8E-2

Power Minimization Techniques on Distributed Real-Time Systems
by Global and Local Slack Management

Shaoxiong Hua and Gang Qu
Department of Electrical & Computer Engineering
University of Maryland, College Park, MD 20742, USA
« {shua, gangqu}@eng.umd.edu

Abstract— Recently, a static power management with
parallelism (P-SPM) technique has been proposed to
reduce the energy consumption of distributed systems
to execute a set of real-time dependent tasks [7]. The
authors claimed that the proposed P-SPM ocutperforms
other known methods in energy reduction. However,
how to take advantage of the local static slack for fur-
ther energy optimization remains as an open problem.

In this paper, we propose the static power man-
agement with proportional distribution and parallelism
scheme (PDP-SPM) that not only answers this open
problem, but also exploits the parallelism. Simulations
on task graphs derived for DSP applications and TGFF
benchmark suite suggest that PDP-SPM achieves 64%
energy saving over the system without power manage-
ment, and 15% over the P-SPM scheme.

I. INTRODUCTION

With the advances in VLSI and communication technol-
ogy, distributed real-time systems have emerged as a pop-
ular platform for applications such as multimedia applica-
tions, mobile computing and information appliances. For
hard real-time systems, application deadlines must be met
at all time. However, early completion (before the dead-
line) of the applications may not bring the systems extra
benefits. In this case, we can trade this extra performance
for other valuable system resources, for cxample, energy
consumption. Low power (energy) consumption has be-
come more and more important in the design of distributed
real-time systems. Dynamic voltage scaling (DVS), which
varies the processor speed and supply voltage according to
the workloads at run-time, can achieve the highest possi-
ble energy efficiency for time-varying computational loads
while meeting the deadline constraints [1]. Evidently, there
are many recent works on the power management problem
of distributed systems by using DVS [4, 5, 6, 7, 10].

In this paper, we consider distributed real-time systems
exccuting a set of dependent tasks that are normally rep-
resented by a task graph. Our goal is to develop DVS
schemes to reduce the energy consumption without missing
any deadlines. Specifically, given the mapping of tasks to
multiple processors, we propose a static power management
(SPM) scheme that simultaneously considers both propor-
tionally distributing the slacks among tasks and the degree
of the parallelism presented in distributed systems. Ex-
tensive simulation shows that our proposed scheme out-

0-7803-8736-8/05/520.00 ©2005 IEEE.

830

performs all the known SPM algorithms such as P-SPM
[7] and S-SPM [3] by using the worst case execution time
(WCET). We discuss our algorithms on DVS systems that
support either continuous speeds (voltages) or multiple dis-
crete speeds (voltages).

The rest of the paper is organized as follows: Section
Il formulates the problem based on application model and
DVS system model. The static scheduling algorithms have
been discussed in Section II1. Simulation results for different
scheduling schemes to reduce energy consumption are given
in Section IV. Finally, we conclude the paper in Section V.

II. PROBLEM FORMULATION

We consider real-time distributed systems, which support
DVS, executing frame based applications.

Application Model We assume that the distributed sys-
tems repeatedly executes frame based applications [5] that
consist of a set of tasks that have to be completed before
a common deadline. The applications in a frame can be
modeled by a task graph G = (V, E), where V is the set of
vertices each of which represents one computation (task),
and E is the set of directed edges that represent the data
dependencies between vertices. For each vertex v; we as-
sociate it a worst case execution time (WCET) at the ref-
erence (highest} voltage that can be obtained a priori by
profiling. For each directed edge (v;,v;), there is a sig-
nificant interprocessor communication {IPC) cost when the
data from vertex v; in one processor is transmitted to vertex
v; in another processor although the data communication
cost in the same processor can be ignored. We are also
given a deadline constraint D, which must be met for the
completion of any iteration.

DVS System Model We assume there are distributed
real-time systems with N homogeneous processors each of
which has its private memory. In each system the proces-
sor can support continuous or discrete voltage and speed
changes. We assume that thc energy consumption, when
the processor is idle, is ignored .

We assume that the dynamic power dominates the pro-
cessor power consumption. The relation between dynamic
power Fy, processor speed (or operational frequency) f and

LQOur proposed approaches reduce the processor’s idle time, there-
fore, if one considers the energy consumption when the processor is
idle, our approaches can save more energy.

