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Wildland fire is a dominant disturbance agent that drives ecosystem change, 

climate forcing, and carbon cycle in the boreal forest and tundra ecosystems of the 

High Northern Latitudes (HNL). Tundra fires can exert a considerable influence on 

the local ecosystem functioning and contribute to climate change through 

biogeochemical and biogeophysical effects. However, the drivers and mechanisms of 

tundra fires are still poorly understood. Research on modeling contemporary fire 

occurrence in the tundra is also lacking. This dissertation addresses the overarching 

scientific question of “What environmental factors and mechanisms drive wildfire 

ignition in Alaskan tundra?” Environmental factors from multiple aspects are 

considered including fuel type and state, fire weather, topography, and ignition 

source. First, to understand the spatial distribution of fuel types in the tundra, multi-

year satellite observations and field data were used to develop the first fractional 

coverage product of major fuel type components across the entire Alaskan tundra at 



  

30 m resolution. Second, to account for the primary ignition source of fires in the 

HNL, an empirical-dynamical modeling framework was developed to predict the 

probability of cloud-to-ground (CG) lightning across Alaskan tundra, through the 

integration of Weather Research and Forecast (WRF) model and machine learning 

algorithm. Finally, environmental factors including fuel type distribution, fuel 

moisture state, WRF simulated ignition source and fire weather, and topographical 

features, were combined with empirical modeling methods to understand their roles in 

driving wildland fire ignitions across Alaskan tundra from 2001 to 2019. This work 

demonstrates the strong capability for accurate prediction of CG lightning and 

wildland fire probabilities, by incorporating dynamic weather models, empirical 

methods, and satellite observations in data-scarce regions like the HNL. The 

developed models present a novel component of fire danger modeling that can 

considerably strengthen the current capability to forecast fire occurrence and support 

operational fire management agencies in the HNL. In addition, the insights gained 

from this research will allow for more accurate representation of wildfire ignition 

probabilities in studies focused on assessing the impact of the projected climate 

change in HNL tundra which has largely absent in previous modeling efforts.  
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Chapter 1: Introduction 
 

1.1 Background and Motivation 

Wildland fire is a dominant disturbance agent that drives ecosystem change, 

climate forcing and carbon cycle in the boreal forest and tundra ecosystems of the 

High Northern Latitudes (HNL; Bond-Lamberty et al., 2007; Sulla-Menashe et al., 

2018). Satellite observations show that tundra fires are common throughout the pan-

Arctic region (Figure 1.1; Masrur et al., 2018). The Alaskan tundra has also witnessed 

several severe fires or fire seasons in recent years, namely the 2010 fire season in the 

Noatak River valley and the 2015 fire season in Southwest Alaska (Figure 1.2). 

Although Alaskan tundra only occupies approximately 10% of the world’s tundra 

area, it has contributed more than 50% of the global tundra burned area since 2001. 

Moreover, paleoecological data indicate that frequent burnings had occurred in 

Alaskan tundra under suitable climate and fuel scenarios (Higuera et al., 2011; Hu et 

al., 2015). Climate is now changing at a rapid rate in the Arctic (Larsen et al., 2014). 

As the only Arctic region in the United States, Alaska has experienced twice the 

warming rate of other areas in the US since the 1950s (Stewart et al., 2013). This 

warming is likely to drive an increase in fire activity and changes in fire regimes 

within the Alaskan tundra ecosystem in the future regardless of climate change 

mitigation strategies (French et al., 2015; Young et al., 2017). 

 

 



 

 

2 
 

 

Figure 1.1. Active fires detected by Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensors in the pan-Arctic tundra ecosystems from 2001 to 2016. 

 

Figure 1.2. Fire count and burned area in different regions of Alaskan tundra from 

2001 to 2017 according to Alaska Large Fire Database (ALFD). 
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Tundra fire acts as a catalyst for biogeochemical processes and releases large 

amounts of ancient carbon stored in the organic soil and widespread underlying 

permafrost, thus affecting both the regional and global carbon cycle (Jones et al., 

2015; Mack et al., 2011). The extreme 2007 Anaktuvuk fire in Alaska burned an area 

of 1,039 km2 and released approximately 2.1 Tg of carbon stocked in the organic soil 

and permafrost into the atmosphere (Mack et al., 2011). Fire-induced changes in 

surface albedo and post-fire vegetation compositions alter the surface radiative 

forcing with subsequent feedbacks into the climate system (French et al., 2016; Frost 

et al., 2020; McManus et al., 2012; Pearson et al., 2013).  Climate change is regarded 

as the leading factor that alters ecosystem services and functions in the Arctic 

(Hinzman et al., 2005; Meredith et al., 2019; Post et al., 2009), however, the impact 

of climate change is likely to be strongly amplified by the rapid response of fire 

activities, which could eclipse the direct influences of climate change on the 

ecosystems (Flannigan et al., 2000).  

Despite the importance of tundra fires, current research is primarily limited to 

the evaluation of post-fire impacts such as fire severity (Loboda et al., 2013), 

ecosystem responses (Bret-Harte et al., 2013), and carbon budget change (Mack et al., 

2011) with comparatively little attention to modeling tundra fire occurrence.  

Previous studies have modeled historical or future tundra fire regimes with either 

empirical methods or ecosystem models, e.g. the Alaska Frame-Based Ecosystem 

Code (ALFRESCO; Higuera et al., 2011; Joly et al., 2012; Young et al., 2017). 

recently examined the climatic factors influencing tundra fire activities at a large 

spatial scale for the entire circumpolar region. However, research on modeling 
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contemporary fire occurrence is lacking in current English language peer-reviewed 

literature. Although numerous studies have modeled the interactions between 

environmental factors and wildfire occurrences in boreal forests, their results are not 

directly applicable to the tundra ecosystems due to their different ecosystem 

functioning and responses (French et al., 2015; Rocha et al., 2012). Studies of 

wildland fires have three major components: fire occurrence, fire spread and fire 

impacts. Considering the lack of efforts on understanding the driving mechanisms of 

wildland fire in the tundra and on modeling fire potential, this dissertation focuses on 

examining fire occurrence, and particularly how fire starts in the tundra 

1.2 Environmental Factors Related to Wildfire Behavior 

Wildfires are controlled by a variety of interacting factors (Pyne et al., 1996). 

Moritz et al. (2005) summarized the interactions between the influencing 

environmental factors and fire at multiple spatial and temporal scales (Figure 1.3). In 

particular, oxygen, heat and fuel are the three key components that support the 

combustion processes, which are typically known as the Fire Fundamentals Triangle. 

Beyond the combustion, fire behavior is a result of environmental conditions referred 

to as the Fire Environment Triangle, primarily including fuel, weather and 

topography. In the context of fire ecology, the life cycle of a wildland fire includes 

several stages: ignition, transition to spread, acceleration, and steady spread (Pyne et 

al., 1996). From the perspective of wildland fire behavior, the potential of fire 

occurrence refers to that of fire ignition. Although ignition source is not part of the 

Fire Environment Triangle, ignition source is a key factor that should be considered 

for understanding the fire ignition in addition to fuel, weather, and topography.  
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Figure 1.3. Factors controlling fires at different scales as an extension of the 

commonly used fire triangles. The left triangle represents the Fire Fundamentals 

Triangle and the middle one represents the Fire Environmental Triangle. This figure 

is from Moritz et al. (2005). 

1.2.1 Ignition source 

Wildfire ignition is primarily caused by cloud-to-ground (CG) lightning 

flashes and a variety of human factors including open flames, intentional and 

unintentional arson, equipment sparks, or power lines (Pyne et al., 1996). Majority of 

wildland fires in the remote and sparsely populated boreal forest and tundra 

ecosystems are ignited by lightning strikes (French et al., 2015; Veraverbeke et al., 

2017). Current studies have diverging conclusions regarding the impact of climate 

change on global lightning activity in the future with some predicting an increase 

(Krause et al., 2014; Price & Rind, 1994) while others indicating a decrease (Finney 

et al., 2018; Murray, 2018). Therefore, understanding the factors and mechanisms 

driving lightning activity plays a vital role in understanding current and modeling 

future tundra fire potential.  
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Lightning is typically monitored using satellite- or ground-based systems for 

forecasting severe weather conditions and ensuring population safety (Nag et al., 

2014). Satellite-based lightning monitoring primarily focuses on the tropical regions 

or examines the global patterns with geostationary satellites. Due to the limited 

coverage and coarse spatial resolution of satellite-based systems for the HNL, 

lightning monitoring in Alaska is primarily based on the ground-based Alaska 

Lightning Detection Network (ALDN) maintained by the Bureau of Land 

Management (BLM) since the 1980s (Fronterhouse, 2012). According to the ALDN 

observations, boreal forests of the Interior Alaska experience more frequent lightning 

strikes than the tundra (Dissing and Verbyla, 2003), which can be explained by the 

enhancement of local lightning storm development induced by air-mass 

thunderstorms and surface properties of the forests. The spatial distribution of 

lightning strikes throughout Alaska also varies seasonally and interannually. More 

than 90% of the lightning strikes in Alaska occur between June and August (Reap, 

1991). Under relatively warm and dry conditions in the summer, Alaska experiences 

an increased quantity of lightning strikes induced by amplified convective activities, 

thus facilitating fire ignition potential (Peterson et al., 2010; Wendler et al., 2011).  

However, current studies of lightning mechanisms and related impacts on fires are 

limited to the boreal forests and are not readily transferable to the treeless tundra 

ecosystems where known CG lightning and the surface meteorology related to it 

differs substantially (Dissing and Verbyla, 2003). 
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1.2.2 Fire weather conditions 

In addition to the weather processes that support lightning, weather elements 

such as air temperature, precipitation, and relative humidity play a dominant role in 

determining fire potential at the regional scale (Pyne et al., 1996). These elements that 

influence fire behavior are typically referred to as fire weather at an hourly or daily 

scale. Increased warming in the HNL regions is likely to lengthen the fire season and 

lead to an increase in burned area (Jolly et al., 2015). Specifically, temperature has 

been widely accepted as the most important factor that affects fire behavior primarily 

through an increase in evapotranspiration and associated decrease in surface moisture 

content (Flannigan et al., 2016; Williams et al., 2015). Additionally, dry conditions 

increase the probability of lighting-induced ignitions (Peterson et al., 2010) and 

enhance fuel flammability (Xiao and Zhuang, 2007) in the North American boreal 

forests.  

Fire danger rating systems have been utilized around the world to quantify 

wildfire potential with numeric indices that guide fire management activities by 

integrating weather elements and other factors (Pyne et al., 1996). Two systems have 

been developed for North America from the early 20th century and updated multiple 

times since then, including the U.S. National Fire Danger Rating System (NFDRS) 

and the Canadian Forest Fire Danger Rating System (CFFDRS). Combining both 

hourly and daily weather observations, the latest 2016 version NFDRS produced four 

primary indices including Ignition Component (IC), Spread Component (SC), Energy 

Release Component (ERC), and Burning Index (BI) (Figure 1.4).  
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Figure 1.4. Comparison of CFFWIS (left) and NFDRS (right), source: National 

Wildfire Coordinate Group (https://www.nwcg.gov/publications/pms437/cffdrs/fire-

weather-index-system). 

Although originally introduced in 1925, the current CFFDRS has been 

developed since 1968 and widely applied throughout Canada since 1970 (Stocks et 

al., 1989). CFFDRS is comprised of two major sub-systems, including the Canadian 

Forest Fire Weather Index System (CFFWIS) and the Canadian Forest Fire Behavior 

Prediction System (CFFBPS). In particular, CFFWIS developed three fuel moisture 

codes and three fire behavior indices to describe the fuel moisture conditions and 

relative potential of fire behavior using consecutive daily observations of near-surface 

weather (Figure 1.4). Despite the similarities that NFDRS and CFFWIS share in both 

input and output data, these two systems are different in the specific requirements of 
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weather observations and assessment methods of fire danger (Pyne et al., 1996). Due 

to its simplicity in data preparation and calculation, the CFFWIS has been widely 

adopted by researchers and fire management teams worldwide in different ecosystems 

(Taylor and Alexander, 2006; Wang et al., 2017).  

1.2.3 Surface fuels 

Fuel type and state are critically important factors that control fire-

environment interactions through altering fire characteristics and affecting ignition 

easiness. (Pyne et al., 1996). Fuel type represents properties of the fuel itself, such as 

fuel composition, continuity and loading. Fuel state is mainly related to moisture 

content primarily driven by the changing weather conditions at different temporal 

scales.   

Fuel classification schemes, such as fuel models, inventory and photo guides, 

are commonly used to describe fuel type variability and organize fuel information. 

LANDFIRE, a program sponsored by U.S. Department of the Interior (DOI) and 

Department of Agricultural Forest Service (FS), has developed consistent surface fuel 

products throughout the US including Alaska and Hawaii, to characterize fuel 

composition and properties based on existing fuel classification systems. In Alaska, 

LANDFIRE provides products for the 13 Anderson Fire Behavior Fuel Model 

(FBFM13), 40 Scott and Burgan Fire Behavior Fuel Model (FBFM40), Canadian 

Forest Fire Danger Rating System (CFFDRS), Fuel Characteristic Classification 

System (FCCS), and Fuel Loading Model (FLM). These categorical classification 

datasets are developed with Landsat imagery using a rule-based approach that 

considers the limited availability of field data from the LANDFIRE reference 
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database and the difficulty of describing fuel conditions with generalized methods 

(Rollins, 2009).  

The Alaskan tundra presents a very fine-scale mixture of shrub, herbaceous 

plants, moss and lichen components, which are inseparable even by very high 

resolution (VHR) images and thus is poorly represented by current categorical 

classifications at the Landsat scale. It is crucial to characterize the fractional 

representation of tundra fuel types to better understand the roles of individual 

component in driving tundra fire behavior.  

The cumulative influences of previous and present fire weather conditions can 

further affect the dynamic fuel state characteristics including fuel moisture content 

and fuel temperature (Flannigan et al., 2016). Satellite-based measurements are 

widely used with physical or empirical models to assess fuel moisture levels at a large 

spatiotemporal scale (Yebra et al., 2013). Significant statistical relationships have 

been found between satellite-derived vegetation indices and fuel moisture content in 

different ecosystems (Yebra et al., 2008). 

1.2.4 Topography 

Variations in topographic features including elevation, slope steepness, aspect 

and land configuration also have the potential to affect wildfire behavior (Pyne et al., 

1996). By controlling the exposure to sunlight and moisture pooling, topography can 

modify weather patterns and alter interactions of fuel and weather over time, 

therefore affecting fuel type and moisture content. Elevation above sea level can 

affect the fire environment by influencing climate conditions and fuel availability. 

With a direct impact on fire flame length and spread rate, slope is an important factor 
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affecting fire spread behavior. Representing the direction that a slope faces, aspect 

can affect fire behavior by altering the solar radiation amount and wind, therefore 

influencing fire weather and fuel conditions.  

1.3 Fire modeling efforts 

To understand the roles of these environmental factors on wildfire behaviors 

and further model the impacts of these factors on driving fire danger, two types of 

models have been developed in previous studies, including physical-based models 

that account for fire processes separately, and empirical models that utilize statistical 

methods to describe the patterns. Physical-based models that explicitly represent the 

wildfires processes are amongst the earliest attempts of fire occurrence modeling 

(Anderson, 2002; Anderson et al., 2000; Kourtz and Todd, 1991). Several major 

modules related to fire occurrence including lightning occurrence, fire ignition, fire 

smoldering and fire detection were described in these models. Subsequently, a series 

of equations based on experiments and assumptions were developed to incorporate 

the related environmental variables and to model the probability of fire occurrence.  

In recent years, empirical models have been commonly adopted for modeling 

wildfire ignitions in studies across different ecosystems (Prestemon et al., 2013). For 

example, Liu et al. (2012), Yang et al. (2015), and Woo et al. (2017) predicted the 

forest fire risk using spatial point modeling methods. Generalized Linear Models have 

also been utilized for modeling fire occurrences in a variety of landscapes (Ager et 

al., 2018; Barbero et al., 2014; Vilar et al., 2016). Logistic regression and random 

forest (RF) based algorithms are also among the most popular methods for 

establishing the relationships between environmental factors and fire occurrences 
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with strong predictive capability (Guo et al., 2016; Keyser and Leroy Westerling, 

2017; Van Beusekom et al., 2018; Vecín-Arias et al., 2016; Viedma et al., 2018; 

Wotton and Martell, 2005). 

1.4 Research Questions 

Considering the research gaps discussed above, this dissertation aims to 

address the overarching scientific question: What factors and mechanisms drive 

wildland fire ignitions in Alaskan tundra biome? This dissertation examines the 

impacts of surface fuel distribution, ignition sources, and other environmental factors 

on fire ignition probability by integrating field observations, remote sensing products, 

numerical weather forecasting model, and machine learning algorithm. To address the 

overarching scientific question, three integrated studies were conducted in this 

dissertation (Figure 1.4). 

 

Figure 1.5. Framework of Research Questions and Objectives 
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Question 1: What are the spatial distribution patterns of major fuel types in Alaskan 

tundra? 

This question examines the spatial distribution of major fuel type components 

in the shrub and graminoid dominated tundra in Alaska. This question focuses on 

developing a fractional cover product of the key tundra fuel components using field 

observations and Landsat 8 imagery at 30m resolution.  

Question 2: What atmospheric factors and mechanisms drive CG lightning activity in 

Alaska tundra? 

This question identified significant atmospheric and cloud properties that 

drive the distribution of CG lightning strikes in Alaskan tundra. This question is 

centered on developing an empirical-dynamical modeling framework for predicting 

CG lightning distribution combining a commonly used Numeric Weather Prediction 

(NWP) model, Weather Research and Forecast (WRF), and RF algorithm, to support 

fire monitoring and modeling effects in the tundra. 

Question 3: How do environmental factors drive fire ignition probability in Alaskan 

tundra? 

This question develops an empirical model for predicting wildfire ignition 

probability in the tundra using Moderate Resolution Imaging Spectroradiometer 

(MODIS) derived fire ignition locations and related environmental factors obtained 

through the integration of remote sensing products and WRF-generated weather 

conditions. Furthermore, this question explores the important environmental factors 

that drive wildfire ignitions in Alaskan tundra through these modeling efforts. 
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1.5 Dissertation Structure 

Chapter 1 provides the overall background and motivation of this doctoral 

dissertation. It also introduces the major research questions and the organization of 

this study. The remainder of the dissertation is organized into three separate research 

chapters, a conclusion, supplementary materials and bibliography. 

Chapter 2 focuses on addressing the research question 1 through the 

development of a fractional cover map product of major fuel type components, 

including woody (shrub), herbaceous (sedge and grass) and nonvascular (lichen and 

moss), in Alaskan tundra. I used Landsat 8 Operational Land Imager (OLI) surface 

reflectance data collected from 2013 to 2018 to develop seasonal mosaics of surface 

reflectance and spectral indices across the entire tundra in Alaskan. I then developed 

the fractional cover maps circa 2015 with field observations from three field trips to 

the tundra and the seasonal mosaics. This product has shown strong capability of 

capturing both detailed distribution of vegetation fuel components and describing the 

general spatial patterns of vegetation communities across the ecoregions in Alaskan 

tundra. This work has been peer reviewed and published in Remote Sensing of 

Environment (He et al., 2019). The data product I developed has been archived on the 

Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC; 

He et al., 2020). 

Chapter 3 addresses the research question 2. This chapter develops an 

empirical-dynamical framework to model the CG lightning probability across 

Alaskan tundra based on WRF simulation and RF algorithm. I first conducted a 

sensitivity analysis to identify the optimal parameterization setting combination for 
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WRF simulation in the study area. Then four types of atmospheric variables were 

extracted from WRF simulation results to train an empirical model using RF 

algorithm, with CG lightning observations from the ALDN.  

Chapter 4 corresponds to the research question 3 and discusses the results of 

modeling fire ignition probability in Alaskan tundra from 2001 to 2019 with a variety 

of related environmental factors, based on the results from Chapters 2 and 3. In this 

chapter, I prepared environmental factors for the tundra using WRF simulated 

weather variables and remote sensing products. CG lightning probability, near surface 

weather variables and CFFWIS were obtained based on WRF simulations using the 

method developed in Chapter 3, due to the lack of weather stations in the remote 

tundra. Fuel type and fuel state were obtained from Landsat-based product from 

Chapter 2 and MODIS surface reflectance data. I was then able to identify the key 

factors driving tundra fire ignitions in Alaska through modeling efforts with both RF 

and logistic regression algorithms.  

Chapter 5 presents the primary conclusions of this doctoral dissertation. This 

chapter first summarizes the major research findings from Chapters 2 – 4. It then 

discusses the overall contribution of this dissertation to the broader Arctic scientific 

research and the operational fire management efforts in the HNL. Future insights of 

this research are also discussed in this chapter.  
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Chapter 2: Mapping Fractional Cover of Major Fuel Type 
Components across Alaskan Tundra1 
 

2.1 Summary 

Wildland fire is common and widespread in Alaskan tundra. Tundra fires exert 

considerable influence on local ecosystem functioning and contribute to climate 

change through biogeochemical (e.g. carbon cycle) and biogeophysical (e.g. albedo) 

effects. These treeless landscapes are characterized by a high degree of variation in 

fuel loading at scales much finer than moderate (30 m) satellite observations. 

However, because of the remoteness of the tundra and its lower contribution to 

carbon release compared to boreal forests, most frequently tundra fuels are poorly 

characterized, limiting the effective development of tundra-specific fire occurrence 

and behavior models. This study presents an approach to mapping the fractional 

coverages of major fuel type components in Alaskan tundra circa 2015 combining 

field data and Landsat 8 Operational Land Imager (OLI) observations. I adopt a 

multi-step method based on random forest (RF) algorithm to estimate the fractional 

vegetation cover of woody, herbaceous, and nonvascular components at subpixel 

level. I demonstrate the strong capability of exploiting multi-seasonal spectral 

information to identify these component types, with R-squared values around 0.9 and 

root mean squared errors below 10% for predicting their fractional cover. The 

 
1 This chapter has been published in Remote Sensing of Environment as He, J., Loboda, T. V, Jenkins, 
L., Chen, D., 2019. Mapping fractional cover of major fuel type components across Alaskan tundra. 
Remote Sensing of Environment, 232, 111324. The output maps of this chapter have been documented 
on Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) as He, J., T.V. 
Loboda, L. Jenkins, and D. Chen. 2019. ABoVE: Distribution Maps of Wildland Fire Fuel 
Components across Alaskan Tundra, 2015. ORNL DAAC, Oak Ridge, Tennessee, USA. 
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mapping products depict the spatial distribution of woody, herbaceous, and 

nonvascular components at subpixel resolution across Alaskan tundra, which can 

function as a critical input for studying wildland fire risk and behavior in the tundra. 

