
Amalgamating Knowledge Bases, II:Algorithms, Data Structures, and Query Processing�Sibel Adal� and V.S. SubrahmanianDepartment of Computer ScienceInstitute for Advanced Computer Studies &Institute for Systems ResearchUniversity of MarylandCollege Park, Maryland 20742.fsibel; vsg@cs.umd.eduAbstractIntegrating knowledge from multiple sources is an important aspect of automated reasoningsystems. In the �rst part of this series of papers, we presented a uniform declarative framework,based on annotated logics, for amalgamating multiple knowledge bases when these knowledge bases(possibly) contain inconsistencies, uncertainties, and non-monotonic modes of negation. We showedthat annotated logics may be used, with some modi�cations, tomediate between di�erent knowledgebases. The multiple knowledge bases are amalgamated by embedding the individual knowledgebases into a lattice. In this paper, we brie
y describe an SLD-resolution based proof procedure thatis sound and complete w.r.t. our declarative semantics. We will then develop an OLDT-resolutionbased query processing procedure, MULTI OLDT, that satis�es two important properties: (1) e�cientreuse of previous computations is achieved by maintaining a table { we describe the structure of thistable and show that table operations can be e�ciently executed, and (2) approximate, interruptablequery answering is achieved, i.e. it is possible to obtain an \intermediate, approximate" answer fromthe QPP by interrupting it at any point in time during its execution. The design of the MULTI OLDTprocedure will include: (1) development of data structures for tabling (substitution, truth value)pairs, and (2) the development of algorithms to incrementally and e�ciently update the table.1 IntroductionComplex reasoning tasks in the real world utilize information from a multiplicity of sources. Thesesources may represent data and/or knowledge about di�erent aspects of a problem in a number ofways. Wiederhold and his colleagues [37, 38] have proposed the concept of a mediator { a device thatwill express how such an integration is to be achieved.This is the second in a series of papers developing the theory and practice of federated databases.In Part I of this series of papers, we developed a language for expressing mediators, and reasoningwith them. In particular, we showed that an extension of the \generalized annotated program" (GAP)�This work was supported by the Army Research O�ce under Grant Nr. DAAL-03-92-G-0225 and by the Air ForceO�ce of Scienti�c Research under Grant Nr. F49620-93-1-0065, and by ARPA Order Nr. A716 administered by RomeLabs under contract F30602-93-C-0241. NOTE TO REFEREES: Appendix A contains material that can be removedfrom the paper after acceptance. 1

paradigm of Kifer and Subrahmanian [20] may be used to express mediators. We de�ned the conceptof the \amalgam" of \local" databases DB1; : : : ; DBn with a mediator or supervisory database, S,and proved a number of results linking the semantics of the local databases with the semantics of theamalgam.The primary aim of this paper is the development of query processing procedures (QPPs, for short)that possess various desirable properties. We will �rst develop a resolution-based QPP and show it tobe sound and complete. However, it is well known that resolution proof procedures are notoriouslyine�cient, often solving previously solved goals over and over again. OLDT-resolution, due to Tamakiand Sato [34] is a technique which caches previously derived solutions in a table. The theory andimplementation of OLDT has been studied extensively by several researchers including Seki [28, 27] andWarren and his colleagues [9, 10]. Furthermore, it is known that OLDT and magic set computations[5, 6, 26] are essentially equivalent, though they di�er in many (relatively minor) details. We will usethe OLDT technique as our starting point, and extend it as follows:(1)Multiple Databases: As di�erent databases may provide di�erent answers to the same query, OLDT-resolution needs to be modi�ed to handle a multiplicity of (possibly mutually incompatible) answersto the same query.(2) Uncertainty and Time: Previous formulations of OLDT-resolution did not handle time and uncer-tainty. We will show how temporal and uncertain answers can be smoothly incorporated into the OLDTparadigm.(3) Approximate, Interruptable Query Answering: In some situations, the user may wish to interruptthe execution of the query processing procedure and ask for a \tentative answer." This kind of fea-ture becomes doubly important when databases contain uncertain and temporal information. Whenprocessing a query Q such as \Is the object O at location L an enemy aircraft ?," it is desirable thatuncertainty estimates of the truth of this query be revised upwards in a monotonic fashion as the QPPspends more and more time performing inferences. Thus if the user interrupts the QPP's execution attime t and asks \What can you tell me about query Q ?," the KB should be able to respond with ananswer of the form: \I'm not done yet, but at this point I can tell you that Q is true with certainty87% or more."(4) Table Management: Relatively little work has been done on the development of data structuresfor managing OLDT-tables (cf. Warren [9, 10]). When a single database with neither uncertainty nortime is considered, the structure of the OLDT-table can be relatively simple. However, when multipledatabase operations, uncertainty estimates (that are constantly being revised), and temporal reasoningare being performed simultaneously, the management of the OLDT-table becomes a signi�cant issue.We will develop data structures and algorithms to e�ciently manage the OLDT-table.Our query processing procedure, called MULTI OLDT, incorporates all the above features and is describedin detail in this paper. In particular, we prove that MULTI OLDT is a sound and complete queryprocessing procedure. Restricted termination results are also established.The paper is organized as follows; in Section 3, we provide two examples motivating our work. Theseexamples will be used throughout the paper to illustrate various de�nitions, data structures, andalgorithms. Section 4 contains a brief description of a resolution-style proof procedure includingsoundness and completeness results. The MULTI OLDT procedure is described in detail in Section 5 { inparticular, this section contains details on the organization of the OLDT-table. We compare our resultswith relevant work by other researchers in Section 6.2

2 PreliminariesIn this section, we give a quick overview of GAPs and the amalgamation theory developed in the �rstof this series of papers [32].2.1 Overview of GAPsThe GAP framework proposed in [20] assumes that we have a set T of truth values that forms a completelattice under an ordering �. For instance, (T ;�) may be any one of the following:(1) Fuzzy Values: We can take T = [0; 1] { the set of rea l numbers between 0 and 1 (inclusive) and� to be the usual � ordering on reals.(2) Time Points: We can take T to be the set TIME = 2R+ where R+ is the set of non-negative realnumbers , 2R+ is the power-set of the reals, and � is the inclusion ordering.(3)Fuzzy Values+ Time: We could take T = [0; 1]�TIME and take� to be the ordering: [u1; T1]�[u2; T2]i� u1 � u2 and T1 � T2. Here u1; u2 are real numbers in the [0; 1] interval and T1; T2 are sets of realnumbers.(4) Four-Valued Logic: Four valued logic [7, 19] uses the truth values FOUR = f?; t; f ;>g orderedas follows: ?�x and x�> for all x 2 FOUR. In particular, t and f are not comparable relative tothis ordering. [7] and [19] show how this FOUR-valued logic may be used to reason about databasescontaining inconsistencies.This is only a small sample of what T could be. Using the elements of T , as well as variablesranging over T (called annotation variables), and preinterpreted functions of arity n � 1 on T (calledannotation functions), it is possible to recursively de�ne an annotation term as follows: (1) any memberof T is an annotation term, (2) any annotation variable is an annotation term, and (3) if f is an n-aryannotation function and t1; : : : ; tn are annotation terms, then f(t1; : : : ; tn) is an annotation term. Forinstance, if T = [0; 1], and +; � are preinterpreted annotation functions de�ned in the usual ways, andV is an annotation variable, then (V + 1) � 0:5 is an annotation term. Strictly speaking, we shouldwrite this in pre�x notation as: �(+(V; 1); 0:5), but we will often abuse notation when the meaning isclear from context.If A is an atom (in the usual sense of logic), and � is an annotation, then A : � is an annotated atom.For example, when considering T = [0; 1], the atom broken(c1) : 0:75 may be used to say: \there is atleast a 75% degree of certainty that component c1 is broken." If T = [0; 1]� TIME, then annotationsare pairs, and an annotated atom like at robot(3; 5) : [0:4; f1; 2; 3g] says that at each of the time points1; 2; 3, there is at least a 40% certainty that the robot is at xy-coordinates (3; 5).An annotated clause is a statement of the form:A0 : �0 A1 : �1& : : :&An : �nwhere: (1) each Ai : �i; 0 � i � n is an annotated atom, and (2) for all 1 � j � n, �j is either amember of T or is an annotation variable, i.e. �j contains no annotation functions. In other words,annotation functions can occur in the heads of clauses, but not in the clause bodies.Kifer and Subrahmanian developed a formal model theory, proof theory, and �xpoint theory forGAPs that accurately captures the above-mentioned notion of `�rability." In brief, an interpretation Iassigns to each ground atom, an element of T . Intuitively, if T = [0; 1], then the assignment of 0:7 toatom A means that according to interpretation I , A is true with certainty 70% or more. Interpretation3

I satis�es a ground annotated atom A : � i� ��I(A). The notion of satisfaction of formulas containingother connectives, such as &;_; and quanti�ers 8; 9 is the usual one [30]. In particular, I satis�esthe ground annotated clause A0 : �0 (A1 : �1& : : :&An : �n) i� either I 6j= (A1 : �1& : : :&An : �n)or I j= A0 : �0. The symbol \j=" is read \satis�es." I satis�es a non-ground clause i� I satis�es eachand every ground instance of the clause (with annotation variables instantiated to members of T andlogical variables instantiated to logical terms).2.2 Overview of Amalgamation ThoerySuppose we have a collection of \local" databases DB1; : : : ; DBn over a complete lattice T of truthvalues. In this section, we recall, from [32], how the theory of GAPs may be successfully applied tode�ning a new lattice of truth values that forms the basis for a \mediator" or \supervisory database."To do so, we �rst de�ne the DNAME lattice; this is the power set, 2f1;:::;n;sg. The integer i refers todatabase DBi, while s refers to the supervisor. Note, in particular, that 2f1;:::;n;sg is a complete latticeunder the set inclusion ordering.We assume that we have a set DV of variables (called DNAME variables) ranging over 2f1;:::;n;sg. IfA : � is an atom over lattice T , V is a DNAME-variable, and D � f1; : : : ; n; sg, then A : [D; �] and A :[V; �] are called amalgamated atoms. Intuitively, if T = [0; 1], the amalgamated atom at robot(3; 4) :[f1; 2; 3g; 0:8] says that according to the (joint) information of databases 1; 2 and 3, the degree ofcertainty that the robot is at location (3; 4) is 80% or more .An amalgamated clause is a statement of the form:A0 : [D0; �0] A1 : [D1; �1] & : : :&An : [Dn; �n]where A0 : [D0; �0]; : : : ; An : [Dn; �n] are amalgamated atoms. An amalgamated database is a collectionof clauses of this form.Mediator/Supervisory Database: Suppose DB1; : : : ; DBn are GAPs. A supervisory database1 Sis a set of amalgamated clauses such that every ground instance of a clause in S is of the form:A0 : [fsg; �] A1 : [D1; �1] & : : :&An : [Dn; �n]where, for all 1 � i � (n+m), Di � f1; : : : ; n; sg.Intuitively, ground instances of clauses in the supervisor say: \If the databases in set Di, 1 � i � n,(jointly) imply that the truth value of Ai is at least �i, then the supervisor will conclude that thetruth value of A0 is at least �." This mode of expressing supervisory information is very rich { in [32],it is shown that we can express prioritized knowledge about predicates, prioritized knowledge aboutobjects, as well as methods to achieve consensus.We now de�ne the concept of an amalgam of local databases DB1; : : : ; DBn via a supervisor S.First, each clause C in DBi of the formA0 : �0 A1 : �1& : : :&An : �n1When the databases being integrated are geographically dispersed across a network, it is common to distribute themediator so that bottlenecks (e.g. due to network problems) do not have a devastating e�ect. In this paper, we will notstudy issues relating to implementing distributed mediators (though we are doing so in a separate, concurrent e�ort).4

is replaced by the amalgamated clause, AT (C):A0 : [fig; �0] A1 : [fig; �1] & : : :&An : [fig; �n]:We use AT (DBi) to denote the set fAT (C) j C 2 DBig.The amalgam ofDB1; : : : ; DBn via a supervisor S is the amalgamated knowledge base (S [Sni=1AT (DBi)).The model theory for amalgamated knowledge bases is (slightly) di�erent from that of individual GAPsbecause it must account for a new type of variable, viz. the DNAME variables. An A� interpretationJ for an amalgamated database is a mapping from the set of ground atoms of our base language tothe set of functions from f1; : : : ; n; sg to T ;i.e. for A 2 BL, I(A) is a mapping from f1; : : : ; n; sg to T . In other words, if I(A)(i) = �, thenaccording to the interpretation I , DBi says the truth value of A is at least �. Given a subset, D,of f1; : : : ; n; sg we use I(A)(D) to denote ti2D(J(A))(i). An A � interpretation, J , satis�es theground amalgamated atom A : [D; �] i� �� ti2D (J(A))(i). Here, t denotes \least upper bound(lub)". All the other symbols are interpreted in the same way as for ordinary T -valued interpretationswith the caveat that for quanti�cation, DNAME variables are instantiated to subsets of f1; : : : ; n; sgand other annotation variables are instantiated to members of T . Note that we will always use theword A � interpretation to denote an interpretation of an amalgamated KB and use the expression\interpretation" or \T -interpretation" to refer to an interpretation of a GAP.Linking Local and Amalgamated Database. We now show how we can go from models ofamalgamated KBs to models of GAPs and vice-versa by using a concept of \projection" and \localegeneration." We then prove a theorem that exhibits the strong links between models of the GAPsDB1; : : : ; DBn and the amalgam of databases DB1; : : : ; DBn via supervisor S.Suppose Q is the amalgam of (DB1; : : : ; DBn; S) and J is an A-interpretation. The projection of Jon DBi for 1 � i � n is the interpretation I de�ned as follows: I(A) = J(A)(i):While projections allow us to obtain an interpretation from an A-interpretation, we may also need toobtain A-interpretations from interpretations. Given an interpretation, I , the locale of I w.r.t. thelocale of I w.r.t. a GAP DBi, is the set fI 0 j I 0 is an A-interpretation and for all ground atoms A,I 0(A)(i) = I(A)g.The following theorem now shows that the models of local databases (i.e. those interpretations thatsatisfy all facts and rules in the local database) are closely related to the A-models of amalgams (i.e.the A-interpretations that satisfy all the rules in the amalgam).Amalgamation Theorem. ([32])1. Suppose DBi is a GAP and I is an interpretation such that there exists an I 0 in the locale of Iwhich is an A-model of AT (DBi). Then I is a model of DBi.2. A : � is a logical consequence of DBi (i.e. A : � is satis�ed by all interpretations that satisfy allclauses of DBi) i� A : [fig; �] is an A-consequence of AT (DBi).3. Let Q be the amalgam of databases (DB1; : : : ; DBn; S), and let J be an A-model of Q. Then:the projection, Ji of J on DBi is a model of DBi. 25