ASP-DAC 2005

'supp[y voltage Vyq can be expressed as follows [8]:

Ces - Viy- f (1)
k- (Vaa — Vi)*/Via (2)

Py =
!

where C.y is the effective switching capacitance, k is the
constant and V; is the threshold voltage. When V; is small
cnough to he negligible or can be proportionally adjusted
at run time [3], the power consumption is a cubic fune-
tion (and the energy consumption is a quadratic function)
of Vg and f. Specifically, given a workload that requires
computation time T" at the highest voltage V. and speed
Fimax, if the processor finishes this workload just in time
(T +1— dp) at the reduced voltage and speed, then the
encrgy consumption £ can be given by

_Tr
TH+1-dbp

E=Pupa-T-{ ¥+ Ao {3)
where Py,q., the power consumption at the highest voltage
and speed, 18 Ces - Vi2,, * fimaz- 00 is the delay switching
overhead, and Ag is the energy switching overhead.

Energy-E cient Scheduling Problem Given a task
graph where all the tasks have already been assigned to
multiple processors [9], we consider the problem of when
and ot which voltage should each task be executed in order
to reduce the system’s energy consumption while meeting
the deadline constraint. Our solution includes two phases:
first we use SPM schemes based on WCET to statically
assign a time slot to each task. Then we apply dynamic
scheduling algorithm (DPM) to further reduce energy con-
sumption by exploiting the slack arising from the run-time
execution time variation. As our main contribution is the
static part in distribution of slack, in this paper we focus
on the static power management techniques.

II1. SPM: StaTiIC POWER MANAGEMENT

In this section, we first introduce the current state-of-the-
art SPM techniques by a small example. Then, using the
same example, we illustrate how to achieve better {(actually
optimal in this case) solutions by exploiting slacks in the
middle of a schedule, a problem known as “non-trivial” [7].
Finally, we propose our approach: SPM with proportional
slack distribution and parallelism (or PDP-SPM for short).

A. A Motivational Example

For a scheduled task graph, let £ be the length of its crit-
ical path (when all tasks have their WCET) and D be the
deadline, the global stetic slack of such schedule is defined
as Ly = D — £. The lazity is the ratio 2, which mea-
sures how loose the deadline is. On each processor, there
may still exist idle time between the execution of two con-
secutive tasks due to the IPC cost and dis-synchronization
among difference processors. We refer to such idle time as
the local static slack.

Fig. 1 depicts a task graph with three vertices and a
schedule that assigns them to two homogenecus processors,
where task A is on one and tasks B and C are on the other.

831

0 1 2 3 a 5 6

(a)An application (b)A static schedule for the application

Fig. 1. A task graph and its static schedule on two processors.

The IPC cost between the two processors will be 2 and 4
if task C is scheduled to a processor different from the one
for task A and B respectively. The critical path of this
schedule in Fig. 1(b) is the path from task A to task C,
which has length 4 (including the IPC cost). Therefore, the
global static slack Ly = 6 —4 = 2. We also notice a local
static slack L; = 1 between the execution of tasks B and C
on the second processor.

Assuming, for simplicity, that running at the reference
frequency fmgr consumes one unit of energy in one unit
time, and there is no energy consumed when the system is
idle, this schedule consumes energy in the total of E,pm =
1+ 2+ 1 =4 on computation, where ,,,,, stands for “no
power management”.

A simple SPM technique distributes the global static
slack evenly over the length of the schedule and reduces
the speed for all tasks accordingly [3]. In this example, all
three tasks will run at £ fmez = 2 fmaz- This results in a
total cormputation energy consumption of éEnpm.

A greedy SPM technique (G-SPM) assigns the global
static slack to the first task on each processor and reduces
the running speed and voltage on these tasks to save energy
[7]. In this case, tasks A and B will get two more units of
CPU time and can be run at %fmu and %fmax, respec-
tively. Task C will still run at the reference speed. This
yields a total energy consumption of % + % +1 = %, or
2 Enpm-

The static power management for parallelism scheme {(P-
SPM) transfers this problem as a constrained optimiza-

« tion problem and solves it numerically {7]. First, the to-

tal CPU time T, when i processors are running at the
same time is counted; next [; units of CPU time will be
added to T; so the speed can be reduced to T":%" Fmax;
then it seeks to minimize the total energy consumption
21 Cep- (%ﬁfmaz)a - (T; + ;) under the constraint that
the total CPU assigned %, 1; is no more than the global
static slack Lp. This gives the static schedule as shown in
Fig. 2 (a) with a total energy consumption of 0.3464E,,m,
slightly less than %Enpm.