The distributions of these fuel components align well with climate-based tundra 

ecoregions although climate variables are not included in my models. 

2.2 Introduction 

Wildland fire is common across tundra, the coldest vegetated land ecosystem 

on Earth. Active fire products derived from satellite data identify a widespread 

distribution of fire across the pan-Arctic tundra (Masrur et al., 2018). Out of the 

10,260 km2 global burned area in the tundra between 2001 and 2015, 54% was 

concentrated in Alaska as estimated by satellite-based burned area data (Loboda et al., 

2017). Paleoecological and historical records also reveal frequent fire occurrence in 

Alaskan tundra (French et al., 2015; Higuera et al., 2011). 

As a major disturbance in the tundra, wildfire exerts strong influence on the 

ecosystem state and functioning, including deepening of the active layer (Jones et al., 

2015), release of ancient carbon to the atmosphere (Mack et al., 2011), decrease of 

land surface albedo (French et al., 2016) and shift in vegetation communities (Racine 

et al., 2004). These impacts further contribute to climate change through the alteration 

of surface energy budget and global carbon cycle (French et al., 2016; Mack et al., 

2011; Pearson et al., 2013). Rapid climate warming in the Arctic observed during 

recent decades and projected under various climate change scenarios is likely to 

increase tundra fire occurrence in future (French et al., 2015; Young et al., 2017). 
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Despite its importance for global biogeochemical and biogeophysical 

processes, tundra fire receives much less attention compared to fire in other 

ecosystems. Although the number of studies on tundra fire has grown considerably in 

recent years, they mainly focus on quantifying post-fire impacts (French et al., 2016; 

Loboda et al., 2013) or examining fire regimes (French et al., 2015; Rocha et al., 

2012). Critical for accurate monitoring of fire potential and for assessing its 

ecological and climatic impacts, in-depth knowledge of fire ecology and improved 

modeling capability of fire occurrence are still lacking for the tundra. Current 

approaches primarily developed upon boreal forest fire studies are thus insufficient to 

establish improved modeling and predictive capability to assess the present and future 

tundra fire potential.  

Wildfire occurrence is controlled through the interaction of fuel, weather, and 

topography (Pyne et al., 1996). Effective modeling of fire occurrence requires 

accurate characterization of these environmental factors. This is, however, difficult 

for the tundra under current efforts due to the lack of in situ data for all three factors. 

Compared to other ecosystems, very limited fuel inventory plots have been visited in 

Alaskan tundra because of its remoteness. Existing fuel type products provided by 

LANDFIRE (https://landfire.gov) for Alaskan tundra (Table 2.1) are primarily 

developed based on the generic fuel classification schemes designed for other 

ecosystems. In particular, 13 Anderson Fire Behavior Fuel Model (FBFM13), 40 

Scott and Burgan Fire Behavior Fuel Model (FBFM40), and Canadian Forest Fire 

Danger Rating System (CFFDRS) include logging slash in their schemes and thus 

cannot describe the surface fuel compositions in the tundra. Limited fire weather 
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stations and little to none geodetic surveys within Alaskan tundra also lead to the lack 

of accurate weather and topographical measurements. Primarily built upon remotely 

sensed observations, models and interpolations, existing strategies and datasets 

developed for wildfire monitoring thus simply provide a generic estimation of the 

tundra environment in Alaska. 

Table 2.1. LANDFIRE fuel products and their major fuel strata or types available for 

Alaskan tundra 

Fuel classification system Major fuel strata or types 
13 Anderson Fire Behavior Fuel Model 

(FBFM13; Anderson, 1982) Grass, shrub, timber, logging slash 

40 Scott and Burgan Fire Behavior Fuel 
Model (FBFM40; Scott & Burgan, 2005) 

Nonburnable, grass, grass-shrub, 
shrub, timber-understory, timber litter, 

slash-blowdown 
Canadian Forest Fire Danger Rating 

System (CFFDRS; Hirsch, 1996) 
Coniferous, deciduous, mixedwood, 

slash, open 

Fuel Characteristic Classification System 
(FCCS; Ottmar et al., 2007) 

Canopy, shrub, nonwoody fuels, 
woody fuels, litter-lichen-moss, 

ground fuels 
 

Whereas, tundra environment varies at a very fine spatial scale with extremely 

high local heterogeneity (Davidson et al., 2016; Frost et al., 2014; Lara et al., 2018; 

McManus et al., 2012), which makes existing products poorly suited for capturing its 

detailed spatial variability. Specifically, Alaskan tundra presents a highly variable and 

mixed combination of burnable vegetation materials, including shrubs, herbaceous 

plants, mosses and lichens. These fuel type components can affect fire occurrence and 

behavior in multiple ways (Innes, 2013; Rocha et al., 2012). First, fuel flammability 

varies by plant types in Alaskan tundra (Sylvester and Wein, 1981). Live leaves from 

shrub species tend to have higher fire-potential ratings than herbaceous plants. 

Second, the variability of post-fire fuel recovery and accumulation rates among 
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vegetation types can lead to different fire frequency levels across the tundra (Innes, 

2013). Tundra regions dominated by grasses or sedges tend to burn more frequently 

than those with shrubs or mosses do because of their faster recovery rates. Third, 

tundra vegetation composition also impacts burned area extent (Rocha et al., 2012).  

For example, larger burned areas are more frequently found within moist shrub and 

tussock tundra compared to non-acidic tundra. Thus, identifying the detailed 

composition and distribution of fuel type components is critical for understanding 

tundra fire occurrence and behavior. 

However, the fine-scale fuel components in the tundra can only be separated 

at centimeter-level resolution with drone data (Figure 2.1) and are not directly 

classifiable even in very high resolution (VHR; 1–5 m) imagery. Categorical 

LANDFIRE products developed at 30-m resolution poorly capture the actual fuel 

distribution in the tundra. Recent efforts, although limited, have been conducted to 

characterize the fractional vegetation properties at subpixel level for Alaskan tundra 

with Landsat imagery. For example, Macander et al., (2017) developed fractional 

coverage maps of plant functional types (PFTs) across the North Slope region of 

Alaska. Berner et al. (2018) also mapped the fractional dominance and aboveground 

biomass (AGB) of shrubs on the North Slope. However, these products are not 

directly transferable to fuel classification schemes in the tundra because of the 

different vegetation cover definitions adopted. They also fail to capture the 

information of other tundra regions like Seward Peninsular and Noatak, which have 

more frequent and intense fire activities than the North Slope based on historical 

records (French et al., 2015; Rocha et al., 2012). 
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Figure 2.1. Examples of highly mixed fuel type components in Alaskan tundra: (a) 

shrub and graminoid tussocks; (b) grass, lichen and moss. 

While fractional cover products for tundra are only at their early stages of 

emergence, a variety of approaches has been developed to unmix land cover fractions 

with multi-source remote sensing data across different (most frequently tree 

dominated) ecosystems. Supervised regression algorithms with multi-temporal 

spectral metrics are among the most commonly adopted methods for fractional cover 

mapping (Hansen et al., 2013; Olthof and Fraser, 2007; Selkowitz, 2010). RF 

regression, an ensemble learning method based on decision tree regression, has been 

found to have strong capability in distinguishing vegetation fractions (Gessner et al., 

2013; Liu et al., 2017; Marino et al., 2016). A second type of algorithms employs 

spectral mixture analysis to decompose sub-pixel fractional coverages (Guan et al., 

2012; Ma et al., 2015; Mu et al., 2018; Somers et al., 2011). They primarily rely on 

spectral indices to determine the fractions of endmembers. However, the variability 

among endmembers is typically ignored in the modeling procedure (Somers et al., 

2011). A third type of geometric-optical models has also been developed to derive 
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vegetation fractions with multi-angular remote sensing data (Chopping et al., 2008), 

though their applications are limited by the spatial data coverage. 

The Arctic-Boreal Vulnerability Experiment (ABoVE) proposed by the 

National Aeronautics and Space Administration (NASA) has provided a new 

opportunity for conducting in-depth research on wildland fire in the tundra. Through 

the support of field campaigns by this program, researchers have been able to enlarge 

the spatial coverage and environmental conditions of field observations. Coupling 

with remote sensing datasets and existing algorithms, these field datasets make it 

possible to develop broad-scale mapping products for the tundra. In this study, I 

present an RF-based approach to mapping the fractional distributions of wildland fuel 

components in Alaskan tundra using multi-spectral and multi-temporal Landsat data 

circa 2015 and a suite of field observations collected across a large span of tussock 

and shrub tundra sites. Specifically, I focus on three fire-carrying fuel type 

components for the shrub or graminoid dominated tundra in the study area: (1) woody 

(shrub) component, (2) herbaceous (primarily sedge and grass) component, and (3) 

nonvascular (lichen and moss) component, and further develop separate maps for 

describing their fractional coverages. I determine these components in a qualitative 

way considering their differences in vegetation genera, fuel characteristics and 

spectral properties. This scheme also corresponds to fuel strata in the Fuel 

Characteristic Classification System (FCCS) and major fuel components in other 

existing systems (Table 2.1).  
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2.3 Study Area 

A commonly used dataset, the Circumpolar Arctic Vegetation Map (CAVM; 

Walker et al., 2005; Figure 2.2), was used to determine the study area of Alaskan 

tundra (Beck et al., 2011; Bhatt et al., 2013; French et al., 2015; Raynolds et al., 

2008). Burning in Alaskan tundra is primarily supported by surface vegetation fuels, 

including evergreen or deciduous shrubs, herbaceous species (sedges and grasses), 

mosses and lichens (Hu et al., 2015; Rocha et al., 2012). Dry sites in the tundra tend 

to be dominated by dwarf shrubs with some grasses, mosses, and lichens, while wet 

sites have more sedges and mosses (Sylvester and Wein, 1981). 

Alaskan tundra shares similar vegetation communities and species across 

ecoregions (Alaska Department of Fish and Game, 2006; Viereck et al., 1992). The 

Unified Ecoregions of Alaska identifies four ecoregion groups and eleven ecoregion 

units within Alaskan tundra based on their climate, vegetation, geology, and 

topography (Nowacki et al., 2003; Figure 2.2). With a dry, polar climate, the Arctic 

Tundra ecoregion group is dominated by shrub and sedge tundra underlain by 

continuous permafrost. The Bering Tundra group shows a moist polar or maritime 

climate with principally Dryas-lichen and moist sedge-tussock tundra. Bering Taiga 

group, having a moist polar climate with relatively thin permafrost, is generally 

covered by Dryas-lichen, sedge-shrub tundra and mixed forests. Dominated by a dry 

continental climate, the Intermontane Boreal group are primarily covered by 

shrublands and forests. 
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Figure 2.2. Alaskan tundra region defined by CAVM and corresponding ecoregions 

identified by the Unified Ecoregions of Alaska: 2001. Each color represents one 

ecoregion unit. Ecoregion units within the same Level 2 ecoregion groups are 

separated by different line patterns. 

2.4 Data and Methods 

The variability of the tundra vegetation types in surface reflectance and 

phenology makes it possible to capture the subpixel compositions using multi-spectral 

and multi-temporal remote sensing data. Dwarf shrub, sedge, and moss/lichen mix 

show distinguishable spectra according to the ground-based hyperspectral profiles 



 

 

25 
 

measured in the North Slope (Buchhorn et al., 2013; Davidson et al., 2016). Both 

field observations and satellite-derived spectral indices also identify considerable 

variations in the phenology patterns of tundra vegetation species during their short 

growing seasons (Beamish et al., 2017; Shaver and Kummerow, 1991; Stow et al., 

1993). For example, graminoid species such as tussock cottongrass (Eriphorum 

vaginatum) and Bigelow's sedge (Carex bigelowii) tend to have an earlier onset of 

leaf expansion compared to shrub species like tealeaf willow (Salix pulchra) and 

dwarf birch (Betula nana; Shaver and Kummerow, 1991). By summarizing the fuel 

properties, spectral characteristics and phenology patterns of these vegetation types 

described above, I identified the following components of surface fuel types in 

Alaskan tundra for large-scale mapping in this study: (1) woody (shrub), (2) 

herbaceous (primarily sedge and grass), and (3) nonvascular (lichen and moss). 

I then designed a four-step method to map the spatial distributions of these 

fuel components (Figure 2.3): (1) developing seasonal composites of spectral bands 

and indices with multi-temporal Landsat imagery for the entire Alaskan tundra; (2) 

generating a “tundra vegetation mask” to identify the shrub or graminoid dominated 

tundra with land cover classification; (3) RF modeling of fractional fuel component 

cover; (4) mapping fractional cover of major fuel type components across the shrub 

or graminoid dominated tundra in Alaska. 
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Figure 2.3. Flowchart of fractional fuel component mapping. 

2.4.1 Data Sources 

Landsat observations 

Landsat 8 OLI imagery acquired from 2013 to 2017 was used to develop 

spatially continuous mosaics of Alaskan tundra. I downloaded the Level-2 surface 

reflectance data generated with Landsat 8 Surface Reflectance Code (LaSRC; 

Vermote et al., 2016) from the U.S. Geological Survey Earth Resources Observation 

and Science Center (Table 2.2). Since the growing seasons of tundra vegetation 

generally start from late-April or May and end in October, for each year, I 
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downloaded images acquired during late-April through October with land cloud 

coverage smaller than 70%, as estimated by the product metadata. Additionally, I 

excluded images with 80 – 90% snow coverage over vegetated land surface in late 

April, May and October based on my visual interpretation during the data download. 

In total, I obtained and processed 1837 Landsat 8 scenes covering 113 Worldwide 

Reference System-2 (WRS2) path/rows as summarized in Table 2.2. 

Table 2.2. Summary of Landsat 8 OLI tiles processed in this study. WRS2 path/row 

overlaps exist between different regions. 

Major regions WRS2 path 
range 

WRS2 row 
range 

Total 
number of 
path/rows 

Total 
number of 

scenes 
North Slope and 

Noatak 64 ~ 85 10 ~ 13 70 932 

Seward Peninsula 75 ~ 84 13 ~ 15 25 358 
Southwest Alaska 73 ~ 80 15 ~ 19 29 752 

 

Field observations 

I collected fractional cover observations of the three fuel components from 

222 10×10 m plots during three field campaigns in the tussock and shrub tundra of 

Alaska (Figure 2.4): 2012 campaign in the North Slope (NASA Terrestrial Ecology 

Grant NNX10AF41G), 2016 campaign in the Noatak River National Preserve and 

2017 campaign in the Seward Peninsula (NASA Terrestrial Ecology Grant 

NNX15AT79A). Fractional coverages of fuel components within each plot were 

determined using ocular assessment. All three campaigns were conducted during late-

July to mid-August. Considering the limited amount of field sites that I can visit 

during one single field trip, I combined field data from all three campaigns in this 
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study to provide a robust sample collection for driving an ecosystem-wide mapping 

method. 

 

Figure 2.4. Alaskan tundra region as defined by CAVM (a) and three field campaign 

sites: (b) 2016 field plots in Noatak River National Preserve, (c) 2017 field plots in 

Seward Peninsula, (d) 2012 field plots in North Slope. 

Field plots were established following a generally accepted scheme (Dyrness 

and Norum, 1983; Viereck, 1979). During each campaign, the data were collected 

within recovering burns as well as within areas that have not been identified as 

burned by either management records or satellite observations. This data collection 

design ensured that field data observations sampled a broad range of fire history and 

topographical features with varying compositions of woody, herbaceous, and 

nonvascular vegetation cover. The 2016 and 2017 data collection campaigns also 

ensured that a variety of drainage conditions was incorporated into the stratified 

sampling scheme. Specifically I identified four drainage categories based on slope 



 

 

29 
 

and flow accumulation using a method proposed by Kasischke and Hoy (2012). I then 

randomly selected South-East corner point for the 10×10m plots considering these 

factors prior to field visits. Although assessment of fractional cover during the 2012 

field visit was conducted using the similar protocol, the site set up was more 

systematic in order to support a proper characterization of field sites for radar 

observations. In this case, corner points of 10×10 m plots were set up in two parallel 

transect lines 100m apart within an area of visibly uniform conditions following a 

previously established field protocol in existing studies (Bourgeau-Chavez et al., 

2013; Bourgeau-Chavez et al., 2007). 

Auxiliary data 

To assist the development of seasonal composites, I utilized the 16-day 

Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices 

product (MOD13Q1 Version 6) available on Google Earth Engine from 2013 to 2017 

to examine the phenology of tundra vegetation and to determine the growing season 

periods for Landsat data collection and processing. The Normalized Difference 

Vegetation Index (NDVI) data layer in MOD13Q1 was used for deriving phenology 

trends. 

Although the quality assessment (QA) band provided by the Level-2 LaSRC 

product identifies water pixels for each scene, I adopted the 30-m ABoVE Surface 

Water Extent data (Carroll et al., 2016) centered in 2011 to identify the representative 

extent of water bodies across the study area for spatial and temporal consistency. 

Using Landsat imagery centered on 1991, 2001 and 2011, this product maps the 
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distribution of surface water across the boreal and tundra regions in North America in 

these epochs. 

To develop the tundra vegetation mask in step 3, I utilized a set of 30-m 

LANDFIRE products and VHR imagery freely available on Google Earth to assist the 

sampling of training and validation datasets for land cover classification. I acquired 

the FCCS, CFFDRS and FBFM40 products for Alaska (Table 2.1) in the latest 

available version 1.4.0, which incorporates Landsat imagery through 2014. VHR time 

series imagery provided by Google Earth was also accessed to help determine training 

and validation data through visual interpretation. 

2.4.2 Developing seasonal composites of spectral bands and indices 

First, I developed continuous composites of surface reflectance bands and 

spectral indices for pre-growing (late-April to early-June), peak-growing (mid-July to 

mid-August) and post-growing season (end-August to end-September). Since the 

specific timing of growing events varies by year and latitude, I extracted vegetation 

phenology patterns using NDVI data from MOD13Q1 to determine the specific dates 

of three growing seasons. I particularly examined four graminoid or shrub tundra 

regions as identified by CAVM across Alaska from north to south and compared the 

NDVI profiles of ten randomly sampled pixels in each region (Figure 2.5). According 

to the vegetation growing patterns shown from the profiles, I assigned the Landsat 

data acquired from April 21 to June 10 as the pre-growing season, the data acquired 

from July 1 to August 20 as the peak-growing season, and the data acquired from 

August 30 to September 30 as the post-growing season. 
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Figure 2.5. Averaged NDVI profiles extracted from MODIS product (MOD13Q1) on 

Google Earth Engine in four regions across Alaskan tundra (a). Ten pixels were 

randomly selected and plotted for each region as an example (b): (1) North Slope, (2) 

Noatak River National Preserve, (3) Seward Peninsula, (4) Southwest Alaska. 

I then downloaded and organized the Landsat 8 data by growing seasons and 

extracted all surface reflectance and QA bands. Four ratio-based spectral indices and 

three Tasseled Cap (TC) components (Brightness, Greenness, and Wetness; Baig et 

al., 2014) were calculated for each scene to capture the detailed variability of 

vegetation spectral characteristics (Table 2.3). Particularly, I considered four ratio-

based indices here including NDVI (Tucker, 1979), Normalized Burn Ratio (NBR; 

García and Caselles, 1991), Normalized Difference Water Index with near-infrared 

(NIR) and shortwave-infrared (SWIR) bands (NDWI1; Gao, 1996), and Normalized 

Difference Water Index with green and NIR bands (NDWI2; McFeeters, 1996). 
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Table 2.3. Landsat 8 spectral metrics used for developing seasonal composites. 

Categories Properties Details 

Surface 
Reflectance 

Band 2 Blue: 0.45 – 0.51 μm 
Band 3 Green: 0.53 – 0.59 μm 
Band 4 Red: 0.64 – 0.67 μm 
Band 5 NIR: 0.85 – 0.88 μm 
Band 6 SWIR1: 1.57 – 1.65 μm 
Band 7 SWIR2: 2.11 – 2.29 μm 

Spectral 
Indices 

NDVI (𝜌!"# − 𝜌#$%)/(𝜌!"# + 𝜌#$%) 
NBR (𝜌!"# − 𝜌&'"#()/(𝜌!"# + 𝜌&'"#() 

NDWI1 (𝜌!"# − 𝜌&'"#))/(𝜌!"# + 𝜌&'"#)) 
NDWI2 (𝜌*+$$, − 𝜌!"#)/(𝜌*+$$, + 𝜌!"#) 

Tasseled Cap 
Components 

TC Brightness 
(TCB) 

0.3029𝜌-./$ + 0.2786𝜌*+$$, + 0.4733𝜌#$%
+ 0.5599𝜌!"# + 0.508𝜌&'"#)
+ 0.1872𝜌&'"#( 

TC Greenness 
(TCG) 

−0.2941𝜌-./$ − 0.243𝜌*+$$, − 0.5424𝜌#$%
+ 0.7276𝜌!"# + 0.0713𝜌&'"#)
− 0.1608𝜌&'"#( 

TC Wetness 
(TCW) 

0.1511𝜌-./$ + 0.1973𝜌*+$$, + 0.3283𝜌#$%
+ 0.3407𝜌!"# − 0.7117𝜌&'"#)
− 0.4559𝜌&'"#( 

 

Since Maximum Value Compositing (MVC) approach is effective in 

minimizing the impacts of cloud contamination, off-nadir viewing, aerosol and water 

vapor, I adopted this widely used method for developing seasonal mosaics across 

Alaskan tundra (Holben, 1986; Potapov et al., 2008; Roy et al., 2010; Stow et al., 

2004). Before mosaicking, I masked out the cloud, cloud shadow, and snow pixels 

detected by the CFMask algorithm (Zhu et al., 2015). I further conducted 

morphological dilation for the masked pixels using a disk-shaped structuring element 

with five as the radius to remove the undetected cloud and shadow pixels. Although 

cloud/shadow pixels are generally thought to have lower NDVI than clear-sky pixels, 

pixels along the cloud/shadow edges mixed by shadow and vegetation signals could 

have higher NDVI than the clear-sky ones (Figure 2.6). Since the dilated mask could 
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still omit these edge pixels with high NDVI values that can affect MVC results, I 

filtered them out using the following criteria based on empirical values identified in 

the study area: 

𝜌!"# < 	0.2	𝑎𝑛𝑑	𝑁𝐷𝑉𝐼 > 0.6, 

where 𝜌!"# represents the surface reflectance of NIR band. For each growing season, 

I identified the Landsat pixels with the maximum NDVI and then generated the 

mosaics for each band using the values from these pixels. The three output mosaics 

each include six spectral bands and seven indices as listed in Table 2.3. They then 

served as the input data for the following steps. 