f t3 MotivationIn this section, we will present two motivating examples { the �rst is a set of deductive databasesexpressed using FOUR-valued logic describing a static robotic domain (i.e. one where the world remainsconstant). The second example extends this to reason about a dynamically changing world, and thusincorporates both uncertainty and time. These examples will be used throughout the paper to illustratevarious intuitions as they arise in the paper.We will assume that the reader is familiar with generalized annotated programs (GAPs) as de�ned in[20].3.1 Robot Example: Static CaseConsider two mobile robots, r1 and r2, that are operating in a common workspace. Each of these tworobots has access to three databases; one of these databases represents information about the locationsof objects in the workspace (cf. Figure 3.1), the second represents information about the weight ofthese objects, while the third represents information about the temperature of the objects. The lasttwo databases also contain information about what kinds of loads the individual robots can lift. Eachof these three databases is expressed over the lattice FOUR shown in Figure 3.1 and is shown below:DB1: at(r1; 3; 2) : t at(r2; 4; 4) : t at(a; 1; 1) : t at(b; 2; 2) : t at(c; 3; 5) : t at(d; 4; 2) : t right(E1; E2) : t at(E1; X1; Y 1) : t& at(E2; X2; Y 1) : t&X1 > X2:left(E1; E2) : t at(E1; X1; Y 1) : t& at(E2; X2; Y 1) : t&X1 < X2:above(E1; E2) : t at(E1; X1; Y 1) : t& at(E2; X1; Y 2) : t& Y 1 > Y 2:6

(0,0)
(5,5) LEGEND:objectrobota b c dr2r1

below(E1; E2) : t at(E1; X1; Y 1) : t& at(E2; X1; Y 2) : t& Y 1 < Y 2:at(E1; X; Y) : f at(E2; X; Y) : t&E1 6= E2:This database speci�es where the objects are located (including the robots), and also speci�es relationssuch as \entity E1 is to the right of entity E2 if : : : ," \entity E1 is to the left of E2 if : : : ," \entityE1 is above entity E2 if : : : " and \entity E1 is below entity E2 if : : :." There is also a rule sayingthat two things cannot be at the same place. We assume that relations like >, <, and = are evaluatedin the standard way. Intuitively, the �rst rule above says \If the entity E1 is at location (X1; Y 2) andentity E2 is at location (X2; Y 2) and X1 > X2, then E1 is to the right of E2." When the annotationt associated with an atom A leads to the reading: \A's truth value is at least t." In general, t may bereplaced with a di�erent annotation, �, picked from a complete lattice of truth values and the samereading holds with \at least" referring to the lattice ordering.DB2: weight(a; 36) : t weight(b; 19) : t weight(c; 48) : t weight(d; 27) : t can lift(r1; X) : t weight(X;W) : t&W < 50:can lift(r1; X) : f weight(X;W) : t&W � 50:can lift(r2; X) : t weight(X;W) : t&W < 30:can lift(r2; X) : f weight(X;W) : t&W � 30:DB3: 7

temp(a; 92) : t temp(b; 61) : t temp(c; 55) : t temp(d; 112) : t can lift(r1; X) : t temp(X; T) : t&T < 60:can lift(r1; X) : f temp(X; T) : t&T � 60:can lift(r2; X) : t temp(X; T) : t&T < 120:can lift(r2; X) : f temp(X; T) : t&T � 120:Using DB2 alone, we may conclude that r1 can lift any of a; b; c; d, while using DB3 alone, we mayconclude that r1 can lift only c. Similarly, DB2 alone tells us that r2 can lift b and d, while usingDB3 alone, we may conclude that r2 can lift all of a; b; c and d. Clearly this leads to inconsistency. Inaddition to resolving such con
icts, we may wish to coordinate what should be done by the two robotsr1 and r2. A supervisory database is a database that speci�es how to resolve such con
icts and how toachieve the desired coordination. For instance it may be the case that r1 moves easily in the verticaldirection, while r2 moves easily in the horizontal direction. If an object is above or below r1, and thesupervisor determines that r1 can lift that object, then the supervisor may decide to command r1 tolift that object. Similarly, if an object is to the left or right of r2, and the supervisor determines thatr2 can lift that object, then the supervisor may decide to command r2 to lift that object. If the objectis not exactly above or below r1 or to the right, left of r2, then the supervisor will �rst command r1to lift the object. If no command is issued to r1 to lift an object, then r2 will be commanded to liftthat object. These are formalized using the following \supervisory" knowledge base.can lift(r1; X) : [fsg; V) can lift(r1; X) : [f2; 3g; V]:can lift(r2; X) : [fsg; V1 u V2] can lift(r2; X) : [f2g; V1] & can lift(r2; X) : [f3g; V2]:command lift(X; r1) : [fsg; V] can lift(r1; X) : [fsg; V] & above(X; r1) : [f1g; t]:command lift(X; r1) : [fsg; V] can lift(r1; X) : [fsg; V] & below(X; r1) : [f1g; t]:command lift(X; r2) : [fsg; V] can lift(r2; X) : [fsg; V] & left(X; r2) : [f1g; t]:command lift(X; r2) : [fsg; V] can lift(r2; X) : [fsg; V] & right(X; r2) : [f1g; t]:command lift(X; r1) : [fsg; V] can lift(r1; X) : [fsg; V]:command lift(X; r2) : [fsg; t] can lift(r2; X) : [f2; 3g; t] & command lift(X; r1) : [fsg; f]:The �rst two rules in the above supervisory knowledge base are very interesting. As far as robot r1is concerned, the supervisor is willing to accept the truth value provided by any of the databases { inother words, the supervisor is indecisive and acts as if both what DB2 says is correct and what DB3says is correct (even though they may contradict each other). This may be an appropriate strategywhen robot r1 is a very inexpensive robot, and the task of lifting the objects is critical. The secondrule says that the supervisor only concludes that r2 can lift an object if both databases DB2 and DB3say it can (consensus). 8

The amalgam of local databases DB1; DB2; DB3 with the supervisory database S, as de�ned in [32]is: at(r1; 3; 2) : [f1g; t] at(r2; 4; 4) : [f1g; t] at(a; 1; 1) : [f1g; t] at(b; 2; 2) : [f1g; t] at(c; 3; 5) : [f1g; t] at(d; 4; 2) : [f1g; t] right(E1; E2) : [f1g; t] at(E1; X1; Y 1) : [f1g; t] & at(E2; X2; Y 1) : [f1g; t] &X1> X2:left(E1; E2) : [f1g; t] at(E1; X1; Y 1) : [f1g; t] & at(E2; X2; Y 1) : [f1g; t] &X1< X2:above(E1; E2) : [f1g; t] at(E1; X1; Y 1) : [f1g; t] & at(E2; X1; Y 2) : [f1g; t] & Y 1 > Y 2:below(E1; E2) : [f1g; t] at(E1; X1; Y 1) : [f1g; t] & at(E2; X1; Y 2) : [f1g; t] & Y 1 < Y 2:at(E1; X; Y) : [f1g; f] at(E2; X; Y) : [f1g; t] &E1 6= E2:weight(a; 36) : [f2g; t] weight(b; 19) : [f2g; t] weight(c; 48) : [f2g; t] weight(d; 27) : [f2g; t] can lift(r1; X) : [f2g; t] weight(X;W) : [f2g; t] &W < 50:can lift(r1; X) : [f2g; f] weight(X;W) : [f2g; t] &W � 50:can lift(r2; X) : [f2g; t] weight(X;W) : [f2g; t] &W < 30:can lift(r2; X) : [f2g; f] weight(X;W) : [f2g; t] &W � 30:temp(a; 92) : [f3g; t] temp(b; 61) : [f3g; t] temp(c; 55) : [f3g; t] temp(d; 112) : [f3g; t] can lift(r1; X) : [f3g; t] temp(X; T) : [f3g; t] &T < 60:can lift(r1; X) : [f3g; f] temp(X; T) : [f3g; t] &T � 60:can lift(r2; X) : [f3g; t] temp(X; T) : [f3g; t] &T < 120:can lift(r2; X) : [f3g; f] temp(X; T) : [f3g; t] &T � 120:can lift(r1; X) : [fsg; V] can lift(r1; X) : [f2; 3g; V:]can lift(r2; X) : [fsg; V1u V2] can lift(r2; X) : [f2g; V1] & can lift(r2; X) : [f3g; V2]:command lift(X; r1) : [fsg; V] can lift(r1; X) : [fsg; V]&above(X; r1) : [f1g; t]:command lift(X; r1) : [fsg; V] can lift(r1; X) : [fsg; V]&below(X; r1) : [f1g; t]:command lift(X; r2) : [fsg; V] can lift(r2; X) : [fsg; V]&left(X; r2) : [f1g; t]:command lift(X; r2) : [fsg; V] can lift(r2; X) : [fsg; V]&right(X; r2) : [f1g; t]:command lift(X; r1) : [fsg; V] can lift(r1; X) : [fsg; V]:command lift(X; r2) : [fsg; t] can lift(r2; X) : [f2; 3g; t]&command lift(X; r1) : [fsg; f]:9

3.2 Robot Example: Dynamic Case:In the preceding section, we have not taken into account, the fact that the workspace may be changingwith time { in other words, robot r1 may need to base its actions on its perceptions of what robotr2 may do (even in the future). For instance, suppose we assume that all changes in the workspaceoccur at discrete time intervals, and that at time 0, the workspace is as shown in Figure 3.1. Let ussuppose that the following events occur:� At time 1, robot r1 moves \right" one location, i.e. moves to location (2; 3).� At time 2, robot r1 again moves right one location, i.e. it moves to location (3; 3).At this point, robot r2 may well conclude, based on its knowledge of robot r1's past actions, that r1will, in all likelihood 2, continue in its rightward path. It may formalize this intuition as a clause thatsays: \Given that robot r1 moves right at time T and T +1 with probabilities V1; V2 respectively, thenthe probability that it will continue to move right is a function, f , is some function of V1; V2." Usingthe truth value lattice [0; 1]� 2R+ , we may encode this information as:at(r1; X + 2; Y) : [f(V1; V2); fT + 2g] at(r1; X + 1; Y) : [V1; fT + 1g] &at(r1; X; Y) : [V2; fTg]:at(r1; X + 1; Y + 1) : [1� f(V1; V2); fT + 2g] at(r1; X + 1; Y) : [V1; fT + 1g] &at(r1; X; Y) : [V2; fTg]:Here, T is a variable ranging over time points, and V; V1; V2 are variables ranging over the unit interval[0; 1]. The �rst clause says that if r1 is at location (X; Y) at time T with certainty V2, and r1 isat location (X + 1; Y) at time (T + 1) with certainty V1, then the certainty of its being at location(X+2; Y) at time (T +2) is f(V1; V2) where f is some function from [0; 1]� [0; 1] to [0; 1]. The secondclause says that the probability that the robot will be at location (X + 1; Y + 1) at time (T + 2) (i.e.it moves \down" instead of \right") is 1� f(V1; V2).The truth value lattice being used in this example is [0; 1]� 2R+ . An annotated atom of the formA : [u; t] intuitively says that \for all time points t� 2 t, atom A is true with certainty u or more."The lattice ordering on [0; 1]� 2R+ is de�ned as: [u1; t1] � [u2; t2] i� u1 � u2 and t1 � t2.The detailed description of annotated logics is beyond the scope of this paper { it is well-documentedin the literature [7, 20, 32, 33].4 A Resolution-Based Query Processing ProcedureIn this section, we will develop a framework for processing queries to amalgamated databases. Thisprocedure is a resolution-based procedure, and hence, inherits many of the disadvantages of existingresolution-based strategies. It is similar to work by Lu, Murray and Rosenthal [24] who have inde-pendently developed a more general framework for query processing in GAPs. The work described2This is only an illustration. In the real-world, a robot may use far more complex strategies to make predictions onwhat other agents in the workspace may do. 10

here is intended as a stepping stone for the development of a more sophisticated procedure, calledMULTI OLDT, that will be described in Section 5.We now de�ne the concept of the up-set of an annotation, or a set of annotations. Intuitively, givena set Q of annotations, the up-set of Q is simply the set of all elements in the truth value lattice thatare larger than some element in Q.De�nition 1 Suppose hR;�i is a partially ordered set and Q � R. Then, * Q = fy 2 R j (9x 2Q)x � yg and + Q = fy 2 R j (9x 2 Q)y � xg.For instance, if we consider the lattice FOUR described earlier, it turns out that * t = ft;>g. Similarly,* ft; fg = ft; f ;>g.Up-sets may be used to capture the following intuition: suppose we consider an amalgamated atomA : [D; �]. Then this atom is satis�ed by any A-interpretation I such that ��td2D I(A)(d). In otherwords, satisfaction of A : [D; �] by I requires that td2DI(A)(d) 2* �. This leads us to consider thepossibility of extending amalgamated atoms to have a set of truth values as the second element of itsannotation.De�nition 2 Given an amalgamated annotation [D; �] where D � V = f1; ::; n; sg and � 2 T , and afunction fs : (2V � T) ! (2V � 2T) the expression fs([D; �]) is called a set expansion of [D; �].For example, we may take fs to be the function such that fs([D; �]) = [D;* �], or we may take fs tobe the function such that fs([D; �]) = [D; T n * �]. If we take fs to be the latter, and we consider thelattice FOUR, then fs([D; t] = [D; f?; fg].It will turn out that the two examples of fs given above will be particularly important { hence, wegive special names to these functions below.De�nition 3 Given an amalgamated annotation [D; �] where D � V = f1; ::; n; sg and � 2 T , theregular set expansion, EXP, is given by EXP([D; �]) = [D;* �]. Similarly, the complement of the regularexpansion is given by COMP([D; �]) = [D; T n * �].Example 1 Let T = f>; t; f ;?g and V = f1; 2; sg.EXP([f1; 2g; t]) = [f1; 2g; ft;>g]COMP([f1; 2g; t]) = [f1; 2g; ff ;?g] 2In the sequel, we will often use the notation �s to denote a set of truth values (annotations). Thus,A : [D; �s] is intuitively read as: \The truth value of A, as determined jointly by the databases in Dis in the set �s." The following de�nition de�nes an asymmetric notion of of \intersection" of twoamalgamated annotations. 11