We observe that none of these SPM techniques take ad-
vantage of the local static slack and this consequently cre-
ates new global static slack even when all the original Lg is
distributed as one can see from L{, in Fig. 2(a). This pre-
vents such techniques from finding the best solution. For
example, a better solution shown in Fig. 2(b) is reported
as a case when P-SPM fails [7].

We propose an iterative algorithm that proportionally

D
2/3.4662 fmax 1/1.5338 fmax
L
B | C
1/1.9324 £ ,,/’
A, - . L .
T 1 } } j !
O ! 2 k} 4 5 o
(a) Static Power Management with Parallelism
) D
2/4 fmax 12 frnax
B C
I
1/2 frnax T
X i
_'——L ; ; | t
T t + ! }
0 1 2 3 4 5 6

(b} Static Power Management with Proportional Distribution

f
D

204,26 fumy. 1/1.74 fryan

B C

{c) Static Power Management with Proportional
Distribution and Parallelism

Fig. 2. P-SPM scheduler and its improvements.

distributes both the global and local static slack to the tasks
under the deadline constraints. It quickly converges to the
solution in Fig. 2(b) which has a total computation energy
consumption is %Eﬂpm.)

Now therce is no static slack left, however, we find that it is
still possible to reduce energy by further exploiting the par-
allelism. Specifically, if we reduce the CPU time assigned
to task C, then more energy will be consumed on executing
C, but both tasks A and B will get more CPU time and can
run at reduced speed to save energy. We win when the en-
ergy savings from A and B are more than the extra energy
we spend on task C. In this case, we find a static schedule
with 0.2417E,,,» cocrgy consumption, which is better than
1 Eppm. as shown in Fig. 2(c).

B. PDP-SPM: SPM with Proportional Distribution and

Parallelism

The proposed PDP-SPM algorithm is based on the above

. observations. It consists of two phases, the global and local
static slack distribution and the CPU time re-allocation
for parallelism. Fig. 3 shows the Proportional_Slack
_Distribution() procedure that iteratively distributes slack’
to tasks. The global slack is distributed evenly to all ver-
tices in step 9 by expanding their allocated slot tg by a

332

Algorithm: Proportional Slack_Distribution()

1. for each vertex u;

2. {ty,=WCET,, done(w)=0;} /* allocate
WCET; to vertex i and prepare to allocate it slack */

3. compute the current schedule’s completion time L;
4. f(L>D) exif /* cannot complete before D */
5. while (done(v;) = 0 for some vertex v;}
6. { compute the current schedule’s completion time I;
7. while (L < D)
8. { for each vertex w; with done(v;) =0
9. tf, =15 -(1+4); /* proportionally distribute
slack to all vertex by § > 0*/
10. compute the current schedule’s L with the new t};
11. } /* now L > D, we need to take back the assigned
slack from 3. */
12. for each vertex v; with done(v;) =0
13, {t=t/(1+9);
14. if w; is on a critical path done(v;) = 1;
/* there is no slack left for v; for the selected § */
15.

16. } /* the while loop continues as the local slack exists
in the middle of the schedule off critical paths. */

Fig. 3. Procedure to distribute slack proportionally among the
vertices in the scheduled task graph.

'

factor of § till the completion time L exceeds the deadline
D. Let Lypc be the total IPC cost on any critical path
when this inner while loop (steps 7-11) stops. It is easy
to see that this loop will execute at most log, 5 T—Tirs
times, where L;,; is the initial completion time obtained in
step 3.

Then we need to scale down the CPU time assigned to
all the vertices so the deadline D can be made. For all the
nodes that are on any critical paths, we mark them done
because expanding such nodes’ CPU time by the factor
¢ again will violate the deadline constraint (steps 12-15).
Note that, following a (predetermined) topological order,
one can compute the completion time and obtain the ver-
tices on the critical paths for a given schedule in time linear
to the N, the number of nodes in the task graph.

