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Air Navigation Service Providers (ANSP) worldwide have been making a considerable ef-

fort for the development of a better method for planning optimal airspace capacity, efficiency, and

safety. These goals require separation and sequencing of aircraft before they depart. Prior ap-

proaches have tactically achieved these goals to some extent. However, dealing with increasingly

congested airspace and new environmental factors with high levels of uncertainty still remains the

challenge when deterministic approach is used. Hence due to the nature of uncertainties, we take

a stochastic approach and propose a suite of analytics models for (1) Flight Time Prediction, (2)

Aircraft Trajectory Clustering, (3) Aircraft Trajectory Prediction, and (4) Aircraft Conflict Detec-

tion and Resolution long before aircraft depart. The suite of data-driven models runs on a scalable

Data Management System that continuously processes streaming massive flight data to achieve

the strategic airspace planning for optimal capacity, efficiency, and safety.

(1) Flight Time Prediction. Unlike other systems that collect and use features only for the

arrival airport to build a data-driven model for predicting flight times, we use a richer set of features

along the potential route, such as weather parameters and air traffic data in addition to those that

are particular to the arrival airport. Our feature engineering process generates an extensive set

of multidimensional time series data which goes through Time Series Clustering with Dynamic



Time Warping (DTW) to generate a single set of representative features at each time instance. The

features are fed into various regression and deep learning models and the best performing models

with most accurate ETA predictions are selected. Evaluations on extensive set of real trajectory,

weather, and airport data in Europe verify our prediction system generates more accurate ETAs

with far less variance than those of European ANSP, EUROCONTROLs. This translates to more

accurately predicted flight arrival times, enabling airlines to make more cost-effective ground

resource allocation and ANSPs to make more efficient flight scheduling.

(2) Aircraft Trajectory Clustering. The novel divide-cluster-merge; DICLERGE system

clusters aircraft trajectories by dividing them into the three standard major flight phases: climb,

en-route, and descent. Trajectory segments in each phase are clustered in isolation, then merged

together. Our unique approach also discovers a representative trajectory, the model for the entire

trajectory set.

(3) Aircraft Trajectory Prediction. Our approach considers airspace as a 3D grid network,

where each grid point is a location of a weather observation. We hypothetically build cubes around

these grid points, so the entire airspace can be considered as a set of cubes. Each cube is defined by

its centroid, the original grid point, and associated weather parameters that remain homogeneous

within the cube during a period of time. Then, we align raw trajectories to a set of cube centroids

which are basically fixed 3D positions independent of trajectory data. This creates a new form

of trajectories which are 4D joint cubes, where each cube is a segment that is associated with

not only spatio-temporal attributes but also with weather parameters. Next, we exploit machine

learning techniques to train inference models from historical data and apply a stochastic model,

a Hidden Markov Model (HMM), to predict trajectories taking environmental uncertainties into

account. During the process, we apply time series clustering to generate input observations from

an excessive set of weather parameters to feed into the Viterbi algorithm. The experiments use a



real trajectory dataset with pertaining weather observations and demonstrate the effectiveness of

our approach to the trajectory prediction process for Air Traffic Management.

(4) Aircraft Conflict Detection. We propose a novel data-driven system to address a long-

range aircraft conflict detection and resolution (CDR) problem. Given a set of predicted trajecto-

ries, the system declares a conflict when a protected zone of an aircraft on its trajectory is infringed

upon by another aircraft. The system resolves the conflict by prescribing an alternative solution

that is optimized by perturbing at least one of the trajectories involved in the conflict. To achieve

this, the system learns from descriptive patterns of historical trajectories and pertinent weather

observations and builds a Hidden Markov Model (HMM). Using a variant of the Viterbi algo-

rithm, the system avoids the airspace volume in which the conflict is detected and generates a

new optimal trajectory that is conflict-free. The key concept upon which the system is built is the

assumption that the airspace is nothing more than a horizontally and vertically concatenated set

of spatio-temporal data cubes where each cube is considered as an atomic unit. We evaluate the

system using real trajectory datasets with pertinent weather observations from two continents and

demonstrate its effectiveness for strategic CDR.

Overall, in this thesis, we develop a suite of analytics models and algorithms to accurately

identify current patterns in the massive flight data and use these patterns to predict future behaviors

in the airspace. Upon prediction of a non-ideal outcome, we prescribe a solution to plan airspace

for optimal capacity, efficiency, and safety.
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Chapter 1

Introduction

1.1 Motivation

Civil aviation underwent a considerable growth over the past years and it is agreed that

it will have a continuously increasing trend of growth for the next years. It is estimated that

by 2040 the U.S. alone can expect an increase of more than 68% in commercial air traffic [1].

Inclusion of massive number of unmanned aircraft in the U.S. airspace system, commonly referred

to as National Airspace System (NAS) within the next decade is also unsurprising. One of the

key activities of the Federal Aviation Administration (FAA), the Air Navigation Service Provider

(ANSP) in the U.S. is to measure and monitor resources in the NAS. The NAS including airports

and associated terminal areas is a complex system and require a number of metrics to properly

characterize performance. Although the prior research offered different metrics to quantify and

measure performance of the NAS, they all agreed that flow efficiency, runway utilization, and

rate of cancelled or diverted flights are major factors of measuring the performance of the NAS

[2, 3]. Hence, delays, diversions, and cancellations are solid indicators of efficiency and capacity

issues in the NAS [4]. The FAA’s Office of Performance Analysis estimates show in 2017, the



cost of delayed flights increased by 11.3%, from $23.9 to $26.6 billion. Most of this increase

was due to inefficiency in the NAS, resulting in the sum of costs to airlines, passengers, lost

demand, and direct costs. Between 2012 and 2017, the cost of flight delays increased from $19.2

to $26.6 billion, an increase of $7.2 billion. Increases in the number of diversions can also indicate

capacity issues at the airports due to weather, construction, or volume. In 2017, flight departure

cancellations at core 30 airports in the U.S. increased 16.9%. Cancellations may be due to weather,

system delays, equipment issues, or other reasons. All these factors are likely to cause both safety

and performance degradation [5]. The increasing demand for commercial aviation coupled with

factors degrading the performance of the NAS make the overarching goals of ANSPs, which are

increasing capacity and improving efficiency of airspace while maintaining safety, hard to achieve.

To address these challenges, new technologies and procedures for next generation ATM are

being developed in the context of the Next Generation Air Transportation System (NextGen) [6]

in the USA and the Single European Sky ATM Research [7] in Europe. The NextGen and SESAR

require the expansion of Air Traffic Control (ATC) services together with the implementation of

advanced Air Traffic Management (ATM) concepts such as dynamic resectorization, free rout-

ing, enhanced ground delay program, and airspace redesign, all with the goal of improving the

efficiency of the NAS [8–11]. Moreover, they require a paradigm shift from a highly structured

and fragmented system that is heavily reliant on tactical decision making and with few strategic

planning functions based on uncertain information, to an integrated one based on collaborative

strategic management of trajectories and information sharing [12].

In the future ATM systems being implemented under NextGen and SESAR, the trajectory

becomes the fundamental element of new sets of operating procedures collectively referred to as

Trajectory-Based Operations (TBO). The underlying idea behind TBO is the concept of business

trajectory which is the trajectory that will best meet airline business interests rather than be simple
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Fig. 1.1: Standard accepted flight phases.

to procedurally control. The TBO concept of operations and the notion of a business trajectory,

will result in increased overall predictability of air traffic, reduced costs and emissions due to low-

ered fuel consumption and/or time, and increased capacities. Thus, the future ATM system should

offer flexibility to accommodate business trajectories, while bearing the primary goal of safety

and efficiency in mind. Overall, the NextGen and SESAR are expected to enable higher degrees

of automation and predictability yielding a reduction in the air traffic controllers’ workload.

1.2 Background

A major component of the NAS is the ATC system which is made up of a vast network of

radars, dependent surveillance receivers, and air traffic control facilities. It is through the ATC

system that ANSPs provide services such as takeoffs and landings, and managing the flow of air

traffic between airports. Other components of the NAS include airports or landing areas, rules, reg-

ulations, procedures, and technical information such as aeronautical charts. A flight goes through

five major phases during its lifetime; takeoff, climb, en-route, descent, and landing. Three of

these are wheels-up phases, climb, en-route, and descent which are considered to contribute more

significantly to airspace efficiency. Figure 1.1 shows phases of an entire flight.
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ANSPs usually use three types of facilities to control air traffic. Airport towers direct air-

craft on the ground, before landing, and after takeoff when they are about 5 nautical miles from the

airport and up to about 3,000 feet above the airport. Terminal radar approach control (TRACON)

facilities sequence and separate aircraft as they approach and leave busy airports, beginning about

5 nautical miles and generally out to no more than 50 nautical miles from the airport and up to

10,000 feet above the ground. Air route traffic control centers (ARTCC), called en-route centers,

control aircraft in transit and during approaches to some airports. Most of the en-route centers’

controlled airspace extends from 18,000 feet to 60,000 feet. En-route centers also handle lower

altitudes when dealing directly with a TRACON or tower, or when agreed upon with a terminal

facility.

The term ”aircraft movements” is used to describe services, such as arrival and departure

control, that the FAA provides to aircraft in the tower, terminal, and en-route airspace. Accord-

ing to FAA, en-route services are considerably more expensive to provide than other air traffic

services. The NAS is composed of 517 airport towers, 155 Terminal Radar Control (TRACON)

facilities, and 25 Control Centers. TRACONs handle descending flights received from a Center or

ascending flights received from an ATC tower. Centers receive flights from or hand off flights to

other Centers throughout the flights en-route phase of operation. They also receive flights or hand

off flights to TRACONs when flights enter or exit the en-route phase of operation.

While the goals of ATC are the safe and efficient management of aircraft, the overarch-

ing goals of Air Navigation Service Providers (ANSP) are to provide optimal airspace capacity

and efficiency. These goals require the separation and sequencing of airborne aircraft, which are

achieved through air traffic clearances. Clearances are issued by ATC for aircraft to proceed under

specified traffic conditions within a controlled airspace for the purpose of preventing collision.

ATC also provides tactical vectoring for aircraft using surveillance to separate them when this is
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not provided by their clearances so that safety, security, and efficiency can be maintained. Al-

though these goals are achieved through clearances today, NextGen and SESAR require a shift

from clearance and vectoring-based to trajectory-based ATC operations.

Trajectory Based Operations (TBO) are intended to provide the capabilities, decision-support

tools, and automation to manage aircraft movement by trajectory. It will enable aircraft to fly ne-

gotiated flight paths that are efficient for the aircraft while flying trajectories to high level of accu-

racy based on Performance Based Navigation (PBN), taking both operator preferences and optimal

airspace system performance into consideration. TBO is a cornerstone of NextGen and SESAR;

it is a major operational transformation for aviation, basing safe separation on known trajectories

with higher levels of automation that assesses not only the current aircraft positions, but also their

future positions in time and space. TBO is an air traffic management system concept with ini-

tial operational capability expected in 2025, that manages aircraft through their Four-Dimensional

Trajectory (4DT), gate to gate, both strategically and tactically to control surface and airborne

operations. A 4DT includes a series of points from departure to arrival representing the aircraft’s

path in four dimensions: lateral (latitude and longitude), vertical (altitude), and time. 4DTs will be

used for planning, sequencing, spacing, and separation based on the aircraft’s current and future

positions. Hence, separation duties will be performed by a combination of airborne and Ground

Based Automation (GBA). These functions integrate the traditional functions of navigation which

is to define a path and create a path guidance, with flight control, which is to steer the aircraft

to that path. With these functions, NextGen and SESAR will be enabled to perform tactical and

strategic tasks such as conformance monitoring, trajectory negotiation, and trajectory planning.

Safety is typically quantified by the number of conflicts, i.e., situations where two aircraft

come closer than a certain distance to one another. Accurate conflict detection depends upon ac-

curate trajectory prediction that is a vital process for ATC, as the more accurate and reliable the
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predicted trajectories the more accurate the conflict detection, thereby the more safe and efficient

is the deconfliction of these flights. Deconfliction can be achieved by periodically checking pre-

dicted trajectories against each other to detect any conflicts between them and then taking conflict

resolution action, or, by comparing newly predicted trajectories against previously deconflicted

trajectories. An aircraft following an agreed trajectory can then be assured a conflict-free and

unperturbed flight. In order for ATC to attain this goal, the trajectory prediction tools should be

able to provide high levels of accuracy for an adequate horizon of time. Air traffic density, i.e., a

count of aircraft in a particular airspace sector and air traffic complexity, i.e., a count of aircraft

predicted to be in conflict with another are two major factors defining the metric of air traffic

controller workload [13]. Hence, the most optimal airspace density and complexity, the more

automation and thereby the less air traffic controller workload.

1.3 Overview and Contributions

The goal of this dissertation is to enable ANSPs, airlines and other stakeholders involved in

ATM to strategically improve capacity, efficiency, and safety of airspace by

1. detecting descriptive patterns in the behavior of aircraft through their massive amounts of

historical trajectories, and

2. leveraging these learned insights to develop efficient computational models for predicting

flight times, 4D trajectories, and their potential conflicts. These insights can also be used

toward prescribing optimal resolutions when conflicts occur.

Hence, we study the characteristics of aircraft trajectories and develop several data-driven

models in support of strategic airspace planning. Now, we briefly describe each problem and

provide a list of our contributions in each problem space.
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1.3.1 Aviation Big Data Management (Chapter 2)

In 1992 the Federal Aviation Administration (FAA) started a program to provide flight plan

and track information from the NAS to airlines and other organizations in real-time or near real-

time depending on the need. The feed, called Aircraft Situation Display to Industry (ASDI), is

a product of the Enhanced Traffic Management System (ETMS). The feed originates from the

Traffic Flow Management (TFM) Production Center located at the William J. Hughes Technical

Center (WJHTC) in Atlantic City, New Jersey. The FAA distributes the ASDI data stream to a tier

of vendors who in turn distribute it to their clients [14]. As a subscriber to the ASDI streaming

data feed, we have been processing 7.5 million main and 26.5 million supporting messages daily.

If one assumes that this is typical for a given day, only a single year of data amounts to over

10 billion messages. The data set is big and stored as compressed XML messages. Clearly, for

any analytics to be useful over this dataset a data management solution is required. Hence, we

implemented an efficient data management solution, which is the underlying infrastructure for our

descriptive, predictive, and prescriptive analytics solutions presented in this thesis.

1.3.2 Flight Time Prediction (Chapter 3)

Accurate prediction of Estimated Time of Arrival (ETA) for a flight is a key component of

collaborative decision making (CDM), a process that attempts to keep the costs under control along

with improvement in capacity, efficiency and safety of airspace. ETA is formulated as departure

time plus flight time and is a crucial input to the aircraft trajectory prediction. Given a set of

historical flights with their attributes such as flight number, trajectory, departure and arrival airport,

actual departure and arrival date and time, airline name, aircraft type, and associated weather and

air traffic parameters, we want to predict the ETA for the current flight before it departs.

Our approach to the ETA prediction is unique as 1) our system predicts ETA for runway
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arrival times. 2) Our system predicts ETA before departure, when the flight trajectory is still

unknown. In fact, our prediction system doesn’t make use of costly flight plans, offering a more

cost-effective solution. Hence, our approach addresses the ETA prediction problem strategically

over a time horizon of several hours. 3) For our model, we collect and use a richer set of features

not only for the arrival airport but also for the airspace along the potential route.

Our experiments on real trajectory, weather, air traffic and airport data verify that our system

outperforms European ANSP, EUROCONTROL’s ETA prediction by offering not only a higher

accuracy but also a far smaller variance, resulting in smaller prediction windows of flight arrival

times.

1.3.3 Trajectory Clustering (Chapter 4)

Whether descriptive, predictive or prescriptive, most analytics approaches pertaining to air-

craft trajectory data require clustering to group similar trajectories and discovering a representative

trajectory for all as a single entity. During the process, considering a trajectory as a whole may

mislead, resulting in overfitting and a failure to discover a representative trajectory. Hence, given

a set of aircraft trajectories, we want to compute clustering to come up with a single trajectory that

represents the massive trajectory dataset.

Our unique approach enables accurately clustering of three or more dimensional aircraft

trajectories by employing a divide-cluster-merge framework. The framework divides trajectories

based on a well-known aviation domain fact: each flight is made up of three major phases: climb,

en-route, and descent. Hence, it clusters each phase in isolation, then merges them together. We

also present a representative trajectory algorithm that reveals the trajectory model based on lateral

and vertical smoothing.

Our experiments use a real aircraft trajectory dataset and show that our framework effec-
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tively performs clustering and discovers the representative trajectory.

1.3.4 Time Series Clustering (Chapter 5)

To predict aircraft trajectories Hidden Markov Model (HMM) requires a set of input obser-

vations, which are unknown, although the weather parameters overall are known for the pertinent

airspace. Hence, given an extensive set of weather parameters for the overall airspace volume of

interest, we want to compute a time series of weather observations representing only the relevant

sections of the airspace. To achieve this, we perform time series clustering on the current weather

observations and generate one cluster centroid for each time instance along the potential path.

Previous research used standard clustering techniques to generate clusters that are largely

independent of the time series from which they originate. Our unique approach generates an

optimal sequence of weather observations used for accurate trajectory prediction in the climb

phase of the flight. Our algorithm computes a cost value for each weather observation based

on its frequency for each time instance, ranks, and stores them in a matrix. Using Dynamic

Programming (DP), the algorithm computes the optimal sequence of weather observations, a set

with the minimum cumulative cost that satisfies the continuity constraint.

Our experiments use a real trajectory dataset with pertinent weather observations and demon-

strate the effectiveness of our algorithm over time series clustering with a k-Nearest Neighbors

(k-NN) algorithm that uses Dynamic Time Warping (DTW) Euclidean distance.

1.3.5 Aircraft Trajectory Prediction (Chapter 6)

At the heart of ATM lies the Decision Support Tools (DST) that rely upon accurate trajec-

tory prediction to determine how the airspace will look like in the future to make better decisions

and advisories. Dealing with airspace that is prone to congestion due to environmental factors still
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remains the challenge especially when a deterministic approach is used in the trajectory predic-

tion process. Given a set of historical trajectories, aircraft types, aircraft performance models, and

weather parameters along with the current flight’s aircraft type, aircraft performance model, and

weather parameters, we want to predict its trajectory.

Our approach considers airspace as a 3D grid network, where each grid point is a location

of a weather observation. We hypothetically build cubes around these grid points, so the entire

airspace can be considered as a set of cubes. Each cube is defined by its centroid, the original grid

point, and associated weather parameters that remain homogeneous within the cube during a pe-

riod of time. Then, we align raw trajectories to a set of cube centroids which are basically fixed 3D

positions independent of trajectory data. This creates a new form of trajectories which are 4D joint

cubes, where each cube is a segment that is associated with not only spatio-temporal attributes but

also with weather parameters. Next, we exploit machine learning techniques to train inference

models from historical data and apply a stochastic model, a Hidden Markov Model (HMM), to

predict trajectories taking environmental uncertainties into account. During the process, we lever-

age our time series clustering algorithm to generate input observations from an excessive set of

weather parameters to feed into the Viterbi algorithm. Our novel stochastic trajectory prediction

approach can be used for more efficient and realistic flight planning and to assist airspace flow

management, potentially resulting in higher safety, capacity, and efficiency commensurate with

fuel savings thereby reducing emissions for a better environment.

1.3.6 Long-Range Conflict Detection and Resolution (Chapter 7)

At the present time, there is no mechanism for ANSPs to probe new flight plans filed by

the Airlines Operation Centers (AOCs) against the existing approved flight plans to see if they are

likely to cause conflicts or bring sector traffic densities beyond control. In the current Air Traffic
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Control (ATC) operations, aircraft conflicts and sector traffic densities are resolved tactically by

controllers using open ended vectoring, increasing workload and leading to potential safety risks

and loss of capacity and efficiency. Given a set of predicted trajectories along with their pertinent

weather observations, we want to detect and resolve conflicts among them in a scalable manner,

i.e. perform conflict detection and resolution not only between two aircraft but also among two or

more aircraft before they depart.

Our data-driven approach proposes two major capabilities; i) conflict detection, and ii)

conflict resolution before the flight depart. In the conflict detection stage, our system declares a

conflict when a Protected Zone (PZ) of an aircraft on its predicted trajectory is infringed upon

by another aircraft at the same time interval in the future. In the conflict resolution stage, upon a

conflict, the framework executes our conflict resolution algorithm that is derived from the Viterbi

algorithm and prescribes a solution that resolves the conflict by perturbing at least one of the 4D

trajectories.

Our experiments on real trajectory and weather datasets from two continents verify that our

framework achieves lateral and vertical accuracies that are within the boundaries of conventionally

accepted minimum separation values, set by the ANSPs. This would provide ANSPs the capability

to detect and resolve potential conflicts long before the aircraft depart, reducing the air traffic

controller workload, while increasing efficiency and capacity, and resulting in greener and safer

skies.

1.4 Overarching Thesis Statement

The following statement summarizes the thesis aptly: Dealing with airspace prone to un-

certainties still remains a challenge especially when a deterministic approach is used to predict its

future behavior. Hence, we stochastically approach the problem and propose a suite of efficient
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computational models to detect descriptive patterns in historical air traffic data and use them to

predict the future behavior within the airspace. Overall this suite of capabilities can be delivered

in the planning phase before the aircraft depart, resulting in improvement in the four ATM key

performance areas; safety, capacity, efficiency, and environmental impact, and thereby improving

ATM automation and reducing the air traffic controller workload.

1.5 Thesis Organization

The thesis is split into five major parts. Part 1 of the thesis introduces the problem space,

motivates it, and provides the background information. Overview and our contributions are also

included in this part. Part 2 of the thesis lays out the aviation big data management system that

is the underlying infrastructure for the descriptive, predictive, and prescriptive analytics systems

presented in the following chapters. Part 3 is divided into three chapters: Chapter 3 presents

the analytics system that predicts flight time which is used as an input to the aircraft trajectory

prediction system. Chapter 4 presents a novel clustering algorithm to group similar trajectories

and discover a representative trajectory for all as a single entity. Chapter 5 discusses an efficient

time series clustering algorithm which improves the efficacy of the trajectory prediction system.

Part 4 is divided into two chapters: Chapter 6 discusses probabilistic aircraft trajectory prediction

system and Chapter 7 delves into long-range aircraft conflict detection and resolution system.

Finally, Part 5 concludes the thesis. Each chapter lists the existing literature that is most relevant.
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Chapter 2

Aviation Big Data Management

In this chapter, we describe a novel data management system that enables query processing

and predictive analytics over streams of aviation big data. Our system makes predictions based

upon descriptive patterns of archived aviation data. We have been receiving live Aircraft Situation

Display to Industry (ASDI) data and archiving it for a few years. At the present time, there is not an

easy mechanism to perform analytics on the data. The incoming ASDI data is large, compressed,

and requires correlation with other flight data before it can be analyzed.

The service exposes this data once it has been uncompressed, correlated, and stored in a

data warehouse for further analysis using a variety of descriptive, predictive, and possibly pre-

scriptive analytics tools. The service utilizes a custom tool for correlating the raw ASDI feed,

IBM Warehouse with DB2 for data management, WebSphere Message Broker for real-time mes-

sage brokering, SPSS Modeler for statistical analysis, and Cognos BI for front-end business intel-

ligence (BI) visualization. This chapter describes a scalable service architecture, implementation

and the value it adds to the aviation domain.



2.1 Introduction

There is an interest in large scale data analytics in the aviation domain for analysis and

prediction of capacity and flow in the US National Airspace System (NAS). This is facilitated

by data analytics systems in addition to availability of massive amounts of surveillance data. To

better make sense of current and historical aviation data, and make predictions using descriptive

behavior, a scalable analytics service is needed.

In 1992 the Federal Aviation Administration (FAA) started a program to provide flight

plan and track information from the NAS to airlines and other organizations in real-time or near

real-time depending on the need. The feed, called ASDI, is a product of the Enhanced Traffic

Management System (ETMS). The feed originates from the Traffic Flow Management (TFM)

Production Center located at the William J. Hughes Technical Center (WJHTC) in Atlantic City,

New Jersey. The FAA distributes the ASDI data stream to a tier of vendors who in turn distribute

it to their clients [15].

We have been archiving ASDI data for over two years. At the present time, there is not an

easy mechanism to perform analytics on the data. The data set is large and stored as compressed

XML messages. Table 1 shows the number of ASDI messages for August 8, 2009. Table 2 shows

the number of supporting records for the main message set. If one assumes that the information in

the tables above is typical for a given day, two years of data amounts to approximately 5.5 billion

messages and 19 billion supporting records. Clearly, for any analytics to be useful over this dataset

a data management solution is required.

In addition to processing previously stored historical ASDI data in flat text files, we also

needed to handle processing of continuous streams of ASDI data in near real-time which would

then enable users to perform analytics operations once the data has been pushed into the data
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Tab. 2.1: ASDI Message Counts for August 8, 2009

Message Type Message Count

Arrival Information 46,000

Boundary Crossing Update 84,000

Departure Information 54,000

Flight Management Information 522,000

Flight Plan Amendment 303,000

Flight Plan Cancellation 121,000

Flight Plan 120,000

Oceanic Report 9,000

Track Information 6,259,000

Total Message Count 7,518,000

warehouse.

In response to these needs, we decided to build a data warehouse that contains summary, his-

torical, and detail data to support tactical and strategic decision making. Data would be extracted

from operational data sources, transformed, cleaned, reconciled, aggregated, and summarized in

preparation for warehouse processing [16].

Our chosen data management system was IBM’s InfoSphere Data Warehouse, as it man-

ages large data sets by offering extended data mining and analytics support. The data warehouse is

implemented by a backend DB2 database [17]. For near real-time ASDI feed consumption, mes-

sage routing, transformation, and publish/subscribe capabilities, we used WebSphere Message

Broker [18] and WebSphere MQ [19]. SPSS Modeler by IBM was our choice for the predictive

data analytics tool that provides data collection, statistics, predictive modeling, and deployment

capabilities [20]. Front-end visualization for business intelligence support was provided by IBM’s

17



Tab. 2.2: ASDI Supporting Record Counts for August 8, 2009

Supporting Record Record Count

Aircraft Specification 558,000

Airways 1,732,000

Centers 1,692,000

Computer Identification 5,551,000

Fixes 6,200,000

Oceanic Planned Position 18,000

Oceanic Reported Position 9,000

Qualified Aircraft Identification 532,000

Route of Flight 721,000

Sectors 1,773,000

Waypoints 7,667,000

Total Record Count 26,413,000
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Cognos BI tool [21].

The rest of this chapter is organized as follows: Section 2.2 presents related work, Section

2.3 explains the process of ASDI correlation, Section 2.4 presents the overall system architecture

including the physical and conceptual modeling of the data warehouse as well as consumption

of the ASDI feed. Section 2.5 discusses some of the data representation and loading issues we

encountered and optimizations we realized. Section 2.6 tackles a basic use-case where we perform

analytics predicting distinct traffic volume within a boundary defined by the user. Section 2.7

concludes the chapter.

2.2 Related Work

Big data means data that cannot be handled and processed in a traditional manner. It will be

so large as to not fit on a single hard drive, as a result, it will be stored on several different disks,

and will be processed on a number of cores [22].

There are a number of articles and books on big data, analytics, data warehousing and

OLAP technology and related research issues. While some of these focus on physical and con-

ceptual design, others target maintenance issues and stream processing. However, to the best of

our knowledge, no work has been done similar to ours in the aviation domain where operational

real-time or near real-time surveillance data is turned into a warehouse enabling critical decision

making and predictive analytics in the literature.

Research matters pertaining to data warehousing and OLAP technology can be found in

various resources [23–27]. A significant amount of research in the database community has been

dedicated to the physical and logical design of data warehouses [28].

With their research, Luján-Mora et al. [29] present a physical model of data warehouses

using component and deployment diagrams of UML.
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In their article, Arumugam et al. [30] describe a purely-push based, research prototype

database system called DataPath, which is a ”data-centric” system. In the DataPath system, all data

production, including system I/O, is undertaken asynchronously, whether a receiving operation is

ready for the data or not.

Li et al. [31] concluded that in-order processing (IOP) systems in high performance stream

processing not only enforce order on input streams, but also require that query operators preserve

order. This order preserving requirement constrains the implementation of stream systems and

incurs significant performance penalties, particularly for memory consumption. They introduced

a new architecture for stream systems, out-of-order processing (OOP), that avoids ordering con-

straints, freeing stream systems from the burden of order maintenance by using explicit stream

progress indicators.

