Amalgamating Knowledge Bases, II:

Algorithms, Data Structures, and Query Processing*

Sibel Adali and V.S. Subrahmanian
Department of Computer Science
Institute for Advanced Computer Studies &
Institute for Systems Research
University of Maryland
College Park, Maryland 20742.
{sibel, vs}@cs.umd.edu

Abstract

Integrating knowledge from multiple sources is an important aspect of automated reasoning
systems. In the first part of this series of papers, we presented a uniform declarative framework,
based on annotated logics, for amalgamating multiple knowledge bases when these knowledge bases
(possibly) contain inconsistencies, uncertainties, and non-monotonic modes of negation. We showed
that annotated logics may be used, with some modifications, to mediate between different knowledge
bases. The multiple knowledge bases are amalgamated by embedding the individual knowledge
bases into a lattice. In this paper, we briefly describe an SLD-resolution based proof procedure that
1s sound and complete w.r.t. our declarative semantics. We will then develop an OLDT-resolution
based query processing procedure, MULTI_OLDT, that satisfies two important properties: (1) efficient
reuse of previous computationsis achieved by maintaining a table — we describe the structure of this
table and show that table operations can be efficiently executed, and (2) approzimate, interruptable
query answering 1s achieved, 1.e. 1t 1s possible to obtain an “intermediate, approximate” answer from
the QPP by interrupting it at any point in time during its execution. The design of the MULTI_OLDT
procedure will include: (1) development of data structures for tabling (substitution, truth value)
pairs, and (2) the development of algorithms to incrementally and efficiently update the table.

1 Introduction

Complex reasoning tasks in the real world utilize information from a multiplicity of sources. These
sources may represent data and/or knowledge about different aspects of a problem in a number of
ways. Wiederhold and his colleagues [37, 38] have proposed the concept of a mediator — a device that
will express how such an integration is to be achieved.

This is the second in a series of papers developing the theory and practice of federated databases.
In Part I of this series of papers, we developed a language for expressing mediators, and reasoning
with them. In particular, we showed that an extension of the “generalized annotated program” (GAP)

*This work was supported by the Army Research Office under Grant Nr. DAAL-03-92-G-0225 and by the Air Force
Office of Scientific Research under Grant Nr. F49620-93-1-0065, and by ARPA Order Nr. A716 administered by Rome
Labs under contract F30602-93-C-0241. NOTE TO REFEREES: Appendix A contains material that can be removed
from the paper after acceptance.

paradigm of Kifer and Subrahmanian [20] may be used to express mediators. We defined the concept
of the “amalgam” of “local” databases DBq,..., DB, with a mediator or supervisory database, 5,
and proved a number of results linking the semantics of the local databases with the semantics of the
amalgam.

The primary aim of this paper is the development of query processing procedures (QPPs, for short)
that possess various desirable properties. We will first develop a resolution-based QPP and show it to
be sound and complete. However, it is well known that resolution proof procedures are notoriously
inefficient, often solving previously solved goals over and over again. 0LDT-resolution, due to Tamaki
and Sato [34] is a technique which caches previously derived solutions in a table. The theory and
implementation of OLDT has been studied extensively by several researchers including Seki [28, 27] and
Warren and his colleagues [9, 10]. Furthermore, it is known that OLDT and magic set computations
[5, 6, 26] are essentially equivalent, though they differ in many (relatively minor) details. We will use
the OLDT technique as our starting point, and extend it as follows:

(1) Multiple Databases: As different databases may provide different answers to the same query, OLDT-
resolution needs to be modified to handle a multiplicity of (possibly mutually incompatible) answers
to the same query.

(2) Uncertainty and Time: Previous formulations of OLDT-resolution did not handle time and uncer-
tainty. We will show how temporal and uncertain answers can be smoothly incorporated into the OLDT
paradigm.

(3) Approzimate, Interruptable Query Answering: In some situations, the user may wish to interrupt
the execution of the query processing procedure and ask for a “tentative answer.” This kind of fea-
ture becomes doubly important when databases contain uncertain and temporal information. When
processing a query () such as “Is the object O at location L an enemy aircraft 7,” it is desirable that
uncertainty estimates of the truth of this query be revised upwards in a monotonic fashion as the QPP
spends more and more time performing inferences. Thus if the user interrupts the QPP’s execution at
time ¢t and asks “What can you tell me about query ¢ 7,7 the KB should be able to respond with an
answer of the form: “I'm not done yet, but at this point I can tell you that @ is true with certainty
87% or more.”

(4) Table Management: Relatively little work has been done on the development of data structures
for managing OLDT-tables (cf. Warren [9, 10]). When a single database with neither uncertainty nor
time is considered, the structure of the OLDT-table can be relatively simple. However, when multiple
database operations, uncertainty estimates (that are constantly being revised), and temporal reasoning
are being performed simultaneously, the management of the OLDT-table becomes a significant issue.
We will develop data structures and algorithms to efficiently manage the OLDT-table.

Our query processing procedure, called MULTI_OLDT, incorporates all the above features and is described
in detail in this paper. In particular, we prove that MULTI_OLDT is a sound and complete query
processing procedure. Restricted termination results are also established.

The paper is organized as follows; in Section 3, we provide two examples motivating our work. These
examples will be used throughout the paper to illustrate various definitions, data structures, and
algorithms. Section 4 contains a brief description of a resolution-style proof procedure including
soundness and completeness results. The MULTI_OLDT procedure is described in detail in Section 5 — in
particular, this section contains details on the organization of the OLDT-table. We compare our results
with relevant work by other researchers in Section 6.

2 Preliminaries

In this section, we give a quick overview of GAPs and the amalgamation theory developed in the first
of this series of papers [32].

2.1 Overview of GAPs

The GAP framework proposed in [20] assumes that we have a set 7 of truth values that forms a complete
lattice under an ordering <. For instance, (7, <) may be any one of the following:

(1) Fuzzy Values: We can take 7 = [0, 1] — the set of rea | numbers between 0 and 1 (inclusive) and
=< to be the usual < ordering on reals.

(2) Time Points: We can take 7 to be the set TIME = 2R \where R* is the set of non-negative real
numbers , 2R* is the power-set of the reals, and < is the inclusion ordering.

(3) Fuzzy Values + Time: We could take 7 = [0, 1]XTIME and take < to be the ordering: [uy, T1]=[uz, T5]
iff wy < wg and Ty C Ty. Here uy, ug are real numbers in the [0, 1] interval and T}, T are sets of real
numbers.

(4) Four-Valued Logic: Four valued logic [7, 19] uses the truth values FOUR = {1,t,f, T} ordered
as follows: 1<z and x<T for all 2 € FOUR. In particular, t and f are not comparable relative to
this ordering. [7] and [19] show how this FOUR-valued logic may be used to reason about databases
containing inconsistencies.

This is only a small sample of what 7 could be. Using the elements of 7, as well as variables
ranging over 7 (called annotation variables), and preinterpreted functions of arity n > 1 on 7 (called
annotation functions), it is possible to recursively define an annotation term as follows: (1) any member
of 7 is an annotation term, (2) any annotation variable is an annotation term, and (3) if f is an n-ary
annotation function and tq,...,%, are annotation terms, then f(¢1,...,%,) is an annotation term. For
instance, if 7 = [0, 1], and 4, x are preinterpreted annotation functions defined in the usual ways, and
V' is an annotation variable, then (V' + 1) % 0.5 is an annotation term. Strictly speaking, we should
write this in prefix notation as: *(4(V,1),0.5), but we will often abuse notation when the meaning is
clear from context.

If Ais an atom (in the usual sense of logic), and p is an annotation, then A : p is an annotated atom.
For example, when considering 7 = [0, 1], the atom broken(cy) : 0.75 may be used to say: “there is at
least a 75% degree of certainty that component ¢; is broken.” If 7 = [0, 1] x TIME, then annotations
are pairs, and an annotated atom like at_robot(3,5) : [0.4,{1,2,3}] says that at each of the time points
1,2, 3, there is at least a 40% certainty that the robot is at xy-coordinates (3,5).

An annotated clause is a statement of the form:
Agipo «— Ar:m&.. & A,y

where: (1) each A; : p;, 0 < ¢ < n is an annotated atom, and (2) for all 1 < j < n, p; is either a
member of 7 or is an annotation variable, i.e. p; contains no annotation functions. In other words,
annotation functions can occur in the heads of clauses, but not in the clause bodies.

Kifer and Subrahmanian developed a formal model theory, proof theory, and fixpoint theory for
GAPs that accurately captures the above-mentioned notion of ‘firability.” In brief, an interpretation I
assigns to each ground atom, an element of 7. Intuitively, if 7 = [0, 1], then the assignment of 0.7 to
atom A means that according to interpretation I, A is true with certainty 70% or more. Interpretation

I satisfies a ground annotated atom A : p iff u<I(A). The notion of satisfaction of formulas containing
other connectives, such as &, V, < and quantifiers ¥, 3 is the usual one [30]. In particular, I satisfies
the ground annotated clause Ag : po — (A1 11 & ... & A,) iffeither T'JE (A1 &0 & Ayt)
or I = Ag : pto. The symbol “[=7 is read “satisfies.” [satisfies a non-ground clause iff I satisfies each
and every ground instance of the clause (with annotation variables instantiated to members of 7" and
logical variables instantiated to logical terms).

2.2 Overview of Amalgamation Thoery

Suppose we have a collection of “local” databases DBy,..., DB, over a complete lattice 7 of truth
values. In this section, we recall, from [32], how the theory of GAPs may be successfully applied to
defining a new lattice of truth values that forms the basis for a “mediator” or “supervisory database.”
To do so, we first define the DNAME lattice; this is the power set, 21178} The integer ¢ refers to
database D B;, while s refers to the supervisor. Note, in particular, that 21123} is a complete lattice
under the set inclusion ordering.

We assume that we have a set DV of variables (called DNAME variables) ranging over 2{l-mst Tf
A @ pis an atom over lattice 7, V is a DNAME-variable, and D C {1,...,n,s},then A:[D,pu]and A :
[V,] are called amalgamated atoms. Intuitively, if 7 = [0, 1], the amalgamated atom at_robot(3,4) :
[{1,2,3},0.8] says that according to the (joint) information of databases 1,2 and 3, the degree of
certainty that the robot is at location (3,4) is 80% or more .

An amalgamated clause is a statement of the form:
Ao :[Do,po] = Ar:[Di]&.. & Ay 0 [Dy, pin]

where Ag : [Do, o), -« ., Ap : [Dn, jtn] are amalgamated atoms. An amalgamated database is a collection
of clauses of this form.

Mediator/Supervisory Database: Suppose DBy,..., DB, are GAPs. A supervisory database' S
is a set of amalgamated clauses such that every ground instance of a clause in S is of the form:

Ao [{s},p] — A1 :[D1,a]& ... & A, : [Dy,]

where, for all 1 <i¢<(n+m), D; C{l,...,n,s}.

Intuitively, ground instances of clauses in the supervisor say: “If the databases in set D;, 1 < ¢ < n,
(jointly) imply that the truth value of A; is at least p;, then the supervisor will conclude that the
truth value of Ag is at least p.” This mode of expressing supervisory information is very rich —in [32],
it is shown that we can express prioritized knowledge about predicates, prioritized knowledge about
objects, as well as methods to achieve consensus.

We now define the concept of an amalgam of local databases DBy, ..., DB, via a supervisor §.
First, each clause C' in D B; of the form

Ag:ipo — Ar i & .. & A,y

"When the databases being integrated are geographically dispersed across a network, it is common to distribute the
mediator so that bottlenecks (e.g. due to network problems) do not have a devastating effect. In this paper, we will not
study issues relating to implementing distributed mediators (though we are doing so in a separate, concurrent effort).

is replaced by the amalgamated clause, AT(C'):

Ap : [{Z}7MO] = A [{Z}7M1] L. LA [{Z}vlun]
We use AT(DB;) to denote the set {AT(C)|C € DB;}.
The amalgam of DBy, ..., DB, via a supervisor S is the amalgamated knowledge base (S U=, AT(DB;)).

The model theory for amalgamated knowledge bases is (slightly) different from that of individual GAPs
because it must account for a new type of variable, viz. the DNAME variables. An A — interpretation
J for an amalgamated database is a mapping from the set of ground atoms of our base language to
the set of functions

from {1,...,n,s}to 7,

ie. for A € By, I(A) is a mapping from {1,...,n,s} to 7. In other words, if [(A)(i) = p, then
according to the interpretation I, DB; says the truth value of A is at least u. Given a subset, D,
of {1,...,n,s} we use I(A)(D) to denote U;ep(J(A))(¢). An A — interpretation, J, satisfies the
ground amalgamated atom A : [D,p] iff p< UWiep (J(A))(¢). Here, U denotes “least upper bound
(lub)”. All the other symbols are interpreted in the same way as for ordinary 7-valued interpretations
with the caveat that for quantification, DNAME variables are instantiated to subsets of {1,...,n,s}
and other annotation variables are instantiated to members of 7. Note that we will always use the
word A — interpretation to denote an interpretation of an amalgamated KB and use the expression
“Interpretation” or “7 -interpretation” to refer to an interpretation of a GAP.

Linking Local and Amalgamated Database. We now show how we can go from models of
amalgamated KBs to models of GAPs and vice-versa by using a concept of “projection” and “locale
generation.” We then prove a theorem that exhibits the strong links between models of the GAPs
DBq,..., DB, and the amalgam of databases DBy,..., DB, via supervisor 5.

Suppose @ is the amalgam of (DBy,...,DB,,5) and J is an A-interpretation. The projection of J
on DB; for 1 <i < nis the interpretation I defined as follows: I[(A) = J(A)(7).

