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The problem of flare-heated electron transport from the corona to the chro-

mosphere is crucial to understanding energy release in solar flares. Observations

of coronal X-ray emissions suggested two opposite scenarios: free propagation and

confinement of energetic electrons. Confinement is implied in the unexplained pro-

longed lifetime of the electrons compared to their transit time across the source

region. Theoretical modeling of electron transport in solar flares has invoked anoma-

lous resistivity resulting in anomalous conduction. However, there has been no clear

evidence for anomalous conduction in numerical simulations. We explore the mech-

anisms of energetic electron transport in the solar corona by particle-in-cell (PIC)

simulations. We demonstrate that hot electron transport is significantly inhibited

by the formation of nonlinear, highly localized electrostatic potential drops, in the

form of double layers (DLs). The electrons are either reflected by the potential

and therefore confined in the source or decelerated and can therefore escape. An in-

creasing number of DLs are generated in larger-scale simulations, pointing to a more



likely picture for future space missions probing the corona. Hot electrons stream

along magnetic fields through regions of cold plasma. A stream of cold return cur-

rent electrons develops to maintain a system with zero net current. The DLs are

generated through an ion-electron streaming instability due to the drift of the return

current electrons interacting with the ions. The effectiveness of transport suppres-

sion by a DL is linked to the strength of the DL as defined by its potential drop.

We demonstrate that the strength is limited by the formation of parallel shocks.

Using PIC simulations and analytic modeling, we show that the maximum strength

scales linearly with the hot electron temperature. At the maximum strength, a DL

is capable of confining a substantial fraction of electrons in the source.

This study has important implications for electron transport during solar

flares. It shows transport suppression begins when the energetic electrons start

to propagate away from a coronal acceleration site. It also reveals confinement of

electrons with kinetic energies less than the total potential of the DLs for the DLs’

lifetime, which is much longer than the electron transit time through the source

region. Our results are consistent with observations of both free propagation and

confinement of X-ray producing electrons in the corona, corresponding to the escap-

ing and reflected electrons, respectively.
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Chapter 1

Solar Flares and Electron Transport

1.1 Flare loops in the solar corona

The physical system under consideration is a typical flaring loop commonly

observed during solar flares above the surface of the sun. Figure 1.1 shows an exam-

ple of flaring loops in ultraviolet emission with the TRACE spacecraft. The emissive

hot plasma traces out the magnetic field of the loops. The bright spots where the

loops anchors the surface of the sun are their footpoints. The loops are also visi-

ble in X-rays. In X-rays, the loop body usually emits from thermal sources while

the footpoints are from non-thermal sources. These radiation sources are energized

particles from the ambient solar atmosphere produced by various mechanisms such

as shocks, turbulence and magnetic reconnection (Miller et al., 1997). The energy

is ultimately believed to come from the magnetic field energy released via magnetic

reconnection that occurs in the high corona. Figure 1.2 shows the standard recon-

nection picture. Magnetic field lines annihilate at a localized reconnection site. The

resulting reconnected field lines are elongated and have high magnetic tension. By

slinging outwards to become round, the field lines reduce their tension and thus

release their associated field energy. The field energy is converted into particle flow

energy and kinetic energy by heating and accelerating particles in the outflow region.

From the reconnection outflow, energized particles flowing downwards interact

1



Figure 1.1: A typical flaring loop on the solar limb as seen in ultraviolet emission
with the Transition Region And Coronal Explorer (TRACE) spacecraft. The mag-
netic field of the corona is outlined by the hot (around one million degrees Kelvin)
loops (credit: NASA).
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Figure 1.2: Schematic of the standard picture of magnetic reconnection that takes
place in the corona. Green curves are magnetic field lines. Particles are energized
in the outflow region denoted by red bubbles. Adapted with permission from Ref
(Liu et al., 2008). c©2008 by the American Astronomical Society)
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Figure 1.3: Yohkoh observations of the Masuda flare of 1992 January 13. Left, soft
X-ray whole-Sun image; Right, magnified soft X-ray image with hard X-ray con-
tours and a sketch of the common interpretation of the observed features. Yohkoh
(”Sunbeam”) was a Solar observatory spacecraft of the Institute of Space and As-
tronautical Science in Japan, in collaboration with space agencies in the U.S. and
the U.K..

with the ambient plasma and magnetic field, generating solar flares. Those reaching

the chromosphere (near the surface of the sun) produce footpoint emission. Those

near the top of a loop in the corona produce looptop emission. Radiation across the

electromagnetic spectrum from radio waves to gamma rays is observed.

Figure 1.3 is a soft X-ray (SXR) image from the whole Sun (left) with the

Yohkoh spacecraft and a blowup of a flaring loop (right) with hard X-ray (HXR)

contours overlaid on SXR intensity map. The loop body is bright in SXRs that are

emitted by lines from highly ionized ions and free electrons. HXRs are observed at

the looptop and footpoints. They are emitted via electron bremsstrahlung, a process

in which electrons collide with ambient plasma, lose energy and subsequently emit

radiation. The intensity of emission depends on the ambient plasma density. The
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chromosphere, where the footpoints are, has a much higher plasma density than

the corona, where the looptop is. Therefore, footpoint emission is usually much

brighter than looptop emission (as seen from the denser contours at footpoints in

Figure 1.3) and often overshadows the latter. As a result, looptop HXR sources are

not as commonly detected. In the cases of limb flares that have a view angle from

the side of the sun such that the footpoints and looptop are separated and occulted

flares with occulted footpoints, looptop sources are more easily observed. The first

observation of looptop HXR emission was in the notable Masuda flare (Masuda

et al., 1994), a limb flare, 30 years ago. This discovery has important implications.

Since magnetic reconnection, which is linked to the energy release process during

solar flares, is supposed to happen high in the corona, existence of HXR-producing

electrons in the high corona is evidence for particle acceleration associated with

magnetic reconnection. Ever since the Masuda flare, more looptop sources have been

detected with the improvement of detection sensitivity. A comprehensive analysis

of 18 limbs flares exhibited 15 events with detectable looptop emission (Petrosian

et al., 2002). It was therefore concluded that the detection of looptop emission is

only a sensitivity problem, suggesting looptop sources are a common feature of all

flares.
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Figure 1.4: Cartoon of the 2007 December 31 flare. The dark gray plane represents
the photosphere, and the lighter gray gives the occultation height of the RHESSI
observations. The flare loops are shown in black (occulted part) and red (visible
part). The contours of the HXR and microwave images are projected. Adapted with
permission from Ref (Krucker et al., 2010). c©2010 by the American Astronomical
Society)

1.2 Observations of X-ray Emission: Implication for Electron Trans-

port

A very important implication from the observations of looptop emission is

electron confinement in the corona. Figure 1.4 is an example of a looptop source,

showing typical scales, from a recent intense (almost 10 times more than the Masuda

flare) looptop X-ray emission. The sources were clearly observed because the solar

disk was partially occulted when viewed from RHESSI, avoiding the saturation of

the detector by bright footpoints at the disk. Using a system size of ∼10Mm,

electrons producing HXRs at 50 keV take less than 0.1 sec to transit the flare loop

and leave the source region. However, the decay time from the HXR time profile,

which indicated the lifetime of the electrons at the source, was ∼30 sec (Krucker

et al., 2010). That is over two orders of magnitude longer than the transit time. This

6



suggests that the energized electrons are trapped at the looptop. SXR counterparts

of the HXRs were also observed at the looptop in this flare as in the Masuda flare.

Many looptop X-ray observations share similar sizes and X-ray decay times, as

reported from a statistical survey of 55 partially occulted flares (Krucker and Lin,

2008), implying electron confinement in the corona a common phenomenon in solar

flares.

Recently, a systematic study of solar flares with both looptop and footpoint

emissions found that the number of electrons required to explain observations is

2-8 times higher at the looptop than that at the footpoint (Simões and Kontar,

2013). This suggests electron accumulation at the looptop. Another systematic

study of the relation between coronal and footpoint X-ray sources indicated that

transport processes other than free-streaming of electrons from the corona towards

the footpoints are involved (Battaglia and Benz, 2006). If there was only free-

streaming, i.e., the same electron population produced the coronal and footpoint

emission, the difference in photon spectral index between the two emission should

be 2. Coronal and footpoint emissions are produced by thin-target and thick-target

bremsstrahlung, respectively (because of the lower density in the corona and the

higher density in the chromosphere). The study reported a difference in spectral

index considerably greater than 2 in some events. This requires a filter effect in the

propagation preferentially reducing the distribution at lower energies. Such a filter

can be an electric field.

Evidence for free-propagation of energetic electrons, i.e., no interaction with

the ambient plasma, was reported in previous time-of-flight (TOF) measurements of
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Figure 1.5: HXR pulse delays, from the Masuda flare, observed between five en-
ergy channels with electron energies indicated are fitted to a time-of-flight model.
Adapted with permission from Ref (Aschwanden et al., 1996a). c©1996 by the
American Astronomical Society.
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HXR emission (Aschwanden et al., 1995, 1996b,a; Aschwanden and Schwartz, 1995).

Time delays between HXRs at different energies indicate that lower energy electrons

arrive at the chromosphere after higher energy ones as they freely stream down the

flare loop from the corona. Figure 1.5 shows HXR pulse delays observed between

five energy channels from the Masuda flare, fitted to the TOF model (Aschwanden

et al., 1996a). They are consistent with the model, suggesting free-propagation of

the HXR-producing electrons down the flare loop. A statistical correlation study

of over 600 flares revealed a systematic time delay between lower (25-50 keV) and

higher (50-100 keV) energy HXR emission (Aschwanden et al., 1995), supporting

the free-streaming scenario of the energized electrons.

The transport of energetic electrons from the corona to the chromosphere

is crucial to understanding energy release in flares. Transport effects can modify

the energy distribution of the propagating electrons and hence the observed X-ray

spectra, affecting the interpretation of acceleration models. An important question

on electron transport is why some electrons appear to freely propagate while some

are filtered or even trapped. The physics of this subject, however, remains poorly

understood. In what follows, we attempt to understand this interesting subject.

1.3 Previous Work on Electron Transport

We first review some of the previous work on electron transport relevant to

solar flares. Electron transport has been previously modeled as conduction mediated

by classical collisions (Spitzer, 1962), convection at a subthermal characteristic speed
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Figure 1.6: Plotted are the characteristic length scale lT at two different times from
a numerical calculation of heat conduction based on classical Coulomb collisions,
and the thermal electron mean free path λee. Adapted with permission from Ref
(Oreshina and Somov, 2011). c©2011 by Springer.

observed in simulations of laser fusion studies (Manheimer and Klein, 1975), and

turbulent transport limited by anomalous resistivity (Manheimer, 1977; Tsytovich,

1971), also called anomalous conduction.

Recent analytical and numerical studies of the transport of super-hot electron

fluxes with energies greater than 10 keV show that the classical conduction model

produced a heat flux significantly higher than the real energy fluxes reported from

multi-wavelength observations of solar flares (Oreshina and Somov, 2011). This

implies that processes other than classical Coulomb collisions between electrons and
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Figure 1.7: Ion and electron distributions unstable to ion acoustic instability. A
relative drift vd of electrons with respect to ions greater than the ion thermal speed,
but less than the electron thermal speed, can excite ion acoustic waves.

ambient plasma needed to be considered as well. In Figure 1.6, the characteristic

length scale lT corresponding to an e-fold change in temperature from their numerical

calculation is far less than the thermal electron mean free path λee. This means that

the conduction model based on classical collisions is inapplicable to describe the flare

system under consideration. A kinetic (collisionless) model is required.