In traditional DBMSs, it was assumed that the DBMS is a passive repository storing a large

collection of data elements and that humans initiate queries and transactions on this repository.

Abadi et al. [32] called this a human-active, DBMS-passive (HADP) model. They called the op-

posite a DBMS-active, human-passive (DAHP) model due to fact that, the role of the DBMS in the

case of monitoring applications is to alert humans when abnormal activity is detected. According

to them, monitoring applications are very difficult to implement in traditional DBMSs. First, the

basic computation model is wrong: DBMSs have a HADP model while monitoring applications

often require a DAHP model.

Borkar et al. [33] discuss the industry trends and compares monolithic parallel SQL database

systems with variations on the Hadoop stack, concluding that the latter is preferable. They also

highlight the fact that open-source stack implementators have forgotten almost everything about

single system performance, focusing solely on scale-out.

In their article, Rusu et al. [34] introduce GLADE, a scalable distributed framework for
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large scale data analytics. The main abstraction at the core of GLADE is Generalized Linear

Aggregates (GLA) that are based on the notion of user-defined aggregates (UDA) which allow

users to extend the functionality of a database system with specialized aggregation operations.

2.3 ASDI Correlation

In this section, we introduce ASDI data and the correlation process.

The purpose of the Correlator is to tag flight plan and track messages from multiple Air Traf-

fic Control (ATC) centers relating to the same flight with a unique identifier called the FLIGHT KEY.

The consumer is free to process updates for each flight without the overhead of deciding which

messages are associated with each flight. This is a powerful benefit because each ASDI message

does not always, in and of itself, provide enough information to identify the flight it is associated

with.

The ASDI data feed is a continuous stream of messages delivered over a TCP/IP network

socket from an upstream ASDI vendor. A data distribution server was created to receive one

stream from Embry-Riddle Aeronautical University (ERAU), record the ASDI data, and make it

available locally.

The ASDI data feed produced by Enhanced Traffic Management System (ETMS) is a

stream of data packets containing Zlib compressed XML documents of ASDI messages with a

binary header. ASDI messages can be flight plan related data, oceanic reports, or Host track

reports.

Each NAS center identifies a flight plan by its own three character alphanumeric Computer

Identification (CID) code. The ASDI stream contains messages for a flight from each center the

flight will pass through, although, flight plan related messages in the ASDI stream do not include

the CID once a flight becomes active. Often a center will create a new flight plan and CID for an
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existing flight, only to cancel one of them shortly thereafter. It is not always clear if the second

flight plan was meant to be an amendment or if it is an additional flight. Sometimes, a message

for an inactive flight may be missing a CID, which adds to the confusion.

Some centers will even change the origin of an international flight to a local facility once it

enters their control. Anchorage Center will often issue a departure message for an arriving active

flight over Canada, even though it departed hours before from the mainland US.

2.3.1 Design

The overall design of the correlator is to identify each unique flight plan that is filed in the

NAS and to examine each ASDI message to deduce which flight a message is associated with.

The centers operate independently of each other to assign their own CID, so the CID alone is not

sufficient to correlate messages from different centers. The ETMS will also assign a unique CID

to regularly scheduled flights before they are filed by a center. This is compounded by fact that

flight plan related messages do not include the CID once a flight becomes active. Excluding the

CID for an active flight should not be a problem since one would not expect more than one flight

in the air with the same flight number, but it happens often. The opposite can also be true where

messages arrive without a CID, but the departure message or updated flight management record

have not arrived for the flight, potentially producing multiple candidates.

New flight plans can be created midflight, hours or even a day before the flight departs.

As the correlator identifies a new unique flight plan it generates a new unique FLIGHT KEY

record and stores a set of key parameters such as the aircraft identifier, flight status, departure

center, aircraft type, destination, etc. that together make the record unique. As new messages

arrive for a flight the parameters are filled in and updated as the flight progresses. The CID does

provide useful information and may directly correlate a message if the CID for a center is already
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stored for a flight plan. In particular the CID can provide an indication of the status of a flight.

2.3.2 Correlation Process for Position-Related Messages

For Host track and oceanic reports, if there is a flight plan with a matching aircraft identifier

and CID, then the message is correlated with that flight plan. Otherwise, a list of all active flights

with a matching aircraft identifier, as well as departure point and destination for oceanic reports,

is compiled. If there is only one matching flight then the message is correlated with that flight. If

there are multiple matching active aircraft identifiers then the flight plan with the closest matching

last known position is correlated.

2.3.3 Correlation Process for Flight Plan-Related Messages

The correlation process for all flight plan related messages is based on key parameters. For

each message a list is generated of all flight plans with matching aircraft identification, departure

point and destination. If the flight plan related message, other than an Flight Management Infor-

mation (RT) message, contains a CID, it should be for a flight that is not active and an attempt

is made to find a match by CID. RT messages are different because they typically always contain

a CID and the flight’s status is indicated by the flight status field in the RT message. All other

messages that do not contain a CID should be for active flights. There should not be more than

one flight active at the same time with the same aircraft identification, however there are some

seen throughout each day. The process is complicated by messages that are partially complete or

contain incorrect data.

Because each center has its own CID, the list of possibilities is further reduced by compar-

ing the departure and arrival times for reasonable matches. Flight plan, amendment and boundary

crossing messages contain a coordination point and time that marks where and when the aircraft
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should be handed off to the facility producing the message. These messages are matched to the

most likely flight in which the coordination time falls within the bounds of the departure and

arrival times, if known. Therefore, each flight record contains one or more tailored flight plans

from one or more centers. Flight plan cancelation messages are matched to each center’s tailored

flight plan. Flights are considered complete when all center flight plans are canceled or an arrival

message is received.

Once a single flight plan record is correlated to the incoming message the FLIGHT KEY

is set. If more than one flight plan record still matches then the incoming message and possible

matches are logged and the FLIGHT KEY is set to UNCORRELATED. If the incoming message

cannot be matched to an existing record then a new record is created for the flight plan and a new

FLIGHT KEY is assigned to it. This process generally works for most of the flight plan related

messages.

2.4 Architecture

In this section, we present the overall system architecture including the physical and con-

ceptual modeling of the data warehouse as well as processing of archived and near real-time ASDI

feed.

Figure 1 illustrates the overall physical structure of the system. A TCP/IP live ASDI stream

is consumed by a message flow deployed on WebSphere Message Broker where messages are

sorted and pushed to related queues based on their message types in WebSphere MQ. Another

message flow deployed on Message Broker pulls from the related queues and populates the tables

in the SURVDB database. Each queue in WebSphere MQ maps to a table in the SURVDB database.

As tables are populated with raw XML messages in the SURVDB database, the XML Shredder,

which is comprised of a set of stored procedures parses out raw messages and puts their content
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Fig. 2.1: Overall System Architecture.

per tag into separate tables in the SURVDB database. Tables are partitioned across the external

hard drives, each 2TB of size. This summarizes the process of near real-time message flow into

the database.

The end user interaction with the system is as follows: The end user is provided with a num-

ber of pre-set models, created and stored in SPSS Modeler, presented on Cognos, and available on

a demilitarized zone (DMZ). The user passes parameters from Cognos to SPSS Modeler through

SPSS Collaboration and Deployment Services. SPSS Modeler connects to the SURVDB database

and pulls the data describing the past behavior. Upon receipt of new parameters, the SPSS Mod-

eler invokes the scoring service to make predictions using descriptive behavior and presents the

results back to the end user on Cognos.
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2.4.1 Physical Modeling

Figure 2.1 illustrates the overall physical structure of the systems where we used total of

three servers.

• Server-1 is a Dell T3400 computer with 4GB of RAM and 64-bit dual-core Intel Core 2 Duo

processor where Infosphere Warehouse was installed along with DB2 on top of Windows

Server 2008 R2. The server is connected to four external drives, each with 2TB of storage.

• Server-2 is a Dell M4500 computer with 4GB of RAM and 64-bit quad-core Intel Core i7

processor where WebSphere Message Broker is installed along with WebSphere MQ for

near real-time correlated ASDI data consumption from a TCP/IP stream, and brokering.

The server runs on Windows Server 2008 R2.

• Server-3 is a Dell T5500 computer with 16GB of RAM and 64-bit six-core Intel Xeon

X5650 processor where SPSS Modeler and Cognos BI tools along with SPSS Collaboration

and Deployment Services are installed. The server runs on Windows Server 2008 R2.

2.4.2 Conceptual Modeling of Database

Since the incoming ASDI messages are in XML, a standard format for the exchange of

semi-structured data, we first translated them into an equivalent relational schema. Some ap-

proaches for translating XML documents into a relational database can be found in the literature,

on DTD and XSD [35, 36] or other alternatives [37], but insufficient emphasis is given to the

problem of determining cardinality of relationships, which instead has a primary role in multidi-

mensional design [38].

We generated database tables based on classes created from the schema definitions for the

correlated ASDI data. There are nine main database tables corresponding to an ASDI messages
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as listed in Table 1.

There are eleven supporting database tables that hold portions of the data from the main

ASDI messages as listed in Table 2.

Each table contains a UUID,SOURCE DATE, and SOURCE TIME element. The UUID el-

ement ties records in the supporting database tables to the corresponding ASDI message in the

main database tables. The SOURCE DATE element determines what DB2 partition table to place

the data in. With DB2, range partition tables (RTP) provide the capability to have a virtual table

that is actually composed several tables. This way query and data load performance is increased

and large datasets are better managed.

Partitioning is important for various reasons. First, the query optimizer is aware of the

partitioning structure, and can analyze predicates to perform partition exclusion: scanning only

a subset of the partitions instead of the entire table. Second, each partition of a table can have a

different storage format, to match the expected workload [39].

When a record is written to a database table, DB2 uses the SOURCE DATE to write the

record to the correct table. When a query is made with a specified range, DB2 will only check

those tables within the range. If the data is ever deployed on another database provider, other

means for partitioning may need to be deployed. In the worst case, one can use the original

implementation where actual physical tables were created for each range.

Each main database table also contains a FLIGHT KEY element. The FLIGHT KEY en-

ables a user to retrieve all messages that correspond to a particular flight.

2.4.3 Processing of ASDI Data

The system was built with two separate data flows in mind:

• Processing of archived ASDI data of two years.
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Fig. 2.2: Creating Correlated ASDI Dataset.

• Processing of near real-time of ASDI data.

Both processes included correlation and database loading steps.

Processing of Archived ASDI Data First, we will go over the process of adding ASDI

data to the database. The process consists of two steps. In the first step, the ASDI data must be

correlated. In the correlation process, messages are correlated to flight plans and assigned a unique

FLIGHT KEY. For those messages that cannot be correlated, the FLIGHT KEY is assigned the

value UNCORRELATED. Given the FLIGHT KEY, a user can obtain all messages corresponding

to a given flight. Figure 2.2 shows the block diagram for converting ASDI data to correlated ASDI

data. The ASDI Playback application is a server that accepts TCP/IP connections from a client.

When a client connects, the Playback Server begins streaming ASDI data to the client. Currently

there is no flow control between the server and the client. The Server publishes at a fixed message

per second rate. In addition, no timing consideration is made based on the size of the message

when publishing. The Playback Server reads a set of ASDI files where each file represents a day

of messages. The output of the correlator is a set of four files for each input file. There is a file

containing all flight related messages, a file containing all track information, a file containing all

messages that could not be correlated, and finally a file containing all messages that contained

errors.
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Fig. 2.3: Writing Correlated ASDI Messages to the Database.

It currently takes about thirty minutes for the correlator to process a day of ASDI data.

Given that we have collected approximately two years of ASDI data, it would take approximately

fifteen days to process the entire set. Recovery methods are in place in the event that one of

the applications stops. In order to recover from a failure, the correlator periodically saves off a

checkpoint of the correlation data. In the event of a failure, the Playback Server is restarted from

the time of the last checkpoint.

In the second step, the correlated data must be processed and loaded into the database.

Figure 2.3 shows the block diagram for processing the correlated ASDI data and loading it to

the database. The application sequentially processes a list of files containing correlated ASDI

messages. The files can be in one of two formats, binary or text. The binary format is the format

used by the correlator. Content of the binary file consists of a repeating pattern of header data

followed by compressed payload data. The text format is used when errors are found processing

the binary data. If an error is encountered while processing a file, an error is logged. A user would

then examine the message, make any required corrections and create a new file where the first line

contains the text ”Modified Message” and the second line contains the modified message.

The process for adding archived ASDI data of two years to the database is as follows:
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• The next file in the list is opened.

• The next message block is read.

• If the message block is a binary format, the file is uncompressed.

• The message block contains all ASDI messages received in the last 30 seconds or up to a

maximum of 150 messages.

• The message block is unmarshalled using JaxB.

• Each message is processed and written to a Comma-Separated Value (CSV) file.

• Each message will have a main table and may have supporting tables.

• If there are no more records in the file all CSV files are written to the database using the

SQL load command.

• The next file is opened (step 1).

• If there are more records in the file, the next message block is read (step 2).

Processing of Near Real-Time ASDI Data A number of approaches regarding stream

processing can be found in the literature. Stonebraker et al. [40] laid out eight requirements of real-

time stream processing. Some of the approaches in literature broadly deal with order of input in

stream processing, classifying the techniques as IOP or OOP. Krishnamurthy et al. [41] described

IOP techniques as most early streaming implementations which were intolerant of disorder and

expected data to arrive in a strictly time-oriented fashion. They described OOP as next generation

systems which implemented flexible and efficient query operators that can accept data out of order.

Our approach is insensitive to the input order, in which the messages are received.
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Fig. 2.4: Near Real-Time ASDI Processing.

Fig. 2.5: Hierarchy of Correlated ASDI XML Document.
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The approach for real time processing uses IBM MQ, IBM Message Broker, and XML

Shredding. Figure 2.4 shows the block diagram for near real-time processing.

The Uncompress Compute Node connects to the correlator via a TCP/IP socket. The data

is a continuous stream of correlated ASDI data consisting of a header and compressed ASDI data.

The node reads the header file to determine the size of the compressed data block. The compressed

data is then uncompressed resulting in an XML document consisting of correlated ASDI messages.

The hierarchy of the document is shown in Figure 2.5. The XML document is then forwarded to

the Message Splitting Node.

The Message Splitting Node extracts individual ”msgCorrelated” elements from the doc-

ument. Each element is then wrapped to create a valid document and forwarded to the XML

Shredding Node.

The XML Shredding node is responsible for adding each message to the SHRED QUEUE

table in the database. Each document maps to one of the nine message types discussed earlier.

Each message maps to a main table with up to four supporting tables. There is a corresponding

XMLTABLE statement for each table. The format for the XMLTABLE statement is:

XMLTABLE(xqueryExpression PASSING xmlSource COLUMNS columnName

columnDataType PATH pathXqueryExpression, ...)

Each message is placed in a Queue table in preparation for shredding where a stored proce-

dure fetches the XML document and executes the XMLTABLE statements. Several columns require

special processing to place the data into ”Host” format. The result of the shredding process is a

record that is inserted into the appropriate table.
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Fig. 2.6: Actual versus Planned Report (red: waypoints, green: track reports).

2.4.4 Client Interface

The client interface uses IBM Cognos Report Studio. Report Studio is a web application

for creating reports. Users can tailor reports by specifying criteria such as date range, aircraft

id, departure airport, or arrival airport. Report Studio supports several outputs including HTML,

XML, PDF, Excel, and CSV. Reports are available for all nine messages and can contain links

allowing users to obtain additional information. Figure 2.6 is a view of ”Actual versus Planned”,

illustrating flight plan overlaid with trajectory. This report shows waypoints for the flight plan and

the corresponding track reports.

IBM Framework Manager is used to create the data package used by Report Studio. Frame-

work Manager is a metadata modeling tool that allows a user to define data sources, available data

items, and relationships between data items. If the source is a database, Framework Manager uses

the relationships to determine the necessary table joins when constructing the queries.
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2.5 Discussion

In this section, we discuss some of the issues we encountered regarding data representation,

and archived data loading. We also present the performance optimizations we realized.

2.5.1 Data Representation

According to the FAA’s ASDI schema, several data elements can be represented in more

than one form. Either a separate column in the database for each form is required or the data

could be stored in the FAA’s Host computer system format with a corresponding column contain-

ing the format code. In either case, some user requests may require multiple queries to obtain the

information. For readability, the choice was to save the data in Host format. Here, two columns

are required. One column contains the format code and the other column contains a string repre-

sentation of the value. Table 3, 4, and 5 show the possible formats for altitude, fixes, and speed

respectively.

2.5.2 Performance Optimizations

The first iteration of the application used SQL inserts to add messages to the database. To

reduce overhead between the client and the database server, the messages were pushed in batches.

At first, it took over seven hours to push an entire day of ASDI messages to the database.

Optimization-1

The original application created the SQL statement by appending elements to a Java

String. Timing tests revealed that it was taking over five hours (of the seven hours) to create the

Strings. Instead of appending the elements to a Java String, the Java StringBuilder

class was used to create the statements. This significantly reduced the amount of time spent. The
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Tab. 2.3: Possible formats for altitude

Format Representation Example Comment

a (d)dd 340 Altitude of flight level in 100s of feet

b OTP OTP Aircraft is flying VFR-ON-Top

c OTP/(d)dd OTP/250 Aircraft is flying VFR-ON-Top at 25,000 feet

d (d)ddB(d)dd 250B260 Assigned altitude block between 25,000 and

26,000 feet

e ABV/(d)dd ABV/600 Aircraft is flying ABV above 60,000 feet

f (d)dd/fix/(d)dd 250/DAL/260 Aircraft will fly at altitude flight level 250 to

the DAL fix to flight level 260

g VFR VFR Aircraft is flying VFR

h VFR/(d)dd VFR/75 Aircraft is flying VFR at 7,500 feet

Tab. 2.4: Possible formats for fixes

Format Representation Example Comment

a dddd(L)/(d)dddd(L) 3500/04000, 3500N/04000W Latitude/longitude

b aa(a)(a)(a) DFW Fix name

c aa(a)(a)(a)dddddd DFW300040 Fix radial distance. Fix

DFW, radial 300, dis-

tance 040
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Tab. 2.5: Possible formats for speed

Format Representation Example Comment

a (d)(d)dd 345 True air speed in knots

b ddd 345 Ground speed in knots

c Mddd M085 Mach speed (0.85, for example)

d SC SC Speed in classified

reason for the order of magnitude in increased performance is due to the fact that Java Strings

are immutable. Every time String is appended, a new instance is created. Hence, continually

appending to a large String will result in very poor performance.

Implementing the first optimization dropped the time to process a day of data to hundred

and twenty minutes, resulting in time savings of 71.4%.

Optimization-2

The software was ported from IBM BladeCenter HS21 (with 4GB of RAM and 64-bit dual-

core Xeon 5130 processor) to Dell M4500 computer (with 4GB of RAM and 64-bit quad-core

Intel Core i7 processor). Both servers run on Windows Server 2008 R2.

Porting the software to a faster platform reduced the time to process a day of data to thirty

minutes. This highlights the fact that database performance is highly correlated to the hardware it

runs on.

Optimization-3

Nowadays, DBMS support standard bulk loading utilities for batch loading data. This ap-

proach is useful in traditional periodically updated data warehouses, in which the data load usually

represents a large number of rows [42].
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In our case, data was originally pushed into the database using the insert statement. By

using the load command, the time to push a day’s worth of data decreased from thirty minutes to

fifteen minutes. To support the load command, the application was modified to write CSV files

for each table. When the entire day of messages had been processed, the load command pushed

each CSV file into the appropriate tables.

Optimization-4

To limit the size of the tables, the original code created multiple tables for each table type.

For queries, this approach puts the burden on the application to query multiple tables when a range

crosses several tables. DB2 supports the concept of RPTs. Here, when adding a record, one or

more columns are used to determine the table. With RPT, the user is not required to make multiple

queries when a range crosses a table boundary. With RPT, the time to process a day’s worth of

data actually increased to thirty minutes. However, this additional fifteen minute cost per day of

partitioning enabled us saving significant amount of time and resources during database queries.

Optimization-5

Three changes were made to the database:

• Range periods were changed from a week to a month.

• The automatic table space resizing was changed from 32MB to 512KB.

• The buffer pool size was decreased.

The changes decreased the time to process a day’s worth of data from thirty minutes to

twenty minutes. The application of all optimizations reduced the total processing time of a day’s

data from over seven hours to twenty minutes, resulting in total time savings of 95.2%.
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Fig. 2.7: The Use-Case in Stream Format in SPSS Modeler.

2.6 Basic Use-Case

In this section we present a basic use-case where we perform analytics predicting distinct

traffic volume within an Airspace Volume of Interest (AVOI).

The use-case is as follows: For a given AVOI, compute the distinct traffic volume within

that AVOI at any point in the future in 15 minute buckets.

Narrowing the time gap between data acquisition and acting on a business decision based

on the data is referred to as near real-time business analytics [43]. With this use-case we aim to

alert on congestion due to flow control areas or weather if certain thresholds are exceeded and

propose alternate flight paths.

For this use-case we executed SPSS Modeler, which provides a way of building predictive

models through a graphical user interface, utilizing many advanced modeling techniques. In addi-

tion, it also has the ability to perform various data processing operations to better prepare the data

to be modeled. The model that the user designs is shown in a stream format in Figure 2.7, which

allows for easy visualization of the model flow.

Illustrated in Figure 2.7, Node-1 pulls in the TRACKINFORMATION table which contains

aircraft position data using SQL. Node-2 determines the boundary of the model stream using the
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AVOI parameters (bounding box, minimum altitude, maximum altitude). Node-3 combines the

SOURCE DATE and SOURCE TIME to a timestamp that can be understood by the modeling node.

Node-4 computes the interval that the database entry will fall in. The time interval is 15 minutes.

Node-5 defines the target and input fields needed for creating the model. Node-6 handles the

creation of the model. Node-7 (the golden diamond) is the final result that is actually produced by

the modeling node. It contains the predictive part of the model. Node-8 produces a graph based

off of the model results.

Execution scenario is as follows: the user enters AVOI parameters along with a specific date

for prediction. SPSS Modeler then performs data processing on the database, counting relevant

records occurring in the past. SPSS Modeler will then return the predicted value along with

likelihood estimations. Provided descriptive behavior of the past data, next year’s flight count

within the user-defined AVOI is predicted with certain likelihood.

2.7 Conclusion

Currently the raw ASDI data is compressed and uncorrelated to flight plans. There is no

mechanism in place to extract meaningful insight from this data. With the ASDI data correlated

to flight plans and stored in a structured fashion, meaningful data can be extracted. As shown in

this work, the extracted data can then be used as input for analytics tools.

The nature of raw ASDI data is such that the sheer volume of raw surveillance data makes

performing analytics very difficult. On average, over seven million ASDI messages are received

per day. Total storage for one day of surveillance data is approximately 1GB. Based on the number

of messages and the storage requirements, a scalable data warehouse approach was implemented.

Once the database was populated clients could ”slice and dice” the data in ways that were not

possible when in the native format. Also, by using range partitioned tables, not only did query
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performance increase, but table size restrictions were no longer an issue. This allows for years of

data to be stored in a single database.

The raw ASDI data runs through a series of processes before it can be used for analytics.

The raw data is sent through a correlation process, where messages are correlated to flight plans,

and then saved in a compressed file. A Java application then runs through these files where they

are uncompressed, unmarshalled, and then inserted into their designated database tables.

Once the stored historical ASDI data has been inserted into the database, a separate series

of processes were put into place for inserting real time data. This strategy takes the compressed

data blocks directly from the correlator output, and prepares them for insertion into the database.

The individual messages are separated and placed in a raw-XML form into a queue table in the

database. Stored procedures are then run against tuples in the queue table in a process called XML

shredding.

Using XML Shredding to store real-time ASDI data allows for the database to be constantly

updated with the most up to date information. This will allow for analysis in near real-time to

discover current trends as they are happening. Additionally, aviation queries can be issued on the

most current information.

The entire ASDI archival service has been developed, tested, and deployed entirely on

commodity hardware. This hardware allows for easy maintenance and scalability as the database

grows. It also allows for easy integration into existing laboratory infrastructure and networking.

The current hardware architecture is made up of only three physical servers.

We plan on using aviation weather information in the analytics process to attain more ac-

curate predictions. Among the potential data sources for this capability are Meteorological Aero-

drome Reports (METAR) [44], and Rapid Refresh (RAP) [45].
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Part III

Time of Arrival Prediction and

Trajectory Clustering
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Chapter 3

Flight Time Prediction

A major factor in increased airspace efficiency and capacity is accurate prediction of Es-

timated Time of Arrival (ETA) for commercial flights, which can be a challenging task due to a

non-deterministic nature of environmental factors, and air traffic. Inaccurate prediction of ETA can

cause potential safety risks and loss of resources for Air Navigation Service Providers (ANSP),

airlines and passengers. This chapter presents a novel ETA Prediction System for commercial

flights. The system learns from historical trajectories and uses their pertinent 3D grid points to

collect key features such as weather parameters, air traffic, and airport data along the potential

flight path. The features are fed into various regression models and a Recurrent Neural Network

(RNN) and the best performing models with the most accurate ETA predictions are compared

with the ETAs currently operational by the European ANSP, EUROCONTROL. Evaluations on

an extensive set of real trajectory, weather, and airport data in Europe verify that our prediction

system generates more accurate ETAs with a far smaller standard deviation than those of EURO-

CONTROL. This translates to smaller prediction windows of flight arrival times, thereby enabling

airlines to make more cost-effective ground resource allocation and ANSPs to make more efficient

flight schedules.



Fig. 3.1: Air traffic in Spanish airspace on July 12, 2016.

3.1 Introduction

Accurate prediction of Estimated Time of Arrival (ETA) for commercial flights is a key

component of collaborative decision making (CDM), a process that attempts to keep the costs

under control along with improvement in four key Air Traffic Management (ATM) areas; safety,

capacity, efficiency and environmental impact. However, just a seemingly insignificant event such

as a delay in obtaining a wheel chair can result in delays as slots are missed and reassigned which

can be costly for airlines resulting in increased fuel-burn, emissions and expanded flight hours.

This can also cause passenger dissatisfaction and loss of market share due to a hampered corporate

image. The impact can grow exponentially due to ripple effect caused by delays in subsequent

flights, missed connections, and even disruptions. Hence, due to the nature of unknowns, and

complexity of airspace system, it is a challenging task to make an accurate ETA prediction. To

illustrate the airspace complexity and volume of air traffic in a single day in Spain, we present

Figure 3.1.

Traditional methods approach the ETA prediction problem deterministically, taking into
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account aircraft performance models, along with either parametric or physics-based trajectory

models. They usually begin by estimating the flight trajectory, which includes the lateral flight

path together with altitude and speed profiles, and then proceed to calculating the time required

to fulfill the predicted trajectory. These models by themselves fail to account for external opera-

tional circumstances such as weather phenomena, airspace sector densities, and airport congestion,

which can directly affect the aircraft’s actual flight profile. Note that decreasing the average delay

per flight by one minute could save millions of dollars in annual crew costs and fuel savings for

a mid-sized airline. Hence, unlike traditional methods, we propose a machine learning based sys-

tematic approach to address the ETA prediction problem. We make a considerable effort in feature

engineering to use a richer set of features including general information about flights as well as

weather, air traffic, and airport data for more accurate modeling and prediction. Our prediction

system is built upon the concepts presented in the Aircraft Trajectory Prediction System [46] in

which airspace is considered as a set of data cubes around grid points as part of the 3D reference

grid network.

This chapter contains three main contributions:

• We propose an ETA Prediction System for commercial flights. Unlike other systems that

collect and use features only for the arrival airport, we use a richer set of features along

the potential route, such as weather parameters and air traffic data in addition to those that

are particular to the arrival airport. Our feature construction process generates an extensive

set of multidimensional time series data which goes through Time Series Clustering with

Dynamic Time Warping (DTW) to generate a single set of representative features at each

time instance.

• We present algorithms for two major features that highly contribute to the accurate ETA

prediction: airspace sector congestion rate, and airport congestion rate.
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• We perform a comparative analysis using a number of regression models and an RNN and

present their performances. Using the best performing model, we compare our results with

those generated by the EUROCONTROL. Our experiments on real trajectory, weather, air

traffic and airport data verify that our system outperforms EUROCONTROL’s ETA pre-

diction by offering not only a higher accuracy but also a far smaller standard deviation,

resulting in smaller prediction windows of flight arrival times.

