on the resistance to +
0.029 kQ (see details in Appendix G), resulting in a typical temperature
uncertainty of 8T = £ 0.74 K.
E.3 Pressure measurements

The absolute pressure transducer operates in the range of 0 to 172 kPa
(0 to 25.0 psi) with an output of 0 to 5 VDC for a resolution of 34.4 kPa/V;

therefore the absolute pressure is determined as

P, =CV (E.4)

abs r

where C, = (P Prin) (Viax = Vimin) = AP / AV = 34.4 kPa / V. Manufacturer data

max
for the transducer gives an uncertainty, 6P, equal to +0.15% of full scale,
which is £0.258 kPa (x0.0375 psi). The propagated measurement uncertainty,

OP,,, resulting from the voltage resolution limit of the PIU board is calculated as
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2 2 2

5P = 2| Yop | +2[ AP vsv| 4| LPsy (E.5)
AV AV2 AV

For a typical pressure of 20.0 kPa, corresponding to 0.581 V, the propagated

measurement uncertainty is £0.0437 kPa. The total measurement uncertainty for

the absolute pressure transducer is equal to the sum of the manufacturer’s

uncertainty and the propagated measurement uncertainty:

6Pabs - 6Pm +0P (E.6)

man

which is equal to £ 0.302 kPa (0.0437 psi). The manufacturer’'s uncertainty
dominates the uncertainty associated with the absolute pressure measurements.

The uncertainty associated with the differential pressure measurement is
determined in a fashion similar to the absolute pressure measurement. The
differential pressure transducer operates in the range of -34.5 to +34.5 kPa (-5.00
to +5.00 psi) with an output of -5.02 to 5.00 VDC for a resolution of 6.88 kPa/V
(Note: the negative output is different than the positive due to manufacturer’s
amplifier calibration factors). The accuracy of the transducer, given by the
manufacture, is 0.3% of full scale (dP,,, = £0.207 kPa). The maximum
measurement from the differential pressure transducer was 0.200 kPa,
corresponding to a signal of 0.0291 V. Using equation E.5, the propagated
measurement uncertainty for the differential pressure transducer is oP,, =

0.00227 kPa. Thus the total uncertainty for the differential pressure
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measurement is OP =+ 0.209 kPa, which is the same order as the maximum
measurement from the transducer indicating that the pressure transducer was
oversized.

E.4 Electrical measurements

The DC power supply voltage to the VIEW-CPL experiment, V was

supply’
measured using the voltage divider network (see Figure 3.23) containing
resistors R, and R, with values 10 kQ and 25 kQ, respectively. The supply

voltage was calculated as follows

Vsupply =V (E . 7)

The uncertainty of the voltage measurementis calculated based on the resolution

of the board, dV, and the uncertainty of the resistors OR, and 0R, as

R,+R 2 V-R

2.3R,
R?

BV (E.8)

supply

1

The resistors have a tolerance of +0.1% resulting in an uncertainty of +10 Q for
OR; and 25 Q for dR,. Based on this, calculated uncertainty for the voltage
measurement is £0.032 V, for a signal of 9.1 V corresponding to a supply voltage
of 32 V. Thus the supply voltage measurements have a relative measurement
error of £0.10%.

The heater power, Q, is a function of the power supply voltage, V., (EQ.
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E.7) and the current passing through the heater circuits, V,../R

%

ignal
Q= Vsupply sll;na (E_9)

The uncertainty in the power measurements is calculated as

signal

2
+ Vsupply 5V
R

2 2
+ ( vsupply vsignal oR (ElO)
R2

vinl
oQ = \l( s/ga OV suppiy

where V., varies for each heater combination. Table E.2 lists the uncertainty
in power measurement based on a typical supply voltage of 32 £ 0.032 V and a
resistance, R, of 0.100+0.001 Q.

Table E.2 Summary of uncertainty in heater power measurements.

Heater (W) Current (A) Measurement Signal (V) Uncertainty (W)

Q ViR Vg 5Q

10 0.313 0.031 0.099
25 0.781 0.078 0.104
35 1.094 0.109 0.109
40 1.250 0.125 0.113
50 1.563 0.156 0.121
65 2.031 0.203 0.134
75 2.344 0.234 0.144

E.5 Vapor volume measurements

The vapor bubbles in the evaporator core are classified as (a) spherical,
(b) hemispherical, (c) half-elliptical, and (d) half-cylindrical with spherical ends.
The uncertainty functions, dV,, associated with the bubble volume calculations,

V,, are given in the following four equations and are a result of the uncertainty in
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the diameter, length, and width measurements, dd, dl, and dw, respectively.

(a) Spherical:

V, £8V, = 2d3z Da25d (E.11)
6 2
(b) Hemispherical:
V, 8V, = L r3s Mp25
b b~ 15 4 (E.12)
(c) Half-Elliptical:
Vv, t 6Vb=%nldw + %rr\/(ldﬁw)2+(lw6d)2+(dWESI)2 (E.13)

(d) Half-Cylindrical with spherical ends:

2 2 2

V, + 8V, Ta2r + 20g3| & || Daraa| | Mol + Da28d| (E.14)
4 34 2 4 2

An example bubble measurement is given in Appendix F.

E.6 NCG Calculation

The amount on noncondensible gas in the loop is a calculated using the ideal gas

law

2 2 2
neon=Va |l Mop|l [ Posvl +(PVsT (E.15)
RT RT?
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APPENDIX F: OBTAINING DATA FROM VIDEO

The video test footage from VIEW-CPL was recorded in either Hi8 mm, 8-
mm or VHS-C format. All shuttle footage was recorded on Hi8 mm tape, which
provides 30 frames per second of video information. Information on the size and
shape of the bubbles in the evaporator core was extracted from the video data
by either downloading the images into a computer and taking measurements from
the downloaded images or taking measurements directly from the video monitor
during playback.
F.1 Downloading video frames

Photographs from the video tapes were downloaded to the computer via
an image “grabbing” device. The Snappy Video Snapshot (SVS), developed by
Play Incorporated, plugs into the parallel port. A standard RCA jack port allows
the SVS to be connected to a camcorder or video cassette recorder (VCR).
Video displayed with a VCR, or through a camcorder, is shown on the computer
monitor when the SVS software is executed. When the desired picture is shown
on the screen, the image is grabbed, processed, and displayed on the computer
monitor. The image can be adjusted and saved in various formats. The physical
size of the image to be saved ranges from 64 to 1500 pixels wide, by 48 to 1125
pixels high and the color options range from 16 colors to 16 million colors in the
24-bit true color format.

The SVS scans at 72 ppi (pixels per inch). The maximum image size for

the SVS is 1500 pixels wide by 1125 pixels high for a printable size of 20.8 inches
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by 15.6 inches. When the picture is reduced to fit on a piece of 8 %2 x 11 inch
paper, the number of pixels per inch increases for a higher resolution image (102
ppi). When larger images are saved, more disk storage space is required. To
retain picture quality while reducing the storage space, image data was stored as
24-bit true color images with dimensions of 1024 pixels by 768 pixels (14.2 inches
by 10.7 inches at 72 ppi) resulting in a file size of approximately 400 kilobytes per
image. The SVS allows images to be saved in the many industry standard
formats. The JPEG format allows the image to be compressed, resulting in good
guality picture at a smaller file size than would be obtained with the other formats.

The SVS can be adjusted for higher quality still pictures. By changing the
length of time spent sampling the video source, more frames can be sampled.
If more frames are sampled, the color accuracy will be higher and the video noise
will be reduced through data interpolation software. With a moving scene, such
as images from video tapes, the sampling time is 1/60th of a second and only one
sample is obtained. If images are still, a longer sampling time is used to take
more than one sample from the video source. For still video a two-field sample
is taken and image processing software enhances the picture. A video field is
one half the information stored in a video frame or screen of information, i.e. one
video frame consists of an odd and an even field. The frames for NTSC, the
standard video format for the United States, are displayed at a rate of 30 Hz,
which result in a field rate of 60 Hz

To obtain the best quality video images at precise times from the Hi8 mm
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video tapes, the desired frame was paused on the VCR and the SVS mode was
set at moving scene. This setting allowed only one sample of the video to be
scanned and eliminated the use of the software interpolation for adjusting the
image. The moving scene setting was necessary because even slight changes
in the lighting on the video tape affected the quality of the multi-scanned images.
After scanning, the image was stored in the JPEG format and imported
into Adobe Photoshop 4.0 for sizing and measurement.
F.2 Measuring bubbles
The distance from the extreme edge of the evaporator inlet hole to the
vapor plug was measured on the hardware and found to be L+ 6L, =10.80 £ .05

cm. This value was used to find the scaling factor

L 5L,\2 (L. )?
F£dF ="z || 2| +|2aL (F.1)
L L 27 P
p p L,

for the pictures by scaling the same distance in the image (photograph or
monitor), L,. The physical length, ¥, is calculated from the length measured on

the image, x, by

X % 0x= F X, & \[(BF X} + (F 8x,)? (F.2)

When using the SVS, the images were scaled to 5 inches wide (resolution
of 205 ppi) and scaling guidelines (horizontal and vertical lines) were added to

determine the scale factors required to obtain measurements from the images.

288



Dimensions of bubbles were obtained by zooming in on details and using the
internal ruler bars available in Adobe Photoshop. Measurement made directly
from the video monitor were faster, but more measurement uncertainty existed
(see Appendix E).

Figure F.1 is an example of the measurements taken from the VIEW-CPL
photographic data. Table F.1 summarizes the variables in the measurement.

Table F.1 Example bubble measurements.

Bubble Bubble Reference
Diameter Length Length
d (cm) | (cm) L (cm)
Measured from image 0.73 +£0.05 209+0.05 [L,=8.40%0.05
Actual dimension 0.94 £ 0.06 2.69 +0.07 |(L,=10.80%0.05

From Figure F.1, the physical size of the bubble is calculated from Eq. E.13
(volume of half cylinder with spherical ends) using the actual diameter and length
calculated from Eqg. F.14 with a scaling factor of F = 1.286 + 0.006. The bubble

shown in Figure F.1 had a volume of 2.08 +.26 cm?.

Figure F.1. Example of measuring bubbles fr-om potograToh
downloaded from the VIEW-CPL experiment.
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APPENDIX G: VIEW-CPL TEMPERATURE
MEASUREMENTS AND CORRECTIONS

G.1 Temperature sensor circuits

The temperature measurements in the VIEW-CPL experiment are
collected using AD590 temperature transducers [OMEGA, 1987]. The
transducers are powered with 15 VDC and act as current sources, supplying
current output proportional to the absolute temperature of the transducer with a

proportionality constant of C = 1uA/K.

vV
T=-2cC
R (G.1)

By placing a resistor, R, in the AD590 circuit (see Figure G.1), a voltage
measurement, V, is used to infer the temperature, T, at the AD590 sensor from
Eq. G.1.

G.2 Temperature sensor calibration and sensitivity

Each of the AD590 temperature sensors were calibrated using YSI

AD590

Supply o
voltage
(15VDC)

common

common +
Measured output

voltage, V

Figure G.1 AD590 temperature transducer circuit as used in the VIEW-CPL
experiment.

290



precision thermistors [YSI, 1995] placed in contact with the AD590 locations on
the experiment at the condenser, evaporator, and reservoir. The thermistors were
used as independent measurements in calibrating the transducers as prescribed
in the AD590 literature [OMEGA, 1987]. The AD590 temperature sensors were
calibrated either using measurements taken at ambient air conditions,
measurements at 40°C while in an oven, or a weighted average of the two
measurements. In calculating the slope calibration factors, weighted averages
were assigned to the oven or ambient temperature measurements according to
the temperature range that the particular sensor would operate within. For
example, since the air temperature measurement (T9) never exceeded 30°C, the
calibration depended entirely on the ambient temperature measurement and the
oven temperature measurement was not a factor in calibrating T9. The resulting
calibration factors were obtained by calculating the slope required to match the
AD590 temperature measurements to the thermistor measurements. The slope
calibration factors, S, are the inverse of the resistor values inferred from Eq. G.1
by assuming C=1. The calibration factors for the VIEW-CPL AD590 circuits, are
listed in Table G.1. The accuracy of the temperature measurements depend
upon the accuracy of the voltage and the resistance as described in Appendix

E.2.

2901



Table G.1 Slope calibration factors for the AD590 temperature sensors used in
the VIEW-CPL experiment.

AT = Temperature from the AD590 sensor - temperature from the thermistor
AD590  Slope calibration  Resistance AT at AT in Location on VIEW-CPL
circuit factor, S, R, (kQ) ambient  40°C oven
(K/Volt)

T1 72.26 13.84 -0.29 0.34 Reservoir inlet

T2 72.66 13.76 -0.04 0.36 Condenser exit

T3 73.43 13.62 -0.28 0.75 Condenser inlet

T4 73.30 13.64 -0.01 -0.47 Evaporator inlet

T5 71.09 14.07 -0.10 -0.74 Evaporator exit

T6 73.80 13.55 -0.31 0.46 Evaporator block

T7 71.89 13.91 -0.32 0.51 Evaporator inlet

T8 72.81 13.73 -0.00 0.90 Reservoir

T9 70.91 14.10 0.00 0.67 Condenser exit air

T10 71.60 13.97 -0.05 0.91 Liquid line

G.3 Resistor drift correction

The temperatures, measured with the AD590 system described in section
G.1, are very sensitive to the resistance over which the voltage is measured;
therefore any change in the resistor values adversely affects the output. A
gradual decrease in the AD590 temperature values, as displayed on the VIEW-
CPL PGSC Interface Unit (PIU), was observed when compared to the VIEW-CPL
panel meter. The sensed temperatures were also lower than values obtained
from thermocouples placed on the experiment after it returned from the shuttle
flight. This apparent decrease in the AD590 temperature measurements on

VIEW-CPL led to an investigation of the AD590 circuits.
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The panel meter temperature is measured with an AD590 sensor on a
circuit similar to the main AD590 circuits. While both circuits are powered with
the same +15 V supply, the panel meter resistor is a 1 kQ + 0.1% precision
resistor while the other sensors used standard 13 kQ + 5% carbon film resistors.
The only other difference between the circuits is that the voltage measured with
the panel meter is read across the 1 kQ resistor using a 0-2 V digital meter, while
the PIU board measures the voltage across the 13 kQ resistors. Based on the
circuit comparisons, the possible causes of the temperature variation were
determined to be either (1) the PIU board calibration had drifted, (2) a bug in the
software code, or (3) the resistance values had drifted. The possibility of sensor
degradation is unlikely since a degradation in the sensors would have been
obvious in all of the circuits, including the circuit with the precision resistor.