While projections allow us to obtain an interpretation from an A-interpretation, we may also need to
obtain A-interpretations from interpretations. Given an interpretation, I, the locale of I w.r.t. the
locale of T w.r.t. a GAP DBy, is the set {I'| I’ is an A-interpretation and for all ground atoms A,
I'(A)(7) = I(A)]}.

The following theorem now shows that the models of local databases (i.e. those interpretations that
satisfy all facts and rules in the local database) are closely related to the A-models of amalgams (i.e.
the A-interpretations that satisfy all the rules in the amalgam).

Amalgamation Theorem. ([32])

1. Suppose DB; is a GAP and I is an interpretation such that there exists an I’ in the locale of T
which is an A-model of AT(DB;). Then I is a model of DB,.

2. A:pis alogical consequence of DB; (i.e. A : p is satisfied by all interpretations that satisfy all
clauses of DB;) iff A :[{i}, u]is an A-consequence of AT(DB;).

3. Let () be the amalgam of databases (DBy,...,DB,,S5), and let J be an A-model of). Then:
the projection, J; of J on DB; is a model of DB;. a

3 Motivation

In this section, we will present two motivating examples — the first is a set of deductive databases
expressed using FOUR-valued logic describing a static robotic domain (i.e. one where the world remains
constant). The second example extends this to reason about a dynamically changing world, and thus
incorporates both uncertainty and time. These examples will be used throughout the paper toillustrate
various intuitions as they arise in the paper.

We will assume that the reader is familiar with generalized annotated programs (GAPs) as defined in

[20].

3.1 Robot Example: Static Case

Consider two mobile robots, r1 and r2, that are operating in a common workspace. Each of these two
robots has access to three databases; one of these databases represents information about the locations
of objects in the workspace (cf. Figure 3.1), the second represents information about the weight of
these objects, while the third represents information about the temperature of the objects. The last
two databases also contain information about what kinds of loads the individual robots can lift. Each
of these three databases is expressed over the lattice FOUR shown in Figure 3.1 and is shown below:

DBy

at(rl,3,2):t —

at(r2,4,4):t —

at(a,1,1):t

at(b,2,2):t —

at(c,3,5):t

at(d,4,2):t —
right(E1,E2):t — at(E1,X1LY1):t&at(£2,X2,Y1):t& X1 > X2,
left(E1,E2):t — at(E£1,X1LY1):t&at(£2,X2,Y1):t& X1 < X2,
above(L1, E2):t — at(EF1,X1,Y1):t&at(£2,X1,Y2):t&Y1 > Y2

L)

1

(0,0)

below(F1,E2):t — at(F1,X1,Y1):t&at(F2,X1,Y2):t&Y1 <Y2.

at(BF1,X,)Y): f — at(£2,X,Y):t&F1# E2.

This database specifies where the objects are located (including the robots), and also specifies relations
such as “entity F'1 is to the right of entity F2 if ...,)” “entity F'1 is to the left of F2if ...)" “entity
F1 is above entity E2if ... 7 and “entity F1 is below entity F2 if” There is also a rule saying
that two things cannot be at the same place. We assume that relations like >, <, and = are evaluated
in the standard way. Intuitively, the first rule above says “If the entity £'1is at location (X1,Y2) and
entity 2 is at location (X2,Y2)and X1 > X2, then 1 is to the right of £2.” When the annotation
t associated with an atom A leads to the reading: “A’s truth value is at least t.” In general, t may be
replaced with a different annotation, u, picked from a complete lattice of truth values and the same

reading holds with “at least” referring to the lattice ordering.

DBQl

~~

werght
werght
werght

A~ =

werght
can_lift
can_lift
can_lift
can_lift

— = =

DB3§

a,36):
b,19):
c,48):
d,27):
rl, X):
rl, X):
r2,X):
r2,X):

Lo S o S S S S

L A A R B

LEGEND:

. robot

object

(t & W < 50.
:t& W > 50.
(t & W < 30.
t& W > 30.

temp(a,92):t —
temp(b,61):t
temp(c,55) 1t
temp(d,112):t —
canlift(rl, X):t — temp(X,T):t&T < 60.
canlift(rl,X):f — temp(X,T):t&T > 60.
canlift(r2,X):t — temp(X,T):t&T < 120.
canlift(r2,X):f — temp(X,T):t&T > 120.

Using D Bj alone, we may conclude that r1 can lift any of a,b, ¢,d, while using D B3 alone, we may
conclude that r1 can lift only ¢. Similarly, DBy alone tells us that r2 can lift b and d, while using
D B3 alone, we may conclude that r2 can lift all of a,b,c and d. Clearly this leads to inconsistency. In
addition to resolving such conflicts, we may wish to coordinate what should be done by the two robots
rl and r2. A supervisory database is a database that specifies how to resolve such conflicts and how to
achieve the desired coordination. For instance it may be the case that r1 moves easily in the vertical
direction, while 72 moves easily in the horizontal direction. If an object is above or below r1, and the
supervisor determines that r1 can lift that object, then the supervisor may decide to command r1 to
lift that object. Similarly, if an object is to the left or right of r2, and the supervisor determines that
r2 can lift that object, then the supervisor may decide to command 72 to lift that object. If the object
is not exactly above or below r1 or to the right, left of 72, then the supervisor will first command r1
to lift the object. If no command is issued to r1 to lift an object, then r2 will be commanded to lift
that object. These are formalized using the following “supervisory” knowledge base.

canlift(rl, X):[{s}, V)
can lift(r2,X): [{s}, V10V,
command i ft(X,rl): [{s},V

can_lift(rl, X
can_lift(r2, X
can_lift(rl, X

1 [{2,3}, V]
{2}, V] & candift(r2, X) : [{3}, V2.
t[{s}, V] & above(X, rl): [{1},t].

command i ft(X,rl): [{s},V

]

]

(] candift(rl, X): [{s},V
command i ft(X,r2): [{s}, V]
(]
]
]

(rl, X):]
(r2, X): [
(rl, X):]
() & below(X,rl): [{1},t].
can lift(r2, X): [{s}, V] &left(X,r2): [{1},t].
command_li ft X r2): [{s},V () &right(X,r2): [{1},t].
command lift(X,rl): [{s},V ()i
(r2, X): [

command_lift(X,r2): [{s},t

can lift(r2,X): [{s},V
can lift(rl, X): [{s}, V].
can lift(r2, X) : [{2,3},t] & commandlift(X,rl): [{s},f].

e’ e’ N
— — — —
[AL U T T

L R N A B

The first two rules in the above supervisory knowledge base are very interesting. As far as robot rl
is concerned, the supervisor is willing to accept the truth value provided by any of the databases —in
other words, the supervisor is indecisive and acts as if both what D By says is correct and what D Bjs
says is correct (even though they may contradict each other). This may be an appropriate strategy
when robot r1 is a very inexpensive robot, and the task of lifting the objects is critical. The second
rule says that the supervisor only concludes that r2 can lift an object if both databases DBy and D Bj
say it can (consensus).

The amalgam of local databases DBy, D Bs, D B3 with the supervisory database 5, as defined in [32]

1s:

at(rl,3,2): [{1},t]
at(r2,4,4): [{1}, t]
at(a,1,1): [{1},t]
at(b,2,2): [{1},t]
at(e,3,5): [{1},t]
at(d,4,2): [{1},t]
right(F1, £2): [{1},t]
left(F1, E2): [{1},t]
above(E'1, E2): [{1},t]
below(F1, E2): [{1},t]
at(F1,X,Y) : [{1},1]
wetght(a,36) : [{2},t]
weight(b,19) : [{2}, 1]
weight(c,48) : [{2}, 1]
wetght(d,27) : [{2},t]
can lift(rl, X): [{2},1]
can lift(rl, X): [{2},f]
can lift(r2, X): [{2},1]
can lift(r2, X): [{2},f]
temp(a,92) : [{3},t]
temp(b,61) : [{3}, 1]
temp(c,55) : [{3}, t]
temp(d,112) : [{3},t]
can lift(rl, X): [{3},1]
can lift(rl, X): [{3},f]
can lift(r2, X)) : [{3},1]
can lift(r2, X): [{3},f]

canlift(rl, X): [{s},V
canlift(r2,X): [{s}, V1NV,
command lift(X,rl): [{s},V
command lift(X,rl): [{s},V
command i ft(X,r2): [{s},V
command i ft(X,r2): [{s},V

(

t

e’ e’ N

command_lift X rl): [{s},V

]
]
]
]
]
]
]
command i ft(X,r2): [{s},t]

L e e e e O e e I I S (Y N A A O B

at(E1,X1,Y1):
at(E1,X1,Y1):
at(E1,X1,Y1):
(E1,X1,Y1):
([

E2,X,Y):

at

at

temp(
(
(
temp(X

can_lift
can_lift

(
(
canli ft(
can lift(rl, X
(
(
(
(

X,T):
temp(X,T):
temp(X,T):

rl, X
r2, X
1, X

can_lift
can_lift
can_lift
can_lift

rlX

— — — —

— — — —

[{s},V
[{s},V
[{s},V
1 [{2, 3}, t]&commanddift(X,r1): [{s},

{1},t] & at(E2, X1,Y?2

{1),t] & E1# E2.

L [{2), 8] & W < 50.
{23,
{23,
L [{2), 8] & W > 30.

& W > 50.

]
]
] & W < 30.
]

[{3}.t] & T < 60.

[{3}.t] & T > 60.

[{3},t] & T < 120.

T):[{3},t]&T > 120.

1 [{2,3}, V]

{2}, Vi) & candift(r2, X) : [{3}, V2.
[{s}, V]&above(X, r1) : [{1},t].

[
[
[
c[{s}, V]&below(X, r1) : [{1},t].
[
[
[
[

&le ft(X,r2): [{1},t).

]
]
[&right(X,r2): [{1},t].
].

(1}, 4] & at(E2, X2,Y1) : [{1},t] & X1 > X2.

(1}, 4] & at(E2, X2,Y1) : [{1},t] & X1 < X2.

(1),4] & at(E2, X1,Y2) : [{1},4] & V1 > V2.
)]]

{1}t & Y1 < V2.

f].

3.2 Robot Example: Dynamic Case:

In the preceding section, we have not taken into account, the fact that the workspace may be changing
with time — in other words, robot r1 may need to base its actions on its perceptions of what robot
72 may do (even in the future). For instance, suppose we assume that all changes in the workspace
occur at discrete time intervals, and that at time 0, the workspace is as shown in Figure 3.1. Let us
suppose that the following events occur:

e At time 1, robot 71 moves “right” one location, i.e. moves to location (2, 3).
e At time 2, robot r1 again moves right one location, i.e. it moves to location (3, 3).

At this point, robot r2 may well conclude, based on its knowledge of robot r1’s past actions, that r1
will, in all likelihood 2, continue in its rightward path. It may formalize this intuition as a clause that
says: “Given that robot r1 moves right at time 7" and T 4 1 with probabilities V7, V5 respectively, then
the probability that it will continue to move right is a function, f, is some function of V;,V5.” Using
the truth value lattice [0, 1] X 2R+, we may encode this information as:

at(rl, X +2,Y) : [f(V1, Vo), {T + 2} — at
at
at(r1, X + 1,Y + 1) : [1 = f(V4,V2),{T +2}] < at

at

rl, X+ 1,Y): Vi, {T+1}]&
rl, X,Y) : [Vo,{T'}].
rl, X+ 1,Y): Vi, {T+1}]&
rl, X,Y) : [Vo,{T'}].

e = ==

Here, T' is a variable ranging over time points, and V, V3, V5 are variables ranging over the unit interval
[0,1]. The first clause says that if r1 is at location (X,Y) at time T with certainty V3, and rl is
at location (X + 1,Y) at time (7' 4 1) with certainty Vi, then the certainty of its being at location
(X +2,Y) at time (T'+2) is f(V3, V2) where f is some function from [0, 1] x [0, 1] to [0, 1]. The second
clause says that the probability that the robot will be at location (X + 1,Y 4 1) at time (7' + 2) (i.e.
it moves “down” instead of “right”)is 1 — f(Vq, V3).

The truth value lattice being used in this example is [0,1] x 2R* An annotated atom of the form
A : [u,t] intuitively says that “for all time points t* € t, atom A is true with certainty u or more.”
The lattice ordering on [0, 1] x 2R* s defined as: [uy,t1] < [ug, to] iff uy < ug and t; C ts.

The detailed description of annotated logics is beyond the scope of this paper — it is well-documented
in the literature [7, 20, 32, 33].

4 A Resolution-Based Query Processing Procedure

In this section, we will develop a framework for processing queries to amalgamated databases. This
procedure is a resolution-based procedure, and hence, inherits many of the disadvantages of existing
resolution-based strategies. It is similar to work by Lu, Murray and Rosenthal [24] who have inde-
pendently developed a more general framework for query processing in GAPs. The work described

2This is only an illustration. In the real-world, a robot may use far more complex strategies to make predictions on
what other agents in the workspace may do.

10

here is intended as a stepping stone for the development of a more sophisticated procedure, called
MULTI _OLDT, that will be described in Section 5.

We now define the concept of the up-set of an annotation, or a set of annotations. Intuitively, given
a set () of annotations, the up-set of () is simply the set of all elements in the truth value lattice that
are larger than some element in).

Definition 1 Suppose (R; <) is a partially ordered set and ¢ C R. Then, # @ = {y € R | (3= €
Qlr<yland | Q={yeR|(Fz € Q)y <z}

For instance, if we consider the lattice FOUR described earlier, it turns out that {} t = {t, T}. Similarly,
T {t. £} ={t, £, T}.

