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'L *^lJ^vo^xotlor^ As was pointed out by Chaplygin DO and 
Frankl [t6j  , the partial differential equation for the 
stream function in steady plane flow of a compressible 
fluid takes the simple form

U . D  K W j g j + y „  =  0  ,
in the modified hodograph plane. Here 9 is the angle of 
inclination of the streamline const, and <5- is defined 
in terms of the speed ̂  by»-> , .f*j. /f ,fmfW ,
the function p  (̂ ) for the density^), being determined by the 
equation of state.

If one seeks solutions of the form 9 = G ( s-, ),
which defines p  Implicitly as a function of Q and er , one 
finds that (1.1) is replaced £13] by

« - >  ■ 
Moreover given a solution of (1.3), the flow in
the physical plane (2 -plane) Is presented by
(1.4) g _ K +  &

where is any solution of
(1.5) H " -  K ( r ) &  ,  ' =  < ///(!■

The function K(e) which arises in (1.1) is determined 
by the equation of state of the particular gas under 
consideration. Conversely following1 [lij , given any 
function K(S') 9 equation of state is determined

See also £l] , [2] , [3], [ll], [14] , [l6j ,



(not uniquely) as follows. For each solution ?£ = A&t + 

of (1.5), the densityyo, pressure 9 and speedy, are 
defined as functions of s by
(1.6) p  —  , ' f — [  ' i f 2', /#  t  C y ^  = //# >

and the equation of state results when o' is eliminated 
from the first two equations above. Due to the presence 
of the arbitrary constants A,B,C, each function K(tf) 
gives rise to a three parameter family of equations of 
state. By differentiating the first equation in (1.6) 
we see that p  is a solution of the Ricatti equation
(1.7) p ' =  / - K 0 * -  .

Conversely given any solution -  p (e ) of (1.7), for
which p ( 0 ) ^ O s  a solution to (1.5) is
(1.8) , ^ - 7 i ( 0 )  .

In § 2 we study the equations of state for selected
bilinear functions

\   CKr+b
c e  + d

to which we were led by the following question. Is there 
a solution of the form
0.9) e = % M - h Y , M < r

to (1.3)? In other words is there any flow in the physical 
plane for which the streamlines, in the modified hodograph

i
plane, constitute a one-parameter family of non-parallel 
straight lines? In § 3 we show that for a flow of this 
nature to exist it is necessary that K be a bilinear 
function of <sr .

In particular for the case b=0 , a-c=l, &=£ ,



equation (1*9) becomes0=- &  tk s r i' (p -h £  V  ~~ v )  p

and the straight lines const, envelope a characteristic
cycloid of (1.1) [Fig. 6] as indeed is the case in the work
of Germain? Using (1*4) the flow in the physical plane to
which the above solution gives rise is discussed in detail
in § 4, and is portrayed in Pig* 8&.
2^jrhe^Equ^ For a polytropic gas in
the notation of Chaplygin [3] , the function /°(^) becomes
(2.1) /° f/— r)*3 > /3=  i f ( r~ i) ; r =
where p is the stagnation density, q the maximum speed, 
and Y is the ratio of specific heats. The function K( o'), 
defined by

“ •*> “  S C,Mif * ,
where , and q^ is the critical speed, admits
the power series expansion ^

K {$) ■=■ cr ? ^  p  ( / - critical density.
The graph of K- K( o*) is designated by K in Pig. la.

The simplest approximation to K, the horizontal 
asynptote K =  / ,  arises when y=-l and the corre­
sponding equations of state are those of the Karman-Tsien

o (Unpublished) as stated by M.J,Lighthill in a recent visit 
to the Institute for Fluid Dynamics and Applied Mathematics 
at the University of Maryland.
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4
gases.3 This horizontal asymptote is labeled KT in Fig. la.

The curve K is approximated by the tangent line, ,
at the origin £t, in Fig. laj1 if one sets ̂  = ?</- / • Equation 
(1*1) becomes Tricomi»s equation and the three-parameter family 
of equations of state constitute the Tricomi gases. By adjust­
ing the values of the arbitrary constants A,B,C, it is 
possible to bring the speed, density, and pressure of a
Tricomi gas at into agreement with the sonic values of 
these quantities for a polytropic gas and to show that the 
graphs of the equations of states of the two gases have contact 
of secohd order |jL3] at the critical point ( ) -fy ).