A check on the PIU board calibration and software calculations was
performed and results matched baseline, confirming that both the board and the
software were working properly. The resistors were then measured and found
to be approximately 2% lower than the installed values. Since the resistance
values were lower than expected, the change resulted in lower than expected
output voltages from the AD590 temperature sensors and therefore lower than
expected temperature readings. The fact that the AD590 temperatures were
consistently lower in all of the circuits containing standard resistors led to the

theory that the resistors were the cause of the temperature degradation.
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It was discovered, after the experiment had flown, that resistors can
change resistance during both storage and during use [Sinclair, 1990 and
Wellard, 1960]. The resistors used in the AD590 circuits were standard 13 kQ,
1/4 watt carbon resistors with 5% tolerance. Humidity effects on carbon
composition resistors cause the resistance to increase due to expansion of the
resin in the resin-carbon resistance matrix, which then separates the carbon
particles. The increase can be partially reversed upon drying, however a total
recovery is not expected due to the structural change of the element [Wellard,
1960]. Carbon composition resistors also see changes in resistance during the
load life due to polarizing voltages reorienting the resistive particles within the
binders and due to expansion and contraction effects within the carbon-resin
structure. It is possible for the resistance to decrease with usage, due to both
drying effects from the heat generated during use and reorientation of carbon
particles, and then to increase during storage from collecting moisture. This
increase and decrease in resistance was observed in the VIEW-CPL data.

Recalling that the temperature calculation is sensitive to changes in
resistance (the 2% observed change in the resistance values resultsina 5.7 K
error in the temperature values, Equation E.3, Appendix E.2), a correction was
necessary to the calculated temperature data to account for the changing
resistance in the AD590 circuits. In order to make the correction to the previously
collected VIEW-CPL temperature data, the raw voltage data was first recovered

from the temperature values using the original resistance values from Table G.1
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in Eq. G.1. The correct values of the resistors was determined for each test by
comparison with the panel meter readings. Since there was a gradual change in
the resistors, a curve fit of resistance with powered usage time was used. Once
the corrected resistance values were determined for each test, the raw voltage
was divided by the resistance to obtain the temperature.

The original calibration of the temperature sensors, made using ambient
air conditions and an elevated temperature of 40 °C in an oven (see Section G.2),
were performed in August 1996. After that, the only check on the VIEW-CPL
temperature measurements during the testing are comparisons of the
temperature measurement on the reservoir (T8) and the panel meter
measurement, also on the reservoir. The panel meter temperature measurement
is the only AD590 circuit with a precision resistor, and this temperature
measurement was still correct in May 1997 when verified after the shuttle flight.
To make the corrections, the T8 measurements were converted to raw voltages
using the calibration factors in the data acquisition software (Table G.1).
Assuming the panel meter reading is the correct temperature measurement, the
expected resistance, R;; is then a function of the raw voltage, V, and the

measured temperature, T .

Reg = —— (G.2)
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A new slope calibration was essentially performed for each test using the panel
meter as the basis of the calibration according to Eq. G.2. A curve-fit of the R,
data provided the new slope calibration required to correct the temperature data.

The measurements used to fit a curve to the resistance were collected
from data sheets and grouped into three distinct time periods: pre-flight (152
samples), flight (82 samples), and post-flight (39 samples). The three data sets
are plotted versus usage time in Figure G.2. The periods in between the three
main groups were times that the CPL was not tested and no power was applied
to the resistors in the AD590 circuits for an extended period of time (~2 months).
Since there was no usage of the AD590 resistors during these down times, the
groups of data appear one after the other on Figure G.2. Approximations of non-
powered periods, in-between the individual tests, were made in order to
determine the actual usage time of the resistors. The usage time, that is the time
that the resistors received power, is the main independent variable for the
resistance curve-fit since it is known that resistors can decrease value over the
period they are powered [Wellard, 1960]. The breakdown of the data into the
three ranges resulted from the resistor values partially correcting themselves
toward their original resistance values during the extended non-use times. In the
time period between the end of pre-flight testing and the start of flight testing, as
well as during the time period between the end of flight testing and the start of

post-flight testing, the resistance values increased 0.8% in each period.
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Figure G.2 Steady VIEW-CPL resistance calculations from the reservoir AD590
panel meter and T8 temperature measurement.

Depending upon the conditions in the CPL and the speed with which the
data is manually recorded, the time lag between the recording of the T8
temperature value and the panel meter value could allow the T8 value to change
before the panel meter is actually recorded. Any transient panel meter or T8 data
points could adversely affect the accuracy of the resistance curve-fit, therefore
only data collected during steady state conditions were included in the data set
used for the curve-fit. Since the panel meter measurement was recorded
immediately following the manual recording of the time on the data sheet, it is
assumed that the panel meter was manually recorded very close to the recorded
time. The data is considered steady if the difference between T8 on the data
sheet and T8 obtained from the computer collected data file, at the time the panel

meter reading was recorded, is less than or equal to +0.1 ‘C. All data not
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meeting this criteria, 124 samples out of 273 total, were rejected from the
samples used for the curve-fit.

Panel meter and T8 measurements below 40 °C were also eliminated from
the curve-fit data samples in order to reduce temperature effects and focus on the
resistance-time variations. The 40 °C threshold was chosen because the
reservoir typically operated in the 40 to 50 °C range. The data below 40 °C
accounted for 20 out of 149 samples.

A non-linear least squares curve-fit of the data was performed for each
range of data: pre-flight, flight, and post-flight. The function expresses the

resistance, R, as a function of the usage time, t, as

R = C,(t-t,)2e ™ 3)

A time offset, t,, which is a different value for the pre-flight, flight, and post-flight
data, is required to shift the data in time. The offset was chosen in an iterative
manner to reduce the sensitivity of the resistance calculation for t near the lower
bounds of the time range. The results from the three curve-fits are summarized
in Table G.2 and the curves with the data points used in the correlation are
plotted in Figure G.3.

The standard error of estimate, S,, is a measure of the ability of the model
to predict data values. A value of S, lower than the standard deviation of the
values of the random variable about the mean, S,, indicates an improvement in

the prediction capability of the model over the prediction capability of just using
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Figure G.3. Pre-flight, flight, and post-flight curve-fits to VIEW-CPL resistance
data from the reservoir T8 AD590 circuit.

Table G.2 VIEW-CPL T8 resistance curve-fit coefficients and goodness-of-fit
statistics.

Data set: Pre-Flight Flight Post-Flight
Data range, days 0.00 < t<8.15 8.15<t<13.76  13.76 < t<29.00
Sample size 70 33 26

Offset: t,, days -3.00 6.00 13.00

C, (kQ/days) 13.96943 13.8662 13.5732

C, -0.0144688 -0.0168156 -0.0045452
C, (days™) 0.0009376 0.0013620 0.0001502
Standard error of 0.01854 0.02503 0.02900
estimate (S,), kQ

S/Sy 0.4194 0.3489 0.5770
Explained variance 0.8292 0.8858 0.6937

(R?)

Correlation coefficient ~ 0.9106 0.9412 0.8329

(R)

Critical R value for 0.3927 0.5477 0.6073

0.0005 level of
significance (McCuen,
1985)
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the mean value of the data [McCuen, 1993]. Therefore, the lower the S./S, ratio,
the better the prediction capability achieved with the model. The explained
variance, R?, is the square of the correlation coefficient and is equal to the
percentage of the variation in the data that is explained by the model. Critical R?
values for the data sample sizes used in the pre-flight, flight, and post-flight
curve-fits are determined using the 0.05% one-tailed Pearson test for correlation
significance [McCuen, 1985]. The Pearson correlation test determines that the
correlation is significant (in a statistical sense) for any R? values larger than the
critical value. Since the R?for all three sets of data are larger than the critical R?
values, statistical analyses suggest that the curve-fits are reasonable models for
determining the resistance values as a function of usage time (as can be seen by
examining Figure G.3).

Some of the spread between groups of data at close time periods can be
explained from the panel meter reading resolution of only 1 ‘C. Using the
methods in Appendix E, a 1 °C change in the panel meter reading results in a
change of £0.04 kQ in the calculated resistance value or a spread in the data of
0.08 kQ. From Figure G.3, the maximum spread in the data is 0.1 kQ, occurring
at10.2 days. The most probable error between the data and the predicted values
is S,.=0.029 kQ (0.21% relative error in resistance). With the new resistance
uncertainty of 0.21%, the resulting temperature uncertainty is 0.7 °C, rather than

the 15 °C uncertainty from the 5% resistance uncertainty (Appendix E.2). The

300



uncertainty of the temperature measurements are greatly reduced when the
resistance curve-fits are used to calculate the temperatures from the AD590
Sensors.

G.4 Temperature correction routine

Based on Ohm’s law and the definition of a current source, when the
resistance in the AD590 circuit differs while at constant temperature, the voltage
measured across the resistor will also change. Since the resistance values for
the software conversion from voltage to temperature (Eq. G.1) were coded into
the VIEW-CPL data acquisition routines, an error was introduced in the recorded
temperatures. In order to correct the temperatures, new resistance values were
calculated using the T8 resistor curve fits from Eqg. G.3.

The resistors in each AD590 circuit must be corrected using Eq. G.3, but
this equation only calculates the resistance value of the T8 AD590 circuit. In
orderto correct all of the temperature measurements and since the resistors were
purchased from the same lot and manufacturer, it is assumed that all of the
resistors changed at the same rate and in the same magnitude. This assumption
was supported by a comparison of resistance measurements on different days.
The value of three resistors were measured in May 1997, corresponding to a
usage time of 28.47 days, and in August 1996 (during temperature calibration).
The changes from the original resistance values (recorded in the data acquisition
software) to the values measured after flight are listed in Table G.3 along with the

original T8 resistance value and the value from Eq. G.3 at 28.47 days. Since the
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Table G.3 Comparison of resistance values from the VIEW-CPL AD590 circuits.

AD590 circuit; T2 T6 T10 T8
Original Resistance value, August 1996, 13.76° 13.55° 13.97° 13.73°
kQ

Resistance value on May 13, 1997, kQ 13.45M 13.25M 13.66M 13.44°
Difference, kQ 0.31 0.30 0.31 0.29

Pderived from isothermal calibration
Mmeasured value
‘calculated value (Eq. C.3)

resistances varied by nearly the same amount, the assumption that all resistors
changed in a similar manner is partially verified.

With the model of the T8 resistance correction, the difference between the
original resistance, R,, and the corrected resistance during any other test, R, can
be obtained as follows

R, = R,+(C, (t-t)?e ™ -R ) (G.4)
The constants, C,, C,, C;, and t,, are listed in Table G.2 for each of the three
ranges of usage time, t. The resistance R, 4 is the original resistance of the T8
circuit as in Table G.1 (R, 5=13.73 kQ)).

The temperatures were corrected for each VIEW-CPL data file collected
during tests performed between August 16, 1996 and May 13, 1997. The
correction involved determining the usage time, t, according to the time at the
start of the test and then correcting the resistance, R, for each AD590 circuit (T1
through T10) using Eq. G.4. The corrected temperature was found using R, for

the resistance value in Eq. G.1.
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APPENDIX H: VIEW-CPL Data Acquisition Software

H.1 Pseudo-code

Display VIEW-CPL logo, and data acquisition version number
Initialization block - Start:
Initialize board with INITIALIZE, Set-up logical channels with SEL1050
Configure Ch 0 and Ch 1 as differential analog input channels for voltage and heater power
measurements using AITYPE and AING
Configure Ch 12 and Ch 13 for the absolute pressure and differential pressure transducers,
respectively, using AITYPE and AING
Configure Ch 14 through 23 for the AD590 temperature sensors using AITYPE and AING
Configure Ch 60 for the mMAC-1050 board temperature sensor using AITYPE and AING
Main menu block - mmenu:
Option 1 - Sample one channel
Select channel number
Call chan1(Num%, Store)
List conversion factors
Start Loop
If Store =1 call DASC every 10 seconds - call DASC:
Call DAS: Sample channels, Write physical data to file
Call chanl again
If reading VIEW-CPL data channels (i.e. voltage, power, absolute or
differential pressure transducer, AD590 temperature sensors),
call XAING to read input channel voltage
If reading board temperature channel, call XAIN to read input
Convert input voltages to physical quantities, Print to screen
Loop until ~C is entered, then return to Main menu
Option 2 - Sample all channels
Call nchan(Store)
List conversion factors
Read initial time
Start loop
Sample channels, convert data, write physical data to screen
If Store=1 and if current time is 10 seconds greater than initial time,
write physical data output to a binary file
Check if temperatures are greater than 60°C and call WARN if true
Loop until ~C is entered, then return to Main Menu
Option 3 - Data plot
Call plott(timescale, store)
Clear screen and color plot area
List calibration factors
Print data, and exit instructions to screen
Plot axes on screen using pixel locations
Begin loop
Record current time
Read channels and convert to physical values
Calculate plotting points using pixel locations (LX,LY) with (0,0) in
upper left corner of screen
LX =XO + (TN - T)*R / Tscale
LX = x pixel location (with O at left of screen)
XO = offset for axis text (30 pixels)
TN = current time
TI = initial start time
R = range of pixels for plotting (500 pixels)
Tscale = time scale in seconds
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Select appropriate range for x value
Plot area broken into 4 plotting ranges to allow
continuous plotting by overwriting old data when
reaching the end of the screen. Current plotting
region is cleared of old data to clearly mark current
plotting location. A vertical bar is plotted to separate
the old data from current data.
LY = BPL - PRP/(HV-LV)*(V-LV)
LY =y pixel location (with O at top of screen)
LPL = Bottom pixel limit for selected data
PRP = Plot range height in number of pixels
UV = Expected highest data value
LV = Expected lowest data value
V = Converted data value
If LY out of range, set to upper or lower limit
Write axis information on screen
Plot points on screen using pixel location and selected color
Print data on screen to right of plot
If Store=1 and if current time is 4 seconds greater than initial time,
Write physical data output to a binary file
Go to top of loop is temperature warning disabled
Check if temperatures are greater than 60°C and call WARN if true