At this point, the complation time is within § of the dead-
line (ie., £ > %). The remaining global static slack is not
sufficient to be distributed proportionally among all the ver-
tices by the factor 4 again. However, we can still distribute
this along with the local static slack to those nodes off criti-
cal path. This is conducted in the outer while loop (steps 5-
16) till all the nodes are marked dore. This loap will be ex-
ecuted no more than N times as each time there will be new
nodes being marked done. For given parameters such as D
and ¢, we conclude that the Proportional _Slack _Distribu—
tion() algorithm has a computational complexity of O(N?).

In the second phase, PDP-SPM re-allocates the CPU
time assigned to each task based on the degree of paral-
lelism (that is, the number of processors running at the
same time}. The basic idea is to create slack by reducing the
time assigned to the tasks with small degree of parallelism.
Fig. 4 depicts in detail this phase, where we take away time

Algorithm: PDP-SPM() :
1. calculate E, for present time allocation;
2. for each vertex vi finish(v;) = 0;
/* time re-allocation for v; is not finished*/
3. while (finish(vg)= 0 for some vertex vy)
4. { for each vertex v; { done(v;) = finish{v}; th =14y}
5. select v; from the unfinished vertices with the
smallest degree of parallelism; .
6. =8 -8L;
7. run steps 5-16 in Proportional Slack_Distribution()
as shown in Fig. 3;
8. calculate the energy consumption £, based on
Equation (3) for the new setting;
9. if(Ep—FE,>A) E,=Fn; /*a positive threshold
A to speed up the iteration */
/* no or little energy reduction, restore the
previous assignment and mark v; finished */
11, { for each unfinished vertices vy th = ikr,
12, finish({v;) = 1;
13.
14. }

10. else

Fig. 4. Phase II of PDP-SPM: Re-allocate time to each task based
on parallelism.

6L from task v; that has the smallest degree of parallclism
in step 6. This introduces local slack in the amount of &L
on the processor which #; is assigned to. Then part of the
Proportional _Slack_Distribution{) procedure is called to
distribute such stack in step 7. If this gives us energy re-
duction, we continue the while loop (steps 3-14) by taking
away time from the same task again. We repeat this until
there is no or little energy saving. We mark v; finished,
meaning that it gets its final CPU assignment. However,
the same while loop will continue running on the remain-
ing unfinished tasks. Because that Proportional_Slack_
Distribution() has an O(N?) run time, the complexity of
PDP-SPM algorithm is Q(N3).

C. Voltage and Speed Selection

After the SPM techuiques distribute the slack to each
task, the system need to select the appropriate voltage and
speed to execute it. The provably most energy-efficient
voltage scaling technique has been reported as follows [8]:

e for ideal voltage systems, select voltage that corre-

sponds to speed figen = W—Ct'JE—Tifmm, where tf; is the

7
time slot allocated to vertex v,.

o for discrete voltage (speed) systems, find the two con-
secutive speed f1 and fo with f1 < figear < f2, eXccute
at fi for certain time and then switch to fz till v;’s
completion.

Note that the above technique can be easily adapted to
the casc when there are non-negligible delay and energy
overhead for voltage switching. We will switch the volt-
age only when the voltage scaling provides us sufficient en-
ergy saving to compensate the overhead. When voltage and

833

speed are not allowed to change at any time as assumed in
[8], we can apply the method proposed by Zhang et al. [11]
to minimize the number of intra-task and inter-task transi-
tions to achieve the maximal energy reduction.

1V. SIMULATION RESULTS

A. Simulation Sctup

We have implemcented the two algorithms: P-SPM pro-
posed originally in [7], and our proposed PDP-SPM. We
simulate them over a variety of real-life graphs such as FFT
(Fast Fourier Transform), Laplace {Laplace transform} and
karplQ (Karplus-Strong music synthesis algorithm with 10
voices), and some random task graphs generated by a stan-
dard package TGFF [2]. Before we apply the algorithms to
the benchmark graphs, we use the dynamic level scheduling
(DLS) [9] method to schedule the tasks to different proces-
sors.

Each processor in the systems can support continuous
or discrete voltage(speed) changes. For discrete case, the
processors are modeled to support four different voltage and
speed pairs ((1.75V,1000MHz), (1.40V, 800MHz), (1.20V,
600MHz) and (1.00V, 466MHz)).

Based on the WCET, we can get the length of the criti-
cal paths L for the task graph that indicates the minimum
deadline we can sct without any deadline missing. By vary-
ing the laxity, we model the inverse of the load imposed on
the systems by the actual deadline I = [azity x L, where
laxity > 1. If not specify, the lazity is 1.5 in the simulation.