Recently Tierney JjLSj has replaced the tangent line 
to K by the osculating parabola [t̂  in Fig. laj and finds 
contact of the third order between the two curves representing 
the equation of state at the sonic point.
(i) The Function K(g ). Good qualitative agreement between K 
and K over the whole range of speeds is obtained by using 
the hyperbola,

(2-3)
as an approximation to K. If one takes l / f ^  ? ✓/= — 6 > O y

3
This is readily seen from (1.5) and (1.6) by carrying out 

the prescribed operations. Thus for /jp — / =3 /
(1.5) gives?£ =  CL c o s h ( e - b ) > whe.nC'G- p  =  Cafh(G'-'b)^ C +  CCx \ta-nh(e--b) m
On eliminating e* , one has the form c. + i/<£p , which
Is the equation of state for the Karman-Tsien gases.



where 6  is the value of <5- in (2.2) for x — 1; the hyperbola
will have the same asymptotes as L  We shall refer to this as
the universal fit. [Pig* X*bJ The slope at the origin
is K 1 9 instead of K! (0)=-{Y+\)/ff>3 and when Y = 7/s

4the former is less than the latter. Alternately we may, in 
order to have better transonic agreement, takey&/£=(Y'+l) / £ 3 

to insure that K is tangent to K at the origin. Two cases arise 
according to whether one takes k = l/^:t, to obtain the same 
horizontal asymptote as K (subsonic fit) [Fig. lb] ; or 
whether one takes £ ~ -e - to obtain the same vertical asymp­
tote (supersonic fit) [Fig. lb] • One could also of course 
give up agreement with either asymptote and choose K to have 
the same curvature as K at the origin (transonic fit) [Fig. lb] 
The last three approximations are compared with K in a recent 
report of Chang [2] •

To form some idea of the magnitudes of k and ̂ corresponding
/ 4to the various fits let us take ̂ = 1, ?"= then from

(2.2),$=-0.2513, g-0.6339, whence
Universal fit: k =  l, /= 0.2513
Subsonic fit: k = l, /= 0.1060
Supersonic fit: k = 2.393, ̂ -0.2513
Transonic: k = 1.530, 0.1624

For Y=7/£, (2.2/ can be integrated [2] obtaining . 
<r/g=-0 .25i3-(i- %)'/*> [ i + i d -  z ) +  £ ( i - r ) * j+tanh-'d- X T ;  
whence for T=l, & =  -0.2513. Thus for £ — 1, 
one has K'(0) =  3.98, while K* (0) =  9.42.



if) The Functions 7£ { & ) 9 ft (Q ♦ Prom now on we shall 
take^-l, and concentrate on the universal fit. Consequently 
k = l  in (2.3) which with (1*5) becomes
(2.4) K > 0 < J < !  .

For > 0  the solution curves of (2.4) are concave upward 
for 6 ~ > 0 and concave downward for In particular
this holds for the solution curve, )£ fa)  ̂determined by
the initial conditions
(2.5) ?e(o) =  l / f a  =  X *  , m  =  l /h  =

We remark in passing that the solutions of (2.4) are 
expressible by Whittaker* s [sj, jjL7] functions W l fi  ( z e + i / ) •

z z.

We shall need only the property^

,2‘6>
To study the particular solution with prescribed initial 

values (2.5) we begin with (1.7) and interchange the role of 
dependent and independent variables to obtain
(2.7) A

t i O ' f * ) *

The straight line —XIs obviously a solution, and we 
confine our attention to the quarter plane p  ̂  O > er ̂  m 

This quarter plane is divided into two regions by the vertical 
isocline < £ + ( 1  - p z)<? below which the solutions &(p) are 
monotonic increasing functions of cr and above which they are 
monotonic decreasing functions.



On the latter curve, d s jd p - ^ 0  • On the boundary p = 0  ±(e -^ -£ )  

we have d&/dp =  1, while the point ( 0 9^ £ )  itself is a 
singular point of the differential equation.

