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The Amazon forest plays a vital role in the Earth system, yet forest degradation from 

logging and fire jeopardizes carbon storage and biodiversity conservation along the 

deforestation frontier. Polices to reduce forest carbon emissions (REDD+) will fall 

short of their intended goals unless carbon and biodiversity losses from forest 

degradation can be monitored over time.  Emerging remote sensing tools, lidar and 

ecoacoustics, provide a means to monitor carbon and biodiversity across spatial, 

temporal, and taxonomic scales to address data gaps on species distributions and 

time-scales for recovery. This dissertation uses a novel multi-sensor perspective to 

characterize the long-term ecological legacy of Amazon forest degradation across a 

20,000 km2 landscape in Mato Grosso, Brazil. It combines high-density airborne 

lidar, 1100 hours of acoustic surveys, and annual time series of Landsat data to pursue 

three complementary studies. Chapter 2 establishes the bedrock of the investigation 



  

by sampling fine-scale measurements of structure across a large diversity of burned 

and logged forests to model the initial loss and time-dependent recovery of carbon 

stocks and habitat structure. Chapter 3 models the interactions between sound and 

structure to predict acoustic community variation, and to account for attenuation in 

dense tropical forests. Lastly, Chapter 4 uses sound to go beyond structure to identify 

degradation thresholds and likely taxonomic drivers of variation in the ‘acoustic 

guild’ over time. Soundscapes reveal strong and sustained shifts in insect assemblages 

following fire, and a decoupling of biotic and biomass recovery following logging 

that defy theoretical predictions (Acoustic Niche Hypothesis). The synergies between 

lidar and acoustic data confirm the long-term legacy of forest degradation on both 

forest structure and animal communities in frontier Amazon forests. After multiple 

fires, forests become carbon-poor, habitats become simplified, and animal 

communication networks became quieter, less connected, and more homogenous. The 

combined results quantify large potential benefits to protecting already-burned 

Amazon forests from recurrent fires. This dissertation paves the way for greater 

integration of remote sensing and analysis tools to enhance capabilities for bringing 

biomass and biodiversity monitoring to scale. Additional measurements will reduce 

uncertainty around the breakpoints that drive carbon and biodiversity loss following 

degradation. 



  

 
 
 
 
 
 

LONG-TERM IMPACTS OF AMAZON FOREST DEGRADATION ON  
CARBON STOCKS AND ANIMAL COMMUNITIES:  

COMBINING SOUND, STRUCTURE, AND SATELLITE DATA 
 
 
 
 

by 
 
 

Danielle Ivonne Rappaport 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2020 
 
 
 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Dr. Ralph Dubayah, Co-Chair 
Dr. Douglas Morton, Co-Chair 
Dr. Andy Royle 
Dr. Matthew Hansen 
Dr. Bill Fagan 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Danielle Ivonne Rappaport 

2020 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Dedication 

I dedicate this dissertation to my abuelita, Dr. Ivonne Lastra, for illuminating my 

path.  



 

 iii 
 

Acknowledgements 

First of all, I’d like to share my enormous gratitude to my committee for their 

consistently great advice. Thanks so much to each of you, Doug, Ralph, Andy, Bill, 

and Matt, for helping me grow the confidence to do science, and for your openness 

and willingness to engage with my ideas. I owe distinct recognition to Doug, who 

provided immeasurable guidance and support during every leg of this journey. 

Thanks for all your painstaking hours coaching me through the world of scientific 

discovery. I am truly grateful for all that I learned from you. To Ralph: thanks so 

much for welcoming me in your lab, encouraging me to chase after my own ideas, 

and emphasizing the importance of balance and humor.  

 

My most heartfelt appreciation to Jesse and my mom for being such an amazing 

source of love and light and for making sure that I got back from the frontier in one 

piece! Lots of love to David and my dad and David for teaching me independent 

thinking from a very young age. Besitos, my lovely tias for shining your light on me. 

Thank you Carla for all your support. 

 

So grateful for my chosen sisters, Nouf, Niloo, Ash, Kristina, Aida, Nora, Amy, 

Sarah, Alaine, and Gabi. Our friendships sustained me through this journey! 

 

Shout-out to all the good people in the GEL lab (Hao, Shannon, Suzanne, Jamis, 

Donal, Laura, Wenlu, John, Rachel) and in the broader GEOG community (Viviana, 

Cortney, Kelly, Meredith, Diana, Amanda, Amy)! And, many thanks to the GEOG 

admin (Rachel, Vivre, Liz) for getting me through UMD’s red tape.  

 

Uma profunda gratidão pelas ajudas: Eveline, Michael, Maiza, Marcos, Gisele 

Turquinho, Veronika, Marconi, e Baixinho. 

 

 

 
 



 

 iv 
 

 
Table of Contents 

 

Dedication ..................................................................................................................... ii	
  
Acknowledgements ..................................................................................................... iii	
  
List of Tables ................................................................................................................ vi	
  
List of Figures ............................................................................................................ viii	
  

1	
   Introduction ........................................................................................................... 1	
  
1.1 Background and motivation	
  ...........................................................................................	
  1	
  

1.1.1 The growing importance of Amazon forest degradation	
  ........................................	
  1	
  
1.1.2 Traditional observations from field and satellite data	
  .............................................	
  2	
  
1.1.3 Emerging synergies between lidar and ecoacoustic data	
  ........................................	
  4	
  
1.1.4 Deriving biodiversity patterns from sound	
  .............................................................	
  5	
  

1.2 Research objectives and dissertation structure	
  ...............................................................	
  8	
  

2	
   Quantifying long-term changes in carbon stocks and forest structure from 
Amazon forest degradation ...................................................................................... 15	
  

2.1 Introduction	
  ..................................................................................................................	
  16	
  
2.2 Methods	
  .......................................................................................................................	
  20	
  

2.2.1 Study area	
  .............................................................................................................	
  20	
  
2.2.2 Data and analysis	
  ..................................................................................................	
  21	
  

2.3 Results	
  ..........................................................................................................................	
  25	
  
2.4 Discussion	
  ....................................................................................................................	
  33	
  
2.5 Conclusion	
  ...................................................................................................................	
  38	
  
2.6 Supplemental Materials	
  ...............................................................................................	
  45	
  

2.6.1 Degradation and deforestation classification methods	
  ..........................................	
  45	
  
2.6.1 Supplemental figures and tables	
  ...........................................................................	
  47	
  

3	
   Acoustic space occupancy: Combining ecoacoustics and lidar to model 
biodiversity variation and detection bias across heterogeneous landscapes ........ 58	
  

3.1 Introduction	
  ..................................................................................................................	
  59	
  
3.2 Materials and Methods	
  .................................................................................................	
  65	
  

3.2.1 Case study region	
  ..................................................................................................	
  65	
  
3.2.2 Lidar surveys and analysis	
  ....................................................................................	
  66	
  
3.2.3 Acoustic surveys and analysis	
  ..............................................................................	
  66	
  
3.2.4 Acoustic space occupancy model	
  .........................................................................	
  67	
  

3.3 Results	
  ..........................................................................................................................	
  74	
  
3.4 Discussion	
  ....................................................................................................................	
  81	
  
3.5 Conclusion	
  ...................................................................................................................	
  86	
  

4	
   Animal soundscapes reveal key markers of Amazon forest degradation from 
fire and logging .......................................................................................................... 92	
  

4.1 Introduction	
  ..................................................................................................................	
  93	
  
4.2 Methods	
  .......................................................................................................................	
  96	
  

4.2.1 Study site	
  ..............................................................................................................	
  96	
  
4.2.2 Acoustic processing and acoustic space use	
  .........................................................	
  98	
  
4.2.3 Network analyses	
  ..................................................................................................	
  99	
  

4.3 Results	
  ........................................................................................................................	
  101	
  



 

 v 
  

4.4 Discussion	
  ..................................................................................................................	
  111	
  

5	
   Research Synthesis and Future Directions ...................................................... 128	
  
5.1 Research synthesis, significance, and next steps	
  ........................................................	
  128	
  

5.1.1 The ecosystem legacy of forest degradation	
  .......................................................	
  129	
  
5.1.2 Making the most of acoustic data for biodiversity monitoring	
  ...........................	
  133	
  

5.2 Scaling up my understanding of forest degradation in future work	
  ...........................	
  144	
  
5.2.1 To inform management	
  .......................................................................................	
  144	
  
5.2.2 To inform policy	
  .................................................................................................	
  146	
  

5.3 Conclusion	
  .................................................................................................................	
  147	
  
  



 

 vi 
 

 
List of Tables 

 
Table 2-1. Lidar-based estimates of the fraction of original canopy cover, number of 
canopy tree clusters, and the distribution of ACD in degraded forests.. ..................... 31 
 
Table 2-2. Estimates based on the multiple linear regression models of aboveground 
carbon density predicted at four standard reporting periods following the most 
common logging and fire pathways.  For each degradation class, modeled ACD and 
95% confidence interval (in parentheses) are shown as the percentage of the intact 
forest reference (113.5 Mg C ha-1).. ........................................................................... 31 
 
Table S 2-1. The lidar data were collected by Sustainable Landscapes Brazil, and can 
be freely accessed from: https://www.paisagenslidar.cnptia.embrapa.br/webgis/. 
Acquisition dates, names and corresponding stand IDs are listed below. Additional 
stand-level information can be derived from Table S2. .............................................. 53 
 
Table S 2-2. Attributes of 58 forest stands derived from the combination of Landsat 
and lidar data, including aboveground carbon density (ACD, Mg C ha-1), frequency, 
and age since last degradation event ........................................................................... 54 
 
Table S 2-3. Best-fit regression equations to predict time-dependent recovery of 
aboveground carbon density (Mg-C ha-1) of logged stands and stands burned once, 
twice, and three or more times. Model 1 considers once-burned stands as a single 
class, while Model 2 further partitions once-burned stands into low- or high-severity 
areas based on post-fire changes in canopy reflectance .............................................. 56 
 
Table S 2-4. Best-fit regression equations to predict time-dependent recovery of 
residual canopy (Model 3) and density of canopy trees (Model 4) of logged stands and 
stands burned once, twice, and three or more times. ................................................... 57 



 

 vii 
 

 
Table 3-1. Lidar and ecoacoustic covariates evaluated for models of detection and 
occupancy. The only candidate covariates not fit to both model components were n 
and (Cn + Sn), which were exclusively used as detection and observation covariates, 
respectively. ................................................................................................................. 68 
 
Table 3-2. The model with the most substantial level of empirical support is shown 
with coefficients (SE) presented separately for the detection and occupancy 
components. Covariate descriptions are provided in Table 1. ..................................... 69 



 

 viii 
 

List of Figures 

 

Figure 1-1. Dissertation framework. ............................................................................. 9 
 
Figure 2-1. Degraded and intact forest stands were distributed across 20,000 km2 in 
the Brazilian state of Mato Grosso (top inset) ............................................................. 21 
 
Figure 2-2. Forests affected by multiple fires had the largest differences in 
aboveground carbon density (ACD) compared to median ACD in intact forests (red 
line). Additionally, ACD distributions between burned and logged-and-burned forests 
were similar for once-burned forests. The violin plots summarize ACD distributions 
as a function of fire frequency and degradation class ................................................. 27 
 
Figure 2-3. Ring patterns in burned forests indicate diurnal differences in fire line 
intensity, and increasing fire frequency results in a progressive loss of forest biomass 
and structural diversity. Lidar-based estimates of aboveground carbon density (ACD, 
Mg C ha-1) at 0.25-hectare resolution for 5000 x 200 m transects are overlaid on 
post-fire Landsat NDVI for once-burned (a) twice-burned (b) and thrice-burned (c) 
forest stands.. ............................................................................................................... 27 
 
Figure 2-4. Patterns of aboveground biomass recovery following forest degradation 
highlight the magnitude and duration of ACD accumulation following fire. a) 
Relationship between ACD and stand age for logged, once-burned, twice-burned, and 
thrice-burned stands. b) Initial fire severity in once-burned forests further explains the 
heterogeneity in residual carbon stocks.. ..................................................................... 32 
 
Figure 3-1. The locations of the ecoacoustic and lidar surveys (red polygons; n = 34) 
shown in relation to the case study landscape (2014 Landsat composite, bands 543) 
and broader regional context (map inset). ................................................................... 65 
 
Figure 3-2. Naive observations per hour for the 33 sites used for model calibration. 
Colors correspond to the degree of canopy openness of the corresponding sites 
(higher values of shrub standard deviation indicate greater canopy loss from 
degradation). The greyscale indicates the percentage of sites with ≥  5 detections. .... 75 
 
Figure 3-3. Naive observations per frequency band. Colors correspond to the degree 
of canopy openness and the greyscale corresponds to the percentage of sites with ≥  5 
detections. .................................................................................................................... 75 
 
Figure 3-4. The combined effects of signal frequency and forest structure, indicated 
by the standard deviation of shrub-classified lidar returns, on top-ranked model 
predictions of detection probability (p), assuming 12 samples/hour and mean values 
for other detection covariates (not shown). ................................................................. 78 



 

 ix 
 

 
Figure 3-5. The influence of sample density on frequency-dependent detection 
probability (p) predicted from the top-ranked model. ................................................. 78 
 
Figure 3-6. Predicted occupancy (blue scale) overlaid with naive detected occupancy 
aggregated over five days (orange outline) for four study sites with differing 
fractional canopy cover (CC). ..................................................................................... 80 
 
Figure 3-7. Predicted occupancy probability (Ψ) over the 24-hour cycle and 
frequency spectrum for two divergent habitats, a heavily degraded forest (44% 
canopy cover), and an intact forest (93% canopy cover). ........................................... 81 
 
Figure 4-1. Triplicate recording sites were installed in 39 locations distributed across 
9,400 km2 in northern Mato Grosso to characterize acoustic communities following 
forest degradation. The three close-up panels show the characteristic variability in 
degraded vegetation as seen from satellite imagery (2014 Landsat, 543-RGB), and the 
distribution of sampling effort designed to capture this heterogeneity. ...................... 97 
 
Figure 4-2. Patterns of acoustic space infilling do not conform to expectations from 
the Acoustic Niche Hypothesis when evaluated in terms of structural intactness 
(biomass) and degradation history (fire frequency, logging age). The contradictory 
responses to fire (green) and logging (orange) by acoustic communities indicate no 
predictable variability in acoustic space occupancy (ASO) with time since logging, 
despite the important role of degradation history in governing the recovery of 
ecosystem structure. The cumulative proportion of ASO aggregated hourly is 
presented for the full daily cycle and for specific time windows of biological 
relevance for birds and insects to pinpoint the likely taxonomic contributions to daily 
trends. ........................................................................................................................ 104 
 
Figure 4-4. Mean partner diversity shows the frequency dependence of soundscape 
differences among individual site replicates (left) and degradation strata (right) after 
logging (top) and fire (bottom).  After recurrent burns, there is an overall reduction in 
partner diversity, but the sharpest declines in specific pseudo-taxa do not coincide 
with the strongest source of deviation in an otherwise comparable pattern among 
logged forests. ............................................................................................................ 105 
 
Figure 4-5. Soundscape transitions show coordinated losses and gains of pseudo-taxa 
after fire and logging as a function of degradation frequency, timing, and severity.  
2D soundscape matrices show distinct trajectories of biotic assembly after fire versus 
logging, and capture localized heterogeneity from burn damages even within a single 
fire, most obvious as coordinated silences during the early morning period. ........... 107 
 
Figure 4-6. The increased evenness of the spread of links from 1 to 5 fires indicates 
that recurrent fire results in a soundscape that is more homogenous and composed of 
fewer dominant and rare links. The non-linear patterns of evenness with increasing 
regeneration after logging are not clearly differentiated by logging history. ............ 108 



 

 x 
  

 
Figure 4-7. The clustering of adjacent nodes, as indicated by the cluster coefficient at 
the level of sound frequencies (top) and sound hours (bottom), shows that fire 
recurrence directly affects the connectedness of the soundscape and the likelihood 
that adjacent pseudo-taxa coordinate activity as part of a larger clique. ................... 110 
 
Figure 5-1. Modeled peaks of acoustic activity from mixture model analysis (mean 
+/- sd) of burned (top) and logged (bottom) sites (distinct color per site) show the 
appearance and disappearance of pseudo-taxa, conforming to our understanding of 
degradation history. ................................................................................................... 139 
 
Figure 5-2. These two examples of soundscape predictions from the mixture model 
for two spatially proximate replicates within the same logging class (15 yr) indicate 
that the modes of the predicted soundscape surface do not consistently conform with 
our visual inspection, which suggests further testing needs to be done to standardize 
optimal selection of component mixtures, which curiously varied between 4 and 7 in 
the examples shown above. ....................................................................................... 140 
 
Figure S 2-1.  Climatology of mean monthly precipitation for the study region based 
on 0.25°  data for 2007-2017 from the Tropical Rainfall Measuring Mission (TRMM, 
3B43v7).. ..................................................................................................................... 47 
 
Figure S 2-2.  The spatial, spectral, and temporal patterns of forest damage and 
recovery were used to separate deforestation, selective logging, and understory forest 
fire damages in Amazon forests.  Patch size, shape, and the magnitude of forest 
damages were the first set of criteria for classification, followed by tests for the multi-
year NDVI trajectory (third row) to separate deforestation from selective logging and 
understory forest fires.  Small patches typical of logging infrastructure (1-3 Landsat 
pixels) were evaluated based on tests for spatial clustering. ....................................... 48 
 
Figure S 2-3. The recovery of aboveground carbon density over time for logged and 
burned forests. Although biomass accumulates with increasing time since last 
disturbance, the carbon consequences of both logging and fire were persistent. The 
median and interquartile range of each group are indicated with the black circle and 
line. The tails of the violins are trimmed to the range of data, and all violins have the 
same area prior to trimming the tails. Distinct letters indicate significant differences 
among distributions from a pairwise Wilcoxon test with a Holm correction procedure 
to adjust α for multiple testing. .................................................................................... 49 
 
Figure S 2-4. Fire frequency and time since last fire were more important than 
logging history for ACD variability in degraded forests. In these two figures, burned 
forest ACD is separated by fire frequency for three age classes of years since last 
degradation event. The top panel (a) separates logged and burned forests from burned 
forests, whereas the bottom panel (b) presents data for all burned forests, regardless 
of logging history. The historical presence of logging does not influence the long-



 

 xi 
 

term (>3 years) cumulative effect of multiple fire events, once fire frequency and age 
are considered .............................................................................................................. 50 
 
Figure S 2-5. The recovery trajectories for canopy structure following logging, single, 
and recurrent fires complement ACD information regarding the restoration of 
ecosystem function following forest degradation. The trajectory of two 
complementary indices derived from lidar,  % residual canopy (a) and density of 
canopy trees per hectare (b) indicate that fire results in the largest and most persistent 
alterations to canopy structure. .................................................................................... 51 
 
Figure S 2-6. Within-fire differences in ACD from initial fire severity were evident 
more than a decade following fire damages.  Violin plots show ACD distributions 
following single burns for recent fires (≤2 years) and older fires (11-14 years). ........ 52 
 
Figure S 2-7. Patterns of canopy mortality following a single fire event are not 
uniform. Post-fire variability in canopy structure following high- and low-severity 
damages can help explain the observed variability in post-fire ACD. The density plots 
compare distributions of the residual canopy structure aggregated at 0.25 ha for the 
once-burned forests burned in the 2010 drought year, where intra-stand differences 
from initial fire severity were most preserved. The two distributions are significantly 
different (Wilcoxon test with p < 0.05). ...................................................................... 52 
 
Figure S 4-1. Companion figure to Fig. 4-2, which shows consistent results with 
ASO-based analyses. Partner diversity of hours is shown for key time intervals, along 
with the system-level network analog, generality, which shows the mean number of 
sounds per hour calculated at the daily time step. ..................................................... 122 
 
Figure S 4-2. The mean number of links per frequency (generality) and per hour 
(vulnerability). ........................................................................................................... 123 
 
Figure S 4-3. ASO-degradation relationships aggregated hourly for the 24-hour cycle.
 ................................................................................................................................... 124 
 
Figure S 4-4. Comparison of correlations show comparable ASO-degradation 
relationships irrespective of scale of aggregation (hourly vs. minute). ..................... 125 



 

 1 
  

1 Introduction 

 

1.1 Background and motivation 

 
1.1.1 The growing importance of Amazon forest degradation  

The Amazon forest plays a vital role in the Earth system, which is under 

increasing threat from human activity (Brando et al. 2019). Amazonia supports more 

species diversity than any other terrestrial ecosystem (Mittermeier et al. 2005), and 

accounts for over a quarter of the global forest carbon stocks (Saatchi et al. 2011).  

Degraded Amazon forests are growing in extent and make up an increasing 

proportion of the cumulative impact of human activity (Asner et al. 2005; Morton et 

al. 2013; Aragão et al. 2018). A quarter of existing tropical forests are designated for 

selective logging (Edwards et al. 2019), which is expanding across the leading 

frontier of agricultural expansion in the Brazilian Amazon (Pereira et al 2010).  

Furthermore, a combination of economic and climate pressures have increased fire 

risk in the Amazon relative to baseline periods, according to the satellite record. 

During the 2010 Amazon drought event, approximately 8 times more forest area was 

burned than deforested for agricultural expansion (Morton et al. 2013, INPE). The 

more recent 2015/2016 El Niño exposed the central stem of the Amazon to fire risk 

and broke record in terms of forest area affected by active fires relative to 

deforestation (Aragão et al. 2018). This past year highlighted the alarming 

vulnerability of frontier forests to rapid increases in fire risk from changing economic 

behavior associated with deforestation. Although 2019 did not have anomalous 

drought, it was the most active fire year since 2010.  Models project increased 
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degradation risk with future Amazon drought (Duffy et al. 2015, Le Page et al. 2017). 

Combined, economic uncertainty in a hotter, drier Amazon will continue to make fire 

an important agent of change in the future.  

Policies to reduce emissions from deforestation and forest degradation 

(REDD+) risk falling short of intended goals unless carbon and biodiversity losses 

from degradation can be monitored over time. Land-use and land-cover change is a 

major contributor to greenhouse gas emissions, but carbon fluxes from tropical 

deforestation and degradation continue to represent one of the largest uncertainties in 

the terrestrial carbon budget (Houghton 2012). The paucity of large-scale studies on 

the long-term impacts of forest degradation has undermined efforts to quantify 

emissions for global carbon accounting and climate mitigation (Le Quere et al. 2016, 

Andrade et al. 2017).  

 

1.1.2 Traditional observations from field and satellite data 

Unlike deforestation, forest degradation is not binary, and the heterogeneity 

and time-dependence of degradation impacts are difficult to constrain with small field 

plots or moderate resolution (30-250 m) satellite measurements alone. Amazon 

frontier landscapes are expansive mosaics of agricultural land uses and fragmented, 

degraded, and regenerating forests with heterogeneous structural and floristic 

properties based on diverse legacies from decades of land use. Mapping the extent of 

human modification of Amazon forests from logging and fire means being able to 

measure fine-scale variability in ecosystem structure across broad spatial and 

temporal scales. This poses an enormous monitoring challenge, as conventional field 
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techniques seldom translate to landscape scales. Once logged and burned forests have 

been identified, quantifying the time-dependent change in carbon stocks from forest 

degradation is an additional challenge.  In the largest field-based assessment of 

degraded forest carbon stocks in Amazonia, Berenguer et al. (2014) reported carbon 

losses that ranged between 18% and 57%, reflecting large uncertainties in the 

relationships between carbon retention and degradation type, timing, severity, and 

frequency.  