De�nition 4 Given two set expansions [D1; �s1],[D2; �s2] where D1; D2 � f1; : : : ; n; sg and �s1 ; �s2 22T , the partial function S-INT is de�ned as follows:S-INT([D1; �s1]; [D2; �s2]) = ([D1; �s1 \ �s2]; if D2 � D1unde�ned otherwiseNote that S-INT is asymmetric because of the subset condition. This asymmetry is a key distinctionbetween our work and the concurrently developed work of [24].For example, suppose we consider the lattice FOUR and consider the amalgamated annotations: [f1; 2; 3g; ft;>g]and [f1; 3g; ff ;>g], thenS-INT([f1; 2; 3g; ft;>g]; [f1; 3g; ff ;>g]) = [f1; 2; 3g; f>g]but S-INT([f1; 3g; ff ;>g]; [f1; 2; 3g; ft;>g]) is unde�ned.Using the concept of set expansions of amalgamated atoms, we now de�ne the concept of a regularrepresentation of a clause. Later in this section, we will de�ne a resolution-based strategy that usesregular representations of amalgamated clauses instead of the amalgamated clauses themselves. Theadvantage is that the expensive reductant rule of inference introduced by Kifer and Lozinskii [19] andlater studied by Kifer and Subrahmanian [20] can be eliminated by using regular representations.De�nition 5 Given a clause C of the form:A0 : [D0; �0] A1 : [D1; �1]& : : :&An : [Dn; �n]the regular representation of C, denoted by C�, is the expression:A0 : EXP([D0; �0]) A1 : EXP([D1; �1])& : : :&An : EXP([Dn; �n])In other words the regular representation is obtained by set expanding all the amalgamated anno-tations using the expansion function EXP.Example 2 (Static Robot Example Revisited) Consider the following rule from DB2 of theStatic Robot example. can lift(r1; X) : t weight(X;W) : t&W < 50:The amalgamated form of this, as de�ned in [32], iscan lift(r1; X) : [f2g; t] weight(X;W) : [f2g; t] &W < 50:The regular representation of this is:can lift(r1; X) : EXP([f2g; t]) weight(X;W) : EXP([f2g; t]) &W < 50:(We assume that the constraint W < 50 is a prede�ned evaluable relation). 212

Example 3 (Dynamic Robot Example Revisited) Suppose the rule below occurs in database iof the Dynamic Robot example:at(r1; X + 2; Y) : [f(V1; V2); fT + 2g] at(r1; X + 1; Y) : [V1; fT + 1g] &at(r1; X; Y) : [V2; fTg]:Then the regular representation of this clause is:at(r1; X + 2; Y) : EXP([fig; [f(V1; V2); fT + 2g]]) at(r1; X + 1; Y) : EXP([fig; [V1; fT + 1g]]) &at(r1; X; Y) : EXP([fig; [V2; fTg]]): 2De�nition 6 (S-satisfaction) AnA{interpretation I S-satis�es an expanded atom A : [D; �s] whereD � f1; : : : ; n; sg and �s 2 2T i� I j=A A : [D; �] for some � 2 �s.The notion of an S-logical consequence is similar to that in classical logic { only now, S-satisfaction isconsidered instead of ordinary satisfaction.De�nition 7 An amalgamated atom in set expansion form A : fs1([D1; �1]) is said to be an S-consequence of another atom B : fs2 [D2; �2] (denoted by B : fs2([D2; �2]) j=S A : fs1 [D1; �1]), i� anyA-interpretation I that S-satis�es B : fs2([D2; �2]) also S-satis�es A : fs1([D1; �1]).Example 4 Let the truth value lattice be FOUR and let I be anA-interpretation such that I(A)(1) = ?and I(A)(2) = t. Fd2f1;2g I(A)(d) = t. Hence, I S-satis�es A : [f1; 2g; ft; f ;>g] since t 2 ft; f ;>g. 2Just as we de�ned the notion of \regular representation" of clauses, we also need to de�ne the notionof \regular representation" of queries.De�nition 8 A query Q is a statement of the form: A1 : [D1; �1]& : : :&An : [Dm; �m]where all the free variables of the query are assumed to be universally quanti�ed3. The regularrepresentation of the query Q, denoted Q� is the query:A1 : COMP([D1; �1]) _ : : :_ An : COMP([Dm; �m]) The following result follows immediately from the de�nitions and is given without proof.Proposition 1 Suppose I is an A-interpretation.1. I satis�es a ground clause C i� I S-satis�es C�.2. I satis�es a ground query Q i� I S-satis�es Q�. 2We now come to the central concept in this section, viz. that of an S-resolvent.3A query can be thought of as a headless Horn-clause. The negation of the above query is the statement (9)(A1 :[D1; �1]& : : :&An : [Dm; �m]). 13

De�nition 9 (S-resolution) Let C� be the regular representation of a clause C and be given by:A0 : EXP([D0; �0]) A1 : EXP([D1; �1])& : : :&An : EXP([Dn; �n])and let W be the expression B1 : [Dq1; �qs1] _ : : :_Bm : [Dqm; �qsm] where [Dqi; �qsi]; 1 � j � m, are in set expansion form. Suppose Bi and A0 are uni�able via mgu �and suppose D0 � Dqi . Then the S-resolvent of W and C� is the expression:(A1 : COMP([D1; �1]) _ : : :_ An : COMP([Dn; �n])_B1 : [Dq1 ; �qs1] _ : : :_ Bi�1 : [Dqi�1 ; �qsi�1] _Bi+1 : [Dqi+1 ; �qsi+1] _ : : : _Bm : [Dqm; �qsm] _A0 : S-INT([Dqi; �qsi]; EXP([D0; �0])))� In case, S-INT ([Dqi; �qsi]; EXP([D0; �0])) = [D; �s] is ground and �s evaluates to ;, then we simplifythe above S-resolvent by removing the atom �A0 : S-INT �[Dqi; �qsi]; EXP ([D0; �0]) �� �.Two important points that distinguish S-resolution for amalgamated knowledge bases from GAPs arethe following:� First, it is possible that no atom may be \eliminated" during an S-resolution step. This occursif �s above is not equal to ;.� Second, S-resolvents are inherently asymmetric because they are de�ned in terms of the S-INToperator which is not symmetric.Before proceeding to study soundness and completeness issues pertaining to S-resolution, we presentan example.Example 5 Consider the truth value lattice FOUR. Let C be the clausep(a) : [f1g; f>g] and let Q� be the (regular representation)p(X) : [f1; 2g; ff ;?g] :4� = fX = ag is the mgu of p(a) and p(X), and hence C and Q can be S-resolved, yielding(p(X) : [f1; 2g; ff ;?g \ f>g])fX = agas the S-resolvent. This is reduced to the empty clause because ff ;?g \ f>g = ;. 24Note that this query is the regular representation of p(X) : [f1; 2g; t]14

De�nition 10 An S-deduction from a query Q0 and an amalgamated knowledge base AKB is asequence: hQ�0; C�0 ; �0i; : : : ; hQ�n; C�n; �nisuch that Q�i+1 is an S-resolvent of Q�i and C�i via mgu �i, (0 � i < n). Q�0 is the regular representationof Q0 and C�i is the regular representation of some clause C, (0 � i � n).An S-deduction is called an S-refutation if it is �nite and the last query is the empty clause.Lu, Murray and Rosenthal[24] have proved a more general version of the soundness and completenessresult which we therefore state without proof5.Theorem 1 (Soundness of S-resolution) Suppose I S-satis�es a clause C� � A0 : EXP([D0; �0]) A1 : EXP([D1; �1]) & : : :& An : EXP([Dn; �n]) and a query Q�k � B1 : [Dq1; �qs1] _ : : : _ Bm :[Dqm; �qsm] . Then, I S-satis�es the S-resolvent of C� and Q�k. 2The following de�nition from [32] is needed for proving the Completeness results for amalgamatedknowledge bases. Given an amalgamated knowledge base Q, it is possible to associate with Q, anoperator AQ that maps A-interpretations to A-interpretations.De�nition 11 [32] Suppose Q is an amalgamated knowledge base. We may associate with Q, anoperator, AQ, that maps A-interpretations to A-interpretations as follows.A0Q(I)(A)(D) = tf� j A : [D; �] B1 : [D1; �1]& : : :&Bn : [Dn; �n]& not(Bn+1 :[Dn+1; �n+1])& : : :¬(Bn+m : [Dn+m; �n+m])g is a ground instance of a clause in Qand for all 1 � i � n,�i � I(Bi)(Di) and for all (n+ 1) � j � (n+m),�j 6� I(Bj)(Dj).AQ(I)(A)(D) = tD0�DA0Q(I)(A)(D0), for all D � f1; : : : ; n; sg.Subrahmanian [32] proved that when Q is negation-free, AQ is monotonic. Hence, AQ has a least�xpoint which is identical to AQ " � for some ordinal �. Unlike ordinary logic programs, even if � is!, it is possible that (AQ " !)(A)(i) = �, but there is no integer j < ! such that (AQ " j)(A)(i) = �.This may occur because � is the lub of an in�nite sequence, �0; �1; : : : where �k = (AQ " k)(A)(i).An amalgamated knowledge base is said to possess the �xpoint reachability property i� whenever(AQ " �)(A)(i) = �, there is an integer j < ! such that (AQ " j)(A)(i) = �. The �xpoint reachabilityproperty is critical for completeness because otherwise, we need to take recourse to in�nitary proofs.It is well-known [20] that even in the case of GAPs, the �xpoint reachability property is criticallynecessary for obtaining completeness results. The proof of the following result is contained in AppendixA.Theorem 2 (Completeness of S-resolution) Suppose P j= Q where P is an amalgamated knowl-edge base that possesses the �xpoint reachability property. Then, there is an S-refutation of (Q)�from P . 25NOTE TO THE REFEREES: The proof is included in Appendix A, but this appendix can be removed when thepaper goes to press. 15

5 MULTI OLDT ResolutionThe previous section describes a sound and complete proof procedure for amalgamated knowledgebases. The completeness result for S-resolution asserts the existence of a refutation for (Q)�whenever Q is a logical consequence of a program P possessing the �xpoint reachability property.However, the procedure does not:� specify how to �nd a refutation, and� does not specify how to handle queries which contain annotation variables.The ability to specify, and process, queries such as \What is the (maximal) degree of certainty V thatrobot r1 will be at location (4; 3) at time instant 3 ?" is one that cannot be adequately handled bythe \ground annotation" procedure described in Section 4. However, these are natural questions toask { robot r2 may base its actions on the certainty with which it can conclude that robot r1 will beat a given location at a given time. In general, this problem can be characterized by the followingmaximization problem:Given an atom A (whose truth value we want to �nd out) and a set D of local databases,�nd the maximal truth value V such that A : [D; V] is an S-consequence of the amalgamatedknowledge base P .Second, the robot may have a hard deadline within which to perform its action(s). Thus, it shouldhave the ability to interrupt the query processing module and request the \best" answer obtained thusfar.How these two goals are achieved e�ciently is the subject of this section of the paper. As a preview,we give a small example.Example 6 Consider the databases DB1; DB2 and DB3 in the static robot example, and supposewe ask the query: can lift(r1; b) : [f1; 2; 3g; V]:The query Q says: \What is the maximal truth value V such that can lift(r1; b) : [f1; 2; 3g; V] canbe concluded ?" Q� is: can lift(r1; b) : [f1; 2; 3g;T� * V] . Let us see what happens.1. Resolving this query with the (regular representation of the) �rst rule in DB2 yields, as resolvent,Q�1 �:can lift(r1; b) : [f1; 2; 3g; (T � * V)\ * t] _ weight(b;W) : [f2g; T � * t] _ W � 50 :2. Resolving this query with the (regular representation of the) second fact in DB2 yieldscan lift(r1; b) : [f1; 2; 3g; (T� * V)\ * t] _ weight(b; 19) : [f2g; (T � * t)\ * t] _ 19 � 50 :As (T � * t)\ * t = ;, the atom weight(b; 19) : [(T � * t)\ * t] can be eliminated from theresolvent, and the evaluable atom 19 � 50 may also be so eliminated, thus leaving us with theresolvent can lift(r1; b) : [f1; 2; 3g; (T � * V)\ * t] :Note that at this stage, we are in a position to conclude that V must be at least t for the followingreasons: 16