Each solution curve crosses the segment 0f
the line cr—p / z — JL with slope d s '/d p  =  [ j +  p ( 2 £~/°j] >//2-, i.e. 
with slope greater than that of the line itself. Thus every 
solution curve starting on the p>-axis with p > z £ >  when 
followed back to the left, therefore, can not cross the above 
segment of the line <r= y  but neither can it cross the 
boundary line s r~ -J ! (p> 0 ), since this is itself a solution 
curve. Hence necessarily any solution curve with initial 
values 6"— ^ <, p^f^, > x £  must pass through the singular point 
( O , - £ ) • In particular this applies when Y = - 7 / ^  ■» 

since -follows from the numerical results in § 2i.
To study the nature of the solution curves in the neigh­

borhood of the singular point, we observe that for the slopes 
of the solution curves on a parabola cr-/v/= we
have, for sufficiently small p  >  O ^

Thus, sufficiently near the singular point, for every solu­
tion curve cr =■ &( p ) which meets the parabola, we must have 
since the slope of the parabola is 2  p  ,
that 0  <  <3* (p ) - t£  < & p 2'<> i.e. s  (p) =■ 0 (p 3') *

For the particular solution G'-=6 ' {p) ,  6 r (Q )= 0 , in which 
we are interested, the solution curve starts at the singular 
point and rises monotonely as p) increases from 0  t o ^  •
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Thereafter 6 ' { p ) > 0  and
(2.8) 0  <  d < r/J tp  g  (<r + £ )/£ , , ( f y < f > £ / ) .

Hence the solution curve must cross the line p ~  1 for some 
finite 6" and continue rising until it crosses the vertical 
isocline; after which J < r/J p  becomes negative, so the value 
of p for which this occurs is a maximum /Fig. 2 aJ • Thereafter 
as p  decreases, <r increases indefinitely.

To follow the solution curve further we return to (1.7) • 
Denoting the value of er for which the maximum p  occurs by , 
one has for <5" that p  decreases monotonically to /0 *£ / ,
[see Pig. 2b, in which the vertical isocline of Pig.2a is now 
the zero isoclinej , since ̂ >(l+^sr)^>-l for I f  this were
not true there would be a first value & > for which 
p = ( l+ J /e : but at such a point Hence p  ̂
in the neighborhood to the left of contradicting the 
assumption that & is the first value after s^for which p ~

Thus p(&)~> / 9 monotone decreasing for O’> 6̂ *, must approach
a limit p ̂  1, as o' tends to infinity. This limit must be 
unity since p % ^  1+^, ( ̂  >0 )implies p ' ~  l-6-(l+^)/(6-+̂ ) , 
which in turn implies for any number 0 f *  < V , that 
there is a value of o' beyond which p '^ k — p t , andp  would 
thus eventually become less than one, contrary to our previous 
statement•

We now return to the discussion of the function 
determined by (2.5). Prom (1.8), since p > 0  for O' > - £ , the 
function is monotone increasing. Moreover since we have



F / G .



9
seen above that & + £ = 0 {^ ) as 0  , it follows
that jT l = as e-> —  J  . Consequently the
integral converges as <r" —>—  s t • Thus (<r)
approaches a finite positive number^ as<T-»-^ and the graph
of ?£ = ?£(©') is shown in Fig. 3, with
(2.9) ?€ >  ?€* 4-X# &

holding for & > 0 *
iii The Functionary). We take C -j^Ln (1.6) and observe 
that is a monotone increasing function of e- which tends
to a finite limit p S  0 as and to a finite limit ̂ > 0
as G*— >+<2? in view of (2.9). The graph of the function p(y) 
is shown in Fig. 4 under the assumption that p >0, whether 
this is actually true or whether one of the other possibilities 
p ^ 0  actually occurs is a question which our considerations 
leave unsettled.

The graph of the equation of state p-p(̂ >) itself is 
found by regarding the functions =̂Y>(<f) and p = p(<r) as defin­
ing p-p(^>) parametrically. If we compare the graphs of these 
functions in Fig. 2b and Fig. 4, it is easy to see that the 
graph of p=p(^o) takes roughly the form shown in Fig. 5.