 

Figure 2.6. Unmasked cloud shadow pixels with high NDVI values from a Landsat 8 

scene (Landsat Scene Identifier: LC80690122017228LGN00). Examples are 
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highlighted in yellow rectangles: (a) LandsatLook natural color image, (b) NDVI and 

cloud/shadow/water mask identified by level-2 QA data from the same Landsat scene. 

2.4.3 Generating a tundra vegetation mask for shrub or graminoid dominated tundra 

Since CAVM simply defines an approximate tundra boundary based on 1-km 

Advanced Very Higher Resolution Radiometer (AVHRR) data (Walker et al., 2005),  

I further developed a “tundra vegetation mask” layer to refine the shrub or graminoid 

dominated tundra region using RF classification. I have removed water body pixels in 

the previous step using the nominal water mask (Carroll et al., 2016). Here I 

identified three land cover classes including (1) tall shrub or tree, (2) built-up or 

barren land, (3) shrub or graminoid dominated tundra. 

I first used the three acquired LANDFIRE products (CFFDRS, FBFM40 and 

FCCS) to define the general regions of the three classes based on their classification 

codes (Table 2.4). I then examined the random points by visually interpreting the 

moderate resolution and VHR time series imagery available on Google Earth based 

on expert knowledge. Points that are not representative of the classes they are 

supposed to represent were removed from the sampling dataset. For each class, I 

extracted the intersections of each product as its boundary for generating stratified 

sample points by area. In total, I acquired 436 points for the tall shrub or tree, 1176 

points for the built-up or barren land, and 5238 points for shrub and graminoid tundra. 
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Table 2.4. Land cover classes and corresponding classification codes from 

LANDFIRE products. 

Land cover 
classes 

LANDFIRE 
products Fuel class or identification code 

Tall shrub or 
tree 

FCCS 85, 87, 88, 89, 92, 93, 94, 101, 103, 105, 322, 332 
CFFDRS C1, C2, C3, C4, C5, C6, C7 

Built-up or 
barren land 

FCCS 0 
CFFDRS NB1, NB9 
FBFM40 NB1, NB9 

Shrub or 
graminoid 
dominated 

tundra 

FCCS 

95, 97, 98, 99, 100, 318, 323, 324, 326, 327, 330, 
331, 333, 334, 336, 337, 338, 339, 601, 602, 603, 
604, 610, 611, 614, 615, 616, 617, 620, 623, 624, 

625, 627, 629, 630, 632, 635, 637, 638 
CFFDRS D1, S2, S3, O1A, M1, M2A, M2B, M2C, M3 

 
I used all bands from the seasonal mosaics as the input features for training 

and mapping the tundra vegetation mask. For each class, I randomly selected 70% of 

the sampled points for training the RF classification algorithm and reserved the 

remaining 30% for assessing the classification accuracy. I also reported the overall 

out-of-bag (OOB) error rate to estimate the classifier error based on the training data. 

Specifically, the OOB error rate is generated by estimating the ratio of 

misclassification among all bootstrap iterations (Breiman, 2001).  

2.4.4 RF modeling of fractional cover 

Before modeling, I compared my designed sampling plots with full fire 

records, including both MODIS Active Fire Product and Alaska Large Fire Database, 

to make sure the plots were not impacted by fire and thus representative of 

undisturbed conditions since the time of the measurement. To predict the fractional 

cover of surface fuel components at the large scale, I trained individual RF regression 

models for the three components separately with the field observations and seasonal 
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composites developed in Section 2.4.2. In particular, the spectral properties from the 

three growing seasons, including all six surface reflectance bands, four ratio-based 

spectral indices, and three TC components, were used as the input parameters to train 

the RF models for estimating fractional cover. For each RF regression model, I set the 

number of input variables at each split to 14, the number of trees to grow as 500, and 

the node size to 5.  

To assess the modeling accuracy, I not only examined the internal metrics 

provided by the RF regression algorithm, but also conducted cross-validation with our 

field observations. Specifically, I assessed the internal metrics including OOB, 

percent of variance explained, mean squared error (MSE) and root mean squared 

error (RMSE). For the cross-validation, I reserved 70% field data for model training 

and kept the remaining 30% for validation using a stratified random sampling 

strategy. I then reported the RMSE and R-squared values between the observed and 

estimated fraction values with the 30% validation dataset. For each fuel type 

component, I ran RF regression multiple times and selected an optimal one as the 

final model for estimating fractional cover. 

I also assessed the importance of predictors in determining the fractional 

cover in each model. Although Mean Decrease Gini and Mean Decrease Accuracy 

(MDA; Breiman, 2001) are the most commonly used indicators to assess the 

contributions of independent variables, there is an on-going debate about their 

comparative robustness (Louppe et al., 2013). Here I chose to report the MDA, which 

evaluates the variable importance by estimating the mean decreased MSE with 

permutated variable values. 
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2.4.5 Fuel type component mapping 

In the final step, I combined the results generated from the previous sections 

to develop fractional cover maps for the three fuel components. Only shrub or 

graminoid dominated tundra pixels identified by the “tundra vegetation mask” in 

Section 2.4.3 were subsequently used for mapping. I used the RF regression models 

developed in Section 2.4.4 to estimate the fractional cover of fuel components in 

Alaskan tundra. In addition to the statistical metrics adopted for assessing the RF 

modeling accuracy in Section 2.4.4, I further assessed the mapping results through 

comparisons with existing data products at similar spatial scales considering the 

limited coverage of our field observations. 

I first examined the distribution of fuel component fractions against the 

ecoregions based on the expert knowledge. The variability of climatic and 

topographic conditions across ecoregions in the tundra affects the actual distribution 

of the burnable vegetation materials. Here I utilized the Unified Ecoregions of Alaska 

(Nowacki et al., 2003) product to define the ecoregions within the tundra (Figure 2.2). 

For each fuel component, I generated boxplots to summarize the fraction distributions 

within the two Level 1 ecoregion groups (“Boreal” and “Polar”). Since most 

ecoregions in Alaskan tundra are elements of the “Polar” group, I further examined 

the distributions of each ecoregion units within the “Polar” Level 1 group. 

I then compared my results with existing vegetation cover products developed 

for the North Slope of Alaska to examine the differences caused by fractional cover 

definitions, field sampling strategies, and modeling methods. Although no fractional 

fuel type products have been developed, Beck et al. (2011) mapped the shrub cover of 
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deciduous species circa 2000 and Macander et al. (2017) quantified the fractional 

distributions of 16 PFTs across the North Slope of Alaska. I examined these products 

against the field observations. I also compared the overall results between the output 

maps and these two products with randomly selected sample points in the overlapping 

regions of all products. Since the definition of PFTs is not directly transferable to my 

fuel component scheme, here I used the “Total shrub” of PFT to compare with the 

woody component, the “Total herbaceous” of PFT to compare with the herbaceous 

component, and the “Total nonvascular plants” to compare with the nonvascular 

component. Although Berner et al. (2018) also mapped the dominance of shrub in the 

North Slope, they defined the shrub dominance differently as the percentage of shrub 

AGB over the total plant AGB and thus was not considered for comparison. 

2.5 Results 

2.5.1 Accuracy assessment of tundra vegetation mask 

Both internal metrics from the RF algorithm and accuracy assessment were 

used to evaluate the performance of the tundra vegetation mask. The RF algorithm 

showed an overall OOB error rate of 2.21%. I then generated the confusion matrix 

using the reserved 30% data to validate the classification result (Table 2.5). The 

overall classification accuracy reaches 97.91%, although the producer's accuracy and 

user's accuracy vary among each land cover class. The class of tall shrub or tree 

receives the lowest producer's accuracy (77.86%) and user's accuracy (90.27%), while 

the other two classes have consistently high accuracy values. Across the 494,971.4 
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km2 Alaskan tundra as estimated by CAVM, I identified 380,755.2 km2 as shrub or 

graminoid dominated tundra. 

Table 2.5. Confusion matrix of land cover classification for developing tundra 

vegetation mask. 

 
Reference 

Tall 
shrub/ tree 

Built-up/ 
barren Tundra Total User’s 

accuracy 

Map 

Tall shrub/ tree 102 0 11 113 90.27% 
Built-up/ barren 0 351 1 352 99.72% 

Tundra 29 2 1560 1591 98.05% 
Total 131 353 1572 2056 1 

Producer’s 
accuracy 77.86% 99.43% 99.24% 1 

Overall 
Accuracy: 

97.91% 

2.5.2 Accuracy assessment of fractional cover estimation 

To assess the modeling results, I first examined the internal metrics generated 

from RF regression (Table 2.6). The RF models developed for all three fuel 

components perform well in explaining the percent of the variance, with 79.83%, 

80.76%, and 80.02% for the woody (shrub), herbaceous (sedge and grass), and 

nonvascular (lichen and moss) components respectively. They also report high 

predictive power for fractional cover mapping with low MSE and RMSE values. The 

woody, herbaceous and nonvascular models show MSE values of 0.008852, 0.008117 

and 0.007234, and RMSE values of 9.41%, 9.01%, and 8.51%, respectively. 

Table 2.6. Statistical summary of three RF regression models. 

Fuel component % variance MSE RMSE 
Woody component 79.83 0.008852 9.41% 

Herbaceous component 80.76 0.008117 9.01% 
Nonvascular component 80.02 0.007234 8.51% 
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I then evaluated the predicted fractional cover using the reserved 30% field 

samples. The comparisons between the modeled and observed values show strong 

agreement for the three fuel components (Figure 2.7). The RSME values for the 

validation samples are within 2% of those generated from the internal model statistics 

with 8.04%, 9.57%, and 10.11% for woody, herbaceous and nonvascular components, 

respectively. The R-squared values between observations and estimations for the 

validation data are approximately 0.95 for all fuel components, with 0.9717, 0.9633, 

and 0.9395 for the woody, herbaceous and non- vascular components respectively. 

 

Figure 2.7. Scatter plots comparing estimated and observed fractional cover using 

the validation data for (a) woody, (b) herbaceous, and (c) nonvascular components. 

RMSE and R-squared values between the estimations and observations are reported 

in the scatter plot of each component. RSMEs are within 2% of those from the 

internal model statistics. R-squared values reach 0.95 for all components. 

Spectral bands and indices during pre- and peak-growing seasons play the 

most important role in determining the fractional cover of woody and herbaceous 

components in Alaskan tundra (Figure 2.8 a-b), while spectral indices during post-

growing seasons contribute most to the cover estimation of nonvascular component 

(Figure 2.8 c). For the woody component, the spectral reflectance of the red band 
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during the peak-growing season shows the highest MDA value of 14.73% in the RF 

regression model, followed by that of the blue band during the pre-growing season 

(13.53%) and NDVI during the peak-growing season (11.78%). For the herbaceous 

component, the spectral reflectance of the red band during the pre-growing season 

shows the highest MDA value of 16.66%, followed by NBR during the peak-growing 

season (15.79%) and the spectral reflectance of the green band during the pre-

growing season (13.83%). As for the nonvascular component, NBR during the post-

growing season is the most important independent variable in the regression model 

with an MDA value of 19.15%. NDWI2 and NDVI during the post-growing season 

also show high MDA values (13.77% and 11.75% respectively) in determining the 

fractional cover. Although RF regression can alleviate the multicollinearity issue 

through bootstrap aggregation, biases in variable importance can still exist among 

correlated features. 

 

Figure 2.8. Top 10 important independent variables and their MDA values from RF 

regression models for (a) woody, (b) herbaceous and (c) nonvascular components. 

Spectral bands and indices during pre- and peak-growing seasons play the most 

important role in determining the fractional cover of woody and herbaceous 
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components (a-b), while spectral indices in the post-growing seasons contribute most 

to the cover estimation of nonvascular component (c). 

2.5.3 Fractional cover of major fuel type components across Alaskan tundra 

The fractional distributions of three fuel components were mapped across the 

shrub and graminoid tundra in Alaska circa 2015 (Figure 2.9). From the south to the 

north of Alaska, shrub cover shows a slightly decreasing trend as the temperature falls 

(Figure 2.9 a). The Southwest Alaska shows a larger portion of the area with high 

shrub fraction compared to the North Slope and the Seward Peninsula. For the North 

Slope and the Seward Peninsula, shrub cover is higher along the rivers (Figure 2.9). 

The herbaceous component of sedge and grass is dominant and widely distributed 

across the entire study area (Figure 2.9 b). In particular, the central North Slope has a 

high fractional cover of sedge and grass. As can be expected, the nonvascular 

component is highly concentrated in the northern part of the North Slope (Figure 2.9 

c). From the north to the south across the entire tundra region, a general decreasing 

trend in the distribution of lichen and moss is clearly observed. 

A closer examination of my mapping results in the Noatak River National 

Preserve shows an increase in the shrub fraction along the drainages (Figure 2.10 b), 

while other regions have higher coverages of the herbaceous fuels including sedge 

and grass (Figure 2.10 c). The amount of the nonvascular component is generally low 

in this example and is most frequently observed in high concentrations only close to 

the barren land along the river or the mountains (Figure 2.10 d). 
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Figure 2.9. Fractional cover of three major fuel type components across Alaskan 

tundra: (a) woody, (b) herbaceous, and (c) nonvascular components. 
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Figure 2.10. Examples of fractional cover distributions in a tundra region near Lake 

Narvakrak in the Noatak River National Preserve: (a) VHR image from Google 

Earth; (b) woody component; (b) herbaceous component; (d) nonvascular 

component. 

I then summarized the spatial distributions of fractional fuel cover by the 

unified ecoregions in Alaskan tundra to examine their patterns. As expected, the 

comparison between the two Level 1 schemes (Boreal and Polar) shows a higher 

coverage of the woody component within the “Boreal” scheme (Figure 2.11 a). The 

“Boreal” scheme has a mean shrub coverage of 37.96% while that of the “Polar” 

scheme has a lower mean value of 31.57%. The “Boreal” scheme has an interquartile 

range (IQR) of 33.23% to 43.47%, while the IQR of “Polar” ranges from 24.23% to 

37.82%. Since the “Polar” scheme includes three Level 2 groups and nine ecoregion 

units, I further examined the distribution of shrub coverage within this scheme. From 
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north to south, the shrub coverage increases gradually among all the Level 2 groups 

and the ecoregion units (Figure 2.11 b). The woody component cover of units in 

“Arctic Tundra” and “Bering Tundra” is comparable but lower than that in the 

“Bering Taiga” in general. Specifically, the “Beaufort Coastal Plain” located in the 

northernmost part of Alaska has the lowest shrub cover on average of 27.61%, while 

the southernmost “Ahklun Mountains” unit has the highest mean cover of 39.04%.  

 

Figure 2.11. Boxplots of woody component cover against ecoregions in Alaskan 

tundra: (a) woody component cover by Level 1 scheme; (b) woody component cover 

by Level 2 ecoregion groups in the “Polar” scheme (ecoregion units are colored 

from light yellow to dark blue based on the latitude from north to south). Shrub 

coverage increases gradually among all the Level 2 groups and the ecoregion units, 

from north to south (b). 

For the herbaceous component (sedge and grass), the comparison between the 

two Level 1 schemes (Boreal and Polar) suggests no obvious differences (Figure 2.12 

a). The “Boreal” scheme shows a mean herbaceous coverage of 38.76% while that of 
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the “Polar” scheme has a higher value of 39.58%. The IQR of “Boreal” and “Polar” 

schemes are about 33.77% – 43.23% and 33.28% – 45.68% respectively. The mean 

fractional cover values of all Level 2 groups are also comparable in general, with 

values of about 38% to 40%. The sedge/grass distribution of units within the “Bering 

Taiga” group is consistent (Figure 2.12 b). However, the “Brooks Foothills” in 

“Arctic Tundra” and the “Bering Sea Islands” in “Bering Tundra” tend to have a 

higher herbaceous cover than other units within groups do. 

 

Figure 2.12. Boxplots of herbaceous component cover against ecoregions in Alaskan 

tundra: (a) herbaceous component cover by Level 1 scheme; (b) herbaceous 

component cover by Level 2 ecoregion groups in the “Polar” scheme (ecoregion 

units are colored from light yellow to dark blue based on the latitude from north to 

south). Herbaceous cover values among Level 2 groups are generally comparable, 

with relative higher values in the “Brooks Foothills” and “Bering Sea Islands” units 

(b). 
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For the nonvascular (lichen and moss) component, the comparison between 

the Level 1 schemes shows a higher cover of nonvascular vegetation within the 

“Polar” scheme (Figure 2.13 a). The “Boreal” scheme shows an average coverage of 

33.95% while that of the “Polar” scheme has a higher value of 41.32%. The “Boreal” 

scheme has an IQR of 15.24% to 40.11%, while that of the “Polar” scheme ranges 

from 23.41% to 56.99%. From north to south, the lichen/moss cover shows a slightly 

decreasing trend among the Level 2 groups and the ecoregion units (Figure 2.13 b). 

The mean values of lichen/moss cover in the “Arctic Tundra”, “Bering Tundra” and 

“Bering Taiga” are about 47.14%, 36.90%, and 30.04% respectively. Specifically, the 

“Beaufort Coastal Plain” and “Brooks Range” show the highest lichen/moss covers 

compared to other units. Within the “Bering Tundra” and “Bering Taiga” groups, the 

nonvascular fractional cover also decreases gradually as the latitudes become lower. 

 

Figure 2.13. Boxplots of nonvascular component cover against ecoregions in Alaskan 

tundra: (a) nonvascular component cover by Level 1 scheme; (b) nonvascular 

component cover by Level 2 ecoregion groups in the “Polar” scheme (ecoregion 
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units are colored from light yellow to dark blue based on the latitude from north to 

south). Nonvascular coverage shows a decreasing trend among the Level 2 groups 

and the ecoregion units from north to south (b). 

I further compared my outputs with existing fractional vegetation cover 

products developed for the tundra. A scatter plot comparison between our field 

observations and the shrub cover circa 2000 (Beck et al., 2011) suggests that the 2000 

shrub cover product overestimates the actual fractional cover of shrub in the North 

Slope (Figure 2.14 a). Compared to the field observations of fractional cover 

collected in the North Slope, the PFT maps circa 2015 (Macander et al., 2017) show 

an overestimation of shrub cover and an underestimation of lichen/moss cover, while 

the fractional cover values of herbaceous species (sedge/ grass) are relatively 

comparable (Figure 2.14 b). 

 

Figure 2.14. Scatter plots comparing our field observations and estimations from 

other products: (a) 2000 shrub cover (Beck et al.,  2011); (b) PFT products 

(Macander et al., 2017). Compared to our field observations, the PFT product 

(Macander et al., 2017) tends to overestimate the shrub cover, but underestimate the 
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lichen/moss cover. The fractional cover of herbaceous species (sedge/grass) is 

relatively comparable. 

The comparison between my maps and the existing products using 

approximately 20,000 randomly selected pixels in the North Slope (Figure 2.15) 

indicates similar patterns to those observed in comparing other products to field data 

directly. Fractional cover values of woody component (shrub) in both products are 

higher than the estimations in my results (Figure 2.15 a–b). Specifically, the majority 

of values were identified as 100% or 0% in Beck et al. (2011) in the North Slope. The 

fractional cover values of herbaceous species (sedge/grass) are comparable between 

the result and the product developed by Macander et al. (2017), ranging from about 

20% to 75% (Figure 2.15 c). However, the coverage values of nonvascular 

component (lichen/moss) are much higher in my result when compared to those in the 

PFT product (Figure 2.15 d). The PFT product suggests that the nonvascular species 

including lichen and moss have a general coverage of 0% – 25% in the North Slope, 

while my result indicates that lichen/moss can cover from 0% to 80%, mostly 

concentrated between 10% and 50% (Figure 2.15 d). 
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Figure 2.15. Density plots comparing my results and estimations from existing 

products: (a) woody component cover circa 2000 by Beck et al. (2011); (b) woody 

component cover circa 2015 by Macander et al. (2017); (c) herbaceous component 

cover circa 2015 by Macander et al. (2017); (d) nonvascular component cover circa 

2015 by Macander et al. (2017). Fractional cover values of woody component in both 

products are higher than the estimations in my results.  Nonvascular component tends 

to have much higher coverage than in the PFT product. 

2.6 Discussions 

Woody species in Alaskan tundra usually have higher surface reflectance in 

the NIR to SWIR spectrum but lower reflectance in the visible spectral regions 
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compared to herbaceous species such as sedge and grass (Buchhorn et al., 2013; 

Strauss et al., 2012). Previous studies have demonstrated the importance of multi-

spectral bands and NDVI in estimating the fractional coverage of shrub (Kushida et 

al., 2009; Selkowitz, 2010; Vierling et al., 1997). Multi-seasonal information and 

middle-infrared portion of the spectrum also contribute strongly to the accuracy of 

shrub cover prediction (Selkowitz, 2010). Both woody and herbaceous models 

demonstrate the importance of pre-growing season spectral information in 

distinguishing the woody and herbaceous components. This can be explained by their 

different phenological stages (Shaver and Kummerow, 1991). The in-situ 

measurements of surface reflectance have shown that the lichen/moss component has 

different spectrum patterns when compared to woody or herbaceous species 

(Buchhorn et al., 2013; Huemmrich et al., 2013; Strauss et al., 2012). My modeling 

result suggests that spectral indices integrating these bands in the post-growing 

season are effective in separating lichen/moss from woody and herbaceous 

components. This is likely to be driven by the exposure of spectral signals by 

lichen/moss due to the senescence of vascular species in the tundra during September.  

In addition to spectral bands provided by 30-m Landsat imagery, existing 

research has suggested that higher spatial resolution and red-edge (RE) spectral bands 

have the potential to improve fractional vegetation mapping efforts in the tundra 

(Davidson et al., 2016; Selkowitz, 2010; Stow et al., 1993). The launch of Sentinel-2 

Multi- Spectral Instrument incorporating three RE bands provides the opportunity to 

improve the estimation accuracy of surface vegetation distribution at a broad spatial 

scale. 
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Developed only using spectral signatures, my mapping results also show 

effectiveness in representing the fuel component distribution across ecoregions with 

different bioclimatic conditions. The “Boreal” ecoregion scheme shows a higher 

cover of the woody component but a lower cover of the nonvascular component than 

the “Polar” ecoregion scheme in general. Mostly located in interior Alaska with a dry 

continental climate, ecoregions in the “Boreal” scheme tend to be dominated by 

shrubs and even boreal forests in these mountainous regions. Within the “Polar” 

scheme, the fractional cover of fuel components identified in this study also 

corresponds to the bioclimatic environment based on expert knowledge (Gallant et 

al., 1995; Nowacki et al., 2003). The low fractional cover values of the woody 

component in the Beaufort Coastal Plain and Brooks Foothills ecoregions are likely to 

be driven by their polar climate and poor soil drainage conditions. With higher 

summer temperature and more annual precipitation then other tundra areas, 

ecoregions as part of the “Bering Taiga” group (Nulato Hills, Yukon-Kuskokwim 

Delta and Ahklun Mountains) are covered with more woody fuels such as dwarf or 

tall scrub communities with wet graminoid species dominating in some regions, 

which is also evident in my maps. 