The proposed system can be used by the ANSPs and airlines for more accurate schedul-

ing and resource management resulting in improvement in the four ATM key performance areas;

safety, capacity, efficiency, and environmental impact. The rest of the chapter is organized as fol-

lows. Section 3.2 reviews related work. Section 3.3 describes the data used in this study followed

by Section 3.4 where we present a proper set of features selected for ETA prediction via feature

engineering. Section 3.5 states the problem and reviews two top-ranking boosting methods, while

Section 3.6 presents our experimental evaluation. Section 3.7 draws concluding remarks.

3.2 Related Work

There has been much work and an abundant literature on predicting estimated rate of arrival

for humans [47] and ETA for various transportation vehicles on land (road and rail) [48, 49] and

water [50], in addition to air. Traditional methods to ETA prediction for air transportation, partic-

ularly in the case of commercial flights use a deterministic approach by heavily relying on aircraft

performance models along with either parametric or physics-based trajectory models. They usu-

ally begin by computing the flight trajectory, which includes the lateral flight path together with

altitude and speed profiles, and then proceed to calculate the time required to fulfill the predicted

trajectory [51–55]. However, the time of arrival at a fixed point on the ground is dependent not

only on the airspeed the aircraft will fly, but also on the winds, temperatures, air traffic along the
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route and congestion at the arrival airport. Therefore, if the atmospheric, airspace and airport traf-

fic data is uncertain, the reference trajectory may not have been laid out correctly with respect to

the real world situation, yielding inaccurate prediction of estimated time-of-arrival for the spec-

ified airport. Probabilistic methods usually develop stochastic linear models of aircraft motion

to estimate future aircraft positions. They model aircraft trajectories as Discrete-Time Stochastic

Hybrid Linear Systems in which aircraft path decisions form hybrid modes which then inform

mode transitions between turning and straight flight modes [56–58].

Unlike traditional methods, we propose a machine learning based systematic approach in

which general information about the flight as well as weather and air traffic data are all taken into

consideration. Our objective is to learn from historical data, possibly stored in an aviation data

warehouse [59], discover patterns and generate a set of features to build a model for accurate

ETA prediction. There are only a few papers following the machine learning approach to the ETA

prediction problem for air transportation in the literature [60–62].

Gopalakrishnan et al. [63] demonstrate the use of machine learning techniques to predict

delays in air traffic networks a few hours ahead of time.

In their study, Kern et al. [60] aim to enhance ETA predictions generated by the Federal

Aviation Administration (FAA)’s Enhanced Traffic Management System (ETMS). They select a

set of baseline features and gradually increase complexity by adding new ones to check if they

interfere with each other. The features are selected in 4 phases; 1) flight data, 2) flight and weather

data, 3) flight and air traffic data, and 4) flight, weather, and air traffic data. Next, they apply

Random Forest (RF) to generate the model. According to their results, their model predicts ETA

78.8% more accurately than the FAA’s ETMS. Although their model’s performance is applaud-

able, they use weather and air traffic data only for arrival airports during their feature collection,

missing all the data along the routes between departure and arrival airports.
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In his paper, Takacs [61] presents a solution to the General Electric’s Flight Quest contest to

make flights more efficient by improving the accuracy of arrival estimates. The contestant presents

his prediction approach to runway and gate arrival times of en route U.S. domestic flights based

on flight history, weather, air traffic control, and other data available at a given time. His approach

follows 6 consecutive stages of ridge regression and gradient boosting machines, trained on a total

of 56 features. The model structure is a result of a heuristic, hand-run optimization process. The

workflow iteratively defines features and tries to incorporate the modeling to decrease the RMSE

as much as possible. However, due to time constraints imposed by the contest, the author decided

to keep the model simple by using only 56 features.

Glina et al. [62] use Quantile Regression Forests (QRF), which is an extension of RF as

part of ensemble of Classification and Regression Tress (CART), to generate point predictions and

pertinent conditional probability distributions for the ETA of individual flights. They validate their

model on data from the Dallas/Fort Worth International Airport, obtaining mean absolute errors

(MAE) of less than 60 seconds for their estimates of time-to-wheels-on for flights with a distance

to the airport less than or equal to 20 nautical miles. Unfortunately, their data pertains to a single

airport and it spans the period of only 5 days.

To summarize, our approach is distinguished from past efforts with the following respects:

1) Our system predicts ETA for runway arrival times. 2) Our system predicts ETA before depar-

ture, when the flight trajectory is still unknown. In fact, our prediction system doesn’t make use

of costly flight plans, offering a more cost-effective solution. Hence, our approach addresses the

ETA prediction problem strategically over a time horizon of several hours. 3) For our model, we

collect and use a richer set of features not only for the arrival airport but also for the airspace along

the potential route. 4) We validate our model using an extensive set of real trajectory, weather, and

airport data over the period of 11 months.
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Tab. 3.1: A set of major air routes in Spain.

Departure Airport Arrival Airport

Barcelona–El Prat

Airport (LEBL)

A Coruña Airport (LECO)

Málaga Airport (LEMG)

Vigo–Peinador Airport (LEVX)

Seville Airport (LEZL)

Adolfo Suárez

Madrid-Barajas

Airport (LEMD)

Almeria Airport (LEAM)

A Coruña Airport (LECO)

Jerez Airport (LEJR)

Menorca Airport (LEMH)

Palma de Mallorca Airport (LEPA)

Vigo–Peinador Airport (LEVX)

3.3 Data Description

This section introduces the datasets used for ETA prediction.

3.3.1 Trajectory Data

Trajectory data plays a large role in our study. Trajectories have been the subject of much

work in the spatial domain with an emphasis on cars along roads [64]. The focus has been on their

generation (e.g., [65]), queries (e.g., [66–70]), and matching (e.g., [71–73]). This data is collected

continuously and is quite voluminous. Instead, our focus here is on the flight domain.

Due to the fact that there exists no system that continuously records and stores exact po-

sitions of an aircraft’s original trajectory [74], only a discrete set of sample data are recorded

and stored which presumably represent a close approximation of the original trajectory. We call
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Fig. 3.2: A set of trajectories for flights departing from Barcelona and Madrid.

this a raw trajectory. The raw trajectory data is provided by Spanish ANSP, ENAIRE, using radar

surveillance feed with a 5 seconds update rate. The raw data is wrangled as part of the Data-driven

AiRcraft Trajectory prediction research (DART) project under the SESAR Joint Undertaking Work

Programme [75]. The data contains all commercial domestic flights for Spain, a total of 119,563

raw trajectories and 80,784,192 raw trajectory points for the period of January through November

2016. The fields of the raw trajectory data are as follows: Flight No, Departure Airport, Arrival

Airport, Date, Time, Aircraft Speed in X, Y, Z directions, and position information (Latitude, Lon-

gitude, Altitude). Note that, as a preprocessing step, we downsample raw trajectory data from the

original resolution of 5 seconds to 60 seconds and align them to our 3D reference grid [1]. This

is to build a set of features for each trajectory point, i.e. weather observations along the aligned

trajectories. Table 3.1 lists a set of major flight routes departing from two major cities in Spain

and Figure 3.2 provides their visual representation on a map.

3.3.2 Meteorology Data

The meteorology data is obtained from the National Oceanic and Atmospheric Administra-

tion’s (NOAA) Global Forecasting System (GFS) [76]. The original data has 28-km spatial and
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6-hour temporal resolution and it contains over 40 weather parameters including Atmospheric,

Cloud and Ground attributes for each grid point as part of its 3D weather model. Hence, for this

study’s geographic volume of interest for the time period of January through November 2016, over

80TB of weather data is collected.

3.3.3 Airport Data

The airport traffic data is provided by EUROCONTROL as part of the Data-driven AiR-

craft Trajectory prediction research (DART) project under the SESAR Joint Undertaking Work

Programme [75]. The data contains airport traffic data for Spain, a total of 1,252,571 sets of

records, where each record is composed of Date, Flight No, Departure Airport, Arrival Airport,

Aircraft type, Actual Departure Time, Actual Arrival Time, Scheduled Departure Time and Sched-

uled Arrival Time.

3.3.4 Airspace Data

The airspace sector data is computed using raw trajectory data along with airspace sector

volumes. The data contains aircraft counts within 15-minute bins for each sector in Spain for a

period of 11 months. The records include Sector Name, Date, Time of Sector Entry and Time of

Sector Exit with counts of aircraft.

3.4 Feature Engineering

In this section, we select and construct a proper set of features for ETA prediction via

feature engineering. Feature engineering refers to the process of using domain knowledge of data

to create features that best represent the underlying problem of the predictive models, resulting in

improved model accuracy on unseen data. We adopt high-dimensional features to build models so
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Tab. 3.2: The description of features.

Feature Type Feature Description

Flight

Airline Name of airline

Flight no Flight number

Aircraft type Type of aircraft

Spatial

Latitude Latitude of an occurrence

Longitude Longitude of an occurrence

Altitude Altitude of an occurrence

Sector Boundaries of a 3D airspace volume

Temporal

Date Date of an occurrence

Time Time of an occurrence

Time bin 15-minute time bin, an occurrence falls

Meteorological

Atmospheric temperature Atmospheric temperature recording along the

flight route

Atmospheric wind speed Atmospheric wind speed recording along the

flight route

Atmospheric wind direction Atmospheric wind direction recording along

the flight route

Atmospheric humidity Atmospheric humidity recording along the

flight route

Atmospheric pressure Atmospheric pressure recording along the

flight route

Ground temperature Ground temperature recording at the arrival

airport
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Tab. 3.3: The description of features continued.

Feature Type Feature Description

Meteorological

Ground wind speed Ground wind speed recording at the arrival

airport

Ground wind direction Ground wind direction recording at the arrival

airport

Ground humidity Ground humidity recording at the arrival air-

port

Ground pressure Ground pressure recording at the arrival air-

port

Ground wind gust Ground wind gust recording at the arrival air-

port

Airport

Arrival airport Airport the flight arrives at

Departure airport Airport the flight departs from

Airport arrival count Number of arrivals at an airport

Airport departure count Number of departures from an airport

Airport congestion rate Current vs. historical arrival+departure

counts

Airspace
Sector aircraft count Number of aircraft in a sector along the flight

route

Sector congestion rate Current vs. historical aircraft count in a sector
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Tab. 3.4: The description of features continued.

Feature Type Feature Description

Combinational

Flight-spatial Traversed locations of particular flights

Flight-spatial-temporal-airspace Traversed locations of particular flights at par-

ticular time instances

Meteorological-temporal Observed weather parameters at particular

time instances

Airport-temporal Arrival and departure counts of aircraft at a

particular airport

Spatial-temporal-airspace Traversed locations by an aircraft at particular

time instances

Spatial-temporal-meteorological Observed weather parameters at particular

positions and time instances
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they possess the ability to predict ETA more accurately. Features extracted from each domain are

listed in Table 3.4.

3.4.1 Basic Features

Basic features are extracted from each individual domain. We exploit Airline, Flight No

and Aircraft Type as the flight features. The first three letters of Flight No identify the Airline.

Intuitively, each of these basic flight features or combination of them exhibit a distinct pattern,

potentially yielding a different ETA. For instance, as Aircraft Type, Bombardier Canadair Regional

Jet (CRJ) has different performance parameters than that of Boeing 737-800’s (B738), likely to

generate a different ETA.

We use Latitude, Longitude, Altitude, and Sector as the spatial features. Aircraft trajectories

are nothing more than a set of joint 3D coordinates, where each coordinate is associated with a time

stamp. Trajectories are usually of different length, formed by a different set of 3D coordinates.

Hence, different spatial features may cause various patterns and biases in ETA prediction.

We adopt Date, Time, and Time Bin as the temporal features. Note that the temporal features

listed in Table 3.4 are kept at a high level for the sake of saving space. Time bins are used to

generate histograms. Note that, these features can refer to a flight departure or arrival or sector

crossing as well as observation of a weather parameter. Essentially, ETA is an accumulated set

of time intervals along the trajectory. Hence, a trajectory of 60 segments, where each segment is

one-minute long, translates to an ETA of departure time plus 60 minutes.

Meteorological data is one of the major factors impacting the spatial-temporal patterns of

trajectories. Among over 40 weather parameters, we exploit 5 atmospheric features for airspace

Temperature, Wind Speed, Wind Direction, Humidity, and Pressure, and 6 ground features for air-

ports Temperature, Wind Speed, Wind Direction, Humidity, Pressure, and Wind Gust. Convective
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weather shaping up along the aircraft’s planned route may cause a trajectory deviation yielding a

different ETA.

The most recent work that aimed at addressing ETA prediction with a machine learning

approach utilized particular features such as weather observations and traffic data for the arrival

airport only, disregarding features along the potential trajectory [60]. This is partly due to fact

that the exact trajectory is unknown before departure. However, excluding these key features along

the potential trajectory greatly degrades the accuracy. Now, a critical question arises: How can

we obtain a set of features along the potential trajectory when the trajectory is still unknown?

Our approach to this problem is as follows: As a preprocessing step, we align raw historical

trajectories to the 3D reference grid [46]. The process generates a time series of aligned historical

trajectories. Figure 3.3 illustrates a set of 3D grid points historically traversed by a sample flight

between a departure and arrival airport. Using spatially and temporally closest set of data points

from the weather model, we perform interpolation and extract the pertinent parameters for each

aligned trajectory point. Once weather observations have been extracted for each grid point at a

particular time instance, we omit spatial information. Next, we perform Time Series Clustering

with Dynamic Time Warping (DTW) [77, 78] on weather observations of variable length. The

process aggregates the weather observations and generates a single set of representative features

for each time instance. The result is a set of features in the form of time series. For instance, we

use 300 meteorological features for a flight that is 60-minutes long. This is due to fact that each

trajectory point is recorded once a minute and at each trajectory point 5 meteorological features

are adopted along the potential route. The same applies to the sector congestion rates. For the

same flight of 60 minutes, we use 4 time bins, resulting in 4 sector density features along the flight

route.

Airport features consist of Arrival Airport, Departure Airport, Airport Arrival Count and
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Fig. 3.3: Historically traversed 3D grid points between departure and arrival airports.

Arrival Departure Count, in addition to Airport Congestion Rate, which is computed using the

actual and scheduled arrival and departure counts. Each of these features are likely to have an

impact on flight’s ETA, as the higher the airport congestion rate, the higher the likelihood of delay

on arrival time.

We exploit Sector Aircraft Count and Sector Congestion Rate as airspace features. Similar

to the impact by the airport congestion rate, the higher the airspace congestion rate along the

planned route, the higher the likelihood of trajectory diversion causing a delay on arrival time.

3.4.2 Combinational Features

We combine various features from two or more domains to build combinational features.

Combining flight and spatial features produces Flight-spatial combinational feature. Intrinsically,

each airline’s flight exhibits a distinct trajectory pattern, yielding a different ETA. Figure 3.4a

shows Ryan Air (RYR) versus Vueling Airline’s (VLG) flights between the LEBL and LEZL

airports. Red trajectories representing the RYR flight dominates the northern part, while white

trajectories representing the VLG flight dominates the southern part of the routes.

Combining meteorological and temporal features produces

Meteorological-temporal combinational feature. Since weather observations vary over time and
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Fig. 3.4: Distribution of various features.
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ETA is likely to be impacted by the weather patterns, it is intuitive to combine these features. Fig-

ure 3.4b shows distribution of normalized temperature over the period of January through Novem-

ber 2016 for the flight VLG22XV between the LEBL and LEZL airports. Due to fact that average

flight time for the flight VLG22XV is 75 minutes and that each trajectory point is recorded once

per minute, each time instance on Figure 3.4b has 75 temperature recordings. As shown in the

figure, normalized temperature increases during the summer months.

We combine airport and temporal features to generate the Airport-temporal combinational

feature. This enables us to gain insight on the distribution of aircraft counts on various airports at

various time bins during the day, potentially impacting the ETA prediction. Figure 3.4c captures

the distribution of normalized arrival and departure counts within 15-minute time bins for the

LEZL airport. The airport appears to have more traffic at time bins around 8:00.

To examine combination of various features and derive insights on trends, find anomalies

and perform strategic planning, a novel interactive visualization tool, NormSTAD [79] can be

used.

3.4.3 Airport Congestion Rate

Given the actual (historical) arrivals and departures along with scheduled arrivals and de-

partures for a particular airport, we want to compute the airport congestion rate for the 15-minute

time bin, the flight of interest is scheduled to arrive. First, we create a set of 15-minute time bins

throughout the day. Next, we compute the average counts for the actual arrival and departures

for each of these 15-minute time bins. Given the scheduled arrival time of the flight of interest,

we determine which time bin it falls into. For that particular time bin, we compute the airport

congestion rate as presented in Algorithm 3.1. Figure 3.4d. illustrates congestion rates in each

15-minute bins at the LEZL airport for the flight VLG22XV, indicating a potential delay in late
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March due to a high congestion rate at the LEZL airport.

Algorithm 3.1: Airport Congestion Rate
Result: Airport congestion rate

Input : Counts of scheduled arrivals ctSA, counts of scheduled departures ctSD,

average count of actual arrivals avgCtAA, and average count of actual

departures avgCtAD of a flight with a flight number fno and timestamp ts

for a particular airport

Output: Congestion rate cr of a particular airport, given the time stamp ts and a flight

number fno of an arriving flight fl

1 TB ← [tb1, tb2, ..., tbk]

2 3dp← lat, lon, alt

3 fl← fno, 3dp, ts

4 foreach tb ∈ TB do

5 if fl.ts ⊂ tb then

6 return acr[tb]← (ctSA[tb] + ctSD[tb])/(avgCtAA[tb] + avgCtAD[tb])

7 end

8 end

3.4.4 Sector Congestion Rate

Given the actual (historical) flights’ sector crossings, along with scheduled flights’ sector

crossings for a particular sector, we want to compute the sector congestion rate for each sector,

for each 15-minute time bin, the flight of interest is scheduled to cross. Due to fact that airspace

sectors are nothing more than a set of extruded polygons, we use a Point-In-Polygon algorithm

[80] to compute the counts of aircraft in each sector. To achieve this, we first create a set of 15-
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minute time bins throughout the day. Next, we compute the average counts for the actual flights’

sector crossings for each of these 15-minute time bins. Given the scheduled crossing time of the

flight of interest, we determine which time bin it falls into, and which sector it likely crosses. Due

to fact that the flight’s trajectory is unknown at the time of ETA prediction, we consider all sectors

the flight of interest is likely to cross based on actual sector crossings. Next, for that particular

time bin, we compute the airport acceptance rate as presented in Algorithm 3.2.

Algorithm 3.2: Sector Congestion Rate
Result: Sector congestion rate

Input : Counts of scheduled flights’ sector crossings ctSF , average counts of actual

flights’ sector crossings avgCtAF , for each time bin tb for each sector

Output: Congestion rate of a particular sector scr, given the time stamp ts and a flight

number fno of a crossing flight fl

1 TB ← [tb1, tb2, ..., tbk]

2 3dp← lat, lon, alt

3 fl← fno, 3dp, ts

4 foreach tb ∈ TB do

5 if fl.ts ⊂ tb then

6 return scr[tb]← (ctSF [tb]/avgCtAF [tb])

7 end

8 end
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3.5 Problem Statement and Model Reviews

Given a set of historical flights with their attributes such as flight number, trajectory, depar-

ture and arrival airport, actual departure and arrival date and time, airline name, aircraft type, and

associated weather and air traffic parameters, we aim at learning a model that predicts the current

flight’s ETA before it departs. Note that ETA can refer to both runway and gate arrival times.

Our system predicts runway arrival times i.e. times between aircraft wheels-off and wheels-on, as

we exclude airport surface data when we build our model. To address this problem, we build a

number of models, and rank them based upon their performance.

3.5.1 AdaBoost

Adaptive Boosting is a meta-estimator to fit a sequence of weak learners on iteratively

modified versions of the data. All the predictions are then combined through a weighted sum to

produce the final prediction. The data modifications at each iteration consist of applying weights

to each of the training samples. The first step simply trains a weak learner on the original data. For

each successive iteration, the sample weights are individually modified and the learning algorithm

is reapplied to the reweighted data. At a given step, those training examples that were incorrectly

predicted by the boosted model induced at the previous step have their weights increased, whereas

the weights are decreased for those that were predicted correctly. As iterations proceed, examples

that are difficult to predict receive ever-increasing influence. Each subsequent weak learner is

thereby forced to concentrate on the examples that are missed by the previous ones in the sequence

[81].

Formally, we assign an initial weight wi = 1 i = 1, ..., N1 to each training pattern. We

repeat the following procedure while the average loss L̄ is less than 0.5.
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(1) The probability that training sample i is in the training set is pi = wi/
∑
wi, where the

summation is over all members of the training set. Select N1 samples with replacement to form

the training set. This may be implemented by marking a line of length
∑
wi and subsection of

lengthwi. A uniform number picked from the range [0,
∑
wi] and landing in section i corresponds

to picking pattern i.

(2) Build a regression machine t from the training set. Each machine makes a hypothesis: hi :

x→ y.

(3) Pass every member of the training set through this machine to obtain a prediction y(p)i (xi) i =

1, ..., N1.

(4) Compute a loss for each training sample Li = L
[
|y(p)i (xi) − yi|

]
. The loss L may be of any

functional form as long as L ∈ [0, 1]. If we let D = sup|y(p)i (xi) − yi| i = 1, ..., N1 then we

have three candidate loss functions:

Li =
|y(p)i (xi)− yi|

D
(linear)

Li =
|y(p)i (xi)− yi|2

D2
(squarelaw)

Li = 1− exp

[
−|y(p)i (xi)− yi|

D

]
(exponential)

(5) Calculate an average loss: L̄ =
∑N1

i=1 Lipi

(6) Form β =
L̄

1− L̄
. β is a measure of confidence in the prediction.

(7) Update the weights: wi → wiβ
[1−Li]. The smaller the loss, the more weight is reduced making

the probability smaller that this pattern will be selected as a member of the training set for the next

machine in ensemble.

(8) For a particular input xi, each of the T machines makes a prediction. Obtain the cumulative

prediction hf using the T predictors: hf = inf

{
y ∈ Y :

∑
t:ht≤y log(1/βt) ≥

1

2

∑
t log(1/βt)

}
This is the weighted median. Equivalently, each machine ht has a prediction y(t)i on the ith pattern

and associated βt. For pattern i the predictions are relabeled such that for pattern i we have:
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y
(1)
i < y

(2)
i <, ..., < y

(T )
i Next, we sum the log(1/βt) until we reach the smallest t so that the

inequality is satisfied. The prediction from that machine t we take as the ensemble prediction. If

the βt were all equal, this would be the median.

Intuitively, the effect of varying the weight wi to give more emphasis to difficult examples

means that each subsequent machine has a disproportionately harder set of examples to train on.

Thus, the average loss tends to increase as we iterate through the algorithm and ultimately the

bound on L is not satisfied and the algorithm terminates [82, 83]

3.5.2 Gradient Boosting

Gradient Boosting [84, 85] produces a prediction model in the form of an ensemble of

weak prediction models. It builds additive regression models by sequentially fitting a simple

parameterized function to current pseudo residuals by least squares at each iteration. The pseudo

residuals are the gradient of the loss functional being minimized, with respect to the model values

at each training data point, evaluated at the current step.

Formally, in the function estimation problem one has a system consisting of a random output

variable y and a set of random input variables x = {x1, ..., xn}. Given a training sample {yi, xi}N1

of known (y, x) values, the goal is to find a function F ∗(x) that maps x to y, such that over the joint

distribution of all (y, x) values, the expected value of some specified loss function L(y, F (x)) is

minimized: F ∗(x) = argminF (x)Ey,xL(y, F (x))

Boosting approximates F ∗(x) by an additive expansion: F (x) =
∑M

m=0 βmh(x; am)

where the functions h(x; a) which are base learners are usually chosen to be simple functions of

x with parameters a = {a1, a2, ...ak}. The expansion coefficients βmM0 and the parameters amM0

are jointly fit to the training data in a forward stage-wise manner. One starts with an initial guess

F0(x), and then for m = 1, 2, ...,M :
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(βm, am) = argminβ,a
∑N

i=1 L(yi, Fm−1(xi) + βh(xi; a))

and

Fm(x) = Fm−1(x) + βmh(x; am)

Gradient boosting approximately solves (βm, am) for arbitrary loss functions L(y, F (x))

with a two step procedure. First, the function h(x; a) is fit by least-squares:

am = argmina,ρ
∑N

i=1[ỹim − ρh(xi; a)]2

to the current pseudo residuals:

ỹim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

Then, given h(x; am), the optimal value of the coefficient βm is determined:

βm = argminβ
∑N

i=1 L(yi, Fm−1(xi) + βh(xi; am))

This strategy replaces a potentially difficult function optimization problem by one based on a

least-squares, followed by a single parameter optimization based on a general loss criterion L.

3.6 Experimental Study

This section presents the evaluations of our ETA prediction system.

3.6.1 Setup

We evaluate the performance of our prediction system on 10 major flight routes in Spain,

presented in Table 3.1. We chronologically order each dataset for each route, normalize and

standardize, and use the first 80% for modeling and the remaining 20% for validation. Table 3.5

lists the prediction models used in this study. We use 10-fold cross-validation and evaluate the

algorithms using Root Mean Squared Error (RMSE) metric. We create a baseline of performance

on this problem and spot-check a number of algorithms to address the regression problem. The first

round of algorithms we use are linear and non-linear regression methods, in addition to historical
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Tab. 3.5: A list of prediction models used in this study.

Method Algorithm

Linear

Linear Regression (LR)

Lasso Regression (LASSO)

Elastic Net Regression (EN)

Non-linear

Classification and Regression Trees

Support Vector Regression (SVR)

k-Nearest Neighbors (KNN)

Ensemble

Adaptive Boosting (AdaBoost)

Gradient Boosting (GBM)

Random Forest Regression (RF)

Extra Trees Regression (ET)

Recurrent Neural Network Long Short-Term Memory (LSTM)
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average (HA), which simply averages all historical flight times for the same routes for the same

time period. The algorithms all use default tuning parameters. The second round of algorithms we

use are ensemble methods comprised of two boosting (AB and GBM), and two bagging (RF and

ET) methods. These algorithms also use default tuning parameters. The final algorithm we use

is the Long Short-Term Memory (LSTM), which is a type of RNN. Given the flight times for the

previous 10 most recent subsequent days, we compute the time for the next day’s flight, provided

that all flights share the same defining features such as flight number, departure and arrival airports,

aircraft type, etc. In order to perform LSTM on our dataset, we first transform our multivariate

time series data into a supervised learning problem. Next, we define the LSTM with 50 neurons

in the first hidden layer and 1 neuron in the output layer for predicting the flight time. The input

shape is one time step with over 300 features (the number of features depends on the average flight

time). The model is fit for 50 training epochs with a batch size of 72.
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Our experiments are conducted on a computer with Intel Core i7-6820HQ CPU @ 2.70GHz

and 16GB memory, running on Linux Ubuntu 16.04.1 64-bit Operating System. All the algorithms

in our system are implemented in Python 3.6.4.

3.6.2 Results

Table 3.6 shows the RMSE value for each algorithm. The best score for each route is

highlighted. In a quick glance, it seems clear that HA and linear models (LR, LASSO, EN)

perform poorly on all routes. KNN and SVR seem to achieve the best scores among the linear

and non-linear methods. In fact, KNN generates 8, SVR generates 2 best scores out of 10 routes

among the linear and non-linear methods. The default value for the number of neighbors in KNN

is set to 7. We obtain slightly better results when we use a grid search to try different numbers of

neighbors. Unlike the previous work [60, 62] which emphasize the accuracy of bagging methods

(RF and its extensions), our results indicate that boosting methods (AB and GBM) dominate the

bagging methods (RF and ET) on all routes. LSTM yields relatively unstable scores, generating

only one best score on all 10 routes. This may not be a surprise as LSTM is better suited for

sequence prediction than autoregression.

Overall, the boosting methods dominate the entire list, generating the best scores among

all including the linear, non-linear, ensemble and RNN methods. In fact, the scores obtained by

boosting methods can be further improved with tuning. The default number of boosting stages

to perform (n estimators) is originally set to 100. We define a parameter grid n estimators values

from 50 to 400 in increments of 50. Each setting is evaluated using 10-fold cross-validation. By

parameter tuning, we reach even better scores.