Loop until ~C is entered, return to main menu
Option 4 - CPL Schematic
Call schem(store)
List calibration factors
Draw CPL schematic with lines
Start loop
Print time to screen
Sample channels and convert data

Locate data location on CPL schematic and print data

If Store=1 and if current time is 4 seconds greater than initial time,
write physical data output to a binary file

Go to top of loop is temperature warning disabled

Check if temperatures are greater than 60°C and call WARN if true

Loop until ~C is entered, return to main menu
Option 5 - Start/stop acquisition of data
Check and print current status of writing data to file

Print options: Return to toggle to or from storing data, 1 to store data, O to stop

storing data, S to exit without changing
If storing data, set store=1

Call dirsub to check if file already exists; dirsub (filen$,exist):

Shell to DOS
Issue DOS directory command and write output to file
a:xyzdir.txt

Search a:xyzdir.txt file for file with same name as filen$
If file already exists, exist!=1, else exist!=0
If file already exists, give option to overwrite

Open data file for binary access as unit #2
If not storing data, set store=0
Return to Main menu
Option 6 - Change plot defaults
Print current plot default time scale
Ask for new plot default time scale
Store new plot default time scale
Return to Main menu
Option 7 - Reset data acquisition board

304



Call RST1050 to reset board

Print error code

Hit return to continue

Go to Start to re-initialize channels
Option 8 - Disk directory

Clear screen

Ask for DOS command

Shell to DOS, issue command

Return to Main menu
Option 9 - Exit

Exit to DOS by issuing “System” command

User functions and other subroutines
ttime - timestamp routine
Find year, month, and day from DATE string value
Find hour, minute and second from TIME string value
Create time stamp in number of seconds elapsed since 0 A.D.
Sum number of days in previous months (i.e. if month = 2, previous days
= 31) by calling function “days(month)”
Add current number of days in month to sum of days
ttime# = yr * 31536000 + dday * 86400 + hr * 3600 + min * 60 + sec
days(month) - lookup table for number of days in previous month
Set Days = 0 for Month =1
Set Days = 31 for Month =2, 4, 6, 8, and 9
Set Days = 28 for Month = 3 (does not handle leap years)
Set Days = 30 for Month =5, 7, 10, and 12
warn - high temperature warning
Clear screen
Print warning to remove power from all heaters because a sensor had registered
a temperature above 60°C
Input ~C to continue, or enter “Kolos” to continue testing without warning again

H.2  Subroutine definitions

USER WRITTEN SUBROUTINES:

CHAN1 (Num%, store)
Reads channel number Num% using XAING for differential channel input and
XAIN for single-ended input. Data is converted from input voltage (+/-10V) to
physical quantities and displayed on the computer screen. All data is written to
the output file if Store = 1 by calling subroutine DAS and returning to subroutine
CHANT1 after writing output. Hitting ~C exits to the main menu.

DAS () Samples all channels and writes physical data (converted from voltage output)
to both an ascii file and a binary file for a single time step.

DASC () Calls subroutine DAS to print output to file and then calls CHAN1 to continue
sampling a single channel.
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dirsub (filen$, Exist!)

logo (x!, y!, C))

logol ()

nchan (store)

Checks if the inputted filename (filen$) for storing data already exists. Returns
Exist!=1 if the file is found, or Exist!=0 if the file is not found.

Displays “VIEW-CPL” logo, and the data acquisition software version number.

First subroutine called. Calls subrouting logo to display “VIEW-CPL" logo in block
form. Pauses after displaying information; return required to continue with
program.

Samples all channels and writes raw voltage output to both an ascii file and a
binary file every 10 seconds if Store=1. Prints physical data values to screen in
the form of converted voltages for voltage, power, pressure data, and
temperature data.

plott (Tscale, store)

schem (store)

warn ()

Samples all channels. Plots data on screen and lists numerical data to right of
plot. Plotting has scrolling capability by dividing screen into four regions and only
clearing regions on the screen of old data and plotting new data when the specific
region is entered (i.e. when plot reaches the end of the screen at x=timescale, it
returns to the start of the plot x=0 and clears data from one-forth of the screen
before begining to plot points again). Writes physical output to a binary file every
4 seconds if store=1.

Samples all channels. Draws a CPL schematic and prints data on locations of
the schematic according phyical location on experiment. Writes physical output
to a binary file every 4 seconds if store=1.

Changes the screen to display a warning to stop the test because a temperature
sensor has returned a reading above 60°C. Allows an override by typing “Kolos”
to prevent the warning from showing again.

USER DEFINED FUNCTIONS:

ttime# () -

days! (mon!) -

creates a time stamp by converting date and time to the number of elapsed
seconds since 0 A.D.

Look up table for the number of days in the previous month (i.e. Jan =0, Feb =
31, Mar = 28, ...). Does not account for a leap year

UMAC1050 (Host Software) SUBROUTINES (located in library QB1050.QLB):

SEG - is a value returned from the subroutine
BYVAL - is a value required by the subroutine

AIN1050 (BYVAL a%, BYVAL b%, BYVAL C%, SEG er%)

Performs same function as AING1050, except for a single channel

AING1050 (BYVAL Lchann%, BYVAL Unit%, BYVAL Pchan%, BYVAL NNchan%, SEG Erstat%)

Sets up one or more (number determined from Pchan%)logical channels
(Lchann%) for the XAING subroutine that returns scaled analog input values.
Unit% is set on the mMMAC-1050 hardware and Pchan% is the first physical
analog channel to be read.

306



AITYPE1050 (BYVAL Lchan1%, BYVAL Pchan%, BYVAL Nnchan%, BYVAL Modtype%, SEG
Erstat%)
Configures and activates one or more (humber determined by Nnchan%o)
consecutive analog input channels (starting with Pchan%) and stores the
configuration data in the mMMAC-1050 RAM.
Lchanl% is the same logical channel number used in setting up the channel with
the SEL1050 subroutine.
Pchan% selections are as follows:
Channels 0 to 7 are differential channels
Channels 8 to 23 are single-ended channels
Channels 24 to 55 are for expansion panels
Channels 56 to 59 are for CJC sensors
Channel 60 is for the temperature sensor on the mMAC-1050 unit
Channel 61 is for monitoring the power supply to the mMAC-1050 unit
Modtype% is for specifying the type of input to the channel, a value of 255
deactivates the channel, 128 is for +/-10V or power supply monitor, 144 is for +/-
40 mA, and 240 is for the mMAC-1050 board temperature sensor.

INITIALIZE (SEG Erstat%)
Initializes the PIU; this is the first step before calling any other mMAC1050
subroutines. The routine reads the hardware configuration in the CONFIGB.DAT
file and performs other initialization steps. Erstat% is an integer variable for
returning an error code if one is detected during the initialization step.

RST1050 (BYVAL a%, SEG er%)
Resets mMMAC-1050 hardware.

SEL1050 (BYVAL Lchan1%, BYVAL Unit%, SEG ISTATUS%, SEG Erstat%)
Used to setup logical channels (Lchan1%) for the AITYPE1050 subroutine that
sets up the analog input channels. Unit% is set on the mMMAC-1050 hardware.

XAING (BYVAL Lchann%, SEG d!(n%), SEG Erstat%)
Returns multiple scaled values from a consecutive group of analog input
channels, where Lchann% is the first channel read corresponding to the logical
channels setup with the AING1050 subroutine. Array d!(n%) is returned with the
values, in engineering units specified for with an AITYPE1050 channel
configuration routine, from the number of channels specified in the AING1050
routine.

XAIN (BYVAL a%, SEG b!, SEG er%)
Performs same function as XAING1050, except for a single channel

H.3 QuickBasic code for VIEW-CPL data acquisition

Main Program:
DECLARE SUB dirsub (filen$, Exist!)

DECLARE SUB warn ()
DECLARE SUB das ()
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DECLARE SUB plott (Tscale, store)

DECLARE SUB schem (store)

DECLARE FUNCTION ttime# ()

DECLARE FUNCTION days! (mon!)

DECLARE SUB nchan (store)

DECLARE SUB chanl (Num%, store)

DECLARE SUB initialize CDECL (SEG Erstat%)

DECLARE SUB sel1050 CDECL (BYVAL a%, BYVAL b%, SEG C%, SEG Erstat%)

DECLARE SUB AITYPE1050 CDECL (BYVAL a%, BYVAL b%, BYVAL C%, BYVAL d%, SEG
Erstat%)

DECLARE SUB AING1050 CDECL (BYVAL a%, BYVAL b%, BYVAL C%, BYVAL d%, SEG
Erstat%o)

DECLARE SUB xaing CDECL (BYVAL a%, SEG b!, SEG Erstat%)

DECLARE SUB logo1 ()

DECLARE SUB logo (x!, y!, C!)

DECLARE SUB ain1050 CDECL (BYVAL a%, BYVAL b%, BYVAL C%, SEG er%)

DECLARE SUB xain CDECL (BYVAL a%, SEG b!, SEG er%)

DECLARE SUB RST1050 CDECL (BYVAL a%, SEG er%)

DIM SHARED StopVar%
DIM SHARED Warn1$

'VIEW-CPL DAS Software Change Log

'Upgrade from V 1.83t0 1.84 7 May 1996 K.E. Herold

'‘Added warning message for temperatures above 60°C to 3 routines (nchan,
'‘plott and schem. Also added subroutine warn to print the message.

'‘Added ".dat" to both file names

'‘Upgrade from 1.84 to 1.85 9 May 1996 K.E. Herold

'Fixed data write in options 1,3 and 4 - problem with format of PUT statement
'Fixed temp conversion to match calibration - all routines

'Added sensing of RDAS-1050 temp sensor

'‘Upgrade from 1.85to 1.86 4 June 1996 K.E.Herold

'‘Added sensing of on-board temp sensor on DAS board

'Cleaned up various inconsistencies and tested all basic functions
'‘Added data display on schematic

‘Upgrade from 1.86 to 1.87 14 June 1996 K.E.Herold
'Added temp calibration factors

‘Upgrade from 1.87 to 1.88 15 June 1996 K.E. Herold
'Restructured board calls to main routine so they are called only once
"This eliminates the problem of the board failing after 100 samples

‘Upgrade from 1.88 to 1.89 16 June 1996 K.E. Herold

‘Added location numbers to schematic

'Added Tdas to data storage

'Fixed units on data disk to engineering units

'Added software reset of DAS board

'Fixed problem with Stack overflow by making CTRL-C exit more gracefull
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'Upgrade from 1.89 to 1.90 17 June 1996 K.E. Herold
'Fixed RDAS reset function, needed to re-initialize software after reset
'Fixed option 1 flicker

'Upgrade from 1.90 to 1.91 26 June 1996 K.R. Kolos
'‘Corrected voltage measurement constant from 4.39 to 3.5

‘Upgrade from 1.91 to 1.92 28 June 1996 K.R. Kolos
'Increased plotting temperature scale from 20-60°C to 0-60°C

‘Upgrade from 1.92 to 1.93 07 July 1996 K.R. Kolos

'‘Added file protection to prevent over-writing data files
'Corrected time stamp to include month information

'Print heater power in watts instead of amps

'Replaced temperature constants with measured resistive values
‘Checked Differential pressure calculation

'Modified plot screen

‘Upgrade from 1.93 to 1.94 22 July 1996 K.E. Herold

'Fixed plot screen to automatically wrap the plot after window
' fills up.
' 24 July 1996 K.R. Kolos

'‘Modified overwrite command

'Removed writing to ASCI file #1

'Corrected time stamp error of still not including month information
‘Upgrade from 1.94 to 1.95 02 Aug 1996 K.R. Kolos

'Re-calibrated AD590 temperature sensors

'‘Upgrade from 1.95 to 1.96 10 Aug 1996 K.R. Kolos

'‘Changed data storage variable to 1 second storage in the plott subroutine

'Upgrade from 1.96 to 1.97 11 Aug 1996 K.R. Kolos

'‘Changed data storage variable to 4 second storage in all subroutines
'‘Modified calibration for temperature sensors

'Upgrade from 1.97 to 1.98 20 Aug 1996 K.R. Kolos

'‘Corrected time stamp in statement "dday = dday + days(mon)" to read
"'dday = dday + days(i)"

"These lines give ctrl-c sensitivity
KEY 15, CHR$(&H4) + CHR$(&H2E)
ON KEY(15) GOSUB ctrlc
KEY(15) ON
"These lines give ctrl-c sensitivity with Num Lock on
KEY 16, CHR$(&H24) + CHR$(&HZ2E)
ON KEY(16) GOSUB ctrlc
KEY(16) ON
"These lines give ctrl-c sensitivity with Caps Lock on
KEY 17, CHR$(&H44) + CHR$(&HZ2E)
ON KEY(17) GOSUB ctrlc
KEY(17) ON
"These lines give ctrl-c sensitivity with both Num and Caps Lock on
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KEY 18, CHR$(&H64) + CHR$(&HZ2E)
ON KEY(18) GOSUB ctrlc
KEY(18) ON

SCREEN 12
CALL logol
INPUT a

Start:
'‘Board initialization

CALL initialize(Erstat%)

Lchanl% =1  'Logical channel number

Lchan2% = 2

Lchan3% = 3

Lchan4% = 4

Lchan5% =5

Unit% =1 'Set in hardware on RDAS-1050

CALL sel1050(Lchan1%, Unit%, ISTATUS%, Erstat%)
‘Configure and setup 2 differential channels

Pchan% =0

NNchan% = 2

CALL AITYPE1050(Lchan1%, Pchan%, NNchan%, 128, Erstat%)

CALL AING1050(Lchan2%, Unit%, Pchan%, NNchan%, Erstat%)
‘Configure and setup 2 pressure channels