Forest degradation alters more than just carbon stocks.  Barlow et al. (2016) 

suggest that Amazon forest degradation may double the biodiversity loss from 

deforestation alone. Logging and fire alter the structure and composition of vegetation 

through selective removal or mortality of tree species, and repeated logging or fire 

exposure may suppress forest regeneration (sometimes referred to as ‘arrested 

succession’), modify soils, and deplete seed banks (Cochrane and Schulze 1999; Slik, 

Verburg, and Kessler 2002). These changes in forest ecosystem composition and 

structure alter resource availability for Amazonian fauna, and suitable conditions for 

nesting, foraging and predator protection (Barlow and Peres 2004; Barlow et al. 2006; 

Burivalova et al. 2015).  

Addressing the tropical biodiversity crisis from deforestation and forest 

degradation requires an efficient, distributed monitoring system to assess species 

abundance and diversity. Traditional, ground-based biodiversity inventories are 

logistically prohibitive to conduct at scale, and limited taxonomic expertise 

perpetuates large data discrepancies for lesser-known taxa, such as insects, which 

constitute the bulk of tropical biodiversity (Meyer et al. 2013).  Remote sensing 
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technologies are an essential part of any pantropical monitoring system.  Operational 

satellites like Landsat and MODIS have been critical for monitoring the extent of 

degradation from fire and logging in the Amazon (e.g., Asner et al. 2005; Morton et 

al. 2013; Hansen et al. 2013). However, subtle yet sustained changes in ecosystem 

structure and biodiversity from forest degradation are not as readily apparent from 

space, notwithstanding the recent launches of the ICESat-2 and GEDI lidar systems, 

and integration with other datasets is necessary for routine carbon and biodiversity 

monitoring.  

 

1.1.3 Emerging synergies between lidar and ecoacoustic data 

Aligning carbon-focused policies with conservation goals requires improved 

monitoring of biodiversity across spatial, temporal, and taxonomic scales to address 

data gaps on species distributions and the recovery time-scales for forest and animal 

communities. Advances in remote sensing technologies may be able to bridge the 

scale gaps between field and satellite observations to measure subtle ecosystem 

variability through time and at policy-relevant extents. Lidar and acoustic remote 

sensing are two emerging technologies that complement field and satellite data for 

studies of carbon, ecosystem structure, and biodiversity (Bergen et al. 2009; Aide et 

al. 2013; Vierling et al. 2013; Farina and Pieretti 2014); yet the synergies between 

these two approaches have hardly been explored (Pekin et al. 2012, Bustamante et al. 

2015).  

Lidar is a precise remote sensing method for collecting detailed information 

about three-dimensional (3D) forest structure.  Lidar sensors can be flown in low-
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altitude aircraft to collect fine-scale information over large spatial domains (e.g., 

Longo et al. 2016).  Lidar-derived structural parameters, such as canopy height, leaf 

area, and aboveground carbon density, have been successfully used for habitat and 

species modeling (Goetz et al. 2007; Bergen et al. 2009; Dubayah et al. 2010).  

Ecoacoustics is an emergent remote sensing approach for assessing 

biodiversity across diurnal and seasonal time scales and broad geographic extents 

(Blumstein et al. 2011; Aide et al. 2013; Fuller et al. 2015). One of the key 

advantages over traditional in-situ surveys is that passive recording devices can be 

simultaneously deployed in multiple sites to dramatically reduce the effort and cost 

associated with large-scale monitoring due.  The current generation of automated 

recording devices are low cost (<$500) and highly reliable (REF).  Furthermore, rapid 

advances in battery technology support long-term monitoring (>20 days) in a non-

invasive manner. Acoustic recordings provide a permanent digital record that can be 

repeatedly analyzed and independently validated following data collection to support 

future investigations well beyond the original scope of the acquisition. 

 

1.1.4 Deriving biodiversity patterns from sound 

Remote acoustic surveys hold great promise for supporting routine monitoring 

of wildlife.  However, the nascent field of ecoacoustics is still grappling with 

methodological and analytical challenges associated with sound recordings.  For 

example, ecoacoustics, as with other methods for quantifying species presence or 

absence, must account detection biases from sampling and sound attenuation. 

Standardizing biodiversity indicators from sound data also depends on improved 
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techniques for capturing information about multiple taxa in complex tropical forest 

environments with complex signaling assemblages and multi-species choruses.  

Clearly, acoustic surveys are only able to capture sound-generating organisms, 

sometimes referred to as “the acoustic guild.” However, even the subset of animal 

species that create sounds within the range of typical recording units (2-20 kHz) 

represents a broad sample of forest biodiversity from avian, amphibian, and insect 

species, along with sensitivity to some frequencies associated with bats.  The 

advantages of automated recording devices are dense or concurrent sampling, full 

daily coverage, and long sampling intervals (5-20 days).  Together, these benefits 

provide a robust, repeatable survey methodology for the acoustic guild, especially 

compared to traditional ground surveys, which are typically conducted during narrow 

time periods to target specific taxa (La and Nudds 2016).  

Passive acoustic monitoring devices also generate large volumes of data, 

necessitating automated approaches to filter and analyze thousands of hours of sound 

recordings.  There are several distinct analytical pathways for deriving information 

about biodiversity from acoustic surveys, each with clear trade-offs in terms of 

efficiency and ecological utility. Most previous efforts to utilize acoustic data for 

biodiversity monitoring have focused on detecting known vocalizations associated 

with individual species (Aide et al. 2013), but there is broad interest in evaluating 

whether the collection of all vocalizations and stridulations, or soundscapes, may 

serve as a surrogate of community composition. Since taxonomic groups emit 

acoustic signals (vocalizations, stridulations) at routine periods of the day and at 

standard frequency ranges, soundscapes are “community fingerprints” relevant to 
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multiple taxa, which can be analyzed to circumvent species ID. 

This dissertation directly addresses two critical shortfalls of soundscape-based 

indicators that have heretofore limited the ability to bring acoustic-based monitoring 

to scale (Eldridge et al., 2018; Wood et al., 2019): First, more advanced statistical 

methods need to be developed to detect compositional change from remote audio 

surveys in the complex acoustic environments characteristic of tropical forests (multi-

species choruses assemblages). Recent research interest in soundscapes has generated 

numerous acoustic diversity indices that consider variation in energy as a function of 

either time or frequency, not both (e.g., Sueur et al. 2014). However, current 

soundscape indices are not well equipped to support standardized assessments of 

biodiversity change across space or time (‘β-diversity soundscape indices’) (Sueur et 

al., 2014), and are readily confounded by environmental variation and noise (Buxton 

et al., 2018). Recent pan-tropical research suggests that measuring acoustic space 

occupancy across both time and frequency may be a more effective proxy for tropical 

species diversity (e.g. Aide et al., 2016; Eldridge et al. 2016, Eldridge et al. 2018). 

This dissertation aims to go one step further by advancing methods to probe the 

component elements and interactions that drive differences in overall occupancy.  

Second, operationalizing sound-derived biodiversity indicators also depends 

on improved handling of observation bias from sound attenuation and other sampling 

artifacts (e.g. data sparsity). The likelihood of detecting a soniferous species 

occupying a site depends not only on whether it is acoustically active during a given 

survey, but also on a myriad of factors that influence its detectability, such as 

interference with vegetation, which may selectively scatter and mask the propagation 
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of specific frequencies in complex forested environments (Wiley & Richards, 1982). 

Most existing soundscape indices ignore detection error and regard the soundscape as 

an unbiased representation of the underlying animal community. Unless properly 

addressed, frequency attenuation may skew biodiversity inferences from acoustic data 

in dense forest habitats (Royle, 2018). 

 

1.2 Research objectives and dissertation structure 
 

This dissertation (Fig. 1-1) draws from a novel multi-sensor perspective to 

characterize the ecological legacy of degradation across a 20,000 km2 landscape in 

northern Mato Grosso, Brazil, which is one of the most fire-prone frontier regions in 

the Amazon ‘arc of deforestation.’  It combines high-density airborne lidar, 1100 

hours of acoustic surveys, and annual time series of Landsat data to quantify changes 

in forest structure, carbon stocks, and biodiversity following logging and fire. 

Chapters 2-4 pursue three complementary lines of evidence to advance our 

understanding of frontier tropical forest ecosystems in the context of global change. 

Chapter 2 establishes the bedrock of the investigation by using high-density 

measurements of structure sampled over 3000 ha from a diversity of degraded forests 

(N = 58) to model the initial loss and time-dependent recovery of carbon stocks and 

habitat structure following fire and logging. Chapter 3 models the interactions 

between sound and structure to predict acoustic community variation, and to account 

for attenuation in dense tropical forests. Chapter 4 uses sound data to extend our 

understanding of the degradation process beyond carbon alone, and identifies the 

specific degradation sequences and pseudo-taxa that give rise to variation in the 
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‘acoustic guild’ over time. Lastly, Chapter 5 discusses methodological, scientific, 

management, and policy implications of the results outlined in Chapters 2-4, and 

concludes with future steps for advancing our understanding of the forest degradation 

process. 

 

 

 
Figure 1-1. Dissertation framework.
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2 Quantifying long-term changes in carbon stocks and forest 

structure from Amazon forest degradation1  

 
 

Abstract 
 

Despite sustained declines in Amazon deforestation, forest degradation from 

logging and fire continues to threaten carbon stocks, habitat, and biodiversity in 

frontier forests along the Amazon arc of deforestation. Limited data on the magnitude 

of carbon losses and rates of carbon recovery following forest degradation have 

hindered carbon accounting efforts and contributed to incomplete national reporting 

to reduce emissions from deforestation and forest degradation (REDD+). We 

combined annual time series of Landsat imagery and high-density airborne lidar data 

to characterize the variability, magnitude, and persistence of Amazon forest 

degradation impacts on aboveground carbon density (ACD) and canopy structure. On 

average, degraded forests contained 45.1% of the carbon stocks in intact forests, and 

differences persisted even after 15 years of regrowth. In comparison to logging, 

understory fires resulted in the largest and longest-lasting differences in ACD. 

Heterogeneity in burned forest structure varied by fire severity and frequency. Forests 

with a history of one, two, and three or more fires retained only 54.4%, 25.2%, and 

                                                             
1 The material in this chapter was co-authored and previously published: Rappaport, Danielle I., Douglas C. 
Morton, Marcos Longo, Michael Keller, Ralph Dubayah, and Maiza Nara dos-Santos. 2018. “Quantifying Long-
Term Changes in Carbon Stocks and Forest Structure from Amazon Forest Degradation.” Environmental Research 
Letters 13 (6): 065013.  
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7.6% of intact ACD, respectively, when measured after a year of regrowth. Unlike the 

additive impact of successive fires, selective logging before burning did not explain 

additional variability in modeled ACD loss and recovery of burned forests. Airborne 

lidar also provides quantitative measures of habitat structure that can aid the 

estimation of co-benefits of avoided degradation. Notably, forest carbon stocks 

recovered faster than attributes of canopy structure that are critical for biodiversity in 

tropical forests, including the abundance of tall trees. We provide the first 

comprehensive look-up table of emissions factors for specific degradation pathways 

at standard reporting intervals in the Amazon. Estimated carbon loss and recovery 

trajectories provide an important foundation for assessing the long-term contributions 

from forest degradation to regional carbon cycling and advance our understanding of 

the current state of frontier forests.  

 

2.1 Introduction 

Changes in Amazon forest carbon stocks are a significant source of 

greenhouse gas emissions from human activity (van der Werf et al 2009, Pan et al 

2011, Aguiar et al 2016). Understanding the long-term response of Amazon forests to 

land use and climate is essential for balancing the global carbon budget and 

improving climate projections (e.g. Gatti et al 2014, Friedlingstein et al 2014). 

Although annual deforestation rates in the Brazilian Amazon have declined by 80% 

since 2004 (Hansen et al 2014, INPE 2015), forest degradation from fire and logging 

remains a threat to forest carbon stocks across the Amazon arc of deforestation 

(Morton et al 2013). The magnitude of carbon losses from forest degradation is large 
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(Longo et al 2016), but the long-term consequences of fire and logging on forest 

structure and composition remain uncertain (Andrade et al 2017).  

Decades of Amazon frontier expansion have left a mosaic of degraded forests 

along the Amazon arc of deforestation (Asner et al 2005, Morton et al 2013). Nearly 

3% of southern Amazonia burned between 1999–2010, and the persistence of burned 

frontier forests (Morton et al 2013) underscores the importance of considering fire 

separately from deforestation for complete forest carbon accounting. Selective 

logging is also widespread across the leading edge of frontier expansion. In 2009 

alone, 14.2 million m
3 of round wood was extracted from the largest logging centers 

in the Brazilian Legal Amazon (Pereira et al 2010). Canopy damage in logged forests 

can increase vulnerability to additional disturbances, including fire (Uhl and Vieira 

1989, Holdsworth and Uhl 1997), but the feedbacks and synergies among disturbance 

agents, as well as the long-term impacts of degradation, are still largely unresolved.  

The scarcity of large-scale, long-term studies on fire and logging impacts has 

undermined efforts to quantify emissions from Amazon forest degradation for global 

carbon accounting (Le Quere et al 2016) and climate mitigation efforts (Andrade et al 

2017). Reducing land-use emissions is one cost-effective climate mitigation pathway 

(e.g. Canadell and Raupach 2008, Griscom et al 2017), including efforts to reduce 

emissions from deforestation and forest degradation (REDD+) under the United 

Nations Framework Convention on Climate Change. To be eligible for REDD+ 

performance-based payments, countries must be able to monitor, report, and verify 

(MRV) reductions in carbon emissions from degradation or deforestation. However, 

because of large uncertainties regarding net carbon emissions from fire and logging, 
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degradation has remained poorly integrated within the REDD+ accounting framework 

(Mertz et al 2012, Goetz et al 2015) and excluded from national reporting (e.g. Brazil 

2014).  

The challenge to quantify degradation emissions stems from the heterogeneity 

and time-dependence of degradation impacts (Longo et al 2016, Andrade et al 2017). 

The variability in degradation impacts may result from regional differences in 

underlying biomass distributions (Avitabile et al 2016, Longo et al 2016), forest 

resilience to fire (Brando et al 2012, Flores et al 2017), and land use (Aragão and 

Shimabukuro 2010). Discrepancies in emissions estimates also stem from 

methodological differences among studies. Field-based studies provide valuable 

context for understanding the long-term impacts of degradation (e.g. Berenguer et al 

2014), but forest inventory measurements typically have limited spatial and temporal 

coverage due to cost constraints. By contrast, experimental studies control for much 

of the variability in degradation history but may be limited in their capacity to 

simulate the diversity of degradation impacts (e.g. Brando et al 2014).  

Consequently, existing estimates for committed carbon emissions from 

Amazon understory fires vary by an order of magnitude, ranging from ∼20 Mg C ha
−1 

(Brando et al 2014) to 263 Mg C ha
−1 (Alencar et al 2006). Airborne lidar provides 

the spatially extensive and structurally detailed information on forest structure and 

aboveground carbon stocks needed to reconcile previous estimates of degradation 

emissions and quantify co-benefits of avoided degradation (Goetz et al 2015, Longo 

et al 2016, Sato et al 2016).  

Here, we used a purposeful sample of high-density airborne lidar to capture a 
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broad range of degraded and intact forest conditions in the southern Brazilian 

Amazon. For each forest stand, we combined degradation history information from 

annual time series of Landsat data with airborne lidar data to characterize canopy 

structure and estimate aboveground carbon density (ACD) using a lidar-biomass 

model specifically developed for frontier forests in the Brazilian Amazon (Longo et 

al 2016). Our large-area lidar coverage and sampling chronosequence addressed two 

questions: (1) What are the trajectories of loss and recovery of forest carbon stocks 

and habitat structure following fire and logging in frontier Amazon forests? (2) How 

do degradation type, frequency, and severity contribute to variability in degraded 

forest carbon stocks and habitat structure over time? Our study directly targets a 

lingering data gap for REDD+ (Andrade et al 2017) by quantifying the rates of ACD 

recovery over 1 to 15-year time horizons following a broad range of degradation 

pathways, including sequential impacts of logging and burning. These time-varying 

emissions estimates, or emissions factors, can be combined with activity data on the 

extent of forest degradation to establish REDD+ baselines; confirm the relative 

contributions from fire, logging, and regeneration to regional net forest carbon 

emissions; and estimate the consequences to mitigation targets if degradation remains 

omitted from greenhouse gas accounting. Airborne lidar also provides detailed, 

quantitative information on habitat structure that may support an improved 

understanding of the biodiversity co-benefits of reducing forest degradation—an 

integral, but poorly formalized component of REDD+ MRV.  
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2.2 Methods 

 
2.2.1 Study area 

The study area covers approximately 20 000 km
2 at the southern extent of 

closed-canopy Amazon forests in the Brazilian state of Mato Grosso (Fig. 2-1). Mean 

annual precipitation (1895 mm) and temperature (25◦C) support tropical forests and a 

diversity of land uses (Souza et al 2013). A four-month dry season (Fig. S 2-1) and 

periodic drought events (Chen et al 2011) contribute to the extent, duration, and 

severity of understory forest fires in the study region (Morton et al 2013, Brando et al 

2014). Additionally, decades of agricultural expansion and selective logging (e.g. 

Asner et al 2005, Souza et al 2005, Matricardi et al 2007) have left a patchwork of 

fragmented and degraded forests in the study area, with few intact forests remaining 

outside of the Xingu Indigenous Reserve or Rio Ronuro Ecological Station (Fig. 2-1).  
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Figure 2-1. Degraded and intact forest stands were distributed across 20,000 km2 in 
the Brazilian state of Mato Grosso (top inset). In the false-color composite image 
(2014 Landsat, bands 543), forest appears green, deforested areas appear pink, and 
wetland and open water appear purple. Circles indicating the centroid of forest stands 
with lidar coverage are color-coded by degradation history (U—undisturbed; L—
logged; LB—logged and burned; B—burned). Airborne lidar data sampled frontier 
forests on private lands and within the Xingu Indigenous Park (light blue outline) and 
along a degradation gradient (bottom inset). 

 
 
2.2.2 Data and analysis 

We combined Landsat time series and airborne lidar data to quantify 

variability in forest structure and ACD across gradients of degradation type, 

frequency, severity, and timing. Degradation history for areas with lidar coverage was 

characterized using a two-tiered classification approach. First, the annual occurrence 

of logging, understory fires, and deforestation was mapped based on spatial, spectral, 
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and temporal information derived from annual time series of cloud-free Landsat 

mosaics for the early dry season months (June– August) of 1984–2016 (Fig. S 2-2; 

Text S 2-1). Understory fires and deforestation events were identified based on multi-

year patterns of damage and recovery in Landsat Normalized Difference Vegetation 

Index (NDVI) (Morton et al 2011, Morton et al 2013). Logged forests were identified 

with an automated detection approach based on the spatial distribution of log landing 

decks (Asner et al 2004, Keller et al 2004). Mutually exclusive classification rules for 

the magnitude, duration, size, and shape of deforestation and degradation events 

avoided double counting errors common with the integration of independent products 

(Fig. S 2-2; Text S 2-1) (Morton et al 2011, Bustamante et al 2016). Second, forest 

stands of uniform degradation history were manually delineated within the extent of 

lidar coverage and visually validated to confirm the extent and timing of degradation 

events. Logging roads visible in multiple years of Landsat data were excluded from 

logged forest stands to control for the impact of logging infrastructure on estimated 

carbon stocks and recovery trajectories.  

Airborne lidar data were used to estimate ACD in intact and degraded forest 

types stratified by degradation history. High-density airborne lidar data (minimum of 

14 returns per m
2
) were collected as part of the Sustainable Landscapes Brazil project 

across a range of intact and degraded forests in a space-for-time substitution sampling 

design (Table S 2-1, data available from: www.paisagenslidar.cnptia. 

embrapa.br/webgis/). Based on the classification approach described above, the 

2891.25 ha of lidar coverage were stratified into 58 forest stands (4.50– 498.50 ha; 

Table S 2-2).  
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A lidar-biomass model based on mean top of canopy height (TCH, m) (Longo 

et al 2016) was used to estimate ACD (kg C m
−2

) in forest stands at 0.25 ha 

resolution:  

 

ACDTCH = 0.054 (±0.012) TCH1.76(±0.07)      (1)  

 

where the parenthetical values are the standard errors of the parameters. 

Equation (1) assumes a biomass-to-carbon conversion factor of 0.5, following Baccini 

et al (2012). We selected the TCH model because of its simplicity, sensitivity to the 

lower range of the ACD distribution, and accurate representation of ACD in burned 

forests (Longo et al 2016). Equation (1) was developed using inventory and lidar data 

from intact and degraded Amazon forests. Here, we applied the model to a new set of 

lidar data sampled from the same regional context in which the Longo et al (2016) 

model was calibrated; about 8% of the lidar data set overlapped with the data used in 

model development.  

Pixel-based uncertainty associated with modeled ACD was calculated from 

three sources of statistical uncertainty following the methods described in Longo et al 

(2016). A Monte Carlo approach with 10000 iterations was used to propagate the 

pixel-based uncertainty to the stand level by adjusting each biomass pixel with 

randomly distributed noise proportionate to its uncertainty before aggregating data at 

the stand level. The stand-level standard error was derived from the standard 

deviation of the simulated stand-level means.  

Given the importance of canopy structure for wildlife habitat in tropical 
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forests (Bergen et al 2009), we also calculated two lidar-based measures of habitat 

structure. First, residual canopy cover was calculated using 1 m resolution lidar 

canopy height models (CHMs) as the proportion of the forest stand greater than or 

equal to the mean canopy height in intact forests (21 m). Second, clusters of one or 

more canopy trees (≥21 m) were identified using the 1 m CHMs with a maximum 

search radius of 10 m using a 3 × 3 pixel moving window (Silva et al 2015). These 

metrics provided complementary information on changes in forest structure from 

degradation and recovery processes to assess the drivers of ACD variability and the 

time-varying recovery of both carbon and habitat structure in degraded forests.  

We used multiple linear regression to model the loss and recovery trajectories 

of ACD and canopy structure based on the chronosequence of lidar samples. Four 

least squares models were fit using the lm function in R version 3.3.0 (www.R-

project.org). Model 1 estimated median ACD in degraded forest stands based on 

degradation type (burned or logged-only), timing (years since last degradation event), 

and fire frequency. Median ACD was selected as the measure of central tendency for 

each stand because of the skewed ACD distributions in degraded forests. Model 2 

further stratified once-burned forests by fire severity, visible as rings of high- and 

low-severity canopy damage, based on the relative difference between the pre-fire 

and post-fire Landsat dry-season NDVI (RdNDVI). A fixed threshold of mean minus 

the standard deviation of RdNDVI was only used to stratify low and high-severity fire 

damages in once-burned stands because the spatial variability of fire damages was not 

well preserved following recurrent fire events. Models 3 and 4 used degradation type, 

timing, and frequency to predict residual canopy cover and density of canopy tree 
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clusters, respectively. In all four models, the variable for time since last degradation 

event was log-transformed to satisfy assumptions of normality and homoscedasticity 

(Vargas et al 2008, Becknell et al 2012). Additionally, to isolate the effect of forest 

recovery from the long-term impacts of logging infrastructure, logged forest stands 

were adjusted to exclude secondary roads and log landing decks. Interactions between 

degradation history (type, frequency, severity) and degradation timing were evaluated 

for significance and model performance in all four models. Lastly, differences across 

degradation strata were evaluated using pairwise Wilcoxon tests to accommodate the 

diversity of non-normal data distributions.  

Consistent with recommendations from the Intergovernmental Panel on 

Climate Change (Penman et al 2003), an additional Monte Carlo procedure was used 

to propagate the effect of ACD uncertainty on model parameters and predictions by 

performing 10 000 realizations of the model fit on adjusted stand-level medians with 

normally distributed noise proportional to the stand-level standard error, or the 

standard deviation of the stand-level Monte Carlo aggregations. 