Up-sets may be used to capture the following intuition: suppose we consider an amalgamated atom
A :[D,p]. Then this atom is satisfied by any A-interpretation I such that p=<Ugep I(A)(d). In other
words, satisfaction of A : [D,u] by I requires that UzepI(A)(d) €t p. This leads us to consider the
possibility of extending amalgamated atoms to have a set of truth values as the second element of its
annotation.

Definition 2 Given an amalgamated annotation [D,u] where D CV ={1,..,n,s}and p € 7, and a
function f, : (2¥ x T) — (2¥ x 27) the expression f,([D, u]) is called a set expansion of [D, p].

For example, we may take fs to be the function such that fi([D,u]) = [D, 1 p], or we may take f; to
be the function such that fo([D,u]) = [D, 7\ f p]. If we take fs to be the latter, and we consider the
lattice FOUR, then fi([D,t] = [D,{L,f}].

It will turn out that the two examples of f; given above will be particularly important — hence, we
give special names to these functions below.

Definition 3 Given an amalgamated annotation [D, u] where D CV = {1,..,n,s} and u € 7, the
regular set expansion, EXP, is given by EXP([D, u]) = [D, 1 g]. Similarly, the complement of the regular
expansion is given by COMP([D,u]) = [D, 7\ 1 .

Example 1 Let 7 = {T,t,f, L} and V = {1,2,s}.
EXP([{172}7t]) = [{172}7{t7T}]
COMP([{172}7t]): [{172}7{f7 J-}]

In the sequel, we will often use the notation ps to denote a set of truth values (annotations). Thus,
A [D,pg] is intuitively read as: “The truth value of A, as determined jointly by the databases in D
is in the set us.” The following definition defines an asymmetric notion of of “intersection” of two
amalgamated annotations.

11

Definition 4 Given two set expansions [D1, s, |,[D2, pts,] where Dy, Dy C{1,...,n,s} and ps, , pts, €
27 the partial function S-INT is defined as follows:

Dy, ps, Nptg,], if Dy CD
S-INT([D1, prs,], [D2, ps,]) = { | 1und(leﬁned2] othirwise1

Note that S-INT is asymmetric because of the subset condition. This asymmetry is a key distinction
between our work and the concurrently developed work of [24].

For example, suppose we consider the lattice FOUR and consider the amalgamated annotations: [{1,2,3},{t, T}]

and [{1,3},{f, T}], then

S-AINT([{1,2,3},{t, TH,[{1,31,4F, T}) = [{1,2,3},{T}]
but S-INT([{1,3},{f, T}],[{1,2,3},{t, T}]) is undefined.

Using the concept of set expansions of amalgamated atoms, we now define the concept of a regular
representation of a clause. Later in this section, we will define a resolution-based strategy that uses
regular representations of amalgamated clauses instead of the amalgamated clauses themselves. The
advantage is that the expensive reductant rule of inference introduced by Kifer and Lozinskii [19] and
later studied by Kifer and Subrahmanian [20] can be eliminated by using regular representations.

Definition 5 Given a clause C' of the form:
Ag : [Do, o) — Ay i [Dy,)& .. &A, 2 [D, pin]
the regular representation of C', denoted by C*, is the expression:
Ag EXP([Do, pto]) — A1 : EXP([D1, m1])& ... & A, : EXP([Dy, pin])

In other words the regular representation is obtained by set expanding all the amalgamated anno-
tations using the expansion function EXP.

Example 2 (Static Robot Example Revisited) Consider the following rule from DB; of the
Static Robot example.

can lift(r1,X):t — weight(X,W):t& W < 50.
The amalgamated form of this, as defined in [32], is
can lift(rl, X): [{2},t] — weight(X,W):[{2},t]& W < 50.
The regular representation of this is:
can lift(rl, X): EXP([{2},t]) «— weight(X,W):EXP([{2},t]) & W < 50.

(We assume that the constraint W < 50 is a predefined evaluable relation). O

12

Example 3 (Dynamic Robot Example Revisited) Suppose the rule below occurs in database i
of the Dynamic Robot example:

at(rl, X +2,Y) : [f(V1,V2),{T+2}] < at(r1,X+1Y): Vi, {T+1}]&
at(rl, X,Y) : [Vo,{T}].

Then the regular representation of this clause is:

at(rl, X +2,Y) : EXP([{7}, [f(V1, V2), {T + 2}]]) <« at(r1,X +1,Y) :EXP([{¢},[Vi,{T +1}]D &
at(rl, X,Y) : EXP([{i},[V2, {T}]])-

a

Definition 6 (S-satisfaction) An A-interpretation [S-satisfies an expanded atom A : [D, pi] where
D C{l,...,n,s}and p, € 27 iff I & A : [D,] for some p € p,.

The notion of an S-logical consequence is similar to that in classical logic — only now, S-satisfaction is
considered instead of ordinary satisfaction.

Definition 7 An amalgamated atom in set expansion form A : f, ([Dy,p1]) is said to be an S-
consequence of another atom B : f,,[Dy, uz] (denoted by B : f,,([Da, 2]) = A 1 f5,[D1, jt1]), iff any
A-interpretation I that S-satisfies B : f5, ([Da, p12]) also S-satisfies A : fs, ([D1, p1]).

Example 4 Let the truth value lattice be FOUR and let [be an A-interpretation such that [(A)(1) = L
and I(A)(2) = t. [geq1,2y [(A)(d) = t. Hence, I S-satisfies A : [{1,2},{t,f, T}] since t € {t,f,T}. O

Just as we defined the notion of “regular representation” of clauses, we also need to define the notion
of “regular representation” of queries.

Definition 8 A query () is a statement of the form:
— Ay [Dyyn)& o &AL Doy o]

where all the free variables of the query are assumed to be universally quantified®. The regular
representation of the query (), denoted (* is the query:

Ay : COMP([Dy, p1]) V ...V Ay, : COMP([Doy, fis]) —
The following result follows immediately from the definitions and is given without proof.
Proposition 1 Suppose [is an A-interpretation.
1. [satisfies a ground clause ' iff I S-satisfies C'*.

2. I satisfies a ground query @) iff I S-satisfies Q*.

We now come to the central concept in this section, viz. that of an S-resolvent.

?A query can be thought of as a headless Horn-clause. The negation of the above query is the statement (A (A -
[D1, m]& ... &Ap : [Di, tm])-

13

Definition 9 (S-resolution) Let C* be the regular representation of a clause C' and be given by:
Ag EXP([Do, pto]) — A1 : EXP([D1, m1])& ... & A, : EXP([Dy, pin])
and let W be the expression
By Dy g IV ooV By 1Dy, g,] =

where [in,,uqsl,], 1 < j < m, are in set expansion form. Suppose B; and Ay are unifiable via mgu 6
and suppose Dg C D,,. Then the S-resolvent of W and C* is the expression:

(Ay :COMP([D1,p1]) V...V A, : COMP([Dy, ptn]) V
By [Dyyspig IV ...V Biy: [in—l"uqsz'_J V By [in+1v:“qs,-+1] V...V By Doty]V
Ap : S'INT([D%?:uqsi]vEXP([DOv:MO])))0 -

In case, S-INT ([Dy,, pq.,], EXP([Do, p10])) = [D, pis] is ground and p; evaluates to (0, then we simplify
the above S-resolvent by removing the atom (Ao : S-INT ([in,,uqsl,],EXP([Do,,uo]))) 6.

Two important points that distinguish S-resolution for amalgamated knowledge bases from GAPs are
the following;:

o First, it is possible that no atom may be “eliminated” during an S-resolution step. This occurs
if ps above is not equal to (.

e Second, S-resolvents are inherently asymmetric because they are defined in terms of the S-INT
operator which is not symmetric.

Before proceeding to study soundness and completeness issues pertaining to S-resolution, we present
an example.

Example 5 Consider the truth value lattice FOUR. Let C' be the clause
pla) - [{1},{T}] <
and let Q* be the (regular representation)
p(X):[{1,2}{f, L}] < .
6 = {X = a} is the mgu of p(a) and p(X), and hence C' and @ can be S-resolved, yielding
(p(X) - [{1,2},4f, L} n{T}H = {X = a}

as the S-resolvent. This is reduced to the empty clause because {f, L} N {T} = 0. 0

*Note that this query is the regular representation of

—p(X) : [{1,2}, 4]

14

Definition 10 An S-deduction from a query o and an amalgamated knowledge base AKB is a
sequence:

<Q8708700>7 .- '7< 270270n>

such that Q7 is an S-resolvent of Q7 and C via mgu 6;, (0 <7 < n). QF is the regular representation
of Qo and C7 is the regular representation of some clause C', (0 <7 < n).

An S-deduction is called an S-refutation if it is finite and the last query is the empty clause.

Lu, Murray and Rosenthal[24] have proved a more general version of the soundness and completeness
result which we therefore state without proof®.

Theorem 1 (Soundness of S-resolution) Suppose [S-satisfies a clause C* = Ag : EXP([Do, jio]) —
Ay ¢ EXP([Dy, 1)) &...& A, @ EXP([Dy, pty]) and a query Q; = B; : [qu,uqsl] V...V B, :
[Dg,.» tg., | —- Then, I S-satisfies the S-resolvent of C'* and Q7. 0

The following definition from [32] is needed for proving the Completeness results for amalgamated
knowledge bases. Given an amalgamated knowledge base (J, it is possible to associate with ¢}, an
operator Ag that maps A-interpretations to A-interpretations.

Definition 11 [32] Suppose () is an amalgamated knowledge base. We may associate with @, an
operator, Ag, that maps A-interpretations to A-interpretations as follows.

Ap(I)(A)D) = WHp | A:[Dypu] — By : [Di,m]& ... &By : [Dy,)& not(By :

[Dig1s tng1])& <. ¬(Bt : [Dntms fntm])} 18 @ ground instance of a clause in @

and for all 1 <@ < n,pu; < I(B;)(D;) and for all (n+1) < j < (n+m),u; £ 1(B;)(D;).

AQ(D)(A)D) = UprcpAg(D)(A)(D"), for all D C {1,...,n,s}.

Subrahmanian [32] proved that when () is negation-free, Ag is monotonic. Hence, Ag has a least
fixpoint which is identical to Ag | 5 for some ordinal 5. Unlike ordinary logic programs, even if 7 is
w, it is possible that (Ag T w)(A)(¢) = i, but there is no integer j < w such that (Ag T 7)(A)(¢) = p.
This may occur because p is the lub of an infinite sequence, po, g1, ... where pp = (Ag 1 k)(A)(2).

An amalgamated knowledge base is said to possess the fixpoint reachability property iff whenever
(Ag T n)(A)(i) = p, there is an integer j < w such that (Ag T 7)(A)(¢) = p. The fixpoint reachability
property is critical for completeness because otherwise, we need to take recourse to infinitary proofs.
It is well-known [20] that even in the case of GAPs, the fixpoint reachability property is critically
necessary for obtaining completeness results. The proof of the following result is contained in Appendix

A.

Theorem 2 (Completeness of S-resolution) Suppose P |= @) where P is an amalgamated knowl-
edge base that possesses the fixpoint reachability property. Then, there is an S-refutation of (— Q)*
from P. a

*NOTE TO THE REFEREES: The proof is included in Appendix A, but this appendix can be removed when the

paper goes to press.

15

5 MULTI_OLDT Resolution

The previous section describes a sound and complete proof procedure for amalgamated knowledge
bases. The completeness result for S-resolution asserts the existence of a refutation for (— @)*
whenever () is a logical consequence of a program P possessing the fixpoint reachability property.

However, the procedure does not:
e specify how to find a refutation, and

e does not specify how to handle queries which contain annotation variables.

The ability to specify, and process, queries such as “What is the (maximal) degree of certainty V' that
robot 1 will be at location (4,3) at time instant 3 ?” is one that cannot be adequately handled by
the “ground annotation” procedure described in Section 4. However, these are natural questions to
ask — robot 72 may base its actions on the certainty with which it can conclude that robot r1 will be
at a given location at a given time. In general, this problem can be characterized by the following
maximization problem:

Given an atom A (whose truth value we want to find out) and a set D of local databases,
find the mazimal truth value V' such that A : [D,V] is an S-consequence of the amalgamated
knowledge base P.

Second, the robot may have a hard deadline within which to perform its action(s). Thus, it should
have the ability to interrupt the query processing module and request the “best” answer obtained thus
far.

How these two goals are achieved efficiently is the subject of this section of the paper. As a preview,
we give a small example.

Example 6 Consider the databases DBy, DBy and D Bs in the static robot example, and suppose
we ask the query:

— can lift(rl,b): [{1,2,3},V].

The query @ says: “What is the maximal truth value V' such that can_lift(r1,b) : [{1,2,3},V] can
be concluded 7”7 Q* is: candlift(rl,b):[{1,2,3},7— 1 V] —. Let us see what happens.

1. Resolving this query with the (regular representation of the) first rule in D B yields, as resolvent,
* .
1 .

can lift(r1,b): [{1,2,3},(T—= N V)N 1 t] V weight(b,W): [{2},7— {1 t] v W > 50 — .
2. Resolving this query with the (regular representation of the) second fact in D Bj yields
can lift(r1,0): [{1,2,3},(T— V)N At t] V weight(b,19): {2}, (7T—ft)N 1 t] vV 19 > 50 — .
As (T—ft)n 1t = 0, the atom weight(b,19): [(7— 1t t)N 1 t] can be eliminated from the

resolvent, and the evaluable atom 19 > 50 may also be so eliminated, thus leaving us with the
resolvent

can lift(rl,b): [{1,2,3},(7T— V)N {1 t] —.

Note that at this stage, we are in a position to conclude that V' must be at least t for the following
reasons:

16

o All atoms in the body of the first rule in D By have been resolved away (i.e. the subgoals
generated by atoms in the body of this rule have been achieved), and

e IV =t represents the mawximal lattice value such that
(T—9V)nft=0.
Hence, we may conclude that V’s truth value is at least t (w.r.t. the lattice ordering).