* Integrating both sides of
(1.3) with respect to ^ one has
(3.1) J<P + z M j  =  K(e) + 0 ?  ■>

where (s ) is an arbitrary function. Now if we seek solutions 
of the form (1.9) we £ind on substituting in (3.1)

^ ~     r  ...
d^/d^0 evaluated at ̂ >=^is negative for the universal fit only
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10
that the Identity 
(3.s) z:yr'+ * & % ' -  k - % z ^c>  

must hold. This identity has the form
(3.3) Z 1 :I F; M  Gt M  =  0

where P, = Z, F*=<rZ, F, =  K, F*=-l; Q,= HT/, W,', Gy=-1, Oy=l£A 
For an identity of this form to hold for the manifolds 

M: P.=F; ( e ) , Hr (1 =  1 , 2 ,3,4),
it is, according to a lemma of Martin [ 1 2 ]  ,necessary and
sufficient that N^T^, where are linear
orthogonal subspaces defined by
/£».: 2-1, b to fc -0 ,  k =  I, •”>"* >Tm‘- Z Z , ai * G« -  01 = 1,
the matrices k =  , J B / | h a v i n g  ranks m,n respectively.
The linear subspaces xS**. > 7 ,̂ are orthogonal if and only
if the composite matrix C formed by taking the m rows of A
followed by the n rows of has the following property. The
m-rowed minors in A are all proportional to their complimentary
minors in B, the indices of the columns of A followed by theIMA> |/WV

indices of the columns of J3 forming an even permutation of 
1,2,3,4 .

Applying the lemma to (3.2) the conditions on M,N are
(3.4) Wi 21 4 bkiO'zl 4 bksK~~ —  0  } /<=/,•♦. ,/>**,

«-i/ ^o' +  • % ' -  •# O - i^ -  t = / , • • • ,  /H- ..
How we notice that although (3*2) is of the form (3.3), we
actually do not have four independent functions of <r and four
independent functions of , but only two independent
functions ( Z  ,K) of 6’'and two independent functions (1^,1^)
of . Thus one sees from (3.4) for m = 4, n — 0, and m = 0,
n=4, that the relations are inconsistent.



11
For the case m — 3, n = l, the first set of equations (3.4) 

consists of three non-homogeneous linear equations for the 
three functions Z  , <?Z , K. Hence Z , <rZ , and K must be con­
stant. This can occur only if Z  = 0 m But then the identity (3*2) 
becomes K+ 0  • Thus one must have =  real const.,
K =• —  ctx» Whence $(<*", ̂) becomes & =  !£>(&) — 

with Uf0 ( ) an arbitrary function. This solution is seen to
correspond to ^=/( £ + c,e*), the solution of (1.1) for K=-o,% 
which is indeed the most general solution with constant K for 
which the const, curves are straight lines in the (3 9<?) 

-plane. They are seen to be a family of parallel straight lines.
Next we consider the case m = 1, n=3, which gives.three 

non-homo geneous linear equations for the three functions 
which must therefore be constant; and indeed == O .
Writing HTa =  Ce  ̂ 'yf, -  C, , one then has

& -  c.c (V -yS) +  c,cr, c - o ^ O
or alternatively,
(3.5) (p- ~  A O - l - b c  , a, b =const.
But for this case the identity (3.2) reduces to

K-c,1 =  0  .
Thus the function K( <s) is arbitrary, confirming the obvious 
fact that (1.1) always has a linear function for solution. As 
in the previous case the streamlines in the (s', p ) -plane con­
stitute a family of parallel straight lines. It is to be ob­
served that (3.5) is combined radial and circular flow des­
cribed, for example, in Cour ant-Friedrichs ^4, p.253^ .



In the remaining case m =  2, n=2, (3*4) may be written 
( 3 * 6 )  ^  =  CLtz —  (fa,, ■/■ bu 0~)^ ~h b/3 f4C —  t),t/

avYj + a*3-a^Xx (k,+k^)l + b±sk~h,, ,

Introducing the minors

&-IZZI ’ 6«=
and solving (3*6) one obtains

(3.7) =  , Z  =  B n  ( B „  +  ELs 'tT '

B „ % ' =  B n - B > 3 r , X K  = * ($ „  + & ,  J ( B n  + E L , * T ' ,
where the A^ ‘s in the first two equalities have been eliminated 
by virtue of the relations

. /̂ /jL — —An_ iy_ __ /4̂ 3   Ayz A m
B>3H fits Bm  B/3 Biz

If B^=^tO the first two equations determine , V f^ ) • the
case 3^ —  0 may be disregarded since it implies Bn — B^— 'Q =s.