We complete our comparative study among the models listed in Table 3.5 and select the best

score for each route. Next, we compare our final results with the ETA values, EUROCONTROL
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uses [75]. Figure 3.5 illustrates RMSE values in minutes for each route between our prediction

versus EUROCONTROL’s prediction. Note that Figure 3.5 presents both results at two different

scales. Figure 3.5a is a closer look at the box plots, where the median values are visible. However,

the full extent of the boxplots are missing in Figure 3.5a due to outliers. Hence, we provide

Figure 3.5b, where the full extent of the boxplots including the outliers are visible. From the

results, we make the following observations: i) Our prediction yields better median scores on

eight routes, while the EUROCONTROL’s ETA shows better median scores on two routes (LEBL-

LEVX and LEBL-LEZL). ii) The standard deviation values in EUROCONTROL’s ETAs are much

larger, resulting in larger windows of predictability at arrival times. This may have a significant

adverse impact on airlines’ ground resource management as well as connecting flights’ scheduling.

iii) Boxplots representing EUROCONTROL’s ETAs in Figure 3.5b. show extreme outliers. In

summary, our prediction system offers more accurate ETA prediction with far smaller standard

deviation than those of EUROCONTROL.

To evaluate the effectiveness of our features, we rank them based on their relative impor-

tance. The top 10 features are presented in Table 3.7. Evidently, the arrival airport is of critical

importance on accurate ETA prediction. Aside from that, meteorological features in the form of

a time series along the potential trajectory make a significant impact during regression. This in-

sight validates our approach that meteorological and airspace sector features along the potential

trajectories should be taken into account to achieve accurate ETA prediction.

3.7 Conclusion

We have presented a novel ETA prediction system for commercial flights. Our experiments

verify that our system can predict any commercial flight’s ETA in Spain within 4 minutes of

RMSE on average regardless of the flight length. Our system outperforms EUROCONTROL’s
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Fig. 3.5: RMSE by our prediction vs EUROCONTROL’s on all flight routes.
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Tab. 3.7: Top 10 features ranked by their relative importance.

Rank Feature Score

1 Arrival airport 1.0

2 Atmospheric pressure 0.67854

3 Atmospheric wind speed 0.66231

4 Atmospheric wind direction 0.65224

5 Atmospheric humidity 0.63331

6 Atmospheric temperature 0.61314

7 Airport congestion rate 0.53212

8 Sector congestion rate 0.31153

9 Flight no 0.29192

10 Aircraft type 0.13221

ETA prediction by offering not only a higher accuracy but also a far smaller standard deviation,

resulting in increased predictability of flight arrival times. This enables airlines to better coordinate

the action of ground handling personnel and equipment, thereby reducing the waste of time and

energy. Likewise, air traffic flow management, airport runway and gate assignment, and ground

support equipment usage optimization are all processes that can benefit from a more accurate ETA

prediction for commercial flights.
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Chapter 4

Trajectory Clustering

Whether descriptive, predictive or prescriptive, most analytics applications pertaining to

aircraft trajectory data require clustering to group similar trajectories and discovering a represen-

tative trajectory for all as a single entity. During the process, considering a trajectory as a whole

may mislead, resulting in overfitting and a failure to discover a representative trajectory.

In this chapter, we describe a novel clustering framework; divide-cluster-merge, DICLERGE,

for the aircraft trajectory data, that divides trajectories into three major flight phases: climb, en-

route, and descent. It clusters each phase in isolation, then merges them together. Our unique

approach also discovers a representative trajectory, the model for the entire trajectory set. Our

experiments use a real trajectory dataset with pertinent weather observations to demonstrate the

effectiveness and efficiency of the DICLERGE algorithm to the aircraft trajectory clustering prob-

lem.

4.1 Introduction

Air Traffic and Capacity Management constantly monitors aircraft operating within the

National Airspace System (NAS) and aims to safely and efficiently manage its flow. Maintaining



safe separation and sequencing of aircraft is a challenging task due to fact that the current approach

of procedural control assumes that aircraft will fly along routes designated by waypoints or fixes.

This approach is easy for air traffic controllers to understand; however, it can be inefficient for

aircraft. To more effectively and efficiently address the pertinent challenges in the airspace with

increasing volume, Trajectory Based Operations (TBO) is investigated in the context of NextGen

in the U.S. [86] and SESAR in Europe [87]. The TBO concept uses four-dimensional aircraft

trajectories as the base information for managing safety and capacity. In the heart of TBO resides

the trajectory prediction process that relies on accurate clustering of aircraft trajectories, when a

stochastic approach is used. Hence, clustering of aircraft trajectories is a key building block in

probabilistic trajectory prediction process.

Although there is plenty of work in the area of data mining with regards to trajectory clus-

tering in general [88–94], the vast majority address the issues pertaining to clustering of road

networks [95–99]. Among the rest, only a handful of them deal with clustering of aircraft tra-

jectories [100–102]. In fact, of those, to the best of our knowledge, there is no previous work

addressing the clustering of aircraft trajectories taking three or more dimensions into account.

Note that we do not deal with the issues of how the trajectories are generated (e.g., [65]), queries

on the individual objects or waypoints (e.g., [66, 68–70]), and matching (e.g., [71–73]).

In this chapter, we propose a novel framework for clustering aircraft trajectories that is

based on divide, cluster, and merge tasks. The framework consumes a set of multidimensional

trajectory points pertaining to a particular flight, divides them based on flight phases, clusters

them in isolation, and merges them. By performing lateral and vertical smoothing, the framework

generates a representative trajectory, the model, capturing the behavior of aircraft.

In summary, the contributions of this chapter are as follows:

• Our unique approach enables accurately clustering of three or more dimensional aircraft tra-
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jectories by employing a divide-cluster-merge framework. Whereas the very limited amount

of previous research address clustering of aircraft trajectories with two dimensions, only.

• We present a formal aircraft trajectory clustering algorithm based on well-known aviation

domain facts. We also present a representative trajectory algorithm that reveals the trajectory

model based on lateral and vertical smoothing.

• We demonstrate by using a real aircraft trajectory dataset that our framework effectively

performs clustering and discovers the representative trajectory.

The rest of this chapter is organized as follows. Section 4.2 discusses related work. Sec-

tion 4.3 describes our novel algorithm for the aircraft trajectory clustering problem. Section 4.4

presents the results of experimental evaluation. Conclusions directions for future work are outlined

in Section 4.5.

4.2 Related Work

Although there is a vast amount of literature in the data mining area, with regards to clus-

tering trajectories, there is only a limited number of research on clustering aircraft trajectories. Of

this research, there is no work addressing the clustering of aircraft trajectories taking three or more

dimensions into account, to the best of our knowledge.

Clustering algorithms can be considered in four major categories: partitioning based meth-

ods (e.g., k-means [91]), density-based methods (e.g., DBSCAN [89]), hierarchical methods

(e.g., BIRCH [94]), and grid-based methods (e.g., STING [93]). Once the aircraft trajectories

are divided into flight phases, our DICLERGE framework uses k-means to perform clustering and

merges them together.

One of the previous research, TRACLUS [90] proposes Partition-and-Group framework
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that is similar to ours in a sense that it partitions the trajectories into subtrajectories. However,

in their approach, subtrajectories are represented by line segments and grouped together using a

distance function. Besides, unlike ours, their clustering algorithm is density based.

In their research, Gariel et al. [101] proposed a way point based trajectory clustering to

monitor the airspace and its conformance. Although their approach was an efficient way to de-

termine the compliance of flown trajectories with published trajectories, they focused on the 2-D

coordinates of the way points in the (x,y) plane, disregarding the 3rd and higher dimensions of the

trajectory points. Eckstein [103] presented an automated flight taxonomy. With their approach,

they first resampled the trajectories and then clustered using k-means on a reduced order model,

attained by Principal Component Analysis (PCA). Eckstein used only first two PCs, omitting the

others.

Leiden et al. [102] presented two trajectory clustering algorithms for metroplex applica-

tions. The first algorithm they developed used a well-known image processing technique, ridge

detection. One of the major shortcomings of their first algorithm was that it was unable to identify

a backbone route where no ridge existed. Given the shortcomings of their first algorithm, they

implemented a second algorithm that was based on k-means clustering. However, they only eval-

uated their results qualitatively. They never performed a quantitative evaluation using the model

itself.

In their effort, Brinton et al. [100] investigated the automated partitioning of airspace into

sectors so that sufficient resources could be allocated to meet the demand. They used Dynamic

Density metrics and utilized a weighted euclidean distance function to address the constrained

clustering problem. However, they never compared their results with a true optimal solution. So,

the outcome appeared to be inconclusive.

In their study, Hansen et al. [104] perform aircraft trajectory clustering to consolidate
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historical flight tracks into a small set, which were used as ground truth when predicting aircraft

trajectory choice.

4.3 Aircraft Trajectory Clustering

In this section, we present an overview of our design. Section 4.3.1 formally describes

the problem statement. Section 4.3.2 provides a skeleton of our trajectory clustering framework,

DICLERGE. Section 4.3.3 elaborates on the AircraftTrajectoryClustering algorithm, which is a

subtask of DICLERGE. Section 4.3.4 discusses the RepresentativeTrajectory algorithm, which is

another subtask of DICLERGE, generating a representative trajectory.

4.3.1 Problem Statement

We implement an algorithm, DICLERGE that is based on the idea of divide, cluster, and

merge. Given a set of multidimensional trajectory points pertaining to a particular flight, our

framework executes a number of efficient and effective algorithms to generate a set of clusters as

well as a representative trajectory. Aircraft trajectory, phases of flight, cluster and representative

trajectory are defined as follows:

Definition 4.1: Aircraft trajectory An aircraft trajectory is a set of multidimensional points,

where each point is defined by its 4-dimensions, latitude, longitude, altitude, and time. Addi-

tional dimensions such as airspeed and weather conditions may also be used.

Definition 4.2: Phases of flight Although there are at least five phases of flight which are taxi,

climb, en-route, descent, and landing from the aviation standpoint, we will consider only three

here as we are interested in wheels-up phases, only. These phases are climb, en-route, and descent.

Climb phase refers to an aircraft’s climbing to a certain altitude (typically 30,000 ft). En-route is

76



the level portion of aircraft between climb and descent phases. A descent during flight is the phase

where an aircraft decreases altitude to approach landing.

Definition 4.3: Cluster A cluster is a set of multidimensional points pertaining to aircraft trajec-

tories with commonality that are grouped together.

Definition 4.4: Representative trajectory A representative trajectory is a set of cluster centroids,

filtered and connected together to best represent the underlying trajectories. It is an imaginary

trajectory for representation purposes only.

Figure 4.1 shows the overall procedure of aircraft trajectory clustering in the divide-cluster-

merge framework. To better illustrate the flight phases, a vertical profile of a flight is used. First,

a set of aircraft trajectories are divided into climb, en-route, and descent phases. Then, points per

phase are clustered in isolation. Finally, the clusters and representative centroids are accumulated

together, forming the entire set for the original trajectories.

4.3.2 DICLERGE Algorithm

Algorithm 4.1 illustrates the skeleton of our trajectory clustering framework, DICLERGE.

It goes through three phases by executing a number of algorithms to perform divide, cluster, and

merge subtasks. In addition, Representative Trajectory is generated by applying lateral and vertical

smoothing processes. These algorithms are elaborated in the following sections.

4.3.3 Clustering Algorithm for Air Traffic Data

We now present our clustering algorithm for air traffic data. Given a set D of multidimen-

sional trajectory points, our algorithm generates a set of clusters, defined by their centroids. The

input parameters for the algorithm are multidimensional observation set and a number of clusters
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Fig. 4.1: The overall procedure of aircraft trajectory clustering using DICLERGE framework
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Algorithm 4.1: DICLERGE (DIvideCLustermERGE)
Result: Representative trajectory RTR

Input : A set of multidimensional trajectory points D, number of clusters per flight

phase kClimb, kEnroute, kDescent, max delta bearing maxDBearing

Output: A set of clusters O, a set of centroids CP , a representative trajectory RTR

/* Algorithm AircraftTrajectoryClustering */

/* DIVIDE */

1: for each P ∈ D do

2: Divide D into a set of TR

3: Divide each trajectory tr into three phases

4: Accumulate each phase

5: end for

Get three sets of points

/* CLUSTER */

6: Perform k-means clustering on each set

Get sets of clusters per point set

Get a centroid per cluster

/* MERGE */

7: Accumulate sets of clusters, centroids

Get clusters, O

Get centroids, CP

/* Algorithm RepresentativeTrajectory */

8: Apply lateral smoothing

9: Apply vertical smoothing

Get a representative trajectory, RTR
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per flight phase. Our algorithm is based on k-means clustering. However, instead of feeding in

the entire dataset, the algorithm divides the input data into three chunks, each representing one

of three flight phases and performs clustering on each chunk in isolation. The output clusters and

representative centroids per chunk are then merged together.

4.3.4 Representative Trajectory

Our algorithm shares partitioning characteristic with the Mini Batch k-means algorithm

[105]. However, unlike Mini Batch k-means, which randomly splits the dataset into smaller sub-

sets, we divide the dataset with a well-known domain fact in mind; flight consists of three phases:

climb, en-route and descent. Due to fact that aircraft’s altitude increases at each observation dur-

ing the climb, remains fixed during the en-route, and decreases during the descent phase, and that

points per phase are spatially correlated, feeding the entire dataset at once to k-means results in

overfitting, generating erroneous centroids.

Algorithm 4.2 shows AircraftTrajectoryClustering. Initially, all the points are assumed to

be unclustered. As the algorithm progresses, clusters are formed and a centroid per cluster is

computed. The algorithm consists of 3 steps: In the first step (lines 1∼7), the algorithm determines

the first and last data recording for each trajectory by comparing its timestamp, as the timestamp of

the first data point of the first trajectory will always be less than the timestamp of the first data point

of the following trajectory (of the same flight which is usually scheduled for the next day). By

splitting each sorted trajectory data in half, en-route altitude is determined, which is basically the

median altitude of all trajectory points’. In the second step (lines 8∼20), the algorithm identifies

the start and end indices of the en-route phase. This goal is attained by performing binary search

on the sorted (by timestamp) list of data points. The leftmost occurrence of en-route altitude is

the start, and the rightmost occurrence of en-route altitude is the end of the en-route phase of the
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Algorithm 4.2: AircraftTrajectoryClustering
Result: A set of cluster centroids

Input : A set of multidimensional trajectory points D, number of clusters per flight

phase kClimb, kEnroute, kDescent

Output: A set of clusters O, a set of centroids CP

1 flight← ∅, flightClimb← ∅, flightEnroute← ∅, flightDescent← ∅

2 previousDate← 01011001

3 p← latitude, longitude, altitude, dateT ime

4 foreach p ∈ D do

5 if p.date = previousDate then

6 previousDate← p.date

7 if flight 6= ∅ then

8 enrouteAltitude← p(length(flight)/2).altitude

9 enrouteStart← BinSearchLeftmost(flight, enrouteAltitude)

10 enrouteEnd← BinSearchRightmost(flight, enrouteAltitude)

11 flightClimb.add(flight.slice(0, enrouteStart− 1))

12 flightEnroute.add(flight.slice(enrouteStart, enrouteEnd))

13 flightDescent.add(flight.slice(enrouteEnd, length(flight)− 1)

14 flight← ∅

15 flight.add(p)

16 end

17 else

18 previousDate← p.date

19 flight.add(p)

20 end

21 end

22 end
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23 centroidClimb← kmeans(flightClimb, kClimb);

24 centroidEnroute← kmeans(flightEnroute, kEnroute);

25 centroidDescent← kmeans(flightDescent, kDescent);

26 centroids← centroidsClimb+ centroidsEnroute+ centroidsDescent;

flight. This enables the algorithm to compute the climb and descent phases of the flight, as index

0 to start of the en-route phase identifies the climb and the end of the en-route phase to the end of

the flight identifies the descent phase. The algorithm retains a global array per phase, by adding

the relevant data points per flight. This way, all data points for each phase are accumulated and

stored in a relevant array. In the final step (lines 21∼24), the algorithm uses the array of data

points along with a number of clusters per phase as input to the k-means clustering. The process

fits the model using Euclidean distance and determines to which cluster each data point belongs.

Upon convergence, the final set of centroids per flight phase are computed, which are merged to

form the final list.

The representative trajectory of a cluster captures the overall movement of the aircraft based

on trajectory data records. Once centroids are generated upon clustering, consecutive centroids

are connected to model the behavior of the aircraft. This requires omitting the abnormal centroids

while connecting the valid ones to most accurately represent the overall movement of the aircraft

with a single trajectory.

Algorithm 4.3 generates the representative trajectory in two steps. During the first step,

(lines 1∼18), the algorithm performs the lateral smoothing. This goal is attained by keeping a

domain fact in mind that aircraft usually fly straight and keep the delta bearing at minimal when

they make turns. In the second step, (lines 19∼23), the vertical smoothing is done. This step takes

advantage of the aircraft trajectory property: aircraft usually maintain the cruise level at or above
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Fig. 4.2: Lateral smoothing

30,000 feet between the top of climb and the top of descent.

The input to the algorithm is a set of centroids sorted in the direction of departure to ar-

rival airports. The default maximum delta bearing the aircraft is allowed to turn is a constant,

maxDBearing, which is an input to the algorithm. The algorithm basically computes the bearing

between two centroids at a time, as it traverses them. If the absolute value of the difference be-

tween the current and previous bearing is less than or equal to the maximum delta bearing, which

is the lateral smoothing factor, the current centroid is appended to the representative trajectory.

Otherwise, the current centroid is skipped and the next centroid is considered. The bearing is

computed using the the Haversine equation [106] equation and the initial bearing is calculated

using the latitude, longitude pairs of the departure and arrival airports.

The simplistic process is illustrated in Figure 4.2. The bearing between the departure (Cd)

and arrival airports (Ca) is 154 degrees. The bearing between departure airport and the next cen-

troid (C1) is 143 degrees. Given the delta bearing is 11 degrees, which is less than maxDBearing,

30 degrees, C1 is appended to the Representative Trajectory. The next centroid to be considered

is C2. Hence, the algorithm computes the bearing between C1 and C2. Since the bearing between
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Fig. 4.3: Vertical smoothing

the two centroids is 65 degrees, the delta bearing is 143-65=78 degrees, which is greater than the

maximum delta bearing. Therefore, the algorithm skips C2 and computes the bearing between

C1 and C3. Due to fact that the bearing is 157 degrees, which means that the delta bearing is

157-143=14 degrees, the third centroid is appended to the Representative Trajectory. The process

stops when the arrival airport is reached. The resulting set of centroids forms the lateral profile of

the Representative Trajectory.

Vertical smoothing is done in the next step. The sorted centroids with regards to their lateral

profile in the direction of departure to arrival airport are fed into a binary search function, where the

function searches for the leftmost occurrence of altitude that is greater than or equal to 30,000 feet.

The index of the leftmost occurrence is stored. The rightmost index is also searched and stored

the same way. All centroids in between these two indices are sliced, forming the en-route phase of

the Representative Trajectory. The mean value for their altitudes is computed. The mean altitudes
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Algorithm 4.3: RepresentativeTrajectory
Result: A representative trajectory

Input : A set of centroids, each representing a cluster CP , max delta bearing

maxDBearing

Output: A representative trajectory RTR

1 initial← True, repTrajectory ← ∅,maxDeltaLateral←

30.0, enrouteAltitude← 30000, prevPos← 0.0, 0.0, 0.0, prevBearing ←

haversine(deptAirportLon, deptAirportLat, arrAirportLon, arrAirportLat)

2 foreach ct ∈ CP do

3 if initial then

4 prevPos← ct.latitude, ct.longitude, ct.altitude

5 repTrajectory.append(prevPos)

6 initial← False

7 continue

8 end

9 bearing ← haversine(prevPos.lon, prevPos.lat, ct.longitude, ct.latitude)

10 if abs(bearing − prevBearing) ≤ maxDBearing then

11 prevBearing ← bearing

12 prevPos← ct.latitude, ct.longitude, ct.altitude

13 if prevPos /∈ repTrajectory then

14 repTrajectory.append(prevPos)

15 end

16 end

17 end
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18 enrouteStart← BinSearchLeftmostGT (repTrajectory, enrouteAltitude);

19 enrouteEnd← BinSearchRightmostGT (repTrajectory, enrouteAltitude);

20 avgEnrouteAltitude←

avg(repTrajectory.slice(enrouteStart, enrouteEnd).altitude);

21 setAlt(repTrajectory.slice(enrouteStart, enrouteEnd))←

averageEnrouteAltitude;

22 repTrajectory ← repTrajectory.slice(0, enrouteStart− 1) +

repTrajectory.slice(enrouteStart, enrouteEnd) +

repTrajectory.slice(enrouteEnd, length(flight)− 1);

for each of the en-route centroids are replaced with the original altitudes. This process completes

the vertical smoothing and yields the final Representative Trajectory. Figure 4.3 captures the

before and after view of vertical smoothing process in a simplistic way. The left figure shows ever

changing cruise altitude in the form of a rugged line in the vertical profile. In the right figure, the

cruise altitude is fixed, presenting a realistic vertical profile.

4.4 Experimental Study

In this section, we conduct experiments to validate the effectiveness of our aircraft trajectory

clustering algorithm, DICLERGE. We describe the experimental dataset preparation and environ-

ment in Section 4.4.1. We discuss the results for the clustering process as well as the effects of

parameter values in Section 4.4.2.
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Fig. 4.4: Clustering of aircraft trajectories with and without DICLERGE framework

4.4.1 Dataset Preparation

We used a real aircraft trajectory dataset: The Delta Airlines’ flight DAL1865, departing

from Hartsfield-Jackson Atlanta International Airport (KATL) and arriving at Miami International

Airport (KMIA) for the duration of January through June 2015. The dataset has a total of 168

trajectories and 25036 points. ATL to MIA is one of the major routes in the NAS due to fact

that the departure airport is the busiest airport in the United States and the flights are prone to

frequent convective weather in the airspace controlled by Miami Air Route Traffic Control Center

(ARTCC).

The source of the surveillance data is Aircraft Situation Display to Industry (ASDI) [107]

provided in near real-time by the FAA. The surveillance part of the data was generated by merging

a subset of various ASDI message types including: departure information, track information, and

flight management information. In order to fuse weather parameters with surveillance data during

the scheduled hours, we also obtained weather data. The source of the weather data was National
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sregular sclimb senroute sdescent

0.678 0.557 0.702 0.565

Tab. 4.1: Silhouette Coefficients

Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction

(NCEP) Rapid Refresh product [108], an hourly-updated modeling system operational at NCEP.

This way, each trajectory point for flight DAL1865 was associated with weather parameters yield-

ing the following attributes per trajectory point: source center, source date, source time, aircraft

id, aircraft speed, latitude, longitude, altitude, temperature, wind speed, and wind direction.

Our experiments were conducted on a Oracle VM VirtualBox v4.3.20 virtual machine run-

ning on Linux Ubuntu 14.04.2 64-bit LTS Operating System hosted by a computer with Intel Core

i7-3840QM CPU @ 2.80GHz and 16GB memory, running on Microsoft Windows 7 Operating

System. All the algorithms in our system were implemented in Python v2.7.

4.4.2 Results for the Aircraft Trajectory Data

Our assessment included running k-means clustering with and without the DICLERGE

framework on the DAL1865 trajectory data. For the clustering process, we used k=20 for both

executions. Our attempt was to measure the clustering results quantitatively and qualitatively for

each execution.

Unfortunately, there is no well-defined measure for quantitative evaluation due to fact that

the ground truth labels are not known. Hence, we performed the evaluation using the model, itself.

The Silhouette Coefficient is a way of such an evaluation, where a higher coefficient score relates

to a model with better defined clusters [109].

We computed the coefficient for regular k-means clustering (sregular). We also computed

the coefficients for the DICLERGE framework on climb (sclimb), enroute (senroute), and descent
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Fig. 4.5: Representative trajectory

(sdescent) phases. Table 4.1 indicated that the clustering quality of regular k-means was higher

than the DICLERGE framework’s climb and descent phases. However, it was lower than the

DICLERGE framework’s en-route phase.

For the qualitative measure, we used visual inspection and domain knowledge. The out-

come of the execution without the DICLERGE framework is captured on Figure 4.4a. This ex-

ecution treated the entire trajectory as a whole, generating centroids concentrated in the center.

Whereas DICLERGE framework divided the trajectories into 3 phases first, clustered each set in

isolation and merged them together at the end. For the k=20, we used kClimb=4, kEnroute=10, and

kDescent=6 as the optimal parameters. The outcome of this execution is illustrated on Figure 4.4b.

It is obvious that the Figure 4.4 on the right presents a better clustering as the centroids

follow a more linear pattern from departure to arrival airport, lining up toward the bottom of the

trajectory set where the trajectory points are denser.

To generate representative trajectory, we ran our algorithm and obtained the result illustrated

in Figure 4.5. The representative trajectory shown with red on Google Earth [110] is overlaid on
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top of the trajectory set, providing a model for the movement of the flight over the period of 6

months.

The heuristic in selecting the number of clusters per flight phase depends on the number

of trajectory points per phase. We maintain the ratio of the number of trajectory points in each

phase to the total trajectory points and map that to the pertinent parameters, kClimb, kEnroute,

and kDescent. Our heuristic for selecting the lateral smoothing parameter is based on the level

of smoothing we would like to perform. Due to fact that our trajectory is prone to convective

weather, which means that aircraft may perform drastic turns to avoid the convection, we set our

lateral smoothing to a relatively larger value which was 30 degrees.

4.5 Conclusion

This chapter presented the DICLERGE framework for clustering multidimensional aircraft

trajectory data and discovering the representative trajectory upon lateral and vertical smoothing.

Our experiments with the real trajectory dataset showed the effectiveness and efficiency of DI-

CLERGE framework and its advantages over the regular k-means clustering for the aircraft trajec-

tory data.

Note that this study is just a milestone for trajectory prediction and we plan to utilize our

work toward predictive and prescriptive analytics of multi-dimensional aircraft trajectory data.
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Chapter 5

Time Series Clustering

Reliable trajectory prediction is paramount in Air Traffic Management (ATM) as it can

increase safety, capacity, and efficiency, and lead to commensurate fuel savings and emission

reductions, minimizing the environmental impact of aviation. Inherent inaccuracies in forecasting

winds and temperatures often result in large prediction errors especially when a deterministic

approach is used. A stochastic approach can address the aircraft trajectory prediction problem

by taking environmental uncertainties into account and exploiting machine learning techniques to

train a model using historical trajectory data along with weather observations. With this approach,

weather observations are assumed to be realizations of hidden aircraft positions that is trajectory

segments and the transitions between the underlying hidden segments follow a Markov model.

However, this approach requires input observations, which are unknown, although the weather

parameters overall are known for the pertinent airspace. We address this problem by performing

time series clustering on the current weather observations for the relevant sections of the airspace.

In this chapter, we present a novel time series clustering algorithm that generates an optimal

sequence of weather observations used for accurate trajectory prediction in the climb phase of the

flight. Our algorithm computes a cost value for each weather observation based on its frequency



per time period, ranks, and stores them in a matrix. Using Dynamic Programming (DP), the algo-

rithm computes the optimal sequence of weather observations, a set with the minimum cumulative

cost that satisfies the continuity constraint. Our experiments use a real trajectory dataset with per-

tinent weather observations and demonstrate the effectiveness of our algorithm over time series

clustering with a k-Nearest Neighbors (k-NN) algorithm that uses Dynamic Time Warping (DTW)

Euclidean distance.

5.1 Introduction

Trajectories are usually discussed for cars along roads [64] with an emphasis on queries

(e.g., [66, 67, 72, 73]), Here we are interested in aircraft trajectory prediction which is a crucial

process for Air Traffic Control (ATC) as the more accurate and reliable the predicted trajectories

the more safe and efficient the deconfliction of flights. In order for ATC to attain this goal, the tra-

jectory prediction tools should be able to provide high levels of accuracy for an adequate horizon

of time. Although prior trajectory prediction research and development activities have been able

to meet the challenge to some extent, dealing with congested airspace and environmental factors

still remains the challenge when a deterministic approach is used in trajectory prediction process

[111–115]. Hence due to the uncertainties contributing to trajectory prediction errors, we take a

stochastic approach to address these issues. The past efforts addressing aircraft trajectory predic-

tion using probabilistic methods are similar to our approach in a way that they aim at modeling

uncertainties to describe potential changes in the future trajectory of an aircraft. However, many

of them [116–121] either lack empirical validation or use a simulated set of aircraft trajectories

instead of actual track data in their evaluations.