3. After concluding that V’s truth value is at least t, we continue resolving the query from (2)
above. We resolve it with the second clause in D B3 to get:

can lift(r1,b): {1,2,31,(7T—f V)n frtn 4 f] vV temp(b,T): [{3},7—Nt] VT <60 —.

4. Resolving the above query with the second fact in D B3 gives:
can lift(r1,0): [{1,2,3},(T—f V)N frtn { f]Viemp(b,61): [{3},(7T—ft)N fF t] V61 < 60 — .

As explained in 2, second and third atoms in the query can be eliminated, leaving us with the
query:

can lift(r1,0): [{1,2,3},(T—fHV)n ftn 1] —.
To evaluate this query to the empty clause, we must find the maximal truth value of V' that
satisfies the following equation= (7— f+ V)N ff tn f+ £ = 0. This is equivalent to= (7— 1
V)N {T} =0 and we conclude that V' = T is the solution to this equation that maximizes the
value of V. a

As we can see from the example above, finding the maximum truth value of an annotation variable
that enables us to eliminate a query atom results in a maximization problem with some constraints.
Each resolution with the atom introduces new restrictions on the set of truth values its annotation
variable can legitimately have. Notice that these restrictions can be part of another maximization
problem. As an example, suppose we have the following clause in the (regular representation of) D By:

can lift(X,b): [{1}, 0 V1] — can lift(X,b): [{2}, 1 V4]

In other words, DBy contains the information that DB is a more reliable source of information as
far as the object b is concerned. When we resolve this clause with the original query in the above
example, we get the following query:

can lift(r1,b): {1,2,3},(T—= V)0 Vi] V can lift(X,b): [{2},7— 9 V4] — .
Here V; is going to be maximized as well, and we want to know how the current maximum value of V'
is affected by the changes in the value of V3. We are now going to formalize this idea.
5.1 Maximization Problems

Definition 12 (Maximization Problem) let 7 be a complete lattice of truth values, Vi,...,V,, be
annotation terms and fu; : 7" — 7. A maximization problem M P is given as follows:

maximize Jori (Vi oo, Vi)

subject to Ty Q, fi,(V1) Q1 oo Q4 f1, (V) =0

T Qg Frni (V1) Doy v Qs frnn (Vi) = 0

17

where T; C 7, f;, is a map from 7 to 27 and Q;; e {n,U,\}forall 1 <7< m, 1 <5 < n. Intuitively,
the expressions on the left of the equalities above are unions/intersections/differences of terms denoting
subsets of 7.

A mapping M : {V1,...,V,,} — 7 is said to be an optimal solution to M P iff (1) the assignment of
M(V;) to variable V; (1 < i < n) satisfies the constraints and (2) for all other mappings M’ that satisfy
the constraints, the inequality fou;(M(V1),..., M(V,)) % forj(M (V1),..., M'(V,))) holds w.r.t. the

given lattice ordering.

Example 7 Consider the truth value lattice FOUR and suppose we wish to solve the maximization
problem

maximize Vi u Vv,

subject to {L.,f}n(tVy) N (1 V2)=10

Then, Vi =Vo =T,V =T, Vo =t and V; =t V5 = T are all solutions to the problem that maximize
Vi U V. However, the solution Vi3 = L, Vo = t does not maximize V; U Vs. a

Consider the query Q* =— A :[D,7— 1} V4]. As has been illustrated in Example 6, when processing
this query by performing successive S-resolutions, the atom A (when it occurs in successive resolvents
in an S-deduction) will always have an annotation of the form

(T—(Vy)n (V) n...n (it Vo)

where n > 1. When attempting to evaluate the “current best” known truth value for A, we need to
maximize the value of V; subject to the constraint

(T\NftV) n(tVe) N ... (1 V) =0.

This is because Vi occurs in the query * and we wish to get the maximal possible value of Vj.
Theorem 3 below shows that the optimal solution of this maximization problem is obtained by setting
Vi=Vou...uV,. Prior to proving Theorem 3, we need to prove an elementary result.

Lemma 1 If Vi =VoU...UuV,, then t Vi= (Vo) N ... N (1 Vo).

Proof:

oSmceV<V1(§

i <mn), Vi € (f# V;). Hence for all V5 < Vi, Ve (ft Vi) and (v V1) C ((1
Vo) N0 (1 V).

o Let Vo= (1 Vo) N ... O (f V,). Forall V' EVS, we have thatV <V (2<i<n). Smce
Vi =VaU...UV,, it must be the case that V; < V'. Hence V' e V4 and ((ft Va) N n
Vn)) gﬂ Vl- U

Theorem 3 For any maximization problem M P given as follows:

maximize Wi

subject to (7 \ Vi) n (fVe) N ...n (Vo) =0

18

where all the V;,1 <17 < n are annotation terms, the optimal solution is:

Vi=VWu...uv,.
Proof: The theorem will be proved by induction on the number, n, of annotation variables.

Basis The problem M P; be given as follows:

maximize Wi
subject to (7\ 1 V1) =10
Then, the optimal solution to M Py is Vi = L.
o L{} = L, therefore Vi = L is the solution given in the theorem.
e Since 1 V4 =7, (7\ 1/t V1) = 0 and hence V; = L is a solution to the constraint given in M P;.

e There is no solution V; such that L < V;. Since that implies L € (7\ 1 V;), V; does not satisfy
the constraint.

Inductive Step Let for all ¢ < n the solution to the problem M P; |

maximize Wi

subject to (Z\ Vi) n...n (Vi) =10
be given as V4, = Vo U ... U V;. Let the problem M P, be :

maximize Wi

subject to (Z\ V1) n...n (1 V) =10
Then the solution to M P, is Vi = Vo U ... UV,.

o Leta=V, U...UV,_yand § =« U V;. By the inductive hypothesis « is a solution to M P;_y.
By lemma 1 it is true that

Pa = (’ﬂ“VQ)ﬂ
(ta) N (hV)) = (hVe) N ...

By lemma 1,1 (0 U Vi) = (fa) A (1 Vi) = 1 5. Then,
(T\NB) 0 (MVe) neen (Vi) =10
and [is a solution to M P;.

e (3 is the only solution since for all V' £ [is true that g & V' and 8 € (T\ 1 V/). By the

argument above we know that

T8 = (MVe) N...n (1 Vi)
Boe (hVe) N..on (B V3))
Boe [(T\RV) N ((hVe) Nnoon (V)] £ 0

Hence, V' doesn’t satisfy the constraints for M P; and cannot be a solution. a

19

Example 8 Consider the maximization problem:
maximize V

subjectto (7 — V)N Vin...nf V1.

The solution to this problem is V,;y =V = ViU...UV,_1. Now, suppose the term 1} V,, is added to the
constraint. Then, the new maximum value of V is V = V4 U V,,. In other words, having calculated
Vo4 once, we can use it to solve larger problems maximizing the same variable. For instance, in the
case of example 6, we had calculated the maximal truth value of V' to be t (in the second step). At
step 4, we introduce the term f} f into the constraint. Then, the new maximal value of V' became
V =tuf = T. Therefore we, can conclude that V = T without solving the maximization problem
from scratch. a

When using the above theorem to compute the maximal value of V; subject to the constraint that

(T\ VDO @V n...on (tV)=0

we need to address how the maximal value of V; changes when the value of one of the V;’s changes.
The following theorem shows how this may be easily computed.

Theorem 4 Let M P, be the maximization problem given in Theorem 3 and Vi = a=VoU... UV,
be the maximum solution. The problem MP;L is defined by replacing V; by VZ»/ for some 2 <7 <n
where V; < VZ»/. The optimal solution to MP;L isVi=al VZ»/.

Proof: Since fV; N 1 VZ»/ =1 VZ»/ and by lemma 1, { (awU VZ/) = an VZ»/, then

ffa = fVean...0 1V,
ftan VvV, = t¥Vn..n V. n...a 4V,
(T\fr(aUV)) n AVan...n 4V, n...0o 1V, =0

Hence, V; = a UV satisfies the constraint given in M P, and it is the maximum such value as a result
of the second equality above. a

5.2 Table Organization

The MULTI_OLDT table is a linked collection of records. At any given point in time, ¢, during the
processing of query (), there is a record in the table for each atom that occurs either in ¢) or in any
of the resolvents generated upto that time. Fach amalgamated atom in a resolvent generated while
constructing one or more deductions points to the corresponding record in the table. The record
structure associated with the amalgamated atom A : [D, V] has seven fields described below:

1. Index:® The index (name) of the annotation variable V. If V is a ground term, then V is
replaced by a variable V' both in the query and in the record for A : [D,V]. V' must be different
from all the variables that appear in the original query and in the intermediate queries as well.

Tn this paper, we will assume that the annotation functions occur only in clause heads, no variable symbol occurs
more than once in an annotation term, and no nesting of annotation functions is allowed.

20

2. Known: The currently known value of the variable under different answer substitutions. This
field is a pointer to a linked list of (substitution,truth value) pairs. It is initially set to (e, L).
Intuitively, an entry (o,) in the Known field of an atom A : [D, V] means that there already
exists a refutation for V(A : [D,V]) with (o, 1) as a computed (substitution, truth value) pair,
i.e. V(Ao : [D, u]) is known to be a logical consequence of the program.

3. Desired: The minimum truth value necessary to stop further processing of the associated
amalgamated atom. This value is T for all annotation variables (intuitively, this says “the sky
(T) is the limit”).

4. Status: This field is used for expressing control information about the associated atom A. It is
set to 0 if V' is non-ground. Otherwise, it is set to 1.

5. Reference: This field is set as follows: if A :[D,V] was in the original query @, then this field
is NIL. Otherwise, it must have been introduced by one and only one clause ' involved in a
resolution step with an intermediate resolvent @; on an atom A; : [D;, V;], in ;. In this case,
this field points to the entry associated with A; : [D;, Vi].

6. Subsumes: This field is a pointer to a list of nodes. Each node N in this list contains a pointer
to an entry, F, in the table whose associated atom is subsumed by A : [D,V].

7. Atom: This field is a pointer to the record storing the atom A : [D, V] in QUERY or in GARBAGE.

The list QUERY is a doubly-linked list of amalgamated atoms to be solved. It has the following prop-
erties: (1) Every amalgamated atom is represented by a unique node in the list. (2) Each node stores
necessary information about the atoms. (i.e. the predicate symbol, the DNAME value, etc.) (3) Each
node has a pointer pointing to the table entry associated with the atom stored in it. (4) Nodes have
pointers pointing to next and previous entries in the list. In addition to the list QUERY, we have the list
GARBAGE with the same structure. When we want to insert a new atom into QUERY, we check if there
exists an atom in it that subsumes the new atom. If this is the case, then we don’t need to process
this atom, and hence, we can insert it into GARBAGE instead of into QUERY.

5.2.1 Table Creation

Given the regular representation, @* = (Ay : COMP([D1,T1]) V -+ V Ay, : COMP([D,,, T)n])) <7 of the
(initial) query to an amalgamated KB, we create the MULTI_OLDT table by calling the the procedure
Create_New_Entry for all atoms A; : COMP([D;,T}]), 1 < ¢ < m as described below:

Insert a node corresponding to the atom A; : [D;,T;] into QUERY and call Create_New_Entry(7;).
Set a pointer from the node in QUERY storing A; : [D;, T;] to the newly created table entry.

function Create_ New_Entry (7 :annotation term) :address of the table entry
begin

allocate a new entry F,., for the annotation term

Set E,..,.Reference and F,,.,,.Subsumes to NIL

if T is ground then

"Without loss of generality, we will assume that the atoms that use the same annotation variables appear consecutively
in the query and in all the program clauses. Furthermore, the atoms in the body of a clause appear in the same order
as their respective annotation variables appear in the annotation term of the head.

21

Create a new variable V,,.,,, and set F,.,,.Index to V.,
Set F,..,.Desired to T

else
Set F,...Status to 1 and F,.,,.Known to (¢, L)
Set F,.,.Index to T, F,,.,,.Desired to T
Set Fpew.Known to (e, L)

return F, .,

end

Example 9 Recall example 6. The initial query was:
can lift(rl,b): [{1,2,3},7—ff V] —.

Initially both the table and the linked list of query atoms are both empty. We insert the node
(can lift(r1,b) : [{1,2,3},V]- Entry 1) into QUERY. The entry in the table corresponding to this
atom is as follows:

Index | Known | Desired | Status | Reference | Subsumes | Atom
V (¢, 1) T 0 nil nil 1

5.3 Updating The Table Entries During Resolution

When we resolve the (regular representation of) query, 7, against the clause C™ =

!

Bo :EXP([Dg, f(Vy,...,V.)]) — By :EXP([D}, V)& ...&B, :EXP([D.,V,])

on the atom A; : COMP([D;, V;]) via mgu 6, two things may happen: (1) some new entries from the
body of C* may need to be added to QUERY and to the table and (2) the (substitution,truth value)
pairs associated with the atom A; : COMP([D;, V;]) in the table may change. The table needs to be

updated to incorporate these changes. These updates are handled as follows:
e Foreach 1 < r < n, we create a new entry, £(r), in the table associated with B,8 : COMP([D., V.]).

Two cases may arise, depending upon whether B, 8 : COIVIP([D;7 VT/]) is subsumed® by an amalga-
mated atom associated with an existing entry in the table.