 

2.3 Results 

Degradation type, frequency, timing, and severity contributed to ACD 

variability in frontier forests. Lidar-based estimates of ACD in 58 Amazon forest 

stands varied by nearly two orders of magnitude between the most heavily degraded 

forest stand (median: 4.5 Mg C ha
−1

), a stand that had been logged and burned three 

times, and the most carbon-dense intact forest stand (median: 114.3 Mg C ha
−1

; Table 

S 2-2). At the pixel scale, median carbon density in degraded forests (51.2 Mg C ha
−1 
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) was less than half of ACD in intact forests (113.5 Mg C ha
−1 ). Degraded ACD was 

also more heterogeneous than intact ACD (coefficient of variation: 68.4% and 16.7% 

for degraded (2638.00 ha) and intact forest pixels (253.25 ha), respectively).  

The variability in ACD following degradation could not be constrained by 

degradation type alone. ACD in pixels with a history of fire (median: 20.4 Mg C ha
−1

; 

1605.75ha) was significantly lower (p < 0.05) than ACD in logged-only pixels (77.8 

Mg C ha
−1 ; 1032.25 ha); however, ACD varied broadly within both degradation 

classes. At the stand level, there was considerable overlap between the ranges of 

median ACD in burned forests (4.5–95.2 Mg C ha
−1

) and logged-only forests (39.0–

117.3 Mg C ha
−1

, Table S2-2).  

Degradation timing was a critical factor for further differentiating ACD 

between and within logged and burned forest classes (Fig. S2-3; Table 2-1). Within 

two years of recovery, median ACD in burned pixels was 9.5 Mg C ha
−1

, compared to 

68.4 Mg C ha
−1 in logged-only pixels. Following 10 to 15 years of recovery, neither 

class recovered its estimated pre-disturbance ACD, and median ACD in burned pixels 

remained considerably lower than in logged pixels (difference: 17.5 Mg C ha
−1

).
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Figure 2-2. Forests affected by multiple fires had the largest differences in 
aboveground carbon density (ACD) compared to median ACD in intact forests (red 
line). Additionally, ACD distributions between burned and logged-and-burned forests 
were similar for once-burned forests. The violin plots summarize ACD distributions 
as a function of fire frequency and degradation class. The median and interquartile 
range of each group are indicated with the black circle and line. The tails of the 
violins are trimmed to the range of data, and all violins have the same area prior to 
trimming the tails. Distinct letters indicate significant differences among distributions 
from a pairwise Wilcoxon test with a Holm correction procedure to adjust α for 
multiple testing. See Fig. S2-4(a) for a comparison across burn frequency groups that 
also accounts for stand age. 

 
 
 

 
Figure 2-3. Ring patterns in burned forests indicate diurnal differences in fire line 
intensity, and increasing fire frequency results in a progressive loss of forest biomass 
and structural diversity. Lidar-based estimates of aboveground carbon density (ACD, 
Mg C ha-1) at 0.25-hectare resolution for 5000 x 200 m transects are overlaid on 
post-fire Landsat NDVI for once-burned (a) twice-burned (b) and thrice-burned (c) 
forest stands. See Tables S 2-1 and S 2-2 for additional profile information associated 
with each stand (Stand IDs from left to right: 26, 13, and 8).  
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Fire frequency governed both the magnitude and the spatial pattern of residual 

forest carbon stocks (Figs. 2-2 and 2-3; Table 2-1). Repeated burning resulted in a 

non-linear decline in ACD, irrespective of logging history, with lowest ACD in 

forests subjected to three or more fires (Fig. 2-2). Forests affected by a single fire (n = 

10) retained 67.0 Mg C ha
−1 (interquartile range [IQR] ± 26.4 Mg C ha

−1
). Twice-

burned forests (n = 5) contained less than half the carbon stocks in once-burned 

forests (31.6 ± 21.1 Mg C ha
−1 ). Forests burned three to five times (n = 13) retained 

few trees from the pre-fire forest stand; ACD was only one-sixth of that of once-

burned forests (10.3 Mg C ha
−1

), with the narrowest IQR of all burn frequencies 

(±10.5 Mg C ha
−1 ). Importantly, the observed decrease in IQR with increasing fire 

frequency indicated a reduction in structural complexity from repeated burning (Figs. 

2.2 and 2.3).  

Unlike the impact of successive fires, there was no significant long-term 

impact on ACD recovery attributable to prior logging after controlling for fire 

frequency (Fig. S 2-4). Because the distinction between burned and logged-and-

burned forests was not a statistically significant predictor of degraded forest ACD, 

nor did it improve model fit, logged-and-burned and burned forest stands were 

combined to model post-fire recovery of ACD.  

Fire frequency and the time since the last degradation event explained the 

greatest variability in degraded ACD recovery (Model 1; adjusted R2 = 0.89; F-

statistic = 106.5 Fig. 2.4(a); Table S 2-3). The immediate reduction in ACD differed 

significantly for each degradation pathway (regression intercept; Table S 2-3). In the 

year following degradation, the modeled ACD for forests that had been logged, once-
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burned, twice-burned, and subjected to three or more burns was 62.3, 52.0, 19.4, and 

11.0 Mg C ha
−1 , respectively. However, the rate of ACD recovery was similar for all 

classes, as interaction effects between fire frequency and time since degradation event 

were not statistically significant (Table S 2-3). Given these initial differences and the 

slow recovery in degraded forest ACD, the legacy of forest degradation was still 

evident 15 years following fire and logging (Table 2.2).  

Initial fire severity was a statistically significant predictor of ACD recovery in 

once-burned forests (Model 2; Adjusted R2 = 0.88; F-statistic = 87.87; Fig. 2.4(b); 

Tables 2-2 and S 2-3). In the year following fire, estimated high- and low-severity 

damages differed by 16% of intact ACD (Table 2.2). Modeled differences in ACD 

resulting from initial fire severity were preserved through time, with once-burned 

forests recovering between 57.6% and 73.9% of intact ACD after 15 years of 

recovery, depending on initial fire severity (Fig. 2.4(b); Table 2.2). Covariation of 

ACD with Landsat and lidar metrics of canopy density in burned forests provided 

additional insights into the contribution of fire severity to ACD variability within a 

single fire (Figs. S 2-6, S 2-7).  

Changes in canopy structure from logging and fire were also persistent after 

15 years of forest recovery (Fig. S 2-5; Table 2.1). Degradation timing and fire 

frequency explained the greatest variability in the recovery trajectory of residual 

canopy (Model 3; adjusted R2 = 0.74; F-statistic = 38.85) and density of canopy trees 

(Model 4; adjusted R2 = 0.76; F-statistic = 36.3; Fig. S 2-5; Table S 2-4). Understory 

fires resulted in the largest reduction of canopy tree clusters, particularly following 

recurrent fires. Logged forests retained more than twice as many canopy tree clusters 
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(46.5%) as once-burned forests (20.0%) when measured within 1–2 years of the 

degradation event. Forests burned three or more times retained only 4.7% the number 

of canopy tree clusters found in intact forests. After 14–15 years of regrowth, once-

burned forests recovered only 80% of the canopy tree clusters present in logged 

forests. Further, these impacts to forest structure may persist even after ACD in 

degraded forests returns to pre-degradation levels. For example, after 14–15 years of 

regrowth, once-burned forests recovered a larger fraction of intact-forest ACD 

(80.2%) than canopy tree clusters (58.2%).  
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Table 2-1. Forest degradation from logging and fire alters ACD and stand structure 
relative to neighboring intact forests.  Lidar-based estimates of the fraction of original 
canopy cover, number of canopy tree clusters, and the distribution of ACD in 
degraded forests. Degraded forests were partitioned along three axes of variability—
degradation type, frequency, and timing. The lower, middle (median) and upper 
quartile of aboveground biomass density (Mg C ha-1) are shown in ACD25, ACD50, 
and ACD75, respectively. 

 
 

 
 

Table 2-2. Estimates based on the multiple linear regression models of aboveground 
carbon density predicted at four standard reporting periods following the most 
common logging and fire pathways.  For each degradation class, modeled ACD and 
95% confidence interval (in parentheses) are shown as the percentage of the intact 
forest reference (113.5 Mg C ha-1). The confidence interval was calculated based on 
the mean of 10,000 confidence intervals generated from the Monte Carlo linear 
regressions, which were iteratively fit to the stand-level biomass estimates adjusted 
with noise proportionate to the stand-level standard errors. Model predictions for low- 
and high-severity fires are derived from model 2; all other predictions presented here 
are derived from model 1 (see Table S 2-2). 
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(10-­‐11	
  yrs)	
  

Logged	
  	
  
(14-­‐15	
  yrs)	
  

Logged	
  	
  
(18-­‐20	
  yrs)	
  

Fire	
  1x	
  	
  
(1-­‐2	
  yrs)	
  

Fire	
  1x	
  	
  
(4-­‐5	
  yrs)	
  

Fire	
  1x	
  	
  
(10-­‐11	
  yrs)	
  

Fire	
  1x	
  	
  
(14-­‐15	
  yrs)	
  

Fire	
  
2x	
  

Fire	
  
3x+	
  

%	
  Original	
  	
   100	
   46.9	
   60.1	
   61.6	
   76.7	
   83.3	
   21.7	
   47.0	
   58.5	
   58.4	
   20.1	
   5.3	
  
Canopy	
  Clusters	
   170	
   79	
   104	
   111	
   127	
   145	
   34	
   78	
   92	
   99	
   31	
   8	
  
ACD25	
   102.1	
   52.3	
   64.9	
   80.4	
   83.8	
   86.4	
   53.0	
   55.5	
   58.4	
   83.3	
   22.3	
   6.6	
  
ACD50	
   113.5	
   68.4	
   76.8	
   89.7	
   98.8	
   105.5	
   64.3	
   65.6	
   74.0	
   91.0	
   31.6	
   10.3	
  
ACD75	
   125.1	
   84.0	
   88.8	
   99.8	
   111.6	
   121.0	
   72.2	
   76.6	
   89.8	
   100.2	
   43.4	
   17.1	
  

	
  
Logged	
   Burned	
  1x	
  (Average)	
   Burned	
  1x	
  (Low)	
   Burned	
  1x	
  (High)	
   Burned	
  2x	
   Burned	
  3x+	
  

Y1	
   54.9	
   (49.4-­‐60.2)	
   45.8	
   (38.0-­‐53.6)	
   48.5	
   (41.0-­‐56.1)	
   32.2	
   (24.1-­‐40.2)	
   17.1	
   (8.5-­‐25.8)	
   9.7	
   (4.5-­‐14.9)	
  

Y5	
   71.0	
   (67.5-­‐74.5)	
   61.9	
   (56.3-­‐67.6)	
   63.7	
   (58.0-­‐69.2)	
   47.3	
   (41.0-­‐53.5)	
   33.3	
   (25.2-­‐41.4)	
   25.8	
   (20.0-­‐31.7)	
  

Y10	
   77.9	
   (73.6-­‐82.3)	
   68.9	
   (63.1-­‐74.7)	
   70.1	
   (64.4-­‐75.8)	
   53.8	
   (47.5-­‐60.2)	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  

Y15	
   82.0	
   (76.9-­‐87.1)	
   72.9	
   (66.8-­‐79.1)	
   73.9	
   (67.9-­‐80)	
   57.6	
   (51.0-­‐64.2)	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
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Figure 2-4. Patterns of aboveground biomass recovery following forest degradation 
highlight the magnitude and duration of ACD accumulation following fire. a) 
Relationship between ACD and stand age for logged, once-burned, twice-burned, and 
thrice-burned stands. b) Initial fire severity in once-burned forests further explains the 
heterogeneity in residual carbon stocks. Points correspond to estimated stand-level 
medians, error bars correspond to stand-level standard errors derived from 10,000 
Monte Carlo stand-level aggregations, and the shaded bands represent the mean 95% 
confidence interval from 10,000 Monte Carlo simulations of the model fit. Model 
details are presented in Table S 2-3. 
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 2.4 Discussion 
Amazon forest degradation from logging and fire has a lasting impact on 

forest carbon stocks and canopy structure. The slow recovery of degraded forests 

underscores the need to address drivers of degradation to ensure the retention of 

carbon stocks and preserve complex canopy structure in frontier Amazon forests. 

Using a large sample of intact and degraded forests, we provide the first 

comprehensive look-up table of degradation emissions factors for Amazon forests to 

guide the incorporation of forest degradation within REDD+ MRV (tables 1 and 2). 

Our findings illustrate the persistence of degradation impacts beyond the time scales 

for REDD+ MRV and even REDD+ baselines (typically 10 years), providing the 

foundation for further investigations into the relative contributions from fire and 

logging to regional land-use emissions. ACD in degraded forests varied by two orders 

of magnitude across the study area (Table S 2-2), providing clear support for the 

creation of multiple classes of forest degradation within REDD+ or other carbon 

accounting frameworks based on degradation frequency, severity, and timing. 

Overall, understory fires led to larger and more persistent changes in ACD and forest 

structure than logging, consistent with previous findings from Longo et al (2016). 

Our results further demonstrate how fire severity and fire frequency contribute to 

non-linear declines in ACD and homogenization of degraded forest structure (Fig. 2-

2, Tables 2-1 and 2-2). Collectively, these results address key data gaps that have 

hindered MRV of Amazon forest degradation.  

Lidar-based estimates of carbon losses from fire were much larger than 

previous reports from experimental studies and forest inventories. For example, the 

reduction in ACD one year following a single burn in this study (54.2%) was 
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approximately three times larger than from experimental fires in the southeastern 

Amazon (Brando et al 2014). This discrepancy may reflect the improved capacity to 

characterize the heterogeneity of wildfire damages using airborne lidar or the 

difficulty for prescribed fires in experimental studies to replicate the emergent 

properties of wildfires, such as fire front intensity. Field studies have also reported 

smaller relative losses in ACD following fire (13.7%; Berenguer et al 2014). These 

differences may reflect the confounding influence of different age classes and burn 

frequencies, the challenges of capturing the length scales of spatial variability (see 

figure 3) using typical inventory plots (0.25–1.0 ha), or regional variability in fire 

intensity from climatic and forest-type specific responses to fire (e.g. Flores et al 

2017). These broad discrepancies reinforce the need for large-scale studies of 

additional frontier landscapes to support emissions mitigation programs, including 

REDD+ MRV.  

Reducing the incidence and frequency of understory forest fires would 

preserve both carbon stocks and habitat structure in frontier landscapes. The marginal 

carbon cost of recurrent fire events in this study suggests that avoiding just one 

additional fire in a previously burned forest would retain carbon stocks equivalent to 

one-third of the intact reference ACD. Notably, not all degradation sequences have 

the same cumulative impact. We contrast the non-linear impact of recurrent burns 

with the effect of selective logging before fire. In the case of recurrent burns, each 

fire leads to a greater proportional loss. However, logging before fire did not amplify 

the long-term carbon losses from fire, after accounting for fire frequency; nor was 

logging a significant predictor of carbon recovery, regardless of fire history. These 



 

 35 
 

findings suggest that the distribution of fine litter (e.g. Balch et al 2008) may be a 

more important determinant of fire damage than large woody debris or canopy 

openings from logging.  

The slow recovery of degraded ACD suggests that the continued omission of 

degradation from carbon accounting may result in substantial underreporting of forest 

carbon emissions. Relative to baseline periods, the frequency and severity of Amazon 

droughts (Boisier et al 2015, Duffy et al 2015) are projected to increase degradation 

risk in coming decades (Nobre et al 2016, Le Page et al 2017). The look-up table of 

proportional losses between degraded and intact forests developed in this study may 

facilitate the integration of carbon losses from fire and logging into REDD+ 

monitoring and reporting protocols. Further, accounting for carbon emissions from 

forest degradation may also reduce uncertainties in the Amazon carbon budget. 

Previous studies have either excluded a post-disturbance recovery term (Aragão et al 

2014) or have combined secondary and degraded forests (Houghton et al 2000, Pan et 

al 2011), despite the diversity of loss and recovery pathways among degraded and 

secondary forest types (Poorter et al 2016).  

Parallel ACD recovery curves in years 1–5 following logging and fire may 

reflect common site constraints, distinct mechanisms of forest growth, and model 

calibration. For example, different mechanisms of vegetation recovery and canopy 

closure may generate similar changes in estimated ACD, such as small gains in mean 

canopy height in logged forests and fast height growth of shorter resprouting or 

surviving trees in burned forests. Additionally, given that logging intensity is the 

single best predictor of ACD recovery time (Rutishauser et al 2015), evidence for 
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greater extracted wood volume of low-value species in frontier forests (Richardson 

and Peres 2016) than in interior forests and experimental logging sites may explain 

differences with previous estimates of ACD recovery in logged forests (e.g. 

Chambers et al 2004, Putz et al 2012, Andrade et al 2017). Further, moisture 

availability is a critical constraint on regeneration rates (Poorter et al 2016, Wagner et 

al 2016); moisture stress from the seasonality of the study site may limit recovery 

rates in both logged and burned forests. Additional observations in repeatedly burned 

forests are needed to constrain long-term estimates of recovery patterns (>5 years) in 

the more heavily degraded sites.  

Airborne lidar captures details about 3D forest structure needed to quantify 

aboveground carbon stocks and advance quantitative reporting on biodiversity 

safeguards and other co-benefits of REDD+. Individual tree and plot-level data from 

airborne lidar provide insights into the mechanisms driving biomass variability and 

habitat impacts from forest degradation. The residual density of large canopy trees, 

which can be directly quantified using high-density airborne lidar, is an important 

driver of ACD variability in degraded forests (Slik et al 2013), and closely 

corresponds to the spatial patterns of fire-induced canopy mortality (Fig. S 2-7). In 

addition to ACD, the loss of canopy trees may also alter the forest micrometeorology, 

aerodynamic roughness, and successional success of grasses and lianas (Ray et al 

2005, Silve ́rio et al 2013). These changes, in turn, can increase vulnerability to 

windthrow and repeated fires, especially during drought years (e.g. Balch et al 2015). 

Canopy trees also serve as biodiversity refugia; the slower recovery of canopy tree 

clusters than carbon stocks in this study may suggest a more persistent impact of 
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degradation on biodiversity than biomass in the first decades following logging or 

fire, consistent with findings from Martin et al (2013). Characterizing the time-

integrated effects of avoided degradation on forest structure is clearly an important 

step for policies and management that aim to promote the retention of both biomass 

and biodiversity. Measurement and monitoring capabilities to support REDD+ 

commitments to safeguard biodiversity and promote other co-benefits are not yet 

operational (Goetz et al 2015). This work highlights the potential of airborne lidar to 

advance REDD+ MRV for both carbon and non-carbon objectives.  

Our findings provide a detailed characterization of the carbon and habitat 

changes following Amazon forest degradation, but additional measurements are 

needed to assess regional variability in degradation impacts. Additional lidar samples 

across gradients in land use, forest type, and climate may identify important 

differences in degradation impacts and ACD recovery. For example, previous work 

suggests that transitional forests along the southern extent of the Amazon may be 

more resilient to mortality from a single, low-severity fire during average weather 

conditions (Brando et al 2012) than interior forests. By contrast, forests in Central 

Amazon floodplains have exposed roots during dry periods, thin bark, and lack the 

ability to resprout, rendering them more vulnerable to fire-induced dieback (Flores et 

al 2017). Additionally, multi-temporal observations are needed to unequivocally 

attribute ACD losses to degradation, characterize delayed mortality, and investigate 

the potential for arrested succession (Barlow et al 2003). Multi-temporal studies may 

also help constrain interannual variability in fire damages (Brando et al 2014), 

consistent with the ∼15% difference in ACD observed in this study between low and 
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high-severity damages within a single fire. Complementary field measurements may 

help characterize key aspects of degraded forest structure that are not well captured 

by airborne lidar, such as the species distribution of regeneration from seeds or 

sprouts and the selective impact of degradation on mean wood density (Bunker et al 

2005, Longo et al 2016). Lastly, the strong correspondence between changes in 

Landsat surface reflectance and lidar-derived estimates of forest structure and ACD in 

burned forests may support regional estimates of carbon losses from understory fires 

using Landsat or similar moderate resolution imagery.  

 

2.5 Conclusion 

Forest degradation is ubiquitous in frontier Amazon forests, and damages 

from logging and fire were larger and longer lasting than previously reported for our 

southern Amazon study region. Combining the lookup table of emissions estimates 

from this study with activity data from satellite monitoring programs may allow for 

regional estimates of combined emissions from deforestation and forest degradation 

for REDD+. Understory fires—particularly, repeated burns—pose the greatest risk to 

forest carbon stocks and canopy structure along the Amazon arc of deforestation. 

Thus, avoiding additional fires in frontier landscapes may have an outsized benefit for 

carbon retention and habitat. Routine monitoring of frontier forests with airborne lidar 

may provide additional insights regarding the direct impacts of forest degradation on 

both carbon stocks and forest structure, including potential interannual variability 

from climate controls on fire severity or market influences on logging removals. Our 

approach to disentangle the complex legacy of degradation by combining forest 
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inventory, airborne lidar, and Landsat time series offers a blueprint to generate 

degradation emissions factors in other geographies and regional circumstances.  
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2.6 Supplemental Materials 

 
2.6.1 Degradation and deforestation classification methods 

Degradation and deforestation were classified using distinct spatial, spectral, and 

temporal attributes in time series of annual Landsat data from 1984-2016 for three 

Landsat scenes (225/068; 226/068; 226/069) (Fig. 2.6.1).  Contiguous patches of forest 

change ≥1 ha were divided between deforestation and understory forest fires based on the 

multi-year trajectory of damage and recovery (Morton et al 2011, Morton et al 2013). 

The transition from forest to non-forest in two or more consecutive years was considered 

deforestation, based on dry-season normalized difference vegetation index (NDVI) 

thresholds for forest (>0.75) and non-forest (<0.65).  Understory forest fires exhibit an 

intermediate loss of dry-season NDVI, followed by one or more years of recovery in dry-

season NDVI (Fig. 2.6.1).   

We used evidence for larger logging infrastructure, including logging roads and 

log landing decks (patios, small clearings where harvested wood is stacked before being 

transported to saw mills), to map the extent of annual logging activity.  Logging 

infrastructure is easily identifiable at the scale of a Landsat pixel (Asner et al 2004).  

Previous studies have also identified logging damages using spectral mixture models to 

evaluate sub-pixel changes in canopy reflectance (Asner et al 2004, 2005, Souza et al 

2005).  However, these approaches typically require greater radiometric resolution, which 

is only possible with Landsat 7 or more recent instruments.  Given the interest in this 

study in degradation dynamics during the 1980s and 1990s, periods when only Landsat 

Thematic Mapper data are available, we used a classification approach based on the 

unique spatial pattern of logging damages that could be identified in data from all 

Landsat sensors.   

Logging patios were initially identified using a 3x3-pixel moving window 

approach to locate candidate center pixels with large changes in NDVI between years, 

surrounded by forest (mean NDVI of neighboring pixels >0.6).  Candidate patios were 

ranked based on the magnitude of NDVI change between years, using an iterative process 

to select and classify center pixels with NDVI differences of 0.06 to >0.12.  
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Three spatial filters were used to evaluate and group candidate patio detections 

into logging areas.  First, the highest confidence pixel was selected from all candidate 

patios using an 11-pixel window (330 m).  This search radius was selected based on 

previous studies of patio density in conventional logging operations (e.g. Matricardi et al 

2007). Second, we identified road features that were initially classified as candidate 

patios using two tests.  Linear arrangements of candidate pixels within a 1 degree angle 

tolerance and >10 pixels within a 150-pixel linear distance were discarded as road or 

edge features.  Third, we eliminated isolated patio detections based on a neighborhood 

search for clusters of high-confidence patio detections.  The search algorithm calculated 

the median distance between neighboring patio detections.  Pixels with a median distance 

>6 and <14 pixels and a low standard deviation of neighbor distance (<6 pixels) were 

retained as clusters corresponding to recent logging activity. Finally, we estimated the 

logged area associated with each cluster of logging patios by creating a convex polygon 

encompassing each cluster of patio detections.  
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2.6.1 Supplemental figures and tables 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S 2-1.  Climatology of mean monthly precipitation for the study region based on 
0.25° data for 2007-2017 from the Tropical Rainfall Measuring Mission (TRMM, 
3B43v7).  Error bars correspond to the monthly standard error derived from the 10-year 
time series.   
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Figure S 2-2.  The spatial, spectral, and temporal patterns of forest damage and recovery 
were used to separate deforestation, selective logging, and understory forest fire damages 
in Amazon forests.  Patch size, shape, and the magnitude of forest damages were the first 
set of criteria for classification, followed by tests for the multi-year NDVI trajectory 
(third row) to separate deforestation from selective logging and understory forest fires.  
Small patches typical of logging infrastructure (1-3 Landsat pixels) were evaluated based 
on tests for spatial clustering. 