� All atoms in the body of the �rst rule in DB2 have been resolved away (i.e. the subgoalsgenerated by atoms in the body of this rule have been achieved), and� V = t represents the maximal lattice value such that(T � * V)\ * t = ;:Hence, we may conclude that V 's truth value is at least t (w.r.t. the lattice ordering).3. After concluding that V 's truth value is at least t, we continue resolving the query from (2)above. We resolve it with the second clause in DB3 to get:can lift(r1; b) : [f1; 2; 3g; (T � * V)\ * t\ * f] _ temp(b; T) : [f3g; T � * t] _ T < 60 :4. Resolving the above query with the second fact in DB3 gives:can lift(r1; b) : [f1; 2; 3g; (T� * V)\ * t\ * f]_ temp(b; 61) : [f3g; (T � * t)\ * t]_ 61 < 60 :As explained in 2, second and third atoms in the query can be eliminated, leaving us with thequery: can lift(r1; b) : [f1; 2; 3g; (T� * V)\ * t\ * f] :To evaluate this query to the empty clause, we must �nd the maximal truth value of V thatsatis�es the following equation� (T � * V)\ * t\ * f = ;. This is equivalent to� (T � *V) \ f>g = ; and we conclude that V = > is the solution to this equation that maximizes thevalue of V . 2As we can see from the example above, �nding the maximum truth value of an annotation variablethat enables us to eliminate a query atom results in a maximization problem with some constraints.Each resolution with the atom introduces new restrictions on the set of truth values its annotationvariable can legitimately have. Notice that these restrictions can be part of another maximizationproblem. As an example, suppose we have the following clause in the (regular representation of)DB1:can lift(X; b) : [f1g;* V1] can lift(X; b) : [f2g;* V1]:In other words, DB1 contains the information that DB2 is a more reliable source of information asfar as the object b is concerned. When we resolve this clause with the original query in the aboveexample, we get the following query:can lift(r1; b) : [f1; 2; 3g; (T � * V)\ * V1] _ can lift(X; b) : [f2g; T � * V1] :Here V1 is going to be maximized as well, and we want to know how the current maximum value of Vis a�ected by the changes in the value of V1. We are now going to formalize this idea.5.1 Maximization ProblemsDe�nition 12 (Maximization Problem) let T be a complete lattice of truth values, V1; : : : ; Vn beannotation terms and fobj : T n ! T . A maximization problem MP is given as follows:maximize fobj(V1; : : : ; Vn)subject to T1
11 f11(V1)
12 : : :
1n f1n(Vn) = ;: : :Tm
m1 fm1(V1)
m2 : : :
mn fmn(Vn) = ;17

where Ti � T , fij is a map from T to 2T , and
ij 2 f\;[; ng for all 1 � i � m; 1 � j � n. Intuitively,the expressions on the left of the equalities above are unions/intersections/di�erences of terms denotingsubsets of T .A mapping M : fV1; : : : ; Vng ! T is said to be an optimal solution to MP i� (1) the assignment ofM(Vi) to variable Vi (1 � i � n) satis�es the constraints and (2) for all other mappingsM 0 that satisfythe constraints, the inequality fobj(M(V1); : : : ;M(Vn)) 6� fobj(M 0(V1); : : : ;M 0(Vn)) holds w.r.t. thegiven lattice ordering.Example 7 Consider the truth value lattice FOUR and suppose we wish to solve the maximizationproblem maximize V1 t V2subject to f?; fg \ (* V1) \ (* V2) = ;Then, V1 = V2 = >,V1 = >; V2 = t and V1 = t V2 = > are all solutions to the problem that maximizeV1 t V2. However, the solution V1 = ?, V2 = t does not maximize V1 t V2. 2Consider the query Q� � A : [D; T � * V1]. As has been illustrated in Example 6, when processingthis query by performing successive S-resolutions, the atom A (when it occurs in successive resolventsin an S-deduction) will always have an annotation of the form(T � * V1) \ (* V2) \ : : :\ (* Vn)where n � 1. When attempting to evaluate the \current best" known truth value for A, we need tomaximize the value of V1 subject to the constraint(T n * V1) \ (* V2) \ : : : \ (* Vn) = ;:This is because V1 occurs in the query Q� and we wish to get the maximal possible value of V1.Theorem 3 below shows that the optimal solution of this maximization problem is obtained by settingV1 = V2 t : : :t Vn. Prior to proving Theorem 3, we need to prove an elementary result.Lemma 1 If V1 = V2 t : : :t Vn, then * V1 = (* V2) \ : : : \ (* Vn).Proof:� Since Vi � V1 (2 � i � n), V1 2 (* Vi). Hence for all V1 � V 0 , V 0 2 (* Vi) and (* V1) � ((*V2) \ : : : \ (* Vn)).� Let Vs = (* V2) \ : : : \ (* Vn). For all V 0 2 Vs, we have that Vi � V 0 (2 � i � n) . SinceV1 = V2 t : : :t Vn, it must be the case that V1 � V 0 . Hence V 0 2* V1 and ((* V2) \ : : : \ (*Vn)) �* V1. 2Theorem 3 For any maximization problem MP given as follows:maximize V1subject to (T n * V1) \ (* V2) \ : : : \ (* Vn) = ;18

where all the Vi,1 � i � n are annotation terms, the optimal solution is:V1 = V2 t : : :t Vn:Proof: The theorem will be proved by induction on the number, n, of annotation variables.Basis The problem MP1 be given as follows:maximize V1subject to (T n * V1) = ;Then, the optimal solution to MP1 is V1 = ?.� tfg = ?, therefore V1 = ? is the solution given in the theorem.� Since * V1 = T , (T n * V1) = ; and hence V1 = ? is a solution to the constraint given in MP1.� There is no solution V 01 such that ? � V 01 . Since that implies ? 2 (T n * V 01), V 01 does not satisfythe constraint.Inductive Step Let for all i < n the solution to the problem MPi ,maximize V1subject to (T n * V1) \ : : :\ (* Vi) = ;be given as V1 = V2 t : : :t Vi. Let the problem MPn be :maximize V1subject to (T n * V1) \ : : :\ (* Vn) = ;Then the solution to MPn is V1 = V2 t : : :t Vn.� Let � = V2 t : : : tVi�1 and � = � t Vi. By the inductive hypothesis � is a solution toMPi�1.By lemma 1 it is true that * � = (* V2) \ : : : \ (* Vi�1)(* �) \ (* Vi) = (* V2) \ : : : \ (* Vi�1) \ (* Vi)By lemma 1, * (� t Vi) = (* �) \ (* Vi) = * �. Then,(T n * �) \ (* V2) \ : : :\ (* Vi) = ;and � is a solution to MPi.� � is the only solution since for all V 0 6� � is true that � 62 * V 0 and � 2 (T n * V 0). By theargument above we know that* � = (* V2) \ : : :\ (* Vi)� 2 ((* V2) \ : : :\ (* Vi))� 2 [(T n * V 0) \ ((* V2) \ : : :\ (* Vi))] 6= ;Hence, V 0 doesn't satisfy the constraints for MPi and cannot be a solution. 219

Example 8 Consider the maximization problem:maximize Vsubjectto (T � V)\ * V1 \ : : :\ * Vn�1:The solution to this problem is Vold = V = V1t : : :tVn�1. Now, suppose the term * Vn is added to theconstraint. Then, the new maximum value of V is V = Vold t Vn. In other words, having calculatedVold once, we can use it to solve larger problems maximizing the same variable. For instance, in thecase of example 6, we had calculated the maximal truth value of V to be t (in the second step). Atstep 4, we introduce the term * f into the constraint. Then, the new maximal value of V becameV = t t f = >. Therefore we, can conclude that V = > without solving the maximization problemfrom scratch. 2When using the above theorem to compute the maximal value of V1 subject to the constraint that(T n * V1) \ (* V2) \ : : : \ (* Vn) = ;we need to address how the maximal value of V1 changes when the value of one of the Vi's changes.The following theorem shows how this may be easily computed.Theorem 4 Let MPn be the maximization problem given in Theorem 3 and V1 = � = V2 t : : : t Vnbe the maximum solution. The problem MP 0n is de�ned by replacing Vi by V 0i for some 2 � i � nwhere Vi � V 0i . The optimal solution to MP 0n is V1 = � t V 0i .Proof: Since * Vi \ * V 0i =* V 0i and by lemma 1, * (� t V 0i) =* �\ * V 0i , then* � = * V2 \ : : :\ * Vn* � \ * V 0i = * V2 \ : : :\ * V 0i \ : : :\ * Vn(T n * (� t V 0i)) \ * V2 \ : : :\ * V 0i \ : : :\ * Vn = ;Hence, V1 = �tV 0i satis�es the constraint given in MP 0n and it is the maximum such value as a resultof the second equality above. 25.2 Table OrganizationThe MULTI OLDT table is a linked collection of records. At any given point in time, t, during theprocessing of query Q, there is a record in the table for each atom that occurs either in Q or in anyof the resolvents generated upto that time. Each amalgamated atom in a resolvent generated whileconstructing one or more deductions points to the corresponding record in the table. The recordstructure associated with the amalgamated atom A : [D; V] has seven �elds described below:1. Index:6 The index (name) of the annotation variable V . If V is a ground term, then V isreplaced by a variable V 0 both in the query and in the record for A : [D; V]. V 0 must be di�erentfrom all the variables that appear in the original query and in the intermediate queries as well.6In this paper, we will assume that the annotation functions occur only in clause heads, no variable symbol occursmore than once in an annotation term, and no nesting of annotation functions is allowed.20

2. Known: The currently known value of the variable under di�erent answer substitutions. This�eld is a pointer to a linked list of (substitution,truth value) pairs. It is initially set to (�;?).Intuitively, an entry (�; �) in the Known �eld of an atom A : [D; V] means that there alreadyexists a refutation for 8(A : [D; V]) with (�; �) as a computed (substitution, truth value) pair,i.e. 8(A� : [D; �]) is known to be a logical consequence of the program.3. Desired: The minimum truth value necessary to stop further processing of the associatedamalgamated atom. This value is > for all annotation variables (intuitively, this says \the sky(>) is the limit").4. Status: This �eld is used for expressing control information about the associated atom A. It isset to 0 if V is non-ground. Otherwise, it is set to 1.5. Reference: This �eld is set as follows: if A : [D; V] was in the original query Q, then this �eldis NIL. Otherwise, it must have been introduced by one and only one clause C involved in aresolution step with an intermediate resolvent Qi on an atom Ai : [Di; Vi], in Qi. In this case,this �eld points to the entry associated with Ai : [Di; Vi].6. Subsumes: This �eld is a pointer to a list of nodes. Each node N in this list contains a pointerto an entry, E, in the table whose associated atom is subsumed by A : [D; V].7. Atom: This �eld is a pointer to the record storing the atom A : [D; V] in QUERY or in GARBAGE.The list QUERY is a doubly-linked list of amalgamated atoms to be solved. It has the following prop-erties: (1) Every amalgamated atom is represented by a unique node in the list. (2) Each node storesnecessary information about the atoms. (i.e. the predicate symbol, the DNAME value, etc.) (3) Eachnode has a pointer pointing to the table entry associated with the atom stored in it. (4) Nodes havepointers pointing to next and previous entries in the list. In addition to the list QUERY, we have the listGARBAGE with the same structure. When we want to insert a new atom into QUERY, we check if thereexists an atom in it that subsumes the new atom. If this is the case, then we don't need to processthis atom, and hence, we can insert it into GARBAGE instead of into QUERY.5.2.1 Table CreationGiven the regular representation, Q� = (A1 : COMP([D1; T1]) _ � � � _ Am : COMP([Dm; Tm])) 7 of the(initial) query to an amalgamated KB, we create the MULTI OLDT table by calling the the procedureCreate New Entry for all atoms Ai : COMP([Di; Ti]), 1 � i � m as described below:Insert a node corresponding to the atom Ai : [Di; Ti] into QUERY and call Create New Entry(Ti).Set a pointer from the node in QUERY storing Ai : [Di; Ti] to the newly created table entry.function Create New Entry (T :annotation term) :address of the table entrybegin allocate a new entry Enew for the annotation termSet Enew.Reference and Enew .Subsumes to NILif T is ground then7Without loss of generality, we will assume that the atoms that use the same annotation variables appear consecutivelyin the query and in all the program clauses. Furthermore, the atoms in the body of a clause appear in the same orderas their respective annotation variables appear in the annotation term of the head.21

Create a new variable Vnew, and set Enew .Index to VnewSet Enew .Desired to TelseSet Enew .Status to 1 and Enew .Known to (�;?)Set Enew .Index to T , Enew .Desired to >Set Enew .Known to (�;?)return EnewendExample 9 Recall example 6. The initial query was:can lift(r1; b) : [f1; 2; 3g;T� * V] :Initially both the table and the linked list of query atoms are both empty. We insert the node(can lift(r1; b) : [f1; 2; 3g; V] { Entry 1) into QUERY. The entry in the table corresponding to thisatom is as follows:Index Known Desired Status Reference Subsumes AtomV (�;?) > 0 nil nil 1 25.3 Updating The Table Entries During ResolutionWhen we resolve the (regular representation of) query, Q�j , against the clause C� =B0 : EXP([D00; f(V 01 ; : : : ; V 0m)]) B1 : EXP([D01; V 01])& : : :&Bn : EXP([D0n; V 0n])on the atom Ai : COMP([Di; Vi]) via mgu �, two things may happen: (1) some new entries from thebody of C� may need to be added to QUERY and to the table and (2) the (substitution,truth value)pairs associated with the atom Ai : COMP([Di; Vi]) in the table may change. The table needs to beupdated to incorporate these changes. These updates are handled as follows:� For each 1 � r � n, we create a new entry, E(r), in the table associated with Br� : COMP([D0r; V 0r]).Two cases may arise, depending upon whether Br� : COMP([D0r; V 0r]) is subsumed8 by an amalga-mated atom associated with an existing entry in the table.{ Case 1: If it is not so subsumed, then the �elds of E(r) are set as speci�ed in the TableCreation part above, except that the Reference �eld points to the table entry for atomAi : COMP([Di; Vi]). The amalgamated atom Br� : [D0r; V 0r] is added to QUERY.{ Case 2: (Subsumption Check and Cache Usage) Br� : COMP([D0r; V 0r]) is subsumedby an amalgamated atom, A] associated with an existing entry E(A]) in the table. Let
be a substitution such that A]
 = Br�. Then the Known �eld of E(r) is set to (
,nil).(This pair will be kept to re
ect the relationship between already computed pairs in theKnown �eld of E(A]) and E(r).) Furthermore, Br� : [D0r; V 0r] is not added to the QUERY,instead it is appended to GARBAGE. A pointer to E(r) is added to the list pointed to by8A1 : COMP([D1; V1]) subsumes A2 : COMP([D2; V2]) i� V1; V2 are annotation variables and there is a substitution
 suchthat A1
 = A2 and D1 � D2. 22