In order to compare the encrgy consumption for all algo-
rithms, we normalize the energy consumption for no power
management (NPM) to be 1.

B. Results and Discussion

We first analyze the sensitivity for the PDP-SPM algo-
rithm. Then give the comparison of the cnergy consump-
tion by using different algorithms such as P-SPM and PDP-
SPM on different benchmarks, which use WCET in the
case of continuous or discrete voltage and speed changes.
We also investigate the impact of the laxity and number of
processors to cnergy efficiency of different SPM algorithms.

Sensitivity analysis of PDP-S5PM is done offlinc by de-
termine the optimal value of §L (step 6 in Fig. 4), where
oL = ;—LQ—K Ly, which is equal to I} — L, is the global
static slack for the current setting. e, 15 the maximum
number of tasks assigned to one processor. K is the gran-
ularity of PDP-SPM. When we change the granularity K,
dL will be changed. From the simulation we have seen that
the energy consumption does not change much (within 1%
error) with the variation of granularity from 1 to 10,000.
Therefore, we set the granularity to be 100 for the rest of
simulation.

Table I reports the average energy consumption per iter-
ation by different SPM algorithms on different benchmarks.
From the table we can see that in average P-SPM can save
more than 58% energy when the systems support continu-
ous speed and voltage changes, and 48% encrgy when they

TABLE 1
AVERAGE ENERGY CONSUMPTION/SAVING PER ITERATION BY USING NPM, P-SPM AND PDP-SPM WITH DEADLINE CONSTRAINTS D. {THE
PERCENTAGES STAND FOR THE ENERGY SAVING; n: NUMBER OF VERTICES IN THE BENCHMARK TASK GRAPH; m: NUMBER OF PROCESSORS;
ENERGY IS IN THE UNIT OF THE DISSIPATION IN ONE CPU UNIT AT THE REFERENCE VOLTAGE AND SPEED; Ejj, Eio ARE THE ENERGY
CONSUMPTION AT CONTINUOUS CHANGES; Eg41, Elg2 ARE THE ENERGY CONSUMPTION AT DISCRETE CHANGES.)

support discrete changes, over NPM. More importantly our
PDP-SPM scheme can save more energy than P-SPM on all
benchmarks. Specifically, PDP-SPM can have nearly 15%
and 9% energy saving over P-SPM in the case of continu-
ous and discrete changes, respectively. And obviously the
energy consumption in the case of continuous changes is
much lower than that in the case of discrete changes for the
same task graph and algorithm.

Fig. 5 depicts the laxity’s impact to energy efficiency of
P-SPM and PDP-SPM. PDP-SPM can save morc cnergy
than P-SPM with any laxity. The smaller is the laxity, the
more energy efficient is the PDP-SPM in both continuous
and discrete changes. "The reason is that P-SPM only ex-
ploits the global slack while PDP-SPM exploits both global
and local slack. With decreased laxity, the global slack will
be reduced while the local slack due to task synchroniza-
tion does not change, which results in the energy saving
by PDP-SPM being reduced with its reduction percentage
being less than P-SPM’s. Similarly we can explain the sce-
nario in Fig. 6 that shows the energy consumption per
iteration by using NPM, P-SPM and PDP-5PM with dif-
ferent number of processors and different deadlines.. For
the same task graph, using more processors will reduce the
length of its critical paths and increase the task parallelism.
Therefore for the same deadline such as 6000, with the in-
crease of the numbecr of processors, both the global and local
slack will increase. This results in the energy reduction by
using either P-SPM or PDP-SPM scheme and that PDP-
SPM achieving more energy saving compared with P-SPM.
It is mentioned that when the deadline is too loose, such
as 12000 in the casc of discrete changes and the number