In the turbulent transport scenario, anomalous resistivity arises from electron

scattering by turbulent wave fields excited by instabilities involving the interaction

of energetic electrons and ambient plasma. One commonly considered mode is the

ion-acoustic instability (Manheimer, 1977; Tsytovich, 1971; Smith and Lilliequist,

1979; Levin and Melnikov, 1993). When accelerated electrons propagate outwards,

ambient electrons are drawn in as a return current. Their relative drift with ions

excites ion-acoustic waves (see Figure 1.7 for an example of ion and electron distri-

butions unstable to ion acoutic wave growth), which scatter the energetic electrons
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and anomalously enhance resistivity (Manheimer, 1977). The heat flux carried by

the energetic electrons is limited by the saturation of the instability due to ion

trapping.

An anomalous conduction front that moved along the flare loop at the head of

an expanding hot electron source was considered as a means to confine hot electrons

for the production of HXRs (Smith and Lilliequist, 1979). The model, based on a

1D one-fluid code with a grid spacing of 100 km (∼104 ion inertial lengths), did not

resolve ion inertial lengths, let alone capture processes occurring at electron scales.

However, it was argued that the front propagates at approximately the ion acoustic

speed cs and, with some heuristic analysis, predicted that the front would become

thinner than the grid spacing, although this was artificially disallowed to avoid

numerical instability. Later, 1D electrostatic particle-in-cell (PIC) simulation that

resolved the shortest electron scale, the Debye length, did not reveal a conduction

front (McKean et al., 1990).

Recently, the existence of a thermal front, literally defined as a region that

links plasmas in thermal nonequilibrium and sustains the temperature difference for

longer than the electron free-streaming time, was studied in 1D electrostatic Vlasov

simulations (Arber and Melnikov, 2009). Figure 1.8 shows the time evolution of the

electron phase space near the contact between two temperature regions with the hot

region representing a coronal electron source. In the top panel, the left and right

sides are hot and cold electrons, respectively. From the top to the third panels,

the front of the hot electrons propagated to the right, resembling thermal conduc-

tion. The authors therefore reported the formation of a temperature difference and
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Figure 1.8: Time evolution of the electron phase space between the hot and cold
electron populations in a 1D Vlasov simulation of coronal electron transport. Time
is normalized to the inverse of the electron plasma frequency, space to the electron
Debye length in the hot region and velocity to the hot electron thermal speed.
Adapted with permission from Ref (Arber and Melnikov, 2009). c©2009 by the
American Astronomical Society)
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its propagation at a speed comparable to cs. They identified the behavior as a

conduction front. The physics of the responsible mechanism was not identified or

investigated. The conduction front appeared to have moved backwards during the

second half of the simulation (from the third to the bottom panels). Hence, there

was likely no conduction during that period. We suggest, on the basis of the simula-

tions and analysis in this thesis, that the propagating front is an ion acoustic shock

and the temperature difference to be a result of shock heating due to its extremely

sharp transition (see the sharp transition at x∼5300 in the bottom panel).

More recently, the transport of coronal energetic electrons was studied by

electromagnetic PIC simulations (Li et al., 2012), to be presented in Chapter 3.

It was shown that transport suppression began as the electrons propagate away

from the acceleration site. The suppression is caused by the formation of a DL

and associated potential barrier that reflected electrons back to the source. The DL

model for electron confinement in the solar corona has not been presented previously.

In what follows, we report results of this model from PIC simulations and analytic

calculations.
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Chapter 2

Double Layers

2.1 What is a Double Layer (DL)?

Figure 2.1: Schematic of a double layer as a capacitor. Adapted with permission
from Ref (Block, 1978). c©1978 by D. Reidel Publishing Company, Dordrecht-
Holland.

A DL is a localized region that sustains a potential drop in collisionless plasmas

(Block, 1978; Raadu and Rasmussen, 1988; Singh et al., 1987). The potential drop

comes from a nonlinear electrostatic electric field sandwiched between two adjacent

layers of equal and opposite charges. It can be understood as a capacitor in a plasma

(see Figure 2.1). Figure 2.2 shows the qualitative variation of the potential, electric

field and charge density within a DL. The following conditions must be satisfied for

a DL (Block, 1978):
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Figure 2.2: Schematic of a DL. A large-amplitude electric field E (green) is sand-
wiched between two layers of equal and opposite charge densities ρ (red). A net
drop in the potential φ (black) results.

Figure 2.3: The potential profile of an non-ideal DL containing bumps and dips at
its high and low potential side. Adapted with permission from Ref (Block, 1978).
c©1978 by D. Reidel Publishing Company, Dordrecht-Holland.
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Figure 2.4: Schematic of an electron being reflected by a DL that has a positive
electric field when approaching from its left.

(i) The electric field inside the DL is much stronger than outside.

(ii) Quasi-neutrality is locally violated within the layer.

(i) implies that, outside of the DL, the positive and negative charges almost cancel

each other, leaving the electric field negligible. Given (ii), a DL occurs at scales of

∼10 Debye lengths λDe, where quasi-neutrality can be violated.

An ideal DL is a monopolar electric field, but more generally, a DL can be

bipolar. Figure 2.3 shows an example of the potential profile of a non-ideal DL.

Instead of a monotonic drop in potential φ, there can be dips or bumps at the low

or high potential sides, but an overall potential drop φDL across the structure. φDL

is the measure of the strength of a DL. DLs can be classified into strong and weak

depending on whether φDL is much greater or comparable to the mean energy of

the reflected particles on either side of the DL (Raadu and Rasmussen, 1988). In

this work, the DLs observed have a potential comparable to the temperature of the
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reflected hot electrons. They are weak DLs.

The potential drop of the DL can accelerate, decelerate and reflect particles

entering from the two sides of the DL. For example, in Figure 2.4, electrons incoming

from the left of a DL with a positive electric field, i.e., from the high potential side,

will be decelerated (or reflected) if their kinetic energy is greater (or less) than φDL.

In this work, it is the reflection of hot electrons by a DL that hinders their transport

from the source region into the ambient plasma.

2.2 Previous Research on DLs

In this section, we highlight some previous theoretical studies on DLs.

Because of the nonlinear nature of DLs, it is in general difficult to analytically

solve for time dependent solutions. For simplicity, earlier theories focused on steady

state DLs. Steady state solutions of DLs may be derived self-consistently by solving

the Poisson and time-independent Vlasov equations for ions and electrons in the

DL frame. These can be regarded as an equilibrium solution of nonlinear waves

described by the BGK method (Bernstein et al., 1957). This method constructed

a class of stationary solutions by adding a trapped particle distribution given any

potential profile and the remaining particle distributions. The particle distributions

associated with a DL potential can be divided into four types: free and trapped (or

reflected) ions and electrons. Figure 2.5 shows an example of the four particle types

in ion and electron phase space for a given DL potential. For strong DLs, all four

types of particle distributions are required. For weak DLs, three types suffice (Raadu
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Figure 2.5: (a) The potential profile of a DL. Phase space for trapped and free (b)
ions and (c) electrons. Adapted with permission from Ref (Block, 1978). c©1978 by
D. Reidel Publishing Company, Dordrecht-Holland.
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and Rasmussen, 1988). In this work, we observe weak DLs and three types of particle

distributions: free and trapped electrons, and free ions. Later, following the BGK

method, it was showed that a fourth particle velocity distribution can be uniquely

determined if three of the four velocity distributions and a potential variation (of a

DL) are specified (Knorr and Goertz, 1974). Thus, they demonstrated the existence

of a BGK solution, showing that an arbitrary potential profile can be constructed

if the right trapped particle distribution is added.

In addition to the existence of stationary DLs, their stability was also in ques-

tion. Research was directed to study the general stability of DLs. Knorr and Goertz

(1974) proved that the uniform plasmas on either side of the stationery DL solu-

tions is Penrose stable, i.e., no electrostatic current-driven instabilities. However,

the proof was limited to the particular velocity distribution chosen and incomplete

because modes due to density inhomogeneity were not considered. Wahlberg (1979)

showed that local Penrose-stability was in general insufficient for global stability

due to the existence of linearly unstable trapped Langmuir modes that may exist

within a DL. This led to a stability requirement that the thickness of the DL must

be smaller than a critical value. It was shown that very weak DLs were linearly

stable to longitudinal 1D perturbations, but unstable to transverse perturbations

(Schamel, 1983).

Later, the time dependence of DLs was investigated. The dynamics of weak

DLs can in some cases be described by the modified Korteweg-de Vries equation

with a perturbative approach for small-amplitude waves (Torven, 1981; Raadu and

Chanteur, 1986; Bharuthram and Shukla, 1986). More generally, numerical simu-
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lations have been used to understand the time dependent and nonlinear behavior

of DLs. The dynamics of DLs, including their generation and decay, were studied.

We review some of the key results in the following. Extensive reviews are available

(Raadu and Rasmussen, 1988; Raadu, 1989; Singh et al., 1987).

2.2.1 Generation Mechanisms

Figure 2.6: Temporal evolution of the potential profile of a DL driven by an applied
potential. Adapted with permission from Ref (Singh, 1982). c©1982 by Institute of
Physics and Pergamon Press Ltd.

Generation mechanisms of DLs include a current and an applied potential.

Since DL formation is basically creating a potential drop, applying a potential across

a collisionless plasma system may drive a DL along with other plasma processes. The

external potential applied in numerical simulations (Goertz and Joyce, 1975; Joyce
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and Hubbard, 1978; Singh, 1982; Singh and Schunk, 1982) and labortory experiments

(Torvén and Babić, 1975; Quon and Wong, 1976; Coakley and Hershkowitz, 1979;

Iizuka et al., 1985) ranged from 10 to 100 times the electron temperature. Strong

DLs were typically observed and the formation was cyclic. It was argued that

the cause of cyclic formation is the difference in the ion and electron time scales

(Singh, 1982; Singh and Schunk, 1982). Initially, electrons dominated the dynamics

in response to the applied potential. An electron current was accelerated and the

result was charge separation in the cathode (the low potential boundary), triggering

a large positive potential pulse. Figure 2.6 shows the temporal evolution of the

potential profile. The initial large potential pulse near the cathode evolved into

a DL, which propagated towards the anode. Ions were accelerated by the DL,

producing counterstreaming ion beams. While the applied potential drove an ion

outflux from the anode, as the DL moved the ion flux (current) reversed to influx. As

the ion current through the DL recovered, so did the electron current. The system

returned to nearly its original state. At the cathode, fluctuations of the potential

associated with the current restoration triggered the formation of a new DL. The

cycle repeated.

In the case of injecting a current, DLs develop in the nonlinear stage of current-

driven instabilities such as the Buneman, ion-acoustic, ion-cyclotron and electron-

acoustic instabilities (Sato and Okuda, 1980; Ishiguro et al., 1997; Lee et al., 2008).

For instance, 1D Vlasov simulations with an electron beam drifting at higher than

the electron thermal speed reported the formation of a strong DL from the Buneman

instability (Singh et al., 1985). As can be seen in Figure 2.7, the DL evolved on a
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Figure 2.7: Temporal evolution of the potential profile of a DL driven by the Bune-
man instability. It was never in a stationary state. Adapted with permission from
Ref (Singh et al., 1985). c©1985 by the American Geophyical Union.
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time scale of a few electron plasma periods, and was therefore not in a stationary

state. Similarly, weak DLs were generated from the ion-acoustic (IA) instability. It

was suggested in 1D particle simulations that enhanced anomalous resistivity driven

by the IA instability caused the formation of a DL (termed as an IA DL) (Sato and

Okuda, 1980). Instead of having a monotonic potential profile (φ in Figure 2.2)

commonly seen for strong DLs, weak DLs had a dip in the low potential side. It

was proposed that the existence of such a dip was responsible for the formation

of IA DLs (Hasegawa and Sato, 1982). The potential dip reflected electrons from

the electron current that drove the IA instability and left the other side of the dip

ion-rich, which resulted in charge separation and therefore a DL. A combination of

1D and 2D particle simulations and analytic work which used a Korteweg-de Vries

equation modified to include kinetic effects of electron reflection supported this

scenario (Nishihara et al., 1982). 1D Vlasov simulations and an adiabatic theory

assuming equilibrium of the electrons with the potential dip showed that the DL

amplified by exchanging momentum with the reflected electrons (Chanteur et al.,

1983). The adiabatic theory agreed well with the simulation results. It broke down

when ion trapping became evident.