E(A]).Subsumes. For all the pairs (�; �) in E(A]).Known the following is added toE(r).Known: (1) if �0 is less general than
, then add (�0 ; �), (2) if
 is less general than�0 , then add (
; �). Here �0 is obtained from � by throwing away all pairs X = Y such that
 does not contain any substitution for X or Y . The procedure Copy Subsumed Knownwhich will be given later, is used for copying Known �eld to subsumed entries as explainedabove. The other �elds are set in the same way as speci�ed in the Create New Entryalgorithm described earlier.� An additional entry, E(n+1), is added after the entry for Bn� : COMP([D0n; V 0n]) If f(V 01 ; : : : ; V 0m)is a ground term, then it is evaluated and its value is stored in the Desired �eld of E(n + 1),the Status �eld is set to 1. If f(V 01 ; : : : ; V 0m) is a non-ground annotation term then the addressof the code implementing f is stored in the Index �eld and the Status is set to 0. The pair(�,nil) is stored in the Known �eld. The Reference and Subsumes �elds are set to NIL.� The propagation of (substitution,truth value) pairs is described below.Example 10 Consider the �rst step in Example 6. We resolved the query with the clause:can lift : [f2g;* t] weight(X;W) : [f2g;* t] &W < 50:via mgu fX = bg. At this step, the initial table given in example 9 is modi�ed to:Index Known Desired Status Reference Subsumes AtomV (�;?) > 0 nil nil 1V1 (�;?) t 1 Entry 1 nil 2V2 (�;?) t 1 Entry 1 nil 3(fX = bg,nil) t 1 nil nil nilThe atoms in QUERY are the following: (can lift(r1; b) : [f1; 2; 3g; V] { Entry 1), (weight(b;W) :[f2g; V1] { Entry 2), (leq(W; 50) : V2 { Entry 3). 25.3.1 Substitution and Truth Value Propagation.Recall that the entries in the MULTI OLDT table store information concerning the amalgamated atomsin a query. The Known �eld of a given entry stores pairs of the form (�; �), which means that ifA : [D; V] is pointing to this entry, then A� : [D; �] is a logical consequence of the program. As-sume that the (regular representation of) query A : COMP : [D; V] is resolved with the clauseA : EXP([D; f(V1; : : : ; Vm)]) B1 : EXP([D1; V1]) & : : : &Bm : EXP([Dm; Vm]) and assume thatthe Known �elds of the table entries corresponding to the atoms B1; : : : ; Bm contain the pairs(�1; �1); : : : ; (�m; �m) respectively. From this information we can conclude that A� : [D; f(�1; : : : ; �m)]is a logical consequence of the program where � is any substitution such that it is less general than�1; : : : ; �m. In this paper, we will consider a substitution to be a set of equations in solved-form (cf.Martelli and Montanari [25]).De�nition 13 Let �1 and �2 be two substitutions. � is said to be the most general common denom-inator (MGCD) of �1 and �2 i�1. � is less general than both �1 and �2, i.e. there exists substitutions �0 and �00 such that � =�1�0 = �2�00 . 23

2. For any substitution �0 that satis�es (1), �0 is less general than �. (It may be the case that �is less general than �0 as well, in that case �0 belongs to the same equivalence class as � underthe equivalence relation � de�ned as: �1 � �2 i� � is less general than �2 and �2 is less generalthan �1.)Note that if there is a refutation for (A : [D; �])�, then there is a refutation for (A : [D; �])�0for all �0 less general than �. The substitutions �1 and �2 are said to be compatible i� there existsubstitutions �0 and �00 such that �1�0 = �2�00 . Any two compatible substitutions are guaranteed topossess an MGCD and this MGCD is unique upto equivalence.Proposition 2 Suppose there are refutations for the regular representations, A1�1 : COMP([D1; �1]) and A2�2 : COMP([D2; �2]) where �1 and �2 are compatible. Then there exists a refutation for theregular representation A1� : COMP([D1; �1]) _ A2� : COMP([D2; �2]) where � is an MGCD of �1 and�2.Proof. Since there is an S-refutation for both A1�1 : COMP([D1; �1]) and A2�2 : COMP([D2; �2]) , itfollows, by the Soundness of S-resolution, that both 8(A1�1 : EXP([D1; �1])) and 8(A2�2 : EXP([D2; �2]))are logical consequences of the given program P . As � is less general than both �1 and �2, it follows that8(A1� : EXP([D1; �1])) and 8(A2� : EXP([D2; �2])) are logical consequences of P as well. By the com-pleteness theorem for S-resolution, there is an S-refutation for the query 8(A1� : EXP([D1; �1]) &A2� :EXP([D2; �2])). 2This result can be extended to queries of arbitrary length. Also note that if we have refutations forA�1 : COMP([D; �1]) and A�2 : COMP([D; �2]) , and �1 and �2 are compatible, then there exists arefutation for A� : COMP([D; �1 t �2]) where � is an MGCD of �1 and �2.Example 11 Let the truth value lattice be FOUR and assume we have the following program clauseC�: p(X; Y) : EXP([D; V1 u V2]) q(X; Y) : EXP([D; V1]) & r(X; Y) : EXP([D; V2])Suppose there exist refutations for q(X; Y)�1 : COMP([D; t]) and r(X; Y)�2 : COMP([D; f]) , where�1 = fX=ag and �2 = fY=f(Z)g. � = fX=a; Y=f(Z)g is the MGCD of �1 and �2, and from this wecan conclude that there is a refutation for p(X; Y)� : COMP([D; tu f]) . 25.3.2 Collecting Truth Values and Substitutions For RefutationsWhen an S-resolution step is performed and the corresponding maximization problem is solved, the(new) maximal value � of an annotation variable V is calculated for the mgu � of the resolution.Hence, (�; �) is added to the Known list associated with V . V in turn may appear as a constraint inother maximization problems. For example, assume that E is the table entry storing the variable V .If E.Reference is not nil, then the atom pointing to E must be in the body of a clause C and C wasresolved with the query on atom QA. (QA is pointing to the table entry pointed to by E.Reference.)Then (�; �) combined with (substitution, truth value) pairs corresponding to other atoms in the bodyof C may result in new refutations for QA. New refutations must be propagated to QA and to allatoms subsumed by QA. The table updating process can be summarized in three steps:1. Combining Refutations. (substitution,truth value) pairs corresponding to atoms that occurin the body of the same clause are merged and their their common MGCDs are found.24

2. Updating The Known Field. Given a list of new (substitution,truth value) pairs, we haveto update the Known �eld of the appropriate entry so that the new pairs are incorporated intothe Known list, and redundant (i.e. subsumed) pairs are eliminated.3. Propagating The Updates. Steps 1 and 2 must be repeated to re
ect the e�ects of theupdates on all the atoms. This may be the result of iteration on the Reference �eld or theSubsumes �eld.Combining Refutations. Recall that entries corresponding to atoms in the body of the same clauseC are stored consecutively in the table. We will start from the �rst entry in the table associated withan atom in C and merge Known lists of all the atoms in C. Let us illustrate how this will be doneby an example:Example 12 Let the query atomQA � A : COMP([D; V]) be resolved with the clause A1 : EXP([D1; T1]) A2 : EXP([D2; T2]) &A3 : EXP([D3; T3]) via mgu �. The atoms in the body of the clause are addedto QUERY. Assume, after several resolution steps, that the Known lists associated with atomsA2 : COMP([D2; T2]) and A3 : COMP([D3; T3]) contain the pairs (�2; �2) and (�3; �3) and � be theMGCD of �2 and �3. Then we may conclude the following for QA depending on the nature of T1; T2and T3.� Case 1: T2; T3 are variables:{ Case 1.1: T2 and T3 are di�erent variables: Then, T1 must be a function of T2 and T3,i.e. T1 = f(T2; T3) for some annotation function f . Then, A�� : COMP ([D; f(�2; �3)]) has a refutation. The pair (��; f(�2; �3)) must be added to the Known list of the tableentry corresponding to QA. The variable S LIST in procedure Merge Substitutions belowwill contain the pair (�; h�2; �3i) at the end of the big while loop and it will contain thepair (��; f(�2; �3)) when procedure terminates.{ Case 1.2: T2 and T3 are identical. Then, T1 must also be identical to T2 and T3. Then,we must add the pair (��; �2 u �3) to the Known list of QA.� Case 2: T2 is ground and T3 is a variable: Then, T1 must be identical to T3. If evaluate(T2) � �2then we must add the pair (��; �3) to the Known list of QA. The case when T3 is ground andT2 is a variable is similar to this case.� Case 3: T2; T3 are both ground: In this case T1 must also be ground. If evaluate(Ti) � �i istrue for i = 2; 3, then we must add the pair (��; evaluate(T1)) to the Known list of QA. 2Below, we generalize this idea to clauses of arbitrary length. The variable S LIST used in the procedureis a list of (substitution, truth value list) pairs. The second list is a list of truth values of all the distinctvariables appearing in the clause. When a new variable is encountered during the merging process, itsvalue is appended to the end of the truth value list.function Merge Substitutions (PTR : pointer to table) : list of (substitution,truth value)begin S LIST (�; h i)Previous Index nil n� used to take glb of truth values corr. to same var. in di�erent atoms �nRef Entry PTR.Reference n� used to �nd the last entry with the same Reference �eld �n25

while PTR.Reference = Ref Entry doS LIST 2 NILfor all the elements (�0 ; �0) in PTR.Known dofor all the elements (�; h�1 : : : ; �ii) in S LIST doif there exists MGCD � of � and �0 thenif PTR.Status = 1 and (PTR.Desired � �0) thenadd (�; h�1 : : : ; �ii) to S LIST 2 n� Case 2 in Example 12 �nelse if PTR.Status = 0 thenif Previous Index = PTR.Index thenadd (�; h�1 : : : ; �i�1; �i u �0i) to S LIST 2 n� Case 1.2 in Example 12 �nelseadd (�; h�1 : : : ; �i; �0i) to S LIST 2 n� Case 1.1 in Example 12 �nend if n� there exists an MGCD of �1 and �2 �nPrevious Index PTR.IndexPTR next(PTR)S LIST S LIST 2end while n� All the entries with the same Reference �eld �nn� Now PTR is pointing to the additional entry that stores the substitution of resolution �nLet PTR.Known be (
; nil)for all the elements (�; h�1 : : : �ji) in S LIST doif PTR.Status = 0 then n� call the addressed annotation function �nadd (
�, call(#(PTR.Index),h�1 : : :�ji)) to the output listelse if PTR.Status = 1 then n� j must be 0 �nadd (
�,PTR.Desired) to the output list n� Case 3 in Example 12 �nelsen� j must be 1 �nadd (
�; �1) to the output listend forReturn the output listendAs the reader may have already noticed, this algorithm constantly recomputes the combination ofalready existing pairs every time new pairs are added to the Known �eld of a table entry. Thisdrawback can easily be remedied by storing the computed (substitution,truth value) pairs in theKnown �eld of the additional entry created for all the clauses involved in the resolution. Then, whennew pairs are added to the Known �eld of an entry in the table, the merging procedure takes only thesubstitutions that are compatible with the new substitutions from Known �elds of the table entriesto be merged. (Recall that these entries correspond to atoms that occur in the body of the sameclause.) Once all the new pairs are computed, they are merged with the pairs stored as explainedabove by throwing away the subsumed pairs from each list. This enables us to prune the search spaceconsiderably and prevent us from performing the same computations over and over again. Similarly,the propagation procedure will only use the newly computed pairs instead of the whole list of pairs.Example 13 Consider the second step of Example 6. The table given in example 10 will be updatedso that the Known �elds of second and third entries both contain the pair (fW = 19g; t). If we mergethese pairs, we get the pair (fW = 19g; hi) at the end of the big while loop. (recall that the truthvalues stored in these entries correspond to ground terms, so we don't include them in the truth value26

list of the pairs in S LIST.) Since, the Status �eld of the additional entry (Entry 4) is 1, we returnthe pair (fW = 19g; t) at the end of the merging procedure. 2Propagating The Updates. This phase has several di�erent functions. Recall that we had resolveda clause C with the query on an atom (this atom points to the table entry PTR). First, we may needto add new atoms to QUERY (or to GARBAGE) if the body of C is not empty. The procedure Store Atomsis used for this purpose and it calls a function named Check Loop for all the atoms to check if anyof the atoms causes a positive loop in the query. If this is the case, all the changes corresponding tothe last resolution step are deleted and the table is restored. If C is a fact, then we have obtaineda new (substitution,truth value) pair for the entry PTR. Then, the procedure Update Table updatesthe Known �eld of PTR by inserting this pair and re
ects the changes in PTR.Known to the tableentry PTR.Reference by merging the Known �elds as explained in example 12 and calling theprocedure Update Known repeatedly until no new pairs can be found. This process is expanded tothe entries that are subsumed by an entry that has been updated. If PTR.Known has been updated,then new Known �elds are calculated for all the entries subsumed by PTR by calling the procedureCopy Subsumed Known.procedure Update Table (PTR : pointer to a table entryC : Clause the query atom is resolved with� : unifying substitution)n� PTR is the table entry corresponding to the query atom that has been resolved �nbegin if body of C is not empty thenStore Atoms (PTR,C,�)n� Store the atoms in the body C to QUERY and create corr. table entries �nelseLet C be A : EXP([D; T]) n� T must be ground �nUpdate Known ((�; evaluate(T),PTR) n� New refutation found, insert into Known �nUpdate LIST PTR + PTR.Subsumesn� Update list is a list of pointers pointing to table entries that have been updated �nn� These updates must be propagated �nwhile Update LIST <> nil doPTR Update LIST.PTR n� set PTR to the �rst pointer in the list �nUpdate LIST next(Update LIST) n� Discard the �rst element in the list �nwhile PTR.Reference <> nil dowhile PTR.Reference = previous(PTR). Reference doPTR previous(PTR)n� �nd the �rst table entry with same Reference �eld as PTR �nS LIST Merge Substitutions (PTR)if S LIST = nil thenUpdate LIST next(Update LIST)PTR Update LIST.PTRelsePTR PTR.ReferenceUpdate Known (S LIST,PTR)if no new pairs are inserted to PTR.Known then27