3 km

3 km

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

98 99 00 01

La
nd
sa
t	N

DV
I	

Forest Patio

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

99 00 01 02

La
nd
sa
t	N

DV
I	

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

98 99 00 01

La
nd
sa
t	N

DV
I	



 

 49 
 

 
 
Figure S 2-3. The recovery of aboveground carbon density over time for logged and 
burned forests. Although biomass accumulates with increasing time since last 
disturbance, the carbon consequences of both logging and fire were persistent. The 
median and interquartile range of each group are indicated with the black circle and line. 
The tails of the violins are trimmed to the range of data, and all violins have the same 
area prior to trimming the tails. Distinct letters indicate significant differences among 
distributions from a pairwise Wilcoxon test with a Holm correction procedure to adjust α 
for multiple testing.  
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a. 

 
b. 
 

Figure S 2-4. Fire frequency and time since last fire were more important than logging 
history for ACD variability in degraded forests. In these two figures, burned forest ACD 
is separated by fire frequency for three age classes of years since last degradation event. 
The top panel (a) separates logged and burned forests from burned forests, whereas the 
bottom panel (b) presents data for all burned forests, regardless of logging history. The 
historical presence of logging does not influence the long-term (>3 years) cumulative 
effect of multiple fire events, once fire frequency and age are considered. Distinct letters 
indicate significant differences among distributions from a pairwise Wilcoxon test with a 
Holm correction procedure to adjust α for multiple testing. 
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Figure S 2-5. The recovery trajectories for canopy structure following logging, single, 
and recurrent fires complement ACD information regarding the restoration of ecosystem 
function following forest degradation. The trajectory of two complementary indices 
derived from lidar,  % residual canopy (a) and density of canopy trees per hectare (b) 
indicate that fire results in the largest and most persistent alterations to canopy structure. 
The curves correspond to the best-fit regression lines presented in table S4.
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Figure S 2-6. Within-fire differences in ACD from initial fire severity were evident 
more than a decade following fire damages.  Violin plots show ACD distributions 
following single burns for recent fires (≤2 years) and older fires (11-14 years). 
Distinct letters indicate statistically significant differences (Wilcoxon test with p < 
0.05). 

 
 

 
 
Figure S 2-7. Patterns of canopy mortality following a single fire event are not 
uniform. Post-fire variability in canopy structure following high- and low-severity 
damages can help explain the observed variability in post-fire ACD. The density plots 
compare distributions of the residual canopy structure aggregated at 0.25 ha for the 
once-burned forests burned in the 2010 drought year, where intra-stand differences 
from initial fire severity were most preserved. The two distributions are significantly 
different (Wilcoxon test with p < 0.05). 
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Table S 2-1. The lidar data were collected by Sustainable Landscapes Brazil, and can 
be freely accessed from: https://www.paisagenslidar.cnptia.embrapa.br/webgis/. 
Acquisition dates, names and corresponding stand IDs are listed below. Additional 
stand-level information can be derived from Table S2.  

 
Date Name Stand ID 
8/12/2013-8/13/13 FNA 3 
8/15/13 FN1 18, 57 
8/15/13 FN2 12, 44, 47, 48, 51, 53, 54, 58 
6/22/2015-7/06/2015 FN3 1-2, 4-11, 13-17, 19-43, 45-46, 49-50, 52, 55-56 
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Table S 2-2. Attributes of 58 forest stands derived from the combination of Landsat 
and lidar data, including aboveground carbon density (ACD, Mg C ha-1), frequency, 
and age since last degradation event. The distribution of estimated carbon stocks in 
each stand are summarized using ACD25—lower quartile; ACD50—median; SE—
standard error derived from 10,000 Monte Carlo simulations for stand-level 
aggregation; ACD75—upper quartile; ΔACD—% difference relative to median ACD 
in nearby intact stands. History Classes: U—undisturbed; L—logged once; L(2x)—
logged twice; LB—logged and burned; B—burned. 

Stand	
  
ID	
  

History	
  
	
  

Fire	
  
freq.	
  

Last	
  
fire	
  

Last	
  
logging	
  

Age	
  
	
  

Stand	
  
area	
  (ha)	
  

ACD25	
  
	
  

ACD50	
  
	
  

SE	
  
	
  

ACD75	
  
	
  

%	
  Intact	
  
	
  

1	
   LB	
   3	
   2014	
   2007	
   1	
   19.5	
   3.8	
   4.5	
   1.6	
   5.6	
   3.9	
  

2	
   LB	
   5	
   2014	
   2000	
   1	
   63.3	
   4.1	
   5.2	
   0.8	
   6.5	
   4.6	
  

3	
   LB	
   4	
   2012	
   2010	
   1	
   498.5	
   6.0	
   8.2	
   0.2	
   11.4	
   7.2	
  

4	
   B	
   5	
   2014	
   NA	
   1	
   25.0	
   6.9	
   8.5	
   1.1	
   10.2	
   7.5	
  

5	
   LB	
   3	
   2014	
   2010	
   1	
   18.3	
   8.2	
   11.0	
   1.1	
   14.3	
   9.6	
  

6	
   B	
   3	
   2011	
   NA	
   4	
   12.3	
   11.9	
   14.6	
   1.2	
   18.9	
   12.9	
  

7	
   LB	
   3	
   2012	
   1999	
   3	
   39.8	
   11.4	
   15.1	
   0.7	
   21.1	
   13.3	
  

8	
   LB	
   3	
   2014	
   2010	
   1	
   75.5	
   11.8	
   16.3	
   0.5	
   21.7	
   14.4	
  

9	
   B	
   3	
   2014	
   NA	
   1	
   50.3	
   13.0	
   17.1	
   0.6	
   22.5	
   15.0	
  

10	
   B	
   4	
   2013	
   NA	
   2	
   27.5	
   13.2	
   21.4	
   0.8	
   30.7	
   18.9	
  

11	
   B	
   2	
   2011	
   NA	
   4	
   43.8	
   16.2	
   23.8	
   0.5	
   38.3	
   20.9	
  

12	
   LB	
   3	
   2010	
   2002	
   3	
   22.5	
   21.7	
   26.2	
   0.7	
   34.5	
   23.1	
  

13	
   B	
   2	
   2011	
   NA	
   4	
   56.0	
   20.5	
   27.1	
   0.4	
   34.4	
   23.9	
  

14	
   L(2x)	
   2	
   2012	
   2014	
   1	
   23.0	
   21.8	
   28.6	
   0.7	
   36.4	
   25.2	
  

15	
   B	
   3	
   2013	
   NA	
   2	
   17.5	
   24.0	
   32.4	
   0.8	
   45.2	
   28.5	
  

16	
   L	
   0	
   NA	
   2013	
   2	
   56.0	
   28.5	
   39.0	
   0.4	
   51.3	
   34.4	
  

17	
   B	
   2	
   2011	
   NA	
   4	
   69.5	
   30.3	
   40.8	
   0.3	
   53.6	
   35.9	
  

18	
   B	
   3	
   2006	
   NA	
   7	
   79.5	
   33.8	
   41.8	
   0.3	
   53.1	
   36.8	
  

19	
   B	
   2	
   2010	
   NA	
   5	
   12.5	
   35.4	
   42.7	
   0.8	
   50.5	
   37.6	
  

20	
   L(2x)	
   0	
   NA	
   2014	
   1	
   62.0	
   44.9	
   57.3	
   0.3	
   70.0	
   50.5	
  

21	
   LB	
   1	
   2007	
   2004	
   8	
   51.5	
   46.2	
   57.9	
   0.3	
   69.0	
   51.0	
  

22	
   B	
   1	
   2003	
   NA	
   12	
   79.3	
   50.6	
   59.4	
   0.3	
   68.2	
   52.3	
  

23	
   L(2x)	
   0	
   NA	
   2014	
   1	
   23.5	
   51.4	
   61.0	
   0.5	
   67.0	
   53.7	
  

24	
   LB	
   1	
   2014	
   2011	
   1	
   27.8	
   51.5	
   61.8	
   0.5	
   69.4	
   54.4	
  

25	
   L	
   0	
   NA	
   2012	
   3	
   37.0	
   50.6	
   62.0	
   0.4	
   75.1	
   54.6	
  

26	
   B	
   1	
   2010	
   NA	
   5	
   86.5	
   54.1	
   63.4	
   0.3	
   73.7	
   55.8	
  

27	
   L	
   0	
   NA	
   2013	
   2	
   24.8	
   54.0	
   65.5	
   0.5	
   75.4	
   57.7	
  

28	
   L	
   0	
   NA	
   2014	
   1	
   63.0	
   51.8	
   65.9	
   0.3	
   78.5	
   58.0	
  

29	
   L	
   0	
   NA	
   2013	
   2	
   26.8	
   58.6	
   66.6	
   0.4	
   74.3	
   58.6	
  

30	
   LB	
   1	
   2004	
   1997	
   11	
   48.3	
   52.9	
   69.3	
   0.4	
   81.6	
   61.1	
  

31	
   B	
   1	
   2010	
   NA	
   5	
   64.3	
   57.5	
   69.8	
   0.3	
   82.1	
   61.5	
  

32	
   L	
   0	
   NA	
   2010	
   5	
   46.8	
   62.5	
   72.8	
   0.3	
   84.3	
   64.1	
  

33	
   B	
   1	
   2013	
   NA	
   2	
   4.5	
   72.3	
   74.6	
   1.0	
   78.0	
   65.7	
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34	
   L	
   0	
   NA	
   2013	
   2	
   54.8	
   60.7	
   75.4	
   0.4	
   89.0	
   66.4	
  

35	
   L	
   0	
   NA	
   2012	
   3	
   10.5	
   67.0	
   75.4	
   0.7	
   88.8	
   66.4	
  

36	
   L(2x)	
   0	
   NA	
   2008	
   7	
   11.5	
   62.9	
   75.5	
   0.6	
   91.4	
   66.5	
  

37	
   L(2x)	
   0	
   NA	
   2013	
   2	
   25.3	
   62.7	
   76.5	
   0.4	
   87.8	
   67.4	
  

38	
   L(2x)	
   0	
   NA	
   2012	
   3	
   59.0	
   63.5	
   77.9	
   0.3	
   87.5	
   68.6	
  

39	
   L	
   0	
   NA	
   2012	
   3	
   47.0	
   68.5	
   78.8	
   0.3	
   86.5	
   69.4	
  

40	
   L	
   0	
   NA	
   2013	
   2	
   82.8	
   67.8	
   81.3	
   0.2	
   97.9	
   71.6	
  

41	
   L	
   0	
   NA	
   2010	
   5	
   17.0	
   71.2	
   83.2	
   0.5	
   95.9	
   73.3	
  

42	
   L(2x)	
   0	
   NA	
   2013	
   2	
   71.3	
   72.4	
   83.6	
   0.2	
   95.2	
   73.7	
  

43	
   B	
   1	
   2004	
   NA	
   11	
   29.0	
   69.5	
   84.6	
   0.4	
   98.7	
   74.5	
  

44	
   L	
   0	
   NA	
   2008	
   5	
   16.5	
   71.7	
   85.1	
   0.5	
   92.7	
   75.0	
  

45	
   L	
   0	
   NA	
   1997	
   18	
   12.3	
   77.3	
   86.4	
   0.6	
   98.0	
   76.1	
  

46	
   L	
   0	
   NA	
   2000	
   15	
   28.3	
   73.9	
   86.8	
   0.4	
   98.0	
   76.4	
  

47	
   L	
   0	
   NA	
   2001	
   12	
   66.0	
   78.9	
   87.0	
   0.2	
   95.8	
   76.6	
  

48	
   B	
   1	
   1999	
   NA	
   14	
   32.3	
   82.4	
   88.3	
   0.3	
   95.2	
   77.8	
  

49	
   L	
   0	
   NA	
   2005	
   10	
   84.8	
   80.4	
   89.7	
   0.2	
   99.8	
   79.0	
  

50	
   L	
   0	
   NA	
   2002	
   13	
   36.5	
   80.2	
   90.9	
   0.3	
   101.3	
   80.1	
  

51	
   LB	
   1	
   1999	
   1993	
   14	
   28.5	
   85.2	
   95.2	
   0.4	
   108.2	
   83.8	
  

52	
   U	
   0	
   NA	
   NA	
   NA	
   5.0	
   85.5	
   99.0	
   0.9	
   104.8	
   87.2	
  

53	
   L	
   0	
   NA	
   1999	
   14	
   31.0	
   89.9	
   104.3	
   0.4	
   113.2	
   91.9	
  

54	
   L	
   0	
   NA	
   1998	
   15	
   20.3	
   98.1	
   108.3	
   0.4	
   119.2	
   95.4	
  

55	
   U	
   0	
   NA	
   NA	
   NA	
   10.8	
   99.0	
   108.6	
   0.6	
   119.8	
   95.6	
  

56	
   U	
   0	
   NA	
   NA	
   NA	
   9.3	
   102.0	
   113.5	
   0.6	
   119.6	
   100.0	
  

57	
   U	
   0	
   NA	
   NA	
   NA	
   228.3	
   102.9	
   114.3	
   0.1	
   125.7	
   100.7	
  

58	
   L	
   0	
   NA	
   1993	
   20	
   18.0	
   105.5	
   117.3	
   0.4	
   127.0	
   103.3	
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Table S 2-3. Best-fit regression equations to predict time-dependent recovery of 
aboveground carbon density (Mg-C ha-1) of logged stands and stands burned once, 
twice, and three or more times. Model 1 considers once-burned stands as a single 
class, while Model 2 further partitions once-burned stands into low- or high-severity 
areas based on post-fire changes in canopy reflectance. Age represents years since the 
last logging or fire disturbance. Uncertainty in model parameters are presented in 
parentheses as 95% confidence intervals derived from 10,000 Monte Carlo model fits 
with added noise to stand-level ACD proportionate to stand-level uncertainty. Mean 
standard error is presented. 

 
1)	
   	
  	
   	
  Coefficient	
  (β)	
   	
  	
  	
  	
  	
  SE	
  
	
  	
   Intercept	
  (logging)	
   62.259	
  (61.969-­‐62.548)	
  	
  	
  	
  	
  	
  	
  	
  ***	
   3.077	
  
	
  	
   ln(age)	
   11.395	
  (11.2202-­‐11.566)	
  	
  	
  	
  	
  	
  ***	
   1.644	
  
	
  	
   Class	
  fire	
  (1x)	
   -­‐10.268	
  (-­‐10.613-­‐	
  (-­‐9.918))	
  	
  	
  	
  	
  **	
   3.809	
  
	
  	
   Class	
  fire	
  (2x)	
   -­‐42.813	
  (-­‐43.347-­‐	
  (-­‐42.293))	
  ***	
   4.938	
  
	
  	
   Class	
  fire	
  (3x+)	
   -­‐51.251	
  (-­‐51.755-­‐	
  (-­‐50.748))	
  ***	
   3.728	
  

	
  	
  
	
  
Model	
  fit	
  statistics	
  	
  

	
  
	
  	
  

	
  	
   Adjusted	
  R2	
   0.89	
   	
  	
  
	
  	
   F-­‐statistic	
   106.5	
  ***	
   	
  	
  
	
  	
   	
  	
   	
  	
   	
  	
  
2)	
   	
  	
   Coefficient	
  (β)	
   SE	
  
	
  	
   Intercept	
  (logging)	
   63.347	
  (62.900-­‐63.798)	
  	
  	
  	
  	
  	
  	
  	
  ***	
   2.946	
  
	
  	
   ln(age)	
   10.637	
  (10.342-­‐10.933)	
  	
  	
  	
  	
  	
  	
  	
  ***	
   1.531	
  
	
  	
   Class	
  fire	
  (1x	
  low	
  severity)	
   -­‐8.211	
  (-­‐8.578	
  -­‐	
  (-­‐7.835))	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  *	
   3.778	
  
	
   Class	
  fire	
  (1x	
  high	
  severity)	
   -­‐26.785	
  (-­‐27.988-­‐	
  (-­‐25.590))	
  ***	
   4.108	
  
	
  	
   Class	
  fire	
  (2x)	
   -­‐43.026	
  (-­‐43.569-­‐	
  (-­‐42.489))	
  ***	
   4.905	
  
	
  	
   Class	
  fire	
  (3x+)	
   -­‐51.936	
  (-­‐52.490-­‐	
  (-­‐51.378))	
  ***	
   3.670	
  

	
  	
  
	
  
Model	
  fit	
  statistics	
  

	
  
	
  	
  

	
  	
   Adjusted	
  R2	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0.88	
   	
  	
  
	
  	
   F-­‐statistic	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  87.87	
  ***	
   	
  	
  
	
   	
   	
   	
  
	
   	
   	
   	
  

	
  	
  
*	
  P	
  value	
  <	
  0.001	
  
**	
  P	
  value	
  <	
  0.001	
   	
  	
   	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ***	
  P	
  value	
  <	
  0.0001 
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Table S 2-4. Best-fit regression equations to predict time-dependent recovery of 
residual canopy (Model 3) and density of canopy trees (Model 4) of logged stands and 
stands burned once, twice, and three or more times. 

 

3)	
   	
  	
   	
  Coefficient	
  (β)	
   SE	
  
	
  	
   Intercept	
  (logging)	
   0.214	
  	
  ***	
   0.021	
  
	
  	
   ln(age)	
   0.054	
  	
  ***	
   0.011	
  
	
  	
   Class	
  fire	
  (1x)	
   -­‐0.104	
  ***	
   0.026	
  
	
  	
   Class	
  fire	
  (2x)	
   -­‐0.174	
  ***	
   0.034	
  
	
  	
   Class	
  fire	
  (3x+)	
   -­‐0.210	
  ***	
   0.255	
  

	
  	
  
	
  
Model	
  fit	
  statistics	
  	
  

	
  
	
  	
  

	
  	
   Adjusted	
  R2	
   0.74	
   	
  	
  
	
  	
   F-­‐statistic	
   38.85	
  ***	
   	
  	
  
	
  	
   	
  	
   	
  	
   	
  	
  
4)	
   	
  	
   Coefficient	
  (β)	
   SE	
  
	
  	
   Intercept	
  (logging)	
   70.770	
  	
  ***	
   7.733	
  
	
  	
   ln(age)	
   20.537	
  	
  ***	
   4.173	
  
	
  	
   Class	
  fire	
  (1x)	
   -­‐39.128	
  ***	
   9.707	
  
	
   Class	
  fire	
  (2x)	
   -­‐63.910	
  ***	
   11.86	
  
	
  	
   Class	
  fire	
  (3x+)	
   -­‐71.798	
  ***	
   9.485	
  

	
  	
  
	
  
Model	
  fit	
  statistics	
  

	
  
	
  	
  

	
  	
   Adjusted	
  R2	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0.76	
   	
  	
  
	
  	
   F-­‐statistic	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  36.3	
  ***	
   	
  	
  
	
   	
   	
   	
  
	
   	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ***	
  P	
  value	
  <	
  0.0001 
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3 Acoustic space occupancy: Combining ecoacoustics and lidar 

to model biodiversity variation and detection bias across 

heterogeneous landscapes2 

 

Abstract 
 

There is global interest in quantifying changing biodiversity in human-

modified landscapes. Ecoacoustics may offer a promising pathway for supporting 

multi-taxa monitoring, but its scalability has been hampered by the sonic complexity 

of biodiverse ecosystems and the imperfect detectability of animal-generated signals. 

The acoustic signature of a habitat, or soundscape, contains information about 

multiple taxa and may circumvent species identification, but robust statistical 

technology for characterizing community-level attributes is lacking. Here, we present 

the Acoustic Space Occupancy Model, a flexible hierarchical framework designed to 

account for detection artifacts from acoustic surveys in order to model biologically 

relevant variation in acoustic space use among community assemblages. We illustrate 

its utility in a biologically and structurally diverse Amazon frontier forest landscape, 

a valuable test case for modeling biodiversity variation and acoustic attenuation from 

vegetation density. We use complementary airborne lidar data to capture aspects of 

3D forest structure hypothesized to influence community composition and acoustic 

signal detection. Our novel analytic framework permitted us to model both the 

assembly and detectability of soundscapes using lidar-derived estimates of forest 

                                                             
2 The material in this chapter was accepted for publication by the journal Ecological Indicators (co-authors: 
Danielle Rappaport, Andy Royle, Douglas Morton). 
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structure. Our empirical predictions were consistent with physical models of 

frequency-dependent attenuation, and we estimated that the probability of observing 

animal activity in the frequency channel most vulnerable to acoustic attenuation 

varied by over 60%, depending on vegetation density. There were also large 

differences in the biotic use of acoustic space predicted for intact and degraded forest 

habitats, with notable differences in the soundscape channels predominantly occupied 

by insects. This study advances the utility of ecoacoustics by providing a robust 

modeling framework for addressing detection bias from remote audio surveys while 

preserving the rich dimensionality of soundscape data, which may be critical for 

inferring biological patterns pertinent to multiple taxonomic groups in the tropics. 

Our methodology paves the way for greater integration of remotely sensed 

observations with high throughput biodiversity data to help bring routine, multi-taxa 

monitoring to scale in dynamic and diverse landscapes.  

 

3.1 Introduction  

Biodiversity loss as a direct and indirect result of human activity represents a 

major threat to life on Earth (e.g., Cardinale et al., 2012). Operational capacity to 

monitor known biodiversity is extremely limited, resulting in incomplete species 

inventories (Troudet et al., 2017) and sparse data coverage (Meyer et al., 2015). There 

is broad international interest in improving biodiversity monitoring, including efforts 

by the Group on Earth Observations Biodiversity Observation Network (GEO BON) 

to harmonize biodiversity measurements across space and time as essential 

biodiversity variables (EBVs).  The success of EBVs for expanding the scope of 
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routine monitoring fundamentally depends on advances in distributed monitoring 

technology with increased taxonomic coverage, including DNA metabarcoding, 

camera traps, and ecoacoustic surveys. Since most of Earth’s taxonomic diversity is 

not visible from air or space, such high-throughput biodiversity observations may 

complement spatially extensive Earth observations to monitor biodiversity trends at 

policy-relevant extents (Bush et al., 2017). Scaling up biodiversity observations on 

the level needed to support global conservation commitments will also require 

advances in computational methods designed to adjust for data sparsity and other 

sampling artifacts that could otherwise confound estimates of biodiversity trends. 