— Case 1: If it is not so subsumed, then the fields of F(r) are set as specified in the Table
Creation part above, except that the Reference field points to the table entry for atom
A; : COMP([D;, V;]). The amalgamated atom B, : [D., V] is added to QUERY.

vy

— Case 2: (Subsumption Check and Cache Usage) B,0 : COMP([D.,V,]) is subsumed

by an amalgamated atom, A% associated with an existing entry E(A") in the table. Let v
be a substitution such that A*y = B,6. Then the Known field of E(r) is set to (7,nil).
(This pair will be kept to reflect the relationship between already computed pairs in the
Known field of E(A!) and E(r).) Furthermore, B,6 : [D,,V,] is not added to the QUERY,

o Vr

instead it is appended to GARBAGE. A pointer to F(r) is added to the list pointed to by

8A;: COMP([D1, V1]) subsumes A : COMP([D2, V2]) iff V4, V5 are annotation variables and there is a substitution + such
that A1’}/ = A2 and D1 g D2.

22

E(A").Subsumes. For all the pairs (3,u) in E(A*).Known the following is added to
E(r).Known: (1) if 3’ is less general than v, then add (8, u), (2) if 7 is less general than
A, then add (v, 4). Here ' is obtained from 3 by throwing away all pairs X = Y such that
~ does not contain any substitution for X or Y. The procedure Copy_Subsumed_Known
which will be given later, is used for copying Known field to subsumed entries as explained
above. The other fields are set in the same way as specified in the Create_New_Entry
algorithm described earlier.

e An additional entry, E(n 4+ 1), is added after the entry for B,0 : COMP([D., V,]) If f(V|,..., V)

is a ground term, then it is evaluated and its value is stored in the Desired field of F(n + 1),
the Status field is set to 1. If f(V],...,V,,) is a non-ground annotation term then the address

of the code implementing f is stored in the Index field and the Status is set to 0. The pair
(6,nil) is stored in the Known field. The Reference and Subsumes fields are set to NIL.

¢ The propagation of (substitution,truth value) pairs is described below.
Example 10 Consider the first step in Example 6. We resolved the query with the clause:
can lift: [{2}, 1 t] — weight(X, W) : [{2}, 1 t] & W < 50.

via mgu {X = b}. At this step, the initial table given in example 9 is modified to:

Index | Known Desired | Status | Reference | Subsumes | Atom

V (¢, 1) T 0 nil nil 1

Vi (¢, 1) t 1 Entry 1 nil 2

Va (¢, 1) t 1 Entry 1 nil 3

{X =b}nil) | t 1 nil nil nil

The atoms in QUERY are the following: (canift(rl,b) : [{1,2,3},V]- Entry 1), (weight(b, W) :
[{2}, V4] - Entry 2), (leq(W,50): V2 — Entry 3). O
5.3.1 Substitution and Truth Value Propagation.

Recall that the entries in the MULTI_OLDT table store information concerning the amalgamated atoms
in a query. The Known field of a given entry stores pairs of the form (6,), which means that if
A : [D,V] is pointing to this entry, then A@ : [D,u] is a logical consequence of the program. As-
sume that the (regular representation of) query A : COMP : [D,V] < is resolved with the clause
A EXP([D, f(V1,....Vin)]) <« By @ EXP([D1,V4]) &... &B,, : EXP([D,,,V,,]) and assume that
the Known fields of the table entries corresponding to the atoms By,..., B, contain the pairs
(61, 11), - -y (O, i) Tespectively. From this information we can conclude that A8 : [D, f(p1, ..., tm)]
is a logical consequence of the program where @ is any substitution such that it is less general than
1,...,0,. In this paper, we will consider a substitution to be a set of equations in solved-form (cf.
Martelli and Montanari [25]).

Definition 13 Let #; and 63 be two substitutions. ¢ is said to be the most general common denom-

inator (MGCD) of #; and 6, iff

1. o is less general than both #; and é,, i.e. there exists substitutions 0" and 6" such that o =

6,0 = 0,6".

23

2. For any substitution ¢’ that satisfies (1), ¢ is less general than ¢. (It may be the case that o
is less general than o' as well, in that case o belongs to the same equivalence class as ¢ under
the equivalence relation ~ defined as: o1 ~ o iff ¢ is less general than o5 and o5 is less general
than oy.)

Note that if there is a refutation for (— A : [D, u])6, then there is a refutation for (— A : [D, u])6’
for all ' less general than #. The substitutions #; and 6y are said to be compatible iff there exist
substitutions " and 6" such that 6;6" = 6,6" . Any two compatible substitutions are guaranteed to
possess an MGCD and this MGCD is unique upto equivalence.

Proposition 2 Suppose there are refutations for the regular representations, A;6y : COMP([D1, j11]) —
and Ay, : COMP([Dg, pi2]) < where 6, and 6, are compatible. Then there exists a refutation for the
regular representation Ay : COMP([Dy, 11]) V Ago : COMP([Dz, p2]) < where o is an MGCD of 6; and
65.

Proof. Since there is an S-refutation for both A;6; : COMP([D1, p11]) < and A8y : COMP([Dg, p2]) <, it
follows, by the Soundness of S-resolution, that both V(A16y : EXP([D1, it1])) and V(A8, : EXP([Dg, p2]))
are logical consequences of the given program P. As o is less general than both 6, and 65, it follows that
V(Ajo : EXP([D1, p11])) and V(Ao : EXP([Dg, po])) are logical consequences of P as well. By the com-
pleteness theorem for S-resolution, there is an S-refutation for the query Y(Ayo : EXP([Dy, p1]) & Azo :

EXP([Dz, p12]))- O

This result can be extended to queries of arbitrary length. Also note that if we have refutations for
A6y : COMP([D, p1]) < and A6y : COMP([D, uz]) <, and #; and 6, are compatible, then there exists a
refutation for Ao : COMP([D, 1 U pz]) — where o is an MGCD of #; and 6.

Example 11 Let the truth value lattice be FOUR and assume we have the following program clause
c*:
p(X,Y) :EXP([D, V1N V3]) — q(X,Y) : EXP([D, V1]) & r(X,Y) : EXP([D, V3])

Suppose there exist refutations for ¢(X,Y)6y : COMP([D,t]) < and r(X,Y)#; : COMP([D, f]) —, where
6 = {X/a} and 8, = {Y/f(Z)}. 0 ={X/a,Y/f(Z)} is the MGCD of 6; and 6;, and from this we
can conclude that there is a refutation for p(X,Y)o : COMP([D,t M {]) —. 0

5.3.2 Collecting Truth Values and Substitutions For Refutations

When an S-resolution step is performed and the corresponding maximization problem is solved, the
(new) maximal value p of an annotation variable V' is calculated for the mgu 6 of the resolution.
Hence, (0,) is added to the Known list associated with V. V' in turn may appear as a constraint in
other maximization problems. For example, assume that F is the table entry storing the variable V.
If F.Reference is not nil, then the atom pointing to F must be in the body of a clause C' and C' was
resolved with the query on atom Q4. (@) 4 is pointing to the table entry pointed to by £.Reference.)
Then (6, 1) combined with (substitution, truth value) pairs corresponding to other atoms in the body
of C' may result in new refutations for ¢) 4. New refutations must be propagated to ()4 and to all
atoms subsumed by ¢ 4. The table updating process can be summarized in three steps:

1. Combining Refutations. (substitution,truth value) pairs corresponding to atoms that occur
in the body of the same clause are merged and their their common MGCDs are found.

24

2. Updating The Known Field. Given a list of new (substitution,truth value) pairs, we have
to update the Known field of the appropriate entry so that the new pairs are incorporated into
the Known list, and redundant (i.e. subsumed) pairs are eliminated.

3. Propagating The Updates. Steps 1 and 2 must be repeated to reflect the effects of the
updates on all the atoms. This may be the result of iteration on the Reference field or the
Subsumes field.

Combining Refutations. Recall that entries corresponding to atoms in the body of the same clause
(' are stored consecutively in the table. We will start from the first entry in the table associated with
an atom in €' and merge Known lists of all the atoms in . Let us illustrate how this will be done
by an example:

Example 12 Let the query atom Q4 = A : COMP([D, V]) be resolved with the clause Ay : EXP([Dq,11]) <
Ay EXP([D3, T3]) & As : EXP([Ds,T5]) via mgu 6. The atoms in the body of the clause are added
to QUERY. Assume, after several resolution steps, that the Known lists associated with atoms
Ay @ COMP([Dg,T3]) and As : COMP([Ds,7T5]) contain the pairs (63, u2) and (fs,pu3) and ¢ be the
MGCD of 8, and 65. Then we may conclude the following for ()4 depending on the nature of 77,75
and Ts.

e Case 1: 15,715 are variables:

— Case 1.1: Ty and T35 are different variables: Then, T} must be a function of T5 and T3,
i.e. Ty = f(1%,7T5) for some annotation function f. Then, Afo : COM P([D, f(pz, u3)]) —
has a refutation. The pair (o, f(puz2, ps)) must be added to the Known list of the table
entry corresponding to) 4. The variable S_LIST in procedure Merge_Substitutions below
will contain the pair (o, (j2, 3)) at the end of the big while loop and it will contain the
pair (8o, f(pz2, p3)) when procedure terminates.

— Case 1.2: Ty and T3 are identical. Then, T} must also be identical to T5 and 7T3. Then,
we must add the pair (8o, o M ps) to the Known list of @ 4.

e Case 2: T, is ground and 75 is a variable: Then, 77 must be identical to T5. If evaluate(73) < po
then we must add the pair (fo, u3) to the Known list of @) 4. The case when T35 is ground and
T5 is a variable is similar to this case.

e Case 3: 15,15 are both ground: In this case 77 must also be ground. If evaluate(7}) < p; is
true for ¢ = 2,3, then we must add the pair (6o, evaluate(7)) to the Known list of Q 4. a

Below, we generalize this idea to clauses of arbitrary length. The variable S_LIST used in the procedure
is a list of (substitution, truth value list) pairs. The second list is a list of truth values of all the distinct
variables appearing in the clause. When a new variable is encountered during the merging process, its
value is appended to the end of the truth value list.

function Merge_Substitutions (PTR : pointer to table) : list of (substitution,truth value)
begin
S_LIST «— (¢,())
Previous_Index < nil \x used to take glb of truth values corr. to same var. in different atoms *\
Ref_Entry < PTR.Reference * used to find the last entry with the same Reference field *\

25

while PTR.Reference = Ref_Entry do
S_LIST 2 «— NIL
for all the elements (6", ') in PTR.Known do
for all the elements (8, (g1 ..., p;)) in S_LIST do
if there exists MGCD o of 8 and ¢’ then
if PTR.Status = 1 and (PTR.Desired < ,u/) then
add (o, (pt1 ..., pi)) to SLLIST 2 \+ Case 2 in Example 12 #\
else if PTR.Status = 0 then
if Previous_Index = PTR.Index then
add (o, (i1« .. i1, gt M p')) to SLLIST 2 * Case 1.2 in Example 12 *\
else
add (o, {py ..., iy pt)) to S_.LIST 2 * Case 1.1 in Example 12 %\
end if * there exists an MGCD of 8; and 6, *\
Previous_Index «+— PTR.Index
PTR < next(PTR)
S_LIST « S_LIST_2
end while * All the entries with the same Reference field x\
* Now PTR is pointing to the additional entry that stores the substitution of resolution *\
Let PTR.Known be (v, nil)
for all the elements (8, (g1 ...p;)) in S_LIST do
if PTR.Status = 0 then * call the addressed annotation function #\
add (76, call(#(PTR.Index),(f1 ...1;))) to the output list
else if PTR.Status = 1 then * j must be 0 *\
add (v0,PTR.Desired) to the output list \x Case 3 in Example 12 «*\
else* j must be 1 *\
add (70, p1) to the output list
end for
Return the output list
end

As the reader may have already noticed, this algorithm constantly recomputes the combination of
already existing pairs every time new pairs are added to the Known field of a table entry. This
drawback can easily be remedied by storing the computed (substitution,truth value) pairs in the
Known field of the additional entry created for all the clauses involved in the resolution. Then, when
new pairs are added to the Known field of an entry in the table, the merging procedure takes only the
substitutions that are compatible with the new substitutions from Known fields of the table entries
to be merged. (Recall that these entries correspond to atoms that occur in the body of the same
clause.) Once all the new pairs are computed, they are merged with the pairs stored as explained
above by throwing away the subsumed pairs from each list. This enables us to prune the search space
considerably and prevent us from performing the same computations over and over again. Similarly,
the propagation procedure will only use the newly computed pairs instead of the whole list of pairs.