°> which together with B(Z ^  0 imply b/3 -b^, — b^=rb^=0,
whereupon the second set of equations in (3*6) reduces to
(bj; +ba e-)^-0, (bA/ +bA2<r)if-0, to imply2^.0, which has been
treated under the case m~3, n = l above* We observe, therefore,
that the following theorem has been proved.

THEOREM The only flows in the physical plane for which
the streamlines in the modified hodograph plane constitute a
one-parameter family of non-parallel straight lines are those
for which the function K(g) in Chaplygin* s equation K(j&) fa  + O

is a bilinear function
u —  * ■ * + ! - .  .

^  C6~+d
The special case K(®') = <5', Tricomi* s equation, included in

this theorem has been discussed^ In [13J •

7
One obtains the solution noted by Falkovitch [5] namely
0 = ^ V  <5" ̂  > which gives a flow similar to that given by (3.9)See Fig. 8b, for comparison.

b/i b/k 

bz i bzk
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To bring K into the form (2*4) we set

^  ~ / 5 b -  Bh ~  & > c - = I y ^  ̂  B, 3
so that (1.1) becomes

(3‘8) 1 F ? Z  ^  + K * = o
and equations (3*7) for lfcfc, reduce to

provided we set B3q =  -1. When these equations are inte­
grated to determine % ,  substitution in (1.9) yields 
the solution [See Fig.eJ 
(3*9) 6  =  ^ ¥*) .
4j*^TheJPlow_^in^tl^ For the solution (3.9)
the mapping (1.4) of the ( <r, ^)-plane [Fig. 7j^ upon the 
physical plane reduces to

This transformation carries the horizontal lines const, 
(vertical lines 6"= const.) of the ( , V ) -plane into the
streamlines(isovels) in the physical plane.

One observes that the Jacobian J of the mapping (4.1) 
of the ( 6~ 9 ys) -plane upon the physical plane becomes
(4.2) J =  v * - * '(  < r+^ )~ ‘

which is seen to the positive and finite for all 
Thus no limiting line occurs for any speed q -c q.

8
Notice from (3.9) that the zero isocline ( 0 - 0 )  and the 
line of branch points (0(^-0) are given by e--J( (poot^ -1), 
and =  -^sinx^ respectively.

(4.1)
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For f - Q  one finds from (3.9) t h a t ^ O  and from (4.2) that

associates to each value of e- a single value 7̂  • Since 
implies >  0 , it is clear that implies & *->-oo .
On the other hand forcr>0 from (2.9), it is clear that 
implies # In short as <r increases from —  £  ,the corre­
sponding value of Z' increases monotonely from -^to + oo . More­
over since q, p ,p are each known functions of the value for 
each of these quantities is assigned to each point of the x-axis.

AnclueTt to the nature of the streamlines follows by con-
. t 0)rsidering their inclination £=£(<r) from (3.9infixed • To fix

the ideas take p'positive and less than 7T /z ( I t is clear that 
the flow is symmetric about the x-axis since 6 is an odd func­
tion of for every ©*.). Each streamline crosses the sonic line 
(6-=£>) with the positive inclination ^(tan^-^) and as s'increases 
from -./to + 00 , the inclination £ increases linearly with 
from to +oo •

For a more accurate description of the streamlines, we
consider their curvature. From (4.1) one has
(4.3) s =

where s denotes the arc length of a streamline measured from 
the sonic line, and also

i &  -  *± d L  ( P -  
lO T  p w .z '