We define airspace as a set of spatio-temporal cuboids where each cuboid is considered as

an atomic unit. Weather parameters such as temperature, wind speed, wind direction, and humid-
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ity considered homogeneous within the cuboid during a period of time. Other parameters that

describe the cuboid include its center coordinates (latitude, longitude, altitude) along with a time

stamp. These spatio-temporal cuboids form the overall airspace. Next, we adapt historic raw tra-

jectories to the cuboids. Using adapted trajectories in the form of 4D joint cuboids, we train our

model with the historical data and choose a state sequence that best explains the current weather

observations. Due to the nature of interconnected cuboid centroids forming a trellis, we use the

Viterbi algorithm [122] to efficiently generate the optimal trajectory by joining the multiple seg-

ments together, where one segment is only dependent on the previous segment. However, the

Viterbi algorithm requires input observations, which are unknown in our problem space, although

the weather parameters overall are known for the pertinent airspace. One way to address this

problem is by performing clustering on the current weather observations that yields the input ob-

servations. However, standard clustering techniques generate clusters that are largely independent

of the time series from which they originate [123].

We use time series clustering approach to this problem. We basically perform time series

clustering on the current weather observations for the cuboid centroids that were traversed by

historic trajectories. Before the process, we split the current weather observations into buckets

and then execute our algorithm. Our time series clustering algorithm computes a cost value for

each weather observation based on its frequency per time period, and ranks them. The process

yields a matrix, where each matrix element corresponds to a weather observation with its cost.

Using DP, our algorithm computes the optimal sequence of weather observations, a set with the

minimum cumulative cost that satisfies the continuity constraint. We finally feed the output cluster

into the Viterbi process to probabilistically generate the best sequence of trajectory segments.

Our experiments use a real trajectory dataset with pertinent weather observations and demon-

strate that our algorithm outperforms time series clustering with a k-Nearest Neighbors (k-NN)
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algorithm that uses DTW Euclidean distance [77]. The results suggest that our algorithm can be

of significant value for predicting aircraft trajectories even during the climb phase of the flight.

Trajectory prediction for the climb and descent phases of flight is difficult because of the uncer-

tainty of rates of climb and descent due to the effects of outside air temperature on engine power

and therefore climb/descent rates. Hence accurate trajectory prediction of climb phase is more

challenging than the cruise phase of the flight due to fact that the wind in the vertical direction

varies more and the length of time in the varying winds is difficult to forecast. Also, parameters

such as mass and flight management system settings have a significant impact on vertical motion

but little on the horizontal.

In summary, the contributions of this study are as follows:

• We propose a novel time series clustering algorithm that is based on a cost value computed

by the frequency of weather observations at each time period. Next, we feed the series of

cluster centroids as observations into our aircraft trajectory prediction system that is based

on a stochastic model, HMM to predict trajectories for the climb phase of a flight.

• We conduct experiments based on actual track data and weather observations and demon-

strate that our time series clustering algorithm outperforms time series clustering with k-NN

algorithm that uses DTW Euclidean distance by yielding cluster centroids that result in more

accurate trajectory predictions for the climb phase of a flight.

The rest of the chapter is organized as follows. Section 5.2 presents generic time series

clustering and discusses our algorithm. Section 5.3 details experiments by comparing our time

series algorithm against the state-of-the-art k-NN algorithm that uses DTW Euclidean distance.

Section 5.4 concludes the chapter.
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5.2 Time Series Clustering

The time series clustering aids in the trajectory prediction process. Section 5.2.1 presents

the background in time series clustering and Section 5.2.2 discusses our algorithm in detail.

5.2.1 Background

Clustering is the general problem of partitioning a set of observations into a number of

homogeneous groups where the similarity is minimized within the group and the dissimilarity is

maximized between the groups [124]. Han et al. classified clustering methods into five categories:

partitioning, hierarchical, density-based, grid-based, and model-based methods [125].

A partitioning method generates k partitions from n unlabeled data tuples, where k ≤ n.

Major heuristics in partitioning methods are k-means [126], k-medoids [127], fuzzy c-means

[128], and fuzzy c-medoids [129]. A hierarchical method groups data into a tree of clusters. There

are two major hierarchical clustering methods: agglomerative and divisive. Chameleon [130],

CURE [131], and BIRCH [132] are part of the hierarchical methods. Density-based methods

keep growing a cluster until the density in the neighborhood reaches some threshold. DBSCAN

[133] and OPTICS [134] belong to density-based methods. Grid-based methods divide the object

space into a set of grid cells on which the clustering operations are performed. STING [135] is

part of the grid-based clustering methods. Model-based clustering methods assume a model for

each of the clusters and attempt to best fit the data to the model. There are two major model-based

methods: statistical and neural network. AutoClass [136], ART [137], and self-organizing maps

[138] are three approaches to the model-based clustering methods.

A time series is a sequence of real numbers collected at regular intervals over a period of

time. Time series clustering is a critical analysis technique which can be used as a preprocessing
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step for further data mining and it mostly relies on classic clustering methods, either by replacing

the default distance measure with an alternative one or by transforming time series into static data

so that classic clustering methods can be directly used [124]. Liao et al. [124] classified time

series clustering approaches into three major categories: i) raw-based [139–141], ii) feature-based

[142–144], and iii) model-based [145–147] approaches, depending on whether they work directly

with raw data, indirectly with features extracted from the raw data, or indirectly with models built

from the raw data. In this study, we follow a raw-based approach.

Although many clustering criteria to identify the similarity and dissimilarity have been pro-

posed, the minimum within the cluster sum of squared distances is the most commonly used

measure [148]. To represent a cluster, a centroid is used that is defined as the data point that

minimizes the sum of squared distances to all other points. Hence, using the distance measure

is critical in computing centroids. Finding such a centroid is known as the Steiner’s sequence

[149]. The centroid is computed with the arithmetic mean property, when Euclidean distance is

used [150]. In the realm of time series clustering, DTW is the most widely used measure to com-

pare time-series sequences with alignment [140]. Hence, we evaluate our time series clustering

algorithm by comparing it against the state-of-the-art k-NN algorithm that uses DTW Euclidean

distance. Unfortunately, using an arithmetic mean to find a single representative data point for

each time interval along the time series often doesn’t generate an accurate centroid as we present

in Section 5.3.

5.2.2 Time Series Clustering Algorithm

In this section, we propose a novel time series clustering algorithm for multivariate weather

observations of the same length to aid in the aircraft trajectory prediction process.

Suppose we have a time series of weather observations between departure and arrival air-
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ports for the same flight over a period of time. We can represent this time series with an n x m

matrix, where each row contains a set of periodic weather observations recorded along the air-

craft’s trajectory as the flight progresses. As the flight takes place the next time, a new row is

added to the matrix. Assuming that the flight occurs once a day, each matrix cell corresponds to

an observation recorded at a particular time interval during the flight in a particular day. Note that

each observation is composed of the major weather parameters affecting the aircraft trajectory,

that is temperature, wind speed, wind direction, and humidity. Given those observations, we want

to trace an optimal weather observation path that best represents the underlying observation set.

This objective translates to finding a single representative centroid for each time interval along the

time series and optimally concatenating them as we move forward.

Formally, given n observation sets, each with length of m, O1 = [o1,1, o1,2, ..., o1,m],

O2 = [o2,1, o2,2, ..., o2,m], ... On = [on,1, on,2, ..., on,m], we want to come up with the opti-

mal observation path, OOP = [oi,1, oj,2, ..., ok,m], which is subject to continuity constraint that is

defined as:

Continuity: Given oi,j = (a, b), then oi,j−1 = (a′, b′), where a−a′ ≥ 0 and b−b′ ≥ 0. This

restricts the allowable steps in the observation path to adjacent cells (including diagonal adjacent

cells).

There are exponentially many observation paths that satisfy the continuity constraint. How-

ever, we are only interested in the path, OOP that minimizes the cumulative cost denoted by

OOP = arg min
c

m∑
i=1

ci

where cost of a cell ci,j is computed based on the pertinent observation’s frequency at that time

period.

To solve the optimization problem, we perform preprocessing by computing: i) Column-

wise observation counts Coc, and column-wise maximum observation counts Cmoc, ii) A costs
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Algorithm 5.1: OBSERVATIONPATHS
Input: observation matrix Om

Output: observationPaths op

1: Coc← {}, Cmoc← {}, Cm← {}, Pm← {} // columnwise observation counts,

columnwise max observation counts, costs matrix, and pointers matrix, respectively

/* STEP 1: Compute counts */

2: for c ∈ Om.cols do

3: Coc.o← COUNT(o ∈ c)

4: end for

5: for c ∈ Om.cols do

6: Cmoc.c←MAX(Coc)

7: end for

/* STEP 2: Build pointers and costs matrices */

8: while c 6= 0 (c← |Om.cols|-1) do

9: for r ∈ Om.rows do

10: Cm[r][c]← Cmoc[c] - COUNT[Om[c]]

11: if c 6= |cn−1| then

12: if r = 0 then

13: mn←MIN(Cm[r][c+1], Cm[r+1][c+1])

14: Cm[r][c]← Cm[r][c] + mn

15: if mn = Cm[r][c+1] then

16: Pm[r][c].concat(r, Om[r][c+1])

17: end if
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18: if mn = Cm[r+1][c+1] then

19: Pm[r][c].concat(r+1, Om[r+1][c+1])

20: end if

21: else if r = |Om.rows|-1 then

22: mn←MIN(Cm[r-1][c+1], Cm[r][c+1])

23: Cm[r][c]← Cm[r][c] + mn

24: if mn = Cm[r-1][c+1] then

25: Pm[r][c].concat(r-1, Om[r-1][c+1])

26: end if

27: if mn = Cm[r][c+1] then

28: Pm[r][c].concat(r, Om[r][c+1])

29: end if

30: else

31: mn←MIN(Cm[r-1][c+1], Cm[r][c+1], Cm[r+1][c+1])

32: Cm[r][c]← Cm[r][c] + mn

33: if mn = Cm[r-1][c+1] then

34: Pm[r][c].concat(r-1, Om[r-1][c+1])

35: end if

36: if mn = Cm[r][c+1] then

37: Pm[r][c].concat(r, Om[r][c+1])

38: end if
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39: if mn = Cm[r+1][c+1] then

40: Pm[r][c].concat(r+1, Om[r+1][c+1])

41: end if

42: end if

43: end if

44: end for

45: c← c-1

46: end while

/* STEP3: Compute observation paths */

47: procedure ObsPathsDp(psf , r, c, cc)

Procedure is detailed in the next algorithm

48: end procedure

49: ic← s ∈MIN(Cm.cols[0])

50: for ic ∈ ic[0] do

51: p← [Om[ic][0]]

52: ObsPathsDp(p, ic, 0, Cm[ic][0])

53: end for
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Algorithm 5.2: OBSERVATIONPATHS DP
/* STEP3: Compute observation paths */

1: procedure ObsPathsDp(psf , r, c, cc)

Input: pathSoFar psf , row r, colmn c, cumulativeCount cc

Output: observationPaths op

2: if c = |Om.cols|-1 then

3: return op← psf , (c + Cm[r][c])

4: end if

5: for p ∈ Pm[r][c] do

6: psf .concat(p[1])

7: ObsPathsDp(psf , p[0], c+1, cc + Cm[r][c])

8: psf .pop(-1)

9: end for

10: end procedure
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matrix Cm of size n x m where each matrix cell corresponds to a cost value, and a pointers ma-

trix Pm of size n x m where each matrix cell corresponds to the adjacent observation (including

diagonally adjacent), the original observation can connect to. Next, we perform dynamic pro-

gramming in reverse order i.e. beginning with the last column to iteratively select the next weather

observation that satisfies both conditions, continuity and minimum cumulative cost at each time

period of the series.

Algorithm 5.1 illustrates the preprocessing steps in lines 1 through 46 such that:

• For each column c, count the number of occurrences o(i, c) of each instance i in the column,

and find the instance i max occurring the maximum number of times o(i max, c) in the

column,

• For each cell (r, c) in column c, let it contain instance i. Then, compute the cost Cm(r, c)

as o(i max, c)− o(i, c).

• Starting from the last but one column, for each row r in each column c, add to the cost Cm

P (r, c), the minimum value of P (r− 1, c+ 1), P (r, c+ 1), P (r+ 1, c+ 1). Store a pointer

in cell (r, c) to the minimum of three cells.

In lines 49 through 53, Algorithm 5.1 iteratively calls the OBSPATHSDP procedure detailed

in Algorithm 5.2 to dynamically find the next optimal sequence such that:

• Find all paths by following the pointers, starting from the cell in the first column with

minimum cost, and ending in the last column.

To put in a better context, Figure 5.1 illustrates two time series of weather observations.

Clustering the time series on the left is relatively straight forward as the matrix cell with the

minimum cost per time period always connects to the next matrix cell with the minimum cost until
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Fig. 5.1: Observation sets.

the algorithm reaches the end. Hence there are many observation paths that satisfy both conditions,

resulting in 0 cumulative cost. The optimal observation path is formed by the observation sequence

of [Obs.1, Obs.1, Obs.2, Obs.3, Obs.3, Obs.4, Obs.3, Obs.2]. Clustering the time series on the

right is less straightforward as the matrix cell with the minimum cost per time period connects

to the next matrix cell with the minimum cost sequentially in the last-to-first column order until

the algorithm reaches Minute 3. Since the last observation in the sequence (Day 3,Minute 3)

doesn’t connect to neither of (Day 1,Minute 2) and (Day 5,Minute 2) which are the matrix cells

with the minimum cost, the algorithm relaxes its cumulative cost constraint to meet the continuity

constraint, and selects one of the Obs.2, Obs.3 for Minute 2 time period. Hence, the optimal

observation paths that satisfy both continuity and minimum cumulative cost conditions are [Obs.1,

Obs.2, Obs.2, Obs.3, Obs.3, Obs.4, Obs.3, Obs.2] and [Obs.1, Obs.3, Obs.2, Obs.3, Obs.3, Obs.4,

Obs.3, Obs.2]. Note that the observations with the minimum cost are illustrated with solid cells in

Figure 5.1.

Feeding the output cluster centroids into the Viterbi algorithm finalizes the process to prob-
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abilistically generate the best sequence of trajectory segments.

5.3 Experiments

In this section, we describe the experiments performed using our algorithm versus k-NN

clustering with DTW on the weather observations along the time series. To validate the effective-

ness, we conduct test cases and feed the output from both algorithms into the Viterbi process to

predict climb phase of aircraft trajectories.

Our experiments used real trajectory and weather data: The Delta Airlines’ flights DAL2173,

departing from Hartsfield-Jackson Atlanta International Airport (ATL) and arriving at Miami In-

ternational Airport (MIA) for the period of May 2010 through December 2015 were studied. The

dataset has a total of 1624 trajectories and 183797 points. Figure 5.2 shows 3D raw trajectories of

flight DAL2173 between Atlanta and Miami for the period of May 2010 through December 2015.

The main data sources for our Aircraft Trajectory Prediction System are the FAA’s Aircraft

Situation Display to Industry (ASDI) and NOAA’s RAP data, detailed in [46]. Before training

data processing, time series data interpolation and filtering processes took place that reduced the

number of historical recordings from 183797 to 137689. In the training data processing, we split

the weather parameters into buckets as shown in Table 5.1, 5.2, and 5.3. Next, the following

HMM parameters were computed:

• 7292 distinct states, S were generated.

• A sparse transition matrix, A of size 7292 x 7292 = 53173264 was generated.

• An emission matrix, B of size 495 x 7292 = 3609540 was generated.

• An initial matrix, π of size 38 x 1 was generated.
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Fig. 5.2: 3D raw trajectories of flight DAL2173 between Atlanta and Miami for the period of May 2010

through December 2015 in Google Earth. Climb phase is colored white, cruise and descent phases

are colored gray.

To evaluate our prediction system, we performed bootstrapping by drawing many trajectory

samples with replacement from the historical trajectories. The trajectory sample for May 18, 2015

was chosen at random to be used as an example of the process for trajectory samples.

In test data processing, we performed time series clustering, using DTW and our algorithm.

The input to the process was 1206 time series of 78 weather observations, where each observation

contained temperature, wind speed, wind direction, and humidity parameters. Our first round

evaluation tested the k-NN clustering with k=1 that used DTW Euclidean distance for the similarity

measure. The resulting set of cluster centroids for the first round evaluation identified by weather

parameters defined the first observation sequence Ys1. The second round evaluation tested our time

series clustering algorithm with the identical input. This defined the second observation sequence

Ys2.

As the final step of the process, we fed the first and second observation sequences, Ys1,
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Tab. 5.1: Buckets for temperature

Temperature (temp)

No Bucket Value (kelvin)

1 temp ≤ 220 220

2 220 < temp ≤ 240 240

3 240 < temp ≤ 260 260

4 260 < temp ≤ 280 280

5 280 < temp ≤ 300 300

6 300 < temp ≤ 350 350

Ys2, respectively along with pertinent HMM parameters into the Viterbi algorithm, one at a time.

The algorithm returned the optimal state sequence with the maximum probability per observation

sequence.

Our experiments were conducted on an Oracle VM VirtualBox v4.3.20 virtual machine run-

ning on Linux Ubuntu 14.04.2 64-bit LTS Operating System hosted by a computer with Intel Core

i7-3840QM CPU @ 2.80GHz and 16GB memory, running on Microsoft Windows 7 Operating

System. All the algorithms in our system were implemented in Python v2.7.

5.3.1 Results

Our evaluation was based on bootstrapping by drawing 7 trajectory samples with replace-

ment from the historical trajectories. This way, we performed two series of comparisons:

• We compared the cluster centroids generated by both time series algorithms against the

ground truth, the weather observations along the sample trajectories.

• We compared climb phases of the predicted trajectories aided by both algorithms against
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Tab. 5.2: Buckets for wind speed

Wind speed (ws)

No Bucket Value (knots)

1 ws ≤ 30 30

2 30 < ws ≤ 60 60

3 60 < ws ≤ 90 90

4 90 < ws ≤ 120 120

5 120 < ws ≤ 150 150

Tab. 5.3: Buckets for wind direction

Wind direction (wd)

No Bucket Value (degrees)

1 wd ≤ 45 45

2 45 < wd ≤ 90 90

3 90 < wd ≤ 135 135

4 135 < wd ≤ 180 180

5 180 < wd ≤ 225 225

6 225 < wd ≤ 270 270

7 270 < wd ≤ 315 315

8 315 < wd ≤ 360 360
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Tab. 5.4: Buckets for humidity

Humidity (hmdty)

No Bucket Value (percent)

1 hmdty ≤ 20 20

2 20 < hmdty ≤ 40 40

3 40 < hmdty ≤ 60 60

4 60 < hmdty ≤ 80 80

5 80 < hmdty ≤ 100 100

the ground truth, flight DAL2173’s aligned sample trajectories.

Then, we rank ordered the means to estimate the 2.5 and 97.5 percentile values for 95% CI.

Time series clustering with k-NN algorithm that uses DTW Euclidean distance correctly

found 34 centroids on the average out of full 78 original centroids formed by weather observations

temperature, wind speed, wind direction, and humidity of ground truth. This corresponds to 43.6%

accuracy. Time series clustering with our algorithm correctly found 55 centroids on the average out

of full 78 original centroids formed by weather observations of ground truth, which corresponds to

70.5% accuracy. Hence, our time series clustering algorithm outperformed time series clustering

with a k-NN algorithm that uses DTW Euclidean distance by 61.8%, in accuracy.

Figure 5.3 shows a lateral view of the actual aligned trajectories in white overlaid on top

of spatio-temporal cuboids for flight DAL2173’s climb phase on May 18, 2015, generated by

our trajectory prediction system. On the left, cuboids in red were generated upon time series

clustering of weather observations using k-NN with DTW algorithm. On the right, cuboids in blue

were generated upon time series clustering using our own algorithm. The predicted trajectory

in the form of spatio-temporal cuboids in red on the left substantially deviates from the aligned
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Fig. 5.3: Actual flown lateral trajectory in white overlaid on top of spatio-temporal cuboids for flight

DAL2173’s climb phase on May 18, 2015.(left) k-NN with DTW, (right) our algorithm.

trajectory in white as soon as the aircraft departs. The deviation from the aligned trajectory during

the departure is relatively less significant for the spatio-temporal cuboids in blue on the right. Both

sets of spatio-temporal cuboids in red and blue align well with the actual trajectories in white as

the flight progresses.

Figure 5.4 shows vertical profile of the actual aligned trajectory in yellow versus vertical

profiles of predicted trajectories for flight DAL2173’s climb phase on May 18, 2015. The vertical

profile in red was generated upon time series clustering with a k-NN algorithm that uses DTW

Euclidean distance. The vertical profile in blue was generated upon our time series clustering

algorithm. Deviation of the vertical profile in red from the actual aligned trajectory in yellow is

apparent. The vertical profile in blue aligns relatively well with the actual aligned trajectory in

yellow.

Our quantitative evaluation is based on trajectory prediction accuracy metrics, including

cross-track and vertical errors, as outlined in [151,152]. The cross-track error, denoted by ecross is

computed based on the actual position of the aircraft AC, predicted trajectory segment containing
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Fig. 5.4: Vertical profile of the actual flown trajectory in yellow versus vertical profiles of predicted trajec-

tories for flight DAL2173’s climb phase on May 18, 2015.

the previous predicted position TR1, current predicted position TR2, and the angle θ between

the two vectors,
−−−−−−→
|TR1AC| and

−−−−−−−→
|TR1TR2|. Hence, ecross =

−−−−−−→
|TR1AC|sinθ. The vertical error

represents the difference between the actual altitude of the aircraft AA and predicted altitude of

the aircraft PA. Hence, evert = AA− PA.

Table 5.5 captures mean error µ and standard deviation σ values for the entire trajectory

samples. The first two columns correspond to cross-track and vertical errors generated upon time

series clustering of weather observations using k-NN with DTW algorithm. The last two columns

correspond to cross-track and vertical errors generated upon time series clustering of weather

observations using our own algorithm. Note that both the cross-track and vertical errors are signed

errors. However, to better represent, the sign of the errors are omitted in the computation of the

mean values along the climb phase of the trajectory.

Figure 5.5 illustrates the histograms for cross-track errors for flight DAL2173’s climb phase

on May 18, 2015. On the left, the graph in red illustrates the histogram generated upon time series

clustering of k-NN with DTW algorithm. On the right, the graph in blue illustrates the histogram
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Tab. 5.5: Mean and standard deviation values for cross-track and vertical errors for flight DAL2173 on

trajectory samples.

k-NN Our algorithm

Mean error (µ)

µ(ecross) µ(evert) µ(ecross) µ(evert)

1.490nm 1697.042ft 0.982nm 259.588ft

Standard deviation (σ)

σ(ecross) σ(evert) σ(ecross) σ(evert)

3.100nm 1299.931ft 3.296nm 653.612ft

generated upon time series clustering of our own algorithm. The area of the histograms provides

an indication of overall performance.

To evaluate the behavior of trajectory prediction error over time, we also computed cross-

track errors based on look-ahead time for flight DAL2173’s climb phase on May 18, 2015, as

shown in Figure 5.6. Lines in red depicts the cross-track error over look-ahead time generated

upon time series clustering of weather observations using k-NN with DTW algorithm. Lines in

blue depicts the cross-track error over look-ahead time generated upon time series clustering of

weather observations using our own algorithm. This figure confirms the fact that the errors are

introduced not too long after the aircraft departs as illustrated in Figure 5.3.

5.4 Conclusion

The role and performance of a trajectory prediction system is critical to the success of the

ATC decision support functions which have substantial impact on ATM and airspace flow man-

agement. In this chapter, we presented a novel time series clustering algorithm that generates
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Fig. 5.5: Histograms for flight DAL2173’s climb phase on May 18, 2015. (left) k-NN with DTW, (right)

our algorithm.

Fig. 5.6: Cross-track errors over look-ahead time for flight DAL2173’s climb phase on May 18, 2015.

112



an optimal sequence of weather observations used in accurate trajectory prediction for the climb

phase of the flight. Our algorithm computes a cost value for each weather observation based on

its frequency per time period, and ranks them. The process generates a matrix, where each matrix

element corresponds to a weather observation with its cost value. Using DP, the algorithm com-

putes the optimal sequence of weather observations, a set with the minimum cumulative cost that

satisfies the continuity constraint. We evaluated our algorithm using a real trajectory dataset with

pertinent weather observations and demonstrated the effectiveness of it over time series clustering

with k-NN algorithm that uses DTW Euclidean distance.
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Part IV

Aircraft Trajectory Prediction, Conflict

Detection and Resolution
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Chapter 6

Aircraft Trajectory Prediction

At the heart of Air Traffic Management (ATM) lies the Decision Support Systems (DST)

that rely upon accurate trajectory prediction to determine how the airspace will look like in the

future to make better decisions and advisories. Dealing with airspace that is prone to congestion

due to environmental factors still remains the challenge especially when a deterministic approach

is used in the trajectory prediction process. In this chapter, we describe a novel stochastic trajectory

prediction approach for ATM that can be used for more efficient and realistic flight planning and

to assist airspace flow management, potentially resulting in higher safety, capacity, and efficiency

commensurate with fuel savings thereby reducing emissions for a better environment.

Our approach considers airspace as a 3D grid network, where each grid point is a location

of a weather observation. We hypothetically build cubes around these grid points, so the entire

airspace can be considered as a set of cubes. Each cube is defined by its centroid, the original

grid point, and associated weather parameters that remain homogeneous within the cube during a

period of time. Then, we align raw trajectories to a set of cube centroids which are basically fixed

3D positions independent of trajectory data. This creates a new form of trajectories which are 4D

joint cubes, where each cube is a segment that is associated with not only spatio-temporal attributes



but also with weather parameters. Next, we exploit machine learning techniques to train inference

models from historical data and apply a stochastic model, a Hidden Markov Model (HMM), to

predict trajectories taking environmental uncertainties into account. During the process, we apply

time series clustering to generate input observations from an excessive set of weather parameters

to feed into the Viterbi algorithm. Our experiments use a real trajectory dataset with pertaining

weather observations and demonstrate the effectiveness of our approach to the trajectory prediction

process for ATM.

6.1 Introduction

The goals of Air Traffic Control (ATC) are the safe and efficient management of aircraft.

The Air Navigation Service Provider (ANSP) in the USA, the FAA, is concerned with providing

optimal airspace capacity and efficiency within the National Airspace System (NAS). These goals

require the separation and sequencing of airborne aircraft by controllers who often use DSTs

to monitor the progress of each aircraft and resolve conflicts when necessary. Other controllers

monitor the future aggregate flows of aircraft traffic and using a DST implement flow management

decisions to ensure that the traffic density always remains within safe limits. At the core of these

automation tools resides the Trajectory Prediction (TP) tool, that given the aircraft initial state, its

flight plan and the wind and temperatures, computes where the aircraft will be in the future in four

dimensions. Inaccurate trajectory prediction can have a substantial impact on the performance of

the DST and the ATM system, resulting in

• larger separation standards that limit the number of aircraft that can be allowed in con-

trollers’ sectors and/or

• increased numbers of conflicts increasing the workload of the controllers and reducing their
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sector capacity and/or

• inefficient fuel consumption due to continual deviations to avoid other aircraft and/or

• adverse impact on the environment due to more fuel burn leading to more emissions.

As a consequence, the performance of the TP tool which supports the DSTs is critical to the

success of the DST functions.

Although prior trajectory prediction research and development activities have been able to

address the challenge to some extent, dealing with increasingly congested airspace and new envi-

ronmental concerns still remains the challenge when deterministic approach is used in trajectory

prediction process. Hence due to the nature of uncertainties that contribute to trajectory prediction

errors, in our research, we have taken a stochastic approach to address the trajectory prediction

issues.

We define airspace as a set of spatio-temporal data cubes where each cube is considered as

an atomic unit. Weather parameters such as temperature, wind speed, and wind direction remain

homogeneous within the cube during a period of time. Other parameters that describe the cube

include its center coordinates (latitude, longitude, altitude) along with a time stamp. These spatio-

temporal data cubes form the overall airspace. Then, we adapt raw trajectories to the cubes, by

aligning each trajectory vertex to the nearest cube centroid, inspired by the Realm method [153].

The process yields 4D joint cubes that can be considered as piecewise trajectory segments. Using

adapted trajectories in the form of 4D joint cubes, we train our model with the historical data

and choose a state sequence that best explains the current observations, the pertinent weather

parameters. This process corresponds to the Problem No.2 described in [154] where it attempts to

uncover the hidden part of the model, which is the optimal state sequence, given the observations.