Example 13 Consider the second step of Example 6. The table given in example 10 will be updated
so that the Known fields of second and third entries both contain the pair ({W = 19},t). If we merge
these pairs, we get the pair ({W = 19},()) at the end of the big while loop. (recall that the truth
values stored in these entries correspond to ground terms, so we don’t include them in the truth value

26

list of the pairs in S_LIST.) Since, the Status field of the additional entry (Entry 4) is 1, we return
the pair ({W = 19},t) at the end of the merging procedure. a

Propagating The Updates. This phase has several different functions. Recall that we had resolved
a clause C' with the query on an atom (this atom points to the table entry PTR). First, we may need
to add new atoms to QUERY (or to GARBAGE) if the body of C'is not empty. The procedure Store_Atoms
is used for this purpose and it calls a function named Check_Loop for all the atoms to check if any
of the atoms causes a positive loop in the query. If this is the case, all the changes corresponding to
the last resolution step are deleted and the table is restored. If ' is a fact, then we have obtained
a new (substitution,truth value) pair for the entry PTR. Then, the procedure Update_Table updates
the Known field of PTR by inserting this pair and reflects the changes in PTR.Known to the table
entry PTR.Reference by merging the Known fields as explained in example 12 and calling the
procedure Update_Known repeatedly until no new pairs can be found. This process is expanded to
the entries that are subsumed by an entry that has been updated. If PTR.Known has been updated,
then new Known fields are calculated for all the entries subsumed by PTR by calling the procedure
Copy_Subsumed _Known.

procedure Update_Table (PTR : pointer to a table entry
(' : Clause the query atom is resolved with
6 : unifying substitution)

* PTR is the table entry corresponding to the query atom that has been resolved x\
begin
if body of €' is not empty then
Store_Atoms (PTR,C,8)
* Store the atoms in the body C' to QUERY and create corr. table entries #\
else
Let C' be A :EXP([D,T]) < * T must be ground *\
Update_Known ((6, evaluate(T),PTR) * New refutation found, insert into Known s\
Update_LIST <« PTR + PTR.Subsumes
* Update list is a list of pointers pointing to table entries that have been updated x\
* These updates must be propagated x\
while Update_LIST <> nil do
PTR «— Update_ LIST.PTR * set PTR to the first pointer in the list =\
Update_LIST < next(Update_LIST) \# Discard the first element in the list *\
while PTR.Reference <> nil do
while PTR.Reference = previous(PTR). Reference do
PTR < previous(PTR)
* find the first table entry with same Reference field as PTR)\
S_LIST < Merge_Substitutions (PTR)
if S_.LIST = nil then
Update_LIST < next(Update_LIST)
PTR < Update_ LIST.PTR
else
PTR < PTR.Reference
Update_Known (S_LIST,PTR)

if no new pairs are inserted to PTR.Known then

27

Update_LIST < next(Update_LIST)
else

Update_LIST <« Update_LIST + PTR.Subsumes

Subsumes_LIST < PTR.Subsumes

while Subsumes_LIST <> nil then
Subsumes_PTR <« Subsumes_LIST.PTR
Copy-Subsumed_Known (PTR.Known, S_PTR.Known)
Subsumes_LIST «— next(Subsumes_LIST)

endwhile * Copy the Known list to subsumed entries *\

endwhile \x+ PTR.Reference is nil, move to next element in Update_LIST *\
endwhile \+ Update_LIST is empty, all updates are propagated «*\
end

procedure Copy_Subsumed _Known (K1,K2:Known lists)
* Atom with Known list K1 subsumes the atom with Known list K2 *\
begin
Let (v, L) be the first pair in K2
for all pairs (8,) in K1 do
throw away all pairs X =Y from 6
such that there is no pair X = X or Y =Y in 7 for some X or Y’
and obtain 6’

if 6" is less general than v then

Create a primary node PTR for Known list® for (8, u)
INSERT (K2,PTR) * The procedure is given later in the paper s\
else if v is less general than 6’ then
Create a primary node PTR for (e, u)
INSERT (K2,PTR)
Insert a primary pointer for (v, L) to the beginning of K2
end

The following example illustrates the working of the Copy_Subsumed_Known routine.

Example 14 Assume the atom Q4, = p(X,Y) : COMP([{1,2}, V4]) is part of a query Q' and after
several steps of resolution we encounter the subquery Q4, = p(X, f(X)) : COMP([{1,2,3},V2]). Qua,
subsumes @) 4, since p(X,Y)y = p(X, f(X)) for v ={Y = f(X)} and {1,2} C{1,2,3}.

Suppose the following pairs are stored in the Known list of the entry associated with () 4,:
(({X = Y}vt)v ({X = b}vf)v ({Y = b}vt)v ({X = f(Y)}vf)v ({Y = f(a)}v T))
Then we copy the following pairs to the Known list of the entry associated with) 4,:
(- ({X=b}1),-.— -~ ({X=4a},T))
The — above denotes a “don’t care” symbol. a

procedure Store_Atoms (PTR : pointer to a table entry
(' : Clause the query atom is resolved with
6 : unifying substitution)

28

* PTR is the table entry corresponding to the query atom that has been resolved x\
Subsuming_Fntries < nil \x list of table entries that subsume a new atom *\
LOOP_FLAG < false * set if a positive loop is detected *\

Last_Table_Entry <+ pointer to the last entry in the table
Last_Query_Atom < pointer to the last node in QUERY
Last_Garbage_Atom <« pointer to the last node in GARBAGE
for all atoms A in the body of ' do
Create an entry NEW_PTR in the table
NEW _PTR.Reference — PTR
for all atoms B in QUERY that subsume A4 do
Let PTR1 point to the table entry corresponding to B
Subsuming_Entries «— Subsuming_Entries + PTR1
add a pointer to PTR1.Subsumes pointing to NEW_PTR
LOOP_FLAG « Checkloop (NEW_PTR,Subsuming_Entries)
if LOOP_FLAG then
Remove all the entries corresponding to €' from the table using Last_Table_Entry
Delete the Subsumes entries pointing to an atom in C using Subsuming_Entries
Remove all atoms added to QUERY and GARBAGE from C
using Last_Query_Atom and Last_Garbage_Atom

HALT
else
add (A -~ NEW_PTR) to GARBAGE
else
add (A - NEW_PTR) to QUERY
endfor

create the last entry as explained in Section 5.3
end

The following procedure checks for positive loops. It uses the list of entries that subsume the new
entry which was constructed in procedure Store_Atoms. We are inserting the atom A associated
with the table entry PTR. We detect a positive loop if any of the entries reachable from PTR following
the Reference pointers corresponds to an atom that subsumes A or is subsumed by A.

procedure Check_loop (PTR:Subsumed Entry,
Subsuming_Entries: List of Subsuming Entries)

* PTR is a pointer to a table entry associated with an atom.
Subsuming_Entries is a list of pointers to table entries

associated with atoms that subsume the atom associated with PTR

the function head returns the first pointer to a table entry in the list *\
@4 — PTR.Atom

PTR <~ PTR.Reference

while PTR <> nil do

29

TEMP _Subsuming < Subsuming_Entries
while TEMP Subsuming <> nil do
if PTR = head(TEMP Subsuming) then
HALT, return true
TEMP Subsuming < next(TEMP _Subsuming)
endwhile
if PTR.Atom subsumes () 4 then
HALT, return true
PTR < PTR.Reference
endwhile
return false \x if the procedure reaches this point without terminating
then, it means that no positive loop is detected «\
end

The following example shows how the loop checking procedure works.

Example 15 Suppose program P consist of the single clause C*:

p(X) : EXP([{s}, t]) — p(X) : EXP([{s}, t])

and we ask the query Q*:
p(X) : COMP([{s},t]) —

We create a table entry F; for the query atom, and set Fj.Known to (L,nil). We then resolve Q*
with C*. We create an entry Fs in the table for the new atom, and set F9.Reference to F;. Before
we insert the new atom A,., = p(X) : COMP([{s}, t]), we check if it is subsumed by an atom in the
query. Since the single atom in @* subsumes A,.,,, we decide not to insert it. Instead, we create
a pointer pointing to Fy and insert it into the Fj.Subsumes list. The list Subsuming_Entries is
set to Fq. Then, we check for positive loops by calling Check_loop. Check_loop traverses all the
entries reachable from Fs by following the the Reference pointers and checks if any of them is in the
Subsuming_Entries list. Since Fy.Reference is equal to Fy and Fy is in the Subsuming_Entries list,
we detect a positive loop. Hence, we delete Fy and all the entries pointing to Ey(i.e. the pointer in
F1.Subsumes pointing to Fs).

Suppose the following fact (5 had also been in the program:

pla) : EXP([{s}, t]) —

Then, we resolve Q* with C3 to obtain the (substitution,truth value) pair ({X = a},t) and insert it
into 1. Known. O

Updating The Known Field. Upto now, we treated the Known field as if it were a simple linked
list. As explained in the preceding sections, after a resolution step, we may find new (substitution,truth
value) pairs (6,) for an atom A : [D, V] which means that A8 : [D, u] is a logical consequence of the
program. We then need to update the Known field of the table entry corresponding to this atom.
The procedure Update_Known is invoked by the list of new (substitution,truth value) pairs to be
inserted and a pointer to the table entry we’re updating. For all pairs in the list, it checks to see

30

if they are subsumed by an existing pair in the Known structure, or if they subsume any existing
entries. In other words, the procedure checks if any of the cases described below occurs and performs
the appropriate actions. Before we give the description of the procedure Update_Known, we will
develop data structures to maintain the Known field efficiently together with explanations of the
cases that may arise during the execution of the procedure.

5.3.3 Managing (Substitution-Truth Value) Pairs and Updating The Known Field

We introduce a data structure to maintain the Known field of the table. The main objective is to be
able to update the Known field efficiently, given a doubly linked list of nodes that contains information
regarding the new (substitution,truth value) pairs to be inserted into the structure. We want to avoid
making unnecessary calls to the MGCD function as well as to reduce the number of variant checks.
The data structure therefore will be a linked list where each node (we will refer to these nodes as
being primary nodes) stores information about (substitution,truth value) pair, the node’s location
and it has a field that points to a secondary linked list with a different structure. (we will refer to the
nodes in the secondary list as secondary nodes.) This secondary list enables a primary node storing a
substitution value # to access all primary nodes storing substitution values less general than 6.

Primary Node Structure. A primary node is a record containing the following information:
1. Pointers:

(a) Next: The next entry in the primary list.
(b) Prev: The previous entry in the primary list.

(¢) LG: This field is a pointer to a secondary linked list whose structure is given below and
its entries point to primary nodes that store substitution values less general than the Subs

field (defined below).
2. Info: The information is stored in the following fields:

(a) Subs: The substitution stored in the node.
(b) TV: The truth value associated with this substitution.

(¢) Top: Number of secondary nodes in the structure that point directly to the primary node.
3. Status Bits:

(a) Updated: Set if the TV field is changed during a pass of the procedure UPDATE_ALL.
(b) Deleted: Set if the node is deleted (a node is not deleted physically if Top is not 0).
(c) Scanned: Toggled if the node is accessed during updates.

Secondary Node Structure. Secondary lists are pointed to by the LG field of nodes in the primary
list and it has the following structure:

1. Next_LG: Pointer to the next entry in the secondary list.

2. Prim_LG: Pointer to a primary node storing a Subs value less general than the Subs value of
the current primary node.

31

Assume Ny, Ny are primary nodes in the data structure containing (substitution,truth value) pairs
(61, 11) and (82, ug) respectively and 6 is less general than #;. Then, the following is true initially
(i.e. when the data structure does not contain any nodes) and it will be maintained as an invariant
by all operations that will be defined on the data structure.

1.

Ny is reachable from Nj. (A primary node A is reachable from another primary node B iff the
LG list of B contains a secondary node with the Prim_LG field pointing to A, or a secondary
node in the LG list of B points to C' and A is reachable from C'.)

- < g,

Ny occurs to the right of Ny in the primary linked list.

5.3.4 Operations on the Data Structure

Assume we are inserting the (substitution,truth value) pair (6,) into the data structure and the
structure already contains a node storing the pair (0/,,u/). Depending on the values of (8,) and
(0/,,u/), we may need to make changes in the primary and secondary lists. The operations we will use
to make these changes are as follows:

e Case 1: If 6 is less general than # and ' < p, then the new (substitution,truth value) pair

subsumes the existing node. In that case, we must delete the existing node. Note, that we
cannot delete the node physically if there are secondary nodes pointing to it (corresponding to
the case where Top is non-zero. In this case, we just mark it deleted).

procedure DELETE(PTR:primary node)

Set PTR.Deleted to 1
if PTR.Top # 0 then HALT
else
LGPTR <~ PTR.LG
while LGPTR # nil do
Pl — LGPTR.Prim_LG
Decrease P1.Top by one
if P1 was marked Deleted then
DELETE(P1)
LGPTR — LGPTR.Next_LG
FREE (PTR.LG) \# return the secondary list associated with PTR to available storage *\
Set (PTR.Prev).Next to PTR.Next
Set (PTR.Next).Prev to PTR.Prev
FREE (PTR)

end

Case 2: If 6 is less general than 6 and p £ /', then we have to update the truth value
associated with 8 to u U u'. We know that any (substitution, truth value) pair (8", ") stored
in the structure such that 8" is less general than 6 will be less general than 6, then we have to
update all such pairs as described above and we should delete any pairs that are subsumed by
a primary node.

32

procedure UPDATE_ALL(PTR:primary node,u:truth value)

LGPTR — PTR.LG
while LGPTR # nil do
P1 —« LGPTR.Prim_LG
if P1 was marked Deleted or P1.TV < p then
Remove the secondary node pointed to by LGPTR from PTR.LG
LGPTR2 — P1.LG
while LGPTR2 # nil do
ADD_SECONDARY_PTR (PTR,LGPTR2.Prim LG)
LGPTR2 «— LGPTR2.Next_LG
Decrease P1.Top by 1
if P1.Top = 0 then
DELETE(P1)
else
Set P1.TV to PLL.TV U pu
Set P1.Updated to 1
UPDATE_ALL (P1,P1.TV)
LGPTR <~ LGPTR.Next_LG

end

Case 3: If 6 is less general than 8 and p < ,u/, then using the same argument in Case 2, all
the primary nodes storing substitution values less general than 9" have to be updated. Since we
know that these nodes will have a corresponding truth value greater than p by invariant 2 given
in section 5.3.3, the update will have no effect on their TV field. For this reason, we just mark

them all Updated.