Referring to Fig.2b, it is clear from the properties ofp (s) 

that there is exactly one value s', such that
p(e-) =  cr-l-J as6 -  = ■  .
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consequently as g  ranges from -^to + CO , the curvature 
increases monotonely from zero to a maximum on the isovel 
& —  &i and thereafter decreases monotonely as + <2? •
Thus regarding each streamline as consisting of two arcs 
6* > 6] , <y < 6), one has [e.g.8, Cor.2.5.2^ that each arc is 
simple (i.e. does not cross itself). Again according to 
Jackson [9, Theor.3.2j the arc 6‘ >&i is an outwinding spiral, 
whose distance from the origin in any direction is unbounded 
provided its curvature is strictly monotone decreasing to zero 
(by virtue of (2.6) ), and the rate of change of radius of 
curvature with respect to inclination eventually exceeds a 
positive constant. Actually the rate of change of the radius 
curvature with respect to inclination equals

and this obviously becomes infinite, from (2.6)^ as 
The arc g < g, however, as * -/5has monotone decreasing 
curvature and as the inclination decreases to #-=■ - as 

can clearly wind outward at most through finitely 
many turns and then approaches the opposite limiting 
inclination, (whether it approaches a linear asymptote is not 
decided by these simple considerations)•

Let us now go on to the detailed discussion of the isovels. 
Prom (4.1) one has for the element of arc, $ , inclination, p? , 
and curvature, :_______

(4.4) +
9C^ j'p p/( p & - p + j) p -/■ .

Notice for the inclination <f> , if we introduce



16
(4.5) cotjS = p  tanV ,
that <^=0 + ̂  and hence (2 is the angle between the streamline 
and the isovel through any point. Inserting ^ = 0  in (4.4) one

streamline (I.e. the x-axis). Now /3 is monotone in P and 
decreases to zero as W -* n /z > while from (3.9) one sees that 6 

increases monotonely to infinity for sufficiently large ^ • 
Moreover, for sufficiently large p , 9C is seen from (4.4) to 
increase monotonely to infinity. Hence from a sufficiently 
large value of on, the isovels according to Jackson £9, 
Theorem 6.lJ are seen to be inwinding spirals, which wind in 
to a limit point as </■>-* • One finds Just as in the Tricomi
case [13J and the case considered by Tierney [lsj that every 
isovel winds in to the same limit point, 2rr/a . This Is an 
Immediate consequence of the formula

Here is the point on the sonic line corresponding to A in 
Fig. 7, and the formula arises by evaluating the line integral
(4.1) along the OAP. If we set =  «■, =■ const, and let p

increase, 2 traces out an isovel and

by Riemann1 s lemma.
Referring to the curvature formula (4.4)one sees that 

the initial curvature (^— 0) of the isovels is p (& -£>)/?& .

has <p=p~77/2,'* thus every isovel is perpendicular to the 0

L  6

It is clear from the properties of p(<r) 

there is exactly one value >07 such that
that
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Thus all the Isovels ^<6^ are concave toward the subsonic flow 
(including the sonic line s^O), and convex toward the sub­
sonic flow for <5“ > •

Finally one observes that the inclination ^  will be an 
extremum for the values of V for which %  vanishes, hence 
for at most two values of f  * The isovels 6; ,
for which p  initially decreases, must have at least one min­
imum of inclination in order for f  to eventually increase to 
infinity, hence this minimum must be the only extremum. For 
an isovel whose inclination first increases, we observe
that if the form for %  is positive definite, <p must increase 
monotonely to infinity. Clearly and (v-p) are positive*
To show «■+/) > 0  for , and hence that %  is
positive definite in ^ , it is sufficient to show that % > 1  
and ̂ ( ^ ) > 1 *  Referring to (2.8) one sees that Gr(p>) ^  l l ( p )  

where l ^ - U ( p )  is defined by

has U (  /) =  0.8265 < 1. Hence 6(1)^ 1. Thus in Fig. 2b, the line 
p -  $ must meet the curve p ~ p (e ) at a point for which p > \ $  i*e* 
p( 6i) >1. But this implies also that <5̂  >  1. Thus the isovels 
>5^ have no inflections. The features established by these 

results are shown in Fig. 8a, in which the flow is shown out 
to an arbitrary bounding streamline P *  7}/2, ,

M l   U -hM
d(> ~  *  ’

which has the solution

From this formula using the values =  0*6339, */= 0*2513, one



F I G .



super
s o m e

F I G .
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