Although the accuracy assessment shows strong predictive capability for 

fractional fuel mapping in Alaskan tundra, uncertainties still exist in the modeling and 

mapping results due to the limited spatial coverage of field observations, partially 

caused by the difficulty of obtaining field observations in the tundra. Regions with no 

available field data such as the Southwest Alaska and the northern North Slope could 

have higher uncertainties in my fractional cover maps. The mismatch of spatial 



 

 

53 
 

resolutions between the 10×10 m field plots and the 30×30 m Landsat 8 pixels could 

also introduce errors in the modeling and validation processes. During field 

campaigns, we have made our efforts on establishing sample plots in areas with 

visibly homogeneous distributions of vegetation species. However, it is possible that 

the actual vegetation coverages across one Landsat pixel may not be fully represented 

by the smaller than pixel field plots. Since the impacts of sample plot size on 

modeling and validation of fractional coverages is still unknown, future studies can 

elaborate on this and provide insights. 

In addition, the results largely rely on the quality of the seasonal mosaics 

developed across the entire study area. First, maintaining the spatial consistency of 

these mosaics in Alaskan tundra is hindered by the pervasive cloud coverage and 

incomplete masking of cloud and cloud shadow pixels in the Landsat data. Although 

the CFMask algorithm delineates the major regions of cloud and shadow, it fails to 

identify all cloud- and shadow-impacted pixels. Second, matching multiple 

phenological stages of vegetation across different regions is challenging because of 

the differences in illumination properties and vegetation growing states under 

different climatic conditions (Muller et al., 1999; Selkowitz, 2010). Therefore, in 

order to maintain spatially and temporally consistent mosaics, I adopted the MVC 

method based on NDVI values with carefully defined growing periods using multi-

year Landsat imagery. 

It is also worth mentioning that the mismatches between my results and 

existing products can be caused by the differences in the cover definition and field 

sampling strategy. Beck et al. (2011) defined two shrub types – tall (> 1 m) and short 
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– and mapped the total and tall shrub coverages. Here I chose the total shrub cover for 

comparison, which can explain why my estimates are lower. Macander et al. (2017) 

developed the fractional distribution maps of detailed PFTs. I used their integrated 

coverages of total shrubs, total herbaceous and top nonvascular plants for 

comparison, which can lead to the differences in my result comparisons. In addition, 

instead of collecting field measurements, Beck et al. (2011) extracted sample data by 

aggregating classified pixels from VHR imagery for training their regression 

algorithm, which could lead to the overestimation the actual shrub coverage in their 

mapping output. Moreover, Macander et al. (2017) collected field data from sites 

widely distributed across the North Slope, while our field data had no coverage within 

the Beaufort Coastal Plain ecoregion and only limited sites in the Brooks Foothills. 

This could explain the differences in the estimated cover of the nonvascular 

component in those regions between my result and that of Macander et al. (2017). 

2.7 Conclusions 

In this study, I deliver the first fractional cover maps of major fuel type 

components across Alaskan tundra circa 2015. I map the spatial distributions of 

woody, herbaceous and nonvascular components in this highly heterogeneous 

landscape. Although our field observations are comparatively limited in quantity and 

spatial coverage, the findings are broadly consistent with expected distribution 

according to bioclimatological conditions.  

I present a method of using multi-spectral and multi-seasonal observations in 

the differentiation of fuel components. The results show that this combination offers 

strong predictability from moderate resolution data and thus is critical for mapping 
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efforts at a broad spatial scale. This method can be adopted in monitoring other 

vegetation properties such as vegetation dominance and biomass. 

In addition, the long-term archive of moderate resolution data in Alaska offers 

an opportunity to examine the fuel composition change in Alaskan tundra as a result 

of both climate change and fire occurrence. The outputs and spectral indicators 

identified in this paper can assist long-term monitoring of fuel type components in the 

tundra. These fuel maps and their periodic updates can create a strong basis for 

enhancing modeling capabilities for both assessing fire behavior and post-fire 

ecological impacts.   
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Chapter 3: Modeling cloud-to-ground lightning probability in 
Alaskan tundra through the integration of Weather Research and 
Forecast (WRF) model and machine learning method2 
 

3.1 Summary 

Wildland fires exert substantial impacts on tundra ecosystems ranging from 

biogeochemical impact on climate system to habitat suitability for various species. 

Lightning is the primary ignition source of wildfires and it is critical to understand 

mechanisms and factors driving cloud-to-ground (CG) lightning strikes in this cold 

treeless environment to support operational forecasting and future modeling of fire 

activity. The existing CG lightning studies primarily focus on Alaskan and Canadian 

boreal forests where land-atmospheric interactions are different and, thus, not likely 

to be representative of tundra conditions. In this study, I designed an empirical-

dynamical method integrating Weather Research and Forecast (WRF) simulation and 

machine learning algorithm to model the probability of CG lightning strikes across 

Alaskan tundra between 2001 and 2017. This study recommended using Thompson 2-

moment and Mellor-Yamada-Janjic (MYJ) schemes as microphysics and planetary 

boundary layer parameterizations for WRF simulations in the tundra. The modeling 

and forecasting test results have shown strong capability of predicting CG lightning 

probability in Alaskan tundra, with Area Under the Curve (AUC) values above 0.9. I 

found that parcel lifted index (PLI) and vertical profiles of atmospheric variables, 

including geopotential height, dew point temperature, relative humidity (RH) and 

 
2 This chapter is under review in Environmental Research Letters, the special issue of “Resiliency and 
Vulnerability of Arctic and Boreal Ecosystems to Environmental Change: Advances and Outcomes of 
ABoVE (the Arctic Boreal Vulnerability Experiment)”. 
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velocity speed, important in predicting lightning occurrence, suggesting the key role 

of convection in lightning formation in the tundra. This method can be applied to 

data-scarce regions and support future studies of fire potential in the High Northern 

Latitudes (HNL). 

3.2 Introduction 

Wildfire is a primary disturbance across boreal forest and tundra ecosystems 

in the pan-Arctic region (Bond-Lamberty et al., 2007; French et al., 2015; Goetz et 

al., 2005). Although much more rare and generally less severe than boreal fires, 

tundra fires can alter ecosystem functioning through biogeophysical and 

biogeochemical processes and drive environmental changes in carbon cycling and 

energy budget (Bret-Harte et al., 2013; French et al., 2016; Jones et al., 2015; Mack et 

al., 2011; Pearson et al., 2013). Specifically, they release large stores of carbon 

generally locked in organic soil and permafrost: for example, the 2007 Anaktuvuk 

River fire on the North Slope of Alaska burned 1,039 km2 and released ~2.1 Tg 

carbon into the atmosphere (Mack et al., 2011). Although most tundra fires are not 

nearly as severe as the Anaktuvuk River fire event, they are common, particularly in 

Alaska. Alaskan tundra burns more than any other tundra regions worldwide, 

accounting for 54% of the 10,260 km2 burned area in the tundra worldwide between 

2001 and 2015, as estimated by satellite observations (He et al., 2019). With very 

short growing periods in the HNL, post-fire recovery for critical components of 

tundra ecosystem, e.g. lichen, can last for several decades, which is comparable to 

recovery rate of the boreal forests (Jandt et al., 2008; Racine et al., 1987). As a result, 
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tundra fires impact long-term winter forage availability for caribou and subsequently 

influence the subsistence resources of local communities (Gustine et al., 2014). 

Fires in the remote and generally inaccessible HNL are primarily ignited by 

CG lightning (French et al., 2015; Veraverbeke et al., 2017). Future climate 

projections indicate potential increase of CG lightning under warming conditions 

(Price and Rind, 1994a; Romps et al., 2014), which will subsequently lead to more 

fire occurrence and larger burned area in both boreal forest and tundra ecosystems  

(French et al., 2015; Krause et al., 2014; Veraverbeke et al., 2017; Wotton et al., 

2010). Numerous studies have examined characteristics (Dissing and Verbyla 2003; 

Kochtubajda et al. 2019; Reap 1991; Farukh et al. 2011), explored driving factors and 

developed predictive models (Blouin et al., 2016; Burrows, 2008; Burrows et al., 

2005) for CG lightning activity in Alaskan and Canadian boreal forests. However, 

considerably less is known about factors driving CG lightning for the treeless tundra. 

The substantial differences in surface layer conditions between tree-dominated and 

treeless landscapes (Beringer et al., 2005; Dissing and Verbyla, 2003; Rivas Soriano 

et al., 2019; Van Heerwaarden and Teuling, 2014) imply that understanding of 

lightning processes in the boreal forests is not necessarily readily transferable to the 

tundra. Therefore, tundra-focused studies are critical for enhancing the modeling 

capability of lightning and fire potential and assisting wildfire management efforts in 

future.  

Typically, lightning formation is associated with atmospheric convection in 

cumulonimbus clouds (Anderson, 1992). Lightning flashes are generated through the 

buildup, separation, and transfer procedures of electric charges between cloud 
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particles (Saunders, 2008; Yair, 2008). The occurrence and intensity of lightning 

activity are generally related to factors such as convective cloud development, cloud 

structure, and hydrometeor attributes (Baker et al., 1999; Buiat et al., 2017; Price and 

Rind, 1994b). However, explicit simulation and prediction of the electrification 

processes can be computationally expensive (Zepka et al., 2014). Further efforts are 

also required  to comprehensively understand the detailed microphysical procedures 

contributing to charge accumulation (Rakov and Uman, 2003; Saunders, 2008). CG 

lightning modeling thus primarily rely on developing its relationships with observed 

or model-resolved parameters related to convective activities and cloud microphysical 

properties. 

Classificatory schemes or simple regression methods developed with 

convective indices or weather conditions from observations or weather model outputs 

were among the early attempts for lightning modeling (Anderson, 1991; Andersson et 

al., 1989; Fuquay, 1980; Reap and Foster, 1979; Reap and MacGorman, 1989; Sly, 

1965). With the development of General Circulation Models (GCMs) and Numerical 

Weather Prediction (NWP) models, lightning schemes based on microphysics 

principles have been parameterized upon these models from regional to global scales 

(Barthe et al., 2010; Lynn et al., 2012; Price and Rind, 1994b; Wong et al., 2013; Yair 

et al., 2010). Simple strategies were also adopted to improve the modeling capability 

with WRF simulations (Giannaros et al., 2015; Zepka et al., 2014). 

In addition to physical parameterizations, empirical-based methods such as 

logistic regression (Bates et al., 2018; Shafer and Fuelberg, 2006) and random forest 

(RF; Blouin et al., 2016; Schön et al., 2018) were developed in recent studies to 
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model CG lightning occurrence based on dynamic meteorological conditions and 

thunderstorm characteristics. Opportunities for integrating dynamic NWP and 

statistical models have been explored to improve the modeling capability of lightning 

potential. Burrows et al. (2005) and Burrows (2008) trained tree-structured regression 

models to forecast lightning probability using predictors generated from the Global 

Environmental Multiscale (GEM) model. Sousa et al. (2013) and Gijben et al. (2017)  

also combined NWP models such as WRF with logistic regression to develop 

statistical-dynamical methods for lightning prediction in different regions.  

Due to the remoteness of the tundra, meteorological observations, including 

weather stations and atmospheric soundings, are sparsely distributed and thus 

unsuitable for describing the spatial variation of tundra conditions. Although 

reanalysis products provide atmospheric variables with spatial-temporal consistency, 

their performances are limited by the coarse spatial resolution, availability of 

observations, and uncertainty of diagnostic variables (Dee et al., 2016). Therefore, 

purely empirical models trained with observations or reanalysis data are unsuitable 

for lightning modeling in data-scarce regions like tundra.  

Although NWP has not been specifically applied in tundra studies, existing 

research has demonstrated its suitability and effectiveness for modeling lightning 

potential (Burrows et al., 2005; Reap, 1991) and fire danger (Di Giuseppe et al., 

2016; Mölders, 2010, 2008) in the boreal forests. Considering that tundra has 

different land-atmosphere interactions and fewer meteorological stations available for 

measuring near-surface and atmospheric conditions when compared to boreal forests, 

this study focuses on improving the modeling capacity for CG lightning probability 
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and understanding what atmospheric factors drive CG lightning in Alaskan tundra 

through the integration of WRF and RF, a commonly used machine learning 

algorithm. I first assessed WRF parameterization schemes to identify an optimal 

combination for reproducing the observed meteorological conditions in the tundra. I 

then examined data from 2001 to 2019 to understand what atmospheric factors drive 

CG lightning probability across Alaskan tundra.  

3.3 Study Area 

In Alaska, more than 99% of CG lightning occurs from May to August, 

particularly during June and July (Mcguiney et al., 2005; Reap, 1991). A typical 

diurnal pattern exists starting from noon and lasting until midnight with a peak 

between 4pm and 8pm. Elevation and forest cover can affect the spatial variation of 

lightning in Alaska by altering the convective activity (Dissing and Verbyla, 2003). In 

particular, large-scale atmospheric instability and local convergence are the major 

contributors to thunderstorm formation and lightning occurrence in Alaska (Reap, 

1991). Here I defined Alaskan tundra using the Circumpolar Arctic Vegetation Map 

(CAVM; Figure 3.1 a; Walker et al. 2005). Fire regimes vary by year and across 

different tundra regions (Figure 1.2). 
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Figure 3.1. Study area: (a) Alaskan tundra defined by CAVM; (b) WRF simulation 

domains. 

3.4 Materials and Methods 

I designed an empirical-dynamic method combining WRF-simulated 

atmospheric variables and ground-based lightning observations to model CG 

lightning probability in Alaskan tundra (Figure 3.2). I first conducted a sensitivity 

analysis to identify an optimal WRF parameterization scheme that best describes 

tundra meteorological conditions. I then ran WRF for selected case studies and 

trained RF models for predicting CG lightning probability. 



 

 

63 
 

 

Figure 3.2. Overall workflow of Chapter 3 

3.4.1 Cloud-to-ground lightning observations 

I obtained lightning data from the Alaska Lightning Detection Network 

(ALDN) maintained by the Bureau of Land Management (Fronterhouse, 2012). This 

system has a detection efficiency better than 5km and positional accuracy higher than 

70%, as estimated by early studies (Dissing and Verbyla, 2003; Reap, 1991). It has 

been updated multiple times to improve detection performance (Fronterhouse, 2012). 

Specifically, devices employed before 2012, developed by Vaisala, Inc., recorded 

lightning flash with multiplicity (i.e., lightning strikes per flash). The new system, 

provided by TOA Systems, Inc., records lightning strikes instead (Fronterhouse, 

2012). To ensure the consistency of lightning records between systems, I utilized 

lightning strikes rather than flashes in this study. 

3.4.2 WRF model setup and sensitivity analysis 

I adopted the Advanced Research WRF version 4.0 (Skamarock et al., 2019) to 

simulate weather conditions in the tundra. I used the National Centers for 

Environmental Prediction Final Operational Model Global Tropospheric Analysis 
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data (NCEP FNL) at 1°´1° resolution and 6-hour interval for model initialization 

(NCEP, 2000). Developed with the Global Data Assimilation System (GDAS), this 

product provides a variety of parameters to describe initial and boundary 

meteorological conditions on the surface and at 26 mandatory pressure levels. I 

defined two domains with 25-km (Domain 1) and 5-km (Domain 2) grid spacing for 

two-way nested WRF simulation (Figure 3.1b). The vertical dimension was 

configured with 33 unevenly spaced full sigma levels with the model top at 50hPa. 

WRF provides multiple parameterization schemes for its major physics components 

(Table 3.1; Skamarock et al., 2019). The various assumptions and mechanisms 

adopted in these schemes can affect simulation results for a specific region. 

Since existing applications of WRF in the HNL primarily focus on the boreal 

forests or the pan-Arctic region, their schemes may not be suitable for tundra. 

Therefore, I employed a sensitivity analysis to determine WRF settings that achieve 

the closest description of tundra conditions compared to meteorological observations. 

I first reviewed existing literature to explore a list of WRF schemes as candidates 

(Table 3.1). The majority of the literature utilized the same schemes for land surface 

model, radiation, and cumulus components, namely Noah, Rapid Radiative Transfer 

Model (RRTM), and Grell-Devenyi, respectively (Table 3.1). These schemes were 

then applied with updated versions in WRF 4.0. Microphysics schemes explicitly 

resolve physical processes related to water vapor, cloud, and precipitation, with 

mixed-phase ones recommended for simulating icing or convective conditions at 

horizontal resolution finer than 10 km (Skamarock et al., 2019). I thus selected 

Morrison 2-moment, Thompson 2-moment, and WRF 2-moment 6-class (WRF6) for 



 

 

65 
 

microphysics in the sensitivity analysis. Mellor-Yamada-Janjic (MYJ)/ Monin-

Obukhov MM5, and Yonsei University (YSU) / Monin-Obukhov Eta combinations 

were also considered for Planetary Boundary Layer (PBL) / Surface Layer (SL) 

representation. All six candidates of schemes are summarized in Table 3.2.  

Table 3.1. WRF schemes used for the pan-Arctic region in existing literature 

Components Schemes References 

Microphysics 

Morrison 2-moment (Bieniek et al., 2016) 

Thompson 2-moment (Kim et al., 2014; Mölders, 2010, 
2008) 

WRF single-moment 6-
class 

(Cai et al., 2016; Hines and 
Bromwich, 2008) 

Goddard Cumulus 
Ensemble Model 

(Cassano et al., 2011; Glisan et al., 
2013) 

Longwave 
radiation 

Rapid Radiative Transfer 
Model (RRTM) 

Longwave 

(Bieniek et al., 2016; Cai et al., 2016; 
Glisan et al., 2013; Hines et al., 2011; 

Kim et al., 2014; Mölders, 2010, 
2008) 

Community Atmospheric 
Model (CAM) Longwave 

(Cassano et al., 2011; Glisan et al., 
2013) 

Shortwave 
radiation 

RRTM Shortwave (Bieniek et al., 2016; Glisan et al., 
2013; Kim et al., 2014) 

Dubhia Shortwave (Cai et al., 2016; Mölders, 2010, 
2008) 

Goddard Shortwave (Hines et al., 2011) 

CAM Shortwave (Cassano et al., 2011; Glisan et al., 
2013) 

Cumulus Grell-Devenyi ensemble (Bieniek et al., 2016; Cassano et al., 
2011; Glisan et al., 2013) 

Kain-Fritsch (Cai et al., 2016) 

Planetary 
Boundary 

Layer (PBL) 
/ Surface 

layer 

Mellor-Yamada-Janjic 
(MYJ) / Monin-Obukhov 

Eta (Eta) 

(Bieniek et al., 2016; Cassano et al., 
2011; Glisan et al., 2013; Hines et al., 

2011) 
Yonsei University (YSU) 
/ Monin-Obukhov MM5 

(MM5) 

(Cai et al., 2016; Kim et al., 2014; 
Mölders, 2010, 2008) 

Land surface 
model 

Noah 
(Bieniek et al., 2016; Cai et al., 2016; 

Cassano et al., 2011; Glisan et al., 
2013; Hines et al., 2011) 

Rapid Update Cycle (Mölders, 2010, 2008) 
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Table 3.2. Six candidates of parameterization combinations for sensitivity analysis 

Combination notation Microphysics PBL + SL 
Morrison_MYJ Morrison 2-moment MYJ + Eta 

Thompson_MYJ Thompson 2-moment MYJ + Eta 
WRF6_MYJ WRF6 MYJ + Eta 

Morrison_YSU Morrison 2-moment YSU + MM5 
Thompson_YSU Thompson 2-moment YSU + MM5 

WRF6_YSU WRF6 YSU + MM5 
 

Near-surface weather observations collected by Remote Automated Weather 

Stations (RAWS; https://raws.nifc.gov) provide the densest weather network in 

Alaska to date. Four weather variables recorded by RAWS, including air temperature, 

dew point temperature, relative humidity, and solar radiation were utilized as “ground 

truth” for sensitivity analysis. To consider different fire regimes (Figure 1.2), I 

selected four cases for 24-hr simulations in years of varying fire season intensity 

(2006 – low, 2007 – moderate, 2010 and 2015 – intense, Figure 1.2; Table 3.3). Daily 

observations were obtained for all available RAWS stations in the tundra. To identify 

the optimal combination group, I calculated three statistical metrics, including root-

mean-square error (RMSE), mean absolute error (MAE) and Pearson’s r correlation 

between simulations and observations. For each weather variable, I ranked the three 

metrics from all candidates for each year from 1 (lowest) to 6 (highest). For each 

metric, the yearly rankings were then summed up to create a single rank sum (ranging 

from 4 to 24), with the larger rank sum representing better overall performance. 

Table 3.3. Summary of case studies for sensitivity analysis 

Year Number of RAWS stations  Simulation period (UTC time) 
2006 8 08/16 00:00 - 08/17 00:00 
2007 9 05/01 00:00 - 05/02 00:00 
2010 12 07/01 00:00 - 07/02 00:00 
2015 29 06/18 00:00 - 06/19 00:00 
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3.4.3 RF modeling of cloud-to-ground lightning probability 

RF classification algorithm (Breiman, 2002, 2001) was used for modeling CG 

lightning probability with the atmospheric variables simulated from WRF. As an 

ensemble method, RF generates a large number of individual decision trees through 

permutation and integrates its results for a more stable modeling performance. I 

designed two separate modeling experiments referred to as the “24-hr model” and 

“48-hr model” in this study, to compare the consistency of modeling performance and 

variable importance with different WRF simulation periods (0-24hrs and 0-48hrs 

respectively; Figure 3.3). For each experiment, atmospheric variables of interest were 

extracted from WRF outputs simulated at 24hrs or 48hrs after initialization, 

respectively. Four groups of predictors were summarized from existing literature 

(Blouin et al., 2016; Burrows, 2008; Burrows et al., 2005; Reap, 1991; Sousa et al., 

2013) including atmospheric stability indices, cloud properties, weather conditions at 

multiple pressure levels (500, 700, 850, and 1000 hPa), and two lightning 

parameterizations from WRF (Table 3.4). Both the Price and Rind (PR92; Wong et 

al., 2013) and Lightning Potential Index (LPI; Yair et al., 2010) lightning schemes 

were included for modeling. 