Pchan% =12

NNchan% = 2

CALL AITYPE1050(Lchan1%, Pchan%, NNchan%, 128, Erstat%)

CALL AING1050(Lchan3%, Unit%, Pchan%, NNchan%, Erstat%)
'Configure and setup 10 temperature channels

Pchan% = 14

NNchan% = 10

CALL AITYPE1050(Lchan1%, Pchan%, NNchan%, 128, Erstat%)

CALL AING1050(Lchan4%, Unit%, Pchan%, NNchan%, Erstat%)
'‘Configure and setup onboard temp sensor

Pchan% = 60

NNchan% =1

CALL AITYPE1050(Lchan1%, Pchan%, NNchan%, 240, Erstat%)

CALL ain1050(Lchan5%, Unit%, Pchan%, Erstat%)

Tscale = 600
mmenu:

CLSO
FORi=1TO 600 STEP 20
LINE (1 +i, 1)-(10 + i, 10), 11, BF
LINE (1 + i, 450)-(10 + i, 460), 11, BF
NEXT

LOCATE 3,1

PRINT "Welcome to the VIEW-CPL DAS Program - MAIN MENU"
PRINT

PRINT "Options:"
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PRINT "1 - Sample one channel "

PRINT "2 - Sample all channels"

PRINT "3 - Data plot"

PRINT "4 - CPL Schematic"

PRINT "5 - Start/stop acquisition of data"
PRINT "6 - Change plot defaults"

PRINT "7 - Reset data acquisition board"
PRINT "8 - Disk directory"

PRINT "9 - Exit"

PRINT

PRINT "Hit CRTL-C at any time to return to this menu"
PRINT

PRINT

INPUT choice

SELECT CASE choice
CASE 1
PRINT
PRINT "Which Channel do you want to sample:"
PRINT "8(9) Differential line voltage”
PRINT "10(11) Differential line voltage"
PRINT "12  Absolute pressure transducer"
PRINT "13  Differential pressure transducer"
PRINT "14-23 Temperatures"
PRINT "60 RDAS-1050 Temperature Sensor"
INPUT "Enter Channel number "; Num%
CALL chan1(Num%, store)
CASE 2
CALL nchan(store)
CASE 3
CALL plott(Tscale, store)
CASE 4
CALL schem(store)
CASE 5
CLS
PRINT "This option allows the user to stop or start"
PRINT "the process of storing data to the floppy disk"
PRINT
IF store =1 THEN
PRINT "The program is currently storing data”
ELSE
PRINT "The program is not storing data currently"
END IF
PRINT
PRINT "Enter one of the following:"
PRINT "(CR) to toggle the storage variable"
PRINT "1 - to set the storage variable to begin storing data"
PRINT "0 - to set the storage variable to end storing data”
PRINT "S - to exit option without changing anything"
INPUT storel$
IF storel$ = "S" OR storel$ = "s" THEN
GOTO mmenu
ELSEIF LEN(storel$) = 0 THEN
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IF store =1 THEN
store =0

ELSE
store =1

END IF

ELSE
store = VAL(MID$(storel$, 1, 1))
END IF
storel:
IF store =1 THEN

CLOSE

INPUT "Enter data file name (.DAT automatically included)”; filen$

fileb$ = "a:b" + filen$ + ".dat"

PRINT "Please wait..."

PRINT "Searching for pre-existing files with the same file name"

CALL dirsub(fileb$, Exist)

IF Exist =1 THEN
PRINT
PRINT "Binary file already exists"
PRINT
PRINT "Enter 'OK' to overwrite and continue, anything else to enter new file"
INPUT Over$
IF ((Over$ <> "OK") AND (Over$ <> "Ok") AND (Over$ <> "ok")) GOTO storel

END IF

IF Exist =0 THEN
PRINT
PRINT "Data stored in ", fileb$

END IF

OPEN "a:b" + filen$ + ".dat" FOR BINARY ACCESS WRITE AS #2
ELSE

TIMER OFF

CLOSE 2
END IF

CASE 6
CLS
PRINT "Plot Defaults"
PRINT
PRINT "Current time scale is "; Tscale; " sec"
PRINT
Tsave = Tscale
INPUT "Enter new value of time scale in sec"; Tscale
IF Tscale = 0 THEN
Tscale = Tsave
END IF

CASE 7
CALL RST1050(Lchan1%, Erstat%)
SLEEP 1
CLS
PRINT "RDAS-1050 Board Reset"
PRINT
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IF Erstat% = 0 THEN
PRINT "Successful reset - hit CR to continue"
INPUT a
ELSE
PRINT "Error code = "; Erstat%
PRINT "hit CR to continue"
INPUT a
END IF
GOTO Start

CASE 8
CLS
INPUT "Enter directory command"; aa$
SHELL aa$
INPUT aa

CASE 9
SYSTEM

END SELECT
GOTO mmenu

ctric:

' This is the ctrl-c processing routine
GOTO mmenu

END

dasc:

CALL das

'‘CALL chan1(Num?%, store)
RETURN

END

ctrlcl:

"This is the more gracefull CTRL-C processing routine
StopVar% =1

RETURN

SUB chanl (Num%, store)
DIM d!(10), CT!(10), V!(2), P!(2), T!(10), CTI!(10)

CLSO

StopVar% =0
ON KEY(15) GOSUB ctricl
KEY(15) ON
ON KEY(16) GOSUB ctric1
KEY(16) ON
ON KEY(17) GOSUB ctricl
KEY(17) ON
ON KEY(18) GOSUB ctrlc1
KEY(18) ON
ON TIMER(10) GOSUB dasc
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IF store =1 THEN
TIMER ON

ELSEIF store = 0 THEN
TIMER OFF

END IF

‘Temp cal factors

‘Temp. calibration factors based two points 15 AUG 1996 KRK

CT!(1) = 72.26 'KRK 11aug96 70.893 'KRK 2aug96 72.254 - KRK 7jul96 71.685 - KEH 72.123
CT!(2) = 72.66'KRK 11laug96 72.292 'KRK 2aug96 72.727 'KRK 7jul96 72.307 - KEH 72.622
CT!(3) = 73.43'KRK 11aug96 71.206 'KRK 2aug96 73.421 'KRK 7jul96 72.939 - KEH 73.346
CT!(4) = 73.3 'KRK 11aug96 73.139 'KRK 11aug96 73.139 'KRK 2aug96 73.153 'KRK 7jul96
72.674 - KEH 73.258

CT!(5) = 71.09'KRK 11laug96 70.457 'KRK 2aug96 70.922 'KRK 7jul96 70.274 - KEH 70.913
CT!(6) = 73.8'KRK 11aug96 71.917 'KRK 2aug96 73.746 'KRK 7jul96 73.314 - KEH 73.802
CT!(7) = 71.89'KRK 11aug96 70.316 'KRK 2aug96 71.891 'KRK 7jul96 71.429 - KEH 71.862
CT!(8) = 72.81 'KRK 11aug96 72.820 'KRK 2aug96 72.993 'KRK 7jul96 72.046 - KEH 72.243
CT!(9) = 70.91'KRK 11aug96 71.206 'KRK 2aug96 71.124 'KRK 7jul96 70.622 - KEH 70.838
CT!(10) = 71.6 'KRK 11aug96 70.207 'KRK 2aug96 71.685 'KRK 7jul96 71.276 - KEH 71.603

CTII(1) = -273.15 'KRK 11aug96 -267.255
CTII(2) = -273.15 'KRK 11aug96 -271.61
CTI!(3) = -273.15 'KRK 11aug96 -263.891
CTI!(4) = -273.15 'KRK 11aug96 -272.484
CTII(5) = -273.15 'KRK 11aug96 -270.413
CTI(6) = -273.15 'KRK 11aug96 -265.276
CTI\(7) = -273.15 'KRK 11aug96 -266.343
CTI!(8) = -273.15 'KRK 11aug96 -273.189
CTI'(9) = -273.15 'KRK 11aug96 -274.39
CTI/(10) = -273.15'KRK 11aug96 -267.281

'CV1=4.39

CV1=3.5 'corrected from 4.39, 26 June 1996 KRK

Cv2 =10!

CP1=134.44

CP2 = 6.8822 'increased significant digits from 6.8, 07 JULY 1996 KRK

'Set logical channel numbers
Lchanl% =1  'Logical channel number
Lchan2% = 2
Lchan3% = 3
Lchan4% = 4
Lchan5% =5

IF Num% = 8 OR Num% = 10 THEN
Vloop:
IF StopVar% =1 THEN EXIT SUB
LOCATE 1,1
' CLS
J=J+1
PRINT "VIEW-CPL Data Display"
PRINT
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PRINT"J=";J;" Hit CTRL-C to return to Main Menu"
n% =1 ‘dummy parameter
CALL xaing(Lchan2%, d!(n%), Erstat%)
VI(1) =d!(1) *CV1
VI(2) =d!(2) * CV2
IF Num% = 8 THEN
PRINT
PRINT "Channel 8: Line Voltage ";
PRINT USING "### ### V", VI(1)
ELSE
PRINT
PRINT "Channel 10: Heater Current *;
PRINT USING "### . ### A", VI(2)
END IF
PRINT
PRINT "erstat = "; Erstat%
SLEEP 1
GOTO Vloop
END IF

IF Num% = 12 OR Num% = 13 THEN
Ploop:
IF StopVar% =1 THEN EXIT SUB
LOCATE 1,1
' CLS
J=J+1
PRINT "VIEW-CPL Data Display"
PRINT
PRINT"J=";J;" Hit CTRL-C to return to Main Menu"
n% =1 ‘dummy parameter
CALL xaing(Lchan3%, d!(n%), Erstat%)
' P!I(1) = (d!(1) + 1) * 23.31
PI(1) = (d!(2) + 1) * CP1
P!(2) = (d!(2) + .00725) * CP2
IF Num% = 12 THEN
PRINT
PRINT "Channel 12: Loop Pressure ";
PRINT USING "###.### kPa"; P!(1)
ELSE
PRINT
PRINT "Channel 13: Diff. Pressure Across Evap ";
PRINT USING "###.### kPa"; P!(2)
END IF
PRINT
PRINT "erstat = "; Erstat%
SLEEP 1
GOTO Ploop
END IF

IF Num% >= 14 AND Num% <= 23 THEN
Tloop:
IF StopVar% = 1 THEN EXIT SUB
LOCATE 1,1

315



' CLS
J=J+1
PRINT "VIEW-CPL Data Display"
PRINT
PRINT "J=";J;" Hit CTRL-C to return to Main Menu"
n% =1 ‘dummy parameter
CALL xaing(Lchan4%, d!(n%), Erstat%)
T!(Num% - 13) = d!/(Num% - 13) * CT!(Num% - 13) + CTI!/(Num% - 13)
PRINT
PRINT "Channel "; Num%; ": *;
PRINT USING "###.### °C "; TI(Num% - 13)
PRINT
PRINT "erstat = "; Erstat%
SLEEP 1
GOTO Tloop
ELSEIF Num% = 60 THEN
" PRINT "erstat"; erstat%
" INPUT aa
TTloop:
IF StopVar% = 1 THEN EXIT SUB
LOCATE 1,1
' CLS
J=J+1
PRINT "VIEW-CPL Data Display"
PRINT
PRINT "J=";J;" Hit CTRL-C to return to Main Menu"
CALL xain(Lchan5%, Tdas!, Erstat%)
PRINT
PRINT "Channel "; Num%; ": ";
PRINT USING "### . ### °C "; Tdas!
' PRINT Tdas; " °C"
PRINT
PRINT "erstat = "; Erstat%
SLEEP 1
GOTO TTloop
END IF
END SUB

SUB das
DIM d!(20), V!(2), P!(2), T!(10), CT!(10), CTI!(10)

‘Temp cal factors

"Temp. calibration factors based two points 15 AUG 1996 KRK

CTY(1) = 72.26 'KRK 11aug96 70.893 'KRK 2aug96 72.254 - KRK 7jul96 71.685 - KEH 72.123
CT!(2) = 72.66'KRK 11aug96 72.292 'KRK 2aug96 72.727 'KRK 7jul96 72.307 - KEH 72.622
CT!(3) = 73.43'KRK 11aug96 71.206 'KRK 2aug96 73.421 'KRK 7jul96 72.939 - KEH 73.346
CT!(4) = 73.3 'KRK 11aug96 73.139 'KRK 11aug96 73.139 'KRK 2aug96 73.153 'KRK 7jul96
72.674 - KEH 73.258

CT!(5) = 71.09'KRK 11aug96 70.457 'KRK 2aug96 70.922 'KRK 7jul96 70.274 - KEH 70.913
CT!(6) = 73.8'KRK 11aug96 71.917 'KRK 2aug96 73.746 'KRK 7jul96 73.314 - KEH 73.802
CT!(7) = 71.89'KRK 11aug96 70.316 'KRK 2aug96 71.891 'KRK 7jul96 71.429 - KEH 71.862
CT!(8) = 72.81 'KRK 11aug96 72.820 'KRK 2aug96 72.993 'KRK 7jul96 72.046 - KEH 72.243
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CT!(9) = 70.91'KRK 11aug96 71.206 'KRK 2aug96 71.124 'KRK 7jul96 70.622 - KEH 70.838
CT!(10) = 71.6 'KRK 11aug96 70.207 'KRK 2aug96 71.685 'KRK 7jul96 71.276 - KEH 71.603

CTI!(1) = -273.15 'KRK 11aug96 -267.255
CTI'(2) = -273.15 'KRK 11aug96 -271.61
CTI(3) = -273.15 'KRK 11aug96 -263.891
CTI!(4) = -273.15 'KRK 11aug96 -272.484
CTI!(5) = -273.15 'KRK 11aug96 -270.413
CTI!(6) = -273.15 'KRK 11aug96 -265.276
CTII(7) = -273.15 'KRK 11aug96 -266.343
CTI!(8) = -273.15 'KRK 11aug96 -273.189
CTI!(9) = -273.15 'KRK 11aug96 -274.39
CTI!(10) = -273.15'KRK 11aug96 -267.281

'CV1=4.39

Cvli=35

Cv2 = 10!