The DL observed in our simulations is generated by imposing a large field-

aligned temperature jump in the initial state which results in strong currents that

drive the DL. Details of the generation are described in Chapter 3.
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2.2.2 Decay Mechanisms

Decay of DLs was also observed in time dependent studies. 1D PIC simulations

of systems driven by a subthermal electron current showed that ion trapping in the

potential dip of a DL was associated with its decay (Barnes et al., 1985). The

trapping of ions slowed down the movement of the DL structure as the trapped

ions added an inertial drag to it (Chanteur et al., 1983). It was argued that such

slowing down led to the decay of the DL (Barnes et al., 1985). Figure 2.8 shows time

series plots of the ion phase space (left) and potential profile (right) for a simulation

driven by the IA instability. A potential dip/well gradually developed and ions were

trapped inside. As the dip amplified, a net potential drop eventually appeared at

the right of the dip at the time marked by an asterisk, indicating the formation of a

DL. In the mean time, ion trapping resulted in the development of an ion hole in the

phase space. The DL structure as well as the ion hole gradually slowed down and

finally reached zero propagation speed indicated by a black arrow. The potential

drop decayed. IA solitons were emitted and propagated downstream (i.e., towards

the high potential side).

1D PIC simulations with an applied potential reported that a DL decayed as

a result of the propagation of a train of IA solitons, which developed from the DL

structure, across the DL width (Sato and Okuda, 1981). Figure 2.9 shows the time

evolution of the potential profile as a potential drop developed (left column) and

then spiky wave trains (right column), identified as IA solitons, were emitted. They

moved downstream (i.e., towards the high potential side) and then the potential
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Figure 2.8: Time series plots of the ion phase space (left) and potential profile
(right) from a 1D simulation. Adapted with permission from Ref (Barnes et al.,
1985). c©1985 by the American Institute of Physics.
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Figure 2.9: The potential profile during the formation (left column) and then decay
of a DL due to emission and propagation of IA solitons towards the high potential
side of the DL. Adapted with permission from Ref (Sato and Okuda, 1981). c©1981
by the American Geophyical Union.
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drop decayed. Only very limited work exists on the saturation of DLs.

In this work, the DL saturates as its potential drop is large enough to accelerate

ions to supersonic speeds to drive an IA shock (Li et al., 2013a). The shock stabilizes

the Buneman instability that is the driver of the DL and saturates the DL. This

will be presented in Chapter 4.

2.3 Applications to Space and Astrophysical Plasmas

We review some applications of DLs to space and astrophysical plasmas. Much

research interest on DLs has focused on their ability to directly accelerate particles

in auroral (ionospheric and magnetospheric) and astrophysical plasmas (Singh et al.,

1987). For particle acceleration, the potential across the DL is usually maintained

by some external energy source. A DL theory was proposed for the production

of high-energy particles during the impulsive phase of solar flares (Hasan and Ter

Haar, 1978). A series of weak DLs is believed to be responsible for the acceleration of

kilovolt electrons in the aurora (Kan et al., 1979; Borovsky, 1992). A field-aligned

electron current, usually involving the Birkeland current, is assumed to provide

the energy source for the DLs (Akasofu, 1977). An analytical model of diffusive

acceleration of electrons in the auroal plasma due to the interaction with weak DLs

was developed (Lotko, 1986).

A succession of many weak DLs, occurring from the corona to the Earth,

was considered as the source of the interplanetary potential difference in exospheric

models of the solar wind expansion (Lacombe et al., 2002). The potential decelerated
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fast moving electrons and accelerated protons in the solar wind to maintain equal

flux of both species during the solar wind expansion.

DLs were also invoked in the outer planets. Particle acceleration by DLs was

modeled and applied to Jupiter’s ionosphere to explain observations of energetic

electrons (of greater than 0.15 MeV) by the Pioneer 10 and 11 spacecrafts (Shawhan,

1976). It was argued that a DL may be present in the accretion column of a neutron

star in a binary system, and may dominate in the deceleration of the accreting ions

over other processes such as a collionless shock (Williams et al., 1986).

2.4 Observations in Space Plasmas

The first observations of weak DLs in the Earth magnetosphere, in the high

altitude auroral zone, were made with a three-component electric field probe on the

S3-3 satellite (Temerin et al., 1982). In the same region, weak DLs were reported

to occur frequently (Mozer et al., 1985). They have parallel electric fields directed

upward and many contain sufficient potential to account for the parallel acceleration

of upgoing ion beams and auroal electrons. Figure 2.10 illustrates observed features

associated with DLs. Three bars plotted above the top panel indicate times of DL

events of which the black solid regions represent known occurrence and the cross-

hatched regions represent probable presence. Evidence for ion acceleration by DLs

is seen by the factor of 100 increases in the upgoing ion flux (second panel from the

bottom) during the two DL events. Signatures of accelerated electrons are present in

the loss cones (decrease in electron density, second panel) and fluxes (bottom panel)
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Figure 2.10: Field-alligned currents and particle fluxes measured near regions con-
taining DLs, in the magnetosphere by the S3-3 satellite. Adapted with permission
from Ref (Mozer et al., 1985). c©1985 by D. Reidel Publishing Company.
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of electrons. In the Earth’s plasma sheet, a high number of weak DLs are detected

by the THEMIS (Angelopoulos, 2008) spacecraft during periods of high magnetic

activity, implying that DLs may be a frequent occurrence in such situations (Ergun

et al., 2009). Figure 2.11 is an example of one of the DLs observed in the current

sheet during periods of strong fluctuations in the magnetic and electric fields. A

turbulent region of electron phase space holes (bipolar electric field signatures) were

seen adjacent to the DL, indicating presence of electron beams.

In the solar wind, weak DLs, with a smaller amplitude than those in the

auroal regions, were first observed by the WIND spacecraft near the Lagrange point

L1 (Mangeney et al., 1999). Figure 2.12 shows an example of the observed isolated

DLs, which have a small jump in the electrostatic potential of a few mV. When

compared to the solar wind electron temperature of ∼10 eV (Newbury et al., 1998),

the potential jump is q∆V/kBTe ' 3×10−4.

DLs were also inferred in the outer planets, including the magnetospheres of

Jupiter (Hess et al., 2009) and Saturn (Gurnett and Pryor, 2012).
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Figure 2.11: The parallel electric field data from the THEMIS satellites showing
a DL (the large-amplitude positive peak) and a region of turbulence to its right.
Properties of the DL are on the plot. Plasma conditions and the location are below
the plot. Value marked with * are estimates and with ** assume that the DL moves
at the ion acoustic speed vs. Adapted with permission from Ref (Ergun et al., 2009).
c©2009 by the American Physical Society.

Figure 2.12: A typical wave form of isolated weak DLs observed by the WIND
spacecraft. Shown is the electric potential ∆Vx. Adapted with permission from Ref
(Mangeney et al., 1999). c©1999 by the European Geophysical Society.
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Chapter 3

Suppression of Electron Transport by DLs and DL Generation

To gain a better understanding of the problem of energetic electron transport

from the corona to the chromosphere, an important question that must be answered

is whether thermal conduction is suppressed when the accelerated electrons start to

propagate into the immediate surrounding plasma. Our goal in this chapter is to

answer this basic question.

To study the physics at the electron scale and the nonlinear aspects of the

problem, we perform a PIC simulation. We observe that the transport of energetic

electrons is suppressed by a double layer that occurs at the shortest scale in a plasma,

the Debye length λDe. In what follows, we describe the setup of the simulation and

present key results.

3.1 Simulation Setup for a Coronal Electron Source

Figure 3.1: Schematic of the initial simulation setup.

We are exploring the problem of energetic electron transport from the corona

to the chromosphere by a two-dimensional electromagnetic PIC simulation using

the p3d code (Zeiler et al., 2002). A rectangular domain (Figure 3.1) represents
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a symmetric local segment of a flare loop centered at the loop-top where a very

hot electron source is located. The long direction, x, is along the loop axis and

an initial uniform background magnetic field B0 is applied in that direction. The

short direction, y, is mainly for data averaging to produce smoother data in x.

The initial density n0 is uniform. A third of the electrons, centered in the domain,

have higher initial parallel temperature Th0,‖ than the rest1. It represents a pre-

accelerated hot looptop source. Higher Th0,‖ is used because parallel transport is of

more interest since it dominates over perpendicular transport in the presence of a

strong magnetic field, which is the case for a coronal flare loop. Electrons are initially

modeled by bi-Maxwellian distributions and the ions by a Maxwellian distribution.

We consider it to be more natural that the hot population not have a preferred

direction of propagation, so the simulated energetic electrons are not beamed in the

initial state. We note that SXR counterparts of HXRs are observed in the high

corona (Masuda et al., 1994; Krucker et al., 2010). SXR spectra can be well fit by

a Maxwellian distribution (Masuda et al., 2000; Tsuneta et al., 1997) while HXR

spectra are usually fit by a combination of a thermal and a beam distribution. The

use of Maxwellian distributions in our simulation setup is therefore consistent with

thermal sources in coronal SXR and HXR observations. However, the qualitative

features of our results are not expected to be sensitive to the form of the hot electron

1Using an anisotropic initial distribution for the hot electrons is not expected to affect the

results because the setup is stable to possible instabilities in quasi-linear theory (Melrose, 1980),

and the electron firehose instability (Hollweg and Völk, 1970) which may be excited by higher

parallel than perpendicular electron pressures.
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distribution (further discussed in Section 7.2).

Temperatures are normalized tomic
2
A, wheremi is ion mass and cA=B0/(4πmin0)

1/2

is the Alfvén speed. In the hot electron region, Th0,‖=0.5 is used. Hot electrons have

unity plasma beta β (ratio of plasma pressure to magnetic pressure) in the parallel

direction. Using unity β for hot electrons is consistent with recent coronal flare

observations (Krucker et al., 2010). Outside of the hot electron region, the ambient

(cold) electron temperature Tc0 is 0.1, as are both the perpendicular temperatures

throughout the domain and the ion temperature. We will drop ”‖” in T0,‖ ,and

use Te to represent the parallel electron temperature in general from here on for

simplicity.

The size of the simulations is Lx × Ly= 655.36 × 2.56 d2e with a cell size of

0.02×0.02 d2e. There are 400 particles per cell. de=c/ωpe is the electron inertial

length, where ωpe=(4πn0e
2/me)

1/2 is the electron plasma frequency. For Th=5 keV

and n=109 cm−3, which are typical of coronal thermal X-ray sources, Lx ∼ 100m,

which is of course far smaller than a realistic flare loop. Thermal speeds are defined

as vtx=(2Tx/mx)
1/2. The Debye length based on the initial hot electron tempera-

ture is λDe=vte0,h/ωpe=0.1 de. We will use de as the unit of length, but it can be

conveniently converted to λDe. Time is normalized to ω−1
pe . A mass ratio me/mi

of 1/100 and speed of light c/cA of 100 are used. Electric fields are normalized to

E0=cAB0/c. The system is periodic in both directions. Because of the periodic

boundaries, the simulations are evolved for less than the electron transit time of the

domain at 1.5vh0, so the majority of hot electrons will not reach a boundary during

a run.
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Figure 3.2: Evolution of electron temperature Te parallel to the local magnetic field
near the transition between hot and cold electrons, at x= 0de. We begin with two
electrons populations in contact (black) and let them evolve. The initial gradient
becomes a smooth diffusive profile at ωpet=100 (blue). The smooth transition is
then interrupted by a jump which signifies transport suppression from the high to
low Te sides.