Note that during a pass of the algorithm, we may find a primary node with Subs value more
general than 6 and TV field incomparable with p. Then, we have to change p by taking lub
with this value. This means that, some of the nodes that were not effected by p may be effected
by its new value. To reflect these changes, once the primary list is totally scanned, the TV field
of all the nodes that were updated will be changed by taking lub with the last value of p.

procedure MARK_ALL(PTR:primary node)

Set PTR.Updated to 1
LGPTR <« PTR.LG
while LGPTR # nil do
P1 —« LGPTR.Prim_LG
if P1 was marked Deleted then
Remove the secondary node pointed to by LGPTR from PTR.LG
LGPTR2 — P1.LG
while LGPTR2 # nil do
ADD_SECONDARY_PTR (PTR,LGPTR2.Prim LG)
LGPTR2 «— LGPTR2.Next_LG
Decrease P1.Top by 1

33

if P1.Top = 0 then
DELETE(P1)
MARK_ALL(LGPTR.Prim_LG)
LGPTR <« LGPTR.Next_ LG

end

o Case 4: After we update the table using the operations described above, we may still need to
insert the pair (6, 1) since it is not subsumed by any pair in the structure. We may also need to
insert a new pair (o, p U ,u/) where o is the MCGD of 6 and ', in the case when neither 6 nor 6’
are less general than each other and p £ ,u/. Then we can only conclude (o, p U ,u/) from these
two pairs.

To insert a primary node PTR, we have to make sure that PTR is reachable from all the primary
nodes with Subs field more general than PTR.Subs. Similarly, all the nodes storing Subs values
less general than PTR.Subs must be reachable from PTR. To achieve that, we check all the
primary nodes in the list and adjust the secondary lists as described below. We make use of the
variable LAST_PTR which shows the rightmost primary pointer PTR1 such that PTRI1 is more
general than PTR.Subs.

procedure INSERT (Known,PTR:primary node)

Set LAST_PTR,PTR1 to Known
while PTR1 # nil do
if PTR1 is not Scanned then
if PTR.Subs is less general than PTR1.Subs then
if PTR.TV < PTR1.TV th en
if PTR.Top = 0 then
HALT \+# PTRI subsumes PTR, do not insert PTR *\
else * PTR.Top # 0 x*\
Set PTR.Deleted to 1
Insert PTR to the primary list after LAST_PTR
HALT
else \x PTR.TV £ PTRL.TV x\
ADD_SECONDARY_PTR (PTR1,PTR)
Set LAST_PTR to PTR1
else if PTR1.Subs is less general than PTR.Su bs then
if PTR1.TV < PTR.TV then
DELETE(PTRI)
else
ADD_SECONDARY_PTR (PTR,PTR1)
MARK_ALL(PTRI)
end if * PTRI is not Scanned #\
PTR1 «— PTRI1.Next
end while
Insert PTR in the primary linked list right after LAST_PTR
if LAST_PTR = Known then

34

Set Known to PTR
end

o The following procedure is called when PTR2.TV is less general than PTR1.TV, where PTR1
and PTR2 are primary nodes. It creates a secondary pointer that points to PTR2 and inserts it
into PTR1.LG. Since this operation results in an additional secondary node pointing to PTR2,
PTR2.Top field is increased by 1.

procedure ADD_SECONDARY _PTR (PTR1,PTR2: Primary nodes)

* PTR2.TV is less general than PTR2. TV «\
Create secondary pointer LGTEMP
Set LGTEMP.Prim LG to PTR2
Insert LGTEMP into PTR1.LG
Increase PTR2.Top by 1 end

Example 16 Let 7=FOUR and the query @™ be given as follows: p(X,Y): [{s},7 \ V] — . Let the
Known field of the table entry corresponding to this atom contain the following (substitution,truth
value) pair:

1. Subs={X = a}, TV=t, Top=0, LG= nil
Next we insert the pair ({X = Z,Y = f(Z)},f). The list becomes:
1. Subs={X = a}, TV=t, Top=0, LG= 2, 3
2. Subs={X =Z7Y = f(Z)}, TV={, Top=1, LG=nil
3. Subs={X =4a,Y = f(a)}, TV=T,Top=1, LG= nil
Next, we insert ({X = Z,Y = f(a)},t). The Known field changes to:
1. Subs={X = a}, TV=t, Top=0, LG= 2, 4
2. Subs={X =7Y = f(Z)}, TV=f, Top=1, LG= 3
3. Subs={X =Z7.Y = f(a)}, TV=t, Top=1, LG=nil
4. Subs={X =q,Y = f(a)}, TV=T,Top=1, LG=n il, Deleted
Finally, we insert ({X =a,Y = f(Z)}, T). The final structure is:
1. Subs={X = a}, TV=t, Top=0, LG= 2
2. Subs={X =7Y = f(Z)}, TV={, Top=1, LG= 3, 4
3. Subs={X =Z7.Y = f(a)}, TV=t, Top=1, LG=nil

4. Subs={X =¢,Y = f(Z)}, TV=T, Top=1, LG= nil

35

a

The following procedure updates the Known list of an atom after an S-resolution step has been
performed.

procedure Update_Known (S_LIST : a list of (substitution,truth value) pairs,
PTR: pointer to the annotation table)

for all (#,p)in S_LIST do
restrict @ to the variables appearing in PTR.Atom.
Set CHANGED to false \x+ CHANGED is a boolean variable, it shows if p is changed *\
LAST_PTR,KPTR <« PTR.Known
* LAST_PTR is as described above,
KPTR is a temporary pointer used for iterating on PTR.Known *\
Create a primary node KNEW for (6, u1)
for all (8", ') in KPTR that is not marked Scanned do
Initialize KPTR.Updated to 0
Toggle KPTR.Scanned
if 3 MGCD o of 6 and 6 then
if o is a variant of 6 then * 6 is less general than 6 x\
if p< ,u/ then \x Case 2 of section 5.3.4 «\
MARK_ALL(KPTR)
ADD_SECONDARY_PTR (KNEW ,KPTR)
else if p' < yu then
DELETE (KPTR) \# Case 1,2 *\
UPDATE_ALL (KPTR.u)
else \ * g, are incomparable %\
Set KPTR.TV to KPTR. TV U p
Set KPTR.Updated to 1
UPDATE_ALL (KPTR,KPTR.TV) * Case 2 «*\
ADD_SECONDARY_PTR (KNEW ,KPTR)
else if o is a variant of @ then * 6 is less general than 6’ *\
if o < ' then
Insert KNEW after LAST_PTR
DELETE(KNEW) \x the new pair is subsumed by some entry in the structure *\
EXIT inner for loop
else \ o p o x\
ADD_SECONDARY_PTR (KPTR,KNEW)
LAST_PTR — KPTR
Set KNEW.TV to KNEW.TV U/
Set CHANGED to true, p to KNEW. TV
else \ # 0,6 are incomparable *\
Create a primary node KNEW_MGCD for (o, U ,u/)
* Recall that o is MGCD of 8 and 8" *\
Set KNEW_MGCD.Updated to 1

36

Check if ¢ is already in the primary list by traversing down the LG list of KPTR
If so, set its TV field by taking lub with p U &
If ¢ is not in the list
Put KNEW_MGCD right after KNEW \x it will be inserted later)\
end of inner loop
if CHANGED then \# g has changed, modify all the entries marked Updated by taking lub x\
KPTR <« PTR.Known
while KPTR # nil do
if KPTR is not marked Scanned then
Set KPTR.TV to KPTR. TV Upu
KPTR «— KPTR.Next
for all KNEW_MGCD coming after KNEW do * insert all the new pairs generated by MGCDs #\
INSERT (Known KNEW_MGCD)
Insert KNEW just after LAST_PTR

end

The following example shows how the Known list is updated once an S-resolution step is performed.

Example 17 Consider example 6. We specify below, the information stored in the table, the QUERY
and the GARBAGE lists immediately before the last step of example 6 is completed. QUERY = (can_lift(r1,b):

[{1,2,3},V]- Entry 1), (weight(b, W) : [{2}, V1] - Entry 2), (leq(W,50) : Vo~ Entry 3), (temp(b,T) :
({3}, V5] — Entry 5), (le(T,60): Vy— Entry 6), GARBAGE = (), the table:
Index | Known Desired | Status | Reference | Subsumes | Atom
V (e,t) T 0 nil nil 1
Vi (e, L),{W =19}t) | t 1 Entry 1 nil 2
Va (e, L),{W =19}t) | t 1 Entry 1 nil 3
({X = b},nil) t 1 nil nil nil
Vs (¢, 1) f 1 Entry 1 nil 4
Vi (¢, 1) t 1 Entry 1 nil 5
({X" = b},nil) t 1 nil nil nil
When step 4 is completed, QUERY and GARBAGE remain the same, but the table is updated to ob-
tain:
Index | Known Desired | Status | Reference | Subsumes | Atom
V (¢, T) T 0 nil nil 1
Vi (e, L),{W =19}t) | t 1 Entry 1 nil 2
Va (e, L),{W =19}t) | t 1 Entry 1 nil 3
({X = b},nil) t 1 nil nil nil
Vs (e, L),({T'=61},f) | f 1 Entry 1 nil 4
Vi (e, L),{T'=61},t) |t 1 Entry 1 nil 5
({X" = b},nil) t 1 nil nil nil

37

6 Related Work

A great deal of work has been done in multidatabase systems and interoperable database systems[39,
16, 36]. However, most of this work combines standard relational databases (no deductive capabilities).
Not much has been done on the development of a semantic foundation for such databases. The work
of Grant et. al. [16] is an exception: the authors develop a calculus and an algebra for integrating
information from multiple databases. This calculus extends the standard relational calculus. Further
work specialized to handle inter-operability of multidatabases is critically needed. However, our paper
addresses a different topic — that of integrating multiple deductive databases containing (possibly)
inconsistencies, uncertainty, non-monotonic negation, and possibly even temporal information. Zicari
et. al [39] describe how interoperability may be achieved between a rule-based system (deductive
DB) and an object-oriented database using special import/export primitives. No formal theory is
developed in [39]. Perhaps closer to our goal is that of Whang et. al. [36] who argue that Prolog
is a suitable framework for schema integration. In fact, the approach of Whang et. al. is in the
same spirit as that of metalogic programming discussed earlier. Whang et. al. do not give a formal
semantics for multi-databases containing inconsistency and/or uncertainty and/or non-monotonicity
and/or temporal information.

Baral et. al. [2, 3] have developed algorithms for combining different logic databases which generalizes
the update strategy by giving priorities to some updates (when appropriate) and as well as not giving
priorities to updates (which corresponds to combining two theories without any preferences). Com-
bining two theories corresponds, roughly, to finding maximally consistent subsets (also called flocks by
Fagin et. al. [13, 14]). As we have shown in [32], our framework can express maximal consistency as
well. [2, 3] do not develop a formal model-theoretic treatment of combining multiple knowledge bases,
whereas our method does provide such a model theory. [2, 3] are unable to handle non-monotonicity
(in terms of stable/well-founded semantics), nor uncertainty, nor time-stamped information — our
framework is able to do so.

Dubois, Lang and Prade [12], also suggest that formulas in knowledge bases can be annotated with,
for each source, a lower bound of a degree of certainty associated with that source. The spirit behind
their approach is similar to ours, though interest is restricted to the [0, 1] lattice, the stable and well-
founded semantics are not addressed, and amalgamation theorems are not studied. However, for the
[0,1] case, their framework is a bit richer than ours when nonmonotonic negations are absent.

In [15], Fitting generalizes results in [35, 4], to obtain a well-founded semantics for bilattice-based logic
programs. We have given a detailed comparison of our declarative framework with Fitting’s in [32].

Warren and his co-workers [10, 9] have studied OLDT-resolution for ordinary logic programs (both
with,and without nonmonotonic forms of negation). In this paper, we have dealt only with the
monotonic case, and have focused on (1) how truth value estimates of atoms can be monotonically
improved as computation proceeds and how this monotonic improvement corresponds to solving certain
kinds of incremental optimization problems over a lattice domain, (2) how OLDT tables must be
organized so as to efliciently support such computations. As OLDT-resolution is known to be closely
related to magic set computations, we will not discuss those separately.

38

7 Conclusions

Wiederhold has proposed mediators as a framework within which multiple databases may be inte-
grated. In the first of this series of papers [32], it has been shown that certain forms of annotated logic
provide a simple language within which mediators can be expressed. In particular, it was shown that
the semantics of “local” databases can be viewed as embeddings within the semantics of amalgamated
databases.

In [32], we did not develop an operational theory for query processing in amalgamated KBs. In
this paper, we have provided a framework for implementing such a query processing paradigm. This
framework supports:

e incremental, approximate query processing in the sense that truth value estimates for certain
atomic queries will increase as we continue processing the query. Thus if a user (or a machine)
wishes to interrupt the processing, then at least an approximate estimate will be obtained,based
on which a knowledge based system may take some actions.

o reuse of previous computations using the table data structure(s). In particular, we have speci-
fied access paradigms for updating answers, i.e. (substitution, truth-value) pairs as processing
continues.

In future work, we will extend the above paradigm to handle non-monotonic modes of negation. We
are also in the process of starting an implementation of the above paradigm.

Acknowledgements. We have benefited from conversations with Mike Kifer, Jim Lu and Terry
Swift.

References

[1] R. Agrawal, R. Cochrane and B. Lindsay. (1991) On Maintaining Priorities in a Production
Rule System, Proc. VLDB-91, pps 479-487.

[2] C. Baral, S. Kraus and J. Minker. (1991) Combining Multiple Knowledge Bases, IEEE Trans.
on Knowledge and Data Engineering, 3, 2, pps 200-220.

[3] C. Baral, S. Kraus, J. Minker and V.S. Subrahmanian. (1992) Combining Knowledge Bases
Consisting of First Order Theories, Computational Intelligence, 8, 1, pps 45-71.

[4] C. Baral and V.S. Subrahmanian. (19910 Dualities between Alternative Semantics for Logic
Programming and Nonmonotonic Reasoning, Proc. 1991 Intl. Workshop on Logic Programming

and Nonmonotonic Reasoning, MIT Press. Full version in: Journal of Automated Reasoning,
10, pps 339-420, 1993.

[5] F. Bancilhon, D. Maier, Y. Sagiv and J. Ullman. (1986) Magic Sets and Other Strange Ways to
Implement Logic Programs, Proc. bth Symp. on Principles of Database Systems, pps 1-15.