Note that in the process, each segment is chosen from one of the many hidden segments and the
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occurrence of a hidden segment that underlines an observation is dependent on the hidden state

of the previous segment. Since our objective is to find the most likely trajectory, we use HMM

that is nothing more than a probabilistic function of a Markov process. Due to the nature of

interconnected cube centroids forming a trellis, we use the Viterbi algorithm [122] to efficiently

generate the optimal trajectory by joining the multiple segments together, where one segment is

only dependent on the previous segment.

Now, a critical question arises: What constitutes the input observations? or more impor-

tantly, among so many weather observations in the airspace volume of interest during the time

period of flight, which ones should be passed to the Viterbi process? We address this problem by

clustering the current weather observations for the cube centroids that were historically traversed.

Before the process, we split the current weather observations into buckets and then perform time

series clustering [77]. We finally feed the output cluster into the Viterbi algorithm to probabilisti-

cally generate the best state sequence.

In summary, the contributions of this study are as follows:

• We propose a novel way of representing aircraft trajectories, a set of 4D joint cubes gener-

ated upon an alignment and fusion process.

• We build a stochastic model, HMM that learns from the combination of historical trajecto-

ries and aircraft specifications, and their correlation with the pertinent weather parameters.

Then, we perform time series clustering on the trajectory segments that were historically

traversed. Finally, we feed the series of cluster centroids as observations into the Viterbi

algorithm in order to predict trajectories that can be used as more realistic pre-departure

flight plans.

• We conduct experiments based on real host track and aircraft specification data and demon-
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strate that our system effectively predicts aircraft trajectories.

Although the proposed solution can be adapted for both tactical and strategic trajectory

prediction, our experimental study focuses more on a ground-based tactical trajectory prediction

system that can be used by both AOC dispatchers to file more realistic flight plans and/or flow

managers at the Air Traffic Control System Command Center (ATCSCC) to approve the proposed

flight plans based on their conformance to the relatively more realistic predicted trajectories, right

before the aircraft departs.

The rest of this chapter is organized as follows. Section 6.2 reviews the related work.

Section 6.3 introduces the preliminary concepts, presents the problem, and overviews the proposed

system. Section 6.4 discusses in detail the aircraft trajectory prediction system, that we propose.

Section 6.5 presents the results of an experimental evaluation. Section 6.6 concludes the chapter.

6.2 Related Work

There has been much work on trajectories in the spatial domain for motor vehicles along

roads [64] with an emphasis on their generation (e.g., [65]), queries (e.g., [66–70]), and matching

(e.g., [71–73]). This is not our subject here. On the other hand, there has been a vast amount of

research and abundant literature with regards to predicting aircraft trajectories. Methodologies to

attain this goal can be divided into deterministic and probabilistic approaches. Deterministic ap-

proaches are made up of nominal and worst-case techniques, and probabilistic techniques include

Sequential Monte Carlo (SMC), Hidden Markov Models (HMM) and others.

The nominal technique gives the aircraft position by propagating estimated states into the

future along a single trajectory without considering uncertainties of the state estimate and the

prediction [114, 155]. Worst-case techniques assume that an aircraft will perform any of a set

of maneuvers and the worst case, defined by the application, is considered for aircraft trajectory
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prediction. Algorithms based on this idea are too conservative since civilian aircraft rarely perform

extreme maneuvers [156]. Overall, deterministic techniques [111–113,115] suffer from degraded

accuracy due to fact that they don’t account for uncertainties and address only specific phase(s) of

the flight when predicting aircraft trajectories.

Past efforts addressing aircraft trajectory prediction using probabilistic methods are similar

to our approach in a way that they aim at modeling uncertainties to describe potential changes

in the future trajectory of an aircraft. However, many of them [116–121] either lack empirical

validation or use a simulated set of aircraft trajectories instead of real host track data in their

evaluations.

Aside from accounting for uncertainties in the computation, there is considerable research

in identifying potential sources of uncertainties in trajectory prediction [157–159]. In addition

to purely deterministic and probabilistic methods, a hybrid method combining the SMC and the

worst-case method was also proposed [160]. Although the majority of the research on trajectory

prediction is used toward detecting and resolving conflicts with other aircraft, there is also a num-

ber of research papers on the same topic from the standpoint of convective weather and Special

Use Airspace (SUA) avoidance [161–165].

Our work is closer in spirit to research [166–168] that studied the aircraft trajectory pre-

diction problem with a machine learning approach, in which they train the model using historical

surveillance data and make predictions using various observations. Choi et al [166] present an

approach to predict future motion of a moving object based on its past movement. The approach

exploits the similarities of short-term movement behaviors by modeling a trajectory as a concate-

nation of short segments. Although their approach shares some common ground with ours, they

have never applied it to aircraft trajectory prediction. Leege et al. [167] specifically propose a

machine learning approach to aircraft trajectory prediction. However, unlike our study, they use
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a stepwise regression approach to systematically determine which input variables to include in

the models based on explanatory power. In his PhD. dissertation, Winder et al. [168] present a

framework for designing a hazard avoidance alerting system that is based on a Markov decision

process model.

The machine learning approach also inspires our study as with our stochastic technique, we

leverage the historical Aircraft Situation Display to Industry (ASDI) [15] track data and aircraft

specifications to select among the possible intermediate reference points and predict the aircraft

trajectory based on meteorological observations. During the process, we assume that the weather

observations are realizations of hidden trajectory segments and the transitions between the under-

lying hidden segments follow a Markov model.

To summarize, our approach is distinguished from past efforts in at least one of the fol-

lowing four respects: i) We use a probabilistic approach by taking the uncertainties into account,

which yields higher accuracy ii) We consider trajectories as a set of 4D joint cubes, which helps

us to unify trajectory segments and associate them with pertinent weather parameters, iii) We per-

form time series clustering on the excessive set of current observations to generate time series to

feed into the Viterbi algorithm, which is an efficient way to find the optimal state sequence, and iv)

We use real host track and aircraft specifications data along with weather observations to validate

the effectiveness of our approach.

6.3 Preliminary and Overview

In this section we introduce some preliminary concepts, present the problem, and give an

overview of the proposed aircraft trajectory prediction system.
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Fig. 6.1: Partial illustration of reference system, raw and aligned trajectories, and spatio-temporal data

cubes on top of the western Florida area in Google Earth.

6.3.1 Concepts

The EUROCONTROL/FAA Action Plan 16 (AP16) [169] defines a(n) (aircraft) trajectory

as ”the path a moving aircraft follows through the airspace and can be mathematically described

by a time-order set of trajectory (state) vectors or the geometry of the flight path”. The Inter-

national Civil Aviation Organization (ICAO)’s definition of trajectory is slightly different; ”the

description of the movement of an aircraft, both in the air and on the ground, including position,

time, and at least via calculation, speed and acceleration” [170]. Our definition of a trajectory,

which we call ”original trajectory”, inspired by Ayhan et al. [74] is slightly different:

Definition 6.1: An original trajectory of an aircraft is a continuous representation of its motion

with 4D spatio-temporal parameters (latitude, longitude, altitude, and time), indicating the exact

path, traveled by the aircraft.
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Due to the fact that there exists no system that continuously records and stores exact posi-

tions of an aircraft’s original trajectory, only a discrete set of sample data are recorded and stored

which presumably represent a close approximation of the original trajectory. We call this a raw

trajectory, which we formally define below.

Definition 6.2: A raw trajectory T of an aircraft is a finite sequence of positions with timestamps

sampled from the original trajectory. T = [p1, p2, ..., pn], where each point p is defined by its 4D

spatio-temporal parameters (latitude, longitude, altitude, and time).

Depending on the sampling strategy, which is how the position recording is triggered, dis-

crete set of spatio-temporal parameters are captured as the aircraft moves. Among others, the

most widely used sampling strategies are time-driven (e.g once every minute), distance-driven

(once every mile), and geometry-driven (e.g. once the aircraft deviates from its heading more

than 15 degrees). Our study uses ASDI track data which is a form of time-driven raw trajectory,

described in detail in Section 6.4.

Definition 6.3: A reference point r is a fixed spatial location in the 3D space, that is independent

of the trajectory data source. A set of evenly distributed reference points form a reference system

R.

Our study uses the Global Forecast System (GFS) Rapid Refresh (RAP) weather model’s

3D grid network [108] as a reference system, described in detail in Section 6.4. Figure 6.1.a

shows a 2D partial view of the RAP weather model’s grid network, which is the reference model

overlaid on top of the western Florida area in Google Earth [110].

Definition 6.4: An aligned trajectory T̄ is a set of reference points into which the raw trajectory

points are transformed. More formally, given a reference system R, the aligned trajectory T̄ for the

raw trajectory T = [p1, p2, ..., pn] is T̄ = [r1, r2, ..., rn], where ri ∈ R.
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Aligned trajectories must preserve the original trajectories as much as possible. Note that

erroneous adjustments are introduced each time original trajectories are turned into raw trajectories

and raw trajectories are turned into aligned trajectories. Hence, preserving original trajectories

in aligned trajectories is obviously a challenging task. This study uses Euclidean distance as a

distance function and searches for the nearest neighboring grid point in the reference system to

transform raw trajectory points into reference points. Figure 6.1.b illustrates 3D partial view of

both aligned and raw trajectories with the reference system on top of the western Florida area in

Google Earth.

Definition 6.5: A spatio-temporal data cube is an atomic trajectory unit in space, defined by its

reference point coordinates (latitude, longitude, altitude) where weather parameters (temperature,

wind speed, and wind direction) are considered to remain constant within a period of time.

Aligning raw trajectories to reference points is a critical preparation step where all necessary

parameters are aggregated per point. However, due to uncertainties, we hypothetically create cubes

around reference points, building an entire airspace composed of 3D cubes, where each data cube

has homogeneous weather parameters within during a certain period of time. This way, trajectories

are defined by a set of cubical segments. In our study, the lateral resolution of each cube is 13km

and temporal resolution is 1hr. Figure 6.1.c is an illustration of a set of spatio-temporal data cubes

defining an aligned trajectory transformed from a partial raw trajectory.

Definition 6.6: An airspace volume of interest is a 4D airspace volume in which a number of

spatio-temporal data cubes are stacked up horizontally and/or vertically.

6.3.2 Problem Statement

Given a set of historical raw trajectories for specific aircraft types along with pertinent

historical weather observations, we aim at learning a model that reveals the correlation between
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weather conditions and aircraft positions and predicts trajectories in the form of a time series. In

this problem space, we assume that the weather observations are realizations of hidden aircraft

positions i.e. trajectory segments and the transitions between the underlying hidden segments fol-

low a Markov model. This assumption considers a finite set of states, each of which is associated

with a probability distribution over all possible trajectory segments. Transitions among the states

are managed by a set of probabilities. The states are not visible, but the pertinent observations

are. Given a sequence of observations, we want to learn an HMM, a statistical Markov model, and

derive a sequence of hidden states that correspond to the sequence of observations.

The Viterbi algorithm [122] is an efficient method to compute this. However, in our prob-

lem space, the observation sequence for which we want to predict the state sequence is unknown.

In other words, given a set of weather observations for the full set of spatio-temporal cubes cover-

ing the airspace volume of interest and approximate time period of flight, we need to identify the

ones that we can input into the Viterbi process.

6.3.3 System Overview

Figure 6.2 shows an overview of the proposed aircraft trajectory prediction system, which

generates the optimal state sequence in three steps:

• In the first step, we perform training data processing by generating the HMM parameters

based on a set of historical trajectories and weather parameters.

• In the second step, we perform test data processing by executing time series clustering on

weather observations for the entire airspace volume of interest which yields the observation

sequence.

• In the final step, we use the output of the first two steps in the Viterbi algorithm to generate

the optimal state sequence based on the observation sequence.

125



Fig. 6.2: System overview. Data storage is colored yellow, training data processing is colored red, test data

processing is colored blue, and the Viterbi process with the final output is colored green

In Figure 6.2, data storage is colored yellow, training data processing is colored red, test data

processing is colored blue, and the Viterbi process with the final output is colored green.

6.4 Aircraft Trajectory Prediction

This section presents our approach to aircraft trajectory prediction and elaborates in detail

each step of the process.

6.4.1 Training Data Processing

This step enables us to accurately fuse weather parameters per sample point of a raw tra-

jectory. To attain this goal, we need a weather model with the highest spatio-temporal resolution

available and that offers both current and historical weather data. The National Oceanic and

Atmospheric Administration (NOAA) GFS RAP product operational at the National Center for

Experimental Prediction (NCEP) meets these requirements. Hence, we use GFS RAP weather

model’s 3D grid network as our reference system.

Training data processing, colored red in Figure 6.2, is performed as follows: Based on the

reference system, grid-based alignment is performed on the historical raw trajectories. The process
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is based on the simple idea of finding the nearest 3D reference point for each sample point of a

raw trajectory and then mapping the original sample point to a nearest 3D reference point, inspired

by the Realm method [153]. More precisely, each sample point in a raw trajectory is aligned to

a nearest 3D reference point. This process generates aligned trajectories for historical trajectory

data. Although, this seems to suffer from accuracy, it allows to form a unified set resulting in

increased similarity between aligned trajectory points. Spatio-temporal data cubes are formed in

the next step. During this step, weather parameters for the pertinent time window are retrieved

from the weather database and resampled to generate N buckets with distinct ranges. Then, the

weather parameters in distinct buckets are fused with spatial data for each grid point along the

aligned trajectory. The process yields training data where each historical raw trajectory becomes

a set of 4D joint data cubes.

6.4.2 Test Data Processing

In order for us to compute the maximum probability of HMM generating the optimal state

sequence of s1, s2, ..., sm, the observation sequence o1, o2, ..., om is needed. Although the refer-

ence points covering the entire airspace volume of interest are known, we don’t know which one

of these should be fed into the Viterbi process. To answer this question, we perform time series

clustering with Dynamic Time Warping (DTW) on an excessive set of observations and generate

the input time series.

Test data processing, colored blue in Figure 6.2, enables us to address this question. In this

step, among all reference points between the departure and arrival airports, we consider only the

ones that were traversed in the historical trajectories. The first step in the process is to perform

transformation on these aligned historical trajectories by replacing the original date per reference

point with the current date, presuming that the flight is about to depart. In other words, during this
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step, all aligned historical trajectories are treated as if they are current. In the second step, based

on new timestamps, weather parameters are retrieved from the weather database and resampled to

generateN buckets with distinct ranges. Next, the weather parameters in distinct buckets are fused

with spatial data for each grid point along the aligned trajectory. This step generates hypothetical

cubes, in the same way as in the training data processing. The output of this step is an excessive

set of spatio-temporal data cubes forming distinct trajectories in the form of a time series.

In the final step of the test data processing, spatial data is omitted and k-Nearest Neighbors

(k-NN) clustering is performed using DTW on the weather parameters along the time series. The

algorithm enforces a locality constraint and uses a LB Keogh lower bound.

Note that in time series analysis, DTW is an algorithm for measuring similarity between

multiple temporal sequences which may vary in time or speed. For simplicity, suppose there are

two temporal sequences,Q andC, of length n andm respectively, such thatQ = q1, q2, ..., qi, ..., qn

and C = c1, c2, ..., ci, ..., cn. To align two sequences using DTW, an n-by-mmatrix is constructed

where the (ith, jth) element of the matrix contains the distance d(qi, cj) between the two points qi

and cj . Each matrix element (i, j) corresponds to the alignment between the points qi and cj . A

warping path W is a contiguous set of matrix elements that defines a mapping between Q and C.

During the process, the warping path is subject to a locality constraint. There are exponentially

many warping paths that satisfy this constraint. We are only interested in the path that minimizes

the warping cost. This path can be found using dynamic programming to evaluate the follow-

ing recurrence, which defines the cumulative distance γ(i, j) as the distance d(i, j) found in the

current cell and the minimum of the cumulative distances of the adjacent elements:

γ(i, j) = d(qi, cj) +min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)}

By enforcing a locality constraint through a threshold window, the algorithm ensures that it

is unlikely for di and tj to be matched if i and j are too far apart. In this algorithm, the number
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of clusters is set apriori to 1 and similar time series are clustered together. The process yields an

observation sequence in the form of a set of weather parameters which are fed into the Viterbi

process, in the next step.

6.4.3 HMM Processing and Viterbi

We approach the HMM problem by identifying the parameter set computed based on train-

ing data as follows:

• States S = {S1, S2, ..., SK} are represented by reference points’ coordinates (latitude, lon-

gitude, altitude) that form aligned trajectories.

• Transition probabilities A = {aij}, 1 ≤ i, j ≤ K, i.e. aij is the probability of an aircraft

discretely transitioning from one state Si to another Sj along its aligned trajectory, T̄ .

• Emission probabilities B = {bi(o)}, 1 ≤ i ≤ K is the probability of discrete weather

parameters having been observed at a specific state, Si.

• Initial probabilities π = {πi}, 1 ≤ i ≤ K is the probability of an aligned trajectory begin-

ning at a specific state, Si.

These parameters form an HMM, denoted by λ = {S,A,B, π}. The next step in the

process is to choose a corresponding state sequence s = {s1, s2, ..., sm}, that best explains the

observation sequence, O = {o1, o2, ..., om}. To answer this question, we use the Viterbi al-

gorithm [122], which has a recursive approach that works in parallel for all states in a strictly

time synchronous manner. The key component in the algorithm is the optimal probability, de-

noted as δm(i), which is the maximal probability of HMM generating the observation segment

o1, o2, ..., om, along the optimal state sequence s1, s2, ..., sm, in which sm = i. Hence, we com-

pute:
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Fig. 6.3: 3D raw trajectories of flight DAL2173 between Atlanta and Miami for the period of May 2010

through December 2011 in Google Earth

δm(i) = max
s1,...,sm−1

πs1bs1(o1)
∏m
j=2(asj−1,sjbsj (oj))

The process colored green in Figure 6.2 yields the predicted aircraft trajectory.

6.5 Experimental Evaluation

In this section, we conduct experiments to validate the effectiveness of our aircraft trajectory

prediction system. Section 6.5.1 introduces the experimental dataset. Section 6.5.2 presents the

implementation details and our environment. Section 6.5.3 discusses the results for our prediction

system, and Section 6.5.4 outlines the discoveries gained by our trajectory prediction system.

6.5.1 Experimental Dataset

Our empirical evaluation used real host track data along with real weather data: The Delta

Airlines’ flights DAL2173, departing from Hartsfield-Jackson Atlanta International Airport (ATL)
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and arriving at Miami International Airport (MIA) for the period of May 2010 through December

2011 were studied. The dataset has a total of 594 trajectories and 56752 points. ATL to MIA

is one of the major routes in the NAS due to fact that the departure airport is the busiest airport

in the U.S. and the flights are prone to frequent convective weather in the airspace controlled by

three Air Route Traffic Control Centers (ARTCC), Atlanta (ZTL), Jacksonville (ZJX), and Miami

(ZMA). Figure 6.3 shows 3D raw trajectories of flight DAL2173 between Atlanta and Miami for

the period of May 2010 through December 2011.

Two main data sources to our Aircraft Trajectory Prediction System are the FAA’s ASDI

and NOAA’s RAP data which are colored yellow in Figure 6.2 and presented next.

ASDI

The source of the raw trajectory data is ASDI, which is a continuous stream of messages

delivered over a TCP/IP network socket. Note that a total of over 30 million ASDI messages are

processed in any single day. ASDI messages can be flight plan related data, oceanic reports, or host

track reports. The host track data is recorded once in every 60 seconds, and provided in near real-

time by the FAA. Upon processing, the data is stored in a relational database and made available

for use by our trajectory prediction system. Note that surface data is not included in the ASDI

feed, although departure and arrival airports remain the same, the positions of the first and last

track records may differ over time. The raw trajectory data is generated by joining various ASDI

message types including: Track Information and Flight Plan Information. The process generates

source center, date, time, aircraft ID, speed, latitude, longitude, altitude values from the Track

Information and special aircraft qualifier from the Flight Plan Information message type.
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RAP

The source of the weather data is NOAA National Centers for Environmental Prediction

(NCEP) Rapid Refresh (RAP) [108] which is the continental-scale NOAA hourly-updated assim-

ilation/modeling system. RAP covers North America and is comprised primarily of a numerical

forecast model and an analysis/assimilation system to initialize that model. It has 13km horizontal

resolution with 50 vertical levels, ptop=10hPa, sigma vertical coordinate. Although there is an ex-

perimental 3km hourly updated nest inside of the 13km Rapid Refresh, it is not widely available

yet. The RAP weather data is stored as a set of grib2 files [171] each hour and made available for

use by our prediction system.

6.5.2 Implementation

The ASDI host track data is composed of radar recordings at an approximate rate of once

every 60 seconds by each Air Route Traffic Control Center (ARTCC) for any aircraft operating

under Instrument Flight Rules (IFR) within the confines of an ARTCC’s airspace. Our airspace

volume of interest is controlled by three separate ARTCCs, due to fact that an aircraft traveling

between Atlanta and Miami airports uses Atlanta ARTCC (ZTL), Jacksonville ARTCC (ZJX), and

Miami ARTCC (ZMA). The ASDI host track data contains multiple recordings when the aircraft

crosses a boundary between multiple ARTCCs. Hence, our initial implementation step filtered

these multiple recordings by taking the timestamp and source center (ARTCC) information into

account. The filtering process reduced the number of historical recordings from 56752 to 48694.

As in rare cases, ARTCCs recorded multiple track data within a relatively short period of time,

such as 20 seconds, we also filtered these recordings. The process brought the number of historical

recordings down to 44824.

The remaining historical raw trajectory points went through alignment process as elabo-
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Tab. 6.1: Buckets for temperature

Temperature (temp)

No Bucket Value (kelvin)

1 temp ≤ 220 220

2 220 < temp ≤ 240 240

3 240 < temp ≤ 260 260

4 260 < temp ≤ 280 280

5 280 < temp ≤ 300 300

6 300 < temp ≤ 350 350

rated in Section 6.4.1. During the process, we used GFS RAP weather model’s 3D grid network

as our reference model, and mapped the raw trajectory points to the nearest reference points. This

process yielded aligned historical trajectories. In the next step, spatio-temporal data cubes were

formed and reference points along aligned trajectories were fused with weather parameters. How-

ever, due to lack of historical weather data for the flight time window of interest of some aligned

trajectories, we were not able to expand their dimensions. Subsequently these aligned historical

trajectories were eliminated bringing the total number of reference points down to 37849. Fusing

positional data with weather parameters yielded the following attributes per spatio-temporal data

cube: source center, date, time, aircraft id, speed, latitude, longitude, altitude, aircraft type, tem-

perature, wind speed, wind direction. As the final step of the training data processing, we split the

weather parameters into buckets as shown in Table 6.1, 6.2, and 6.3.

Next, we computed the following HMM parameters:

• 3698 distinct states, S were generated.

• A sparse transition matrix, A of size 3698 x 3698 = 13675204 was generated.
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Tab. 6.2: Buckets for wind speed

Wind speed (ws)

No Bucket Value (knots)

1 ws ≤ 30 30

2 30 < ws ≤ 60 60

3 60 < ws ≤ 90 90

4 90 < ws ≤ 120 120

5 120 < ws ≤ 150 150

Tab. 6.3: Buckets for wind direction

Wind direction (wd)

No Bucket Value (degrees)

1 wd ≤ 45 45

2 45 < wd ≤ 90 90

3 90 < wd ≤ 135 135

4 135 < wd ≤ 180 180

5 180 < wd ≤ 225 225

6 225 < wd ≤ 270 270

7 270 < wd ≤ 315 315

8 315 < wd ≤ 360 360
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• An emission matrix, B of size 117 x 3698 = 432666 was generated.

• An initial matrix, π of size 28 x 1 was generated.

Aside from these HMM parameters, we also needed to feed the observation sequence into

the Viterbi algorithm.

To evaluate our prediction system, we performed bootstrapping by drawing many trajec-

tory samples with replacement from the historical trajectories. In the meantime, we removed the

pertinent track records from the training dataset. The process allowed us to plot 95% confidence

interval (CI) for the mean error and standard deviation of our trajectory samples. Note that one

of the trajectory samples we draw happened to be May 14, 2011. Hence, we present the process

for this particular trajectory sample. The test data processing repeated itself for other trajectory

samples.

Test data processing for this particular trajectory sample is as follows: We used aligned

trajectories for the same historical data. However, this time we treated each trajectory as if it was

flown on May 14, 2011. This required a simple transformation of replacing date value per aligned

trajectory point. The next step in the process required that we obtain weather parameters for the

positional data. However, in order for us to do that, we needed to identify the time period of the

flight. Given the median duration of the flight DAL2173 being 78 minutes, we decided to use

two RAP grib2 weather files, one targeting weather observations recorded at 15:00 UTC and the

other targeting weather observations recorded at 16:00 UTC on May 14, 2011. By using these

files, we retrieved the pertinent weather parameters per aligned trajectory point. Next, we split the

weather parameters into buckets as shown in Table 6.1, 6.2, and 6.3. In the final step of test

data processing, we performed time series clustering, using DTW. The input to the process was

474 time series of 78 weather observations, where each observation contained temperature, wind

speed, wind direction parameters. The k-nearest neighbors (k-NN) clustering with k=1 used DTW
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Euclidean distance for similarity measure. To speed up the process, we used LB Keogh lower

bound [77]. The resulting set of cluster centroids identified by weather parameters defined the

observation sequence Ys.

As the final step of the process, we fed the observation sequence Ys and HMM parameters,

λ = {S,A,B, π} into the Viterbi algorithm. The algorithm worked in parallel for all states in

a strictly time synchronous manner and returned the optimal state sequence with the maximum

probability.

Our experiments were conducted on a computer with Intel Core i7-3840QM CPU @ 2.80GHz

and 16GB memory, running on Linux Ubuntu 14.04.2 64-bit LTS Operating System. All the al-

gorithms were implemented in Python v2.7.

6.5.3 Results

We evaluated the effectiveness of our prediction system based on bootstrapping by drawing

23 trajectory samples with replacement from the historical trajectories. This way, we compared

our prediction with the ground truth, flight DAL2173’s aligned trajectory. Next, we computed

the mean error and standard deviation per trajectory sample. Then, we ranked order the means to

estimate the 2.5 and 97.5 percentile values for 95% CI.

Figure 6.4 shows actual flown trajectory in red overlaid on top of spatio-temporal data cubes

in white predicted by our system for one of the trajectory samples drawn, May 14, 2011 as part of

the bootstrapping. Major prediction errors are introduced around top of climb and descent phases.

Our quantitative evaluation is based on trajectory prediction accuracy metrics, including

horizontal, along-track, cross-track, and vertical errors, as outlined in [151, 152]. The errors

illustrated in Figure 6.5 are based on the coordinates of the aircraft, denoted asAC, and a trajectory

segment containing the points TJ1 and TJ2.
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Fig. 6.4: Actual flown trajectory overlaid on top of spatio-temporal data cubes generated for flight

DAL2173 on May 14, 2011 by our prediction system
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Table 6.4 captures mean error µ and standard deviation σ for horizontal, vertical, along-

track, and cross-track errors for the entire set of trajectory samples with 95% CI. The errors were

computed based on our prediction versus flight DAL2173’s raw trajectory per trajectory sample.

The horizontal error is unsigned whereas the along-track and cross-track errors are signed

errors. Note that the mean value for the cross-track error µ(ecross) along the entire trajectory

of flight DAL2173 is 6.804nm (=12.601km), when the sign is omitted. Due to fact that spatial

resolution of our trajectory prediction system is 13km, which is the horizontal length of each

spatio-temporal cube, we can conclude that the mean value µ(ecross) for the cross-track error of

12.601km is within the boundaries of our spatial resolution.

Figure 6.6 illustrates the pertinent histograms for horizontal, vertical, along-track and cross-

track errors for the entire set of trajectory samples with 95% CI. Due to fact that the along-track

and cross-track errors are signed errors, they generate a relatively symmetric distribution about

the zero, as shown in Figure 6.6. The area of the histograms provides an indication of overall

performance.

To evaluate behavior of trajectory prediction errors over time, we also computed horizontal,

along-track, and cross-track errors for the entire set of trajectory samples with 95% CI based on

look-ahead time, as shown in Figure 6.7. Generally, the longer the look-ahead time, the greater

the uncertainty, yielding larger errors. However, this is not the case for our system, as shown in

Figure 6.7.