CP2 = 6.8822 'increased significant digits from 6.8, 07 JULY 1996 KRK

'Set logical channel numbers
Lchanl% =1
Lchan2% = 2
Lchan3% =3
Lchand% =4
Lchan5% =5
‘Sample voltages
n% =1 ‘dummy parameter
CALL xaing(Lchan2%, d!(n%), Erstat%)
VI(1) = d!(1) * CV1
VI(2) =d!(2) * CV2
WATTS! = VI(1) * V!(2)
" PRINT #1, ttime; V!(1); WATTS!;
PRINT ttime
ts# = ttime
PUT 2, , ts#
PUT 2,, VI(1)
PUT 2, , WATTS!
‘Sample pressures
CALL xaing(Lchan3%, d!(n%), Erstat%)
" P1)=(d!(1)-1)*23.31
PI(1) = (d!(1) + 1) * 34.44
P!(2) = (d!(2) + .00725) * CP2
" PRINT #1, PI(1); P!(2);
PUT 2, , PI(1)
PUT 2,, P!(2)
'‘Sample temps
CALL xaing(Lchan4%, d!(n%), Erstat%)
FORi=1TO 10: T!(i) = d!(i) * CTI(i) + CTII(i): NEXT
" FORi=1TO 10: PRINT #1, T!(i); : NEXT
FORi=1TO 10: PUT 2,, T!(i): NEXT

CALL xain(Lchan5%, Tdas!, Erstat%)
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' PRINT #1, Tdas!
PUT 2, , Tdas!

END SUB

FUNCTION days (mon)
SELECT CASE mon
CASE 1
days =0
'CASE 1, 3,5,7
CASE 2,4, 6, 8,
days =31
'CASE 2
CASE 3
days = 28
'CASE 4, 6,9, 11
CASE 5, 7,10, 12
days = 30
END SELECT
END FUNCTION

, 8,10, 12
911

SUB dirsub (filen$, Exist)
Exist =0
SHELL "dir " + filen$ + " > a:xyzdir.txt"
SHELL "Type a:xyzdir.txt"
OPEN "a:xyzdir.txt" FOR INPUT AS #10
FORi=1TO5
LINE INPUT #10, a$
NEXT
IF EOF(10) THEN
CLOSE 10
EXIT SUB
END IF
LINE INPUT #10, a$
CLOSE 10
b$ = RTRIM$(MID$(a$, 1, 8))
'PRINT "Here it is";b$
C$="a" + b$ + ".dat"
IF UCASE$(C$) = UCASES(filen$) THEN
' PRINT "File exists"
Exist=1
" PRINT "Filen$"; filen$
" PRINT"C$"; C$
END IF
END SUB

SUB logo (x,y, C)
LINE (x+ 1,y + 1)-(x + 15,y + 50), C
LINE (x + 15,y +50)-(x + 29,y + 1), C

LINE (x + 45, y + 1)-(x + 45, y + 50), C
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LINE (x + 60, y + 1)-(x + 60, y + 50), C
LINE (x + 60,y + 1)-(x + 75,y + 1), C
LINE (x + 60, y + 25)-(x + 70,y + 25), C
LINE (x + 60, y + 50)-(x + 75,y + 50), C

LINE (x + 90, y + 1)-(x + 100, y + 50), C

LINE (x + 100, y + 50)-(x + 110,y + 1), C
LINE (x + 110,y + 1)-(x + 120,y + 50), C
LINE (x + 120, y + 50)-(x + 130,y + 1), C

LINE (x + 140, y + 25)-(x + 155, y + 25), C
CIRCLE (x + 195, y + 25), 25, C, 1.5, 4.8

LINE (x + 210,y + 1)-(x + 210,y + 50), C
CIRCLE (x + 220,y +12),11,C,4.8,15
LINE (x + 210,y + 1)-(x + 220,y + 1), C
LINE (x + 210, y + 23)-(x + 220, y + 23), C

LINE (x + 245,y + 1)-(x + 245,y + 50), C
LINE (x + 245, y + 50)-(x + 260, y + 50), C

LOCATE 20, 30

PRINT "Data Acquisition Program"

LOCATE 22, 36

PRINT "Version 1.98"

LOCATE 26, 25

PRINT "UNIVERSITY OF MARYLAND - COLLEGE PARK"
END SUB

SUB logol

CALL logo(190, 150, 4)
CALL logo(191, 150, 4)
CALL logo(190, 151, 4)

LINE (170, 145)-(475, 215), 3, B
LINE (171, 144)-(476, 216), 3, B

CALL logo(191, 151, 1)
CALL logo(192, 152, 2)

CALL logo(193, 153, 9)
CALL logo(194, 154, 10)

CALL logo(195, 155, 4)
CALL logo(196, 155, 4)
CALL logo(195, 156, 4)
PRINT "Hit <ENTER> to continue"

END SUB
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SUB nchan (store)
DIM d!(10), V!(2), P!(2), CT!(10), T!(10), CTI!(10)

CLSO
StopVar% =0

ON KEY(15) GOSUB ctric1
KEY(15) ON
ON KEY(16) GOSUB ctric1
KEY(16) ON
ON KEY(17) GOSUB ctric1
KEY(17) ON
ON KEY(18) GOSUB ctric1
KEY(18) ON

ts# = ttime

‘Temp cal factors

"Temp. calibration factors based two points 15 AUG 1996 KRK

CTY(1) = 72.26 'KRK 11aug96 70.893 'KRK 2aug96 72.254 - KRK 7jul96 71.685 - KEH 72.123
CT!(2) = 72.66'KRK 11aug96 72.292 'KRK 2aug96 72.727 'KRK 7jul96 72.307 - KEH 72.622
CT!(3) = 73.43'KRK 11aug96 71.206 'KRK 2aug96 73.421 'KRK 7jul96 72.939 - KEH 73.346
CT!(4) = 73.3 'KRK 11aug96 73.139 'KRK 1laug96 73.139 'KRK 2aug96 73.153 'KRK 7jul96
72.674 - KEH 73.258

CT!(5) = 71.09'KRK 11aug96 70.457 'KRK 2aug96 70.922 'KRK 7jul96 70.274 - KEH 70.913
CT!(6) = 73.8'KRK 11aug96 71.917 'KRK 2aug96 73.746 'KRK 7jul96 73.314 - KEH 73.802
CT!(7) = 71.89'KRK 11aug96 70.316 'KRK 2aug96 71.891 'KRK 7jul96 71.429 - KEH 71.862
CT!(8) = 72.81 'KRK 11aug96 72.820 'KRK 2aug96 72.993 'KRK 7jul96 72.046 - KEH 72.243
CT!(9) = 70.91'KRK 11aug96 71.206 'KRK 2aug96 71.124 'KRK 7jul96 70.622 - KEH 70.838
CT!(10) = 71.6 'KRK 11aug96 70.207 'KRK 2aug96 71.685 'KRK 7jul96 71.276 - KEH 71.603

CTI!(1) = -273.15 'KRK 11aug96 -267.255
CTII(2) = -273.15 'KRK 11aug96 -271.61
CTII(3) = -273.15 'KRK 11aug96 -263.891
CTII(4) = -273.15 'KRK 11aug96 -272.484
CTII(5) = -273.15 'KRK 11aug96 -270.413
CTI(6) = -273.15 'KRK 11aug96 -265.276
CTII(7) = -273.15 'KRK 11aug96 -266.343
CTII(8) = -273.15 'KRK 11aug96 -273.189
CTI!(9) = -273.15 'KRK 11aug96 -274.39
CTI/(10) = -273.15'KRK 11aug96 -267.281

'CV1=4.39

Cvli=35

Cv2 =10!

CP2 = 6.8822 'increased significant digits from 6.8, 07 JULY 1996 KRK

'Set logical channel numbers
Lchanl% =1
Lchan2% = 2
Lchan3% = 3
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Lchan4% = 4
Lchan5% =5

Nloop:
IF StopVar% =1 THEN EXIT SUB
'CLS O
LOCATE 1, 1
J=J+1
PRINT "VIEW-CPL Data Display "; DATES$;" "; TIME$
PRINT
PRINT"J=";J;" Hit CTRL-C to return to Main Menu"
PRINT
' Read voltages
n% =1 'dummy parameter
CALL xaing(Lchan2%, d!(n%), Erstat%)
VI(1) =d!(1) * CVl
VI(2) =dl(2) * CV2
WATTS! = VI(1) * VI(2)

PRINT "Channel 8: ";: PRINT USING "###.### V"; VI(1);
PRINT " Line Voltage"

PRINT "Channel 10: ";: PRINT USING "###.### W", WATTS!;
PRINT " Heater Power"

'Read pressures
CALL xaing(Lchan3%, d!(n%), Erstat%)
' PI(1)=(d!(1) +1)*23.31
PI(1) = (d!(1) + 1) * 34.44
P!(2) = (d!(2) + .00725) * CP2
PRINT "Channel 12: ";: PRINT USING "### ### kPa"; P!(1);
PRINT " Loop Pressure"
PRINT "Channel 13: ";: PRINT USING "###.### kPa"; P!(2);
PRINT " Diff. Pressure Across Evap."
'Read temperatures
CALL xaing(Lchan4%, d!(n%), Erstat%)
" PRINT "erstat"; erstat%
FORiIi=1TO9
PRINT "Channel ";i+13;" "
TI(i) = dI(i) * CTI(i) + CTI!(i)
PRINT USING " ###.### °C Temp. ##"; T\(i); i
NEXT
T!(10) = d!(10) * CT!(10) + CTI\(i)
PRINT USING "Channel 23: ###.### °C Temp. 10"; T!(10)
'Read DAS board temp
CALL xain(Lchan5%, Tdas!, Erstat%)
PRINT "Channel 60 : "
PRINT USING "### ### °C DAS Board Temp. "; Tdas!
' PRINT Tdas; " °C"

SLEEP 1
IF store =1 THEN
IF ttime - ts# > 4 THEN
ts# = ttime
' PRINT #1, ttime; V!(1); WATTS!; P!(1); P!(2);
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' FOR i=1TO 10: PRINT #1, T!(i); : NEXT
! PRINT #1, Tdas!

ts# = ttime

PUT 2, , ts#

PUT 2,, VI(1)

PUT 2, , WATTS!

PUT 2,, PI(1)

PUT 2, , PI(2)

FORi=1TO 10: PUT #2,, TI(i): NEXT

PUT #2, , Tdas!

END IF

END IF

IF Warn1$ = "Kolos" GOTO Nloop
FORi=1TO 10

IF TI(i) > 60 THEN CALL warn
NEXT
IF Tdas! > 60 THEN CALL warn
GOTO Nloop

END SUB

SUB plott (Tscale, store)
DIM V!(10), T!(10), P!(10), TT!(10), PP!(2), CT!(10), d!(10), CTI!(10)

ts# = ttime
StopVar% =0
Iregion = -1

CLS 2
SCREEN 12
LINE (1, 1)-(639, 479), 1, BF

ON KEY(15) GOSUB ctric1
KEY(15) ON
ON KEY(16) GOSUB ctrlcl
KEY(16) ON
ON KEY(17) GOSUB ctrlcl
KEY(17) ON
ON KEY(18) GOSUB ctrlcl
KEY(18) ON

‘Temp cal factors

‘Temp. calibration factors based two points 15 AUG 1996 KRK

CT!(1) = 72.26 'KRK 11aug96 70.893 'KRK 2aug96 72.254 - KRK 7jul96 71.685 - KEH 72.123
CT!(2) = 72.66'KRK 11laug96 72.292 'KRK 2aug96 72.727 'KRK 7jul96 72.307 - KEH 72.622
CT!(3) = 73.43'KRK 11aug96 71.206 'KRK 2aug96 73.421 'KRK 7jul96 72.939 - KEH 73.346
CT!(4) = 73.3 'KRK 11aug96 73.139 'KRK 1laug96 73.139 'KRK 2aug96 73.153 'KRK 7jul96
72.674 - KEH 73.258

CT!(5) = 71.09'KRK 11laug96 70.457 'KRK 2aug96 70.922 'KRK 7jul96 70.274 - KEH 70.913
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CTI(6) = 73.8'KRK 11aug96 71.917 'KRK 2aug96 73.746 'KRK 7jul96 73.314 - KEH 73.802
CTI(7) = 71.89'KRK 11aug96 70.316 'KRK 2aug96 71.891 'KRK 7jul96 71.429 - KEH 71.862
CT!(8) = 72.81 'KRK 11aug96 72.820 'KRK 2aug96 72.993 'KRK 7jul96 72.046 - KEH 72.243
CT!(9) = 70.91'KRK 11aug96 71.206 'KRK 2aug96 71.124 'KRK 7jul96 70.622 - KEH 70.838
CTI(10) = 71.6 'KRK 11aug96 70.207 'KRK 2aug96 71.685 'KRK 7jul96 71.276 - KEH 71.603

CTII(1) = -273.15 'KRK 11aug96 -267.255
CTII(2) = -273.15 'KRK 11aug96 -271.61
CTII(3) = -273.15 'KRK 11aug96 -263.891
CTII(4) = -273.15 'KRK 11aug96 -272.484
CTII(5) = -273.15 'KRK 11aug96 -270.413
CTI(6) = -273.15 'KRK 11aug96 -265.276
CTII(7) = -273.15 'KRK 11aug96 -266.343
CTI(8) = -273.15 'KRK 11aug96 -273.189
CTII(9) = -273.15 'KRK 11aug96 -274.39
CTI/(10) = -273.15'KRK 11aug96 -267.281

'CV1=4.39

Cvli=35

Cv2=10!