 

Figure 3.3. Illustration of the “24-hr model” and “48-hr model” components 
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Table 3.4. List of independent variables retrieved from WRF output for RF modeling 

Categories Variables Description 

Atmospheric 
stability indices 

CAPE Convective Available Potential Energy 
CIN Convective Inhibition 
LCL Lifted Condensation Level 
LFC Level of Free Convection 
TT Total Totals 
KI K Index 
PLI Parcel Lifted Index (to 500 hPa) 
BI Boyden Index 

SHOW Showalter Index 

Cloud properties 

CFtotal Total cloud cover fraction 
CFhigh High-level cloud cover fraction 
CFmid Mid-level cloud cover fraction 
CF low Low-level cloud cover fraction 
CTT Cloud top temperature 
CTH Cloud top height 
CTP Cloud top pressure 
IWP Ice water path 
LWP Liquid water path 
ERIce Effective radius of cloud ice 

ERWater Effective radius of cloud water 
QCloud Cloud water mixing ratio 
QIce Ice mixing ratio 
QRain Rain mixing ratio 
BT Brightness temperature 

Weather 
variables 

T Air temperature at surface & multiple pressure 
levels 

Td Dewpoint temperature at surface and multiple 
pressure levels 

T.Td Temperature-dewpoint spread at multiple pressure 
levels 

RH Relative humidity at surface and multiple pressure 
levels 

GPZ Geopotential height at multiple pressure levels 
DZ Thickness between any two pressure layers 
W Vertical velocity at multiple pressure levels 

Helicity Helicity 
UH Updraft helicity 
Rain Total precipitation 
PW Precipitable water 
SLP Sea level pressure 
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Lightning 
parameterizations 

PR92 Flash distribution of CG lightning with PR92 
LPI Lightning probability index 

 

All predictors were retrieved with WRF outputs of Domain 2 using the NCAR 

Command Language (NCL) and the NCEP Unified Post Processor System (UPP). 

Then I used these atmospheric factors to model the presence and absence of CG 

lightning strikes during the following day (24hrs) after the timing of variable 

extraction, which were considered as dependent variables in my RF models. CG 

lightning points extracted from the ALDN dataset during the corresponding period 

were labeled as the presence of lightning, while sample points with no lightning 

occurred (labeled as absence) were randomly generated within Alaskan tundra region 

during the same period.  

To ensure the representative of our models in describing tundra lightning 

conditions, three lightning severity levels were identified based on the total number of 

daily CG lightning strikes for model training, following a similar method by Farukh 

et al. (2011): > 2000 strikes per day as severe, 500 – 2000 strikes per day as 

moderate, and 0 – 500 strikes per day as low. For each level, I selected five cases for 

WRF simulation using a stratified random sampling strategy (Table 5). I then 

randomly selected 70% of presence and absence points for model training and 

reserved the rest 30% for validation. Training and testing points from all levels were 

combined for model development and accuracy assessment, respectively. I set the 

number of trees to 500 and the number of variables at each split as 8 in the RF 

algorithm. 
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Table 3.5. Cases studies of WRF simulations for CG lightning modeling 

Initialization of  
simulation (UTC) 

Total CG lightning strokes  
during 0~24hrs 

Total CG lightning strokes 
during 24~48hrs  

2003/06/23 00:00 1305 1560 
2005/06/11 00:00 732 1027 
2005/06/29 00:00 3449 2151 
2005/08/16 00:00  5 15 
2007/07/04 00:00 4280 479 
2007/07/11 00:00 2321 2247 
2008/06/25 00:00 2030 295 
2009/06/09 00:00 335 64 
2010/07/01 00:00 1015 1991 
2013/06/20 00:00 3073 3641 
2013/08/16 00:00 60 10 
2015/07/14 00:00 847 4320 
2015/06/21 00:00 974 905 
2015/07/23 00:00 175 80 
2016/07/11 00:00 93 109 

 

I reported the out-of-bag (OOB) error rate provided by the RF classification 

algorithm to evaluate the overall accuracy of the trained models. I further calculated 

the commonly used statistical criteria using the prediction results of the validation 

dataset for accuracy assessment (Tables 3.6 and 3.7). Receiver Operating 

Characteristics (ROC) curves and area under curve (AUC) were also generated based 

on the validation dataset. Additionally, I examined the contribution of predictors in 

determining CG lightning potential in the tundra with variable importance quantified 

by Mean Decrease in Accuracy (MDA;  Breiman, 2002, 2001). 

 
Table 3.6. Contingency matrix of variables used to calculate statistical scores 

 CG lightning event observed 
Presence Absence 

CG lightning 
event predicted 

Presence 𝑎 (hit) 𝑏 (false alarm) 
Absence 𝑐 (miss) 𝑑 (correct non-event) 
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Table 3.7. Statistical criteria used for assessing modeling performance 

Statistical scores Abbreviation Formula 
Probability of Detection POD 𝑎/(𝑎 + 𝑐) 
Critical Success Index CSI 𝑎/(𝑎 + 𝑏 + 𝑐) 

False Alarm Ratio FAR 𝑏/(𝑎 + 𝑐) 
False Alarm Rate F 𝑏/(𝑏 + 𝑑) 

 

3.4.4 Forecasting capability assessment 

In addition to empirical modeling, I further tested the capability of our 

empirical-dynamic method in forward forecasting of CG lightning probability at a 

future timing, by applying the RF model developed for a previous period. Here I 

utilized the “24-hr model” to forecast the CG lightning probability with atmospheric 

conditions simulated 48hrs after initialization. Statistical criteria listed in Table 7 and 

ROC curves were also generated for quantifying the forecasting capability of CG 

lightning potential.  

3.5 Results 

3.5.1 Sensitivity analysis of WRF simulation 

The results of the sensitivity analysis indicate a substantial variability in 

performance of different WRF parameterizations by individual meteorological 

variable and across different case study periods (Figure 3.4; Tables S1 – S4). The 

combined statistical ranking for each variable can range between 4 (the lowest rank 

across all four sensitivity cases, see Table 3.3) and 24 (the highest rank across all four 

cases). Based on these results, Thompson_MYJ and Morrison_MYJ emerged as 

strongest performing settings for tundra meteorology simulations (Figure 3.4). 

Although majority of the correlation values for all metrological variables are around 
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0.7 ~ 0.8, the overall simulation results for air temperature and dew point temperature 

across all six candidates outperform those for relative humidity and solar radiation 

according to the RMSE and MAE values (Tables S1 – S4).  

 

Figure 3.4. Bar plots summarizing the ranks of six candidate schemes based on 

Pearson’s r correlation, MAE and RMSE for: (a) air temperature, (b) dew point 

temperature, (c) relative humidity, and (d) solar radiation. The largest rank sum 

value represents the best overall performance. 

Specifically, Thompson_MYJ shows the best results when compared to other 

schemes for air temperature and dew point temperature (Figure 3.4 a-b; Tables S1 – 
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S2). For RH, using MYJ for the PBL scheme show superior results than adopting 

YSU, particularly when combined with the Morrison and Thompson schemes (Figure 

3.4 c). While for solar radiation, the Morrison scheme outperforms other 

microphysics schemes, followed by Thompson. Since lightning activity is largely 

related to convection activity, I further examined the spatial distribution of 

Convective Available Potential Energy (CAPE), as a representative of convection, 

generated by both Thompson_MYJ and Morrison_MYJ schemes for comparison. The 

Thompson_MYJ scheme shows a more detailed distribution of CAPE values for 

describing convective activities (Figure 3.5). I therefore chose to adopt the 

Thompson_MYJ combination and summarized the optimized WRF schemes for CG 

lighting modeling experiments in Table 3.8. 

 

 

Figure 3.5. Comparison of CAPE simulation in Domain 2 between (a) Morrison_MYJ 

and (b) Thompson_MYJ for the 2010 case as an example. 
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Table 3.8. Optimized combination of physical parameterizations 

Physical component Parameterization scheme Setting option in WRF 
Microphysics Thompson 2-moment mp_physics = 8 

Cumulus Grell-Freitas ensemble cu_physics = 3 
PBL MYJ bl_pbl_physics = 2 
SL Eta sf_sfclay_physics = 2 

Land surface model Noah sf_surface_physics = 2 
Longwave radiation RRTMG ra_lw_physics = 4 
Shortwave radiation RRTMG ra_sw_physics = 4 

 

3.5.2 Accuracy assessment of RF models 

The overall OOB estimate of error rate and the class errors have shown high 

accuracy in predicting CG lightning strikes in Alaskan tundra. For the “24-hr model”, 

the OOB is 4.64% and the overall accuracy reaches 95.36%. Specifically, the absence 

of CG lightning has a class error of 7.26%, while that of the presence reaches 2.54% 

(Table 3.9 a). For the “48-hr model”, the OOB is 6.81% with an overall accuracy of 

about 93.19%. The class errors of the absence and presence of lightning events are 

11.15% and 3.43%, respectively (Table 3.9 b).  

Table 3.9. Confusion matrix for (a) “24-hr model” and (b) “48-hr model” 

(a) 24-hr model 

Confusion matrix CG lightning predictions Class error Absence Presence 
CG lightning  
observations 

Absence 7013 549 0.0726 
Presence 241 9239 0.0254 

(b) 48-hr model 

Confusion matrix CG lightning predictions Class error Absence Present 
CG lightning 
observations 

Absence 4872 612 0.1115 
Presence 243 6837 0.0343 

 
The validation results against the reserved dataset show that both models have 

overall high accuracy in predicting CG lightning strikes. I assessed the overall 
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statistical metrics (Table 3.10) and the ROC curves (Figure 3.6). I also reported them 

separately by severity level and found a notably stronger performance during severe 

and moderate lightning days when compared to the low severity level. For the severe 

and moderate levels, the “24-hr model” produces a Probability of Detection (POD) 

value of 0.96 and a Critical Success Index (CSI) of 0.91, while the two error metrics 

False Alarm Ratio (FAR) and False Alarm Rate (F) are below 0.1 (see Table 3.7). 

While the POD and CSI values are below 0.8 for the validation data from the low-

level lightning cases. The AUC values estimated from the ROC curves are above 0.95 

across lightning days in all severity levels.  

Table 3.10. Statistical criteria calculated using the validation data for: (a) 24-hr 

model; (b) 48-hr model. 

Models Metrics All Severe level Moderate 
level Low level 

24-hr 
model 

POD 0.9628 0.9821 0.9456 0.7885 
CSI 0.9065 0.9365 0.8569 0.7454 
FAR 0.0606 0.0472 0.0987 0.0682 

F 0.0858 0.1167 0.0794 0.0277 
AUC 0.9869 0.9898 0.9818 0.9743 

48-hr 
model 

POD 0.9668 0.9701 0.9643 0.2273 
CSI 0.8815 0.8808 0.8833 0.1829 
FAR 0.0909 0.0946 0.0868 0.5161 

F 0.1247 0.1291 0.1196 0.0366 
AUC 0.9810 0.9810 0.9809 0.8751 

 

The “48-hr model” shows an overall POD value of 0.97 and a CSI of 0.88, 

while the FAR is below 0.1 and the F metric is about 0.12. Similar to the “24-hr 

model”, it also has the best performance for the validation records collected during 

the severe lightning days, followed by those collected during moderate lightning 

days. However, the POD and CSI values are below 0.5 for the low severity cases. 
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Similar patterns can be observed from the ROC curves (Figure 3.6 b). The AUC 

reported from validation data collected during severe and moderate lightning days are 

higher than 0.95, while its value drops to 0.87 for the low severity level days (Table 

3.10).  

 

Figure 3.6. ROC curves of validation results on lightning days with different severity 

levels: (a) 24-hr model, (b) 48-hr model. 

In addition to the purely statistical accuracy assessment, I generated CG 

lightning probability maps across the entire Alaskan tundra to visually compare the 

predicted spatial patterns to observed patterns of lightning strike distribution (see an 

example for a severe lightning day in Figure 3.7. 
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Figure 3.7. (a) Observed CG lightning strikes during 2010/07/02 00:00 and 

2010/07/03 00:00UTC and (b) modeled CG lightning probability with the “24-hr 

model” in Alaskan tundra as an example. 

3.5.3 Forecasting performance 

The forecasting test using the “24-hr model” for the 48-hr simulation 

demonstrates strong statistical performance of my method in forecasting forward, 

with POD as 0.71 and CSI as 0.67 (Table 3.11). The two false ratios FAR and F are 

below 0.08. When separated by different severity levels of lightning days, the 

forecasting performance is consistent with previously reported results: the accuracy 

appears to be substantially higher for severe and moderate lightning conditions 

compared to low severity days. Similar patterns can be found from the ROC curves 

(Figure 3.8), with the AUC values around 0.9 for the entire data and those from the 

moderate level cases (Table 3.11). 
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Table 3.11.  Statistical criteria calculated for the forecasting test 

Metrics All Severe level Moderate level Low level 
POD 0.7063 0.6372 0.7707 0.1515 
CSI 0.6660 0.5898 0.7397 0.1397 
FAR 0.0788 0.1119 0.0516 0.2 

F 0.0780 0.1024 0.0547 0.0132 
AUC 0.9203 0.8766 0.9519 0.769 

 

 

Figure 3.8. ROC curves of forecasting tests on lightning days with different severity 

levels 

3.5.4 Evaluation of variable importance 

To understand the roles of the predictors in determining the CG lightning 

potential in the tundra, I examined the top 20 important variables ranked according to 

MDA from both the “24-hr model” and the “48-hr model” for comparison (Figure 

3.9). According to both models, Parcel Lifted Index (PLI) is found to be the most 

important variable in determining the accumulated lightning strikes among all the 

predictors. For the “24-hr model”, weather variables at multiple pressure levels, 

including geopotential height, dew temperature, relative humidity, and velocity speed, 
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also show their importance in determining CG lightning occurrence in the tundra 

(Figure 3.9 a). In addition, cloud fraction, sea level pressure, helicity, lifted 

condensation level, and atmospheric stability indices like the Total Totals and the 

Showalter Index (SHOW) are also among the top 20 important indicators. Although 

the variable ranking order of the “48-hr model” differs from that of the “24-hr 

model”, the majority of the top 20 important variable remains the same. Only layer 

thickness between 700 and 850 hPa levels (DZ700-850) and brightness temperature 

appear to play an important role in determining the lightning potential for the “48-hr 

model” but not in the “24-hr model”. 

 

Figure 3.9. Top 20 important variables ranked by MDA in (a) “24-hr model” and (b) 

“48-hr model”. 

3.6 Discussions 

In general, my results successfully demonstrate the strong capability of the 

empirical-dynamic method in representing meteorological conditions that support CG 
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lightning well in Alaskan tundra. As integration of WRF (using the selected 

parameterization schemes) and RF algorithm, this method shows excellent 

performance in both modeling CG lightning strikes with 24hr and 48hr WRF 

simulations, and forward forecasting of lightning probability. This supports the 

effectiveness of the empirical-dynamical framework in accurate prediction of future 

CG lightning potential in the data-scarce regions like the HNL. Considering the 

primary role of lightning in igniting wildland fire in the boreal forest and tundra 

ecosystems (French et al., 2015; Veraverbeke et al., 2017), this study can further 

support the monitoring of fire weather conditions and probability as well.  

The results indicate that atmospheric conditions supporting CG lightning 

activity in Alaskan tundra may differ from those in the boreal. Although instability 

indices SHOW and CAPE were recognized as the top-ranking indicators for lightning 

potential in boreal forests (Blouin et al., 2016; Burrows et al., 2005), I found PLI as 

the most important factor in modeling lightning activity than any other indices in 

Alaskan tundra. This highlights the key role of the lift potential in providing sufficient 

convection to support lightning formation in the tundra than in the boreal forests in 

general, which is consistent with the modeling results of Burrows et al. (2005) in the 

far west and north region of the North America dominated by tundra. While Burrows 

et al. (2005) suggested that the occurrence of lightning was influenced by the 

interaction between strong convection and precipitable water (PW) in the cloud, here 

I found much lower rankings of PW than instability indices like PLI and SHOW in 

both models. This indicates that convection plays a more critical role than PW in 

determining the lightning potential in the tundra, which is consistent with the findings 
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of Reap (1991). Besides, I also found the vertical profiles of variables like 

geopotential height, relative humidity, dew point temperature, and layer thickness 

important in modeling lightning activity (Figure 9). However, neither of the two 

lighting parameterizations (PR92 and LPI) reflect lightning potential in the tundra at 

the regional scale well. This is not surprising because these parameterizations were 

not specifically developed for the HNL.  

Additionally, the justification of using Thompson 2-moment and MYJ for 

WRF simulation in the tundra is consistent with existing findings of WRF application 

in lightning modeling. With a more detailed distribution of CAPE values for 

describing convective activities (Figure 4), the Thompson scheme is also 

recommended in existing studies (Giannaros et al., 2015; Zepka et al., 2014), given a 

detailed representation of ice-phase processes and improved simulation performance 

for convection related events like precipitation. For lightning modeling purpose, the 

MYJ scheme is also suitable for describing PBL conditions considering its optimal 

representation of atmospheric conditions for triggering convection activities 

(Giannaros et al., 2015; Sousa et al., 2013).  

Despite WRF’s strong capabilities in regional modeling and dynamic 

downscaling of atmospheric conditions, its performance of describing physical 

processes is limited by the assumptions and mechanisms employed for developing the 

parameterization schemes. Polar WRF is now under development for an improved 

description of near-surface and atmospheric conditions for the Arctic regions with 

improved WRF schemes, which has the potential for improving lightning modeling 

for Alaska in future (Cai et al., 2018; Hines et al., 2011; Wilson et al., 2012). 
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Although our modeling results show very impressive prediction capabilities, 

they are subject to uncertainties inherent in CG lightning observations detected from 

either the ground-based networks. Satellite-based sensors such as Lightning Imaging 

Sensor or Geostationary Lightning Mapper monitor lightning at large spatial scale. 

Their datasets, however, are not available for the HNL due to the limited spatial 

coverage and resolution (Matsangouras et al., 2016; Nag et al., 2014). Separating the 

CG and intra-cloud lightning from satellite observations can introduce errors as well 

(Nag et al., 2014). Although ground-based systems are constrained by position 

accuracy and detection efficiency, I found reporting probability a more effective way 

to describe CG lightning activity.  

Although atmospheric factors function as the key predictors for lightning, 

synoptic-scale dynamic forcings control meteorological mechanisms driving lightning 

and fire weather (Flannigan and Wotton, 2001; Reap, 1994; Santos et al., 2013). For 

example, Kochtubajda et al. (2019) found more frequent ridging and ridge 

displacements during the 2014 wildfire season in the Northwest Territories of 

Canada. Synoptic weather conditions should be explored and incorporated in future 

modeling efforts to improve our understanding of lightning and fire regimes in the 

tundra. 

3.7 Conclusions 

Wildfire dominates the disturbance regimes in the Arctic and boreal 

ecosystems in North America. In recent decades, these regimes have been notably 

changing and, thus, necessitating a better understanding of the current regimes and 

their feedbacks to the climate system (Fisher et al., 2018). This study makes the first 
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effort in examining the factors driving lightning activity, the primary ignition source 

for wildfire, in Alaska tundra with my statistical-dynamical modeling method. This 

study demonstrated the effectiveness of integrating WRF and machine learning for 

lightning modeling in Alaskan tundra at 5km spatial resolution. The results provide 

insights on understanding the mechanisms of lightning-ignited fires in the tundra. PLI 

and weather variables at multiple pressure levels were found to be the most important 

predictors for modeling lightning potential in the tundra, indicating the primary role 

of convection in the formation of thunderstorms and CG lightning. Moreover, 

applicable for other data-scare regions, this method can further support the lightning 

and fire prediction as well as management efforts in the HNL. 
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Chapter 4: Exploring environmental factors driving wildland 
fire ignitions in Alaskan tundra 
 

4.1 Summary 

Tundra fires are common across the pan-Arctic region, particularly in Alaska. 

Fires lead to significant impacts on terrestrial carbon balance and ecosystem 

functioning in the tundra. They can even affect the forage availability of herbivorous 

wildlife and living resources of local human communities. Also, interactions between 

fire and climate change can enhance the fire impacts on the Arctic ecosystems. 

However, the drivers and mechanisms of wildland fire ignitions in Alaskan tundra are 

still poorly understood. Research on modeling contemporary fire probability in the 

tundra is also lacking. This study focuses on exploring the critical environmental 

factors controlling wildfire ignitions in Alaskan tundra and modeled the fire ignition 

probability, accounting for ignition source, fuel types, fire weather conditions, and 

topography. The fractional cover maps of fuel type components developed Chapter 2 

serve as input data for fuel type distribution. The probability of cloud-to-ground (CG) 

lightning and fire weather conditions are simulated using WRF. Topographic features 

are also calculated from the Digital Elevation Model (DEM) data. Additionally, fire 

ignition locations are extracted from Moderate Resolution Imaging Spectroradiometer 

(MODIS) active fire product for Alaskan tundra from 2001 to 2019. Empirical 

modeling methods, including RF and logistic regression, are then utilized to model 

the relationships between environmental factors and wildfire ignitions in the tundra 

and to evaluate the roles of these factors. The results suggest that CG lightning is the 

primary driver controlling fire ignitions in the tundra, while warmer and drier weather 
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conditions also support fires. The results of this study highlight the important role of 

CG lightning in driving tundra fires and that incorporating CG lightning modeling is 

necessary and essential for fire monitoring and management efforts in the High 

Northern Latitudes (HNL).  

4.2 Introduction 

Wildland fires have played an important role in altering ecosystem 

functioning, driving land cover change and affecting carbon balance in the boreal 

forest and tundra ecosystems (Gustine et al., 2014; Kasischke et al., 2010; Mack et 

al., 2011; Randerson et al., 2006; Rocha and Shaver, 2011; Turetsky et al., 2011). 

Although tundra fires are typically less severe than the fires in the boreal forests, they 

are common and widespread across the pan-Arctic region according to satellite based 

observations (He et al., 2019). In recent years, several large fire seasons have 

occurred in Alaskan tundra, such as the 2010 fire season in the Noatak River Valley 

and the 2015 fire season in the Southwest Alaska. Tundra fires also have the potential 

to release the ancient carbon stored in the permafrost underneath the land surface and 

lead to widespread development of thermokarst (Jones et al., 2015; Mack et al., 

2011). Moreover, fires in the tundra can influence the habitats and forage availability 

of wildlife like caribou, which would further affect the resources of local human 

communities (Gustine et al., 2014; Jandt et al., 2008; Rupp et al., 2006). Furthermore, 

fire activities are likely to increase in the tundra under climate warming in the future 

(French et al., 2015).  