As part of the time-based evaluation, we compared estimated time of arrival initially entered

by AOC, predicted time of arrival computed by our system and the actual time of arrival for flight

DAL2173.

Although our prediction system considers time of last ASDI track record as arrival time,

there is an additional 4 minutes in average for the aircraft to actually land. By taking this offset
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Fig. 6.5: Trajectory prediction accuracy metrics

into account, our predicted arrival time virtually matches the actual arrival time. Accurate arrival

time prediction is a critical capability in maintaining safe separation and sequencing of aircraft.

6.5.4 Discoveries

In this section, we present the value our system offers in an operational view of flight

planning.

The majority of other ground-based tactical TP tools communicate with the aircraft period-

ically throughout the flight, obtain and update the following parameters, and predict trajectories:

i) initial conditions (aircraft’s 4D position), ii) flight plan, iii) aircraft performance model, iv)

weather observations, and v) aircraft intent.

As with proprietary implementations, their prediction accuracy depends on correct initial

state values and look-ahead time. Hence, they require frequent parameter updates from the aircraft.

Each update requires datalink communication throughout the flight, resulting in high communi-

cation costs. To give a notional idea on communication cost, it is safe to assume that a TP tool

communicates with an aircraft once every 10 seconds for position and once every 2 minutes for

aircraft intent data where each message costs $0.50, although airlines pay yearly flat rates to data
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Tab. 6.4: Mean and standard deviation values for horizontal, vertical, along-track, and cross-track errors for

flight DAL2173 on trajectory samples

Mean error (µ)

µ(ehoriz) µ(ealong) µ(ecross) µ(evert)

12.965nm 1.454nm -1.859nm 687.497ft

Standard deviation (σ)

σ(ehoriz) σ(ealong) σ(ecross) σ(evert)

12.093nm 13.833nm 10.836nm 4910.691ft

link service providers such as ARINC and SITA that are kept confidential. Based on the assump-

tion, for a single flight of 80-minute duration, the data link communication cost can add up to

$260. Depending on the fleet size and frequency and distance of flights, data link communication

cost can easily become millions of dollars per year.

Unlike other TP tools, our system inputs only weather observations and predicts a trajectory,

based on an HMM that was learned from the historical trajectories for particular aircraft types. Our

prediction system is also ground-based and runs offline requiring no datalink communication with

the aircraft. As presented in the analysis of mean error versus look-ahead time, the accuracy of

a trajectory predicted by our system is independent of look-ahead time. Our system saves the

airlines data communications costs, if deployed.

Initial pre-departure flight plans are filed by the AOC and approved by the FAA, when

validated. As presented in the analysis of mean errors and standard deviation values, our system

predicts aircraft trajectory within the boundaries of our horizontal spatial resolution of 13km.

Hence, when deployed by the airlines, AOC can generate an accurate flight plan and file for

approval. In return, the FAA can run our system and validate the filed flight plans, when deployed.

As presented in the analysis of arrival times, our system predicted virtually the same ar-
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Fig. 6.6: Histograms for horizontal, vertical, along-track, and cross-track errors
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rival time of flight DAL2173 as the actual arrival time. The accuracy would help in maintaining

separation and sequencing of aircraft in the NAS. Better maintained separation and sequencing

means: i) higher safety and capacity, ii) accurate arrival metering which translates to efficiency

and so fuel savings and reduced emissions. An erroneously predicted arrival time would lead the

Air Traffic Controller to allot more time or insufficient time and airspace for the flight, and gener-

ate the incorrect landing sequence potentially reducing runway acceptance rate and causing other

aircraft to be perturbed in their operations resulting in reduced efficiency, waste of resources, and

possibly reducing safety. Note that the aircraft type Delta Airlines flown for DAL2173 on May

14, 2011 is Boeing 757-200 and operational cost of this particular aircraft per hour is $8,383.15

[172], or $139.72 each minute of extra flight time due to erroneous arrival prediction plus the cost

of the impact on other perturbed dependent flights.

6.6 Conclusion

The role and performance of trajectory prediction system is critical to the success of the

DST functions which have substantial impact on ATM and airspace flow management. In this

chapter, we have proposed a novel approach to aircraft trajectory prediction that can be used

for more efficient and realistic flight planning by aircraft operators and to assist airspace flow

management, potentially achieving higher safety, capacity, and efficiency and commensurate fuel

savings and so emission reductions for a better environment.

Our evaluation on a real trajectory dataset verified that our prediction system achieved hor-

izontal accuracy of 12.601km which is defined as a mean cross-track error µ(ecross) that is within

the boundaries of highest spatial resolution, our trajectory prediction system has to offer. In or-

der for us to achieve higher accuracy, we need weather observations of higher spatial resolution

than 13km, which is the current highest spatial resolution available. We plan to investigate the

142



Fig. 6.7: Horizontal, along-track, and cross-track mean errors over look-ahead time

feasibility of resampling and intelligent interpolation of weather data to generate higher spatial

resolution. Another option would be to use the recent High-Resolution Rapid Refresh (HRRR)

weather product, which offers 3km of spatial resolution for a smaller geographic region, yet still

experimental by the NOAA. The introduction of a browsing capability similar to what is available

in the spatial domain (e.g., [173, 174]) is also of interest.
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Chapter 7

Long-Range Aircraft Conflict Detection

and Resolution

At the present time, there is no mechanism for Air Navigation Service Providers (ANSPs)

to probe new flight plans filed by the Airlines Operation Centers (AOCs) against the existing

approved flight plans to see if they are likely to cause conflicts or bring sector traffic densities

beyond control. In the current Air Traffic Control (ATC) operations, aircraft conflicts and sector

traffic densities are resolved tactically, increasing workload and leading to potential safety risks

and loss of capacity and efficiency.

In this chapter, we propose a novel Data-Driven Framework to address a long-range aircraft

conflict detection and resolution (CDR) problem. Given a set of predicted trajectories, the frame-

work declares a conflict when a protected zone of an aircraft on its trajectory is infringed upon by

another aircraft. The framework resolves the conflict by prescribing an alternative solution that is

optimized by perturbing at least one of the trajectories involved in the conflict. To achieve this,

the framework learns from descriptive patterns of historical trajectories and pertinent weather ob-

servations and builds a Hidden Markov Model (HMM). Using a variant of the Viterbi algorithm,



the framework avoids the airspace volume in which the conflict is detected and generates a new

optimal trajectory that is conflict-free. The key concept upon which the framework is built is the

assumption that the airspace is nothing more than a horizontally and vertically concatenated set

of spatio-temporal data cubes where each cube is considered as an atomic unit. We evaluate our

framework using real trajectory datasets with pertinent weather observations from two continents

and demonstrate its effectiveness for strategic CDR.

7.1 Introduction

In the present Air Traffic Management (ATM) system, Airline Operations Center (AOC)

personnel file a flight plan for a particular flight. The filed flight plan usually contains 2D coordi-

nates of the fixed way points and the planned initial cruise speed and cruise altitude in addition to

their speed and level changes along the route. It does not include the time information for the way

points and the existing information is not routinely updated by the ATM systems. Moreover, the

filed flight plan is not checked against other flight plans to probe potential interference with other

aircraft or identify sector traffic complexity before the aircraft departs. Airspace sector complex-

ity and aircraft separation assurance are dealt with tactically, usually just a few minutes before the

aircraft enters the sector or is likely to have a conflict with other aircraft.

It is estimated that by 2040 the USA alone can expect an increase of more than 68% in

the commercial air traffic [1]. Hence, a new concept of operations is needed to accommodate

this increase in volume. To meet this challenge ahead of us, new technologies and procedures for

next generation ATM are being developed in the context of the Next Generation Air Transporta-

tion System (NextGen) [6] in the USA and the Single European Sky ATM Research (SESAR)

[7] in Europe. The SESAR and NextGen concept of operations requires a paradigm shift from a

highly structured and fragmented system that is heavily reliant on tactical decision making and
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with few strategic planning functions based on uncertain information, to an integrated one based

on collaborative strategic management of trajectories and information sharing [12]. In the future

ATM systems to be built under NextGen and SESAR, the trajectory becomes the fundamental el-

ement of new sets of operating procedures collectively referred to as Trajectory-Based Operations

(TBO). The underlying idea behind TBO is the concept of a business trajectory that the airline

agrees to fly and the ANSP and airports agree to facilitate, given the safe separation provision. A

business trajectory is the representation of an airline’s intention with respect to a given flight that

will best meet the airline’s business interests. The TBO concept of operations and the notion of

a business trajectory will result in increased overall predictability of air traffic, reduced costs and

emissions due to lowered fuel consumption and/or time, and increased capacities. Thus, the future

ATM system should offer flexibility to accommodate business trajectories, while bearing the pri-

mary goal of safety in mind. Overall, the next generation ATM paradigm shift requires more safe

and efficient CDR due to fact that maintaining the separation minima among the vast volume of

aircraft that fly their versions of most optimal business 4D trajectories becomes more challenging.

Hence, we introduce a Data-Driven Framework to address the long-range aircraft CDR

problem. The framework performs CDR in two steps: In the first step, given a set of predicted

trajectories in the form of a 4D joint spatio-temporal data cubes on a 3D grid network, the frame-

work declares a conflict if one of the aircraft’s predicted trajectory segment overlaps with the

other’s protected zone at the same time interval in the future. Obviously, the more accurate the

predicted trajectories, the more accurate the detection of the conflict as the separation minima will

be on the containment volume of each predicted trajectory. In the second step, the framework

builds a stochastic model, HMM that learns from the historical trajectories and their correlation

with the pertinent weather parameters. Using a variant of the Viterbi algorithm, the framework

prescribes an optimal solution by perturbing at least one of the 4D trajectories involved in the
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conflict.

In summary, the contributions of this chapter are as follows:

• We propose a cube-shaped protected zone surrounding each aircraft that can be expanded by

joining the neighboring cubes horizontally and vertically, yielding a protected zone with a

desired size. This idea resonates with the assumption that an airspace is nothing more than a

set of concatenated spatio-temporal data cubes around a 3D grid network, where each cube

is considered as an atomic unit.

• We propose a scalable Data-Driven Framework to strategically address the aircraft CDR

problem. Given a set of predicted trajectories, the framework declares a conflict when a

protected zone of an aircraft on its trajectory is infringed upon by another aircraft at the same

time interval in the future. Upon a conflict, the framework executes our conflict resolution

algorithm and prescribes a solution that resolves the conflict by perturbing at least one of

the 4D trajectories involved in the conflict.

• We conduct extensive experiments based on real trajectory and weather data from two con-

tinents and demonstrate that our framework can detect and resolve conflicts with lateral and

vertical accuracies that are within the boundaries of conventionally accepted minimum sep-

aration values, set by the ANSPs. This translates to the fact that, ANSPs can now detect and

resolve potential conflicts before the aircraft depart, resulting in safer and greener airspace

with more efficiency and capacity, and thereby reducing the air traffic controller workload.

In the previous chapter [46], we presented our Aircraft Trajectory Prediction System that

shares a common ground with the current framework in a way that both the previous system and

the current framework attempt to find the most likely sequence of aircraft positions given a set

of weather observations. However, they differ in the following respects: i) The previous system
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[46] aimed at predicting aircraft trajectories without considering any potential obstacles along the

route. The proposed framework detects and resolves conflicts among the aircraft. In fact, the

framework we propose in this work uses predicted trajectories generated by the previous system

[46] as input. ii) The previous system [46] utilized historical trajectories and pertinent weather

observations to build an HMM which was fed into the Viterbi algorithm. Although our current

framework uses the same input for an HMM during the conflict resolution phase, it employs a

variant of the Viterbi algorithm. Unlike the regular Viterbi algorithm, the variant generates optimal

trajectories bypassing the spatio-temporal data cubes in which the conflict is detected. iii) Unlike

the previous system [46], the current framework is scalable. It can detect and resolve conflicts

among multiple aircraft.

Our Data-Driven Framework can be used as a ground-based strategic CDR system by air

traffic flow managers to resolve potential interference among large volume of aircraft and identify

high density and complex sector traffic before the aircraft depart. The set of optimized resolu-

tions should improve ATM automation and reduce the workload of air traffic controllers. The rest

of the chapter is organized as follows. Section 7.2 reviews related work. Section 7.3 introduces

preliminary concepts followed by Section 7.4 where our Data-Driven Framework is described.

Section 7.5 presents the results of our experiments, while Section 7.6 discusses the results. Con-

cluding remarks are drawn in Section 7.7.

7.2 Related Work

The problem of aircraft CDR remains an active area of research in the spatial domain and

in the aviation community and has attracted the attention of many researchers. An excellent sur-

vey of various CDR methods is presented in [175]. In this survey, Kuchar et al. propose a

taxonomy to categorize the basic functions of CDR modeling methods. The proposed taxonomy
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includes: dimensions of state information (lateral, vertical, or three-dimensional); method of state

propagation (nominal, worst-case, or probabilistic); conflict detection threshold; conflict resolu-

tion method (prescribed, optimized, force field, or manual); maneuvering options (speed change,

lateral, vertical, or combined maneuvers); and management of multiple aircraft conflicts (pairwise

or global).

Conflict detection methods can be classified as nominal, worst-case, and probabilistic tech-

niques. The nominal technique projects the current states into the future along a single trajectory

without taking uncertainties into account [156,176–179]. The worst-case technique assumes that

an aircraft will perform any of a set of maneuvers and a conflict is predicted if any of the maneu-

vers could cause a conflict [180–183]. The disadvantage of the worst-case technique is that it can

declare a conflict as soon as there is a minimum likelihood of a conflict within the definition of the

worst-case trajectory model thereby leading to false positives. The probabilistic approach offers a

balance between relying on either a single trajectory model as in the nominal technique or a set of

worst-case maneuvers. Instead it models uncertainties to describe potential changes in the future

trajectory [184–191].

Once a conflict has been detected, the next step in the CDR process is to initiate the con-

flict resolution phase by determining the course of action. The conflict resolution method and

the maneuvering options are two major factors in defining the course of action. Conflict reso-

lution methods can be categorized as a) prescribed, b) optimized, c) force-field, and d) manual.

The prescribed resolution method provides a fixed maneuver based on a set of predefined proce-

dures [192]. Hence, depending on the nature of the conflict, the predefined resolution maneuver

is automatically performed, minimizing the response time. However, it does not compute the op-

timal resolution path for the aircraft, thereby resulting in a less efficient trajectory. The optimized

method provides a conflict resolution strategy with the lowest cost based on a certain cost function
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(separation, fuel, time, workload, etc.) [176]. In the force-field resolution method, each aircraft

is treated as a charged particle and the resolution maneuvers are defined using repulsive forces

between the aircraft [193]. Although it is practical when properly applied, it may require a high

level of guidance on the flight deck especially when the aircraft vary their speed over a wide range.

The manual resolution method allows users to generate potential resolution options and provide

feedback if the option is viable [188, 191].

During the resolution phase, some CDR approaches only offer a single maneuver such as

speed change [181, 194, 195] or lateral maneuver [196] or vertical maneuver [176, 197], while

others offer a combination of these maneuvers [184,198,199]. Obviously, the more maneuvering

options the CDR approach offers, the more likely an efficient solution can be provided to a conflict.

Our CDR approach has some similarities with [194,200] due to fact that both approaches consider

the airspace as a set of cubic cells, called the grid model, declare a conflict if one of the aircraft’s

predicted trajectory segments overlap with the other’s protected zone, and propose an optimized

4D trajectory for the conflict resolution. However, unlike our study, they attempt to address tactical

CDR (short-term and medium-term) by changing speed profiles [194] or using Particle Swarm

Optimization [200].

Summarizing the above literature and comparing to the proposed prescriptive analytics ap-

proach, we make the following remarks: i) Our CDR modeling method considers dimensions of

state information as 4D (latitude, longitude, altitude, and timestamp), ii) Due to input trajectories

being probabilistically computed, our conflict detection method is also considered probabilistic,

iii) Our conflict resolution method is optimized, and it offers a combination of lateral and vertical

maneuvers. iv) Our framework is scalable, i.e., it can address the CDR problem among multiple

aircraft. Given a set of aircraft trajectories in 4D, our framework declares a conflict if any of the

aircraft’s predicted trajectory segments overlaps with the other’s protected zone at the same time
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interval in the future. In our approach, one or more cubic cells forming the airspace is considered

to be a conflict detection threshold. Next, we compute and prescribe an optimized solution which

is a conflict-free 4D trajectory. Our approach addresses the CDR problem strategically over a time

horizon of several hours to compute conflict-free 4D trajectories for optimal flight plans and less

complex sector traffic densities. In particular, the proposed data-driven approach exploits machine

learning techniques to predict conflicts and prescribe an optimized solution based on constraints

introduced to the framework.

7.3 Preliminaries

The primary concern of the ANSPs, for example; the FAA in the USA and EUROCON-

TROL in Europe is to assure safety, which is quantified by the number of resolved conflicts.

Definition 7.1: A conflict is an event in which two or more aircraft come closer than a certain

distance to one another.

Definition 7.2: Separation minima are encoded by lateral and vertical separation, forming a

bounding volume around each aircraft, a protected zone(PZ). Currently, the minimum lateral sep-

aration for en-route airspace is 5nmi. It is 3nmi inside the terminal radar approach control (TRA-

CON) area. The minimum vertical separation is 2000 ft above the altitude of 29000 ft (FL290)

and 1000 ft below FL290. Due to fact that lateral and vertical separation are specified by single

distance values, the resulting PZ becomes a cylinder. Each aircraft is assumed to be surrounded

by a PZ that moves along the aircraft. An interesting idea is to use the Hausdorff distance [72]

to define the cubes.

Definition 7.3: Conflict detection is a process that evaluates the separation between any pair of

aircraft, by comparing the distance between them with the separation minima. Formally, given a
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pair of predicted aircraft trajectories formed by a set of aircraft positions Ti = [pi1, pi2, ..., pim],

Tj = [pj1, pj2, ..., pjn] where each point p is defined by its 4D spatio-temporal parameters (lat-

itude, longitude, altitude, and timestamp), distance values between them di,j are computed and

compared with the separation minima ds and a conflict is declared if any of distance values is less

than the separation minima di,j < ds.

Definition 7.4: Conflict resolution is a process that generates a feasible safe alternative trajectory

by fulfilling the separation minima criteria. Formally, given a pair of predicted aircraft trajectories

formed by a set of aircraft positions Ti = [pi1, pi2, ..., pim], Tj = [pj1, pj2, ..., pjn], upon conflict

resolution, all the distance values di,j between the pairs of aircraft positions are greater than the

separation minima di,j > ds.

Definition 7.5: Long-range CDR is a process in which conflict detection and resolution are car-

ried out several hours before the potential conflict occurs. Hence, long-range CDR is strategically

performed before the departure for better planning, whereas mid-range and short-range CDR are

tactically performed while the aircraft is airborne.

Unlike online CDR approaches in which distance between predicted future aircraft posi-

tions are constantly computed and compared with separation minima upon receipt of each new

aircraft position, our approach is offline and uses a 3D grid network as a reference system. In

our approach, raw trajectories are transformed into aligned trajectories causing aircraft to move

along grid points. This results in conflict queries being computed at grid points only. In addition,

unlike most other CDR approaches, our framework considers a cube shaped PZ surrounding each

aircraft. This idea resonates with the fact that our approach creates virtual data cubes around grid

points, forming an overall airspace. Each cube is defined by its centroid, the original grid point,

and associated weather parameters that remain homogeneous within the cube during a period of
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Fig. 7.1: A sample crossing conflict and a PZ. (left) regular representation, (right) our unique representa-

tion.

time. With this vision, we define trajectories as a set of 4D joint cubes.

This uncommon representation of 4D trajectories enables us to view conflicts and PZ from

a unique perspective. Hence, in our view, PZ is a cube that can be expanded by joining the

neighboring cubes horizontally and vertically. The process yields a PZ with a desired size. In our

study, we use a PZ of variable size. It can be made up of a single cube or expanded by a number

of cubes in each direction on each axis reaching a larger volume. Figure 7.1 illustrates a PZ in

two different forms. The PZ on the left is formed by a cylinder. The PZ on the right is formed

by 27 cubes. Figure 7.2 illustrates a sample pairwise CDR. Aircraft #1 departs before aircraft #2.

Both aircraft move one cube at a time. In Figure 7.2a. aircraft #1 and #2 are located at cube J7

and K6, respectively. This causes a conflict as aircraft #2 intrudes aircraft #1’s PZ outlined in

red. In Figure 7.2b. the conflict is resolved by a lateral shift to cube L6 by aircraft #2. No conflict

occurs from here on as aircraft #1 follows cubes in gray (K7, L7,M7, N7, O7, P7, R7, S7) and

aircraft #2 follows cubes in blue (M7, N8, N9, N10, O11, P11, R11, S11, T11) until they land

at their pertinent airports.
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Fig. 7.2: Simplified depiction of a pairwise CDR.

7.4 Prescriptive Analytics System for CDR

Figure 7.3 shows an overview of the proposed Data-Driven Framework for a simplified

pairwise CDR. Predicted trajectory #1 and #2 are generated by our previous Aircraft Trajectory

Prediction System [46]. Our conflict detection algorithm takes predicted trajectories along with

separation minima as input. The output of the process is a data cube defined by its 4D position,

where conflict, if any, occurs. The next process in the pipeline is the conflict resolution, where

a variant of the Viterbi algorithm is performed to avoid the conflicting trajectory segment. The

process perturbs at least one of the trajectories involved in the conflict, generating a new optimized

path and thereby resulting in conflict-free trajectories. Separation minima may be expanded to

probe what-if scenarios if the conflict detection algorithm doesn’t generate a conflict.

7.4.1 Pairwise Conflict Detection

The predicted trajectories along with the size of the PZ are fed into our pairwise conflict

detection algorithm, presented in Algorithm 7.1. The algorithm declares a conflict if a PZ of an

aircraft is infringed upon by another aircraft at the same time interval in the future.

Formally, given a pair of predicted trajectories Ti = [pi1, pi2, ..., pim] and Tj = [pj1, pj2, ..., pjn]

where each trajectory is formed by a set of segments defined by their 4D spatio-temporal centroid
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Fig. 7.3: Overview of our Data-Driven Framework.

parameters latitude, longitude, altitude, and timestamp, along with PZ for trajectory Ti in data

cubes, we want to return the very first trajectory segment pjs, if a conflict occurs, null otherwise.

Note that each aircraft position along predicted trajectories are recorded once every minute. To

compute this, we start with the departure point of the aircraft that departs beforehand, and keep

moving forward, one grid point at a time. With the departure of the second aircraft, we compare

the trajectory segment pjs with PZis at each time instance ts to see if pjs overlaps with PZis.

Note that Algorithm 7.1 assumes that all the PZs have the same definition.

7.4.2 Pairwise Conflict Resolution

Our conflict resolution approach shares a common ground with our previous Trajectory

Prediction System [46] as they both attempt to address an optimization problem; given a set of

weather observations, what is the most likely sequence of aircraft positions? However, unlike the

previous system [46], the current conflict resolution algorithm avoids the spatio-temporal data

cubes where the conflict is detected. To recapitulate our approach to the optimization problem, we

briefly review our previous Trajectory Prediction System [46] here.

Given a set of historical trajectories along with pertinent weather observations, the system

works based upon an assumption that the weather observations are realizations of hidden aircraft

positions i.e. trajectory segments and the transitions between the underlying hidden segments fol-
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Algorithm 7.1: Pairwise Conflict Detection
Result: Detected conflict or no conflict

Input : Trajectory pairs Ti, Tj , Protected Zone PZi

Output: Conflicting trajectory segment pjs or null

1 Ti ← [pi1, pi2, ..., pim]

2 Tj ← [pj1, pj2, ..., pjn]

3 foreach ts ∈ (pis ∩ pjs) do

4 if pjs ⊂ PZis then

5 return pjs

6 end

7 end

8 return null

lowing a Hidden Markov model [154]. This assumption considers a finite set of states, each of

which is associated with a probability distribution over all possible trajectory segments. Transi-

tions among the states are managed by a set of probabilities. The states are not visible, but the

pertinent observations are. Given a sequence of observations, the system trains an HMM, a statis-

tical Markov model, and derives a sequence of hidden states, aircraft positions that correspond to

the sequence of weather observations. The system computes the most likely sequence of aircraft

positions in three steps:

• In the training data processing step, the system transforms raw trajectories into aligned

trajectories and combines weather parameters for each grid point along aligned trajectories.

To achieve this, the system uses a 3D grid network with a spatial resolution of 6km x 6km

as a reference system.
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• In the test data processing step, the system resamples the weather parameters to generate

buckets with distinct ranges and feeds them into the time series clustering algorithm [78]

to produce input observations.

• In the final step, the HMM parameters generated in the first two steps and the flight time

computed by our Estimated Time of Arrival (ETA) Prediction System [201] are used as

input to the Viterbi algorithm. The output is the optimal state sequence, joint 4D cubes

defining aircraft trajectories.

During the conflict resolution stage, our current framework makes use of the first two steps,

outlined above. However, unlike the 3rd step of the process, our current framework avoids the

cubes where the conflict is detected. This translates to a perturbation of at least one of the trajecto-

ries. Hence, the framework prescribes an optimized solution by perturbing at least one of the 4D

trajectories, involved in the conflict. The process executes as follows: In addition to the regular

HMM parameters of transition, emission, and initial probabilities, the framework uses conflict-

free probabilities where each state is assigned a probability value indicating how conflict-free it is.

The parameters are fed into a variant of the Viterbi Algorithm, in which the framework computes

the optimal state sequence by considering the maximum HMM probabilities. Due to fact that the

trajectory segments that are part of the first aircraft’s trajectory are assigned low conflict-free prob-

abilities, the framework avoids selecting them during the Viterbi process, yielding a conflict-free

trajectory for the second aircraft.

Now, we present a variant of the Viterbi algorithm. Note that our previous Trajectory Pre-

diction System [46] characterized an HMM by the following elements:

• N , the number of states in the model. States S = {S1, S2, ..., SN} are represented by

reference points’ coordinates (latitude, longitude, altitude) that form aligned trajectories.

We denote state at time t as qt.
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• M , the number of distinct observation symbols per state. Observations V = {v1, v2, ..., vM}

are represented by weather parameters (temperature, wind speed, wind direction, humidity)

recorded at grid points.

• The state transition probability distribution A = {aij} is the probability of an aircraft dis-

cretely transitioning from one state i to another j along its aligned trajectory, where

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N

• The observation symbol probability distribution in state j, B = bj(k) is the probability of

discrete weather parameters having been observed at that specific state, where

bj(k) = P [vk at t|qt = Sj ],
1 ≤ j ≤ N

1 ≤ k ≤M

• The initial state distribution π = {πi} is the probability of an aligned trajectory beginning

at a state i, where

πi = P [q1 = Si], 1 ≤ i ≤ N

These parameters form an HMM, compactly denoted by λ = {A,B, and π}. Now, we

propose an additional parameter;

• The conflict-free probability distribution in state j, C = cj(k) is the probability of a conflict

not occurring at that specific state, where

cj(k) = P [vk at t|qt = Sj ],
1 ≤ j ≤ N

1 ≤ k ≤M

Hence, the lower the conflict-free probability for a particular state, the lower likelihood of that

state to be included in the most probable path. With this new parameter, C an HMM can be

expanded and denoted by λ = {A,B, π and C}
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The next step in the process is to choose a corresponding state sequence Q = q1, q2, ..., qT

that best explains the observation sequence O = O1, O2, ..., OT given the model λ. A variant of

the Viterbi algorithm [122] that is based on dynamic programming addresses this problem. The

key component in the algorithm is the optimal probability, δt(j), and is computed as follows:

δt(j) = max
q1,...,qt−1

πq1bq1(o1)cq1(o1)

t∏
j=2

(aqj−1,qjbqj (oj)cqj (oj))

Due to their low conflict-free probabilities, a variant of the Viterbi algorithm avoids trajec-

tory segments where the conflict is detected, and generates a new optimized path.

7.4.3 CDR for Multiple Aircraft

Our pairwise CDR solution can be scaled to address CDR for multiple aircraft which can

be used towards better planning of airspace sector densities. Similar to the current flight planning

procedures, we propose predicted trajectories to be processed on a first come first served basis.