Strategies for routine monitoring of biodiversity confront a range of trade-offs 

related to taxonomic coverage and sampling bias. The existing body of biodiversity 

data is strongly skewed towards popular taxa (e.g. plants, vertebrates), resulting in 

data gaps for invertebrates and other organisms (Troudet et al., 2017). These data 

disparities also reflect limitations in taxonomic expertise, especially in biodiverse 

tropical forests, which harbor over 50% of Earth’s species, many of which are not 

readily identifiable. Even birds, the most well-studied taxa, suffer from high rates of 

imperfect detection and species classification errors in tropical forests, where over 

95% of individuals are heard but not seen by surveyors tasked with discriminating 

among hundreds of species with rich vocal repertoires in dark forest understories 

(Robinson et al., 2018). Additionally, there is seldom enough information about 

species distributions to establish sampling protocols that account for key sources of 

sample bias from spatial variability and habitat heterogeneity, especially in tropical 

forests where visibility is limited, canopy structure is complex, and extents are large.   
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Emerging remote sensing tools, such as lidar and ecoacoustics, may support 

goals to expand the scope of biodiversity monitoring by collecting biodiversity 

variables across taxonomic, spatial, and temporal domains in a cost-effective and 

non-invasive manner. Lidar, short for Light Detection and Ranging, provides detailed, 

three-dimensional (3D) information on habitat structure, and lidar-derived measures 

of forest structure have been used to assess patterns of species diversity and 

abundance in forested environments (e.g., Goetz et al., 2007; Bergen et al., 2009). 

High-density airborne lidar data capture fine-scale changes in forest structure from 

human activity, with 3D data over hundreds to thousands of hectares needed to 

support landscape-scale investigations (Longo et al., 2016; Rappaport et al., 2018). 

Ecoacoustic surveys offer a complementary perspective by providing direct 

observations of the animal community over diurnal, seasonal, and interannual time 

scales. Remote acoustic surveys have the potential to track many animal taxa (e.g. 

birds, amphibians, insects, mammals, bats), and, unlike traditional field methods (e.g. 

point-counts), the acoustic environment can be surveyed simultaneously at multiple 

sites with concurrent recorders covering large spatial extents (Gibb et al., 2019). 

These remote sensing tools have been used independently for biodiversity 

monitoring, but they have rarely been used together, despite known associations 

between habitat structure, habitat use, and acoustic signal transmission (Pekin et al., 

2012; Royle, 2018). 

Three primary developments are needed to enable widespread use of 

ecoacoustics for routine biodiversity monitoring. First, acoustic analysis techniques 

that derive information about multiple taxa while bypassing the need for species 



 

 62 
 

identification are critical to enable rapid, replicable, and scalable assessments of 

biodiversity change. The sonic signature of a site, or “soundscape,” encodes 

information about the resident animal community, and the 3D structure of the 

soundscape defined by time, frequency, and amplitude represents a valuable 

opportunity to capture multiple taxa. As taxonomic groups emit acoustic signals 

(vocalizations, stridulations) at routine periods of the day and at standard frequency 

ranges, the soundscape can be regarded as an abstracted representation of the animal 

community, comprised of acoustic transmission channels in time-frequency space that 

are occupied by distinct species composites (Aide et al., 2017).  

Second, analytic methods are needed to handle the data complexity of 

soundscapes from biodiverse environments in a manner that is robust across time 

scales, sensors, and acoustic conditions (Gibb et al., 2019). A diversity of acoustic 

indices have been developed by collapsing the 3D soundscape into measures of 

energy distribution along either the time or frequency dimensions, but seldom both 

(as reviewed by Sueur et al., 2014). Such indices have been used to predict species 

richness in low-diversity temperate ecosystems dominated by a single vocal taxon, 

but predictive performance has been less stable in tropical forests, which are 

characterized by diverse signaling assemblages, multi-taxa choruses, and constant 

background noise (e.g. routine rainfall, insect stridulations) (Eldridge et al., 2018). 

Retaining the time and frequency dimensions may be crucial for capturing the 

complex patterns of acoustic energy in biodiverse tropical systems (Eldridge et al., 

2016, 2018; Aide et al., 2017). Furthermore, preserving the spectral-temporal 

structure of soundscapes is conceptually consistent with the hypothetical link between 
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biodiversity and acoustic diversity, originally introduced in the Acoustic Niche 

Hypothesis (ANH; Krause, 1978). The ANH purports that acoustic space is 

partitioned into spectral-temporal ‘niches’ through evolutionary processes and 

competitive interactions that minimize signal overlap among co-existing species. 

Whether taxa do in fact occupy coherent acoustic niches is an area of active research, 

and, while much remains to be learned about the factors that structure acoustic 

transmission space (Pijanowski et al., 2011), the proportion of that space occupied by 

biota has been found to be an effective proxy for species richness in tropical forests 

(Aide et al., 2017). Exploiting this spectral-temporal structure—referred to henceforth 

as “acoustic space occupancy”— may open up new analytic pathways for rapid and 

replicable assessments of biodiversity.  

Third, statistical solutions must be developed to account for observation bias 

in soundscape recordings. The likelihood of detecting a soniferous species occupying 

a site depends not only on whether it is acoustically active during a given survey, but 

also on a myriad of factors that influence the detectability of its acoustic signals, such 

as interference with vegetation, obfuscating abiotic noise, signal amplitude and 

frequency, distance of the animal to the recorder, micrometeorology, and survey 

effort, among others (Wiley & Richards, 1982). Nonetheless, most soundscape 

analysis methods do not adjust for sampling artifacts and detectability, despite the 

fact that imperfect detection can skew ecological inferences (Royle, 2018). For 

example, vegetation selectively limits the propagation of certain frequencies due to 

the physics of sound attenuation in forested environments (Wiley & Richards, 1982), 
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so unless properly addressed by statistical methods, raw soundscape observations are 

likely to underestimate the extent of occupied acoustic space in dense forest habitats. 

Here, we accommodated these three methodological objectives using a novel 

analytic framework for capturing signals relevant to multiple taxa while accounting 

for sources of detection bias in remote audio surveys. Our methodological approach, 

the Acoustic Space Occupancy Model (ASOM), assumes that the observed 

soundscape is not a perfect characterization of the acoustic community, and therefore 

the modeling framework reconstructs the true, latent soundscape in a manner that is 

directly analogous to the ‘occupancy model’ framework for estimating species 

occurrence probability (e.g. MacKenzie et al., 2002). ASOM is a hierarchical model 

with explicit covariate effects to separate the ecological process (i.e., acoustic space 

occupancy) from the observation process (i.e., acoustic space detection) and quantify 

parameter uncertainties. Furthermore, its flexible framework can accommodate a 

range of extensions and study designs (MacKenzie et al. 2018).  

We applied ASOM to ecoacoustic and airborne lidar data from a frontier 

forest mosaic in the southern Brazilian Amazon to illustrate the utility of our model 

and investigate hypothesized synergies between 3D observations of acoustic space-

filling and physical space-filling. The enormous structural diversity of the study 

region represents a valuable test case for evaluating the role of forest structure in 

explaining variability in acoustic community assembly between sites and informing 

models of detection failure.  
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3.2 Materials and Methods  

3.2.1 Case study region 

We collected ecoacoustic and lidar data in the municipalities of Nova Ubiritã 

and Feliz Natal, Mato Grosso, near the southern extent of closed-canopy forests in the 

Brazilian Amazon (Fig. 3-1). More than 40 years of agricultural expansion, selective 

logging, and understory fires have given rise to a mosaic of fragmented and degraded 

forests with a diversity of canopy structures (Rappaport et al., 2018). The non-forest 

matrix is dominated by large-scale commodity agriculture, including soy, corn, and 

cattle ranching.  The largest area of intact forest remaining in the region is in the 

adjacent Xingu Indigenous Park; airborne lidar acquisitions include intact forest areas 

for reference. 

 
Figure 3-1. The locations of the ecoacoustic and lidar surveys (red polygons; n = 34) 
shown in relation to the case study landscape (2014 Landsat composite, bands 543) 
and broader regional context (map inset). 
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3.2.2 Lidar surveys and analysis  

High-density airborne lidar surveys (≥14 returns per m2) were conducted by the 

Sustainable Landscapes Brazil project between 2013 and 2016 to target a range of 

intact and degraded forest conditions in the region. Within the lidar coverage, 34 sites 

(forest patches ≥ 300 m in radius) with uniform degradation history were identified 

(Rappaport et al., 2018). Sites were spaced at least 300 m from one another and from 

the non-forest matrix to avoid edge effects and establish spatial independence (Fig. 

1). Standard lidar metrics were calculated for each site following methods developed 

for NASA Goddard’s Lidar, Hyperspectral, and Thermal (G-LiHT) Airborne Imager 

(Cook et al., 2013; Table 1), and biomass was estimated using a regional lidar-

biomass model based on mean top of canopy height (Longo et al., 2016). 

 

3.2.3 Acoustic surveys and analysis 

We deployed passive acoustic recording sensors at the center of each site to 

survey the spatiotemporal patterns of acoustic communities between August and 

October 2016. ARBIMON acoustic sensors (Aide et al., 2013) were installed at breast 

height (1.37 m) to record all activity between 0 and 22 kHz. The acoustic 

environment was sampled for one minute every five minutes for a minimum of five 

days at each site, totaling more than 1100 hours of acoustic survey data.  

Three preprocessing steps were used to convert the recording archive into 

soundscape matrices of acoustic space use following previous methods (Aide et al., 

2013). First, the ARBIMON analysis platform was used to transform each one-minute 

recording into a graphical representation of its spectral components, known as a 
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spectrogram (constructed with 512 samples per temporal interval). Second, a 

supervised machine learning-based model (Aide et al., 2013) was applied to the entire 

volume of spectrograms to classify rain-contaminated spectrograms, which were 

removed to isolate the biotic contribution to the soundscape. Manual validation of the 

rainfall screening procedure (n=100) yielded no false negatives and a precision of 

0.93 (7% false positives). Third, the spectrograms collected at each site (n=34) and 

during each day (n=5) were aggregated by hour (24 hours) and frequency (0-22 kHz; 

bin size: 344 Hz). For each of the constituent 1536 acoustic channels (24 hours x 64 

frequency bands), a binary detection history was generated based on an amplitude 

threshold of 0.02 (Aide et al., 2013). The resulting 3D matrix (x=hour, y=frequency, 

z=evidence of biotic activity) represented the synoptic signature of the acoustic 

community for each site and each daily survey.  

 

3.2.4 Acoustic space occupancy model 

We developed the ASOM framework to predict acoustic variability relevant to 

multiple taxa while accounting for biologically irrelevant variability due to 

observation bias. The model was adapted from the standard single season occupancy 

model (MacKenzie et al., 2002) to account for the fact that the occupancy status of an 

acoustic channel is not perfectly observable and that failure to detect acoustic space 

occupancy may result from inactivity of the constituent species or factors that limit 

signal propagation and detection (e.g. survey effort, sound attenuation).   
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Table 3-1. Lidar and ecoacoustic covariates evaluated for models of detection and 
occupancy. The only candidate covariates not fit to both model components were n 
and (Cn + Sn), which were exclusively used as detection and observation covariates, 
respectively. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Tree returns: returns > 1.37 m  
**Shrub returns: non-ground returns < 1.37 m 

Data  
source 

Covariates Description 

   
Lidar 
surveys 

all_mean Mean of all return heights (m) 

all_kurtosis Kurtosis of all return heights (m) 

all_skewness Skewness of all return heights (m) 

all_stdev Standard deviation of all return heights (m) 

all_p10…all_p100 Height percentiles (10% increments) of all returns (m) 

tree_fract Fraction of all returns classified as tree* (m) 

tree_fcover Fraction of first returns intercepted by tree* (m) 

tree_iqr Interquartile range (p75-p25) of returns classified as tree* 
(m) 

shrub_mean Mean height of returns classified as shrub** (m) 

shrub_stdev Standard deviation of return heights classified as shrub** 
(m) 

biomass Aboveground carbon density (Mg C ha-1)  
(Longo et al., 2016)  
 residual_canopy The percentage of the site with canopy heights ≥ intact 
reference (21m) (Rappaport et al., 2018)  

   
Acoustic 
surveys 

freq The frequency associated with a given transmission channel 
(Hz) 

n Sample density, corresponding to the number of rain-free 
acoustic samples aggregated for each hour bin 

(Cn + Sn) The sine-cosine pairs for the harmonic regression used to 
approximate the multimodal patterns in acoustic activity 
over a 24-hour period (𝑛 = 1: 4) 
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Table 3-2. The model with the most substantial level of empirical support is shown 
with coefficients (SE) presented separately for the detection and occupancy 
components. Covariate descriptions are provided in Table 1.  

 

 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Probability	
  of	
  acoustic	
  space	
  detection	
  

Υ!"#  (∗)ρ!"#(𝑓𝑟𝑒𝑞! + 𝑛 + 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 + 𝑠ℎ𝑟𝑢𝑏_𝑠𝑡𝑑𝑒𝑣)	
  
Intercept	
   -­‐10.08	
   (0.35)	
  
biomass	
   0.46	
   (0.03)	
  
freq	
   -­‐9.87	
   (0.47)	
  
freq2	
   -­‐2.75	
   (0.15)	
  
n	
   0.07	
   (0.01)	
  
shrub_stdev	
   0.13	
   (0.03)	
  
	
   	
   	
  
	
   	
   	
  Probability	
  of	
  acoustic	
  space	
  occupancy	
  

        Ψ!"   (𝑓𝑟𝑒𝑞 ∙ 𝐶!+  𝑆!  +  𝐶!  +  𝑆!  +  𝐶!  +  𝑆!  +  𝐶!  +  𝑆!   ∙ 𝑡𝑟𝑒𝑒_𝑓𝑟𝑎𝑐𝑡   +   𝑠ℎ𝑟𝑢𝑏_𝑠𝑡𝑑𝑒𝑣!)	
  
Intercept	
   -­‐4.69	
   (0.41)	
  
shrub_stdev	
   -­‐0.07	
   (0.05)	
  
shrub_stdev2	
   0.24	
   (0.04)	
  
C1	
   1.93	
   (0.53)	
  
C2	
   -­‐1.75	
   (0.47)	
  
C3	
   -­‐0.69	
   (0.48)	
  
C4	
   1.27	
   (0.34)	
  
S1	
   -­‐4.96	
   (0.51)	
  
S2	
   -­‐1.62	
   (0.52)	
  
S3	
   1.72	
   (0.44)	
  
S4	
   -­‐0.89	
   (0.35)	
  
tree_fract	
   -­‐1.59	
   (0.44)	
  
freq	
   -­‐0.81	
   (0.21)	
  
C1:tree_fract	
   -­‐0.88	
   (0.76)	
  
C2:tree_fract	
   1.09	
   (0.60)	
  
C3:tree_fract	
   0.69	
   (0.49)	
  
C4:tree_fract	
   0.49	
   (0.39)	
  
S1:tree_fract	
   0.73	
   (0.48)	
  
S2:tree_fract	
   0.58	
   (0.48)	
  
S3:tree_fract	
   0.57	
   (0.46)	
  
S4:tree_fract	
   -­‐1.25	
   (0.40)	
  
C1:freq	
   0.07	
   (0.26)	
  
C2:freq	
   -­‐0.67	
   (0.23)	
  
C3:freq	
   -­‐0.18	
   (0.23)	
  
C4:freq	
   0.47	
   (0.17)	
  
S1:freq	
   -­‐1.87	
   (0.24)	
  
S2:freq	
   -­‐0.87	
   (0.25)	
  
S3:freq	
   0.73	
   (0.22)	
  
S4:freq	
   -­‐0.36	
   (0.17)	
  
tree_fract:freq	
   -­‐0.58	
   (0.23)	
  
C1:tree_fract:freq	
   -­‐0.23	
   (0.39)	
  
C2:tree_fract:freq	
   0.29	
   (0.31)	
  
C3:tree_fract:freq	
   0.52	
   (0.25)	
  
C4:tree_fract:freq	
   0.17	
   (0.20)	
  
S1:tree_fract:freq	
   0.49	
   (0.24)	
  
S2:tree_fract:freq	
   0.31	
   (0.24)	
  
S3:tree_fract:freq 0.19	
   (0.24)	
  
S4:tree_fract:freq	
   -­‐0.49	
   (0.21)	
  



 

 70 
 

Formally, let z!" be the true occupancy status of acoustic channel 𝑛 at sample 

location (“site”) 𝑖. Each acoustic channel 𝑛  is comprised of a frequency/time 

coordinate 𝑛 = (f, t)  such that 𝑛 is analogous to a “site” in the classical occupancy 

modeling vernacular. Thus, acoustic channel 𝑛 is the unit of occupancy in our study, 

whereas we use the term “site” to represent higher-level structure across which 

acoustic space occupancy might vary, such as a geographic stratum (e.g., forest 

patch), which is analogous to some type of blocking structure in classical occupancy 

modeling vernacular. Let y!"# denote the observed occupancy for acoustic channel 𝑛, 

site 𝑖, and sample occasion 𝑘. 

Here, the five daily soundscapes (𝑘  = 1:5) for each site were treated as 

temporal replicate observations of each acoustic channel. We used a maximum 

likelihood estimation framework to build separate models for the observation process 

(i.e., acoustic space detection) and the true state process (i.e., acoustic space 

occupancy).  

The true latent occupancy state of an acoustic channel (z!") can be modeled as 

a Bernoulli process described as: 

 

(1)      𝑧!"~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 Ψ!"  

 

where Ψ!"  is the probability of occupancy of acoustic channel 𝑛 at site 𝑖. We 

modeled the probability of occupancy as a function of covariates using a logistic 

model. For example, with a single covariate the model has the form: 
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(2)    logit Ψ!" = 𝛽! + 𝛽!𝑥!" 

 

where 𝑥!" is a measured covariate that varies by dimensions of the acoustic 

soundscape (frequency and time) or varies across the different sample sites. 

 

The observation process can be modeled as another Bernoulli random variable 

conditional on the state process: 

 

(3)    y!"# z!"~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 z!"𝑝!"#  

 

where y!"#   is the realized detection of acoustic channel 𝑛 at site 𝑖 during 

survey 𝑗, and 𝑝!"#  is the detection probability. We also modeled measured covariates 

on detection probability according to a logistic model, e.g., with one covariate: 

 

(4)    logit 𝑝!"# = 𝛼! + 𝛼!𝑥!"# 

 

where 𝑥!"# is a measured covariate that varies by frequency, time of day, 

survey occasion or sample location. 

We used Akaike’s information criterion (AIC) to select the best-supported 

models for inference (Burnham & Anderson, 2003), and performed model selection 

stepwise. First, the top-ranked models (ΔAIC≤2) were identified for the detection 

component, 𝑝, by assuming the null model for the occupancy component, Ψ. Then, 

the best-approximating models were identified for Ψ assuming the previously 
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selected covariate set for 𝑝. The R program unmarked was used for ASOM model 

fitting and selection (R Development Core Team 2018; Fiske & Chandler, 2011).  

The ASOM framework allows covariate effects in the spectral or temporal 

dimensions of the soundscape, which can be used to model variability in either 

acoustic space occupancy or detection probability. In all candidate models, frequency 

was included either in linear or quadratic form as a fixed covariate for both Ψ and 𝑝 

to account for possible curvilinear effects of frequency-dependence on occupancy and 

sound transmission. Note that the frequency covariate (𝑓) was transformed to 

facilitate model convergence (𝑓-12/4 kHz) and models were fit to a frequency subset 

containing the central mass of the data (1.4-10 kHz) to avoid issues with data sparsity 

at the frequency extremes. Sample density (i.e. usable recordings per hour) was also 

included as a fixed covariate for 𝑝 to account for detection bias due to variability in 

survey effort. Additionally, harmonic regression terms were used to model the 

multimodal peaks in occupancy from the diurnal periodicity in acoustic activity (Weir 

et al., 2005), estimated as:  

(5)   logit Ψ!" = 𝛽! + 𝛽! cos
!!"!!
!"

+ 𝛽! sin
!!!!!
!"

 

 

where 𝛽! and 𝛽! represent the sinusoidal amplitude and phase during the 

diurnal period, 𝑡 represents the sampling time period, and 𝑓! represents the frequency 

of the sinusoid, with up to 4 cycles per day (𝑐 = 1: 4) considered within each 

candidate model. 

The ASOM framework also permits covariate effects to vary across the sites 

in which the soundscapes were observed. We used 22 lidar metrics to account for 
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variability in forest structure across sites (Table 3-1). Covariate selection was guided 

by a priori hypotheses regarding the influence of habitat structure on biotic 

community assembly and signal attenuation, and our previous findings on the lidar 

metrics most useful for discriminating among complex Amazon forest structures 

(Longo et al., 2016; Rappaport et al., 2018). The lidar metrics were calculated using a 

50 m radius from the location of the recording devices, and they were scaled and 

centered to assist with model convergence. We constructed candidate models with ≤ 2 

lidar metrics for Ψ and 𝑝 using an exhaustive model-fitting procedure (R package 

MuMIN; Barton, 2018), which evaluated linear combinations of predictors in the 

stepwise fashion described above. All variable pairs with Pearson correlation 

coefficients ≥ 0.6 were excluded from consideration to address potential issues with 

multicollinearity.  

We evaluated three ecologically viable interactions among covariates selected 

in the top-ranked model: 1) An interaction between the lidar metrics and signal 

frequency in 𝑝 to test the influence of habitat structure on frequency-dependent 

attenuation; 2) an interaction between the sinusoids and frequency in Ψ to account for 

the expected variability in diurnal activity across frequency bands (i.e. pseudo-taxa); 

and 3) an interaction between the lidar metrics and the sinusoids in Ψ to account for 

the hypothesized influence of 3D habitat structure on diurnal activity (i.e. from 

differences in community composition).  

The model was calibrated with 33 of the 34 sites, and its predictive capacity 

was evaluated using cross validation with the remaining site. To assess classification 

accuracy, we calculated the area under the receiver operator curve at the site level 
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(AUC) following Sadoti et al. (2013). AUC ranges from 0.5 to 1.0, and values above 

0.80 indicate adequate discriminatory power. 

Lastly, we used the top-supported model to generate predictions over the 

sampled range of degraded forest structures to support interpretation of covariate 

effects, as well as covariate ranges derived from the intact reference forests in the 

Xingu Indigenous Park to illustrate the utility of the ASOM framework for predicting 

outside of the immediate zone of study and forecasting conservation outcomes.  

 

3.3 Results  

There was large spectral-temporal variability in detected acoustic activity 

within and among the surveyed sites. The observed site-level proportion of occupied 

acoustic space, or ‘naive’ occupancy, ranged between 2-17% (mean: 7%). There was 

a marked influence of time of day on the observed utilization of frequency channels, 

and the diurnal patterning was not uniform across sites (Fig. 3-2). On average, naive 

occupancy was highest during the dusk to pre-dawn period (17:00-3:00), with 

detections progressively decreasing from a peak in activity during the dusk chorus. 

The largest gaps in utilized acoustic space were detected during the dawn to pre-dusk 

period (6:00-15:00) and only a small subset of sites contributed to aggregate 

detections at those hours (Fig. 3-2). On average, naive occupancy was highest at the 

middle frequencies (3-8 kHz) and lowest at the low (< 3 kHz) and high frequencies (> 

8 kHz) (Fig. 3-3). At the high-frequency range, the relative proportion of detections in 

closed versus open forests progressively decreased with increasing frequency, and 
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detections > 10 kHz were exclusively registered in degraded forests with open 

canopies (Fig. 3-3).  

 

Figure 3-2. Naive observations per hour for the 33 sites used for model calibration. 
Colors correspond to the degree of canopy openness of the corresponding sites 
(higher values of shrub standard deviation indicate greater canopy loss from 
degradation). The greyscale indicates the percentage of sites with ≥ 5 detections. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-3. Naive observations per frequency band. Colors correspond to the degree 
of canopy openness and the greyscale corresponds to the percentage of sites with ≥ 5 
detections.  
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By accounting for the factors that influence signal detection, the ASOM 

framework permitted us to estimate latent soundscape structure that would have 

otherwise been unobservable from the naive detections alone. The top-ranked model 

(Table 3-2) showed evidence of good predictive accuracy (AUC = 0.91), and results 

for the observation process (𝑝) and state process (Ψ) model components will be 

presented in turn. 