Despite the importance of tundra fires, they are less studied compared to fires 

in other ecosystems. Current research primarily focuses on evaluating post-fire 
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impacts such as fire severity (Loboda et al., 2013), ecosystem responses (Bret-Harte 

et al., 2013), and carbon budget change (Mack et al., 2011) within comparatively little 

attention to modeling tundra fire occurrence. Previous studies have modeled historical 

or future tundra fire regimes with either empirical methods or an ecosystem model 

Alaska Frame-Based Ecosystem Code (ALFRESCO; Higuera et al., 2011; Joly et al., 

2012; Young et al., 2017).  However, research on modeling contemporary fire 

occurrence is lacking in current English language peer-reviewed literature. Although 

numerous studies have modeled the interactions between environmental factors and 

wildfire occurrences in boreal forests, their results are not directly applicable to 

tundra ecosystems due to the different ecosystem functioning and responses (French 

et al., 2015; Van Heerwaarden and Teuling, 2014).  

Wildfire occurrences are primarily ignited by cloud-to-ground lightning 

strikes and human activities. In addition to the ignition sources, wildfire behaviors are 

typically controlled by three types of influencing forces including fuel, weather and 

topography, as summarized by the Fire Environment Triangle (Pyne et al., 1996). 

Fuel type and state are critically important factors that control fire-environment 

interactions through altering fire characteristics and affecting ignition easiness (Pyne 

et al., 1996). Fuel type represents properties of the fuel itself, such as fuel 

composition, continuity and loading. Fuel state is mainly related to moisture content 

primarily driven by the changing weather conditions at different temporal scales. 

Topography also has the potential to affect the fire behaviors through controlling 

exposure to sunlight and moisture pooling. Weather conditions can also function as 

the dominant contributors to the fire environment from hourly to daily scales, by 
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influencing the fuel conditions and ignition sources. A variety of rating systems have 

been developed to quantify the danger of fire weather conditions and to predict the 

fire potential, such as National Fire Danger Rating System (NFDRS) and Canadian 

Forest Fire Weather Index System (CFFWIS).  

Majority of the existing studies exploring the impacts of these environmental 

factors in driving wildland fires are focused on boreal forests in the HNL, from the 

perspectives of both fire occurrence and fire spread. Liu et al. (2012) studied both 

lightning and human ignited fires in the boreal forests of Northeast China and found 

out that lightning fires are mainly controlled by fuel moisture and vegetation type. 

Veraverbeke et al. (2017), however, suggested the primary role of lightning in driving 

burned areas in recent large fire years in the boreal forests of North American. 

Peterson et al. (2010) also demonstrated the effects of atmospheric stability, lightning 

strike counts, and dry weather conditions on fire activity in the boreal forests of North 

America. Though lightning characteristics like polarity and peak current were found 

to be significant predictors of fire occurrences (Müller and Vacik, 2017; Vecín-Arias 

et al., 2016), they did not function as major contributors that drive fire ignitions in 

some other studies (Adámek et al., 2018; Pineda et al., 2014). These differences could 

be caused by different matching methods between lightning strikes and fires (Moris et 

al., 2020). Recently, Masrur et al. (2018) found out that warm and dry conditions 

affect the spatiotemporal patterns across the entire circumpolar tundra regions. 

However, their analyses were conducted across the pan-Arctic region and may not 

explain the situation of fires in Alaskan tundra. 
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Due to the lack of weather stations in the remote tundra, datasets developed 

based on station observations with interpolation methods such as Daymet are not 

suitable for capturing these environmental factors, particularly fire weather 

conditions, in this data-scare region. Reanalysis data products also have their 

limitations regarding the coarse spatial resolution. Meteorological variables simulated 

with Numerical Weather Prediction (NWP) models like Weather Research and 

Forecast (WRF) model have demonstrated their suitability for describing fire weather 

conditions and capturing their spatial variations in regions with limited observations 

available (Mölders, 2010, 2008), although the simulated indices may not always be 

trustworthy in accurate characterization of fire risk likely caused by the inaccurate 

simulation of wind and precipitation (Mölders, 2010; Simpson et al., 2014). In 

addition, remote sensing observations have also been widely adopted for capturing 

the spatial distribution of fuel types, fuel moisture states and topographical features 

(He et al., 2019; Loboda, 2009; Loboda and Csiszar, 2007; Ottmar et al., 2007; Yebra 

et al., 2013, 2008).  

Two types of models have been developed to uncover the impacts of the 

environmental factors on driving lightning-ignited wildfire occurrences and to model 

their relationships. Earliest attempts of fire occurrence modeling developed physical-

based models with explicit representations of wildland fire processes(Anderson, 

2002; Anderson et al., 2000; Kourtz and Todd, 1991). Specifically, major steps 

related to fire occurrences including the start of lightning, fire ignition, fire 

smoldering and fire detection were accounted for and represented in these physical-

based models. Through a series of equations developed upon experiments and 
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assumptions, these models were able to incorporate the related environmental drivers 

of fires and to model the probability of fire occurrences.  

Empirical based methods have been commonly adopted for modeling wildfire 

ignitions in recent-year research (Prestemon et al., 2013). The spatial point modeling 

methods have been adopted by several studies on modeling fires in different 

ecosystems (Liu et al., 2012; Woo et al., 2017; Yang et al., 2015). Generalized Linear 

Models have also been commonly utilized to predict fire occurrences (Ager et al., 

2018; Barbero et al., 2014; Vilar et al., 2016). In addition, with strong predictive 

capability, logistic regression and random forest (RF) based algorithms have been 

frequently applied to understand the relationships between environmental factors and 

fire occurrences (Guo et al., 2016; Keyser and Leroy Westerling, 2017; Van 

Beusekom et al., 2018; Vecín-Arias et al., 2016; Viedma et al., 2018; Wotton and 

Martell, 2005). 

Therefore, in this study, I aim to understand “What environmental factors 

drive fire ignition probability across Alaskan tundra?” Here fire ignition is referred 

as the detectable start of fire occurrence using satellite sensors. To address this 

research question, I plan to develop an empirical model using RF algorithm for 

predicting fire ignition probability in Alaskan tundra with environmental drivers 

derived from WRF simulations and satellite observations from 2001 to 2019.  

4.3 Study Area 

This study covers the entire Alaskan tundra beyond the northern tree line, as 

defined by the Circumpolar Arctic Vegetation Map (CAVM) data (Walker et al., 

2005; Figure 3.1 a), focusing on the shrub or graminoid dominated tundra in 
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particular. Major vegetation fuels in this region include evergreen or deciduous shrub, 

sedge, grass, moss, and lichen (Bliss et al., 1973). This region is underlain by 

continuous and discontinuous permafrost. Though varying by ecoregions, the study 

area has an average temperature below 0°C throughout the year. Despite the low 

annual precipitation, tundra lands tend to be wet because of the low evaporation rates 

and poor drainage conditions. Wildland fire activities in Alaskan tundra also have a 

large variability across different ecoregions (French et al., 2015; Rocha et al., 2012). 

Over the past half-century, the mean fire return intervals for Alaskan tundra 

ecoregions vary from 13 to 22 years, and the fire rotation periods have a range from 

roughly 400 to thousands of years (Rocha et al., 2012). Though most Alaskan tundra 

fires are small in spatial scale, the large ones are not rare. Particularly, Kotzebue 

Lowlands and Seward Peninsula tend to have higher frequency and larger burned 

extent compared to the others (French et al., 2015). 

4.4 Data and Methods 

To achieve the research goals, I considered five groups of environmental 

factors related to wildfire ignition, including fuel type distribution, fuel state 

conditions, fire weather conditions, topographical features, and fire ignition source 

(Figure 4.1). Fire ignition locations in Alaskan tundra extracted from satellite 

observations were used as the dependent variable. I then developed an empirical 

model for predicting the fire ignition probability in the tundra using RF algorithm. In 

particular, the fractional cover maps developed in Chapter 2 were used to represent 

fuel type distribution in this study. The empirical-dynamical method developed in 

Chapter 3 was adopted to model the probability of CG lightning strikes, the primary 
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ignition source of wildfire in Alaskan tundra. Additional environmental variables, 

including satellite-derived fuel state characterization, surface topography and weather 

conditions, are described in this chapter.   

 

Figure 4.1. Methodology framework of modeling fire ignition probability in Alaskan 

tundra in Chapter 4. 

In addition to the overall framework, the modeling workflow of this chapter is 

further summarized in Figure 4.2. All input environmental factors were first 

categorized into variables of relatively high and low temporal variability referred to 

as dynamic and static, respectively. Static variables including both topographical 

features (ref?) and fractional coverages of major fuel type components (He et al., 

2020). Although vegetation shifts and fuel type transitions can occur from years to 

decades under disturbances or climatic variability and change, the vegetation 

compositions are relatively stable when compared to the seasonal and diurnal changes 

of meteorological variables and fire weather conditions. The fuel types were therefore 

considered as static variables in this dissertation. Weather related variables, including 
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near surface, CFFWIS, and CG lightning probability, are dynamic throughout a short 

time period. Compared to fuel type, fuel moisture state can change under the 

influence of meteorological conditions in a few days, thus considered as dynamic 

variables.  

To characterize the dynamic components of fire ignition, I extracted the earliest 

detections from the space-time contiguous point clouds of MODIS active fire data 

(sec section 4.4.1) to determine ignition locations and dates for multiple years. These 

points served as “Fire” events in the fire ignition modeling. The dates of these 

ignition points were used for determining dynamic variables used for modeling. I 

used the leaf moisture related vegetation indices calculated from the closest day of 

year (DOY) before the ignition dates using MODIS 8-day surface reflectance 

composites (MOD09A1; Vermote et al., 2015). I then determined WRF simulation 

dates for modeling CG lightning probability and near-surface meteorological 

conditions. Since the calculation of some of the fire weather indices within the 

CFFWIS is based on long-term accumulation of weather variable starting from 

snowmelt dates, here I combined downscaled WRF output starting from a week since 

the ignition dates, and the relative coarse resolution reanalysis data from the mid-

April to calculate indices from CFFWIS. After preparing all independent variables, 

two models were developed with RF algorithms using dynamic variable acquired on 

the fire ignition day and one day before ignition, to, first, assess the ability of the 

model to represent actual fire ignition instances (the day of ignition model) and, 

second, assess the model’s forecasting capacity (one day before ignition).  
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Figure 4.2. Modeling workflow 

4.4.1 Determining fire ignition locations 

Ignition point locations of tundra fires from 2001 to 2019 were determined 

using the 1km MODIS Thermal Anomalies/Fire locations data product (MCD14DL 

V006; Giglio et al., 2003) obtained from NASA’s Fire Information for Resource 

Management System (FIRMS). Since fires have strong emission of mid-infrared 

radiation, this active fire product detects fires based on brightness temperatures from 

MODIS 4- and 11-µm bands using a contextual algorithm (Giglio et al., 2003). In 

addition to coordinates (latitude and longitude) of active fire points, attributes 

including brightness temperature, acquisition date, acquisition time, fire radiative 

power, and detection confidence are also recorded in the data product. Only fire 

points classified as nominal or high confidence levels (detection confidence above 

30%) were considered in the processing. 

MODIS active fire points in the tundra were first extracted using a 10km 

buffered boundary of the CAVM data. I designed a clustering method based on the 
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Density-Based Spatial Clustering of Applications with Noise (DBSCAN; Ester et al., 

1996) algorithm to identify the tundra fire clusters (Figure 4.3). The DBSCAN 

algorithm separates points of high density from those of low density and locates these 

regions as clusters. Here the ε parameter in DBSCAN, which represents the 

maximum distance between two neighboring points, was set to 2.5 km based on the 

study of Loboda and Csiszar (2007). The DBSCAN algorithm was applied to tundra 

fire points for each year. Since fires occurring at different times could be grouped into 

the same cluster, I further examined the temporal gap (Gaptime) among fire points in 

each cluster and. The temporal gap was determined as 4 days to separate different 

fires in a certain spatial cluster (Loboda and Csiszar, 2007). The active fire points 

with the earliest acquisition time were considered as the ignition locations. 

 

Figure 4.3. Workflow for extracting fire ignition locations in Alaskan tundra  
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Individual fire ignition events were then identified from the MODIS active 

fire records between 2001 and 2019 across Alaskan tundra using the algorithm 

described above, suggesting a variety of wildfire activity patterns in this region 

(Figure 4.4). Thirteen of the nineteen years in the available data record have a number 

of fire events between twenty (2001 – 2004, 2006, 2008 – 2009 , 2011 – 2014, 2016 – 

2018), four years can be characterized as a moderate fire activity season with the 

number of fire events between 20 and 30 (2005, 2007, 2010, 2019), while the 2015 

fire season has particularly high fire activity with 49 fire events detected within the 

boundary of Alaskan tundra defined by CAVM.  

 

Figure 4.4. Number of fire ignition events detected from 2001 to 2019 with 

MCD14DL data. Sampled fire years are highlighted in orange boxes.  

To cover a variety of fire seasons, I sampled five seasons of low fire activity 

(2002, 2006, 2008, 2013, 2017), two years with moderate fire season activity (2007, 

2010), and one year with very high fire activity (2015), as illustrated in Figure 4.4. I 

then extracted the ignition points for individual fire events and defined the dates of 

ignition based on the time stamp of the ignition points to improve the computing 
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efficiency of WRF simulation. Fire ignition dates detected from the selected eight 

years were summarized in Table 4.1.  

Table 4.1. Full list of fire ignition dates detected from sampled years 

Year Fire ignition dates 

2002 5/23/2002, 6/3/2002, 6/18/2002, 7/10/2002, 7/20/2002, 7/28/2002, 
8/2/2002, 8/5/2002, 8/15/2002, 8/22/2002, 9/22/2002 

2006 5/31/2006, 7/7/2006 

2007 
6/4/2007, 6/10/2007, 7/5/2007, 7/6/2007, 7/7/2007, 7/12/2007, 
7/14/2007, 7/16/2007, 7/17/2007, 8/2/2007, 8/29/2007, 9/8/2007, 
9/9/2007, 9/19/2007, 9/30/2007 

2008 6/4/2018, 6/5/2018, 6/7/2018, 6/8/2018, 6/13/2018 

2010 
6/1/2010, 6/8/2010, 6/9/2010, 6/21/2010, 6/22/2010, 6/23/2010, 
6/24/2010, 7/1/2010, 7/2/2010, 7/3/2010, 7/4/2010, 7/8/2010, 
7/10/2010 

2013 5/31/2013, 6/5/2013, 6/20/2013, 6/21/2013, 7/11/2013, 7/30/2013 

2015 

6/1/2015, 6/2/2015, 6/16/2015, 6/20/2015, 6/21/2015, 6/22/2015, 
6/23/2015, 6/24/2015, 6/25/2015, 6/29/2015, 6/30/2015, 7/2/2015, 
7/3/2015, 7/4/2015, 7/6/2015, 7/7/2015, 7/13/2015, 7/14/2015, 
7/20/2015, 7/24/2015, 7/25/2015, 8/1/2015, 8/6/2015 

2017 6/6/2017, 6/7/2017, 6/8/2017, 6/16/2017, 6/19/2017, 6/28/2017 
 

4.4.2 Modeling cloud-to-ground lightning probability with WRF simulations 

The empirical-dynamical framework “24-hr model” developed in Chapter 3 

was adopted here to describe the probability distribution of ignition source across 

Alaskan tundra. Since the National Centers for Environmental Prediction (NCEP) 

final analysis data used in Chapter 3 does not provide precipitation data, in this 

section I used the North American Regional Reanalysis (NARR) data instead to 

initialize the two-way nested WRF simulation, for the consistency of CFFWIS 

calculation in Section 4.4.3. Developed by the NCEP, the NARR dataset assimilates a 

large amount of observations to generate long term estimations of weather conditions 

across the entire North America at 32 km resolution and 3-hour time interval. All 
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observations used in NCEP/NCAR Global Reanalysis project, precipitation data, 

radiances from Television Infrared Observations Satellite (TIROS) Operational 

Vertical Sounder (TOVS), profiler data, and land surface and moisture data have been 

utilized to produce this dataset.  

I then applied the modeling approach developed in Chapter 3 to develop CG 

probability grids at 5km resolution for the entire tundra region in Alaska, using WRF 

simulated atmospheric factors as independent variables. CG lightning probability was 

modeled and included in this analysis for each of the “fire ignition” dates extracted in 

section 4.4.1. and “the day before ignition” dates. The output 5km lightning 

probability grids were then used as input data for representing ignition sources of 

wildland fires.  

4.4.3 Near surface weather conditions and calculation of the CFFWIS 

As a sub-system of the Canadian Forest Fire Danger Rating System 

(CFFDRS), the CFFWIS has been developed since 1970 to account for the weather 

impacts on forest fuels and fires across the boreal forests of Canada (Van Wagner, 

1987; Figure 4.5). Although not specifically designed for the tundra fuels and fires, 

this system is suitable for describing fire weather conditions in the ecosystems of the 

HNL and considers for more detailed fuel types than the NFDRS (French et al., 2015; 

Mölders, 2010). 
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Figure 4.5. Flow chart of Canadian FWI system, source: National Wildfire 

Coordinating Group (https://www.nwcg.gov/publications/pms437/cffdrs/fire-weather-

index-system) 

The entire CFFWIS is comprised of six standard components, including three 

fuel moisture codes and three fire behavior indices (Van Wagner, 1987; Figure 4.5). 

The calculation of CFFWIS purely requires weather readings of air temperature, RH 

and wind at noon, as well as daily accumulated precipitation, which actually 

represents the peak fire danger during the midafternoon (Van Wagner, 1987). The 

design of three fuel moisture codes accounts for both water capacity and drying speed 

of the fuels. Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC) and 

Drought Code (DC) represent the moisture content and flammability of litter and fine 

fuels, loosely compacted organic matter of moderate depth, and deep and compact 

organic layers, respectively. Both DMC and DC are slow-reacting codes that are 

largely affected by the changing daylength and long-term accumulation, while the 

fast-reacting FFMC is less responsive those effects. For all three codes, larger values 
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suggest drier conditions and higher flammability of the fuels. Calculated based on the 

moisture codes, the fire behavior indices, including Initial Spread Index (ISI), 

Buildup Index (BUI) and Fire Weather Index (FWI), are designed to describe the 

important variables related to fire behavior, including spread rate, fuel weight and fire 

intensity.  

The CFFWIS requires long-term records of weather observations starting 

from snowmelt date for each year. Although the exact date of snowmelt varies across 

the regions, I set the startup date to a common day, as is common for calculating 

CFFWIS (Lawson and Armitage, 2008), in mid-April (DOY 101) for all years. Fire 

weather variables from NARR reanalysis data and WRF outputs were combined to 

support the calculation of CFFWIS to reduce the computing load caused by multi-

year WRF simulation, while achieving the improved spatial resolution of the results. 

Specifically, WRF simulations were run for a week before the ignition dates to 

downscale the data to 5 km. Then the NARR data were resampled with the Nearest 

Neighbor method to describe the meteorological conditions from the startup date till 

the WRF simulations. In addition to the four weather observations (air temperature, 

RH, wind and precipitation), the daylength data of the selected years for the entire 

North America were obtained from Daymet (Thornton et al., 2017) provided by the 

Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC).  

To prepare the input data for CFFWIS, the daily maximum values during 

daytime from noon to midafternoon were calculated based on the 3-hour intervals for 

air temperature, RH and wind. Daily accumulated precipitation values were also 

summed up based on the 3-hourly data. The initial conditions of seasonal start-up 
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values for FFMC, DMC, and DC were set to 85, 6, and 15, respectively (Lawson and 

Armitage, 2008). The three fuel moisture codes (FFMC, DMC, and DC) and three 

fire behavior indices (ISI, BUI, and FWI) from CFFWIS were then calculated 

according to the equations provided in Van Wagner and Pickett (1985) to describe 

long-term weather conditions for all the sampled eight years across the entire tundra.  

4.4.4 Estimating fuel state with vegetation indices 

A variety of vegetation indices have been developed to estimate vegetation moisture 

content for large-scale monitoring. Yebra et al. (2008) reviewed commonly used 

vegetation indices and suggested that Normalized Difference Infrared Index (NDII), 

Normalized Difference Water Index (NDWI) and Global Vegetation Moisture Index 

(GVMI) are directly related to leaf water content. I, therefore, decided to adopt these 

indices as a reference for fuel moisture state in this chapter (Table 4.2). MODIS 8-day 

surface reflectance data product MOD09A1 was used to compute these vegetation 

indices across Alaskan tundra. Only clear pixels were adopted for the calculation 

according to the state Quality Assurance (QA) flags. Indices from the closest DOY of 

8-day composites were used for RF modeling.  

Table 4.2. Vegetation indices for estimating live fuel moisture content 

Vegetation index Formula with MODIS bands Reference 
Normalized Difference 
Infrared Index (NDII6) 

𝜌( − 𝜌0
𝜌( + 𝜌0

 (Hardisky et al., 1983)  

Normalized Difference 
Infrared Index (NDII7) 

𝜌( − 𝜌1
𝜌( + 𝜌1

 (Hardisky et al., 1983) 

Normalized Difference 
Water Index (NDWI) 

𝜌( − 𝜌2
𝜌( + 𝜌2

 (Gao, 1996) 

Global Vegetation 
Moisture Index (GVMI) 

(𝜌( + 0.1) − (𝜌0 + 0.02)
(𝜌( + 0.1) + (𝜌0 + 0.02)

 (Ceccato et al., 2002) 
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4.4.5 Extracting topographic features 

The 5m DEM product collected with airborne Interferometric Synthetic 

Aperture Radar (IfSAR) data was obtained for the entire Alaska from the Alaska 

Elevation Portal supported by the State of Alaska (https://elevation.alaska.gov). The 

IfSAR data has been collected by USGS a 5-m post spacing throughout Alaska with 

since 2010. This data product has a vertical accuracy of 3-m with 90% confidence 

level for regions with slope between 0 – 10 degrees. It has provided a full coverage 

for the tundra regions in Alaska. Four topographical features were extracted based on 

the DEM, including elevation, slope, aspect, and roughness using the Geospatial Data 

Abstraction Library (GDAL).  For a certain elevation grid cell, the roughness is 

defined as the maximum inter-cell difference between its elevation value and those 

from all surrounding cells (Wilson et al., 2007). Due to the extremely large size of the 

entire dataset covering Alaskan tundra, I resampled the DEM data to 30m for the 

extraction of topographical features considering the computing efficiency. 