CP2 = 6.8822 'increased significant digits from 6.8, 07 JULY 1996 KRK

PRINT " VIEW-CPL Data Plot - ; DATE$

Tinit# = ttime#
'PRINT tinit#
'INPUT a

LOCATE 25, 68
PRINT "Hit CRTL-C "
LOCATE 26, 68
PRINT "to exit to "
LOCATE 27, 68
PRINT "MAIN MENU"

'Set logical channel numbers
Lchanl% =1
Lchan2% =2
Lchan3% =3
Lchan4% =4
Lchan5% =5

LINE (30, 40)-(30, 440), 3
LINE (30, 440)-(530, 440), 3
LINE (30, 300)-(530, 300), 3
LINE (30, 370)-(530, 370), 3
LINE (30, 40)-(530, 40), 3
LINE (530, 40)-(530, 440), 3

LINE (28, 105)-(32, 105), 3

LINE (28, 170)-(32, 170), 3
LINE (28, 235)-(32, 235), 3
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LINE (533, 25)-(545, 25), 7
LINE (533, 40)-(545, 40), 10
LINE (533, 55)-(545, 55), 6
LINE (533, 70)-(545, 70), 4
LINE (533, 85)-(545, 85), 6
LINE (533, 100)-(545, 100), 4
LINE (533, 115)-(545, 115), 4
LINE (533, 133)-(545, 133), 7
LINE (533, 148)-(545, 148), 9
LINE (533, 165)-(545, 165), 10
LINE (533, 180)-(545, 180), 9

'FORj=1TO 100

Mainloop:

IF StopVar% = 1 THEN EXIT SUB
Tnow# = ttime#

n% =1 ‘dummy parameter

CALL xaing(Lchan2%, d!(n%), Erstat%)

VI(1) = d!(1) * CV1

VI(2) =d!(2) * CV2

WATTS! = VI(1) * V!(2)

CALL xaing(Lchan3%, d!(n%), Erstat%)
" P!(1)=(d!(1) + 1) *23.31

P!(1) = (d!(1) + 1) * 34.44

P!(2) = (d!(2) + .00725) * CP2

CALL xaing(Lchan4%, d!(n%), Erstat%)

CALL xain(Lchan5%, Tdas!, Erstat%)

FOR i =1 TO 10: T()) = d!(i) * CT!(i) + CTI(i): NEXT

'Expecting temps between 0-60°C
LOCATE 9,1

PRINT "T(°C)"

LOCATE 3, 2: PRINT "60"
LOCATE 7, 2: PRINT "45"
LOCATE 11, 2: PRINT "30"
LOCATE 15, 2: PRINT "15"
LOCATE 19, 2: PRINT "0"

T1x% = 30 + (Tnow# - Tinit#) * 500 / Tscale

IF T1x% > 530 THEN
Tinit# = Tnow#
LINE (31, 439)-(130, 41), 1, BF
LINE (125, 439)-(130, 41), 3, BF
LINE (525, 439)-(529, 41), 1, BF
LINE (525, 300)-(530, 300), 3, BF
LINE (525, 370)-(530, 370), 3, BF
LINE (31, 300)-(130, 300), 3, BF
LINE (31, 370)-(130, 370), 3, BF
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Iregion =0
Tix% =0
END IF

IF T1x% > 130 AND Iregion = 0 THEN
LINE (131, 439)-(230, 41), 1, BF
LINE (225, 439)-(230, 41), 3, BF
LINE (125, 439)-(130, 41), 1, BF
LINE (31, 300)-(230, 300), 3, BF
LINE (31, 370)-(230, 370), 3, BF
Iregion = 1
END IF

IF T1x% > 230 AND Iregion = 1 THEN
LINE (231, 439)-(330, 41), 1, BF
LINE (325, 439)-(330, 41), 3, BF
LINE (225, 439)-(230, 41), 1, BF
LINE (31, 300)-(330, 300), 3, BF
LINE (31, 370)-(330, 370), 3, BF
Iregion = 2
END IF

IF T1x% > 330 AND Iregion = 2 THEN
LINE (331, 439)-(430, 41), 1, BF
LINE (425, 439)-(430, 41), 3, BF
LINE (325, 439)-(330, 41), 1, BF
LINE (31, 300)-(430, 300), 3, BF
LINE (31, 370)-(430, 370), 3, BF
Iregion =3
END IF

IF T1x% > 430 AND Iregion = 3 THEN
LINE (431, 439)-(530, 41), 1, BF
LINE (525, 439)-(530, 41), 3, BF
LINE (425, 439)-(430, 41), 1, BF
LINE (31, 300)-(530, 300), 3, BF
LINE (31, 370)-(530, 370), 3, BF
Iregion = 4
END IF

'Scaling over 260 pixels in the y directio3n
T1y% = 300 - 260/ 60 * (T!(1) - 0)
IF Tly% < 40 THEN T1y% = 40

IF T1y% > 300 THEN T1y% = 300
T2y% = 300 - 260/ 60 * (T!(2) - 0)
IF T2y% < 40 THEN T2y% = 40

IF T2y% > 300 THEN T2y% = 300
T3y% = 300 - 260/ 60 * (T!(3) - 0)
IF T3y% < 40 THEN T3y% = 40

IF T3y% > 300 THEN T3y% = 300
T4y% = 300 - 260/ 60 * (T!(4) - 0)
IF T4y% < 40 THEN T4y% = 40

IF T4y% > 300 THEN T4y% = 300
T5y% = 300 - 260/ 60 * (T!(5) - 0)
IF T5y% < 40 THEN T5y% = 40

IF T5y% > 300 THEN T5y% = 300
T6y% = 300 - 260 / 60 * (T!(6) - 0)
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IF T6y% < 40 THEN T6y% = 40

IF T6y% > 300 THEN T6y% = 300
T7y% = 300 - 260 / 60 * (T!(7) - 0)

IF T7y% < 40 THEN T7y% = 40

IF T7y% > 300 THEN T7y% = 300
T8y% = 300 - 260 / 60 * (T!(8) - 0)

IF T8y% < 40 THEN T8y% = 40

IF T8y% > 300 THEN T8y% = 300
T9y% = 300 - 260 / 60 * (T!(9) - 0)

IF T9y% < 40 THEN T9y% = 40

IF T9y% > 300 THEN T9y% = 300
T10y% = 300 - 260 / 60 * (T!(10) - 0)
IF T10y% < 40 THEN T10y% = 40

IF T10y% > 300 THEN T10y% = 300
T11y% = 300 - 260 / 60 * (Tdas! - 0)
IF T11y% < 40 THEN T11y% = 40

IF T11y% > 300 THEN T11y% = 300

'‘Expecting pressures in the range of 0-15 kPa
LOCATE 21,1

PRINT "P(kPa)"

LOCATE 2, 5: PRINT "Pres Scale:0-15 kPa"
'Scaling over 70 pixels in y direction

P1ly% = 370 - 70/ 15 * P!(1)

IF P1y% < 300 THEN P1y% = 300

IF P1y% > 370 THEN P1y% = 370

P2y% = 370 - 70/ 15 * P!(2)

IF P2y% < 300 THEN P2y% = 300

IF P2y% > 370 THEN P2y% = 370

'‘Expecting voltages in the range 0-30 V
LOCATE 25,1

PRINT "V,W"

LOCATE 2, 28: PRINT "Volt Scale:0-30 V, Power Scale:0-80 W"
V1y% =440 - 70/ 30 * V!(1)

IF V1y% < 370 THEN V1y% = 370

IF V1y% > 440 THEN V1y% = 440

'V2y% =440 - 70/ 2 * V!(2)

'IF V2y% < 370 THEN V2y% = 370

'IF V2y% > 440 THEN V2y% = 440
WATTSy% = 440 - 70/ 80 * WATTS!

IF WATTSy% < 370 THEN WATTSy% = 370
IF WATTSy% > 440 THEN WATTSy% = 370

'Color codes 2 - Green

3 - Aqua

' 4 -Red (EVAPORATOR)

' 5 - Pink

' 6 - Orange(VAPOR LINE)

' 7 - White (RESERVOIR)

8 - Brown

' 9 - Grey (AIR, DAS BOARD)
' 10 - Green (LIQUID LINE)

326



PRESET (T1x%, T1y%), 7
PRESET (T1x%, T2y%), 10
PRESET (T1x%, T3y%), 6
PRESET (T1x%, T4y%), 4
PRESET (T1x%, T5y%), 6
PRESET (T1x%, T6y%), 4
PRESET (T1x%, T7y%), 4
PRESET (T1x%, T8y%), 7
PRESET (T1x%, T9y%), 9
PRESET (T1x%, T10y%), 10
PRESET (T1x%, T11y%), 9
PRESET (T1x%, P1y%), 4
PRESET (T1x%, P2y%), 10
PRESET (T1x%, V1y%), 4
PRESET (T1x%, WATTSy%), 10

SLEEP 1

LOCATE 1, 50

PRINT TIME$

LOCATE 1, 68

PRINT "Temps (°C)"

LOCATE 2, 70

PRINT USING "1:###.4"; T!(1)
LOCATE 3, 70

PRINT USING "2:###.#"; T!(2)
LOCATE 4, 70

PRINT USING "3:###.4"; T!(3)
LOCATE 5, 70

PRINT USING "4:###.#"; T\(4)
LOCATE 6, 70

PRINT USING "5:###.4#"; T!(5)
LOCATE 7, 70

PRINT USING "6:###.#"; T!(6)
LOCATE 8, 70

PRINT USING "7:###.4"; T\(7)
LOCATE 9, 70

PRINT USING "8:###.#"; T!(8)
LOCATE 10, 70

PRINT USING "9:###.4"; T!(9)
LOCATE 11, 70

PRINT USING "10:###.#"; T!(10)
LOCATE 12, 70

PRINT USING "Tdas: ##.#"; Tdas!

LOCATE 14, 68

PRINT "Pres(kPa)"

LOCATE 15, 68

PRINT USING "Pa: ###.#"; PI(1)
LOCATE 16, 68

PRINT USING "dP: ###.##"; P!(2)
LOCATE 18, 68

PRINT "Voltage (V)"

LOCATE 19, 68
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PRINT USING "V1: ####"; VI(1)
LOCATE 21, 68

PRINT "Power (W)"

LOCATE 22, 68

PRINT USING "W : ###.#"; WATTS!

IF store =1 THEN
IF ttime - ts# > 4 THEN
ts# = ttime
PUT 2, , ts#
PUT 2,, VI(1)
PUT 2, , WATTS!
PUT 2, , PI(1)
PUT 2, , PI(2)
FORi=1TO 10: PUT #2,, TI(i): NEXT
PUT 2, , Tdas!
END IF
END IF

IF Warn1$ = "Kolos" GOTO Mainloop
FORi=1TO 10

IF T!(i) > 60 THEN CALL warn
NEXT
IF Tdas! > 60 THEN CALL warn
GOTO Mainloop

END SUB

SUB schem (store)
DIM d!(10), T!(10), V!(2), P!(2), CT!(10), CTI!(10)

ts# = ttime
StopVar% =0

CLS O

ON KEY(15) GOSUB ctrlcl
KEY(15) ON
ON KEY(16) GOSUB ctrlcl
KEY(16) ON
ON KEY(17) GOSUB ctrlcl
KEY(17) ON
ON KEY(18) GOSUB ctrlcl
KEY(18) ON

CLS 2
SCREEN 12
LINE (1, 1)-(639, 479), 1, BF

‘Temp cal factors

"Temp. calibration factors based two points 15 AUG 1996 KRK
CTY(1) = 72.26 'KRK 11aug96 70.893 'KRK 2aug96 72.254 - KRK 7jul96 71.685 - KEH 72.123
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CT!(2) = 72.66'KRK 11aug96 72.292 'KRK 2aug96 72.727 'KRK 7jul96 72.307 - KEH 72.622
CT!(3) = 73.43'KRK 11aug96 71.206 'KRK 2aug96 73.421 'KRK 7jul96 72.939 - KEH 73.346
CT!(4) = 73.3 'KRK 11aug96 73.139 'KRK 11aug96 73.139 'KRK 2aug96 73.153 'KRK 7jul96
72.674 - KEH 73.258

CT!(5) = 71.09'KRK 11aug96 70.457 'KRK 2aug96 70.922 'KRK 7jul96 70.274 - KEH 70.913
CT!(6) = 73.8'KRK 11aug96 71.917 'KRK 2aug96 73.746 'KRK 7jul96 73.314 - KEH 73.802
CT!(7) = 71.89'KRK 11aug96 70.316 'KRK 2aug96 71.891 'KRK 7jul96 71.429 - KEH 71.862
CT!(8) = 72.81 'KRK 11aug96 72.820 'KRK 2aug96 72.993 'KRK 7jul96 72.046 - KEH 72.243
CT!(9) = 70.91'KRK 11aug96 71.206 'KRK 2aug96 71.124 'KRK 7jul96 70.622 - KEH 70.838
CT!(10) = 71.6 'KRK 11aug96 70.207 'KRK 2aug96 71.685 'KRK 7jul96 71.276 - KEH 71.603

CTII(1) = -273.15 'KRK 11aug96 -267.255
CTI'(2) = -273.15 'KRK 11aug96 -271.61
CTII(3) = -273.15 'KRK 11aug96 -263.891
CTI!(4) = -273.15 'KRK 11aug96 -272.484
CTII(5) = -273.15 'KRK 11aug96 -270.413
CTI!(6) = -273.15 'KRK 11aug96 -265.276
CTII(7) = -273.15 'KRK 11aug96 -266.343
CTI!(8) = -273.15 'KRK 11aug96 -273.189
CTI!(9) = -273.15 'KRK 11aug96 -274.39
CTI!(10) = -273.15'KRK 11aug96 -267.281

'CV1=4.39

Cvli=35

Cv2 = 10!