[6] C. Beeri and R. Ramakrishnan. (1987) On the Power of Magic, Proc. 6th Symp. on Principles
of Database Systems, pps 269-283.

[7] H. A. Blair and V.S. Subrahmanian. (1987) Paraconsistent Logic Programming, Theoretical
Computer Science, 68, pp 35-54. Preliminary version in: LNCS 287, Dec. 1987, Springer.

39

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Y. Breitbart, H. Garcia-Molina and A. Silberschatz. (1992) Querview of Multidatabase Transac-
tion Management, VLDB Journal, 2, pps 181-239.

W. Chen and D.S. Warren. (1992) A Goal-Oriented Approach to Computing Well-Founded Se-
mantics, Proc. 1992 Intl. Conf. on Logic Programming (ed. K.R. Apt), MIT Press.

S. Dietrich and D.S. Warren. (1986) Fztension Tables: Memo Relations in Logic Programming,
SUNY Stonybrook Tech. Report 86/18.

D. Dubois, J. Lang and H. Prade. (1991) Towards Possibilistic Logic Programming, Proc. 1991
Intl. Conf. on Logic Programming, ed. K. Furukawa, pps 581-595, MIT Press.

D. Dubois, J. Lang and H. Prade. (1992) Dealing with Multi-Source Information in Possibilistic
Logic, Proc. 10th European Conf. on Artificial Intelligence, Wiley.

R. Fagin, J.D. Ullman, and M.Y. Vardi. (1983) On the Semantics of Updates in Databases, Proc.
ACM SIGACT/SIGMOD Symposium on Principles of Database Systems, pps 352-365.

R. Fagin, G. Kuper, J. Ullman, and M. Vardi. (1986) Updating Logical Databases, In Advances
in Computing Research, volume 3, pages 1-18, 1986.

M. C. Fitting. (1991) Well-Founded Semantics, Generalized, Proc. 1991 Intl. Logic Programming
Symposium, pps 71-83, MIT Press.

J. Grant, W. Litwin, N. Roussopoulos and T. Sellis. (1991) An Algebra and Calculus for Rela-
tional Multidatabase Systems, Proc. First International Workshop on Interoperability in Multi-
database Systems, IEEE Computer Society Press (1991) 118-124.

Y. Ioannidis and T. Sellis. (1989) Conflict Resolution of Rules Assigning Values to Virtual
Attributes, Proc. ACM SIGMOD Symp. on Management of Data.

M. Kifer, G. Lausen and J. Wu. (1990) Logical Foundations of Object-Oriented and Frame-Based
Languages, Tech. Report 90/14, SUNY at Stonybrook.

M. Kifer and E. Lozinskii. (1989) RI: A Logic for Reasoning with Inconsistency, 4-th Symposium
on Logic in Computer Science, Asilomar, CA, pp. 253-262. Full version to appear in: Journal of
Automated Reasoning.

M. Kifer and V.S. Subrahmanian. (1989) Theory of Generalized Annotated Logic Programming
and its Applications, Journal of Logic Programming, 12, 4, pps 335-368, 1992. Preliminary
version in: Proc. 1989 North American Conf. on Logic Programming, MIT Press.

W. Kim and J. Seo. (1991) Classifying Schematic and Data Heterogeneity in Multidatabase
Systems, IEEE Computer, Dec. 1991.

R. Krishnamurthy, W. Litwin and W. Kent. (1991) Language Features for Interoperability of
Databases with Schematic Discrepancies, Proc. ACM SIGMOD 1991.

A. Lefebvre, P. Bernus and R. Topor. (1992) Querying Heterogeneous Databases: A Case Study,
draft manuscript.

40

[24] J. Lu, N. Murray and E. Rosenthal. (1993) Signed Formulas and Annotated Logics, draft
manuscript. Preliminary version in: Proceedings of the International Symposium on Multiple-
Valued Logic, IEEE Computer Society Press, 1993, 48-53.

[25] A. Martelli and U. Montanari. (1982) An Ffficient Unification Algorithm, ACM Trans. on Prog.
Lang. and Systems, 4, 2, pps 258-282.

[26] R. Ramakrishnan. (1991) Magic Templates: A Spellbinding Approach to Logic Programs, J. of
Logic Programming, 11, pps 189-216.

[27] H. Seki and H. Itoh. (1989) A Query Evaluation Method for Stratified Programs under the
Fuatended CWA, Proc. 5th Intl. Conf./Symp. on Logic Programming (eds. K. Bowen and R.
Kowalski), pps 195-211.

[28] H. Seki. (1989) On the Power of Alexander Templates, Proc. 8th ACM Symp. on Principles of
Database Systems, pps 150-159.

[29] A. Sheth and J. Larson. (1990) Federated Database Systems for Managing Distributed, Hetero-
geneous and Autonomous Databases, ACM Computing Surveys, 22, 3, pp 183-236.

[30] J. Shoenfield. (1967) Mathematical Logic, Addison Wesley.

[31] A. Silberschatz, M. Stonebraker and J. D. Ullman. (1991) Database Systems: Achievements and
Opportunities, Comm. of the ACM, 34, 10, pps 110-120.

[32] V.S. Subrahmanian. (1992) Amalgamating Knowledge Bases, Univ. of Maryland Tech. Report
CS-TR-2949, Aug. 1992. Submitted to ACM — TODS, August 1992, revised May 1993.

[33] V.S. Subrahmanian. (1992) Paraconsistent Disjunctive Deductive Databases, Theoretical Com-
puter Science, Vol. 93, pps 115-141.

[34] H. Tamaki and T. Sato. (1986) OLD Resolution with Tabulation, Proc. 3rd Intl. Conf. on Logic
Programming (ed. E. Shapiro), pps 84-98, Springer.

[35] A.van Gelder. (1989) The Alternating Fizpoint of Logic Programs with Negation, Proc. 8h ACM
Symp. on Principles of Database Systems, pps 1 — 10.

[36] W.K. Whang, S. B. Navathe and S. Chakravarthy. (1991) Logic-Based Approach for Realiz-
ing a Federated Information System, Proc. First International Workshop on Interoperability in
Multidatabase Systems, IEEE Computer Society Press (1991) 92-100.

[37] , G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with granularity of time in temporal
databases. In Proc. 3rd Nordic Conf. on Advanced Information Systems Engineering, Lecture
Notes in Computer Science, Vol. 498, (R. Anderson et al. eds.), Springer-Verlag, 1991, pages
124-140.

[38] G Wiederhold, S. Jajodia, and W. Litwin. Integrating temporal data in a heterogeneous envi-
ronment. In Temporal Databases. Benjamin/Cummings, Jan 1993.

[39] R. Zicari, S. Ceri, and L. Tanca. (1991) Interoperability between a Rule-Based Database Language
and an Object-Oriented Language, Proc. First International Workshop on Interoperability in
Multidatabase Systems, IEEE Computer Society Press (1991) 125-135.

41

Appendix A: Proofs of Results on S-Resolution

Proof of Theorem 1. Suppose C* and ¢J* are in set expansion form as specified in Definition 5 and
8. Let @ be the mgu of Ay and B;.

Suppose [S-satisfies C* and @} and (Q},,)o is a ground instance of (Q},,). Since Q;fc and C*0o
must be ground and I =5 Q3,1 =5 C* it must be the case that I |=° Q3fc and I |=° C*fa. We need
to show that I S-satisfies (Q},). Since I S-satisfies 700, it must S-satisfy one of the amalgamated
atoms B; : [qu,,uqS]]OU. There are two cases to consider:

o Case 1: (j # ¢) In this case, B; : [qu,,uqu]OU occurs in (Qf,)o and I S-satisfies this atom in
(Qf41)0, and therefore satisfies the resolvent.

o Case 2:(j = i) In this case, [must S-satisfy B; : [Dy,, jig, 100 in Q0. Since I S-satisfies C*fo,
there are two cases to consider:

— Case 2.1: [falsifies the body of C*f#c. Then, there must be at least one atom Ay :
EXP([Dy, pi])f0 that is not S-satisfied in I. Let pyr = Ugep, [(Afo)(d). Since pr & pg, it
must be the case that, uy € (7 \ pg). Then, Ay : COMP([Dy, pi])8o must be S-satisfied in I.
Since this atom occurs in (Q},)0, I satisfies (Q7_ ;).

— Case 2.2: [S-satisfies both the body and the head of the clause C"8o. Then, by the
definition of S-satisfaction there exists a truth value g’ €ft po such that I A- satisﬁes

Ag : [Do, 100, Then, since Dy C Dy, I must A-satisfy an annotation B; : [Dg,, 60
such that, x” > g/ > p. This implies that, u” €ft g and this annotation occurs in the
resolvent. Therefore, I S-satisfies the resolvent. a

The proof of the Completeness Theorem (Theorem 2) for S-resolution needs several intermediate
theorems that are stated below.

Theorem 5 (Ground Completeness of S-resolution) Suppose () is the ground query — A :
[D,u], P = A : [D,u], and that P possesses the fixpoint reachability property. Then, there is an
unrestricted S-refutation of (— ())* from P*.

(An unrestricted refutation does not require the unifier used at each deduction step to be the most
general unifier.)

Proof: As P satisfies the fixpoint reachability property, we know that Ag | k satisfies A : [D, y]
for some k < w. We proceed by induction on k.
Base case (k = 1) According to the definition of Ag), there exist ground instances

A [Dy,]
A Dy, pio]

-
-
A [meum] —

of a finite set of clauses

Al : [Dllvlull] —

42

A2 : [D/27:u/2] —

! !

Am : [Dmvlum] —
in P, m > 1, such that U{uy,...,ptm} > p and Ui<j<m Dj € D. Note that for all 1 <7 < m, there is

!

a substitution #;, such that 4,0, = A, [D;,,uZ»]H = [D;, ;). By the definition of regular representation,
P~ contains ground instances
A EXP([Dl,,ul])
A EXP([DQ,,MQ])

—
—

A EXP([Dpy pin]) <
of unit clauses
Ay tEXP([D, 1)) —
Ay tEXP([Dg, pp])
A 1EXP([D,,. p1,,])

—
and (— Q)" = A : COMP([D, p]) <. Since for all 1 < i < m, D; C D, (<« Q)" resolves with all
A; tEXP([D;, p;]). It follows that there is an S-refutation

<A : COIVIP([D,,u]) —, A EXP([Dl,,ul]) H,01>,
(A S-INT(COMP([D, 1i]), EXP([D1, p11])) —, A : EXP([Ds, pta]) . 62)

. ey

(A DT\ 1) N Crcigm] == —).

We must show that the last query evaluates to 0. Let ppp = U{pq,. .., ptm}. Since ppp > p, we
have f gy Cft 1, hence ft pugup 0 (7\ 1) = 0. Then, it suffices to show that (Ni<i<p 1) S frus-
For all puy € (ﬂ1§z’§m 1), we have that pp > p; for all j. Since iy is the smallest such truth value,
we must have pp > ppp and therefore pg €1 fiub-

Inductive Case (k > 1) By the definition of Ag, there exist ground instances C10q,...,C 0, of the
form

A:[Dy,] < Bi:[Dim)&.. . &Bj 1 (D, i)
A:[Dy,pa] — Bi:[DYpi)&.. . &BE, 1 (D}, ui,)

A [Dy pi] = B{" :[DV, pf" & & B 2 [DY s i]
of clauses Cq,...,C,

Al:[D17l'L1] — B%[D}nu%]&&Blil[D}qnuil]

Azt [Dy,py) = B :[Df.pi)&.. . &BE, (DR, 1d,]

! ! !

A 0 [Diyo] = B o [DY " [& . &BE D p]

43

in Pym > 1such that U{pr, ..o pim} > s Uicjcm Dj C© Dand Ag 1 (k—1) | B} [Di, il .. '&B;w :
[D;w"u;w] and there is a substitution 6,, such that 4,0; = A, [D;,,u;»]H = [D;,], for all 1 < i < m. By
the definition of regular expression, P* contains ground instances C76,,...,C 0.,

A:EXP([Dy, 1)) — Bi :EXP([D{,pq))&...&Bj :EXP([D} ,p}.])

A:EXP([Dg,pi2]) — Bi :EXP([D{,p3])& ... &BE, :EXP([D} , pii.])

AEXP([Dyopi]) — BY - EXP(IDY, uy')& ... &BY, - EXP((D. . jufl])
of clauses Cq,...,C,

Ay EXP([Dy,uy]) — Bl :EXP((D}.ul D&...&B < EXP((DL .yl])

Ay EXP([Dy,uy)) — B} EXP((D} &BY, - EXP((D3, . 4i3,))

n n ! !

A EXR[(Dlppi]) = By EXR(IDY i D B EXP(LDE i])
By the inductive hypothesis, there is an S-refutation R; of

for all 1 <4 < m. By the same argument above, (7\ f#) N Ni<i<m T i = 0. Therefore, (— Q)*
has an unrestricted S-refutation as follows:

(A: COMP([D, p]) —,C*,6;),

<A7 [D,(T\ ’ﬂ“,u) N Mi<i<m fru = @] H7_7_>7

Rlv"'vav

P a

The completeness of S-resolution may now be established from the ground completeness result using
standard techniques.

Lemma 2 (Mgu Lemma) Suppose there is an unrestricted S-refutation (— ¢)*¢ from an amalga-
mated knowledge base P. Then there is an S-refutation of («— @)* from P. O

Lemma 3 (Lifting Lemma) Suppose there is an S-refutation of («— @)*# from an amalgamated
knowledge base P. Then there is an S-refutation of («— @))* from P. O

The completeness of S-resolution is an immediate consequence of the ground completeness theorem
and Mgu lemma.

44