Update LIST next(Update LIST)elseUpdate LIST Update LIST + PTR.SubsumesSubsumes LIST PTR.Subsumeswhile Subsumes LIST <> nil thenSubsumes PTR Subsumes LIST.PTRCopy Subsumed Known (PTR.Known, S PTR.Known)Subsumes LIST next(Subsumes LIST)endwhile n� Copy the Known list to subsumed entries �nendwhile n� PTR.Reference is nil, move to next element in Update LIST �nendwhile n� Update LIST is empty, all updates are propagated �nendprocedure Copy Subsumed Known (K1,K2:Known lists)n� Atom with Known list K1 subsumes the atom with Known list K2 �nbegin Let (
;?) be the �rst pair in K2for all pairs (�; �) in K1 dothrow away all pairs X = Y from �such that there is no pair X = X 0 or Y = Y 0 in
 for some X 0 or Y 0and obtain �0if �0 is less general than
 thenCreate a primary node PTR for Known list9 for (�; �)INSERT (K2,PTR) n� The procedure is given later in the paper �nelse if
 is less general than �0 thenCreate a primary node PTR for (�; �)INSERT (K2,PTR)Insert a primary pointer for (
;?) to the beginning of K2endThe following example illustrates the working of the Copy Subsumed Known routine.Example 14 Assume the atom QA1 � p(X; Y) : COMP([f1; 2g; V1]) is part of a query Q0 and afterseveral steps of resolution we encounter the subquery QA2 � p(X; f(X)) : COMP([f1; 2; 3g; V2]). QA1subsumes QA2 since p(X; Y)
 = p(X; f(X)) for
 = fY = f(X)g and f1; 2g � f1; 2; 3g.Suppose the following pairs are stored in the Known list of the entry associated with QA1 :((fX = Y g; t); (fX = bg; f); (fY = bg; t); (fX = f(Y)g; f); (fY = f(a)g;>):)Then we copy the following pairs to the Known list of the entry associated with QA2 :({; (fX = bg; f) ; { ; {; {; (fX = ag;>):)The � above denotes a \don't care" symbol. 2procedure Store Atoms (PTR : pointer to a table entryC : Clause the query atom is resolved with� : unifying substitution)28

n� PTR is the table entry corresponding to the query atom that has been resolved �nbegin Subsuming Entries nil n� list of table entries that subsume a new atom �nLOOP FLAG false n� set if a positive loop is detected �nLast Table Entry pointer to the last entry in the tableLast Query Atom pointer to the last node in QUERYLast Garbage Atom pointer to the last node in GARBAGEfor all atoms A in the body of C doCreate an entry NEW PTR in the tableNEW PTR.Reference PTRfor all atoms B in QUERY that subsume A doLet PTR1 point to the table entry corresponding to BSubsuming Entries Subsuming Entries + PTR1add a pointer to PTR1.Subsumes pointing to NEW PTRLOOP FLAG Check loop (NEW PTR,Subsuming Entries)if LOOP FLAG thenRemove all the entries corresponding to C from the table using Last Table EntryDelete the Subsumes entries pointing to an atom in C using Subsuming EntriesRemove all atoms added to QUERY and GARBAGE from Cusing Last Query Atom and Last Garbage AtomHALTelseadd (A { NEW PTR) to GARBAGEelseadd (A { NEW PTR) to QUERYendforcreate the last entry as explained in Section 5.3endThe following procedure checks for positive loops. It uses the list of entries that subsume the newentry which was constructed in procedure Store Atoms. We are inserting the atom A associatedwith the table entry PTR. We detect a positive loop if any of the entries reachable from PTR followingthe Reference pointers corresponds to an atom that subsumes A or is subsumed by A.procedure Check loop (PTR:Subsumed Entry,Subsuming Entries: List of Subsuming Entries)n� PTR is a pointer to a table entry associated with an atom.Subsuming Entries is a list of pointers to table entriesassociated with atoms that subsume the atom associated with PTRthe function head returns the �rst pointer to a table entry in the list �nQA PTR.AtomPTR PTR.Referencewhile PTR <> nil do 29

TEMP Subsuming Subsuming Entrieswhile TEMP Subsuming <> nil doif PTR = head(TEMP Subsuming) thenHALT, return trueTEMP Subsuming next(TEMP Subsuming)endwhileif PTR.Atom subsumes QA thenHALT, return truePTR PTR.Referenceendwhilereturn false n� if the procedure reaches this point without terminatingthen, it means that no positive loop is detected �nendThe following example shows how the loop checking procedure works.Example 15 Suppose program P consist of the single clause C�:p(X) : EXP([fsg; t]) p(X) : EXP([fsg; t])and we ask the query Q�: p(X) : COMP([fsg; t]) We create a table entry E1 for the query atom, and set E1.Known to (?,nil). We then resolve Q�with C�. We create an entry E2 in the table for the new atom, and set E2.Reference to E1. Beforewe insert the new atom Anew = p(X) : COMP([fsg; t]), we check if it is subsumed by an atom in thequery. Since the single atom in Q� subsumes Anew , we decide not to insert it. Instead, we createa pointer pointing to E2 and insert it into the E1.Subsumes list. The list Subsuming Entries isset to E1. Then, we check for positive loops by calling Check loop. Check loop traverses all theentries reachable from E2 by following the the Reference pointers and checks if any of them is in theSubsuming Entries list. Since E2.Reference is equal to E1 and E1 is in the Subsuming Entries list,we detect a positive loop. Hence, we delete E2 and all the entries pointing to E2(i.e. the pointer inE1.Subsumes pointing to E2).Suppose the following fact C�2 had also been in the program:p(a) : EXP([fsg; t]) Then, we resolve Q� with C�2 to obtain the (substitution,truth value) pair (fX = ag; t) and insert itinto E1.Known. 2Updating The Known Field. Upto now, we treated the Known �eld as if it were a simple linkedlist. As explained in the preceding sections, after a resolution step, we may �nd new (substitution,truthvalue) pairs (�; �) for an atom A : [D; V] which means that A� : [D; �] is a logical consequence of theprogram. We then need to update the Known �eld of the table entry corresponding to this atom.The procedure Update Known is invoked by the list of new (substitution,truth value) pairs to beinserted and a pointer to the table entry we're updating. For all pairs in the list, it checks to see30

if they are subsumed by an existing pair in the Known structure, or if they subsume any existingentries. In other words, the procedure checks if any of the cases described below occurs and performsthe appropriate actions. Before we give the description of the procedure Update Known, we willdevelop data structures to maintain the Known �eld e�ciently together with explanations of thecases that may arise during the execution of the procedure.5.3.3 Managing (Substitution-Truth Value) Pairs and Updating The Known FieldWe introduce a data structure to maintain the Known �eld of the table. The main objective is to beable to update theKnown �eld e�ciently, given a doubly linked list of nodes that contains informationregarding the new (substitution,truth value) pairs to be inserted into the structure. We want to avoidmaking unnecessary calls to the MGCD function as well as to reduce the number of variant checks.The data structure therefore will be a linked list where each node (we will refer to these nodes asbeing primary nodes) stores information about (substitution,truth value) pair, the node's locationand it has a �eld that points to a secondary linked list with a di�erent structure. (we will refer to thenodes in the secondary list as secondary nodes.) This secondary list enables a primary node storing asubstitution value � to access all primary nodes storing substitution values less general than �.Primary Node Structure. A primary node is a record containing the following information:1. Pointers:(a) Next: The next entry in the primary list.(b) Prev: The previous entry in the primary list.(c) LG: This �eld is a pointer to a secondary linked list whose structure is given below andits entries point to primary nodes that store substitution values less general than the Subs�eld (de�ned below).2. Info: The information is stored in the following �elds:(a) Subs: The substitution stored in the node.(b) TV: The truth value associated with this substitution.(c) Top: Number of secondary nodes in the structure that point directly to the primary node.3. Status Bits:(a) Updated: Set if the TV �eld is changed during a pass of the procedure UPDATE ALL.(b) Deleted: Set if the node is deleted (a node is not deleted physically if Top is not 0).(c) Scanned: Toggled if the node is accessed during updates.Secondary Node Structure. Secondary lists are pointed to by the LG �eld of nodes in the primarylist and it has the following structure:1. Next LG: Pointer to the next entry in the secondary list.2. Prim LG: Pointer to a primary node storing a Subs value less general than the Subs value ofthe current primary node. 31

Assume N1; N2 are primary nodes in the data structure containing (substitution,truth value) pairs(�1; �1) and (�2; �2) respectively and �2 is less general than �1. Then, the following is true initially(i.e. when the data structure does not contain any nodes) and it will be maintained as an invariantby all operations that will be de�ned on the data structure.1. N2 is reachable from N1. (A primary node A is reachable from another primary node B i� theLG list of B contains a secondary node with the Prim LG �eld pointing to A, or a secondarynode in the LG list of B points to C and A is reachable from C.)2. �1 � �2.3. N2 occurs to the right of N1 in the primary linked list.5.3.4 Operations on the Data StructureAssume we are inserting the (substitution,truth value) pair (�; �) into the data structure and thestructure already contains a node storing the pair (�0 ; �0). Depending on the values of (�; �) and(�0 ; �0), we may need to make changes in the primary and secondary lists. The operations we will useto make these changes are as follows:� Case 1: If �0 is less general than � and �0 � �, then the new (substitution,truth value) pairsubsumes the existing node. In that case, we must delete the existing node. Note, that wecannot delete the node physically if there are secondary nodes pointing to it (corresponding tothe case where Top is non-zero. In this case, we just mark it deleted).procedure DELETE(PTR:primary node)Set PTR.Deleted to 1if PTR.Top 6= 0 then HALTelseLGPTR PTR.LGwhile LGPTR 6= nil doP1 LGPTR.Prim LGDecrease P1.Top by oneif P1 was marked Deleted thenDELETE(P1)LGPTR LGPTR.Next LGFREE (PTR.LG) n� return the secondary list associated with PTR to available storage �nSet (PTR.Prev).Next to PTR.NextSet (PTR.Next).Prev to PTR.PrevFREE (PTR)end� Case 2: If �0 is less general than � and � 6� �0 , then we have to update the truth valueassociated with �0 to � t �0 . We know that any (substitution, truth value) pair (�00 ; �00) storedin the structure such that �00 is less general than �0 will be less general than �, then we have toupdate all such pairs as described above and we should delete any pairs that are subsumed bya primary node. 32

procedure UPDATE ALL(PTR:primary node,�:truth value)LGPTR PTR.LGwhile LGPTR 6= nil doP1 LGPTR.Prim LGif P1 was marked Deleted or P1.TV � � thenRemove the secondary node pointed to by LGPTR from PTR.LGLGPTR2 P1.LGwhile LGPTR2 6= nil doADD SECONDARY PTR (PTR,LGPTR2.Prim LG)LGPTR2 LGPTR2.Next LGDecrease P1.Top by 1if P1.Top = 0 thenDELETE(P1)elseSet P1.TV to P1.TVt �Set P1.Updated to 1UPDATE ALL (P1,P1.TV)LGPTR LGPTR.Next LGend� Case 3: If �0 is less general than � and � � �0 , then using the same argument in Case 2, allthe primary nodes storing substitution values less general than �0 have to be updated. Since weknow that these nodes will have a corresponding truth value greater than � by invariant 2 givenin section 5.3.3, the update will have no e�ect on their TV �eld. For this reason, we just markthem all Updated.Note that during a pass of the algorithm, we may �nd a primary node with Subs value moregeneral than � and TV �eld incomparable with �. Then, we have to change � by taking lubwith this value. This means that, some of the nodes that were not e�ected by � may be e�ectedby its new value. To re
ect these changes, once the primary list is totally scanned, the TV �eldof all the nodes that were updated will be changed by taking lub with the last value of �.procedure MARK ALL(PTR:primary node)Set PTR.Updated to 1LGPTR PTR.LGwhile LGPTR 6= nil doP1 LGPTR.Prim LGif P1 was marked Deleted thenRemove the secondary node pointed to by LGPTR from PTR.LGLGPTR2 P1.LGwhile LGPTR2 6= nil doADD SECONDARY PTR (PTR,LGPTR2.Prim LG)LGPTR2 LGPTR2.Next LGDecrease P1.Top by 1 33

if P1.Top = 0 thenDELETE(P1)MARK ALL(LGPTR.Prim LG)LGPTR LGPTR.Next LGend� Case 4: After we update the table using the operations described above, we may still need toinsert the pair (�; �) since it is not subsumed by any pair in the structure. We may also need toinsert a new pair (�; �t�0) where � is the MCGD of � and �0 , in the case when neither � nor �0are less general than each other and � 6� �0 . Then we can only conclude (�; � t �0) from thesetwo pairs.To insert a primary node PTR, we have to make sure that PTR is reachable from all the primarynodes with Subs �eld more general than PTR.Subs. Similarly, all the nodes storing Subs valuesless general than PTR.Subs must be reachable from PTR. To achieve that, we check all theprimary nodes in the list and adjust the secondary lists as described below. We make use of thevariable LAST PTR which shows the rightmost primary pointer PTR1 such that PTR1 is moregeneral than PTR.Subs.procedure INSERT (Known,PTR:primary node)Set LAST PTR,PTR1 to Knownwhile PTR1 6= nil doif PTR1 is not Scanned thenif PTR.Subs is less general than PTR1.Subs thenif PTR.TV � PTR1.TV th enif PTR.Top = 0 thenHALT n� PTR1 subsumes PTR, do not insert PTR �nelse n� PTR.Top 6= 0 �nSet PTR.Deleted to 1Insert PTR to the primary list after LAST PTRHALTelse n� PTR.TV 6� PTR1.TV �nADD SECONDARY PTR (PTR1,PTR)Set LAST PTR to PTR1else if PTR1.Subs is less general than PTR.Su bs thenif PTR1.TV � PTR.TV thenDELETE(PTR1)elseADD SECONDARY PTR (PTR,PTR1)MARK ALL(PTR1)end if n� PTR1 is not Scanned �nPTR1 PTR1.Nextend whileInsert PTR in the primary linked list right after LAST PTRif LAST PTR = Known then 34