CP2 = 6.8822 'increased significant digits from 6.8, 07 JULY 1996 KRK

PRINT "VIEW-CPL Data Display Schematic "; DATES$
PRINT

PRINT "Hit CRTL-C to exit to MAIN MENU"

LINE (200, 50)-(500, 50), 3

LINE (500, 50)-(500, 100), 3

LINE (480, 100)-(520, 100), 3
LINE (480, 300)-(520, 300), 3
LINE (480, 100)-(480, 300), 3
LINE (520, 100)-(520, 300), 3
LINE (500, 300)-(500, 400), 3

LINE (500, 400)-(100, 400), 3

LINE (100, 50)-(100, 100), 3
LINE (80, 100)-(120, 100), 3
LINE (80, 300)-(120, 300), 3
LINE (80, 100)-(80, 300), 3
LINE (120, 100)-(120, 300), 3
LINE (100, 300)-(100, 400), 3

LINE (230, 100)-(270, 100), 3
LINE (230, 300)-(270, 300), 3
LINE (230, 100)-(230, 300), 3
LINE (270, 100)-(270, 300), 3
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LINE (250, 300)-(250, 400), 3

Mainloops:

IF StopVar% = 1 THEN EXIT SUB
LOCATE 1, 50

PRINT TIME$

'Set logical channel numbers
Lchanl% =1
Lchan2% = 2
Lchan3% = 3
Lchan4% = 4
Lchan5% =5
'‘Sample voltages
n% =1 'dummy parameter
CALL xaing(Lchan2%, d!(n%), Erstat%)
VI(1) =d!(1) *CVvl
VI(2) =d!(2) * CV2
WATTS! = V(1) * V!(2)
‘Sample pressure
CALL xaing(Lchan3%, d!(n%), Erstat%)
" Pi{1)=(d!(1)+1)*23.31
PI(1) = (d!(1) + 1) * 34.44
P!(2) = (d!(2) + .00725) * CP2
'Sample temps
CALL xaing(Lchan4%, d!(n%), Erstat%)
CALL xain(Lchan5%, Tdas!, Erstat%)

FOR i =1 TO 10: T()) = d!(i) * CT!(i) + CTII(i): NEXT

LOCATE 14, 30

PRINT USING "8: ###.##°C"; T(8)
LOCATE 22, 29

PRINT USING "1: ###.#°C"; T!(1)
LOCATE 22, 60

PRINT USING "2: ###.#°C"; T!(2)
LOCATE 22, 10

PRINT USING "10: ###.#°C"; T!(10)
LOCATE 18, 10

PRINT USING "7: ###.#°C"; TI(7)
LOCATE 15, 10

PRINT USING "4: ###.#°C"; T!(4)
LOCATE 11, 14

PRINT USING "6: ###.#°C"; T!(6)
LOCATE 5, 10

PRINT USING "5: ###.#°C"; T!(5)
LOCATE 5, 60

PRINT USING "3: ###.#°C"; T!(3)
LOCATE 15, 65

PRINT USING "9: ###.#°C"; T!(9)

LOCATE 27, 10
PRINT USING "P: ###.# kPa"; P!(1)
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LOCATE 28, 10
PRINT USING "dP: ###.## kPa"; P!(2)

LOCATE 27, 30

PRINT USING "Input Power Supply: ###.4# V"; VI(1)
LOCATE 28, 30

PRINT USING "Heater Power: ###.# W"; WATTS!

LOCATE 1, 64
PRINT USING "Tdas = ###.#°C"; Tdas!

SLEEP 1

IF store =1 THEN
IF ttime - ts# > 4 THEN
ts# = ttime
PUT 2, , ts#
PUT 2,, VI(1)
PUT 2, , WATTS!
PUT 2,, PI(1)
PUT 2, , P!I(2)
FORi=1TO 10: PUT #2,, TI(i): NEXT
PUT 2, , Tdas!
" PRINT "Schem"
END IF
END IF

IF Warn1$ = "Kolos" GOTO Mainloops
FORi=1TO 10

IF T!(i) > 60 THEN CALL warn
NEXT
IF Tdas! > 60 THEN CALL warn
GOTO Mainloops

END SUB

FUNCTION ttime#

yr = VAL(MID$(DATES, 7, 4))
mon = VAL(DATES$)
day = VAL(MID$(DATES, 4, 2))

hr = VAL(TIMES)
min = VAL(MID$(TIMES, 4, 2))
sec = VAL(MID$(TIMES, 7, 2))

FORi=1TO mon
dday = dday + days(i)
NEXT
dday = dday + day

'ttime# = yr * 31536000 + day * 86400 + hr * 3600 + min * 60 + sec
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ttime# = yr * 31536000 + dday * 86400 + hr * 3600 + min * 60 + sec
END FUNCTION

SUB warn

CLS

LOCATE 8, 1

PR I NT Nkkkkkhkkhkhkkkkkkkxhix!"

PRINT

PRINT "A temperature sensor has registered a reading above 60°."

PRINT

PRINT "End the current test immediately and verify that power is"

PRINT "removed from the evaporator heaters, and line heaters:"

PRINT " MH1-40W"

PRINT " MH2-25W"

PRINT " MH3-10W"

PRINT " LH1-LIQUID"

PRINT " LH2-VAPOR"

PRINT " LH3-LIQUID"

PRINT " LH4-VAPOR"

PRINT

PRINT "tttk

INPUT "Press <CTRL> C then <ENTER> to continue"; Warn1$
END SUB
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H.4 VIEW-CPL data acquisition user’s manual (NSTS21343 Annex3, 1996)

Version 1.84 (instructions are similar for Version 1.98)
8 May 1996

Written by Keith E. Herold and Kimberly R. Kolos
Center for Environmental Energy Engineering

College Park, Maryland

1. Introduction

The VIEW-CPL Data Acquisition Software (DAS) was written to support the
VIEW-CPL middeck flight experiment which will fly on STS-80 in November 1996.
The experiment is a modest budget student experiment and, as such, the
experiment and the software are highly efficient. The software is strictly for data
collection and has no control function. However, effective monitoring of the
experiment will require that the astronaut observe the screen displays so that it
is known whether or not the experiment is working. The choice of tests and the
test sequence depends somewhat on observations taken during operation.
Because of the minimum number of user options, the software is quite simple and
straightforward.

The software is written in QuickBasic and is compiled into a stand-alone
executable which runs under DOS. The software has several text mode screens
and several graphic screens. All of these screens are designed to support the
data acquisition objective.

2. PGSC Operations Flow

The PGSC communicates with the experiment via an RS-232 serial link. The
software is designed to interrogate the DAS system periodically and to
automatically store the data on floppy disk as well as to display it on the PGSC
screen. There are several screen display modes available and the choice of
which mode to use depends somewhat on user preference. The similarities and
difference between these screen display modes are discussed in Section 3.

| EXPERIMENT DATA | | PIU | | PGSC |
| -Temperature | | | |
| -Absolute Pressure |---->|-Collects signals|--->]-Displays data]
|-Differential | |-Sends data to | |-Writes data |
I |
I |

Pressure | | PGSC | | to Floppy
-Line voltage | |



3. Windows, menus, and forms

The display screens of the VIEW-CPL DAS software are discussed in this
section. The software was designed for simplicity and thus has a minimum
number of screens. It should be noted that CTRL-C should be used to escape
from any of the data acquisition modes and to return to the Main Menu from
anywhere in the program.

3.1 Title Screen

The title screen has a graphic VIEW-CPL logo and the following text. The screen
displays until the user hits a carriage return.

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkk

Data Acquisition Program
Version 1.84
UNIVERSITY OF MARYLAND - COLLEGE PARK

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkk

3.2 Main Menu

The Main Menu is shown below. It includes 7 choices. Each of these choices is
described more fully in the following material.

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkk

Welcome to the VIEW-CPL DAS Program - MAIN MENU

Options:

1 - Sample one channel

2 - Sample all channels

3 - Data plot

4 - CPL Schematic

5 - Start/stop acquisition of data
6 - Change plot defaults

9 - Exit

*kkkkkkkkkkkkkkkkkhkkkkkhkhkkkkhkkx

3.2.1 Main Menu - Option 1

The first option under the Main Menu is for monitoring a single channel. This
feature was useful during debugging and it is included here for completeness. It
is not anticipated that this option would be used during the flight experiment.
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When Option 1 is selected, the user is asked to specify which channel is to be
monitored and the following screen appears:

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkk

Which Channel do you want to sample:

8(9) Differential line voltage

10(11) Differential line voltage

12  Absolute pressure transducer

13  Differential pressure transducer

14-23 Temperatures

Enter Channel number ? 8

*kkkkkkkkkkkkkkkkkhhkkkkkhkkkhkhikx

Once the user has specified a channel to monitor, a screen appears that prints
out the value of the data channel along with information about the error variable
obtained from the DAS system. For normal operation, the error variable will be
zero. A counter, J, indicates the number of display iterations. The screen display
for channel 8 is shown next.

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkk

VIEW-CPL Data Display
J= 1 Hit CTRL-C to return to Main Menu
Channel 8: 0.000 V

erstat= 0

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkk

3.2.2 Main Menu - Option 2

Main Menu Option 2 allows a simple text display of all data channels as shown
next. This screen may be used during experiment monitoring (however, Options
3 and 4 are designed to provide even more information).

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkk

VIEW-CPL Data Display

J= 1 Hit CTRL-C to return to Main Menu
Channel 8: 0.000V

Channel 10: 0.000V

Channel 12 : 0.000 kPa

Channel 13: 0.000 kPa

335



Channel 14: %-273.150
Channel 15: %-273.150
Channel 16: %-273.150
Channel 17: %-273.150
Channel 18: %-273.150
Channel 19: %-273.150
Channel 20: %-273.150
Channel 21: %-273.150
Channel 22: %-273.150
Channel 23: %-273.150

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkk

O0O00000000

3.2.3 Main Menu - Option 3

Main Menu Option 3 provides a plot of all data channels versus time. In addition,
a text display of the data is also provided. This screen is one of the primary tools
provided for experiment monitoring. The user can select the time scale by utilizing
Option 6 from the Main Menu. The essentially graphic screen is not reproduced
here.

3.2.4 Main Menu - Option 4

Main Menu Option 4 provides a schematic of the experiment with the data
superimposed close to the transducer location. This display allows the user to
associate the data with the physical locations in the experiment. The essentially
graphic screen is not reproduced here.

3.2.5 Main Menu - Option 5

Main Menu Option 5 allows the user to start and stop the recording of the data.
The main function of this option is to set a variable in the program that tells it
whether to store the data. When the storage variable is turned on, the user is
then asked to specify a file name. Since DOS file names are limited to 8
characters, the user should enter a name of the form vcpl-xxy where xx is the test
number and y is a code that allows a test to be restarted without over-writing a
file. The Option 5 screen show up as:

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkk

This option allows the user to stop or start
the process of storing data to the floppy disk

The program is not storing data currently
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Enter one of the following:

(CR) to toggle the storage variable

1 - to set the storage variable to begin storing data
0 - to set the storage variable to end storing data
S - to exit option without changing anything

o

;*****************************

If the user toggles the storage variable or sets it to 1, then the software asks the
user for the file name as

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkk

Please enter the filename

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkk

The filename is automatically assigned to the floppy drive and an extension of
DAT is appended.

3.2.6 Main Menu - Option 6
Main Menu Option 6 allows the user to set the maximum time scale for the plot

in Main Menu Option 3. This is set as a Main Menu Option so that the user does
not have to reset it each time Option 3 is entered.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkk

Plot Defaults
Current time scale is 600 sec

Enter new value of time scale in sec? 10

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkk

4. Messages
The only message issued to the crew through the DAS interface is a warning to

end a test if a temperature of 60°C is measured by the DAS. The warning is
displayed over the PGSC display with the following text.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkk

*kkkkkkkkkkkkkkkkkkkk

A temperature sensor has registered a reading above 60°C,
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End the current test immedaitely and verify that power is
removed from the evaporator heaters, and line heaters:

MH1-40W

MH2-25W

MH3-10W

LH1-LIQUID

LH2-VAPOR

LH3-LIQUID

LH4-VAPOR

kkkkkkkkkkkkkkkkkkkkk

Hit (CR) to continue?

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkk

Directory Listing for VIEW-CPL DAS
Volume in drive B is VIEW-CPL
Volume Serial Number is 13EF-1643
Directory of B:\

COMMAND COM 92,870 07-06-96 12:35p

CONFIGB DAT 106 01-04-96  3:58p

80VCPL  EXE 103,800 07-07-96 5:09p
3 file(s) 196,776 bytes

965,120 bytes free
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APPENDIX I: EXPLANATION OF VOLTAGE DROPS IN
DATA

The magnitude of the voltage drop measured during the flight testing is
different than that measured during ground testing because different power
supplies were used to provide power to the experiment. When VIEW-CPL was
operated on power from the Space Shuttle fuel cells, a drop of 0.023 to 0.027 V
was observed for every watt of power consumed by the experiment. Using the
Acme Electric Corporation power supply (Model SPS/CPS 220) during ground
testing, the typical drop was 0.0075 V/W.

The voltage drop measured from the Space Shuttle operations, along with
some audio notes on the video tapes, were used to determine the exact times the
astronauts executed steps in the procedures and turned on various electrical
components. By checking the voltage difference between consecutive time
periods and following along with the procedures, the order in which switches were
toggled on and off was determined. Table I.1 contains the voltage drop observed
when the corresponding component is switched on during flight testing.

A Keithley 197 Autoranging microvolt digital multimeter (DMM) was used
to check the current draw of the VIEW-CPL components. Table 1.2 provides the
power consumed by each component as calculated by multiplying the voltage
read from the VIEW-CPL data acquisition system and the current measured from
the DMM, and subtracting the power consumed by having the Main PWR, 5VDC,

and PIU switched on.
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Table 1.1 Voltage drop associated with powered components.

Component Measured power on Power draw on Observed Voltage
ground (W) shuttle during typical | drop (V)
operation (W)
TC2 5.0t05.4 4.6 +0.084 0.12t00.16
TC1 22.7t027.5 20.6 + 0.084 0.40 to 0.45
Fans 11.5t012.7 13.35 0.36
(3 @ 4.45W each)
TEC 24,510 23.8 0.44
MH1 46.9 40.4 0.9
MH2 29.1 25.7 0.5625
MH3 11.0 9.3 0.225
Table 1.2 Measured voltage drop during ground operations.
Total Component
Switch Volts Amps Power (W) Power
MAIN PWR 29.9 0.014 0.4 0.4
5VDC 29.9 0.147 4.4 4.0
 PIU 29.9 0.304 9.1 4.7
r TEC 29.8 1.131 33.7 24.6
F FAN1 29.9 0.457 13.7 4.6
F FAN1, FAN2 29.9 0.587 17.5 8.4
r FAN1, FAN2, FAN3 29.8 0.734 21.9 12.8
F MH1 29.6 1.896 56.1 47.0
F MH2 29.7 1.288 38.3 29.2
F MH3 29.8 0.675 20.1 11.0
F TC1 29.8 1.070 31.8 22.7
F TC2 29.9 0.489 14.6 5.5
F LH1 29.9 0.427 12.8 3.7
- LH2 29.9 0.427 12.8 3.7
F LH3 29.9 0.426 12.7 3.6
F LH4 29.9 0.428 12.8 3.7

*indicates that the MAIN PWR, 5VDC, and PIU are switched ON.