3.2 A Jump in Electron Temperature

The primary drive of the system is the contact of hot electrons with cold

electrons, so the dynamics starts in the region of contact. Since this is a symmetric

system, it suffices to study either side of the contact. We choose the right side, where

hot electrons propagate outwards with positive velocities. The figures are averaged

in y since there is no significant variation in that direction. Fig. 3.2 shows the time

evolution of electron temperature in the region where the hot and cold electrons

come into contact. The initial profile (black) represents a high temperature region

decreasing to a low temperature region through a narrow transition that has a
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length scale of several de’s. We do not expect the results to be sensitive to this

transition scale since we find that the DL develops from a streaming instability

after the temperature discontinuity has broadened. Over a short period of time

(∼100 ω−1
pe , blue), the transition broadens as the hot electrons free-stream into

the cold electron region. If free-streaming were to continue, we would expect the

profile to continue to broaden due to the mixing of the two populations. However,

a small jump develops (see ωpet=300 ) within the smooth transition, meaning that

the escape of hot electrons by free-streaming is inhibited. Over time, the jump

grows in size and significantly suppresses mixing due to free-streaming. As a result,

the previously smooth transition is converted into a distinctive jump across two

separate temperature regions. This indicates that the transport of hot electrons

into the surrounding plasma is being suppressed. Other features of Fig. 3.2 include

Langmuir waves propagating in the cold electron side (see e.g., the wiggles on the

right side of the curve at ωpet=300) that are excited by the bump-on-tail instability

as hot electrons free-stream into that region. Beam modes are excited on the hot

electron side (see, e.g., longer scale waves on top of the curve at ωpet=1400) by the

electron-electron streaming instability as cold electron beams that are accelerated

by a DL enter the hot side and interact with the hot electrons.

37



(a
)

(b
)

F
ig
u
re

3.
3:

E
vo
lu
ti
on

of
(a
)
E

x
,
th
e
p
ar
al
le
l
el
ec
tr
ic

fi
el
d
an

d
(b
)
eφ

D
L
/T

e,
h
(b
la
ck
),
th
e
el
ec
tr
ic

p
ot
en
ti
al

ju
m
p
ac
ro
ss

th
e
D
L

n
or
m
al
iz
ed

to
th
e
in
st
an

ta
n
eo
u
s
h
ot

el
ec
tr
on

te
m
p
er
at
u
re

at
th
e
ce
n
te
r
of

th
e
h
ot

re
gi
on

,
ov
er
la
id

w
it
h
N

r
ef
/N

0
(g
re
en
),

th
e

fr
ac
ti
on

of
re
tu
rn

cu
rr
en
t
el
ec
tr
on

s
re
fl
ec
te
d
at

th
e
fo
ot

of
th
e
D
L

d
iv
id
ed

b
y
th
e
to
ta
l
in
it
ia
l
el
ec
tr
on

n
u
m
b
er
.
T
h
e
D
L

is
in
d
ic
at
ed

b
y
a
b
lu
e
ar
ro
w
.

38



3.3 DL Evolution and Strength

The heat flux suppression comes from a DL that arises within the transition

region. Figure 3.3(a) shows the time history of the electric field parallel to the local

magnetic field, Ex, and 3.3(b) the time evolution of the electric potential jump across

the DL normalized to the instantaneous hot electron temperature measured at the

center of the hot region, eφDL/Te,h. Te,h in eφDL/Te,h thus represents the core tem-

perature of the hot electron population. Te,h drops over time as can be seen on the

left side of Fig. 3.2 because hot electrons continuously leak out. We normalize the

potential jump of the DL to Te,h to more accurately reflect the suppression strength

of the DL on the hot electrons that remain in the source region at any particular

time. Also shown in Fig. 3.3(b) is the fraction of return current electrons that

are reflected at the foot of the DL, normalized to the initial total electron number,

Nref/N0. The reflection mechanism and the reason for its importance are discussed

later. Ex is averaged over an electron plasma period to eliminate initial fluctuations

in the contact region that decay over time. The DL emerges at ωpet∼100 around

x=0. At ωpet∼550, it emits a large amplitude shock that moves in the positive x

direction. The DL, indicated by a blue arrow, is the white region in Fig. 3.3(a) that

slowly drifts in the negative x direction. The DL is constantly evolving over the en-

tire course of the simulation. At ωpet=1200, it reaches its maximum amplitude and

extends over a scale of 4 de, centered at x∼ -6de. Fig. 3.4 is a cut of Fig. 3.3(a) at

this time in a blowup around its location. Shown are Ex (blue), the electric potential

normalized to the core hot electron temperature eφ/Te,h (black) and the electron
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Figure 3.4: eφ/Te,h (black) and Te (green), overlaid with Ex (blue) and the zero Ex

position (dotted cyan), at ωpet=1200. The DL is characterized by a monotonic drop
in the potential. The potential barrier suppresses the transport of hot electrons and
results in a drop in Te across the DL.

temperature Te (green). Ex has a large positive peak at x∼ -6de that causes a large

potential drop that reflects hot electrons and produces a sharp drop in the electron

temperature. We define the strength of the DL by its potential jump eφDL which

is calculated as follows. To the left of the DL in Fig. 3.4, the potential increases,

oscillates and eventually reaches a fairly constant value (near x∼ -13de), the high

end value. To the right of the DL, the potential drops and oscillates about a roughly

constant value (near x∼ -5de), the low end value. eφDL is the difference between the

high and low end values and is shown as a function of time (black) in Fig. 3.3(b).

eφDL/Te,h is a measure of the suppression capability of the DL on the hot electron

transport. If the DL is large enough such that eφDL/Te,h ∼ 1, the thermal bulk of

the hot electrons will be reflected by the potential barrier of the DL. This will imply
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Figure 3.5: The electric field Ex at ωpet=150 , overlaid with Te (green). The large
amplitude wave that forms around x<∼0 arises from an ion/return-current-electron
streaming instability.

a significant reduction of the electron heat flux as well.

Note also in Fig. 3.4 that the DL is not merely a unipolar electric field. It has

a small negative leg between x= -6 and -5de, on the low Te side. While the bigger

positive part suppresses streaming hot electrons coming from the left, the negative

leg can reflect cold electrons coming from the right (low Te side). The reflection of

these electrons is the drive mechanism of the DL, which we now discuss. Fig. 3.5 is

a cut of Fig. 3.3 (a) at ωpet=150, shortly after the DL emergence. Multiple peaks in

Ex develop in the Te transition region. In the linear regime (ωpet<150), these waves

have small amplitude, comparable to the background fluctuations. They gradually

grow into large-amplitude nonlinear structures at later times. The peak which has

the largest amplitude dominates the others and becomes the DL. It then starts to

hinder hot electron free-streaming and produces an obvious drop in Te as can be

41



(a) (b)

Figure 3.6: (a) Electron phase space at ωpet=150 and (b) a cut of (a) at the position
of the DL at x∼ -1de, indicated by a vertical black line. The ion distribution fi (red)
is overlaid on the electron distribution fe (black). Since the ions and cold electrons
have the same temperatures, the ion thermal speed is ∼

√
mi/me=10 times lower

than the return current thermal speed. The integrated areas under the curves (i.e.,
their densities) are the same, so fi peaks at ∼10 times the height of fe. The vertical
scale is normalized to the maximum of fi.

seen at ωpet=150. The two smaller peaks on either side of x=0 later turn into

fairly symmetric waves, which produce no significant potential jump. The wave

turbulence from which the DL emerges is driven by the return current interacting

with the background ions. The DL is also driven by this streaming instability, whose

origin is now described.

3.4 DL Generation Mechanism: Streaming Instability

Figure 3.6(a) shows the electron phase space at ωpet=150. The hot and cold

electron distributions are at the left and right sides, respectively. Note the narrower

thermal spread of the cold electrons at the right, as well as the wider spread of

hot electrons at the left. The initial temperature transition is near x=0. A beam
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of cold electrons is entering the hot region. At ωpet=0, both distributions are non-

drifting and there is no beam. As the hot electrons free-stream into the cold electron

region, ions cannot follow and are left behind as a charge imbalance. The resulting

electric field drags a cold electron beam towards the hot electron region as a return

current. The relative drift between this return current and the ions excites the

instability. Fig. 3.6(b) is a cut of the phase space at the position of the DL (x∼

-1de). The return current, with a negative beam speed, sits on top of the streaming

hot distribution, which is moving to the right and has a wider thermal spread.

The drift of the return current electrons with respect to the ions (red) excites the

ion/return-current-electron streaming instability. The linear growth rate γ of the

ion-electron streaming instability (also known as the Buneman instability (Buneman

(1958))) for the most unstable wave calculated in (two-)fluid theory2 is given by

γ =

√
3

2

(
me

2mi

)1/3

ωpe. (3.1)

Using the parameters of our simulation, γ ∼ 0.15 ωpe. The growth time τ is thus τ ∼

γ−1 ∼7 ω−1
pe . The instability is sufficiently strong to produce the DL at ωpet∼100.

We also note that the background magnetic field is not significantly perturbed.

The time evolution of the electron phase space reveals that the growth of the

DL depends on the number of return current (RC) electrons reflected at the foot of

2In a two-fluid model of plasma, ions are considered as a fluid and hence, all ions move at the

same speed, so are electrons. It is helpful to compare fluid theory with kinetic theory that allows

for different velocities in a particle distribution. The Buneman instability is a fluid-like instabilty

because the drift of the electrons relative to the ions is greater than the electron thermal speed.

Therefore, the ions see all the electrons moving at one single speed.
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(a)

(b)

Figure 3.7: Electron phase spaces at: (a) ωpet=550; and (b) ωpet=700. The vertical
black lines mark the low potential side of the DL and to its right is the negative leg
Ex of the DL that can reflect the return current electron beam.
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the DL. One can see from Fig. 3.4 that the electric field Ex of the DL has a negative

leg on the low Te side. This shows up as a potential dip on the low potential

side. The RC electrons are reflected by the negative leg, which effectively reduces

the RC speed and thus converts the kinetic energy of the RC to the electrostatic

energy of the DL. By exchanging momentum with the reflected electrons, the DL

gets amplified Lotko (1983). Electron reflection also indicates when the instability

enters into a nonlinear regime (ωpet>150). The DL growth depends on the number

of RC electrons reflected at the foot of the DL. Qualitatively, the dependence of DL

growth on the number of reflected electrons can be seen by contrasting the phase

space at a time when the DL is growing, e.g., at ωpet=550, with a time when it is

not growing, e.g., at ωpet=700 (as eφDL/Te,h plateaus in Fig. 3.3(b)). At ωpet=700

(Fig. 3.7(b)) to the right of the DL at x -4de (vertical black line), there are many

fewer reflected electrons than to the right of the DL at ωpet=550 (Fig. 3.7(a)),

x -2de. We estimated the number of reflected RC electrons, Nref , by integrating

the electron distribution to the right of the DL over a distance of one de, which

is the typical width of the DL, and for vex ∈(0, 0.4 vte,h), which is approximately

the velocity range covered by the reflected RC electrons as they turn around and

acquire positive velocities. Nref is normalized to N0, the initial electron number

contained in the same interval. Note that the integration for Nref also includes a

contribution from hot free-streaming population in that velocity range. However,

this contribution stays nearly constant and the variation in Nref mainly comes from

the change in the number of reflected cold RC electrons. Therefore, Nref suffices

as an estimate of the reflected RC electrons (plus some constant offset). Nref/N0
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(green) is plotted on top of the DL strength, eφDL/Te,h, in Fig. 3.3(b) to show

their correlation. As Nref/N0 increases during ωpet≤550 and ≥950, eφDL/Te,h has a

general increasing tendency as well. As Nref drops abruptly at ωpet=550 and stays

at a low level until ωpet=950, eφDL/Te,h plateaus. Hence, there is good correlation

between the DL growth and the number of the reflected RC electrons.