Set Known to PTRend� The following procedure is called when PTR2.TV is less general than PTR1.TV, where PTR1and PTR2 are primary nodes. It creates a secondary pointer that points to PTR2 and inserts itinto PTR1.LG. Since this operation results in an additional secondary node pointing to PTR2,PTR2.Top �eld is increased by 1.procedure ADD SECONDARY PTR (PTR1,PTR2: Primary nodes)n� PTR2.TV is less general than PTR2.TV �nCreate secondary pointer LGTEMPSet LGTEMP.Prim LG to PTR2Insert LGTEMP into PTR1.LGIncrease PTR2.Top by 1 endExample 16 Let T =FOUR and the query Q� be given as follows: p(X; Y) : [fsg; T n V] : Let theKnown �eld of the table entry corresponding to this atom contain the following (substitution,truthvalue) pair:1. Subs=fX = ag, TV=t, Top=0, LG= nilNext we insert the pair (fX = Z; Y = f(Z)g; f). The list becomes:1. Subs=fX = ag, TV=t, Top=0, LG= 2, 32. Subs=fX = Z; Y = f(Z)g, TV=f, Top=1, LG=nil3. Subs=fX = a; Y = f(a)g, TV=>,Top=1, LG= nilNext, we insert (fX = Z; Y = f(a)g; t). The Known �eld changes to:1. Subs=fX = ag, TV=t, Top=0, LG= 2, 42. Subs=fX = Z; Y = f(Z)g, TV=f, Top=1, LG= 33. Subs=fX = Z; Y = f(a)g, TV=t, Top=1, LG=nil4. Subs=fX = a; Y = f(a)g, TV=>,Top=1, LG=n il, DeletedFinally, we insert (fX = a; Y = f(Z)g;>). The �nal structure is:1. Subs=fX = ag, TV=t, Top=0, LG= 22. Subs=fX = Z; Y = f(Z)g, TV=f, Top=1, LG= 3, 43. Subs=fX = Z; Y = f(a)g, TV=t, Top=1, LG=nil4. Subs=fX = a; Y = f(Z)g, TV=>, Top=1, LG= nil35

2The following procedure updates the Known list of an atom after an S-resolution step has beenperformed.procedure Update Known (S LIST : a list of (substitution,truth value) pairs,PTR: pointer to the annotation table)for all (�; �) in S LIST dorestrict � to the variables appearing in PTR.Atom.Set CHANGED to false n� CHANGED is a boolean variable, it shows if � is changed �nLAST PTR,KPTR PTR.Knownn� LAST PTR is as described above,KPTR is a temporary pointer used for iterating on PTR.Known �nCreate a primary node KNEW for (�; �)for all (�0 ; �0) in KPTR that is not marked Scanned doInitialize KPTR.Updated to 0Toggle KPTR.Scannedif 9 MGCD � of � and �0 thenif � is a variant of �0 then n� �0 is less general than � �nif � � �0 then n� Case 2 of section 5.3.4 �nMARK ALL(KPTR)ADD SECONDARY PTR (KNEW,KPTR)else if �0 � � thenDELETE (KPTR) n� Case 1,2 �nUPDATE ALL (KPTR,�)else n � �; �0 are incomparable �nSet KPTR.TV to KPTR.TV t �Set KPTR.Updated to 1UPDATE ALL (KPTR,KPTR.TV) n� Case 2 �nADD SECONDARY PTR (KNEW,KPTR)else if � is a variant of � then n� � is less general than �0 �nif � � �0 thenInsert KNEW after LAST PTRDELETE(KNEW) n� the new pair is subsumed by some entry in the structure �nEXIT inner for loopelse n � � 6� �0 � nADD SECONDARY PTR (KPTR,KNEW)LAST PTR KPTRSet KNEW.TV to KNEW.TV t �0Set CHANGED to true, � to KNEW.TVelse n � �; �0 are incomparable �nCreate a primary node KNEW MGCD for (�; � t �0)n� Recall that � is MGCD of � and �0 �nSet KNEW MGCD.Updated to 1 36

Check if � is already in the primary list by traversing down the LG list of KPTRIf so, set its TV �eld by taking lub with � t �0If � is not in the listPut KNEW MGCD right after KNEW n� it will be inserted later �nend of inner loopif CHANGED then n� � has changed, modify all the entries marked Updated by taking lub �nKPTR PTR.Knownwhile KPTR 6= nil doif KPTR is not marked Scanned thenSet KPTR.TV to KPTR.TV t �KPTR KPTR.Nextfor all KNEW MGCD coming after KNEW do n� insert all the new pairs generated by MGCDs �nINSERT (Known,KNEW MGCD)Insert KNEW just after LAST PTRendThe following example shows how the Known list is updated once an S-resolution step is performed.Example 17 Consider example 6. We specify below, the information stored in the table, the QUERYand the GARBAGE lists immediately before the last step of example 6 is completed. QUERY � (can lift(r1; b) :[f1; 2; 3g; V] { Entry 1), (weight(b;W) : [f2g; V1] { Entry 2), (leq(W; 50) : V2 { Entry 3), (temp(b; T) :[f3g; V3] { Entry 5), (le(T; 60) : V4 { Entry 6), GARBAGE � (), the table:Index Known Desired Status Reference Subsumes AtomV (�; t) > 0 nil nil 1V1 (�;?); (fW = 19g; t) t 1 Entry 1 nil 2V2 (�;?); (fW = 19g; t) t 1 Entry 1 nil 3(fX = bg,nil) t 1 nil nil nilV3 (�;?) f 1 Entry 1 nil 4V4 (�;?) t 1 Entry 1 nil 5(fX 0 = bg,nil) t 1 nil nil nilWhen step 4 is completed, QUERY and GARBAGE remain the same, but the table is updated to ob-tain:Index Known Desired Status Reference Subsumes AtomV (�;>) > 0 nil nil 1V1 (�;?); (fW = 19g; t) t 1 Entry 1 nil 2V2 (�;?); (fW = 19g; t) t 1 Entry 1 nil 3(fX = bg,nil) t 1 nil nil nilV3 (�;?); (fT = 61g; f) f 1 Entry 1 nil 4V4 (�;?); (fT = 61g; t) t 1 Entry 1 nil 5(fX 0 = bg,nil) t 1 nil nil nil 237

6 Related WorkA great deal of work has been done in multidatabase systems and interoperable database systems[39,16, 36]. However, most of this work combines standard relational databases (no deductive capabilities).Not much has been done on the development of a semantic foundation for such databases. The workof Grant et. al. [16] is an exception: the authors develop a calculus and an algebra for integratinginformation from multiple databases. This calculus extends the standard relational calculus. Furtherwork specialized to handle inter-operability of multidatabases is critically needed. However, our paperaddresses a di�erent topic { that of integrating multiple deductive databases containing (possibly)inconsistencies, uncertainty, non-monotonic negation, and possibly even temporal information. Zicariet. al [39] describe how interoperability may be achieved between a rule-based system (deductiveDB) and an object-oriented database using special import/export primitives. No formal theory isdeveloped in [39]. Perhaps closer to our goal is that of Whang et. al. [36] who argue that Prologis a suitable framework for schema integration. In fact, the approach of Whang et. al. is in thesame spirit as that of metalogic programming discussed earlier. Whang et. al. do not give a formalsemantics for multi-databases containing inconsistency and/or uncertainty and/or non-monotonicityand/or temporal information.Baral et. al. [2, 3] have developed algorithms for combining di�erent logic databases which generalizesthe update strategy by giving priorities to some updates (when appropriate) and as well as not givingpriorities to updates (which corresponds to combining two theories without any preferences). Com-bining two theories corresponds, roughly, to �nding maximally consistent subsets (also called
ocks byFagin et. al. [13, 14]). As we have shown in [32], our framework can express maximal consistency aswell. [2, 3] do not develop a formal model-theoretic treatment of combining multiple knowledge bases,whereas our method does provide such a model theory. [2, 3] are unable to handle non-monotonicity(in terms of stable/well-founded semantics), nor uncertainty, nor time-stamped information { ourframework is able to do so.Dubois, Lang and Prade [12], also suggest that formulas in knowledge bases can be annotated with,for each source, a lower bound of a degree of certainty associated with that source. The spirit behindtheir approach is similar to ours, though interest is restricted to the [0; 1] lattice, the stable and well-founded semantics are not addressed, and amalgamation theorems are not studied. However, for the[0; 1] case, their framework is a bit richer than ours when nonmonotonic negations are absent.In [15], Fitting generalizes results in [35, 4], to obtain a well-founded semantics for bilattice-based logicprograms. We have given a detailed comparison of our declarative framework with Fitting's in [32].Warren and his co-workers [10, 9] have studied OLDT-resolution for ordinary logic programs (bothwith,and without nonmonotonic forms of negation). In this paper, we have dealt only with themonotonic case, and have focused on (1) how truth value estimates of atoms can be monotonicallyimproved as computation proceeds and how this monotonic improvement corresponds to solving certainkinds of incremental optimization problems over a lattice domain, (2) how OLDT tables must beorganized so as to e�ciently support such computations. As OLDT-resolution is known to be closelyrelated to magic set computations, we will not discuss those separately.38

7 ConclusionsWiederhold has proposed mediators as a framework within which multiple databases may be inte-grated. In the �rst of this series of papers [32], it has been shown that certain forms of annotated logicprovide a simple language within which mediators can be expressed. In particular, it was shown thatthe semantics of \local" databases can be viewed as embeddings within the semantics of amalgamateddatabases.In [32], we did not develop an operational theory for query processing in amalgamated KBs. Inthis paper, we have provided a framework for implementing such a query processing paradigm. Thisframework supports:� incremental, approximate query processing in the sense that truth value estimates for certainatomic queries will increase as we continue processing the query. Thus if a user (or a machine)wishes to interrupt the processing, then at least an approximate estimate will be obtained,basedon which a knowledge based system may take some actions.� reuse of previous computations using the table data structure(s). In particular, we have speci-�ed access paradigms for updating answers, i.e. (substitution, truth-value) pairs as processingcontinues.In future work, we will extend the above paradigm to handle non-monotonic modes of negation. Weare also in the process of starting an implementation of the above paradigm.Acknowledgements. We have bene�ted from conversations with Mike Kifer, Jim Lu and TerrySwift.References[1] R. Agrawal, R. Cochrane and B. Lindsay. (1991) On Maintaining Priorities in a ProductionRule System, Proc. VLDB-91, pps 479{487.[2] C. Baral, S. Kraus and J. Minker. (1991) Combining Multiple Knowledge Bases, IEEE Trans.on Knowledge and Data Engineering, 3, 2, pps 200-220.[3] C. Baral, S. Kraus, J. Minker and V.S. Subrahmanian. (1992) Combining Knowledge BasesConsisting of First Order Theories, Computational Intelligence, 8, 1, pps 45{71.[4] C. Baral and V.S. Subrahmanian. (19910 Dualities between Alternative Semantics for LogicProgramming and Nonmonotonic Reasoning, Proc. 1991 Intl. Workshop on Logic Programmingand Nonmonotonic Reasoning, MIT Press. Full version in: Journal of Automated Reasoning,10, pps 339{420, 1993.[5] F. Bancilhon, D. Maier, Y. Sagiv and J. Ullman. (1986) Magic Sets and Other Strange Ways toImplement Logic Programs, Proc. 5th Symp. on Principles of Database Systems, pps 1{15.[6] C. Beeri and R. Ramakrishnan. (1987) On the Power of Magic, Proc. 6th Symp. on Principlesof Database Systems, pps 269{283.[7] H. A. Blair and V.S. Subrahmanian. (1987) Paraconsistent Logic Programming, TheoreticalComputer Science, 68, pp 35-54. Preliminary version in: LNCS 287, Dec. 1987, Springer.39