The sub-model for 𝑝 revealed a strong frequency dependence of detection 

bias. The likelihood of detecting acoustic activity peaked around 5 kHz, and was 

governed by a quadratic effect of frequency (Fig. 3-4). The requisite sampling effort 

needed to maximize 𝑝 also varied as a function of frequency, and high frequencies 

were predicted as being most susceptible to detection failure regardless of sample 

density (Fig. 3-5). In an average forest, the likelihood of detecting the lowest, 

average, and highest frequency bands was 8%, 39% and 1%, respectively, assuming 

maximum temporal coverage from our study design (12 samples/hour).  At the most 

intensive sampling protocol theoretically possible (60 samples/hour), it increased to 

77%, 96%, and 21%, respectively. 

Our frequency-dependent predictions of detection probability were improved 

by including estimates of forest structure to account for signal interference with 

vegetation. Two lidar covariates were selected in the top-ranked model for 𝑝, 

aboveground biomass and the standard deviation of shrub heights (Table 3-2). When 

predicted over the entire sampled distribution of degraded forest structure, maximum 

estimates of 𝑝 increased compared to the estimates above, exceeding 60% for the 

lowest, average, and highest frequency channels (assuming sample density of 12 
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recordings/hour). In each case, maximum 𝑝 was predicted for heavily degraded 

forests that ranked in the top 10th percentile of sampled shrub standard deviation, a 

lidar metric that indicates more heterogeneous vegetation cover from 0-1.3 m, typical 

of degraded Amazon forests with low fractional tree cover. This suggests that 

acoustic signals were more readily detectable in heavily altered and open forest 

environments (Fig. 3-4).  

Forest structure was also important for explaining variation in acoustic space 

occupancy. Based on model selection of the state process component (Table 3-2), 

variability in Ψ was best approximated by a three-way interaction between four 

sinusoids, frequency, and the lidar-derived covariate, tree fractional cover, which 

allowed the diurnal patterns of acoustic activity to vary across the frequency and 

habitat domains. The top-ranked model also included shrub standard deviation as a 

quadratic effect, which further constrained variability in Ψ as a function of forest 

structure. Patterns of predicted and observed occupancy were in close agreement over 

the sampled habitat distribution. In most cases, transmission channels that were 

predicted as having a high likelihood of occupancy were also registered by the 

acoustic surveys (Fig. 3-6). Divergence between modeled and observed occupancy 

occurred primarily for predictions in dense forest conditions and frequency bands 

estimated as most vulnerable to attenuation (Figs. 3-3, 3-6).  
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Figure 3-4. The combined effects of signal frequency and forest structure, indicated 
by the standard deviation of shrub-classified lidar returns, on top-ranked model 
predictions of detection probability (𝒑), assuming 12 samples/hour and mean values 
for other detection covariates (not shown). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3-5. The influence of sample density on frequency-dependent detection 
probability (𝒑) predicted from the top-ranked model, assuming average forest 
characteristics and a maximum sample density of 60 one-minute recordings per hour.  
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Estimates of Ψ revealed a diversity of acoustic community assemblages with 

distinct occupancy patterns across the time and frequency domains, and notable 

differences between intact and degraded habitats. When predicted for the average 

degraded forest and mean frequency, the largest peak in Ψ (mean acoustic space 

occupancy: 56%) occurred during the early evening hours of the insect chorus (18:00-

19:00) (Fig. 3-7). The diurnal peaks in acoustic activity varied within each frequency 

channel. Often, the low and high frequencies had contrasting patterns of occupancy. 

For example, within the same two-hour time interval associated with the onset of the 

insect chorus, acoustic space occupancy ranged between 7% and 97% in the lowest 

and highest frequency channels, respectively. The opposite dynamic was observed for 

the pre-dawn/dawn period (24:00-7:00), during which low frequencies predominated 

(33%) and high frequencies were virtually absent (1%). The differences in model 

predictions between intact and degraded forest habitats were large, particularly for the 

same two contrasting time intervals (Figs 3-6, 3-7). For example, estimates of Ψ 

during the pre-dawn/dawn period (24:00-7:00) ranged between 23% and 85% for the 

most utilized frequency channel (1.4 kHz), depending on whether canopy structure 

was closed or open, respectively (Fig. 3-7). 
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Figure 3-6. Predicted occupancy (blue scale) overlaid with naive detected occupancy 
aggregated over five days (orange outline) for four study sites with differing 
fractional canopy cover (CC). 
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Figure 3-7. Predicted occupancy probability (𝚿) over the 24-hour cycle and 
frequency spectrum for two divergent habitats, a heavily degraded forest (44% 
canopy cover), and an intact forest (93% canopy cover). 

 

3.4 Discussion  

We developed a flexible methodological framework for capturing biologically 

plausible variation in acoustic quantities while accounting for sampling artifacts and 

failure in detecting animal-generated signals. Application of ASOM to a complex 

tropical forest mosaic illustrated four key attributes of our analytic framework. First, 

in assuming that the true underlying acoustic community is an unobservable structure, 

ASOM provides a clear coherent linkage between the observed soundscape and the 

true latent soundscape, the object of inference. Second, the flexible hierarchical 

structure of our modeling framework allows the factors that govern the ecological 

process and the observation process to be modeled separately. We provide clear 

evidence that the likelihood of detecting biotic signals varies across degraded forest 



 

 82 
 

environments, which could otherwise confound inferences about the legacy of habitat 

degradation on biodiversity. Third, by retaining the multidimensional structure of the 

community-level acoustic signature, ASOM captures multiple taxa, even in tropical 

forests where sonic space is shared by simultaneous biotic signals and noisy abiotic 

processes. Lastly, ASOM provides a flexible framework for predicting the 

assemblage of acoustic communities, and we demonstrate its use for making 

predictions for intact forests beyond the sampled distribution of degraded habitats and 

for populating data-poor regions of the soundscape. 

Hierarchical models that combine 3D observations of physical space filling 

and acoustic space filling provide a path forward for handling detection bias in 

soundscape studies. Existing analysis methods regard soundscapes as unbiased 

representations of the underlying animal community, yet soundscapes are intrinsically 

imperfect and vulnerable to the same issues of detection bias that affect species 

distribution modeling in general (e.g., MacKenzie et al., 2002). Even within an 

individual site, there are important sources of detection heterogeneity, including 

minor variations in the expression of biotic signals over time (e.g. weather, 

phenology, etc.). Fortunately, multi-day soundscape surveys capture temporal 

heterogeneity by design, and hierarchical occupancy models are uniquely equipped to 

model the effects responsible for observed heterogeneity. Our hierarchical framework 

also provides estimates of between-site detection heterogeneity. By drawing upon the 

synergies between ecoacoustics and airborne lidar to capture aspects of the physical 

interactions between sound and structure, our empirical predictions of frequency-

dependent detection failure were consistent with expectations from physics. We 
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estimated that the risk of detection failure was greatest for high frequencies (> 8 

kHz), slightly lower for low frequencies (< 3 kHz), and lowest for middle frequencies 

(3-8 kHz), similar to physical models of the forested environment that account for 

sound attenuation from interference with vegetation and ground (e.g. Wiley & 

Richards, 1982). It is not surprising, then, that the mode of our naive observations 

was in the most-detectable middle-frequency zone, or that the majority of our high-

likelihood predictions that were not registered by our recorders were in the high-

frequency zone, which is most vulnerable to attenuation from scattering (Wiley & 

Richards, 1982). Similarly, only samples from heavily degraded sites with only a few 

trees remaining to scatter sound contained detections with frequencies above 10 kHz. 

It should be noted that scattering is also caused by non-stationary heterogeneities 

(e.g., atmospheric turbulence), which mediate the effect of habitat on sound 

transmission (Wiley & Richards, 1982) and cannot be captured by lidar alone, but 

could perhaps be better approximated with physical models of acoustic attenuation. 

Signal transmission may also be better parameterized with alternative estimates of the 

structural environment, such as tree diameter distributions retrievable from terrestrial 

laser scanning or forest inventory data. 

Formalized procedures for characterizing uncertainty, such as the ASOM 

framework, also provide a means to guide sampling effort allocation and adjust for 

data sparsity. We demonstrated the utility of our model for informing study design by 

predicting detection uncertainties over a range of sampling protocols. For example, 

we estimated that in an average forest, the probability of detecting acoustic activity in 

the least detectable frequency channel would not exceed 10%, even when increasing 
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sample density to 50% daily coverage, a probability which may or may not be 

considered adequate depending on the uncertainty thresholds and objectives of the 

monitoring program in question. Optimizing predictive power amidst resource 

constraints requires a clear understanding of sampling tradeoffs (e.g. spatial vs. 

temporal replicates). Hierarchical occupancy models are uniquely suited to inform 

such assessments through simulation-based exercises (Bailey et al., 2007). Further, as 

acoustic monitoring networks expand in scale (Gibb et al., 2019), there will be an 

increasing need to obtain accurate confidence intervals on ecological inferences 

derived from sparse and complicated ecoacoustic datasets.  

Since the multidimensional soundscape reflects the taxonomic complexity of 

the biodiversity process (Aide et al., 2017), its constituent ‘channels’ may offer 

sufficient resolution for monitoring change. Assessing differences between 

soundscapes (𝛽 diversity) is even more challenging than estimating biodiversity 

within soundscapes, and the current set of 𝛽-diversity methods require perfect 

homologies that are often impractical, even for simultaneous recordings (Sueur et al., 

2014), and readily confounded by environmental variation and noise (Buxton et al., 

2018). By abstracting the soundscape into a map of spectral-temporal transmission 

channels, our analytic framework permitted us to model differences between biotic 

community assemblages across a complex forest landscape mosaic with variable 

sources of background noise and signal interference. Since the coarseness of the 

channels and number of diurnal replicates are effectively model assumptions, 

exploring the synoptic scale of the soundscape to address underlying heterogeneity 

should be a logical extension of this work. Targeting soundscape regions that 
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represent peak activity of particular taxa could also be informative and possibly more 

tractable than modeling the full diurnal signal. Our findings from disaggregating the 

community-level response curves suggest that the signal of Amazon forest 

degradation may be most evident in the transmission channels predominantly 

occupied by insects (e.g. midnight), warranting targeted investigations into their 

potential role as acoustic indicators of habitat change. 

We anticipate a range of methodological developments to extend the 

applicability of the ASOM framework.  A Bayesian implementation could allow for 

greater flexibility in capturing the fine-scale structure and dependencies in time-

frequency space than what can be approximated with sinusoidal functions and low-

order polynomials. A Bayesian framework would more easily allow for flexible 

spatial surface modeling using GAMs (Carroll et al., 2010) or computationally 

efficient methods used in high-dimensional space-time applications such as Empirical 

Orthogonal Functions (EOFs, Wikle & Cressie, 1999). More sophisticated techniques 

could be used to adjust for the abiotic occupancy of acoustic space, including Poisson 

processes to differentiate true and false positives from continuous detection 

information on the z-axis (e.g. Chambert et al., 2018). Moreover, collapsing the z-axis 

into binary presence-absence values, as required by the traditional binomial model, 

may not be the most efficient use of the 3D soundscape. For example, the relative 

abundance of soundscape quantities could be used with N-mixture models (e.g. 

Royle, 2004) to investigate how metapopulation dynamics are reflected in acoustic 

assemblages. Lastly, the ASOM framework could also be readily extended to track 

longitudinal dynamics (e.g. MacKenzie et al., 2003).  
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3.5 Conclusion  

Ecoacoustics represents an exciting pathway for routine biodiversity 

monitoring on the scale needed to support the derivation of essential biodiversity 

variables (EBVs). Yet, its operational potential depends on statistical solutions for 

characterizing multiple taxa, handling data complexity, and addressing observation 

bias—methodological criteria that have proven most challenging in biodiverse 

tropical forests (Eldridge et al., 2018; Gibb et al., 2019). By applying our analytic 

framework to a dynamic Amazon forest frontier, we show its potential for meeting 

these objectives while addressing knowledge gaps from chronically under-sampled 

taxa, such as insects. Our findings also underscore important synergies between lidar 

and ecoacoustics for informing models of occupancy and detection, and supporting 

future investigations into the role of habitat structure in shaping habitat use. Our 

flexible framework can be readily extended to other forest types and regional contexts 

to account for observation bias from imperfect detection of forest pseudo-taxa likely 

to be affected by sound attenuation. 
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4 Animal soundscapes reveal key markers of Amazon forest 

degradation from fire and logging3 

 
Abstract 
 
Safeguarding tropical forest biodiversity requires tractable solutions for monitoring 

the impact of human activity on a diversity of ecosystem services. Logging and fire 

reduce Amazon forest carbon stocks and alter forest composition, but the long-term 

consequences of forest degradation for animal biodiversity remain unclear, especially 

for lesser-known taxa. Here, we combined data from diurnal acoustic surveys, 

airborne lidar, and satellite time series covering logged and burned forests (n=39) in 

the southern Brazilian Amazon to identify acoustic markers of degradation, and 

confront the Acoustic Niche Hypothesis (ANH) using an array of statistical and 

network-based analyses. Our findings contradicted expectations from the ANH that 

more structurally intact habitats support animal communities that consistently occupy 

more acoustic ‘niche’ space, even during dawn and dusk chorus. Instead, we found 

biomass was not a consistent proxy for biodiversity recovery, due to soundscape 

differences between logged and burned forests. Going a step beyond cumulative 

occupancy to analyze the topology of animal communication networks provided 

complementary insights into the distinct patterns of biotic assembly following logging 

and fire, and possible taxonomic drivers. Communication networks highlighted a 

stark and sustained shift in community structure after multiple fires: animal 

communities in forests burned two or more times were quieter, less connected, and 

                                                             
3 The research in this chapter was co-authored. Collaborators included Doug Morton, Bill Fagan, Anshuman 
Swain, Andy Royle, Ralph Dubayah, and Matt Hansen. 
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more homogenous than logged or once-burned forests. Broadband cicadas and insect 

choruses characteristic of tropical forests may be driving the dominant time-

dependent acoustic signals of degradation (e.g. mid-morning, noon and nighttime). 

Networks revealed clustering patterns between neighboring sets of pseudo-taxa,  

“cliques,” as well as consistent coordination along degradation and recovery 

trajectories following fire and logging. Soundscape data covering multiple taxa 

highlight large potential biodiversity co-benefits to protecting Amazon forests from 

recurrent fire activity. Complementary species-level and multi-temporal observations 

are needed to further develop acoustic indicators of community composition and 

strengthen ecological attribution to enhance the viability of routine, large-scale 

monitoring of tropical forest biodiversity.  

 

4.1 Introduction 

Biological diversity is disappearing rapidly in response to human activity, 

especially in tropical forests, home to well over half of Earth’s terrestrial biodiversity 

(Gardner et al. 2009).  Global concern over greenhouse gas emissions from tropical 

deforestation and degradation (Van der Werf et al. 2009) has led to international 

efforts such as REDD+. Yet, carbon-focused conservation may not result in a 

commensurate win for tropical forest biodiversity (Ferreira et al. 2018). Quantifying 

these tradeoffs in the tropics is further complicated by the large data gaps on species 

distributions and human impacts on biodiversity (Meyer et al. 2015).  

Addressing the tropical biodiversity crisis therefore requires an efficient, 

distributed monitoring system to assess species abundance and diversity. Traditional, 
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ground-based biodiversity inventories are logistically prohibitive to conduct at scale, 

and limited taxonomic expertise perpetuates large data discrepancies for lesser-known 

taxa, such as insects, which constitute the bulk of tropical biodiversity (Meyer et al. 

2013). Advances in the emerging discipline of ecoacoustics may permit large-scale 

biodiversity monitoring for multiple taxa, including unidentifiable species, based on 

the aggregate sound signature of the animal community, or soundscape (Gibb et al. 

2018).  

The Acoustic Niche Hypothesis (ANH) (Krause 1987) is a core premise of 

ecoacoustics and the chief organizing principle for assessing species richness (Aide et 

al. 2017) and beta diversity (Burivalova et al. 2018, 2019) from sound. The ANH 

posits that more biodiverse habitats should feature finer niche partitioning of 

available transmission space, as described by frequency and time, and thus, greater 

acoustic space occupancy (ASO). The corollary is that more degraded habitats 

support less acoustic infilling due to vacant ‘acoustic niches’ from local species 

extirpations (e.g., Dumyahn and Pijanowski 2011). Ecoacoustics approaches have 

great potential in the hyperdiverse tropics, where competition for acoustic space is 

strongest (Planqué and Slabbekoorn 2008). Still, large uncertainties remain as to 

whether acoustic space infilling can be used as a robust proxy for ecosystem 

intactness to monitor human-altered landscapes (Eldridge et al. 2018). Most previous 

efforts to utilize acoustic data for biodiversity monitoring have focused on detecting 

known vocalizations associated with individual species (Aide et al. 2013), but there is 

broad interest in evaluating whether the collection of all vocalizations and 

stridulations, or soundscapes, may serve as a proxy of ecosystem integrity.  In 
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contrast to previous efforts to measure acoustic diversity using single metrics that 

consider variation in acoustic energy as a function of either time or frequency (e.g., 

Sueur et al. 2014), we evaluated the full diurnal profile of 2D matrices of acoustic 

space use (Aide et al. 2017) from 3-8 kHz to identify the time periods and acoustic 

pseudo-taxa that differentiated degraded forest sites (see Methods).   

The Brazilian Amazon has high rates of forest degradation from fire and 

logging, which may double biodiversity loss from deforestation alone (Barlow et al. 

2016). However, the enormous heterogeneity of degraded forests in terms of canopy 

damage and regeneration complicates our understanding of the cumulative effect of 

fire and logging on animal communities. Time dependence may explain some of the 

apparent contradictions in previous studies of logging impacts on birds, the most well 

studied Amazonian taxa. Insectivores, for example, show immediate sensitivity to 

changes in habitat from logging and continue declining in the long term, whereas 

nectarivores increase in abundance immediately after logging but ultimately decline 

(Burivalova et al. 2015). By simultaneously surveying multiple taxa across multiple 

sites, sound surveys may reduce the effort and cost associated with large-scale and 

long-term monitoring and permit standardized assessments of community-level 

variation and ecosystem condition (Gibb et al. 2018).   

Here, we conducted the first test of the ANH across logged and burned forests 

in the southern Brazilian Amazon to identify acoustic markers of forest degradation. 

We collected coincident high-density airborne lidar data and acoustic surveys in 39 

forests with different times since logging (4-23 years) and histories of fire activity (1-

5 fires) before 2016 to characterize threshold effects and time dependence on the 
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composition and connectivity of animal acoustic networks. We collected 1192.5 

hours of diurnal acoustic recordings during the peak month of bird breeding activity.  

Sites were stratified based on a 32-year time series of annual Landsat imagery and 

coincident, high-density airborne lidar (Rappaport et al. 2018). We used space-for-

time substitution to evaluate the biodiversity legacy of degradation as a function of 

disturbance timing, frequency, and severity. We used two complementary analytic 

approaches to capture the complexity of degraded forest soundscapes. First, we 

calculated ASO for each site at hourly and one-minute time steps to test the ANH and 

to quantify the magnitude, variability, and persistence of shifts in community 

structure following forest degradation. Second, we used a network-based approach to 

quantify system-level patterns of the ‘acoustic guild’ as well as compositional 

differences in acoustic pseudo-taxa, as described by time and frequency. Our findings 

revealed distinct acoustic soundscapes following fire and logging, providing further 

support for the utility of acoustic monitoring despite the complexity of patterns that 

characterize tropical forests and the diversity of biota they support.  

 

4.2 Methods 

4.2.1 Study site 

A 33-year Landsat time series (1984-2017) was used to select 39 sites 

representing the continuum of Amazon forest degradation from fire and logging 

across a 9,400 km2 frontier landscape encompassing the municipalities of Nova 

Ubiritã and Feliz Natal in Mato Grosso, Brazil (11°50'0"S, 55°0'00"W) (Fig. 4-1; 

Rappaport et al, 2018). Logged sites (n=24) were sampled between 4 and 23 years 
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post-disturbance, once-burned sites were sampled between 5 (n=3) and 17 (n=3) 

years post-disturbance, and recurrently burned sites were affected 2 (n=3), 3 (n=3) 

and 5 (n=3) times during the study period. Sites had at least 300 m of uniform 

degradation history and spacing between one another and from the forest edge.  Most 

degradation strata contained three spatially proximate sites to capture the 

characteristic heterogeneity in forest structure at short length scales associated with 

logging infrastructure and fire severity (Rappaport et al., 2018), which we measured 

between 2013 and 2016 using coincident high-density airborne lidar data (≥ 14 

returns per m2) (data available from: www.paisagenslidar.cnptia. 

embrapa.br/webgis/). A regional model calibrated with frontier forests converted 

canopy height estimates from lidar to aboveground biomass (Longo et al. 2016).   

 
Figure 4-1. Triplicate recording sites were installed in 39 locations distributed across 
9,400 km2 in northern Mato Grosso to characterize acoustic communities following 
forest degradation. The three close-up panels show the characteristic variability in 
degraded vegetation as seen from satellite imagery (2014 Landsat, 543-RGB), and the 
distribution of sampling effort designed to capture this heterogeneity.  

Recording locations
Logged
Burned

Legal Amazon Brazil 2

0 1 Km

0 1 Km

0 1 Km

0 7 Km
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4.2.2 Acoustic processing and acoustic space use 

Passive ARBIMON recorders (Aide et al. 2013) were installed at the center of 

each site to survey the acoustic community continuously for one minute every five 

minutes over 2-8 days during September 2016, totaling over 1100 hours of data. 

Acoustic surveys were aggregated into three-dimensional soundscapes (site-level 

summaries of acoustic space use) by binning recordings into frequency (bin size: 

83.13 Hz) and time channels. Two sets of soundscapes were generated based first on 

the native minute resolution and second on hourly resolution. Analyses were 

constrained to frequencies between 3-8 kHz, which represent the greatest spectral 

overlap among birds, insects, and anurans (Aide et al., 2017), and have been shown to 

be most robust to detection bias from acoustic attenuation (Rappaport et al., in 

review). Based on the two scales of aggregation, we evaluated 16992 channels (x-axis 

= 288 minute bins, y-axis = 59 frequency bins) and 1416 channels (x-axis = 24 hour 

bins, y-axis = 59 frequency bins). An amplitude-filtering threshold of 0.2 was used to 

account for abiotic noise when evaluating the occupancy status of each time-

frequency channel (z-axis = binary presence/absence of biotic activity). Acoustic 

space occupancy (ASO) was calculated based on the proportion of occupied time-

frequency channels for each time step (mean ASO for soundscapes at native 

resolution and cumulative ASO for hourly soundscapes). A correlation analysis was 

used to evaluate habitat and ASO relationships at the scale of the day and constituent 

time intervals. 
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4.2.3 Network analyses 

Similar to the acoustic recording analyses mentioned above, network 

construction and analyses were limited to frequencies between 3-8 kHz. We 

constructed weighted bipartite networks with sound frequency bins and sound hour 

bins as two classes of nodes. Frequency bins consisted of 60 nodes (3-8 kHz with bin 

size of 83.13 Hz) and time bins had 24 nodes (each depicting a 1-hour time interval 

during the day). Links between the two classes of nodes depicted presence of a given 

sound frequency bin during a noted sound hour bin and were weighted according to 

average number of observations for the link per day. Two levels of network metrics 

were constructed for each of the 39 sites in the dataset. Global-level analyses 

summarized the overall time-frequency topology of acoustic communication 

networks at a given site (Alatalo interaction evenness, Muller et al. 1999), and local-

level analyses (node/class) unmixed ASO into the constituent elements that drive 

overall differences in network structure and connectivity (clustering coefficient, Watts 

and Strogatz 1998) partner diversity, generality, and vulnerability). The network 

analyses were performed with the aid of the following packages in R: ‘igraph’ (Csardi 

& Nepusz 2006), ‘vegan’ (McGlinn et. al., 2019) and ‘bipartite’ (Dormann et al., 

2008; Dormann, 2011).  