4.4.6 Empirical modeling of fire ignition probability 

Empirical models were developed with RF classification algorithm to identify 

the important factors driving fire ignitions in the tundra and to predict the ignition 

probability. Fire ignition points extracted from the Section 4.4.1 were used to 

represent the presence of “Fire” in Alaskan tundra, which was coded as “1” in the 

modeling. I then randomly sampled similar amounts of points across the tundra 

regions on the same fire ignition dates as the “No Fire” conditions, which was coded 

as “0”. For dynamic variables, I extracted the values acquired on fire ignition dates 

and the dates before ignition separately, to construct two different datasets of 
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predictors for the two models, referred as “Current model” and “Previous model” in 

this dissertation. For both models, 70% of the records were randomly selected for 

model training, and the rest 30% were reserved for validation.  

Although spatial autocorrelation does not impact the accuracy of prediction 

within the RF models, it can impact the assessment of relative impact of individual 

input variables on the outcome.  Since the ultimate goal of this study is to understand 

the relative importance of the drivers of fire ignitions in Alaskan tundra, I first tested 

the Pearson’s r correlation between each pair of the variables and removed those that 

are highly correlated from modeling. Although the algorithm has strong capability of 

accurate prediction, it only provides the relative rankings of variable importance 

while fails to show how the independent variables relate to the fire events (negatively 

or positively) and the strength of the relationship. To account for these limitations of 

the RF modeling algorithm, I visualized the distribution of the values for different 

variables within “fire” and “non-fire” conditions using boxplots, and  quantified the 

significance of the observed differences in the mean values of environmental factors 

within “fire” and “non-fire” cases using Welch’s t-tests. Finally, logistic regressions 

were also developed with the two datasets to further support the exploration of 

driving factors of tundra fire ignitions.  

4.5 Results 

4.5.1 Variable selections based on correlations 

The study design includes the development and testing of two models.  The 

“Current” model represents the condition observed and modeled for the day of fire 
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ignition to test our ability to accurately model the ignition events.  The “Previous” 

model is developed to add an assessment of fire ignition forecasting capabilities using 

weather and other environmental condition from the day before the actual date of fire 

ignition event. Before executing these empirical models, I first explored the Pearson’s 

r correlations between independent variables to exclude the highly correlated ones. 

The correlation matrices of variables in both “Current” and “Previous” models are 

shown in Figures 4.6 and 4.7, respectively. For both matrices, three groups of 

variables exhibit very strong correlations with Pearson’s r values above 0.8, including 

vegetation indices, fire weather variables, and topographic features. Specifically, all 

four vegetation indices are highly correlated with each other, with correlation values 

above 0.95. I therefore selected to include only NDII6 as a reference for the fuel state 

conditions in the modeling efforts. For the CFFWIS, I also found strong correlations 

between several pairs of CFFWIS fire weather indices, including FFMC-ISI and 

DMC-BUI, with correlation values above 0.95. FWI was not included in this analysis 

and further modeling steps because the dynamic range of the values remained at 0 for 

the dates. Therefore, only three fuel moisture codes – FFMC, DMC and DC – were 

included in the empirical modeling. Although near surface meteorological variables 

also show moderate correlations with fire weather indices, they are included to 

account for meteorological conditions irrespective of fuels. Finally, among 

topographic features, slope and roughness are closely related to elevation values for 

Alaskan tundra, and hence, are excluded from modeling. 
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Figure 4.6. Correlation matrix for static and dynamic variables extracted on the fire 

ignition days. “LP”: CG lightning probability, “Temp: air temperature, “Elev”: 

elevation, “Rough”: roughness, “Herb”: herbaceous component, and “Nonva”: 

nonvascular component. 
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Figure 4.7. Correlation matrix for static and dynamic variables extracted on the 

dates before fire ignitions. “LP”: CG lightning probability, “Temp: air temperature, 

“Elev”: elevation, “Rough”: roughness, “Herb”: herbaceous component, and 

“Nonvas”: nonvascular component. 
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4.5.2 Accuracy of empirical modeling 

The RF models have shown strong capability and high accuracy in predicting 

wildfire ignition probability in Alaskan tundra, according to the overall OOB estimate 

of error rate and the class errors. The overall OOB error rate of the “Current” model 

is 6.03% with the overall accuracy of 93.97%. Specifically, the “Fire” condition has a 

class error of 5.05%, while that of the “No fire” reaches 7.17% (Table 4.3 a). The 

overall performance of the “Previous” model is slightly lower. Its overall OOB error 

rate is 8.75% with the overall accuracy of 91.25%. The class errors of the absence and 

presence of fire events are 6.86% and 10.97%, respectively (Table 4.3 b).  

Table 4.3. RF modeling results of the two models for predicting fire ignitions 

(a)  Current model 

Confusion matrix Predictions Class error No fire Fire 

Observations No fire 263 14 0.0505 
Fire 17 220 0.0717 

(b)  Previous model 

Confusion matrix Predictions Class error No fire Fire 

Observations No fire 258 19 0.0686 
Fire 26 211 0.1097 

 

Validation performed against the reserved dataset shows that both models 

have a strong capability to reflect (for “Current”) and forecast (for “Previous”) fire 

ignition probability, according to the ROC curves (Figure 4.8). The AUC values 

estimated from the ROC curves are above 0.95 in both models, with 0.9704 and 

0.9683 for the “Current” for “Previous” models, respectively. 
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Figure 4.8. ROC curves estimated based on validation datasets for the two models: 

(a) “Current model”; (b) “Previous model”. 

4.5.3 Evaluation of variables driving tundra fire ignitions 

RF Mean Decrease in Accuracy (MDA) metric identifies CG lightning 

probability as the most important independent variable, with MDA values of 50.06% 

and 34.58% for the “Current” and “Previous” models, respectively (Figure 4.9). Near 

surface weather variables and fuel moisture codes from CFFWIS are also found to be 

important in determining fire ignition events in the tundra, particularly air 

temperature, RH and DC. Compared to the weather-related variables, fuel types, 

satellite-based estimates of fuel state, and topographical features contribute but do not 

appear to drive fire ignitions in the tundra.  
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Figure 4.9. Variable importance rank for models: (a) “Fire ignition day”, (b) “One 

day before ignition” 

Although RF models provide relative ranking of variable importance in 

predicting the dependent variable, they are limited in showing the types and strengths 

of the relationships between each independent environmental factor and fire ignition 

probability. Logistic regression models were also developed to support analyzing the 

potential impacts of environmental factors on fire. I developed two logistic regression 

models for “Current” and “Previous” conditions similarly to the RF modeling 

framework (Table 4.4). CG lightning probability, air temperature and DC are 

confirmed as significant variables in the logistic regression models (p < 0.05). All 

three variables are positively correlated with fire ignitions, implying that the increase 

in the value of those variables (i.e. higher probability of CG lightning, higher air 

temperature and higher values of DC) ultimately leads to higher probability of fire 

ignitions. Although not ranked as the top predictor in RF results, NDII6 is found to 
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have a significantly negative relationship with fire ignitions in both logistic models (p 

< 0.05). Other variables, like RH, rain, FFMC and fuel type covers are found 

significant in one of the two models. In particular, the fractional covers of woody and 

herbaceous components are positively related to the fire ignitions, while that of the 

nonvascular component has a negative relationship. 

Table 4.4. Logistic regression results for the two models 

Variables 
Current model Previous model 

Estimate Std. 
Error Pr(>|z|) Estimate Std. 

Error Pr(>|z|) 

Intercept -4.550 2.607 0.08 -2.003 2.367 0.7964 

Lightning 5.428 0.591 < 2e-16 
*** 3.430 0.543 1.0e-10 

*** 

NDII6 -12.69 2.028 3.8e-10 
*** -18.360 5.581 6.4e-5 ** 

Rain -0.136 0.064 0.0327* -0.043 0.037 0.2083 
Temp 0.166 0.053 0.0017 ** 0.098 0.042 0.0211 * 
RH 0.005 0.019 0.7910 -0.057 0.016 0.0001 *** 

Wind 0.012 0.074 0.8657 -0.225 0.076 0.0029 ** 
FFMC -0.029 0.016 0.0541 -0.034 0.014 0.0155 * 
DMC 0.008 0.031 0.7814 0.0001 0.027 0.6910 
DC 0.006 0.002 0.0002 *** 0.005 0.002 0.0027 ** 

Region 
(Seward) -1.220 0.520 0.0190 * -1.176 0.432 0.0047 ** 

Region 
(SW) -0.192 0.793 0.8084 1.973 0.662 0.0071 ** 

Elevation -0.002 0.001 0.0077 ** -0.001 0.001 0.0685 
Aspect -0.002 0.003 0.5904 -0.0004 0.003 0.8908 
Woody 1.089 2.173 0.6163 0.073 1.793 0.7246 

Herbaceous 3.625 1.953 0.0635 5.542 1.727 0.0005*** 
Nonvascular -2.811 1.234 0.0223 * -0.223 1.058 0.9110 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  

 

A categorical variable “Region” was also included in the models to account 

for the potential variability across three major tundra regions, including the North 

Slope and Brook Range (referred as “North Slope”), Seward Peninsula and Kotzebue 
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Lowlands (referred as “Seward”), and Southwest Alaska (referred as “SW”) (Figure 

3.1). Welch t-test results were summarized for environmental variables between 

“Fire” and “No fire” conditions for each tundra region in Table 4.5. The mean values 

of variables including CG lightning probability, air temperature, RH and vegetation 

indices for “Fire” and “No fire” conditions are consistently statistically separable 

across the three tundra regions with p-values below 0.05. In contrast, fire weather 

indices do not show significant differences of mean values between “Fire” and “No 

fire” conditions for the Seward Peninsula. Although topographical features and fuel 

type covers are less important in RF, their mean values of “Fire” and “No fire” events 

are significantly different, particularly slope, roughness, and woody component 

coverage. 

Table 4.5. Welch t-test results across different tundra regions. 

Variables North Slope Seward Peninsula Southwest Alaska 
t p-value t p-value t p-value 

Lightning 
(current) -6.603 1.3e-6*** -5.113 5.9e-6*** -16.18 <2.2e-

16*** 
Lightning 
(previous) -2.337 0.0293* -5.161 5.0e-6*** -6.414 6.9e-

10*** 
Temperature 

(current) -4.789 5.8e-5*** -1.142 0.2585 -16.59 <2.2e-
16*** 

Temperature 
(previous) -4.726 6.4e-5*** -2.410 0.0192* -10.79 <2.2e-

16*** 

RH (current) 2.985 0.0062** 0.819 0.4156 9.192 <2.2e-
16*** 

RH (previous) 3.844 0.0007*** 2.549 0.0134* 7.451 4.4e-
13*** 

Rain (current) -0.132 0.8961 4.487 8.9e-6*** 3.755 0.0002** 
Rain (previous) 2.215 0.0300* -0.098 0.9225 4.461 1.0e-5*** 
Wind (current) 0.836 0.4121 -2.941 0.0045** 4.198 3.5e-5*** 

Wind (previous) 2.385 0.0246* 1.989 0.0519 3.523 0.0005** 

FFMC (current) -4.321 2.2e-5*** -1.571 0.1217 -9.433 <2.2e-
16*** 
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FFMC 
(previous) -9.820 8.8e-5*** -0.021 0.9835 -8.876 <2.2e-

16*** 
DMC (current) - - -0.305 0.7616 -3.873 0.0001*** 

DMC (previous) - - -0.280 0.7804 -3.375 0.0008*** 
DC (current) -3.446 0.0007*** 1.705 0.0933 0.601 0.5484 

DC (previous) -3.345 0.0010** 1.711 0.0921 0.735 0.463 

ISI (current) -6.010 1.1e-8*** 0.162 0.8719 -9.587 <2.2e-
16*** 

ISI (previous) -6.497 9.1e-
10*** 0.341 0.7343 -8.502 2.7e-

16*** 
BUI (current) -3.807 0.0002*** -0.138 0.8905 -3.471 0.0006*** 

BUI (previous) -3.664 0.0003*** -0.113 0.9107 -3.014 0.0027* 

GVMI 2.124 0.0347* 3.879 0.0003*** 8.981 <2.2e-
16*** 

NDII6 4.043 7.9e-5*** 3.916 0.0003*** 8.002 9.6e-
15*** 

NDII7 4.423 1.9e-5*** 3.444 0.0012** 4.552 7.8e-6*** 
NDWI 3.111 0.0021** 3.278 0.0019** 5.414 1.0e-7*** 

Elevation 2.633 0.0088** 0.749 0.4569 -0.711 0.4775 
Slope 2.200 0.0289* 3.679 0.0004*** 3.394 0.0007*** 
Aspect -2.903 0.0041** -1.017 0.3147 2.832 0.0049* 

Roughness 2.947 0.0035** 4.056 0.0001*** 3.3943 0.0007*** 

Woody -8.689 1.3e-
15*** -5.661 4.9e-7*** 9.818 <2.2e-

16*** 

Herbaceous -1.810 0.0717 -0.879 0.3835 -7.148 3.3e-
12*** 

Nonvascular 9.525 <2.2e-
16*** -0.441 0.6612 -13.08 <2.2e-

16*** 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  

 

Boxplots across different regions help with visualizing the extent in difference 

in environmental conditions between “Fire” and “No fire” settings. CG lightning 

probability values on both fire ignition days and the days before ignitions are 

significantly higher (p-value < 0.05 for all three regions) for fire ignition events 

(Figure 4.10 and Table 4.5). In particular, for the fire ignition days, the majority of 

the “No fire” events have CG lightning probabilities smaller than 0.25, while the 
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lightning probabilities for “Fire” events have an Interquartile Range (IQR) between 0 

to 1, with mean values around 0.5.  

 

Figure 4.10. Boxplots of CG lightning probability between “Fire” and “No fire” 

conditions across three major fuel regions: (a) CG lightning probability on fire 

ignition day, (b) CG lightning on the previous day.  

For near surface weather conditions, mean air temperature values are 

significantly higher while mean RH values are lower for “Fire” conditions for both 

the North Slope and Southwest Alaska regions (Figure 4.11 and Table 4.5). The 

values, however, do not differ significantly for the Seward Peninsula. Similarly, 

“Fire” conditions have significantly higher mean values of FFMC, ISI and BUI in the 

North Slope and Southwest Alaska (Figures 4.12 and 4.13). DMC and DC values of 

the “Fire” conditions are also higher than those of the “No fire” ones in the Southwest 

Alaska and North Slope. Mean values of the vegetation indices related fuel state are 

slightly but significantly lower within the “Fire” conditions compared to “No fire” 

(Figure 4.14). 
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Figure 4.11. Boxplots of (a) air temperature and (b) RH on fire ignition days between 

“Fire” and “No fire” conditions across three major fuel regions.  

 

Figure 4.12. Boxplots of (a) FFMC and (b) DC on fire ignition days between “Fire” 

and “No fire” conditions across three major fuel regions. 
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Figure 4.13. Boxplots of (a) ISI and (b) BUI on fire ignition days between “Fire” and 

“No fire” conditions across three major fuel regions. 

 

Figure 4.14. Boxplots of (a) NDII6 and (b) NDII7 on fire ignition days between 

“Fire” and “No fire” conditions across three major fuel regions. 

Different from the variables described above, the overall patterns (higher or 

lower) of the mean fuel type coverages between “Fire” and “No fire” conditions vary 

across different regions (Figure 4.15), particularly for woody and nonvascular 

components. Although logistic regressions suggest positive relationship between 
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woody cover and fire ignition, “Fire” conditions in the North Slope and Seward 

Peninsula are linked to higher fractions of the woody component of the fuels, while 

those in the Southwest Alaska linked to the lower woody fuel fraction. Similarly, the 

significantly higher fraction of nonvascular plants is found within “Fire” conditions in 

the Southwest Alaska, but the relationship is reversed within the North Slope region. 

 

Figure 4.15. Boxplots of mean fractional covers of (a) woody component, (b) 

herbaceous, and (c) nonvascular components between “Fire” and “No fire” events 

across three major fuel regions. 



 

 

116 
 

4.6 Discussions 

CG lightning is commonly assumed to be the primary source of ignition in the 

tundra ecosystems due to the remoteness of the region and the limited human 

activities. This study provides the first quantitative piece of evidence that fully 

justified this assumption, as the results from all models explored in this study point to 

CG lightning probability as the most influential factor that predicts fire ignition. This 

finding is also consistent with previous research conducted in the boreal forests of 

North America (Veraverbeke et al., 2017), while the role of ignition source is not 

always highlighted in research conducted for the other ecosystems (Díaz-avalos et al., 

2001; Liu et al., 2012; Vecín-Arias et al., 2016). Previous studies have also 

established relationships between fires and lightning characteristics observed from 

ground-based detection networks, such as count of strikes, polarity, and peak current 

(Peterson et al., 2010). This study, whereas, suggest that the probability of CG 

lightning modeled purely with atmospheric variables is a powerful indicator of tundra 

fire potential. 

Tundra is a very unusual environment with generally low temperatures and 

high water table, largely due to widespread underlying permafrost (Bliss et al., 1973; 

Wielgolaski and Goodall, 1997). This generally means that the ecosystems are rarely 

moisture limited and are not highly flammable. Evidences from both modeling and 

statistical analyses in this study emphasize the controls of warm and dry weather 

conditions over tundra fire ignitions in Alaska, with near surface air temperature and 

RH significantly related to fires. Higher temperature and lower moisture conditions 

have the potential to increase the flammability of the environment in general. 
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Similarly, the study of Masrur et al. (2018), which was conducted with reanalysis data 

at a coarser resolution and a larger spatial scale, indicated the same information. In 

addition to the impacts of air temperature and RH on fuel flammability, they might 

also reflect the high likelihood of convective potential which in turn leads to 

atmospheric instability and ultimately CG lightning.   

In addition, the dominant fuels in the tundra are composed of herbaceous 

(grass and sedge) and dwarf shrub components (Innes, 2013), which are considered 

fine fuels as defined in the CFFWIS. FFMC is designed to describe the fine surface 

fuels in boreal forests (Lawson and Armitage, 2008). Larger FFMC values indicate 

higher flammability of the fine fuels. FFMC values with the “Fire” conditions in this 

study are generally higher than 70, typically representing dry fuels (Lawson and 

Armitage, 2008). This also shows the suitability of FFMC in describing the moisture 

conditions of tundra fuels. Therefore, it is not surprising that FFMC is highlighted as 

a highly predictive variable and the most influential among all fire weather indices in 

assessing fire ignition probability for the tundra. It is also important, that DC – a 

variable that tracks deeper drying of fuels and longer local “drought” conditions – has 

been shown to be responsive to changes in deep moisture levels in the tundra. Since 

DC is a slow-reacting and representative of the long-term dry conditions (Lawson and 

Armitage, 2008), its significance in the logistic regression models suggests that long-

term dry conditions accumulated for days are also driving the ignition probability. All 

fire weather indices have been developed for boreal forest ecosystems and their 

ability to forecast tundra conditions has been most generally assumed rather than 
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tested. This study shows that both FFMC and DC provide a reasonable approximation 

of changes in fuel state that can more readily support fire ignition.  

The inconsistency of the role of vegetation indices representing fuel moisture 

between different models indicates that remote sensing-based indices may not be a 

good representative of the fuel moisture state. Fuel type distributions also show 

different patterns between “Fire” and “No fire” conditions across the three major 

tundra regions. Though the flammability of vegetation composites varies according to 

experiment results (Sylvester and Wein, 1981), these patterns suggest that the 

interactions of fuel and weather can be more important in driving fire ignitions than 

the fuel type itself.  

More importantly, this study has demonstrated the effectiveness and the 

strong capability of modeling fire ignition probability with WRF-simulated weather 

conditions in the remote tundra regions across space and time. The key role of CG 

lightning probability identified from the models suggests that current fire 

management efforts are inadequate regarding the integration of CG lightning 

probability in fire danger monitoring and modeling for the ecosystems in the HNL. 

By monitoring lightning potential, temperature and dry conditions, it is promising that 

fire ignition probability can be predicted with high accuracy in remote regions at 5km 

resolution with WRF. Besides, modeling experiments with two types of dynamic 

variables – on fire ignition days and one day before ignition – show that using data 

simulated from one day earlier can still achieve acceptable prediction results for 

estimating fire ignition probability. This suggests that by using data acquired before 

fire starts, the method developed from this study can still capture the probability of 
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fire ignition very well, indicating the potential improvement of fire forecasting 

performance.  

Although existing efforts have incorporated lightning characteristics in fire 

modeling by matching recorded lightning strikes and fires (Peterson et al., 2010; 

Wotton and Martell, 2005), this research suggests the suitability of using simulated 

CG lightning probability for modeling fire ignitions for several reasons. First, modern 

ground-based lightning detection networks typically have a location accuracy ranging 

from below 1km to 4km and a detection efficiency of between 70% and over 90% 

(Biagi et al., 2007; Dissing and Verbyla, 2003; Koshak et al., 2015; Nag et al., 2014). 

This indicates that CG lightning strikes may not always be recorded by the system 

and that the strike location may not be accurately triangulated. Therefore, commonly 

used matching methods to link lightning characteristics and ignitions can miss the 

lightning strikes that actually ignite the fires, which would introduce errors and 

uncertainties when using detected lightning characteristics in the modeling. The 

selection of matching methods could also affect the results (Moris et al., 2020). Third, 

simulation of lightning characteristics has not been developed based on existing 

numerical weather prediction models, which limits the potential of integrating them 

for fire ignition modeling and forecasting. 

Despite the capability of WRF simulated weather conditions in modeling fire 

ignition in this study, previous research questioned the suitability of utilizing WRF 

for calculating fire weather indices due to its limitations in accurate simulation of 

wind and precipitation (Mölders, 2010; Simpson et al., 2014). However, simulating 

weather variables with NWPs is probably the only available method for describing 
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near-surface conditions in the data-scarce regions with very sparsely distributed 

stations like Alaskan tundra.  

Previous work has also found that lightning and fire weather are associated 

with synoptic-scale atmospheric circulation patterns in the HNL (Balzter et al., 2005; 

Fauria and Johnson, 2006; Hayasaka et al., 2016; Kim et al., 2020; Kochtubajda et al., 

2019). Since this study has shown the importance of meteorological variables in 

predicting fire ignitions in the tundra, future work needs to be done to understand the 

synoptic weather conditions that drive the dynamic changes of lightning and fire 

weather, to improve our understanding about the mechanisms of wildland fires in the 

pan-Arctic ecosystems. 