[8] Y. Breitbart, H. Garcia-Molina and A. Silberschatz. (1992) Overview of Multidatabase Transac-tion Management, VLDB Journal, 2, pps 181{239.[9] W. Chen and D.S. Warren. (1992) A Goal-Oriented Approach to Computing Well-Founded Se-mantics, Proc. 1992 Intl. Conf. on Logic Programming (ed. K.R. Apt), MIT Press.[10] S. Dietrich and D.S. Warren. (1986) Extension Tables: Memo Relations in Logic Programming,SUNY Stonybrook Tech. Report 86/18.[11] D. Dubois, J. Lang and H. Prade. (1991) Towards Possibilistic Logic Programming, Proc. 1991Intl. Conf. on Logic Programming, ed. K. Furukawa, pps 581{595, MIT Press.[12] D. Dubois, J. Lang and H. Prade. (1992) Dealing with Multi-Source Information in PossibilisticLogic, Proc. 10th European Conf. on Arti�cial Intelligence, Wiley.[13] R. Fagin, J.D. Ullman, and M.Y. Vardi. (1983) On the Semantics of Updates in Databases, Proc.ACM SIGACT/SIGMOD Symposium on Principles of Database Systems, pps 352{365.[14] R. Fagin, G. Kuper, J. Ullman, and M. Vardi. (1986) Updating Logical Databases, In Advancesin Computing Research, volume 3, pages 1{18, 1986.[15] M. C. Fitting. (1991)Well-Founded Semantics, Generalized, Proc. 1991 Intl. Logic ProgrammingSymposium, pps 71{83, MIT Press.[16] J. Grant, W. Litwin, N. Roussopoulos and T. Sellis. (1991) An Algebra and Calculus for Rela-tional Multidatabase Systems, Proc. First International Workshop on Interoperability in Multi-database Systems, IEEE Computer Society Press (1991) 118-124.[17] Y. Ioannidis and T. Sellis. (1989) Con
ict Resolution of Rules Assigning Values to VirtualAttributes, Proc. ACM SIGMOD Symp. on Management of Data.[18] M. Kifer, G. Lausen and J. Wu. (1990) Logical Foundations of Object-Oriented and Frame-BasedLanguages, Tech. Report 90/14, SUNY at Stonybrook.[19] M. Kifer and E. Lozinskii. (1989) RI: A Logic for Reasoning with Inconsistency, 4-th Symposiumon Logic in Computer Science, Asilomar, CA, pp. 253-262. Full version to appear in: Journal ofAutomated Reasoning.[20] M. Kifer and V.S. Subrahmanian. (1989) Theory of Generalized Annotated Logic Programmingand its Applications, Journal of Logic Programming, 12, 4, pps 335{368, 1992. Preliminaryversion in: Proc. 1989 North American Conf. on Logic Programming, MIT Press.[21] W. Kim and J. Seo. (1991) Classifying Schematic and Data Heterogeneity in MultidatabaseSystems, IEEE Computer, Dec. 1991.[22] R. Krishnamurthy, W. Litwin and W. Kent. (1991) Language Features for Interoperability ofDatabases with Schematic Discrepancies, Proc. ACM SIGMOD 1991.[23] A. Lefebvre, P. Bernus and R. Topor. (1992) Querying Heterogeneous Databases: A Case Study,draft manuscript. 40

[24] J. Lu, N. Murray and E. Rosenthal. (1993) Signed Formulas and Annotated Logics, draftmanuscript. Preliminary version in: Proceedings of the International Symposium on Multiple-Valued Logic, IEEE Computer Society Press, 1993, 48-53.[25] A. Martelli and U. Montanari. (1982) An E�cient Uni�cation Algorithm, ACM Trans. on Prog.Lang. and Systems, 4, 2, pps 258{282.[26] R. Ramakrishnan. (1991) Magic Templates: A Spellbinding Approach to Logic Programs, J. ofLogic Programming, 11, pps 189{216.[27] H. Seki and H. Itoh. (1989) A Query Evaluation Method for Strati�ed Programs under theExtended CWA, Proc. 5th Intl. Conf./Symp. on Logic Programming (eds. K. Bowen and R.Kowalski), pps 195{211.[28] H. Seki. (1989) On the Power of Alexander Templates, Proc. 8th ACM Symp. on Principles ofDatabase Systems, pps 150{159.[29] A. Sheth and J. Larson. (1990) Federated Database Systems for Managing Distributed, Hetero-geneous and Autonomous Databases, ACM Computing Surveys, 22, 3, pp 183{236.[30] J. Shoen�eld. (1967) Mathematical Logic, Addison Wesley.[31] A. Silberschatz, M. Stonebraker and J. D. Ullman. (1991) Database Systems: Achievements andOpportunities, Comm. of the ACM, 34, 10, pps 110{120.[32] V.S. Subrahmanian. (1992) Amalgamating Knowledge Bases, Univ. of Maryland Tech. ReportCS-TR-2949, Aug. 1992. Submitted to ACM { TODS, August 1992, revised May 1993.[33] V.S. Subrahmanian. (1992) Paraconsistent Disjunctive Deductive Databases, Theoretical Com-puter Science, Vol. 93, pps 115{141.[34] H. Tamaki and T. Sato. (1986) OLD Resolution with Tabulation, Proc. 3rd Intl. Conf. on LogicProgramming (ed. E. Shapiro), pps 84{98, Springer.[35] A. van Gelder. (1989)The Alternating Fixpoint of Logic Programs with Negation, Proc. 8th ACMSymp. on Principles of Database Systems, pps 1 { 10.[36] W.K. Whang, S. B. Navathe and S. Chakravarthy. (1991) Logic-Based Approach for Realiz-ing a Federated Information System, Proc. First International Workshop on Interoperability inMultidatabase Systems, IEEE Computer Society Press (1991) 92{100.[37] , G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with granularity of time in temporaldatabases. In Proc. 3rd Nordic Conf. on Advanced Information Systems Engineering, LectureNotes in Computer Science, Vol. 498, (R. Anderson et al. eds.), Springer-Verlag, 1991, pages124{140.[38] G Wiederhold, S. Jajodia, and W. Litwin. Integrating temporal data in a heterogeneous envi-ronment. In Temporal Databases. Benjamin/Cummings, Jan 1993.[39] R. Zicari, S. Ceri, and L. Tanca. (1991) Interoperability between a Rule-Based Database Languageand an Object-Oriented Language, Proc. First International Workshop on Interoperability inMultidatabase Systems, IEEE Computer Society Press (1991) 125-135.41

Appendix A: Proofs of Results on S-ResolutionProof of Theorem 1. Suppose C� and Q� are in set expansion form as speci�ed in De�nition 5 and8. Let � be the mgu of A0 and Bi.Suppose I S-satis�es C� and Q�k and (Q�k+1)� is a ground instance of (Q�k+1). Since Q�k�� and C���must be ground and I j=S Q�k,I j=S C� it must be the case that I j=S Q�k�� and I j=S C���. We needto show that I S-satis�es (Q�k+1). Since I S-satis�es Q�k��, it must S-satisfy one of the amalgamatedatoms Bj : [Dqj ; �qsj]��. There are two cases to consider:� Case 1: (j 6= i) In this case, Bj : [Dqj ; �qsj]�� occurs in (Q�k+1)� and I S-satis�es this atom in(Q�k+1)�, and therefore satis�es the resolvent.� Case 2: (j = i) In this case, I must S-satisfy Bi : [Dqi ; �qsi]�� in Q�k��. Since I S-satis�es C���,there are two cases to consider:{ Case 2.1: I falsi�es the body of C���. Then, there must be at least one atom Ak :EXP([Dk; �k])�� that is not S-satis�ed in I . Let �I = td2DkI(A��)(d). Since �I 62 �k, itmust be the case that, �I 2 (T n�k). Then, Ak : COMP([Dk; �k])�� must be S-satis�ed in I .Since this atom occurs in (Q�k+1)�, I satis�es (Q�k+1).{ Case 2.2: I S-satis�es both the body and the head of the clause C���. Then, by thede�nition of S-satisfaction there exists a truth value �0 2* �0 such that I A-satis�esA0 : [D0; �0]��. Then, since D0 � Dqi, I must A-satisfy an annotation Bi : [Dqi; �00]��such that, �00 � �0 � �. This implies that, �00 2* � and this annotation occurs in theresolvent. Therefore, I S-satis�es the resolvent. 2The proof of the Completeness Theorem (Theorem 2) for S-resolution needs several intermediatetheorems that are stated below.Theorem 5 (Ground Completeness of S-resolution) Suppose Q is the ground query A :[D; �], P j= A : [D; �], and that P possesses the �xpoint reachability property. Then, there is anunrestricted S-refutation of (Q)� from P �.(An unrestricted refutation does not require the uni�er used at each deduction step to be the mostgeneral uni�er.)Proof: As P satis�es the �xpoint reachability property, we know that AQ " k satis�es A : [D; �]for some k < !. We proceed by induction on k.Base case (k = 1) According to the de�nition of AQ, there exist ground instancesA : [D1; �1] A : [D2; �2] : : :A : [Dm; �m] of a �nite set of clauses A1 : [D01; �01] 42

A2 : [D02; �02] : : :Am : [D0m; �0m] in P , m � 1, such that tf�1; : : : ; �mg � � and S1�j�mDj � D. Note that for all 1 � i � m, there isa substitution �i, such that Ai�i = A, [D0i; �0i]� = [Di; �i]. By the de�nition of regular representation,P � contains ground instances A : EXP([D1; �1]) A : EXP([D2; �2]) : : :A : EXP([Dm; �m]) of unit clauses A1 : EXP([D01; �01]) A2 : EXP([D02; �02]) : : :Am : EXP([D0m; �0m]) and (Q)� = A : COMP([D; �]) . Since for all 1 � i � m, Di � D, (Q)� resolves with allAi : EXP([Di; �i]). It follows that there is an S-refutationhA : COMP([D; �]) ; A : EXP([D1; �1]) ; �1i,hA : S-INT(COMP([D; �]); EXP([D1; �1])) ; A : EXP([D2; �2]) ; �2i ,: : : ;hA : [D; (T n * �) \ \1�i�m * �i] ;�;�i.We must show that the last query evaluates to ;. Let �lub = tf�1; : : : ; �mg. Since �lub � �, wehave * �lub �* �, hence * �lub \ (T n * �) = ;. Then, it su�ces to show that (\1�i�m * �i) �* �lub.For all �k 2 (\1�i�m * �i), we have that �k � �j for all j. Since �lub is the smallest such truth value,we must have �k � �lub and therefore �k 2* �lub.Inductive Case (k > 1) By the de�nition of AQ, there exist ground instances C1�1; : : : ; Cm�m of theform A : [D1; �1] B11 : [D11; �11]& : : :&B1k1 : [D1k1 ; �1k1]A : [D2; �2] B21 : [D21; �21]& : : :&B2k2 : [D2k2 ; �2k2]: : :A : [Dm; �m] Bm1 : [Dm1 ; �m1]& : : :&Bmkm : [Dmkm ; �mkm]of clauses C1; : : : ; Cm A1 : [D01; �01] B11 : [D101 ; �101]& : : :&B1k1 : [D10k1 ; �10k1]A2 : [D02; �02] B21 : [D201 ; �201]& : : :&B2k2 : [D20k2 ; �20k2]: : :Am : [D0m; �0m] Bm1 : [Dm01 ; �m01]& : : :&Bmkm : [Dm0km ; �m0km]43

in P ,m � 1 such that tf�1; : : : ; �mg � �, S1�j�mDj � D andAQ " (k�1) j= Bi1 : [Di1; �i1]& : : :&Biki :[Diki ; �iki] and there is a substitution �i, such that Ai�i = A, [D0i; �0i]� = [Di; �i], for all 1 � i � m. Bythe de�nition of regular expression, P � contains ground instances C�1�1; : : : ; C�m�mA : EXP([D1; �1]) B11 : EXP([D11; �11])& : : :&B1k1 : EXP([D1k1 ; �1k1])A : EXP([D2; �2]) B21 : EXP([D21; �21])& : : :&B2k2 : EXP([D2k2 ; �2k2]): : :A : EXP([Dm; �m]) Bm1 : EXP([Dm1 ; �m1])& : : :&Bmkm : EXP([Dmkm ; �mkm])of clauses C1; : : : ; CmA1 : EXP([D01; �01]) B11 : EXP([D101 ; �101])& : : :&B1k1 : EXP([D10k1 ; �10k1])A2 : EXP([D02; �02]) B21 : EXP([D201 ; �201])& : : :&B2k2 : EXP([D20k2 ; �20k2]): : :Am : EXP[(D0m; �0m]) Bm1 : EXP([Dm01 ; �m01])& : : :&Bmkm : EXP([Dm0km ; �m0km])By the inductive hypothesis, there is an S-refutation Ri ofBi1 : COMP([Di1; �i1])& : : :&Biki : COMP([Diki ; �iki]) for all 1 � i � m. By the same argument above, (T n * �) \ \1�i�m * �i = ;. Therefore, (Q)�has an unrestricted S-refutation as follows:hA : COMP([D; �]) ; C�i ; �ii,: : : ;hA : [D; (T n * �) \ \1�i�m * �i = ;] ;�;�i,R1; : : : ; Rm,h ;�;�i: 2The completeness of S-resolution may now be established from the ground completeness result usingstandard techniques.Lemma 2 (Mgu Lemma) Suppose there is an unrestricted S-refutation (Q)�� from an amalga-mated knowledge base P . Then there is an S-refutation of (Q)� from P . 2Lemma 3 (Lifting Lemma) Suppose there is an S-refutation of (Q)�� from an amalgamatedknowledge base P . Then there is an S-refutation of (Q)� from P . 2The completeness of S-resolution is an immediate consequence of the ground completeness theoremand Mgu lemma. 44