Alatalo interaction evenness measures heterogeneity in interactions across the 

network. Here, we focus on the frequency bins as total n entries, with pk are 

proportions of interactions of bin k, and calculate the metric as: 

 

𝐴𝐼𝐸 =
𝑝!!!

!! − 1
𝑝!
!!

! − 1
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Clustering coefficient can be calculated for the whole network, the class level 

and the node level. Here, we evaluated the clustering coefficient separately for sound 

frequency bins and sound hour bins by averaging the clustering coefficients of all 

nodes in a given class (i.e. rows and columns separately). It refers to the degree to 

which adjacent nodes in a graph tend to cluster together; i.e., if a frequency bin is 

present in two or more time bins, how many other frequency bins also share the same 

and vice-versa. It is based on the idea of triplets (Watts & Strogatz, 1998), which 

consist of three nodes that are joined either via two (open triplet) or three (closed 

triplet) undirected ties. The clustering coefficient is defined as: 

 

𝐶𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑙𝑜𝑠𝑒𝑑  𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠
𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠  

 

Partner diversity (PD) is the Shannon diversity of the number of interactions for a 

given node: 

𝑃𝐷!   =   − 𝑝!   𝑙𝑛(𝑝!)
!

 

where, 𝑃𝐷!" is the partner diversity of node k of a given class, which has m weighted 

connections from the other class of nodes, each of which has a proportion of 

interaction 𝑝! for a node i from the other bipartite node class. This value of PD can be 

calculated as prescribed for a node and then averaged for a given class, weighted by 

their marginal totals – and is termed as generality (when calculated for sound 

frequency bins) and vulnerability (sound hour bins). PD can also be calculated for the 

entire network by weighted average of all the nodes’ PD values (see Dormann, 2011). 
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4.3 Results 

Soundscapes sampled in degraded Amazon forests did not support the ANH 

(Fig. 4-2). Instead, acoustic analyses showed contrasting impacts on community 

structure from two distinct processes of habitat utilization following fire and logging. 

After fire, daily ASO increased with biomass, but did not follow biomass distributions 

after logging. Importantly, ASO-degradation relationships did not hold when stratified 

by hourly time intervals (Fig. 4-2; Fig. S 4-3). 

Insects were the dominant acoustic markers of changing community 

composition in burned forests. ASO during insect-dominated periods of the day (e.g. 

mid-morning, noon, nighttime) strongly differentiated burned forests as a function of 

both biomass (max |r| = 0.9 at 22-23:00) and fire frequency (max |r|  = -0.82 at 20-

21:00), and these time periods governed the overall daily trend (Fig. 4-2; Fig. S 4-1). 

Notably, ASO relationships with biomass and fire frequency were weakest during the 

05:00-06:00 dawn chorus typical of bird surveys (p > 0.05; Fig. 2). In the logging 

case, the only window that exhibited a moderately strong relationship with logging 

age (22:00-23:00; r = -0.61) showed an unexpected decline in ASO with increasing 

regeneration. ASO and biomass in logged forests were not correlated for any time 

period. Relationships between ASO and degradation history were consistent at hourly 

and minute time scales (Fig. S 4-4). 
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Figure 4-2. Patterns of acoustic space infilling do not conform to expectations from 
the Acoustic Niche Hypothesis when evaluated in terms of structural intactness 
(biomass) and degradation history (fire frequency, logging age). The contradictory 
responses to fire (green) and logging (orange) by acoustic communities indicate no 
predictable variability in acoustic space occupancy (ASO) with time since logging, 
despite the important role of degradation history in governing the recovery of 
ecosystem structure. The cumulative proportion of ASO aggregated hourly is 
presented for the full daily cycle and for specific time windows of biological 
relevance for birds and insects to pinpoint the likely taxonomic contributions to daily 
trends.  See Fig. S 4-4 for ASO relationships aggregated at 1-minute resolution. 
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  When considering the full 24-hour cycle, the diurnal signature of acoustic 

space occupancy varied markedly among burned forests as a function of fire history, 

in contrast to the less obvious variation among logged forest soundscapes (Fig. 4-3).  

Similarities in daily ASO curves were observed among logged forests, despite a 50% 

difference in forest carbon stocks, 4-23 years of forest succession, and potential 

impacts of logging infrastructure (e.g. skid trails, tree-fall gaps) on community 

composition (Fig. 4-1).  Acoustic activity peaks were similar in magnitude and timing 

between logged and once-burned forests; both exhibited greater diurnal variability 

and cumulative ASO than recurrently burned forests. Acoustic communities in 

recurrently burned forests occupied the least amount of frequency space during all 

time periods except dusk, which was the most heavily occupied time window for all 

degradation classes (17-18:00). 24-hour soundscapes were least filled at dawn for all 

except the most heavily degraded classes burned 3 or more times.  

Differences in ASO after logging and fire reflect distinct assemblages of 

pseudo-taxa. With the exception of middle range (~ 3.7-5.2 kHz), most frequencies 

were sounded in a greater diversity of hours after logging and a single fire than after 

multiple burns (Fig. 4-4). However, the pseudo-taxa that best differentiated burned 

forests (~3.5 kHz, 6.5-7.5 kHz) were not the same that best differentiated logged 

forests (~4.2 kHz), which was confirmed using a frequency-specific measure of 

diversity, which is comparable to frequency-agnostic ASO (Fig. S 4-1). In the logging 

case, most frequency bins were associated with a higher average diversity of sound 

hours in the lowest biomass class (with only 4 years of regeneration) than in the older 

more structurally intact classes (Fig. 4-4). Surprisingly, between 4 and 10 years of 
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regeneration, logged forests exhibited rapid changes in partner diversity for most 

spectra, which shifted from maximum to minimum values, respectively.  Still, the 

dynamic range among logged classes was much subtle than among burned classes. 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 4-3. Diurnal patterns of ASO reveal a non-linear biological response to 
changes in structure associated with recurrent fire events (orange), and a relatively 
homogenous response to logging, irrespective of post-disturbance recovery (green). 
Mean responses per site are shown on the left and average responses per degradation 
stratum are overlaid on the right. Together, they show consistency within treatments 
and provide comparison across treatments. Sunrise and sunset are indicated with 
dashed lines. 
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Figure 4-4. Mean partner diversity shows the frequency dependence of soundscape 
differences among individual site replicates (left) and degradation strata (right) after 
logging (top) and fire (bottom).  After recurrent burns, there is an overall reduction in 
partner diversity, but the sharpest declines in specific pseudo-taxa do not coincide 
with the strongest source of deviation in an otherwise comparable pattern among 
logged forests. 

 

Years of post−logging recovery 23 18−19 13−15 10 4

3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

0

1

2

3

Frequency (kHz)

Pa
rtn

er
 d

ive
rs

ity

0

1

2

3

3 4 5 6 7 8

Frequency (kHz)

Pa
rtn

er
 d

ive
rs

ity
Number of fire events 0 1 2 3 5

3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

0

1

2

3

Frequency (kHz)

Pa
rtn

er
 d

ive
rs

ity

0

1

2

3

3 4 5 6 7 8

Frequency (kHz)

Pa
rtn

er
 d

ive
rs

ity



 

 106 
 

We identified a breakpoint in community composition between forests burned 

once and forests with two or more fires. A non-linear threshold effect from fire 

recurrence manifested as a sustained reduction in ASO from late morning through late 

afternoon (10:00-15:00; Fig. 3). Notably, differences from initial fire severity were 

also most evident during that same time period, reflecting localized responses by 

acoustic communities, even along short length scales within the same burn scar (300 

m, S 4-5). In contrast to the non-linear shifts observed midday, ASO declined linearly 

with increasing fire frequency around dusk (Fig. 4-2). 

Overall, fire resulted in more missingness across the diurnal soundscape; more 

pseudo-taxa were conserved along the successional gradient of logging damages (Fig. 

4-5).  Soundscape transitions showed distinct patterns of pseudo-taxa loss and 

reassembly along gradients of logging timing, and fire frequency and severity. Many 

of the time-frequency niches that went silent between 4 and 10 years after logging 

were re-occupied between 10 and 23 years. By contrast, soundscapes in burned 

forests showed evidence of major organizational change with increasing fire 

damages; sets of pseudo-taxa were lost and not regained between 1-2 fires and 1-5 

fires. In all transitions, losses and gains were clustered in time-frequency space. One 

large cluster of losses between forests burned 1 and 5 times covered the late morning 

to late afternoon hours (10:00-15:00), the same time period shown in Figure 2 that 

clearly differentiated forests by fire frequency. 
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Figure 4-5. Soundscape transitions show coordinated losses and gains of pseudo-taxa 
after fire and logging as a function of degradation frequency, timing, and severity.  
2D soundscape matrices show distinct trajectories of biotic assembly after fire versus 
logging, and capture localized heterogeneity from burn damages even within a single 
fire, most obvious as coordinated silences during the early morning period. 
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Animal communication networks became more acoustically homogenous with 

increasing fire recurrence. Alatalo evenness, which measures the global spread of 

signals across time-frequency space, increased linearly with increasing fire frequency, 

and within-class variance also declined linearly with each successive fire event (Fig. 

6).  The evenness of sound signals also helped explain variation in successional 

recovery after fire. Alatalo evenness was consistently lower in younger once-burned 

stands than older stands, reflecting an increased dominance of fewer sets of sounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6. The increased evenness of the spread of links from 1 to 5 fires indicates 
that recurrent fire results in a soundscape that is more homogenous and composed of 
fewer dominant and rare links. The non-linear patterns of evenness with increasing 
regeneration after logging are not clearly differentiated by logging history. 

0.65

0.70

0.75

0.80

0 1 2 3 4 5
Fire frequency

Al
at

al
o 

in
te

ra
ct

io
n 

ev
en

ne
ss

0.68

0.72

0.76

0.80

5 10 15 20
Years since logging

Al
at

al
o 

in
te

ra
ct

io
n 

ev
en

ne
ss

0 (logged)
1 (old)
1 (recent)
2
3
5



 

 109 
 

Multiple fire events led to a restructuring of animal communication networks in 

Amazon forests. Local-scale network metrics, like clustering coefficient, offer a more 

synthetic understanding of the component processes that drive system-level patterns, 

including evenness and ASO, by tracking the ‘cliquishness’ of adjacent pseudo-taxa 

and formation of closely clustered sound groups. The large drop in the frequency 

cluster coefficient between once and twice-burned forests was consistent with a 

disintegration of time-synchronized cliques (Fig. 4-7). The subsequent increase in the 

frequency cluster coefficient from 2 to 5 fires involved the formation of cliques at 

new frequencies, rather than a replacement of cliques that were lost between 1 to 2 

fires. By contrast, network properties after logging were more suggestive of 

community-level recovery than reorganization. A decline in evenness and the 

clustering coefficient of sound hours and sound frequency bands between 4 and 10 

years of recovery after logging provided further indication of possible time-dependent 

or disturbance-dependent shifts in community assembly. 
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Figure 4-7. The clustering of adjacent nodes, as indicated by the cluster coefficient at 
the level of sound frequencies (top) and sound hours (bottom), shows that fire 
recurrence directly affects the connectedness of the soundscape and the likelihood 
that adjacent pseudo-taxa coordinate activity as part of a larger clique. 

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5
Fire frequency

C
lu

st
er

 c
oe

ffi
ci

en
t (

sp
ec

tra
)

0.5

0.6

0.7

0.8

5 10 15 20
Years since logging

C
lu

st
er

 c
oe

ffi
ci

en
t (

sp
ec

tra
)

0.4

0.5

0.6

0.7

0.8

0 25 50 75 100 125

Biomass Mg C ha−1

C
lu

st
er

 c
oe

ffi
ci

en
t (

sp
ec

tra
)

0 (logged)
1 (old)
1 (recent)
2
3
5

0.5

0.6

0.7

0.8

0 1 2 3 4 5
Fire frequency

C
lu

st
er

 c
oe

ffi
ci

en
t (

ho
ur

s)

0.70

0.75

0.80

0.85

5 10 15 20
Years since logging

C
lu

st
er

 c
oe

ffi
ci

en
t (

ho
ur

s)

0.5

0.6

0.7

0.8

0 25 50 75 100 125

Biomass Mg C ha−1

C
lu

st
er

 c
oe

ffi
ci

en
t (

ho
ur

s)

0 (logged)
1 (old)
1 (recent)
2
3
5



 

 111 
 

4.4 Discussion 

 
Tropical forest soundscapes revealed strong and sustained shifts in animal 

community composition following fire and a decoupling of biotic and biomass 

recovery following logging. Animal communities in more degraded habitats did not 

consistently have more gaps in acoustic niche space, providing limited evidence for 

the Acoustic Niche Hypothesis (ANH). When disaggregated by hour, the most 

obvious acoustic markers of degradation coincided with insect-dominated periods of 

the day (e.g. midday, nighttime), yielding important insights for ecosystem 

monitoring. Network analyses unmixed the composite soundscape signal to better 

understand the ecological processes that that contributed to patterns of missingness 

and reorganization of the soundscape. The acoustic signatures of degraded 

Amazonian forests featured both time-dependent impacts and thresholds from human 

activity. The imprint of logging recovery was most evident in the short-term, reflected 

in the loss and subsequent recovery of acoustic pseudo-taxa. Degradation from fire 

had lasting impacts on community reassembly: after multiple fires, soundscape 

networks became quieter, less connected, and more homogenous. 

We conducted the first test of the ANH in logged and burned Amazon forests, 

and did not find a consistent positive relationship between ASO and habitat intactness 

along the day or the sampled range of degraded forest conditions. In burned Amazon 

forests, ASO varied with residual aboveground biomass, and thus, with fire 

frequency, severity, and timing, with the strongest linear relationships during 20:00-

23:00.  By contrast, the daily patterns of ASO in logged forests showed non-linear 

responses to habitat; structural differences from logging damages and recovery do not 
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generally translate into predictable linear changes in ASO. Our findings provide at 

best meager support for the ANH. Though we cannot ascertain absolute magnitude of 

ASO change because of the absence of remaining intact forests in our study region, 

ANH predicts a positive linear relationship between ASO and habitat intactness 

throughout the day and across the full range of state space (from degraded to intact), 

including this limited domain that lacks an intact reference. Importantly, acoustic data 

provide an opportunity to work with full annual datasets to account for variation from 

phenology. Future work should evaluate these relationships outside of the targeted 

breeding bird period to test ANH during the wet season when sensitivity to anurans is 

higher.  

One explanation for the observed decoupling of ASO and habitat condition in 

degraded Amazon forests is that a diversity of mechanisms are important for 

structuring the soundscape in the short-term as organisms adapt to changing 

environmental constraints, such as for thermoregulation, predator avoidance, and 

transmission efficacy (Rabin and Greene 2002). Field-based analyses of the dawn 

chorus in Amazon forests found that avian species from related lineages use 

overlapping signals in time-frequency space to mediate communication and help with 

defending resources and territories (Tobias et al. 2014). However, birds are only a 

minor component of the soundscape (Aide et al. 2017), and there are numerous 

mechanisms that structure ASO, especially during time periods when insects 

dominate acoustic niche space. Broadband cicada stridulations and multi-taxa insect 

choruses leave some of the most obvious imprints in the Amazon forest soundscape. 

Cicadas, which often overlap spectrally, instead stratify acoustic space vertically from 
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the canopy top to the ground to minimize signal masking (Sueur 2002, Schmidt, 

Römer, and Riede 2012). Consequently, individual cicada species have evolved to 

occupy narrow thermal niches based on structural position, which may make them 

immediately responsive to fine-scale changes in structure (Sueur 2002, Schmidt, 

Römer, and Riede 2012). Furthermore, the onset of the noisy cicada chorus is 

governed by temperature conditions, and it, in turn, governs acoustic activity by other 

species (Stanley et al 2016).  It follows, then, that the same features that make insect 

choruses obvious markers in the acoustic record may also help explain why they 

contribute more than birds as the dominant acoustic signal of Amazon forest 

degradation. This may also help explain why forest disturbances appear to strongly 

affect the modularity of soundscape networks and interactions among sound sources. 

The time-resolved periods of greatest habitat separability highlights the 

potential value of arthropods as acoustic indicators of change. After dusk, ASO in 

burned forests declined linearly with increasing fire frequency. The persistence of this 

pronounced signal from nightfall through early morning (18:00-1:00) makes it 

unlikely to be due to changes in bird-dominated dusk choruses. In Papua New 

Guinea, acoustic activity peaks associated with dawn and dusk bird choruses were the 

most effective predictors of habitat intactness (Burivalova et al. 2017). However, such 

peaks disappear in response to even moderate perturbations to forest cover 

(Burivalova et al. 2018), and thus they may have limited utility in differentiating 

among more heavily degraded forests. In Borneo, nighttime activity was one of the 

most conspicuous acoustic markers of degradation; logged forests were considerably 

noisier at night than never-logged forests, which Burivalova et al. (2019) 
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hypothesized may be due to an influx of generalist nocturnal species following 

logging. Likewise, here, the only strong linear relationship between ASO and time 

since logging was at night (22:00) and nighttime ASO was greater in the more 

degraded logged forests. 

Although network analyses have not previously been applied to acoustic data, 

we demonstrate that frequency-specific and clustering metrics from network theory 

complement existing tools in ecoacoustics research. Network analyses revealed a 

coordinated gain and loss of sets of sounds that represent distinct patterns of biotic 

reorganization in repeatedly burned Amazon forests. For example, compared to once-

burned forests, twice-burned forests feature further declines in acoustic pseudo-taxa 

and the loss of time-synchronized ‘cliques’ of spectrally similar sounds broke apart, 

most obviously at midday. The subsequent transition, involving an increase in ASO 

from 2 to 5 fires, is of a fundamentally different character, as new spectral cliques 

appeared, which coincided little with the acoustic niches lost between 1 to 2 fires 

(Fig. 4-7). By tracking the coordinated gain and loss of adjacent pseudo-taxa, the 

cluster coefficient may be a useful proxy for biological mechanisms that occupy 

broad swaths of soundscape space, such as interacting sets of taxa (e.g. insect 

choruses) or individual taxa with broadband signals (e.g. cicadas); both appear to be 

conspicuous markers of degradation in this study region. The spectral-temporal 

incongruence of acoustic guild composition in forests subjected to 1-5 fires may 

reflect distinct extinction filters that result in successional divergence and novel biotic 

assemblages after each recurrent fire event (Arroyo‐Rodríguez et al. 2017). However, 

complementary information is needed to unequivocally attribute spectral-temporal 
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features to specific incidents of species gain and loss at the soundscape scale. 

Furthermore, the linear relationship between Alatalo evenness and fire frequency 

confirms that ASO loss after fire is an indicator of increasing biotic homogenization. 

By contrast, the nonlinearity in the structure of communication networks after 

logging appears to reflect community recovery rather than reorganization. Like fire, 

logging damages also reduced the clustering tendency of pseudo-taxa and partner 

diversity per sound frequency band, but only in the short term. Furthermore, the 

sound frequency bands that differentiated logged forest classes were distinct from 

those that best differentiated burned forest classes. In the absence of intact reference 

landscapes for comparison, we cannot rule out extensive recovery of the acoustic 

community during the period of regrowth prior to sampling. However, our lidar 

measurements in nearby protected forests show a nearly 40% reduction in biomass in 

logged forest even after 4 years of recovery (Rappaport et al. 2018), suggesting a 

sizable, lingering effect of logging on ecosystem condition. Furthermore, we see 

substantial time-dependent shifts in network structure between 4 to 10 years after 

logging, followed by increased soundscape homogeneity between 10 and 23 years, 

which may be evidence of time-lagged responses and subsequent payment of 

extinction debt (Rappaport et al. 2015).   Several obvious pseudo-taxa appear and 

disappear with logging recovery (~ 4 kHz); however, most pseudo-taxa are conserved 

during recovery (4-23 years post-disturbance) (Fig. 4-5).  

By pinpointing the changing dominance and identity of acoustic communities, 

soundscapes provide a much needed alternative to biomass as a metric of forest 

community impact, and a promising avenue for routine monitoring of biodiversity 
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over time (Su et al. 2004, de Castro Solar et al. 2016, Hillebrand et al. 2018). The 

acoustic community may be a particularly promising surrogate of biodiversity that 

satisfies the need for metrics of community composition (i.e., similarity, turnover) 

instead of species richness as indicators of forest disturbance (Su et al. 2004, de 

Castro Solar et al. 2016, Hillebrand et al. 2018). Soundscapes are likely to be more 

inclusive surrogates of biotic communities than species-specific field surveys (Aide et 

al. 2017), and appear to register differences in functional diversity within shorter 

sampling periods than estimates of species diversity in the Amazon (de Camargo et al. 

2019). Furthermore, based on likely co-evolving feedbacks between acoustic 

composition and floristic composition, acoustic sensor networks may provide insight 

into the time scales of community recovery. Recent findings from a multi-year study 

in the Amazon confirms our space-for-time assessment by identifying soundscapes as 

long-term “memory banks”, which may register habitat alterations as enduring 

acoustic imprints even years after the initial disturbance (de Camargo et al. 2019). 

Permanent acoustic monitoring stations represent a cost-effective solution for 

longitudinal monitoring to enable operational continuity. Future research should 

evaluate whether soundscapes can be mined for early warning signals of impending 

compositional reassembly following habitat modification as might occur through 

extinction debts and colonization time-lags (Rappaport et al. 2015).  

Further elucidation of the links between soundscape structure, species 

composition, and floristics will help us better understand what drives the breakpoint 

following recurrent fire events, and further investigate time-scales for recovery. 

Furthermore, we recommend that future sampling campaigns consider co-deploying a 
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rainfall monitoring system to account for false positives from abiotic noise to meet 

the statistical assumptions for modeling observation bias. We opted not to statistically 

correct for detection bias because of the technological challenges in filtering out rain-

contaminated recordings, so we restricted our analysis to the spectral domain with 

lowest likelihood for acoustic attenuation (Rappaport et al., under review).  
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4.5 Supplemental Materials 

 

 

Figure S 4-1. Companion figure to Fig. 4-2, which shows consistent results with 
ASO-based analyses. Partner diversity of hours is shown for key time intervals, along 
with the system-level network analog, generality, which shows the mean number of 
sounds per hour calculated at the daily time step.
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Figure S 4-2. The mean number of links per frequency (generality) and per hour 
(vulnerability). 
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Figure S 4-3. ASO-degradation relationships aggregated hourly for the 24-hour 
cycle.
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Figure S 4-4. Comparison of correlations show comparable ASO-degradation 
relationships irrespective of scale of aggregation (hourly vs. minute). 
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Figure S 4-5. Raw soundscape matrices aggregated at the minute level for an 
example range of logged (top) and burned (bottom) forests stratified by degradation 
strata (columns) and site replicate (row). For each time-frequency cell, the sum of the 
amplitude of detected activity peaks is calculated across the entire survey period. 
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5 Research Synthesis and Future Directions 

 

Abstract 
 

In this final chapter, I synthesize the combined set of results from my 

dissertation research (Chapters 2-4) and its broader significance for the carbon 

cycling and conservation communities. I discuss future avenues to improve and build 

upon this research to support enhanced monitoring capabilities of ecosystem 

degradation in the carbon-rich, biodiverse tropics. The novel synergies from lidar and 

ecoacoustics confirm the long-term legacy of forest degradation on both forest 

structure and animal communities in frontier Amazon forests. Looking forward, 

monitoring approaches that provide repeat measurements may further refine our 

understanding of the breakpoints that drive the loss and regeneration of carbon and 

biodiversity in degraded Amazon forests.  