The voltage drops and rises were measured from the data collected and
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voltage changes above a threshold of 0.095V were printed to a file for
assignment to component switching. When matched to the switching sequence
in the procedures, the voltage changes give an excellent record of the sequence
and timing of the manual switching controls. Beginning with the initial pressure
prime, Astronaut Kent Rominger gave audio comments on the video tape
detailing which components were turned on at various times. These comments
were used to determine the magnitude of the voltage changes associated with
various components.

Since the data acquistion system records the data every 5 seconds, there
is the possibility of a data point being collected during the transient voltage
change; if this happens, the voltage change reads lower than expected. When
voltage changes are misleading or large same sign voltage changes occur back-
to-back, taking the voltage change over two data points gives more accurate
results.

Small temperature changes are observed as large power drawing
components are turned on. A 0.1 K temperature drop in all temperatures is
noted when the TEC is turned on; temperatures rise when the TEC is turned off
(the TEC is powered from a DC/DC converter that is separated electrically from
the other DC/DC converter supplying voltage to the temperature sensors). A0.01
K temperature rise is observed in some of the temperatures when TC1 and TC2
are turned on. None of these variations have a major impact on the conclusions

drawn from the VIEW-CPL temperature data.
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APPENDIX J: INFORMATION ABOUT ON-ORBIT TESTING

Table J.1 Summary of on-orbit testing of VIEW-CPL on STS-80.

Test# | Test Date Start Stop Time MET start | Previous
Title performed Time time Procedure

* PRIME-1 | 11-20-1996 22:03:01 23:23:51 01/03:47 UNSTOW

1 S40-1 11-20-1996 00:00:40 01:46:49 01/05:23 PPRIME

2 S25-1 11-22-1996 02:34:36 04:06:52 01/08:00 CoOoL

3 S75-1 11-21-1996 01:33:33 02:29:40 02/05:38 STANDBY

4 S65-1 11-21-1996 02:35:52 02:54:03 02/06:40 COOoL

5 S10-1 11-22-1996 21:15:52 22:32:01 04/01:20 STANDBY

6 S50-1 11-22-1996 23:22:58 23:53:16 04/03:27 CoOoL

7 GRAD-1 | 11-23-1996 01:36:59 02:13:57 04/05:41 COoOL

8 SS25-1 11-23-1996 02:58:11 03:37:11 04/07:03 COOoL

9 S40R-1 11-24-1996 04:07:39 05:05:17 05/08:12 STANDBY

10 S35-1 11-24-1996 05:45:25 06:38:48 05/09:50 CooL

11 LOW-1 11-25-1996 23:39:45 00:31:03 07/03:44 STANDBY

12 LOW-2 11-26-1996 00:31:52 01:10:48 07/04:36 COOoL

13 JUMP-1 11-26-1996 01:48:32 02:25:57 07/05:53 COOoL

14 SC-1 11-26-1996 03:20:35 03:57:42 07/07:25 CooL

15 Cv-1 11-26-1996 04:56:12 05:34:11 07/09:01 COoOL

16 SC-2 11-26-1996 06:16:52 06:55:08 07/10:21 COOL

* PRIME-2 | 11-30-1996 03:17:52 04:27:17 11/07:22 UNSTOW

17 S25-2 11-30-1996 04:30:25 05:57:15 11/08:35 PPRIME

18 S40-2 11-30-1996 06:01:56 07:02:05 11/10:06 COoOL

19 S35-2 11-30-1996 07:42:08 08:33:42 11/11:47 COOL

UNSTOW - removal from Middeck locker and set-up in the Space Shuttle

PPRIME - Pressure prime

COOL - Evaporator cooldown and pressure prime (25W on reservoir temperature controlled
heaters)

STANDBY - Standby mode with minimal power (5W on reservoir temperature controlled heaters)

342



Table J.2 Summary of evaporator core at the beginning of on-orbit tests.

Description of | Test Number: Title Type of Prime
Evaporator
All liquid in #15: CV-1 Cooldown
core #16: SC-2  (no video available) prime
#17: S25-2 (two bubbles in inlet) Cooldown
prime
Pressure prime
Small #2: S25-1 (a few small bubbles plus one bubble at Cooldown
bubbles in inlet to core) prime
core (less #3: S75-1 (afew small bubbles plus one bubble at
than 5%) inlet to core) Standby prime
#6: S50-1 (small bubbles in middle of core)
#7: GRAD-1 (small bubble at inlet and vapor plug) Cooldown
#8: SS25-1 (small bubble at inlet and vapor plug) prime
#9: S40R-1 (small bubble at inlet and vapor plug) Cooldown
#10: S35-1 (bubble at inlet and small bubble at vapor prime
plug) Cooldown
#11: PVLOW-1 (bubble at inlet and vapor plug) prime
#12: PVLOW-2 (bubble at inlet and vapor plug) Standby prime
#13: JUMP-1 (bubble at inlet and vapor plug) Cooldown
#14: SC-1  (small bubbles in middle of core) prime
#18: S40-2 (small bubbles at vapor plug)
#19: S35-2 (many small bubbles and one at inlet) Standby prime
Cooldown
prime
Cooldown
prime
Cooldown
prime
Cooldown
prime
Cooldown
prime
Large Bubble | #1: S40-1 (~50% vapor) Pressure prime
in core (more | #4: S65-1 (three bubbles) Cooldown
than 5%) #5: S10-1 prime
Standby prime

The bubble locations and sizes are similar between sequential tests and appear
to be dependent on the core constituency at the end of the preceding test .
. For example, in tests #2, #3, #5, #6, there is a small cluster of small

diameter spherical bubbles positioned at nearly half the length of the core.
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In test #4 the large bubble is located in the same location of the small
clustered bubbles that were observed in tests #2, #3, #5, and #6.

In test #5, the large bubble is just to the left of the location of the small
clustered bubbles.

During test #6, a bubble begins at the vapor plug and expands to combine
with the bubbles in the middle of the core. After test #6, the core is filled
with liquid with only one small bubble at the vapor plug.

The following tests #7, #8, #9, #10, #11, #12, and #13 all start with a
mostly liquid core and only one vapor bubble at the vapor plug.

During test #13, the core fills with liquid with small vapor bubble through-
out the core.

Test #14 begins with four small bubbles in the last half length of the core.
Tests #15, #16, and #17 begin with all liquid in the core.

Test #17 ends with a vapor bubble at the vapor plug.

Test #18 begins with a vapor bubble at the vapor plug and ends with small
vapor bubbles scattered through-out the core.

Test #19 begins with mostly liquid and only a few very small vapor bubbles

in the core.
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Table J.3 Initial state of the evaporator prior to start-up for on-orbit testing.

Test #|Test Title|Initial state inside core % core Evaporator Resenoir
wlume | Temperature, | Temperature,
T6 (°C) T8 (°C)
1 S40-1 [Nearly 50% of core is filled 47.6% 26.1 46.2
with vapor
2 S25-1 [Core is nearly liquid filled with | 0.2% 27.5 47.0
only four very small bubbles
located midway between inlet
3 S75-1 [Core is nearly liquid filled with 0.1% 26.1 45.0
only two very small bubbles
located midway between inlet
and vapor plug
4 S65-1 [Cylindrical bubble located in 18.9% 28.0 46.8
middle of core
5 S10-1 |[Cylindrical bubble located in 14.8% 28.6 46.4
middle of core and several
very small bubbles
6 S50-1 [Small cluster of four bubbles 1.2% 30.3 47.3
at half the length of the core
7 | GRAD-1|Small bubble at the vapor plug| 1.6% 27.2 44.6
8 SS25-1 [One bubble at the vapor plug 1.2% 32.1 47.0
9 S40R-1 [One bubble at the vapor plug 1.2% 28.0 45.5
10 S35-1 [One bubble at the vapor plug 1.2% 29.9 47.0
11 | LOW-1 |One bubble at the vapor plug 1.2% 28.4 39.9
12 | LOW-2 |One bubble at the vapor plug 1.2% 30.3 43.0
13 [ JUMP-1 |One bubble at the vapor plug 1.2% 30.4 47.0
14 SC-1 |Four small bubbles in last half| 1.1% 30.3 46.0
of the core
15 CVv-1 |All liquid 0.0% 318 47.4
16 SC-2 |All liquid 0.0% 29.4 45.2
17 S25-2 |All liquid 0.0% 26.3 47.5
18 S40-2 |One bubble at the vapor plug 2.6% 32.3 47.7
with droplets of condensation
on the lexan abowve the bubble
19 S35-2 [A few very small vapor 0.1% 314 46.4

bubbles in the core
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Table J.4 Location of initial bubble growth for on-orbit testing (continued on next
page).

Elapsed Time from heater
power on (sec)
Test | Test Boiling location and description
# Title Boiling All All
or vapor in | vapor
Bubble plenum | in core
Growth
1 S40-1 Heater on at 1096 sec elapsed time
1) Core bubble expanding 1) 34 ik 224
2) Boiling in vapor groove 2) 149
2 S25-1 Heater on at 735 sec elapsed time
1) Slow boiling from the vapor grooves 1) 152 . 677
2) Core bubbles fed with vapor through 2) 369
the wick
3 S75-1 Heater on at 731 sec elapsed time
1) Bubbles forming in core 1) 171 271 *
2) Boiling in plenum 2) 183
4 S65-1 Heater on at 457 sec elapsed time
1) Core bubble expanding 1) 57 262 951
2) Boiling in vapor plenum 2) 201
5 S10-1 Heater on at 505 sec elapsed time
1) No boiling in vapor grooves 1) * * *
2) Core bubble expands 2) 245
6 S50-1 Heater on at 538 sec elapsed time
1) Slow boiling in plenum 1) 203 364 630
2) Core bubble growth 2) 334
7 GRAD- Heater on at 982 sec elapsed time
1 1) Boiling in vapor groove 1) 219 *kk 663
2) Core bubble at vapor plug growing 2) 313
8 SS25-1 | Heater on at 460 sec elapsed time
1) Boiling not observable in the plenum 1) *** 665 1495+
2) Core bubbles fed with vapor through 2) 262
the wick
9 S40R-1 | Heater on at 929 sec elapsed time
1) Vapor groove clearing 1) 263 408 773
2) Core bubble growing 2) 353
10 S35-1 Heater on at 495 sec elapsed time
1) Boiling in plenum and bubble 1) 97 439 655
expanding in core at the same time
11 LOW-1 Heater on at 289 sec elapsed time
1) Boiling in plenum 1) 30 310 420
2) Core bubble expanding 2) 180
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Table J.4 Location of initial bubble growth for on-orbit testing (continued from
previous page).

Elapsed Time from heater
power on (sec)
Test | Test Boiling location and description
# Title Boiling All All
or vapor in | vapor
Bubble plenum | in core
Growth
12 LOW-2 Heater on at 227 sec elapsed time
1) Slow boiling in plenum 1) 70 412 571
2) Core bubble growing 2) 187
13 JUMP-1 | Heater on at 501 sec elapsed time
1) Plenum not visible 1) *** bk 397
2) Bubble expands in core 2) 47
14 SC-1 Heater on at 880 sec elapsed time
1) Boiling in vapor plenum 1) 243 332 336
2) Core bubble expanding 2) 305
15 Cv-1 Heater on at 551 sec elapsed time
1) No observation of boiling in the 1) *
plenum 2) 713 982 1100
2) Small bubbles forming in the core
16 SC-2 Heater on at 463 sec elapsed time - -
No video available rokk
17 S25-2 Heater on at 455 sec elapsed time
1) Slow boiling from the vapor grooves 1) 975 1126 1037
2) Bubble forms and grows in core 2) 1020
18 S40-2 Heater on at 859 sec elapsed time
1) Expanding core bubble 1) 115 535 405
2) Slowly boiling in vapor groove 2) 195
19 S35-2 Heater on at 496 sec elapsed time
1) Core bubble growing 1) 521 *kk 567
2) Boiling in vapor plenum 2) 622

*  Never during start-up
** Never during testing
*** Not visible
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Table J.5 Initial start-up period for on-orbit testing.

Test# | Test Title | Initial Initial power Ending mode Duration
power | Interval (sec) of initial
(w) start-up
(sec)
1 S40-1 43.46 | 926 VAPOR AT CONDENSER 632
2 S25-1 28.31 | 727 HEATERS OFF 727
All vapor in the evaporator
core; no vapor at condenser;
boiling began in the vapor
grooves first
3 S75-1 77.60 | 470 Vapor at condenser 319
4 S65-1 67.56 | 551 Vapor at condenser 333
S10-1 1091 | 2213 INCREASE POWER 2213
Bubble in core expanding; no
vapor in grooves
6 S50-1 53.34 | 696 Vapor at condenser 495
7 GRAD-1 | 37.23 | 670
8 SS25-1 28.15 | 899
9 S40R-1 42.71 | 792 Vapor at condenser 617
10 S35-1 37.96 | 709 Vapor at condenser 693
11 LOW-1 75.60 | 367 Vapor at condenser 280
12 LOW-2 36.84 | 662
13 JUMP-1 51.30 | 623 Vapor at condenser 526
14 SC-1 65.74 | 398 Vapor at condenser 392
15 Cv-1 26.99 | 1080 HEATERS OFF: 1080
Mostly vapor in the evaporator
core; no vapor at condenser
16 SC-2 65.16 | 457 Vapor at condenser 398
17 S25-2 27.55 | 1196
18 S40-2 42.64 | 772 Vapor at condenser 594
19 S35-2 36.59 | 713 Vapor at condenser 733
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