An examination of the evolution of the electric field in Fig. 3.3(a) reveals that

at ωpet∼550, the DL sheds an ion-acoustic shock wave, which shows up as an ion hole

in ion phase space. Once it leaves the DL, the shock accelerates to the right while the

DL continues to slowly move to the left. Therefore, their separation increases. The

shock wave is bipolar and reflects most of the RC electrons with its large-amplitude

negative leg. One can see in Fig. 3.7(b), at ωpet=700, most of the RC electrons are

reflected behind the shock at x -2de. Nref/N0 shows an abrupt drop at ωpet=550

because most of the RC electrons are stuck behind the shock and do not reach the

DL. The shock dissipates through ion heating. The ion temperature increases by as

much as a factor of two along the path traversed by the shock. The shock gradually

diminishes in amplitude. Similar dynamics (acceleration and decay) of an ion hole

mode at the low potential side of a weak DL created in ion-acoustic turbulence is

also observed in current-driven systems Barnes et al. (1985).

During our simulation, eφDL/Te,h reaches 0.8 at ωpet=1200 (Fig. 3.4). This

means that hot electrons with velocities v/vte,h ≤
√
0.8 ∼ 0.9 will be reflected.

The electron phase space at ωpet=1200 in Fig. 3.8 shows that the population of hot

electrons with v/vte,h ≤ 0.9 wraps around from positive to negative velocities when
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Figure 3.8: Electron phase space at ωpet=1200 with eφDL/Te,h ∼0.8. To the left
of the DL location, x∼ -6de, hot electron populations with v/vte,h < 0.9 (cyan and
green in color) are reflected by the potential barrier. They are trapped in the hot
region. For higher velocity electrons (at the tail; blue in color), there is a drop in
velocity as they are decelerated. Both contribute to suppression of the heat flux.

encountering the DL. They are reflected and hence confined in the source region.

The suppression observed here is significant. We calculate the heat flux carried

by kinetic hot electrons that is positively directed as Q(x, t)=1
2
me

∞∫
0

v3fe(x, v, t)dv

(Krall and Trivelpiece, 1973). The mean flow speed is <2% of the hot electron

thermal speed and hence negligible in the calculation of Q(x, t). Similar to Te, Q

has a sharp jump across the DL. Towards the end of the simulation, Q is suppressed

by ∼40% to the right of the DL compared with the higher value to the left of the

DL.
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3.5 Discussion on the DL model

The DL suppression mechanism, by reflection, differs from the conventional

picture of electron scattering by ion-acoustic turbulence (Manheimer, 1977), which

was studied in unmagnetized (laser fusion) plasmas. Multi-dimensional computer

simulations show that current-driven ion-acoustic turbulent spectrum is flared out

within about 45◦ of the current direction (Biskamp and Chodura, 1971; Biskamp

et al., 1972; Dum et al., 1974). The presence of a background magnetic field, as in

solar flare systems, will likely inhibit scattering perpendicular to the field, making it

less effective in suppressing the transport of hot electrons. The inhibition of perpen-

dicular scattering is observed in systems in which two fast electron beams interact

and electromagnetic turbulence arises from electron streaming instabilities, but per-

pendicular deflection by magnetic field turbulence is suppressed by the tension force

of the background field (Lee and Büchner, 2011). The DL suppression mechanism,

which does not involve perpendicular deflection, is, however, not weakened by the

presence of a background magnetic field.

3.6 Application to Looptop X-ray sources

In the above-the-looptop HXR sources, Krucker et al. (2010, 2007) showed an

exponential decay of the HXR time profiles on a timescale of more than two orders of

magnitude longer than the electron transit time through the source. The formation

of a DL provides a plausible mechanism to confine energetic electrons in the source
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region. Electrons that have kinetic energies less than the potential drop of the DL

are reflected back to the source region. Over the entire course of the simulations, the

DL tends to amplify through multiple phases of growth. There are no signs of decay.

Since it is driven by the return current electrons, which exist for as long as some

hot electrons are leaking out, the DL can persist until the eventual depletion of all

hot electrons in the source region, which should take much longer than the electron

transit time through the source due to the strong transport suppression caused by

the DL. The DL lifetime is therefore expected to be much longer than the transit

time. This can naturally explain the prolonged lifetimes (>100 s) of the energetic

electrons from the above-the-looptop HXR observations compared with the electron

transit time (∼1 s) through the source.

3.7 Conclusion on Transport Suppression by DLs

During flares and coronal mass ejections, energetic electrons from coronal

sources typically have very long lifetimes compared to the transit times across the

systems, suggesting confinement in the source region. Particle-in-cell simulations

are carried out to explore the mechanisms of energetic electron transport from the

corona to the chromosphere and possible confinement. We set up an initial system

of pre-accelerated hot electrons in contact with ambient cold electrons along the

local magnetic field, and let it evolve over time. Suppression of transport by a non-

linear, highly localized electrostatic electric field (in the form of a double layer) is

observed after a short phase of free-streaming by hot electrons. The double layer
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(DL) emerges at the contact of the two electron populations. It is driven by an

ion-electron streaming instability due to the drift of the back-streaming return cur-

rent electrons interacting with the ions. The DL grows over time and supports a

significant drop in temperature and hence reduces heat flux between the two regions

that is sustained for the duration of the simulation. This study shows transport sup-

pression begins when the energetic electrons start to propagate away from a coronal

acceleration site. It also implies confinement of energetic electrons with kinetic en-

ergies less than the electrostatic energy of the DL for the DL lifetime, which is much

longer than the electron transit time through the source region.
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Chapter 4

Saturation Mechanism of DLs

The degree of transport suppression depends on the maximum strength of the

DL at saturation. In Chapter 3, the generation mechanism of a DL was studied and

identified as the Buneman instability involving the ions and return current electrons.

In this chapter, we investigate the saturation mechanism of the DL with simulations

and analytic modeling. We carry out a series of simulations with different initial

values of the hot electron temperature and show that the DL potential at satura-

tion scales linearly with the hot electron temperature. The DL saturates when its

potential jump is large enough to accelerate ions above the local sound speed. The

result is a parallel ion acoustic shock that stabilizes the Buneman instability and

therefore saturates the DL. We demonstrate that the shock formation criterion pre-

dicts a maximum DL strength that is proportional to the hot electron temperature

in agreement with simulations. At its maximum strength, the DL is observed to

reflect, and hence contain, a significant fraction of electrons in the source.

An outline of this chapter is as follows: the setup of the simulations and

parameters used for flare settings are described in Section 4.1; in Sections 4.2 and

4.3, results from the simulations and the shock model are presented and we provide

evidence for the model and determine the saturation amplitude of a DL; and we

summarize in Section 4.4.
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4.1 Simulation setup for scaling DL Strength

The initial setup here is the same as in Section 3.1. We perform three simula-

tions with increasing Th0,‖=0.5, 1 and 2 (the first one has been extensively discussed

in Chapter 3). All hot electrons have unity plasma beta β in the parallel direction.

βh0 is maintained at the same value for different Th0 by varying B0, which is not

expected to affect the results since the phenomenon observed here is dominantly

electrostatic. The magnetic field is not significantly perturbed in the simulations.

Outside of the hot electron region, the ambient (cold) electron temperature Tc0 is 0.1

for all runs. The ratios of hot to cold (parallel) electron temperatures are, therefore,

Th0/Tc0= 5, 10 and 20, respectively, for the three runs. This increasing contrast in

temperature allows us to study how the strength of a DL scales to the real system

that has over three orders of magnitude in separation of scales.

Different Th0 corresponds to a different value of the Debye length λDe, so it

is more suitable to normalize space with λDe from here on to reflect the change

(although de is used in Chapter 3). In λDe, the size of the simulations is Lx × Ly=

6553.6 × 25.6 λ2De with a grid size of 0.2×0.2 λ2De for Th0=0.5. For Th0=2, λDe is

twice as big, so the grid size is 0.1 λDe. In all cases, λDe is well resolved. The domain

size is the same when measured in terms of electron inertial lengths de=c/ωpe for

all three Th0. Hence, higher Th0 runs with hotter electrons are evolved for shorter

periods of time than the lowest Th0 run.
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Figure 4.1: Evolution of the DL strength eφDL in simulations of different Th0.

4.2 Scaling Result in Simulations

Figure 4.1 shows the time evolution of the DL strength in three simulations

with increasing initial hot electron temperatures Th0=0.5, 1 and 2. A similar cycle of

DL growth followed by saturation is observed. As the contrast between hot and cold

temperatures increases, the instability becomes stronger and develops more rapidly,

leading to faster and further strengthening of the DL. For the same system size, i.e.,

for about the same distance traveled by the hot electrons, the maximum strength

eφmax
DL the DL reaches is higher in higher temperature runs. eφmax

DL is plotted in Figure

4.2. A good linear fit (dashed line) of eφmax
DL = 0.73Th0 - 0.11 with a coefficient of

determination of 0.9998 is obtained. It indicates that the maximum strength of

the DL scales linearly with the initial hot electron temperature. It also implies a

threshold on the lowest possible Th0 for DL formation. However, this threshold is
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Figure 4.2: Maximum DL strength eφmax
DL from simulations of increasing Th0.

not considered reliable as the regime of very low Th0 is not explored and the behavior

is not known. We therefore take the fit to be approximately φ̃max ≡ eφmax
DL /Th0 ∼

0.73.

4.3 Shock Model

The physics occurring at the contact between the hot and cold electrons plays

a crucial role in whether the hot electrons propagate out or are confined within the

region. Initially, the hot electrons propagate by free-streaming along the magnetic

field. Ions, being less mobile, lag behind. This creates a charge imbalance in the hot

region, which draws in an electron beam from the cold electrons as a return current

(RC). The RC electrons drift relative to the ions, exciting an ion-electron streaming

instability, identified as the Buneman instability (Chapter 3). It is the driver of the

DL. As the DL forms at the contact between the two populations, hot electrons with

kinetic energy less than the DL potential eφDL are reflected. The stronger the DL,
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Figure 4.3: Time evolution of the electric field Ex from the highest temperature
(Th0=2) run.

the more reflected electrons and hence the fewer escaping hot electrons.

The maximum strength of a DL depends on its saturation mechanism. We

observe that saturation is linked to the formation of a shock in our simulations. In

the following, we show data from the highest temperature run to demonstrate this.

Figure 4.3 shows the time evolution of the electric field Ex from that run. Data are

averaged in y. The bright white feature around ωpet=250-350 is the DL. It drifts

to the left over time. A rightward propagating shock forms and starts to part from

the DL at ωpet 350, forming an intense negative electric field later in time. Around

ωpet ∼ 350 is when the DL starts to saturate (red curve plateauing in Figure 4.1).

It is observed from all the simulations that whenever a shock forms, the DL stops

strengthening (see, also, data from the lowest Th0 run in Figure 3.3 from Chapter 3).
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(a) (b)

Figure 4.4: Electron phase space, in a simulation with Th0 = 2, at a time during the
DL growth at ωpet=250 (a) and during saturation at ωpet=600 (b). The same color
scale is used for both. Velocities are normalized to the initial hot electron thermal
speed vth0. Ex (orange) is overlaid on (b) to show the position of a shock that has
a strong negative electric field.

The shock is driven by ions accelerated to high velocities in the positive x direction,

which will be further discussed later, so it propagates to the right and decouples

from the DL.