For the sake of simplicity, consider an empty airspace. The airspace will be fully available to the

first predicted trajectory. Hence, the first trajectory’s optimal set of data cubes will be reserved

in the airspace. This process will introduce a set of constraints in the form of PZs by the first

trajectory to the second and following trajectories during its flight time. Any conflict between the

first and second trajectory will be detected and resolved. Once resolved, a new set of constraints

will be introduced by the second trajectory. The next trajectory will need to satisfy the constraints

introduced by the previous trajectories and so on. This also means that the next trajectory will

need to avoid the PZs in the constraints list while generating its optimal set of data cubes during

the conflict resolution phase. This process is repeated until one or more flights land, which will

result in the removal of all pertinent constraints from the list which will free up the particular

sections of airspace.
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Formally, given a new predicted trajectory Tj = [pj1, pj2, ..., pjl] and a time series of ex-

isting constraints list CLPZ = [PZ1, PZ2, ..., PZi, ..., PZm], where PZi = [pzi1, pzi2, ..., pzik]

along their existing trajectories T = [T1, T2, ..., Ti, ..., Tn], where Ti = [pi1, pi2, ..., pik], we want

to detect and resolve conflicts among these trajectories Tj and T (i.e. one vs. all). Note that PZi is

formed by a set of data cubes, each defined by 4D spatio-temporal parameters around its centroid

pij . With this approach, the implementation and management of the constraints list is of central

importance. In our implementation, we map time instances to data cubes forming PZs, which are

stored in an Octree data structure, where there is one Octree for each time instance. Hence, when a

new trajectory comes in, the pertinent Octree is located based on the trajectory’s time instance. We

declare a conflict if the trajectory segment is found in the Octree. We process all pairs of possibly

conflicting data cubes using spatial indexing techniques to prune the search (e.g., [202, 203]).

Our scalable conflict detection algorithm for multiple aircraft is presented in Algorithm

7.2. To keep the constraints list up-to-date, we periodically check and delete the pertinent Octree

if any of the time instances has expired. Once a conflict has been detected, a variant of the Viterbi

algorithm is performed where all the data cubes included in the constraints list for the pertinent

time instance are avoided to find a conflict-free, optimized path for the new trajectory. To achieve

this, we assign a minimum conflict-free probability value, such as 1× 10−100 to those data cubes

included in the constraints list.

Figure 7.4 is an illustration of a simplified case where two consecutive trajectory segments

of aircraft #1 and #2 are inserted into two separate Octree data structures at time instances t and

t+1. For the sake of simplicity, the size of aircraft #1’s PZ is considered as a single data cube.

Assuming an empty airspace, the very first PZ set for aircraft #1 is allocated in the airspace without

being considered for a potential conflict. This translates to the fact that an Octree for time instance

t and another Octree for time instance t+1 are created as they don’t exist yet. Next, given the
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Algorithm 7.2: Conflict Detection for Multiple Aircraft
Result: Detected conflict or approved optimal trajectory

Input : A new predicted trajectory Ti, constraints list CLPZ

Output: Conflicting trajectory segment pi or updated constraints list CLPZ

1 Ti ← [pi1, pi2, ..., pin]

2 CLPZ ← [PZ1, PZ2, ..., PZm]

3 foreach ts ∈ (pi&CLPZ) do

4 PruneAndSearch

5 if pi ⊂ CLPZ then

6 return pi

7 end

8 else

9 Insert pi into CLPZ

10 end

11 end
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Algorithm 7.3: Conflict Resolution for Multiple Aircraft
Result: A conflict-free optimized trajectory

Input : # of states N , # of distinct observations M , transition probabilities A,

emission probabilities B, initial probabilities π, constraints list CLPZ

Output: A conflict-free optimized trajectory To and updated constraints list CLPZ

1 S ← [p1, p2, ..., pi, ..., pn]

2 CLPZ ← [PZ1, PZ2, ..., PZm]

3 foreach ts ∈ ((pi ∈ S) & CLPZ) do

4 PruneAndSearch

5 if pi ⊂ CLPZ then

6 cpi ← 1× 10−100

7 end

8 else

9 cpi ← 1

10 end

11 end

12 VariantOfViterbi

13 To ← max
s1,...,st−1

πs1bs1(o1)cs1(o1)
∏t
j=2(asj−1,sjbsj (oj)csj (oj))

14 foreach ts ∈ ((po ∈ To) & CLPZ) do

15 Insert po into CLPZ

16 end
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Fig. 7.4: Octree data structure for efficient aircraft conflict detection and resolution.
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predicted trajectory for aircraft #1, each consecutive PZ in solid red is inserted into each Octree

at time instance t and t+1 as shown in Figures 7.4a and 7.4b, respectively. When the predicted

trajectory segments of aircraft #2 in solid blue in Figures 7.4c, and 7.4d are received, the Octree

data structure at each time instance t and t+1 are searched to see if the pertinent Octree node is

empty. To achieve this, each Octree is looked up based on its index. Next, the pertinent Octree

is searched as each time instance is mapped to an Octree. If found empty, each consecutive

trajectory segment is inserted into each Octree at time instance t and t+1, as shown in Figures

7.4c and 7.4d, respectively. The insert operation for the first trajectory segment of aircraft #2

in solid blue is performed by traversing the node k at depth n illustrated as white cube mesh,

followed by the node 0 at depth n+1 illustrated as yellow cube mesh, followed by the node 7 at

depth n+2 illustrated as green cube mesh, and finally reaching to the leaf node 7 at depth n+3

and populating it with solid blue as shown in Figure 7.4c. Upon search, if the leaf node is not

found empty, which translates to a conflict, our conflict resolution Algorithm 7.3 is executed to

perturb the predicted trajectory for aircraft #2 to find an alternative optimal solution that results in

conflict-free trajectories.

Formally, given the number of states N , number of distinct observations per state M , state

transition probability distribution A, observation probability distribution B, and initial state prob-

ability distribution π, along with a conflict-free probability distribution for all data cubes included

in the constraints list at time instances t = [t1, t2, ..., tn], we want to form an HMM λ, and train

it to find the optimized path that is conflict-free. Our conflict resolution algorithm for multiple

aircraft is presented in Algorithm 7.3.
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Tab. 7.1: A set of European and U.S.A. airports.

Airport Code Airport Name

LEAL Alicante–Elche Airport

LEBL Barcelona–El Prat Airport

LECO A Coruña Airport

LEIB Ibiza Airport

LEMD Adolfo Suárez Madrid-Barajas Airport

LEMG Málaga Airport

LEMH Menorca Airport

LEPA Palma de Mallorca Airport

LEVC Valencia Airport

LEVX Vigo–Peinador Airport

LEZL Seville Airport

KATL Hartsfield-Jackson Atlanta International Airport

KBOS Boston Logan International Airport

KDFW Dallas/Fort Worth International Airport

KJAX Jacksonville International Airport

KLGA NewYork LaGuardia Airport

KMIA Miami International Airport

KORD Chicago O’Hare International Airport

KPIT Pittsburgh International Airport
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7.5 Evaluation

To evaluate our framework, we generated a number of test cases using real trajectory and

weather data from Europe and USA. Table 7.1 shows the European and USA airports forming

the routes we used in our evaluation. Although the ideal evaluation would use real trajectories in

actual conflicts, this is infeasible due to the nature of ATC operations, where the controller would

interfere and separate the aircraft as soon as they are likely to infringe upon one another, so there

would be no conflicts to find. Hence, we used a total of 20 test cases formed by European and

USA flights that were in close proximity to cause potential conflicts when a minimal perturbation

was applied. 16 out of these 20 cases were used to test pairwise CDR, while 4 cases were used to

test CDR for multiple aircraft.
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7.5.1 Setup

Due to the fact that there exists no system that continuously records and stores exact posi-

tions of an aircraft’s original trajectory [74], only a discrete set of sample data are recorded and

stored which presumably represent a close approximation of the original trajectory. We call this

a raw trajectory. The raw trajectory data from Europe was provided by Spanish ANSP, ENAIRE

using a radar surveillance feed with a 5 seconds update rate. The raw data was wrangled as part of

the Data-driven AiRcraft Trajectory prediction research (DART) project under the SESAR Joint

Undertaking Work Programme [75]. The European trajectory data contains all commercial do-

mestic flights for Spain, a total of 119,563 raw trajectories and 80,784,192 raw trajectory points

for the period of January through November 2016. The fields of the raw trajectory data are as

follows: flight no, departure airport, arrival airport, date, time, aircraft speed in X, Y, Z direc-

tions, and position information (latitude, longitude, altitude). Note that, as a preprocessing step,

we downsampled raw trajectory data from the original resolution of 5 seconds to 60 seconds and

aligned them to our 3D reference grid [46]. The raw trajectory data from the USA was extracted

from an Aircraft Situation Display to Industry (ASDI) data feed which is recorded once every 60

seconds, provided in near real-time by the FAA [14], and stored in an aviation data warehouse

[59]. The USA trajectory data contains flights between 8 major airports, a total of 4,628 raw tra-

jectories and 450,919 raw trajectory points for the period of May 2010 through December 2015.

The fields of the raw trajectory data are as follows: source center, date, time, aircraft Id, speed,

latitude, longitude and altitude. Both European and USA weather data were extracted from the

Global Forecast System (GFS), provided by NOAA [76]. The original data has 28-km spatial

and 6-hour temporal resolution and it contains over 40 weather parameters including atmospheric,

cloud and ground attributes for each grid point as part of its 3D weather model. Hence, for this
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study’s geographic volume and time period of interest, over 160TB of weather data was collected.

Due to fact that our current framework aims at addressing the CDR problem before depar-

ture, at least a pair of predicted trajectories are needed as input. Hence, we used our previous

system [46] to generate a pair set of predicted trajectories. Next, we searched and found a number

of trajectory points between the two flights’ trajectories in the first and second pair, where the

date, latitude, longitude, and altitude values matched, and time mismatched. By perturbing one

of the flights’ departure time we virtually created conflicts, where both aircraft traversed the same

trajectory point at the same time. Table 7.2 shows the final size of training and test data in number

of trajectories (#trjs) and points (#pts).

To evaluate our framework on multiple CDR test cases, we generated a set of three flights

that is a combination of the existing routes listed in Table 7.2. The additional test cases for

multiple CDR with their final size of test data in number of trajectories (#trjs) and points (#pts)

are listed in Table 7.3. Table 7.3 does not include training data for each test case as they are

already included in Table 7.2. Note that test case #17 and #18 use two separate virtual conflicts in

each test case, where each conflict is addressed in sequence, i.e., first the virtual conflict between

route #1 and route #2 is detected and resolved, next the virtual conflict between route #1 and #3 is

detected and resolved. Unlike test case #17 and #18, test case #19 and #20 address multiple CDR

all at once, i.e., all three routes share a common trajectory point. Hence, to form a set of three

flights for test case #19 and #20, we searched and found a number of trajectory points between

these three flights’ trajectories, where the date, latitude, longitude, and altitude values matched,

and time mismatched. Assuming that the predicted trajectories were received in the order of route

#1, #2, and #3 respectively, first we perturbed the 2nd flights’ departure time to create a virtual

conflict between the first and second flight, which is detected and resolved using our multiple CDR

approach. As an outcome, route #2 was perturbed at the conflict location, yielding a common
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Fig. 7.5: Visual representation of training and test data for conflicting flights.
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Fig. 7.6: Trajectory prediction errors in the form of box plots.
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trajectory point between route #1 and route #3. Next, we perturbed the 3rd flights’ departure time

to create a virtual conflict between the first and third flight, which is also detected and resolved

using our multiple CDR approach. In all multiple CDR test cases listed in Table 7.3, we used an

Octree data structure and executed Algorithm 7.2 and Algorithm 7.3.

Note that overall, the trajectory data alone contains over 4 million trajectory points. In

Tables 7.2 and 7.3, the test data represents the conflicting trajectories. Aside from these 1,677

trajectory pairs, we also bootstrapped by drawing 100 additional trajectory pairs with replacement

from the trajectory set to test for the false positive cases. Hence, we evaluated our framework’s

effectiveness with a total of 3,554 (3,354 + 200) test trajectories on 16 test cases for pairwise CDR

and an additional set of 1,087 (916 + 171) test trajectories formed by three flights on 4 test cases

for multiple CDR.

Figures 7.5a through 7.5p illustrate the pairwise test cases with their cumulative training

and test data in white and yellow, respectively, whereas Figures 7.5r through 7.5u illustrate the

test cases of three flights with their cumulative training and test data in white, yellow, and blue,

respectively.

7.5.2 Results

We evaluated our framework by comparing the output of each step through the framework’s

pipeline with the ground truth on all 20 test cases. These steps include conflict detection and con-

flict resolution. However, due to fact that the accuracy of conflict detection and resolution signif-

icantly depend on the accuracy of predicted trajectories, we also computed trajectory prediction

errors. For that purpose, we used trajectory prediction accuracy metrics as outlined in [152] and

computed horizontal and vertical errors ehoriz , evert based on predicted trajectories generated by

our previous system [46] versus raw trajectories of pertinent flights. The box plots in Figure 7.6
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Tab. 7.4: Horizontal and vertical error ranges for each bin size.

Condition BinSize

0nmi ≤ ehoriz ≤ 5nmi ∧ 0ft ≤ evert ≤ 2000ft 5nmi,2000ft

5nmi < ehoriz ≤ 10nmi ∨ 2000ft < evert ≤ 4000ft 10nmi,4000ft

10nmi < ehoriz ≤ 15nmi ∨ 4000ft < evert ≤ 6000ft 15nmi,6000ft

15nmi < ehoriz ≤ 20nmi ∨ 6000ft < evert ≤ 8000ft 20nmi,8000ft

capture the aggregated errors for horizontal, along-track, and cross-track errors for each flight in

all 20 test cases. The horizontal error is unsigned whereas the along-track, cross-track, and vertical

errors are signed errors. Note that the mean value for the cross-track error and vertical error along

the entire test trajectories is 7.692nmi and 1589.452ft respectively, when the sign is omitted.

To evaluate our conflict detection capability, we used the same accuracy metrics as in [152]

and computed horizontal and vertical errors by comparing the output of conflict detection and con-

flict resolution of our framework with the ground truth on all 20 test cases. To compute the errors,

we fed a pair set of predicted trajectories for test case #1 through #16 and a set of three predicted

trajectories for test case #17 through #20 into our conflict detection algorithm and compared the

locations of virtual conflicts versus locations of conflicts detected by our framework. Next, we

created 4 bin sizes, where each bin size is an integer multiple of 5nmi of lateral and 2000ft of

vertical distances, conventionally accepted as minimum separation values for enroute airspace by

ANSPs.

Table 7.4 presents the pertinent condition for each bin. Using horizontal and vertical error

values, we counted the number of conflicts in each case and found the bin size to which they

belong. The outcome is presented as a set of histograms in Figure 7.7. Our algorithm detected

87.1% of the conflicts within the first bin size and 99% of the conflicts within the first two bin

sizes on all 20 test cases. Note that the conflict detection can only be as accurate as the predicted
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trajectories. Hence, these errors are attributed to the accuracy of our previous system [46], defined

by the horizontal, and vertical error of 14.981nmi and 1589.452ft respectively along the entire test

trajectories.

To resolve the conflicts, we ran our conflict resolution algorithm. Figure 7.8 provides a

closer look at one of the detected and resolved conflicts by our framework for a pairwise CDR

test case. In all figures, the yellow cubes and white cubes represent the first and second flight’s,

respectively, predicted trajectories. The red line parallel to the white cubes represents the first

fight’s actual trajectory and the red line parallel to the yellow cubes represents the second flight’s

actual trajectory. As both aircraft move one cube at a time in the flight direction, the PZ illustrated

in the cyan cube around the current position of the first flight also moves forward in the form

of a sliding window. The first figure on the far left shows where each aircraft is at time ts−1,

represented respectively by the solid white cubes for the first and yellow cubes for the second

flight. The second figure from the left captures the conflict detected at time interval ts by our

framework illustrated with a solid red cube. The actual conflict occurs where the red lines intersect.

Note that both the predicted conflict position and the actual conflict position are within the first

flight’s PZ. The third figure from the left is the 3D view of the second figure from the left. The

actual and predicted conflict positions are only 2 cube sizes away from each other, considering the

center of the cube as the predicted position of the aircraft. The figure in the far right illustrates the

optimized solution to the conflict by our framework. The first flight’s trajectory has been perturbed

vertically and the conflict has been resolved by our framework. The altitude of the second flight

has been elevated resulting in conflict being resolved. Note that due to assignment of low conflict-

free probabilities to the 3D grid points inside of the PZ, the framework avoids selecting them

during the conflict resolution stage, generating conflict free trajectories.

As the final evaluation step, we executed our conflict resolution algorithm on all conflicts
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Fig. 7.7: Conflict detection histograms showing how many conflicts were captured by our framework in

each bin size.
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Fig. 7.8: Illustration of a detected and resolved pairwise conflict by our framework.

formed by a total of 4,641 (3,554 + 1,087) trajectories and computed accuracy values based on the

number of successful resolutions, i.e. generating a feasible safe alternative trajectory by fulfilling

the separation minima criteria. Due to the fact that our conflict resolution algorithm resolved

the vast majority of conflicts on all test cases, we provide aggregated results overall, rather than

provide results for each test case. Table 7.5 presents accuracy values for each bin size. Note

that, to resolve the conflicts, we treated each bin size differently based on their varying sizes so

that only relevant 3D grid points were avoided. The process perturbed the trajectory for the latter

flight, generated an optimal alternative and yielded conflict-free trajectories.

7.6 Discussion

During the trajectory prediction step, errors were computed by comparing the locations of

virtual conflicts versus locations of conflicts detected by our framework. The trajectory predic-

tion had mean horizontal and vertical errors of 14.981nmi and 1589.452ft, respectively along the

entire trajectory points over the full test set from two continents. Using the predicted trajectories,

our conflict detection algorithm had 6.012nmi of mean horizontal error. Note that this value is

considerably less than 14.981nmi, the mean horizontal error by our previous Trajectory Prediction

System [46] along the entire trajectory points including climb, cruise and descent phases of a
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flight. This is due to two major facts: 1) Trajectory prediction accuracy during the cruise phase

is often considerably higher than the climb and descent phases of the flight. 2) All conflicts we

used in our experiments took place during the cruise phase of the flights. With 6.012nmi of mean

horizontal error on the conflict positions, our conflict detection algorithm found 99% of conflicts

within the first two bin sizes of separation minima (10nmi, 4000ft). We also verified that between

none of the additional 100 trajectory pairs where the virtual conflict never occurred was falsely

detected as a conflict by our framework. Our conflict resolution algorithm’s mean accuracy was

over 97% on all test cases. Though, it is interesting to see that it was unable to reach 100% accu-

racy, given the fact that all it had to do was avoid the selected 3D grid points when generating the

new conflict-free optimal trajectory. The reason for that was the sparse distribution of data cubes,

i.e. lack of data over the 3D grid network. The algorithm was unable to connect the new trajectory

segments from start to end due to disconnection. Hence, our framework craves for more data to

reach higher accuracy values.

These results validate the effectiveness of our framework on the long-range CDR problem.

However, this is not to say that strategic CDR will detect and resolve conflicts once for all and no

more conflicts will occur during the flight. There will likely be some convective weather patterns

shaping after departure. These sudden changes causing potential conflicts should be addressed

tactically by short and or medium-range CDR systems while the aircraft is airborne.

Although we were not able to find, there may also likely be some exceptional cases where

false positive conflicts may be found. These cases should also be addressed tactically by short and

or medium-range CDR systems. Note that the larger the selected PZ value, the higher probability

of finding and resolving the conflicts between trajectories. However, that also means less denser

sectors resulting in inefficient use of airspace. Hence, the tradeoff should be handled carefully by

the ANSPs.
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Tab. 7.5: Accuracy of our conflict resolution algorithm based on each bin size.

BinSizeId Size Accuracy

1 5nmi,2000ft 98.3%

2 10nmi,4000ft 97.5%

3 15nmi,6000ft 93.7%

4 20nmi,8000ft 100.0%

Overall, we propose our framework to be used by AOCs to file more realistic flight plans.

Our framework can also be used by ANSPs to validate that the filed flight plans do not cause

conflicts with previously approved flight plans or increase any sector traffic complexities. Air

traffic density and complexity (a count of aircraft predicted to be in conflict with another) are

two major factors defining the metric of air traffic controller workload [13]. These goals can be

achieved in the planning phase before the aircraft depart, resulting in improvement in the four

ATM key performance areas; safety, capacity, efficiency, and environmental impact, and thereby

improving ATM automation and reducing the air traffic controller workload.

7.7 Conclusion

We have presented a novel Data-Driven Framework addressing a long-range CDR problem.

Using a set of predicted trajectories, the framework delivers two major capabilities; i) conflict

detection, and ii) conflict resolution before the flight depart. In the conflict detection stage, the

framework declares a conflict when a PZ of an aircraft on its predicted trajectory is infringed

upon by another aircraft at the same time interval in the future. In the conflict resolution stage,

upon a conflict, the framework executes our conflict resolution algorithm that is derived from the

Viterbi algorithm and prescribes a solution that resolves the conflict by perturbing at least one of

the 4D trajectories.
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Our experiments on real trajectory and weather datasets from two continents verify that our

framework achieves lateral and vertical accuracies that are within the boundaries of conventionally

accepted minimum separation values, set by the ANSPs. This translates to the fact that, ANSPs

can now detect and resolve potential conflicts long before the aircraft depart, resulting in safer and

greener skies with higher efficiency and capacity, and thereby reducing the air traffic controller

workload.
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Part V

Concluding Remarks
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Chapter 8

Conclusion and Future Directions

8.1 Conclusion

In this thesis, we studied the characteristics of aircraft trajectories and developed several

data-driven models for (1) ETA prediction (2) aircraft trajectory clustering (3) aircraft trajec-

tory prediction, and (4) aircraft conflict detection and resolution, long before aircraft depart. The

suite of analytics models runs on a scalable data management system that continuously processes

streaming massive flight data to achieve the strategic airspace planning for optimal capacity, effi-

ciency, and safety.

In Chapter 1, we motivated the problem space, introduced the problem, provided back-

ground information and presented high-level view of our approach to the problem. Our overarch-

ing thesis statement has been included in this chapter.

In Chapter 2, we looked at streaming massive flight data provided by the FAA, which is

the major data source of our data-driven models. We presented a design and implementation of

an efficient data management system including a scalable aviation data warehouse, which is the

underlying infrastructure for our descriptive, predictive, and prescriptive analytics solutions pre-



sented in this thesis. We emphasized the fact that our efficient data management system processed

an average of 34 million ASDI messages each day, yielding over ten billion messages each year

stored in our aviation data warehouse.

In Chapter 3, we addressed the ETA prediction problem for commercial flights, which is a

major input to our data-driven model for aircraft trajectory prediction. Unlike other systems that

collect and use features only for the arrival airport, we used a richer set of features along the poten-

tial route, such as weather parameters and air traffic data in addition to those that were particular

to the arrival airport. Our feature construction process generated an extensive set of multidimen-

sional time series data which went through Time Series Clustering with DTW to generate a single

set of representative features at each time instance. We also presented algorithms for two major

features that highly contributed to the accurate ETA prediction: airspace sector congestion rate,

and airport congestion rate. Next, we performed a comparative analysis using a number of regres-

sion models and an RNN and presented their performances. Using the best performing model,

we compared our results with those generated by the EUROCONTROL. Our experiments on real

trajectory, weather, air traffic and airport data verified that our system outperformed EUROCON-

TROL’s ETA prediction by offering not only a higher accuracy but also a far smaller variance,

resulting in smaller prediction windows of flight arrival times.

In Chapter 4, we studied historical aircraft trajectories, grouped similar trajectories and

discovered a representative trajectory for all as a single entity. During the process, we found

out that considering a trajectory as a whole may mislead, resulting in overfitting and a failure

to discover a representative trajectory. Hence, we clustered aircraft trajectories based on a well-

known aviation domain fact: each flight is made up of three major phases: climb, enroute, and

descent. We divided trajectories into these three phases and clustered each phase in isolation, then

merged them together. We also presented a representative trajectory algorithm that revealed the
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trajectory model based on lateral and vertical smoothing.

In Chapter 5, we analyzed timeseries of weather observations for the airspace volume of

interest. To predict aircraft trajectories, HMM requires a set of input observations, which are

unknown, although the weather parameters overall are known for the pertinent airspace. Hence,

given an extensive set of weather parameters for the overall airspace of interest, we computed

time series clustering on the current weather observations and generated one cluster centroid for

each time instance along the potential path. Unlike previous research, which used standard clus-

tering techniques to generate clusters that are largely independent of the time series from which

they originate, we generated an optimal sequence of weather observations used in accurate trajec-

tory prediction. Our algorithm computed a cost value for each weather observation based on its

frequency for each time instance, ranked, and stored them in a matrix. Using DP, the algorithm

computed the optimal sequence of weather observations, a set with the minimum cumulative cost

that satisfied the continuity constraint.

In Chapter 6, we created a new concept for describing airspace to accurately predict aircraft

trajectories. We considered airspace as a 3D grid network, where each grid point was a location

of a weather observation. We hypothetically built cubes around these grid points, so the entire

airspace could be considered as a set of cubes. Each cube was defined by its centroid, the original

grid point, and associated weather parameters that remained homogeneous within the cube during

a period of time. Then, we aligned raw trajectories to a set of cube centroids which were basi-

cally fixed 3D positions independent of trajectory data. This created a new form of trajectories

which were 4D joint cubes, where each cube was a segment that was associated with not only

spatio-temporal attributes but also with weather parameters. Next, we exploited machine learn-

ing techniques to train inference models from historical data and applied a stochastic model, an

HMM, to predict trajectories taking environmental uncertainties into account. During the process,
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we leveraged our time series clustering algorithm to generate input observations from an excessive

set of weather parameters to feed into the Viterbi algorithm. The experiments with real trajectory

and weather data showed that our trajectory prediction system generated mean horizontal error of

less than 13 nautical miles and mean vertical error of less than 700 feet.

Lastly, in Chapter 7, we proposed a cube-shaped protected zone surrounding each aircraft

that could be expanded by joining the neighboring cubes horizontally and vertically, yielding a

protected zone with a desired size. This idea resonated with the assumption, which we presented in

the previous chapter that an airspace was nothing more than a set of concatenated spatio-temporal

data cubes around a 3D grid network, where each cube was considered as an atomic unit. We

also proposed an algorithm for pairwise conflict detection. We used an Octree data structure to

store and manage 4D aircraft trajectories, and presented a conflict detection algorithm for two or

more conflicting aircraft. Finally, we presented a conflict resolution algorithm for two or more

conflicting aircraft, which used the same Octree data structure. Hence, overall, we presented a

scalable Prescriptive Analytics System to strategically address the aircraft CDR problem. Given

a set of predicted trajectories, the system declared a conflict when a protected zone of an aircraft

on its trajectory was infringed by another aircraft at the same time interval in the future. Once

a conflict was detected, the system executed our conflict resolution algorithm and prescribed a

solution that resolved the conflict by perturbing at least one of the 4D trajectories involved in

the conflict. Our experiments showed that our long-range conflict detection and resolution system

achieved lateral and vertical accuracies that were within the boundaries of conventionally accepted

minimum separation values, set by the ANSPs.

Altogether, this thesis establishes a comprehensive understanding of a new way of concep-

tualizing airspace and uses this understanding to plan airspace for optimal capacity, efficiency and

safety. We develop a suite of four models and their pertinent algorithms to effectively predict ac-
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curate 4D aircraft trajectories and detect potential conflicts among them long before they depart.

This translates to the fact that ANSPs can now efficiently plan a safer and greener airspace with

more efficiency and capacity, and thereby reducing the air traffic controller workload.

8.2 Future Directions

There are several important research directions that will further improve the understanding

of 4D aircraft trajectories and their allocations within a particular airspace. In this thesis, we

focused on commercial air traffic mostly in class A airspace. With the expected inclusion of

drones in the next few years, demand for all airspace classes including class A, B, C, D, and E

will increase and that will require strategic planning of airspace for more efficiency, capacity, and

safety. In 2015, the FAA deployed En Route Automation Modernization (ERAM) [204] at 20

FAA ARTCCs nationwide to monitor conformance of en-route flights. However, ERAM supports

conformance monitoring for only 1,900 flights for each ARTCC and that will highly likely be

insufficient due to the estimated growth of commercial air traffic together with expected inclusion

of massive number of unmanned aircraft in the NAS. Hence, this will give a rise to design and

implementation of highly scalable data management and analytics systems and new computational

models to efficiently manage air traffic of millions of manned and unmanned aircraft in the NAS.
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