 

5.1 Research synthesis, significance, and next steps 

 
Widespread Amazon fire activity in 2019 highlighted the incredible 

vulnerability of Amazon forests to further degradation, making this dissertation as 

timely now as when it began. The synergy of land-use pressures and climate change 

constitutes a chronic threat to Amazon forests (Le Page et al. 2017). Economic 

conditions drive fire activity, and climate conditions govern the risk of land-use fires 

escaping into neighboring forest areas. Frontier forests along the leading edge of 

agricultural development in southern Amazonia—where fire ignitions are 
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concentrated and seasonality is most pronounced—may help us predict trajectories of 

tropical forests in a hotter, drier, economically uncertain future. Routine ecosystem 

monitoring is needed to constrain our understanding of threshold conditions from 

human degradation that threaten to drive Amazon forests into alternative steady state 

systems (Brando et al. 2019).  

In this dissertation, I present three complementary lines of evidence to better 

understand the nature of frontier landscapes. Chapters 2-4 present an innovative, 

multi-sensor perspective on the time-varying changes in the structure of forests and 

acoustic communities based on high-density airborne lidar, 11000 hours of acoustic 

surveys, and annual time series of Landsat data to characterize the forest degradation 

process over time. Together, these studies provide a unique look at the distinct 

ecosystem effects of fire versus logging (Chapters 2, 4), degradation persistence and 

the correspondence between biomass, habitat and biodiversity recovery following 

degradation (Chapters 2-4), and finally, the interactions between sound and structure 

that reflect community composition and influence detection (Chapter 3).  

 

5.1.1 The ecosystem legacy of forest degradation  

The combined set of results is based on a comprehensive survey of burned and 

logged forests in terms of the structural diversity present across frontier Amazonia. 

First, I wanted to know how much of this structural diversity among degraded forests 

relative to intact forests was driven by historical differences in forest degradation 

(Chapter 2). Second, I evaluated whether forest structure can be used to predict the 

diversity of acoustic community assemblages, and simultaneously, failure to detect 
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animal-generated signals (i.e. attenuation) (Chapter 3). Last, I used sound to 

supersede my understanding from structure alone in order to probe differences among 

community assemblages as a function of forest degradation (Chapter 4). Together, 

these findings may help us plan for likely changes from fire activity, and evaluate 

possible pathways for mitigating degradation impact.  

Fire, in comparison to logging, poses the greatest risk to forest carbon stocks 

and biodiversity along the Amazon arc of deforestation. The frequency of Amazon 

forest fires is the single most important factor governing the spatial heterogeneity and 

recovery of carbon stocks, canopy structure, and acoustic diversity after human 

degradation. Recurrent fire turns Amazon forests into simplified, carbon-poor 

ecosystems. Forests burned multiple times may lose as much as 90% of their carbon 

stocks, and 95% of their original canopy tree clusters (Chapter 2). Chapter 2 estimates 

that the carbon mitigation potential of avoiding just one additional fire in a previously 

burned forest is equivalent to retaining a third of intact forest carbon stocks. 

Furthermore, detection of acoustic signals is heavily skewed by fire, as evidenced by 

Chapter 3, which predicted strongest relationships between detection likelihood, 

biomass and the standard deviation of shrub returns, a proxy for low fractional tree 

cover after recurrent fire. Furthermore, animal communication networks become 

quieter, less connected, and more homogenous after multiple burns (Chapter 4). By 

all accounts, fire damages become increasingly worse with each successive fire event 

(from 1-5 fires), but I identified a critical ecosystem breakpoint after the second fire. 

The set of taxonomically inclusive acoustic measurements used in Chapter 4 suggests 

major community reassembly after a once-burned forest becomes exposed to an 
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additional burn. Combined, these results highlight large possible benefits to 

protecting Amazon forests from recurrent fire activity in the face of worsening 

Amazon drought and human ignitions.   

The immediate effects of a single burn appear somewhat comparable to the 

effects of logging from a carbon perspective, but they clearly differ in magnitude 

from a habitat and biodiversity perspective. Within the first year of regrowth, once-

burned and logged forests lose an average of 54% and 45% of aboveground carbon 

stocks, respectively (Chapter 2). Habitat differences are more pronounced; more than 

twice as many residual large canopy tree clusters are retained immediately after 

selective logging than fire. These habitat differences strongly influence the 

composition of the acoustic guild (Chapters 3-4). Once-burned and logged forests are 

comparably noisy, but the acoustic communities are active in different time and 

frequency ranges, suggesting different community assemblages (Chapter 4). 

Accounting for the time-integrated effects of degradation is necessary to 

estimate the net ecosystem benefits from avoided degradation. By modeling the loss 

and recovery of Amazon forest carbon stocks for specific Amazon forest degradation 

pathways along 1- to 15-year time horizons, this dissertation provides the first 

comprehensive assessment of carbon emissions factors from fire and logging. The 

slow recovery of degraded carbon stocks over time suggests that omitting degradation 

from national carbon accounting frameworks, as has been done to date (see Hargita, 

Günter, and Köthke 2016), risks underestimating carbon emissions, and compromises 

mitigation outcomes. Furthermore, by tracking the loss and recovery of complex 

canopy structure, this dissertation shows that lidar may also provide quantitative 
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estimates of ecosystem co-benefits, an important but poorly established component of 

REDD+ MRV. 

The three sets of results show that the time-dependent effects of degradation 

on biomass do not necessarily coincide with the recovery patterns of canopy structure 

and biodiversity. Chapter 2 suggests that carbon stocks may recover faster than 

biodiversity during the first two decades after degradation, based on the slower 

recovery of emergent trees and other habitat characteristics critical for biodiversity. 

Chapter 3 models soundscapes with information about biomass, while Chapter 4 

highlights the need to confront acoustic data with additional information about 

degradation history. The flexibility afforded by the hierarchical model introduced in 

Chapter 3 allowed us to separate apart the detection and ecological processes that 

give rise to differences in soundscape samples. Interestingly, biomass was not 

selected as a predictor of acoustic space occupancy, but was selected for detection. 

Chapter 4 offers one reason for why this might be by showing that degradation 

mediates the relationship between acoustic space in-filling and forest in-filling (i.e. 

biomass), as biomass was not a reliable predictor of biodiversity following logging, 

only fire. This dissertation offers compelling evidence that soundscapes may provide 

a much-needed alternative to biomass as a metric of forest community impact that can 

be measured over time. 

Lastly, differences in initial fire severity leave a clear and lasting imprint on 

both habitat structure and acoustic community structure (Chapters 2, 4). High-severity 

fires that burn during the day leave a larger and longer lasting imprint on ecosystem 

structure when compared to slower burning nighttime fires. This has important 
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implications for fire management, including the allocation of fire brigades to 

minimize fire damages.  Carbon losses may vary by as much as 15% depending on 

when fire damages are incurred, and such differences from initial severity are 

preserved through time (Chapter 2). Acoustic measurements also reflect localized 

differences in animal community responses to initial burn severity, even within a 

single stand (Chapter 4).  

Assuming worsening drought conditions, this research portends potential 

catastrophic consequences in the absence of improved fire management. It uses 

multiple lines of evidence to identify critical ecosystem thresholds associated with 

fire, and possible low-hanging fruit in terms of mitigation pathways that would yield 

large returns for both carbon storage and biodiversity. It shows that full accounting of 

the cumulative effect of human degradation requires a multi-sensor perspective that 

controls for degradation type, recurrence, severity, and recovery. 

 

5.1.2 Making the most of acoustic data for biodiversity monitoring 

Remote audio recordings hold great promise for routine monitoring of tropical 

forest biodiversity. The innovative analytical techniques used in this dissertation 

revealed fine-scale differences associated with human activity, representing new, cost-

effective pathways for estimating biodiversity variation over traditionally unavailable 

scales. Furthermore, this dissertation reveals novel synergies between ecoacoustic and 

lidar data. Chapter 3 draws upon such synergies to capture aspects of the physical 

interactions between sound and structure to model acoustic community structure and 

acoustic attenuation. Chapter 4 combines these datasets within an ecological 
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framework to identify acoustic markers of biotic communities along the structural 

spectrum of degraded forests.  

During the course of this dissertation, I discovered three distinct and 

promising pathways for disciplinary crossover, which all merit further investigation: 

First, this dissertation indicates that hierarchical models provide a path 

forward for handling observation bias in soundscape studies. It introduces a novel 

soundscape analysis framework based on occupancy modeling, an approach 

traditionally developed to account for bias in species-level surveys, applied here to 

multi-dimensional soundscapes for the first time (Chapter 3). It shows that presence-

absence modeling may help address several key limitations of present-day 

soundscape analysis methods by providing more rigorous accounting of observation 

bias, including frequency-dependent sound attenuation. The resulting model from this 

research has broad applicability to diverse circumstances to account for imperfect 

detection of sound-producing animals. Results from the case study application of the 

model confirmed that the likelihood for detection failure varies as a function of 

vegetation structure and signal frequency, and it demonstrates a new promising 

application of airborne lidar for modeling these interactions. Additionally, this 

research advances methods for predicting variation in 2D acoustic community 

structure based on 3D forest structure. The analytic framework introduced in this 

study models variation in community composition without species ID by abstracting 

the acoustic fingerprint of a site into predictable ‘pseudo-taxa’ using habitat metrics 

from lidar. Furthermore, this framework supports inferences into taxa-specific 

responses to environmental variability, including chronically under-sampled and 



 

 135 
 

poorly identifiable taxonomic groups (e.g. insects). Lastly, application of the 

occupancy model reveals helpful insight for the ecoacoustic community, supported by 

physics, on the spectral ranges of ‘pseudo-taxa’ that are likely to be most robust to 

attenuation in the absence of formal statistical correction in in degraded tropical 

forests (3-8 kHz), and it provides a flexible framework for evaluating detection 

probability in other ecosystem contexts with distinct habitat constraints on sound 

transmission. 

Chapter 3 provides a clear confirmation of detection bias in tropical forests 

based on structure, but it is clear that the occupancy modeling solution that it 

proposes for addressing observation bias cannot be applied at scale without improved 

methods for screening abiotic noise from wind and rain. To meet model assumptions 

in Chapter 3, I had to discard all detected instances of rainfall, which equated to over 

50% of all recordings—a huge loss of hard-fought data. These issues with rain may 

be comparable to the constraints imposed on optical sensors from variation in cloud 

coverage. Still, they need to be addressed, either through improved instrumentation or 

automated screening of rainfall.  Furthermore, isolating the biotic fraction of the 

soundscape is critical for making accurate biological attributions to soundscape 

differences. I did not find any justifiable methods to automate rain detection, so I 

developed my own machine learning-based model to be able to screen through the 

thousands of hours of recordings for the presence of rain spectra using algorithms 

originally developed to detect species-level spectra (Aide et al. 2013). In Chapter 3, I 

used conservative criteria to search for rainfall to ensure 0% false negatives at the 

known cost of generating a higher rate of false positives (7%). A post-hoc 
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investigation of the machine learning rain model confirmed curious temporal 

incoherence in detected rainfall from surveys sampled within 300 m of one another. 

Later on, through attempting to model the 2D soundscapes surfaces using mixture 

modeling, we discovered this mismatch was linked to spectral confusion with certain 

insect stridulations. Using the occupancy model from Chapter 3 to drive the analyses 

in Chapter 4 would have omitted valuable biologic content. Given these technological 

challenges in filtering out rain-contaminated recordings, we opted not to use the 

modeled results in Chapter 4 so we could utilize all recordings for our ecological 

analysis and keep the insect component of the soundscape intact.  Instead, Chapter 4 

incorporates the learning about the role of structure in sound attenuation by targeting 

the frequency bands with the lowest predicted likelihood of detection bias from 

interference with structure (3-8 kHz). As a general recommendation, future sampling 

campaigns should consider co-deploying a rainfall monitoring system to better 

account for acoustic contamination from rain, in order to conform to the statistical 

assumptions for modeling observation bias with occupancy models. 

Additionally, this dissertation made two other cross-disciplinary 

methodological contributions by translating concepts from surface modeling and 

network theory to characterize the 3D structure of the “acoustic fingerprint.”  Since I 

came to ecoacoustics at the start of this dissertation from a lidar-based perspective, 

what seemed most intuitive to me was to search for ways to exploit the space-filling 

properties of sound in a similar way that lidar captures the space-filling properties of 

light to retrieve volumetric measurements. I pursued these two additional approaches 

to capture different aspects of the 3D richness of the soundscape (or perhaps “sound 
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cloud” is more germane in this context) to extend beyond frequency-agnostic 

measures of occupancy and pinpoint the specific acoustic pseudo-taxa that drive 

differences in overall ASO. Both approaches warrant additional investigation, 

although the first is more complicated and parameterized, and probably less tractable 

than the second. 

The first approach aimed to compare hotspots of acoustic activity in time-

frequency space by modeling the 2D soundscape surface with a bivariate mixture 

modeling approach originally developed for angular wind data (Chakraborty and 

Wong 2017, Figs. 5-1, 5-2). Before subsequently shifting my focus to networks, I 

pursued this approach to try and find a set of synthetic metrics that could allow me to 

quantitatively compare 2D soundscapes across my sampled diversity of degraded 

forests, while preserving information about time- and frequency-dependence. 

Comparing the locations and spread of acoustic activity modes derived from the 

modeled soundscape surfaces along degradation recovery pathways revealed some 

intriguing early results that conformed to certain aspects of our understanding of 

degradation history (Fig. 5-1). Based on the performance of the model fits from the 

preliminary results, this approach warrants further investigation in future research. 

However, it still needs additional testing and validation for ecological analysis and 

was therefore too complicated to be justified within the immediate context of this 

dissertation.  In particular, parameters governing how to standardize for the optimal 

number of components, which we determined with approximate Bayesian methods 

and an automatic incremental fitting procedure (Chakraborty and Wong 2017), would 

need to be carefully refined to provide robust, repeatable information about acoustic 
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community composition. In certain instances, activity modes that appeared distinct 

from visual inspection (e.g. from temporally distinct choruses) were at times modeled 

with the same component mixture, and vice versa—which relates to the persistent 

issue of ‘lumping and splitting” common to classification and clustering problems in 

ecology. Still, one reason why acoustic activity modes might be informative and 

worth exploring is that tracking modes, “activity hotspots,” makes us more sensitive 

to large adjacent clusters that occupy large swaths of acoustic space (i.e. cicadas, 

multi-taxa insect choruses), which network clustering results from Chapter 4 point to 

as a useful indicator of forest degradation from fire. Lastly, I pursued this approach 

after developing a more complete appreciation for the limitations around rain 

contamination so I am also intrigued by the possible value of modeling soundscape 

surfaces to smooth over spurious abiotic elements, like wind and rain. 
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Figure 5-1. Modeled peaks of acoustic activity from mixture model analysis (mean 
+/- sd) of burned (top) and logged (bottom) sites (distinct color per site) show the 
appearance and disappearance of pseudo-taxa, conforming to our understanding of 
degradation history.  
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Figure 5-2. These two examples of soundscape predictions from the mixture model 
for two spatially proximate replicates within the same logging class (15 yr) indicate 
that the modes of the predicted soundscape surface do not consistently conform with 
our visual inspection, which suggests further testing needs to be done to standardize 
optimal selection of component mixtures, which curiously varied between 4 and 7 in 
the examples shown above.  
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Ecological network theory offered a more tractable framework for analyzing 

the 2D soundscapes to characterize variation in the acoustic guild while preserving 

time- and frequency-dependence to understand the component elements of presence 

and absence that explain differences in ASO. Ecological network theory was 

originally developed to understand predator-prey relationships, but this dissertation 

demonstrates its utility for characterizing the topology of acoustic communication 

networks. Networks offered a more synthetic understanding of the coordinated 

behavior of sound signals that may reflect differences in biotic assembly after forest 

degradation. There are hundreds of local- and global-level network metrics that may 

be applied to soundscape analysis. With further investigation, it is possible that 

additional network metrics could be applied to acoustic data to further elucidate the 

potential of networks to track compositional change through objective acoustic 

records of biodiversity responses through time.  

The different analysis approaches in this dissertation offer varying levels of 

biologic interpretability. I found that the amount of acoustic space used by animal 

communities is a helpful predictor of residual biomass after fire (ASO). Going an 

additional step beyond that, network-based analyses allowed me to probe the driving 

factors that give rise to differences in ASO  (e.g. interactions among adjacent pseudo-

taxa,  “cliques”). This enables greater biological interpretation of the soundscape than 

what was possible with ASO alone, but it does not allow us to identify or inventory 

sound producers for biological attribution. In future research, it may be possible to 

access species-level information from the existing recordings. This would necessitate 
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the use of library recordings or expert interpretation, likely in conjunction with 

additional field campaigns.  

Continued investigations that link ecoacoustic and traditional field 

observations may provide further support for avoided degradation if evidence of 

changing soundscapes reflect local extirpations of specific avian, amphibian, or insect 

species. One goal of this dissertation was to use as much of the acoustic data as 

possible. To this end, I developed modeling frameworks and analytic techniques that 

covered the full soundscape and evaluated community composition through the lens 

of pseudo-taxa, rather than species. These analyses yielded important new insights 

from the perspective of the ‘acoustic guild’.  For example, the network-based 

perspective from Chapter 4 showed that different spectra differentiate once-burned 

forests from recurrently burned forests based on the diversity of sound hours in which 

they occur, but this finding may be even more useful from an ecological standpoint if 

we can ascribe the variation in sounds at specific frequencies to the loss of particular 

taxa.   

The chronosequence of soundscapes that I collected could help generate 

further insights into the legacy effects of forest degradation in conjunction with 

additional data. For example, multi-temporal observations from repeat visits and 

inter-seasonal surveys could be used to build upon my limited chronosequence of 

logged forests (sampled after 4-23 years of regeneration) to further constrain our 

understanding of the necessary time-scales for recovery, which this dissertation 

indicates biomass may not be an effective proxy for (Chapter 4). Additional 

information is needed to elucidate the non-linearity that we identified between ASO 
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and logging age, and whether the consistent shift between 4 and 10 years after 

logging (across both ASO and network measures), is evidence of time-lagged 

recovery, or whether our understanding is being confounded by idiosyncrasies among 

replicates, which are limited in number and contain possible sources of unaccounted 

variation (e.g. logging severity, lianas/bamboo invasions, etc.). For example, one of 

the biggest curiosities that stood out for me during my several months of field work 

examining these forests from the inside was why liana and bamboo invasions were 

found in some logged forests but not others, something that was not readily apparent 

to me based on differences from logging age and structure alone. Further 

investigation should confirm whether there are co-evolving feedbacks between 

floristic composition and acoustic composition that could help us further understand 

successional processes after degradation (e.g. liana invasion/arrested succession) and 

anticipate bottlenecks driven by local extirpations of seed dispersers and pollinators. 

Lastly, I planned my field season to correspond with the end of the dry season to be 

able to specifically target breeding birds. Revisiting my field sites during the rainy 

season would help us confirm whether ANH is better supported with increased 

sensitivity to anurans. 

The lack of an intact reference soundscape is a clear limitation of this 

investigation, but a constraint that is unfortunately common across many tropical 

frontier regions, where intact refugia are scarce. Furthermore, given the practical 

constraints to working across this complex landscape, I could not account for 

differences in matrix configuration, forest fragment size, or connectivity, which are 

all important drivers of biodiversity variation across both space and time, as I have 
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investigated previously (e.g. Rappaport et al. 2015), and most likely introduced some 

confounding elements into my space-for-time survey design that I could not account 

for.  

Lastly, this dissertation points to potential indicators that may be useful for 

rapidly assessing the degradation status of burned forests, but additional data is 

needed to evaluate robustness across different regions, seasons, etc.  Given the 

obvious synergies between conservation and forest management, it would be 

interesting to deploy ecoacoustic devices in logging concessions with known levels of 

harvesting intensity, to inform “best practices” guidelines, or to establish permanent 

acoustic sensor networks in field studies with permanent floristic inventory plots to 

ensure longitudinal continuity.  

 

5.2 Scaling up my understanding of forest degradation in future work 

5.2.1 To inform management 
 

I envision several research opportunities to build upon this work in order to 

extend our understanding of the cumulative effects of degradation across broader 

scales. Originally, when I started thinking about the possibility of a fourth chapter at 

the start of this dissertation, I imagined linking the discrete lidar and acoustic 

observations with continuous satellite information to extend our understanding of the 

differences between logged and burned forests to the regional scale. Since then, I 

have learned a lot about the complexity and heterogeneity of frontier forests. Chapter 

4 shows strong relationships that link fire history (timing, severity, and frequency) 

with soundscape structure. However, the story around logging is much more 
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nebulous; I could not find a justifiable predicable relationship to explain the full 

heterogeneity of frontier forest soundscapes with degradation history alone. Based on 

this learning, what would now be more immediately interesting to me would be to 

focus instead on scaling up our understanding of the cumulative effects of Amazon 

fire, the most obvious marker of change, to the landscape scale. Specifically, I think it 

would be interesting from both a science and conservation/management perspective 

to conduct a scaling study in the adjacent landscape, the Xingu Indigenous Park, 

which is the last remnant of large intact forest refugia in this region, a critically 

important landscape in this region with undeniable conservation value. In Chapter 2, I 

sampled intact forests from the Xingu using lidar to measure the relative magnitude 

of structural changes following fire; however, I was not able to acquire the necessary 

sampling permissions to physically access the park during my field campaign to 

sample acoustic data from the ground. It would be interesting to make predictions 

over this landscape for a number of reasons. For one, this landscape has an extensive 

history of repeated burning, and it appears to have been much less affected by 

logging. An improved understanding of how this remaining stronghold of contiguous 

Amazon forest has been affected by repeated fire disturbance could help us better 

plan for and respond to likely changes in fire risk. Given what I know now about the 

importance of fire frequency in shaping habitat structure and habitat use, I have more 

reason to believe that the long history of fire and indigenous land management 

practices that has been traced back to prehistoric times in the Xingu (Schwartzman et 

al. 2013) has probably given rise to a diversity of habitats with likely shifts in species 

composition and carbon storage that have not been fully accounted for by park 
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management. This type of scoping study would have clear management and 

conservation relevance, and could confront existing narratives that tout indigenous 

reserves as intact and unaltered, which are based on about active fire detections, not 

the actual understory extent of fire damages (Nepstad et al. 2006). 

 

5.2.2 To inform policy 
 

Furthermore, the findings from this research, which confirm the long-term 

impact of forest degradation on both carbon and biodiversity, and confirm important 

differences between logging and fire, can also be extended to help inform policy. For 

example, the first study (Chapter 2) has direct policy relevance in terms of supporting 

international efforts to reduce greenhouse gas emissions from forest degradation (e.g. 

REDD+) by targeting key data gaps that have hampered full accounting of 

degradation from fire and logging in carbon monitoring systems. The most obvious 

next step would be to combine the time-varying emissions factors from Chapter 2 

with activity data on degradation extent to help confirm the relative contributions of 

fire and logging to net regional carbon emissions in the Amazon. 

Lastly, there is an immediate need to better understand the spatial 

correspondences between carbon and biodiversity values at broader regional scales to 

prevent the unintended loss of biodiversity from carbon-based conservation. Climate 

change policies that aim to protect forest carbon through avoided degradation and 

deforestation (e.g. REDD+) may also have co-benefits for biodiversity so long as 

biodiversity safeguards are established. Predictive maps of biomass and biodiversity 

values would be useful to help navigate climate-conservation trade-offs. For example, 
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I could envision a scaling study that builds off this work to compare likely centers of 

high biomass and acoustic occupancy. 

 

5.3 Conclusion 

The Anthropocene is expected to shrink and simplify Earth’s remaining 

tropical forests, which are critical for stabilizing climate and supporting life (Edwards 

et al. 2019).  To enable better land stewardship, we need improved remote sensing 

and analysis approaches for monitoring ecosystem services across space and time. 

This dissertation provides key contributions that enhance the utility of lidar and 

ecoacoustics to help reduce uncertainties around the carbon mitigation and 

conservation benefits of avoided forest degradation from logging and fire. 
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