4.3.1 Shock Stabilizing the Instability

Shock formation saturates the DL growth by stabilizing the Buneman insta-

bility. In Figure 4.1, for example, the evolution of the DL strength eφDL from the

highest Th0 run (red) indicates a growth phase before ωpet=350 and in general a

saturation phase after that. DL saturation is also evident from the decrease in Ex

of the DL after ωpet=350 in Figure 4.3. In the following, we explain how the shock

stabilizes the instability by reducing the speed of the RC beam that is the driver
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of the instability. Evidence is observed in the electron phase space. We show in

Figure 4.4 the electron phase space at a time during the growth phase, at ωpet=250

(a), and during the saturation phase, at ωpet=600 (b). Ex (orange) is overlaid in

(b) to show the location of the shock that has a large-amplitude negative peak in

Ex. A vertical black line denotes the low potential side of the DL. To its left is

the hot electron population (note the reflected hot electrons (cyan) in (a) with their

velocities wrapping from positive to negative). To the right of the vertical black

line is the RC beam. The speed of the RC beam at the DL during the saturation

phase in (b) is |vd| < 0.5vth0, which is noticeably lower than that during the growth

phase, which is |vd| > 0.5vth0 in (a). At ωpet=600, the shock is at x ∼ −2λDe. Its

large-amplitude negative leg significantly reduces the speed of the RC beam that

is drifting in the negative x direction, and even reflects a significant number of RC

electrons, i.e., from negative to positive velocities. The surviving beam that reaches

the DL (vertical black line) has a much lower speed and is stable to the Buneman

instability. Note that the reflection of the RC electrons at the DL due to trapping

by the Buneman instability, which drives up the DL amplitude (see Chapter 3), is

absent at ωpet=600.
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4.3.2 Driver of the Shock and Maximum DL Strength

It is observed from the ion phase space that the shock is driven by ion ac-

celeration to high velocities, beyond the ion sound speed, at the DL. Figure 4.5

shows the evolution of the ion phase space before and during the formation of the

shock. The electric field Ex (orange) is overlaid in (a) to show the position of the

DL, and the parallel ion pressure Pix (magenta) in (d)-(f) to show the steepening

of the shock. Velocities are normalized to the sound speed cs0 ≈
√
Th0/mi based

on the initial hot electron temperature (recall that the simulations and the coronal

energetic electron sources are in the limit where the electron temperature is much

greater than the ion temperature). In (a), at ωpet=300, ions are strongly accelerated

at the location of the DL, which is the large positive peak in Ex. Over time, they are

further accelerated and around ωpet=400 (c), some ions reach cs0 and to their right,

a jump in their velocity is developing. From ωpet=450 (d) and later, ion velocities

at the DL surpass cs0 with a velocity jump forming at the right of the ”supersonic”

ions. Velocities drop from supersonic to subsonic over a narrow transition less than

the DL width (which is ∼10λDe). Pix also abruptly increases across the shock as

expected. Thermalization of the ions is likely due to trapping in the large amplitude

waves within the transition (Figure 4.5) as studied previously (Quest, 1988). These

observations lead us to conclude that the shock is driven by ion acceleration at the

DL. The stronger the DL, the higher the ion velocity. Figure 4.6 shows the evolution

of the maximum ion velocity measured from the ion phase space (solid), and ion

velocity based on acceleration by the DL potential, vi,DL=
√

2eφDL/mi (dashed).
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vi,DL resembles the shape of the red curve in Figure 4.1 since it is based on the DL

potential. The solid and dashed curves are consistent with each other, and hence

indicate that the accelerated ions are produced by the DL potential.

Figure 4.6: Time evolution of the measured maximum ion velocity from the ion phase
space, vi (solid) and ion velocity based on acceleration by the DL, vi,DL (dashed).

We note that by the time the DL saturates in the simulation, the local electron

temperature Th at the DL drops to ∼0.75Th0 (because a fraction of hot electrons

escape from the source region), so the local sound speed cs(≈
√
Th/mi) is lower

than cs0. That is probably why the shock is generated even though the accelerated

ion velocities only marginally exceed cs0 in Figure 4.5(c).

Since the DL accelerates ions, which eventually drives a shock that in turn sta-

bilizes the instability and saturates the DL growth, we can use the shock formation

criterion, namely, ion acceleration to supersonic speed, to determine the maximum
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strength of the DL.

vi ∼
√

2eφDL

mi

> cs ∼
√
Th
mi

eφDL

Th
>

1

2

(4.1)

Normalizing to Th0 for comparison with simulations, we have:

eφDL

Th0
>

1

2

Th
Th0

(4.2)

Approximating Th ∼0.75Th0, Equation 4.2 gives eφDL/Th0 0.4. As soon as the

DL reaches a strength of 0.4 Th0, a shock forms, leading to DL saturation. This

equation shows that the saturated DL strength scales linearly with the hot electron

temperature, which is consistent with the result in Figure 4.2. The maximum DL

strength based on this shock model is φ̃max = eφmax
DL /Th0 ∼ 0.4. This value agrees

with the measurement from our simulations within a factor of two.

We note that this prediction is independent of the ion-to-electron mass ratio.

It is therefore applicable to realistic systems with real mass ratio.

4.3.3 Escaping Electron Density nesp

To quantify the degree of confinement, we can compare the ratio of either

the reflected electron density in the hot source or the escaping electron density to

the total density. In the following, we calculate the escaping hot electron density

nesp after passing through a potential barrier eφDL. Given the initial hot electron

distribution function fe0, which is a Maxwellian distribution, and eφDL, nesp can be

expressed analytically by integrating fe0 over velocities of the escaping electrons. fe0

is a function of both parallel and perpendicular velocities, so a 3D volume integral
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∫
d3v needs to be performed. However, the DL is a parallel electric field and only

reduces electron velocities in the parallel direction. The integral
∫
fe0d

3v is therefore

separable in v‖ and v⊥. The perpendicular contribution gives unity, so nesp is reduced

to a 1D integral over only the parallel velocities. For simplicity, we drop ”‖” in ”v‖”

in the calculation below. Note that it suffices to consider either side of the contact

since the system under consideration is symmetric. We choose the right side where

the escaping hot electrons move to the right and thus have positive velocities. We

then have:

nesp =

∫ ∞

b

fe0 dv ; b ≡
√

2eφDL

me

=
n0√
π vth0

∫ ∞

b

e−v2/v2th0 dv

=
n0

2
erfc(φ̃1/2) ; φ̃1/2 =

b

vth0

(4.3)

where erfc(z) = 2√
π

∫∞
z

e−t2 dt is the complementary error function. The total den-

sity of hot electrons moving to the right is ntot=
∫∞
0
fe0 dv=n0/2, so the ratio of

escaping to total density is

ñesp ≡
nesp

ntot

= erfc(φ̃1/2) (4.4)

As φ̃ increases, ñesp decreases, i.e., fewer hot electrons escape. This tendency is

also observed in the simulations. For example, at lower values of φ̃ before the DL

saturates, ñesp is measured to be higher than the value at saturation. Using φ̃ ∼ 0.7

obtained in Section 4.2, Equation 4.4 yields ñesp ∼ 0.24. In the simulations, ñesp ∼

0.25n0/ntot= 0.5, which is within a factor of two from the prediction. This value

of escaping density implies that about 50% of the total density is trapped in the

source region. Thus, a substantial number of electrons are confined.
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4.4 Conclusion on DL saturation mechanism

From recent PIC simulations of a pre-accelerated hot electron source, chosen

as a basic model of flare-heated coronal sources, it is observed that the transport of

the hot electrons is significantly suppressed by the formation of a DL (Chapter 3).

The degree of suppression depends on the strength of the DL. In this work, a series

of PIC simulations are performed to obtain a scaling of the DL strength with the hot

electron temperature. A linear scaling relation is observed. The amplitude of the

DL is limited by the formation of sound wave shocks produced by ions accelerated

through the DL potential. An analytic calculation based on this model yields a linear

scaling with the hot electron temperature, a result consistent with simulations. This

study shows that a substantial fraction of electrons is confined by the DL. Thus, DLs

can produce the electron confinement suggested by obervations of X-ray emission in

the solar corona.
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Chapter 5

Confinement by a DL and Magnetic Mirror

We observe that an anisotropy develops in the hot electrons that pass through

a DL. This is because the parallel velocities are reduced by the DL while the per-

pendicular velocities are not affected. This causes an anisotropy with T⊥ > T‖

downstream from the DL. We indeed observe a pancake distribution, as discussed

in the next section. An anisotropic (pancake) distribution favors further hot elec-

tron trapping in the presence of a magnetic mirror. Since the magnetic geometry

of flaring loops resembles a mirror configuration, we explore combining a magnetic

mirror with the DL. We demonstrate that the combination significantly enhances

confinement.

5.1 Velocity-space Anisotropy due to the DL

It is easier to identify an anisotropy due to the DL when starting with an

isotropic distribution, so a simulation with the same parameters as the highest

temperature run (Th0,‖=2) described in Section 4.1, except for using an isotropic

distribution for the hot electrons, i.e., Th0,⊥=Th0,‖, Lx being half of the original and

Ly being twice the original, is performed. Figure 5.1 shows the electron distributions

versus velocities parallel (vex) and perpendicular (vey) to the background magnetic
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(a) (b)

Figure 5.1: Electron distribution (a) before and (b) after passing through a DL.
Anisotropy develops in the escaping hot electrons downstream from the DL. Values
are normalized to the maximum in (a). Note (b) has a different color scale than (a).

field, near the end of the run, at ωpet=350. They are from locations (a) upstream,

i.e., before the hot electrons encounter the DL, and (b) downstream, i.e, after some

of them escape from the DL. They are sampled over a space of 50 λDe in x, several

times the width of the DL. A lower-velocity region is masked since it contains the

cold RC electron beam, which has a much higher peak phase space density than

the hot electrons and will therefore overshadow the latter. In (a), the distribution

takes on a circular shape. Hot electrons are nearly isotropic upstream. After passing

through the potential barrier of the DL, the parallel velocity is reduced while the

perpendicular velocity is unchanged. This gives rise to an anisotropy downstream

from the DL in (b). The parallel temperature is now lower than the perpendicular

value, which results in a pancake distribution. A cutoff at higher vex develops as
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Figure 5.2: Schematic of a loss cone in a 2D distribution function at the presence of
a magnetic mirror. A loss cone becomes a loss hyperboloid when a potential is also
present.

high velocity electrons leave the regions upstream and downstream of the DL by the

end of the simulation.

Since a pancake distribution is preferentially trapped in a magnetic mirror and

the geometry of a flare loop resembles a magnetic mirror, we next explore combining

the DL with a mirror for the possibility of enhanced confinement.

5.2 Combining with a Magnetic Mirror

In the presence of a magnetic mirror, particles outside of a loss cone will be

trapped. For the 2D velocity space sketched in Figure 5.2, the loss cone is bounded

by the 2 dashed lines. When including a potential (provided by a DL here) as well,
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the loss cone becomes a hyperboloid defined by the following equation:

v2‖ − v2⊥(r − 1) =
2eφDL

me

(5.1)

where r is the mirror ratio and φDL is the DL potential. See Appendix A for a

derivation. In the limit φDL → 0, this reduces to a cone. Also shown in Figure 5.2

are two contours of constant total energy. When going through a DL, an electron

labeled as a blue blob will move to lower parallel velocity while its perpendicular ve-

locity remains unchanged (following the blue arrow). This will create an anisotropy,

helping to move electrons out of the loss cone.

The hyperboloid intersects with the v‖ axis at a value b=
√

2eφDL/me (labeled

in red). For a stronger DL, i.e., larger φDL, b has a greater value. This moves

the loss hyperboloid to the right, resulting in a reduced overlap with the electron

distribution. Therefore, fewer electrons will be lost. The same is true for a larger

mirror ratio for which the hyperboloid closes closer to the v‖ axis, making it thinner

and hence the phase volume smaller.

.

5.3 Escaping Electron Density with the Addition of a Mirror

We now quantify the degree of electron confinement in the combined system.