4.7 Conclusions 

This study explores the key drivers of wildland fire ignitions in Alaskan 

tundra from 2001 to 2019 by modeling the impacts of environmental factors on fire 

ignition probability. Specifically, I consider environmental variables related to fuel 

type distribution, fuel state, fire weather, topography, and ignition source. Among all 

environmental factors, CG lightning probability is found to be the most important 

driver of tundra fire ignitions in Alaskan from 2001 to 2019. Higher CG lightning 

probability shows a significant positive relationship with fire ignition probability. In 

addition, warmer and drier weather conditions are also found to be important in 

determining fire ignitions. In particular, air temperature, FFMC, and DC show 

significant positive relationships in modeling fire ignition probability, while RH is 

negatively related with the ignition. Moreover, the empirical RF models developed in 

this study have shown a strong capability in predicting fire ignition probability, given 
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the input static variables (fuel types and topographical features) and dynamic 

variables (CG lightning probability and weather) simulated with WRF on both fire 

ignition day and one day before. The findings of this study highlight the necessity of 

incorporating CG lightning modeling and emphasize the benefits of WRF simulation 

for wildland fire monitoring efforts in data-scarce regions like Alaskan tundra. Future 

efforts need to be undertaken to improve both the modeling capability and 

understanding of the synoptic-scale climatic patterns that drive tundra fire ignitions.   
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Chapter 5: Conclusion 

5.1 Major research findings 

The objective of this dissertation was to advance the scientific understanding 

of wildland fire ignition in the tundra ecosystems of the High Northern Latitudes 

(HNL). Specifically, this dissertation focused on addressing the overarching scientific 

question: “What environmental factors and mechanisms drive wildland fire ignitions 

in Alaskan tundra?” To achieve my dissertation objective, I explored three integrated 

research questions that took advantage of a large data archive of satellite observations 

and Numerical Weather Prediction (NWP) modeling. The research questions were 

outlined in Section 1.4 of Chapter 1 and described in detail in Chapters 2 – 4.  

The development of the fractional coverage product of fuel type components 

in Chapter 2 was driven by the lack of efforts in describing the detailed distribution of 

fuel type compositions in Alaskan tundra, where the surface vegetation fuels are 

highly mixed. Although categorical fuel classification systems have been developed 

for years at 30m resolution for the entire Alaska (Anderson, 1982; Hirsch, 1996; 

Ottmar et al., 2007; Scott and Burgan, 2005), their applications in the tundra are 

limited. This is mainly because the systems were designed to describe fuel 

components for the forests, and categorical values were not representative for highly 

mixed surface fuel distribution. Recent efforts have elaborated on developing 

fractional cover products of vegetation types (Beck et al., 2011; Berner et al., 2018; 

Macander et al., 2017). However, these maps were limited to certain regions (e.g., the 
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North Slope) and thus not helpful for answering of my overall research question, 

which relates to the entire Alaskan tundra ecosystems.  

To overcome these limitations, I combined field observations collected by our 

team during three fieldtrips in the tundra, and Landsat 8 surface reflectance data from 

2013 to 2018 to develop a fuel type distribution product that covers the entire Alaskan 

tundra circa 2015. I first generated mosaicked composites of the study area from more 

than 1800 Landsat 8 tiles for three seasons (pre-growing, peak-growing and post-

growing) extracted from phenology information based on Moderate Resolution 

Imaging Spectroradiometer (MODIS) observations. I was then able to map the 

fractional cover distributions of three major fuel components, including wood 

(evergreen and deciduous shrub), herbaceous (sedge and grass) and nonvascular 

(lichen and moss). My mapping results not only capture the detailed spatial variations 

of vegetation fuel type components, but also depict the overall distributions of the 

related vegetation communities along the latitudes. The published manuscript (He et 

al., 2019) and data product (He et al., 2020) can support other tundra fire studies in 

the future. 

In addition to fuel type, I explored the primary ignition source of wildfires, 

cloud-to-ground (CG) lightning strikes, in the HNL in Chapter 3 of this dissertation. 

Despite the important role of lightning in igniting wildfires in the tundra, CG 

lightning has never been examined specifically for this ecosystem. Although several 

previous studies have modeled CG lightning activity in the boreal forests of North 

America (Blouin et al., 2016; Burrows et al., 2005; Reap, 1991), their findings are not 

suitable for explaining lightning potential tundra, because of the different land-
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atmospheric interactions in the two landscapes (Rivas Soriano et al., 2019; Van 

Heerwaarden and Teuling, 2014). Considering the downscaling and forecasting 

capability of the Weather Research and Forecast (WRF) model, I designed an 

empirical-dynamical framework to model CG lightning probability in the tundra 

through the integration of WRF and random forest (RF) algorithm and to understand 

the atmospheric factors driving lightning occurrence.  

To achieve my goals, I first conducted a sensitivity analysis method to 

identify an optimized parameterization setting of WRF simulation for Alaskan tundra. 

After comparing the statistical metrics calculated between WRF simulated variables 

and observations from the Remote Automatic Weather Stations (RAWS) for several 

case studies, I decided to utilize the Thompson 2-moment and the Mellor-Yamada-

Janjic (MYJ) schemes to represent the microphysics and Planetary Boundary Layer 

(PBL) physics options, respectively. I then identified case studies from lightning days 

with three different severity levels. WRF simulations were run for these cases to 

extract four groups of predictors for modeling CG lightning probability: cloud 

properties, meteorological variables at multiple pressure levels, atmospheric stability 

indices, and existing lightning parameterization schemes in WRF. I developed two 

RF models using variables simulated at 24hrs and 48hrs after WRF initialization time 

for comparison. Both models have shown strong capability of capturing CG lightning 

distribution in the tundra, with the parcel lifted index as the most important factor 

driving lighting distribution.  

After achieving the first two objectives, in Chapter 4, I explored the 

environmental factors driving wildland fires ignitions in Alaskan tundra, which is also 
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the overarching research question. Although the factors driving boreal forest fires 

have been extensively studied around the globe at different scales (Balzter et al., 

2005; Kim et al., 2020; Liu et al., 2012; Veraverbeke et al., 2017), much less is 

known for tundra fires. Recently, Masrur et al. (2018) examined the climatic factors 

contributing to tundra fire activity across the circumpolar Arctic region and found that 

warm and dry conditions important through statistical analyses and RF modeling. 

Despite their efforts on understanding climatic conditions suitable for tundra burning, 

more work is required to understand the mechanisms behind the fires. Contemporary 

modeling studies are also needed for accurate characterization of fire ignition 

probability in the tundra and for improved understanding of the driving factors that 

control tundra fire ignitions.  

In this study, I considered four types of environmental factors related to fire 

ignitions: ignition source, fuel conditions (fuel type and moisture state), weather and 

topographical features. I utilized the empirical-dynamical framework developed in 

Chapter 3 to model CG lightning probability, as a representative of ignition source. 

Remote sensing based products were used to describe fuel conditions: fractional 

cover product from Chapter 2 to map fuel type distribution, and MODIS-derived 

vegetation indices to estimate fuel moisture state. Due to the lack of weather stations 

in the remote tundra, weather conditions, including both near-surface weather 

variables and the Canadian Forest Fire Weather Index System (CFFWIS), were 

extracted and calculated using the WRF simulated outputs at 5km resolution. I 

obtained the Interferometric Synthetic Aperture Radar (IfSAR) Digital Elevation 

Model (DEM) product to generate topographical features. After preparing all these 
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environmental factors, I utilized both RF and logistic regression methods to 

understand the roles of each factor in driving fire ignition probability. I identified the 

probability of CG lightning as the most important driver of fire ignitions, followed by 

warm and dry weather conditions. Both near-surface weather and fire weather indices 

have shown that fire ignitions tend to occur with higher air temperature, lower 

relative humidity (RH), higher Fine Fuel Moisture Code (FFMC), and higher Drought 

Code (DC). In addition to exploring the drivers, I developed two RF models using 

dynamic weather variables extracted on fire ignition day and one day before fire 

ignition, both of which have shown strong capability of predicting fire ignitions in the 

tundra. My results also highlight that incorporating the modeling of CG lightning 

potential is critical for fire monitoring and management efforts in the HNL.   

5.2 Contribution to Broader Arctic Science Research 

The Arctic region has experienced a higher rate of climate warming than the 

global average, as recorded by surface air temperature during the last two decades 

(Meredith et al., 2019). The warming in the Arctic has led to increasing loss of sea ice 

and glaciers, permafrost thawing, disturbances and carbon emissions, which can in 

return contribute to amplified warming and threaten the human communities and 

wildlife according to the Intergovernmental Panel on Climate Change (IPCC) report 

(Meredith et al., 2019). In particular, this report highlights the role of wildfire as a 

major driver among all disturbance types in regularly affecting the terrestrial 

ecosystems at the continental scale across the HNL, with increasing wildfire activity 

linked with climate warming (Randerson et al., 2006; Veraverbeke et al., 2017). To 

address the impacts of climate change on the Arctic, multiple agencies and 
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organizations, including the National Aeronautics and Space Administration (NASA), 

Department of Energy (DOE), National Research Council of the National Academies 

of Sciences and the Interagency Arctic Research Policy Committee (IARPC), have 

started specific scientific programs aimed at understanding the underlying processes 

and potential influences of ecosystem changes in the HNL. 

The Arctic-Boreal Vulnerability Experiment (ABoVE) program initiated by 

NASA focuses on studying the terrestrial ecosystems of tundra and boreal forests in 

the HNL of North America. The ultimate goal of this program is to improve our 

understanding of the complex ecosystem processes and to prepare the society with 

rapid response and adaptation to the environmental and social changes at present and 

in the future (ABoVE, 2014). In particular, understanding the driving mechanisms 

and potential influences of wildfire disturbance regimes in the HNL responds to one 

of the key science questions of ABoVE (ABoVE, 2014): “What processes are 

contributing to changes in disturbance regimes and what are the impacts of these 

changes?” As part of the Next-Generation Ecosystem Experiments (NGEE) program 

funded by DOE, NGEE Arctic focuses on advancing the predictive understanding and 

the modeling capability of the climate and ecosystem on Earth. One of the key 

science questions of the NGEE Arctic also aims to address: “What controls the 

vulnerability and resilience of Arctic ecosystems to disturbance, and how do 

disturbances alter the physical and ecological structure and function of these 

ecosystems?”  

Both questions from the two programs align very well with the underlying 

theme of this dissertation on advancing the understanding of factors driving wildfires 
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in the HNL. Besides, both programs emphasize the need for advancing the integrated 

modeling capabilities of the Arctic ecosystems to support future projections of 

climate change (Fisher et al., 2018). This dissertation has made the first efforts of 

contemporary modeling for wildfire ignitions and examined the driving factors of 

fires in Alaskan tundra, which supports the goals of these programs. The research 

findings of this dissertation, including the developed methods, models, and data 

product, provides the groundwork for an improved understanding of the contributors 

of tundra fires in Alaska, as well as a systematic modeling framework of fire danger 

prediction for the future.  

5.3 Implications for fire management efforts in the HNL 

The results of this dissertation provide insights from multiple perspectives for 

wildfire management efforts in both the tundra and the forest forests of the HNL. 

First, the empirical-dynamical modeling framework developed based on WRF and 

machine learning method in this study has demonstrated a strong capability of 

predicting wildfires in the data-poor regions and can be adopted easily for fire danger 

monitoring. The models developed with variables acquired on different dates in this 

dissertation also show potential for earlier prediction of lightning and fire ignition 

probabilities. However, since tundra weather typically fluctuates on a weekly basis, 

the performance of the modeling can be primarily affected by the capability of 

accurate weather forecasting with WRF. Additionally, modeling fire ignition is an 

essential start for estimating fire spread and quantifying carbon emissions and air 

quality impacts on human communities.  
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Second, the critical drivers of wildfire ignitions identified in this dissertation 

highlight the crucial roles of simulated weather conditions for fire danger modeling 

and prediction. CG lightning has been identified as the primary control of tundra fires 

in this dissertation and of boreal forest fires in previous studies (Veraverbeke et al., 

2017). This dissertation makes the first attempt in contemporary modeling of tundra 

fire ignitions with CG lightning incorporated in the modeling system. However, the 

existing fire practices of CG lightning monitoring and modeling adopted by the fire 

management teams are not sufficient for supporting fire danger prediction in the 

HNL, where the fires are primarily ignited by lightning strikes. Current fire danger 

monitoring efforts in the HNL of North America mainly rely on the Canadian Forest 

Fire Danger Rating System (CFFDRS), in which lightning has been involved with the 

ground-based detection networks. Other attempts that integrated characteristics of 

lightning strikes have been made (Castedo-Dorado et al., 2011; Vecín-Arias et al., 

2016; Wotton and Martell, 2005). This dissertation, nevertheless, suggests that CG 

lightning potential could be a better way of dealing with the ignition source in the 

models compared to the detected locations or characteristics of CG lightning strikes. 

Other factors like near-surface weather and commonly used CFFWIS simulated by 

WRF can greatly support fire danger monitoring. However, more work needs to be 

conducted to improve the WRF simulation for tundra environmental modeling and 

calibrating CFFWIS for representing the actual fire danger in the tundra.  

Moreover, the methodology and data product developed in this dissertation for 

mapping fuel type distribution can be applied for monitoring and updating fuel 

conditions regularly at a large spatial scale, which can benefit the fire monitoring 
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efforts as well. Integration of Landsat 8 and Sentinel-2A/B imagery can achieve an 

average revisit time of about three days (Li and Roy, 2017), which can provide more 

data resources for accurate characterization of fuel type distribution and even fuel 

moisture state at 10 – 30m resolution. Fuel type system specifically developed for the 

tundra will also be necessary for determining the fuel characteristics in this region.  

5.4 Future research directions 

The key theme of this dissertation is to uncover the underlying processes and 

factors that control the ignition potential of wildland fires in the remote Alaskan 

tundra. According to the results of this dissertation, CG lightning is the most critical 

factor that leads to fire ignitions in the tundra. The ignition probability is then 

affected by warm and dry weather conditions, as indicated by higher temperature, 

lower RH, and higher fuel moisture codes (FFMC and DC) from CFFWIS. The 

primary control of these weather variables on the tundra fires in Alaskan strongly 

suggests that further research on synoptic weather and atmospheric circulation 

patterns driving these factors and processes is crucial for improving our 

understanding of underlying mechanisms behind these environmental factors. 

Previous studies have either explored the synoptic-scale weather patterns related to 

lighting or fire weather conditions in boreal forests (Flannigan and Wotton, 2001; 

Hayasaka et al., 2016; Kochtubajda et al., 2019) or explored the impacts of 

teleconnections on boreal forest fires (Balzter et al., 2005; Fauria and Johnson, 2008, 

2006; Kim et al., 2020). However, these patterns have never been explored for the 

tundra fires across the entire pan-Arctic region. Further efforts need to be made to 
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gain a thorough understanding of the processes contributing to fire disturbances in the 

tundra.  

Moreover, the interactions and feedbacks among different factors, including 

fires, surface fuels, weather, and climate, are worth of exploring to improve both our 

understanding and modeling capability of tundra fires in the future. In Chapter 4, the 

different responses of fire or no fire events to fuel type components in different tundra 

regions suggests the roles of the weather and fuel interactions in driving fire ignitions. 

French et al. (2015) have already shown that fire weather in Alaskan tundra will 

become more suitable for burnings under climate warming, regardless of the 

mitigation strategies. Vegetation communities could also shift in the tundra as a 

consequence of climate warming and fire disturbances (Kittel et al., 2000; Van Der 

Kolk et al., 2016), which could further affect fire activities by altering fuel type and 

load. Additionally, climate change can affect future CG lightning activity as well, 

although there is a lack of consensus on its future trends (Finney et al., 2018; Romps 

et al., 2014).  

In addition to further efforts on understanding science, more work needs to be 

accomplished to improve the modeling and predicting capability of fires for resource 

management. Due to the vegetation shifts in the tundra, fuel type distribution and fuel 

load products should be updated regularly for accurate characterization to support fire 

ignition and spread modeling and post-fire impact assessment. The combination of 

Landsat 8 and Sentinel 2 imagery can provide frequency observations in the HNL at 

10 – 30m resolution, which will benefit the mapping of fuel type and load mapping 

across a large spatial scale. More field campaigns, if possible, will also be necessary 
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for collecting measurements in the remote tundra to support mapping and validation 

efforts. Calibration and modification of WRF-simulated CFFWIS for the tundra will 

also be necessary for representing fuel moisture conditions and fire danger potential. 

The methodology framework developed in this study provides opportunities for 

modeling fire potential in other data-scarce regions as well.  
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Appendices 
 

Table S1. Statistical metrics for sensitivity analysis for air temperature (°C) 

Metrics Schemes 2006 2007 2010 2015 

Correlation 

Morrison_MYJ 0.8516 0.8746 0.8188 0.8871 
Morrison_YSU 0.8177 0.8265 0.8125 0.8847 

Thompson_MYJ 0.853 0.8719 0.8198 0.8876 
Thompson_YSU 0.8223 0.8325 0.8152 0.8848 

WRF6_MYJ 0.7991 0.8566 0.8149 0.8827 
WRF6_YSU 0.7814 0.7953 0.8037 0.8773 

RMSE 

Morrison_MYJ 2.5009 3.4409 3.3134 2.3018 
Morrison_YSU 2.7685 3.9639 3.3512 2.2776 

Thompson_MYJ 2.5057 3.4206 3.3084 2.3047 
Thompson_YSU 2.7367 3.8569 3.3304 2.2789 

WRF6_MYJ 2.9804 4.0524 3.3782 2.2872 
WRF6_YSU 3.0685 4.6816 3.4462 2.2829 

MAE 

Morrison_MYJ 1.9731 2.5993 2.5481 1.9007 
Morrison_YSU 2.2029 2.9851 2.6099 1.8639 

Thompson_MYJ 1.9625 2.6014 2.5394 1.9041 
Thompson_YSU 2.191 2.9136 2.5855 1.8678 

WRF6_MYJ 2.3314 3.0725 2.5779 1.8877 
WRF6_YSU 2.4759 3.5405 2.6031 1.8653 
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Table S2. Statistical metrics for sensitivity analysis for dew point temperature (°C) 

Metrics Schemes 2006 2007 2010 2015 

Correlation 

Morrison_MYJ 0.8473 0.8058 0.2955 0.7083 
Morrison_YSU 0.8294 0.7961 0.2756 0.6761 

Thompson_MYJ 0.8505 0.7973 0.3024 0.7104 
Thompson_YSU 0.8314 0.7986 0.2823 0.678 

WRF6_MYJ 0.86 0.7888 0.2678 0.7097 
WRF6_YSU 0.8411 0.7645 0.2714 0.6771 

RMSE 

Morrison_MYJ 2.1353 2.1616 3.5545 1.6217 
Morrison_YSU 2.3401 2.202 3.7679 1.7151 

Thompson_MYJ 2.108 2.1449 3.5528 1.6147 
Thompson_YSU 2.3463 2.1009 3.7681 1.709 

WRF6_MYJ 2.2026 2.5742 3.6068 1.6179 
WRF6_YSU 2.4036 2.7192 3.7989 1.7119 

MAE 

Morrison_MYJ 1.6818 1.6496 2.405 1.257 
Morrison_YSU 1.7835 1.6777 2.5472 1.2803 

Thompson_MYJ 1.6072 1.6539 2.3997 1.2506 
Thompson_YSU 1.763 1.6157 2.5433 1.2817 

WRF6_MYJ 1.7363 2.0049 2.3924 1.251 
WRF6_YSU 1.854 2.1117 2.5506 1.28 
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Table S3. Statistical metrics for sensitivity analysis for relative humidity (%) 

Metrics Schemes 2006 2007 2010 2015 

Correlation 

Morrison_MYJ 0.7786 0.7184 0.8504 0.8217 
Morrison_YSU 0.7382 0.7037 0.8479 0.8212 

Thompson_MYJ 0.7567 0.7365 0.848 0.822 
Thompson_YSU 0.7436 0.7012 0.8407 0.8222 

WRF6_MYJ 0.7257 0.7545 0.8133 0.8232 
WRF6_YSU 0.7074 0.6949 0.8292 0.8217 

RMSE 

Morrison_MYJ 12.552 18.672 11.317 9.6938 
Morrison_YSU 13.737 18.823 12.093 9.8978 

Thompson_MYJ 13.173 18.507 11.42 9.6969 
Thompson_YSU 13.714 18.663 12.299 9.8849 

WRF6_MYJ 13.892 18.275 12.046 9.6362 
WRF6_YSU 14.503 18.724 12.147 9.8568 

MAE 

Morrison_MYJ 9.1164 14.65 8.7566 7.4311 
Morrison_YSU 10.289 15.226 9.2098 7.5925 

Thompson_MYJ 9.5386 14.489 8.8432 7.446 
Thompson_YSU 10.018 14.984 9.5095 7.5872 

WRF6_MYJ 10.328 14.559 9.6644 7.3945 
WRF6_YSU 10.648 15.093 9.2811 7.5548 
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Table S4. Statistical metrics for sensitivity analysis for downward solar radiation 

(shortwave and longwave, W/m2) 

Metrics Schemes 2006 2007 2010 2015 

Correlation 

Morrison_MYJ 0.697 0.8255 0.6532 0.8368 
Morrison_YSU 0.6738 0.8203 0.6473 0.8415 

Thompson_MYJ 0.6804 0.8179 0.6642 0.8352 
Thompson_YSU 0.657 0.8066 0.6621 0.8405 

WRF6_MYJ 0.6447 0.807 0.6455 0.835 
WRF6_YSU 0.5894 0.7761 0.6343 0.8393 

RMSE 

Morrison_MYJ 153.06 152.03 187.82 158 
Morrison_YSU 158 154.05 187.07 155.81 

Thompson_MYJ 164.74 155.36 185.41 158.73 
Thompson_YSU 168.67 159.86 178.57 156.02 

WRF6_MYJ 161.14 162.61 190.53 158.9 
WRF6_YSU 178.66 173.71 189.71 156.99 

MAE 

Morrison_MYJ 93.529 83.737 120.51 74.334 
Morrison_YSU 98.417 86.255 118.22 73.847 

Thompson_MYJ 101.92 85.681 116.75 75.247 
Thompson_YSU 105.304 91.491 113.74 74.281 

WRF6_MYJ 98.185 93.542 123.87 75.081 
WRF6_YSU 108.03 99.16 121.95 74.061 
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