A similar calculation to that in Section 4.3.3 is carried out to determine the escaping

electron density. We integrate the initial distribution over the loss hyperboloid. A

derivation is given in Appendix B. The escaping density normalized to total density
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Figure 5.3: ñesp as a function of φ̃ for several mirror ratios r, for an isotropic distri-
bution.

is given by:

ñesp =erfc(φ̃1/2)− exp[φ̃/A(r − 1)] erfc([φ̃X]1/2)/X1/2

; A ≡ T⊥
T‖
, X ≡ 1 +

1

A(r − 1)

(5.2)

ñesp is plotted for several mirror ratios r in Figure 5.3, assuming isotropic initial

electron distributions (A=1). The r=1 case, corresponding to the presence of a DL

alone, is taken from Equation 4.4 and plotted for comparison with cases with a

mirror. With neither a DL nor a mirror, i.e., for φ̃=0 and r=1, all electrons escape,

so ñesp=1. ñesp decreases with increasing φ̃ and r. A typical mirror ratio of 2 to 2.5

from looptop to footpoint can be inferred from magnetohydrodynamic simulations

of solar flares (Yokoyama and Shibata, 1998; Birn et al., 2009). The mirror ratio for

a region near the looptop is therefore expected to be moderate. Using φ̃ ∼ 0.7 as

determined from simulations, ñesp goes down from ∼0.24 when no mirror is present

to ∼0.14 for a moderate mirror ratio of 1.5. Therefore, combining a DL with a
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moderate mirror substantially enhances the confinement of hot electrons.

5.4 Relevant Observations

Simões & Kontar (2013) presented evidence for electron accumulation at the

looptop from a systematic study of solar flares with both looptop and footpoint hard

X-ray sources. Magnetic mirroring was considered as a means to trap electrons along

the flare loops. To explain the observation, mirror ratios of 2.5 to 5 are needed for

isotropic distributions in a more realistic scenario that took into account Compton

backscattering at the chromosphere and a neutral target at the footpoint (as opposed

to zero backscattering and a fully ionized chromospheric target). Such mirror ratios

are higher than estimates of less than 2.1 from investigations of large flare samples of

40-80 flares (Aschwanden et al., 1999; Tomczak and Ciborski, 2007). This suggests

that magnetic mirroring alone is not sufficient to trap the electrons at the looptop.

As demonstrated in Section 5.3, DL formation, together with a magnetic mirror, can

enhance electron trapping. For instance, from Figure 5.3, for a moderate mirror ratio

of r=1.5, having a DL with a strength of φ̃ ∼ 0.7 traps (1- ñesp)=(1-0.14)=0.86 of

the total electron density while having the mirror alone traps a much lower density

of (1-0.4)=0.6. DL formation can, therefore, provide an explanation for electron

accumulation at the looptop reported in Simões & Kontar (2013).
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Chapter 6

Multiple DLs in large systems

Although DLs have not yet been observed in the solar corona, they are widely

seen in various space plasmas, including the solar wind (Mangeney et al., 1999) and

the Earth’s magnetosphere (Mozer et al., 1985; Ergun et al., 2001, 2009). They

are also inferred in the magnetospheres of Jupiter (Hess et al., 2009) and Saturn

(Gurnett and Pryor, 2012). In the Earth’s plasma sheet, a high number of DLs

are detected by the THEMIS (Angelopoulos, 2008) spacecraft during periods of

high magnetic activity, implying that DLs may be a frequent occurrence in such

situations (Ergun et al., 2009). In the solar atmosphere, magnetic fluctuations are

common, especially during flares. Many DLs may similarly occur. In previous

chapters, we reported electron confinement by a single DL. The absence of multiple

DLs is because of the limited domain size and hence evolutionary time of these

systems. In the corona, which is much larger, more DLs could form. The structure

of multiple DLs and their interaction with each other can affect electron transport.

Understanding this subject is therefore important for future in-situ observations of

the corona from missions like NASA’s Solar Probe Plus (Guo, 2010). In this work,

we investigate possibly new DL dynamics via simulations with larger domains. We

find that multiple DLs are generated in larger systems (Li et al., 2013b). The DLs

are sustained for the entire course of the simulations, providing an approximately
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constant total strength at late time. This is sufficient for significantly confining

energetic electrons as demonstrated in Chapter 4.

6.1 Setup for Large-scale Simulations

The initial setup here is the same as in Section 3.1 unless otherwise stated.

The initial hot electron temperatures for all simulations are the same: Th0=1. We

perform four simulations with increasing domain sizes Lx/Lx0=1, 2, 4 and 8 in the

parallel direction. Lx0 is the length of the smallest run that has a size of Lx0 ×Ly=

4634.1 × 18.1 λ2De. The grid size is 0.14×0.14 λ2De. With increasing domain size,

a simulation can be evolved for longer times, which allows us to study long-time

behavior of the system. For Th=5 keV, n=109 cm−3, which are typical of coronal

thermal X-ray sources, λDe ∼ 2 cm. The largest simulation thus has Lx ∼ 1 km,

which is still very short compared with the scale of coronal sources.

6.2 Evolution of DLs in Increasing System Sizes

Figure 6.1 shows the time evolution of the DL strength eφDL in simulations

of increasing system domain sizes. eφDL is measured from the electric field data,

which is averaged over one electron plasma period in the two smaller runs and

over five periods in the two larger runs. Data is not sampled as frequently in the

latter as in the former to improve computational efficiency in the larger systems.

Averaging serves to subtract initial electric field fluctuations at the contact of the
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Figure 6.1: Evolution of the DL strength eφDL in simulations of increasing system
domains.

hot and cold electron regions that fade out after the first ∼1200 ω−1
pe . Subtraction

of the fluctuations is more effective when data are averaged over a shorter time.

Therefore, eφDL of the smaller runs are smoother while that of the largest run (red)

appears to oscillate (about an overall growth trend) before ωpet=1200, but in general

becomes smoother after that time. No averaging is needed after 1200ω−1
pe since the

averaged and unaveraged data overlap. eφDL at early times in the two larger runs

are not shown because of these unrealistic oscillations.

The two smaller runs with Lx/Lx0=1 and 2 have similar evolutionary trends.

The DL(s) in both cases grow, saturate and then grow again. The growth mechanism

is explained in Chapter 3 and saturation mechanism in Chapter 4. The late-time

trend in the two larger runs deviates from the overally growing tendency observed

in the two smaller runs. At late time, eφDL/mic
2
A settles to an average value of ∼

0.6. We note that the DL strength is sustained throughout the entire course of the
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Figure 6.2: Time evolution of the electric field Ex from the Lx/Lx0=2 run. The top
two arrows indicate the position of two DLs and the bottom arrow locates a shock
wave.

simulations without showing any signs of decay. In earlier 1D particle simulations in

which DLs were driven by a strong applied potential, DLs decayed as many solitons

in the form of spiky wave trains propagated toward the high potential side of the

DLs (Sato and Okuda, 1981). They were observed to have a lifetime of about 500

ω−1
pe , which was equal to the transit time of the solitons across the DL width. In our

case, the DLs remain for a much longer time and exhibit no sign of decay.

6.3 Formation of Multiple DLs in Larger Systems

In the smallest run, a single dominant DL is observed. In the second run

(Lx/Lx0=2), a weaker second DL emerges. Figure 6.2 shows the time evolution of

the electric field Ex from that run. The bright white feature indicated by a cyan
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Figure 6.3: Time evolution of the electric field Ex from the largest simulation.
Several DLs are indicated by arrows.

arrow (ωpet∼1400) is the dominant DL, and that by a green arrow (ωpet∼1100) is

the weaker second DL. Note that a shock wave is generated at ωpet∼300 (blue arrow)

and leaves the DL at that time, causing saturation (Chapter 3) of the DL strength

from ωpet=300 to 500 (see the plateauing of the orange curve in Figure 6.1) . In

the two larger runs (Lx/Lx0=4, 8), many DLs are generated. In the following, we

focus on data from the largest run to demonstrate the properties and dynamics of

multiple DLs. To simplify notation, we drop the units of x and t from here on.
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Figure 6.3 is the evolution of Ex from the largest simulation. The first DL

(cyan arrow) is the bright feature that emerges at (x, t) ∼(0, 100), and sustains

until as late as t ∼3500 at x ∼ -140. It strengthens over time and propagates

to the left. A shock associated with it forms at (x, t) ∼(-14, 400) and separates

from it thereafter. A second DL (green arrow) to the left of the first one becomes

apparent at (x, t) ∼(-45, 400). A strong shock with an intense negative electric field

is produced by this DL at t ∼ 2600 and separates from the DL. This will be further

discussed later.

6.4 Generation Mechanism for all DLs

The generation mechanism for multiple DLs is the same as that for a single

DL. It was identified in Chapter 3 as the Buneman instability that is driven by a cold

electron beam as a return current (RC) to the hot electrons that stream through

the ambient (cold) plasma. The RC beam drifts with respect to the ions, which

excites the instability. In the case of multiple DLs, the first DL can accelerate the

original RC beam and the accelerated beam is responsible for the generation of the

second DL. Figure 6.4 shows the electron phase space near the contact of the hot and

(ambient) cold electrons in early time. In (a), the initial (t=0) electron temperature

(green) is overlaid to show the hot and cold regions. To the right of x ∼0 is the

cold electron region and to the left is the hot electron region. A RC beam is drawn

from the cold electrons into the hot region. On top of initial fluctuations (that is

not completely averaged out in the data of this run) in Ex at t=100 (black), the
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(a) (b)

(c) (d)

Figure 6.4: Electron phase space, during the emergence of the second DL, at t=100
(a), 250 (b) and 500 (c). Velocities are normalized to the initial hot electron thermal
speed. The same color scale is used for all. Overlaid on (a)-(c) and plotted in (d)
are Ex (black and white; dashed lines indicate the zero Ex position), the electric
potential eφ (magenta) and the electron temperature Te at t=0 (green).
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Figure 6.5: Electron phase space at t=5600, a time when many DLs form. Arrows
indicate potential drops associated with a couple small DLs between two larger DLs.
Same format is used as Figure 6.4.

first DL emerges among the unstable waves near x ∼ -10. The second DL is not yet

present at this time because shortly after, at t=110 (white), waves present earlier

can be seen while no significant feature is observed to the left of x ∼ -10. In (b),

the (small) second DL appears at the location marked by a vertical black line. The

RC beam that is accelerated by the first DL near x ∼ -10 is reflected by the second

DL – the beam density (cyan) is being dragged from negative to positive velocities

near the vertical black line. The reflected beam density behind the second DL (at

x ∼ -45 in (c)) increases from t=250 (b) to 500 (c). As a result, the DL strengthens

noticeably from t=500 to 600 (d) – see the increase in the potential (magenta) drop

across the second DL. Therefore, the first DL accelerates the RC beam and seeds

the generation of the second DL downstream (to the left) of the first DL.
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After a shock forms and departs at t ∼2600, the second DL weakens (Figure

6.3) because the shock stabilizes the instability (Chapter 4) and the DL is no longer

driven. However, its potential drop remains nearly stationary. For example, it

accounts for one third of the total potential drop at t=4000. As the shock diminishes

after t ∼5000, the second DL revives. See in Figure 6.3 the gradual brightening at

x ∼ -270 after t ∼ 5000. There is also increasing wave activity to the right of the

second DL. Around t ∼ 5300, a third DL, indicated by a blue arrow, develops at

x ∼ -145 and remains until the end of the simulation. It appears to propagate

slowly to the right, opposite to what is usually observed. This is because the ions

are accelerated by the second DL, and produce an ambient flow to the right in

the region x > -270. Therefore, the third DL is carried by the ambient plasma to

the right. Figure 6.5 shows the electron phase space at t=5600, some time after the

emergence of the third DL. In addition to the second DL (at x ∼ -300) and the third

DL (x ∼ -140) where significant potential jumps occur, a couple of weaker DLs are

generated and overall there is substantial wave activity. Orange arrows indicate the

associated potential jumps. Note the RC beam is reflected by the negative Ex of

the second DL and also by the weaker DLs, for instance, around x ∼ -235.

In larger domains that allow the system to evolve for a much longer time,

the behavior at late time is much more dynamic than what was seen in smaller

domains (Chapter 3, Sato & Okuda 1981). Multiple DLs are generated downstream

of the RC beam from a primary DL (the first DL in this case). The growth of these

downstream DLs produces an ambient ion flow that pushes the upstream DL further

upstream, opening up a space (in between) for more DLs to be generated. A chain
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of many DLs can result.

(a) (b)

(c) (d)

Figure 6.6: Electron phase space at ωpet=700 (a), 1000 (b), 1600 (c) and 1800 (d),
showing electron trapping between two DLs. Same format is used as Figure 6.4.

6.5 Electron Trapping between two DLs

Electron trapping is observed between two DLs. Figure 6.6 shows the time

evolution of the electron phase space around two DLs for a period of over 1000 ω−1
pe .

The electric field of both DLs grows over time. The second DL (on the left in (b),
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at x ∼ -75) is weaker than the first – see the smaller drop in the potential across

it. It develops a large negative Ex (see in (d)), which corresponds to a deep dip

in the potential. This dip together with the potential drop at the first DL takes

the form of a ”cap” (or an inverted potential well). This potential cap can trap

electrons. It becomes larger as the dip deepens from (a) to (d). About the same

(cyan) population of electrons stay within the cap during this entire period. From

(d), these electrons are centered at approximately zero velocity and their velocity

range is ∆v/vth0 ∼ ±0.3. Their typical velocity can be taken as their velocity range.

The separation between the two DLs is ∆x ∼ 20 λDe. The transit time of the

electrons between the two DLs is therefore τtransit = ∆x/∆v = 20/0.3 ∼ 70 ω−1
pe .

This is much shorter than the 1000 ω−1
pe time scale. Hence, they are trapped between

the two DLs. In order to trap these electrons, the potential cap is required to have

a depth of ∆φ/Th0 ∼ ∆v2/v2th0 ∼ 0.32 ∼ 0.1. In (d), taking the shallower left side,

the cap here has a depth of eφcap/Th0 ∼ 0.2 (note Th0=1), enough to trap these

electrons. The trapped electrons are essentially a peak in phase space since there

is an enhancement in phase space density. It has a spatial extent much wider than

the typical DL width (of ∼ 10 λDe) because two DLs may be widely separated.

6.6 Conclusion on Multiple DLs

In this work, large-scale PIC simulations are performed to explore the possible

change in the structure of DLs in a larger, more realistic system. In larger systems,

instead of a single DL, multiple DLs are generated. Electron trapping is observed
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between two DLs. The DLs sustain for the entire duration of the simulations. The

sum of the potential drops of all of the DLs is sufficient for confining a significant

fraction of the hot electrons.
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Chapter 7

Conclusion and Limitations

7.1 Summary of results

In summary, the transport of flare-heated from the solar corona to the chro-

mosphere is a key issue in understanding the dynamics of flares, but remains poorly

understood. Observations of coronal X-ray emissions point to two different pictures

of electron transport: free-streaming and confinement of electrons. Confinement is

suggested in looptop X-ray emissions, which have a much longer decay time than

the transit time of the X-ray producing electrons across the compact source re-

gion. Previous solar electron transport models included anomalous conduction due

to anomalous resistivity resulting from turbulence. Nevertheless, anomalous con-

duction has yet to be clearly demonstrated in numerical simulations.

In this thesis, we have presented a mechanism for the suppression of elec-

tron transport based on the formation of DLs. We have shown that DL formation

substantially suppresses electron transport in PIC simulations. Multiple DLs are

generated in large-scale simulations that are not observed in smaller systems. The

DLs support a significant jump in the electron temperature between the (hot) elec-

tron source and the ambient plasma. We have identified the generation mechanism

of the DLs as the Buneman instability between the ions and back-streaming re-

turn current electrons. The DLs extract energy and increase their amplitude by the
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reflection of the RC electrons.

We have also identified the saturation mechanism of DLs as shock formation.

When the potential drop of a DL is large enough to accelerate ions above the local

sound speed, a parallel ion acoustic shock results, stabilizing the Buneman insta-

bility and subsequently saturating the DL. The shock formation criterion predicts

a maximum DL strength that is proportional to the hot electron temperature, in

agreement with simulations. We have shown that at the maximum strength, the DL

reflects and therefore confines a significant fraction of electrons in the source. The

remaining electrons can escape and will likely propagate freely through the ambient

plasma.

In large-scale PIC simulations, an increasing number of DLs are formed. The

Buneman generation mechanism is the same as in smaller systems. We find, how-

ever, that the potential drop across a large DL enhances the RC upstream of the

DL and therefore produces an environment that spawns DL formation in this re-

gion. The expectation therefore is that real systems such as the corona will produce

large numbers of DLs. New dynamics observed in multiple DL systems include the

trapping of electrons between DLs and very long lifetimes. These features provide

a more realistic picture of DL occurrence in the solar corona that is important for

future space missions such as Solar Probe Plus.

This study is potentially important for understanding electron transport in

solar flares. We have shown that transport is significantly suppressed as the flare-

heated electrons start to propagate away from a coronal acceleration site. A substan-

tial number of electrons are confined by the potential of the DLs while the remainder
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can escape. This picture is consistent with both confinement and free-streaming of

electrons suggested by observations of coronal X-ray emissions.

7.2 Limitations and Future Work

There are some important limitations of this model. One limitation is that it

is effectively 1D since the transverse direction in the 2D simulation domain is only

≈ 20λDe wide. 2D effects on DLs are not investigated in this study but do not seem

to be significant. Extended (planar) weak DLs over 80 λDe in transverse extent

were observed in earlier 2D PIC simulations where subthermal electron current

was injected at the boundaries of the parallel direction Barnes et al. (1985). Such

electron injection may correspond to the return current electrons being drawn in at

the contact region of the two electron populations in the present simulations. The

planar 2D DLs tend to develop substantial substructure across the magnetic field

late in time, but the basic dynamics of the DLs are the same as in 1D. We expect the

formation of DLs, and therefore transport suppression of hot electrons, to persist in

2D. However, 2D DLs are unlikely to be planar over ∼ 108λDe, the scale of coronal

looptops. On the other hand, a variation of the DL over a large transverse distance

is not likely to strongly impact the largely 1D dynamics studied here. The injection

of a narrow band of hot electrons, however, might produce dynamics different from

that studied here. This case remains to be studied.

Another limitation is that the computational size of the PIC simulations, being

at most 50000 λDe ∼ 1 km in the corona, is small compared to the actual size of
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flaring loops. They, however, reveal important physics down to the kinetic electron

scale, the Debye length, where DLs form. We have investigated the possible change

of the structure of DLs in larger simulation domains and found additional features

but the basic dynamics, particularly the generation mechanism, identified in this

model, remains unchanged. Realistic physical systems are expected to produce

large numbers of strongly-interacting DLs.

We have modeled the hot electrons as thermal distributions. The coronal

HXR sources are usually fit to a combination of a thermal core and a nonthermal

tail distribution. Our model has not included the nonthermal tail distribution.

However, the DLs are produced by the RC electrons from the ambient plasma. The

addition of a nonthermal population is expected to drive a stronger RC and result

in stronger DLs. Therefore, the DLs will likely confine a portion of the nonthermal

tail. What fraction of the HXR-producing electrons will be confined in this case

requires further investigation.

85



Appendix A

Loss hyperboloid in a DL-mirror configuration

The total energy of an electron in an electric potential φ(x) and subjected to

a magnetic field B(x) is given by

W = mev
2
‖/2− eφ(x) + µB(x) (A.1)

where µ=mev
2
⊥/2B(x) is the magnetic moment. Without other external forces, W

is conserved. The potential jump of a DL can be approximated as a step function

so that

φ(x) =


φDL x < xDL

0 x > xDL

(A.2)

where xDL is the DL position. Before the electron passes through the DL, i.e.,

x < xDL, we have

W =
1

2
mev

2
‖ − eφDL + µB1 (A.3)

where B1 is the value of the magnetic field at some location x < xDL. After it passes

through the DL and continues to travel until its v‖ reaches zero at some point with

a magnetic field B2, so

W = µB2. (A.4)
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Since W is a constant, we equate Equations A.3 and A.4, obtaining

1

2
mev

2
‖ − eφDL = µ(B2 −B1)

= µB1(r − 1) ; r ≡ B2/B1

=
1

2
mev

2
⊥(r − 1)

v2‖ − v2⊥(r − 1) =
2eφDL

me

(A.5)

This is a hyperbolic equation in (v‖, v⊥) space.
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Appendix B

Derivation of nesp in a DL-mirror configuration

In this case, the integral is not separable in v‖ and v⊥ as it is for nesp in Equa-

tion 4.3. In the following, we carry out the full 3D integral over (v‖,v⊥,ψ),where ψ

is the azimuthal angle in the 2D plane spanned by the two perpendicular velocity

components. Visualizing the loss hyperboloid in Figure 5.2 in 3D, the other perpen-

dicular velocity axis is directed out of the page. v⊥ of the loss hyperboloid is simply

the cross-sectional radius of a cut of the hyperboloid taken at different values of v‖

along the v‖ axis. This radius is given by v2⊥l = (v2‖ − b2)/(r − 1) (from Equation

5.1), where b ≡
√
2 eφDL/me. We then calculate the escaping electron density:

nesp =

∫ 2π

0

dψ

∫ ∞

b

dv‖

∫ v⊥l

0

v⊥dv⊥ fe0(v‖, v⊥)

= 2π

∫ ∞

b

dv‖

∫ v⊥l

0

v⊥dv⊥
n0

π3/2vt‖v
2
t⊥

exp

[
−

(
v2‖
v2t‖

+
v2⊥
v2t⊥

)]

=
n0√
πvt‖

∫ ∞

b

dv‖ e
−

v2‖
v2
t‖

(
1− exp

[
−

v2‖ − b2

(r − 1)v2t⊥

]) (B.1)
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Defining:

a ≡ 1

v2t‖
, c ≡ 1

(r − 1)v2t⊥

nesp = n0

√
a

π

∫ ∞

b

dx
(
e−ax2 − ecb

2

e−(a+c)x2
)
; x ≡ v‖

= n0

√
a

π

(∫ ∞

b
√
a

dt√
a
e−t2 − ecb

2

∫ ∞

b
√
a+c

ds√
a+ c

e−s2
)

; t ≡ x
√
a, s ≡ x

√
a+ c

=
n0

2

[
erfc(b

√
a) − ecb

2

√
a

a+ c
erfc(b

√
a+ c)

]
(B.2)

where erfc(z) = 2√
π

∫∞
z

e−t2 dt is the complementary error function. The total den-

sity of hot electrons moving to the right (i.e., the maximum nesp if all hot electrons

escape) is:

ntot =

∫ ∞

0

d3v fe0(v‖, v⊥) =
n0

2
(B.3)

as expected. Therefore, the fraction of escaping to total density is:

ñesp =
nesp

ntot

= erfc(b
√
a) − ecb

2

√
a

a+ c
erfc(b

√
a+ c) (B.4)

89



Expressing a, b and c in terms of eφDL, r and temperatures,

b
√
a =

b

vt‖
=

√
eφDL

T‖
= φ̃1/2

cb2 =
b2

(r − 1)v2t⊥
=

eφDL

T⊥(r − 1)

=
eφDL

T‖

T‖
T⊥(r − 1)

=
φ̃

A(r − 1)
; A ≡ T⊥

T‖

a

a+ c
=

1
v2
t‖

1
v2
t‖
+ 1

(r−1)v2t⊥

=
1

1 +
v2
t‖

(r−1)v2t⊥

=
1

1 +
T‖

T⊥(r−1)

=
1

1 + 1
A(r−1)

b
√
a+ c =

√√√√b2

(
1

v2t‖
+

1

(r − 1)v2t⊥

)
=

√
eφDL

T‖
+

eφDL

T⊥(r − 1)

=

[
φ̃

(
1 +

1

A(r − 1)

)]1/2

(B.5)

The final form of ñesp is therefore:

ñesp = erfc(φ̃1/2)− exp

[
φ̃

A(r − 1)

]
1√

1 + 1
A(r−1)

erfc

([
φ̃

(
1 +

1

A(r − 1)

)]1/2)
(B.6)

where A ≡ T⊥/T‖ is a measure of the electron anisotropy.
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