334

No NPM P-SPM PDP-SPM

Benchmark | n | m P C'S D energy E; Eq E; E; Eg2 Eg2
Eo vs, Fo vs. Eg vs, BEo | vs. FEj1 | vs. Eo | vs. Egy
FFT1 28 2 15 1404 1520 57.48% | 48.39% | 63.63% | 14.47% | 52.51% 7.98%
FFT2 28 2 16 1660 960 75.25% | 63.92% | 82.97% | 31.20% | 67.35% | 9.51%
Laplace 16 2 13 3555 2880 60.56% | 50.42% | 76.33% | 39.98% | 64.25% | 27.90%
karpl0 21 2 12 1127 1188 58.08% | 48.88% | 61.00% 6.95% 50.53% | 3.24%
TGFF1 39 | 2 20 5235 6548 | 56.48% | 46.99% | 60.82% | 9.97% | 50.22% | 6.09%
TGFF2 51 | 3 36 4902 7658 | 56.93% | 47.52% | 66.03% | 21.13% | 54.43% | 13.16%
TGFF3 60 3 51 6133 10522 | 56.77% | 47.29% | 65.69% | 20.64% | 54.40% | 13.48%
TGFF4 T4 2 49 9367 12170 55.96% | 46.51% | 57.80% 4.17% 47.79% 2.39%
TGFF35 84 3 74 7695 13694 | 56.77% | 47.16% | 63.02% | 14.46% | 51.87% | 8.92%
TGFF6 91 2 59 12417 | 15122 | 56.58% | 47.15% | 62.42% | 13.44% | 51.63% | 8.48%
TGFF7 107 3 89 9706 17256 56.47% | 47.11% | 62.59% 14.07% | 51.54% 8.37%
. TGFF8 117 [3 111 10527 | 18516 | 56.75% | 47.16% | 63.86% | 16.44% | 52.67% | 10.42%
TGFF9 131 | 2 85 15456 | 20242 | 55.80% | 46.37% | 57.09% | 2.93% | 47.29% 1.71%
TGFF10 147 | 4 163 10023 | 23364 | 56.33% | 46.99% | 63.66% | 16.79% | 52.63% | 10.63%
TGFF11 163 | 3 159 13403 | 26014 | 55.79% | 46.39% | 58.11% | 5.25% | 48.04% | 3.08%
TGFF12 174 | 4 169 12682 | 30190 | 56.54% | 47.05% | 61.55% | 11.53% | 50.91% | 7.28%
average energy saving 58.03% | 48.46% | 64.16% | 15.21% | 53.00% | 8.91%

of processors is larger than 4 (Fig. 6(b)), all tasks will be
executed at the lowest voltage (1.0V) and speed {466MHz)
and the energy consumption will keep constant regardless of
the increase of the number of the processors. We conclude
that our PDP-SPM algorithm can save significant energy-
over P-SPM, especially when the deadline is tight and the
number of processors is large.

V. CONCLUSIONS

In this paper, we consider how to schedule a set of de-
pendent tasks for distributed real-time systems in order
to reduce the energy consumption without any deadline
misses. Given the task assignment and ordering, we propose
the PDP-SPM (Static Power Management with Propor-
tional Distribution and Parallelism) algorithfn that exploits
both the global and local slack. It can save more energy
than P-SPM (SPM with Parallelism), which at the best
of our knowledge is the most energy-efficient SPM scheme.
Specifically, compared with P-SPM, PDP-SPM can save
more than 15% and 8.9% energy in the case of continuous
and discrete voltage/speed changes, respectively. Similarly,
when compared with NPM (No Power Management), PDP-
SPM can save more than 64% and 53% energy.

REFERENCES

{1 T. D. Burd, T. Pering, A. Stratakes, and R. Brodersen,
“A dynamic voltage scaled microprocessor system”, IEEE
J. Solid-State Circuits, Vol. 35, pp. 1571-1580, 2000.

5 P-S5PM continuaus changes

. —a- P-5PM discrela changes

©. —&— PDP-SPM cantinueus changes
—~— PDP-SPM discrate changas

Nomalized energy saving

15 16 17 18 " e 2
Laxity

{a) energy vs. laxity for 3 processors

Fig. &.

NPM
—— P-SPM
18 —a— PDP-SPM

Energy consumption per iteration

E] a 4

5 s
Number of processors

(a) continuous voltage and speed changes

ae
=
E
i
gj;
o
2
E
E T9~ P_5PM continuoua changas
= —o— f-SPM discrate changes
0a —&- POP-SPM continuous changes 3
—w— POP-SPM discreta changes
0.2¢
. . L y y
o3 iz Ta 1.4 15 1.6 17 18 18 2
Laxity

(b) energy vs. laxity for 6 processors

The normalized energy saving by using different SPM schemes on benchmark TGFF8 with different laxity.

—9— NPM
—=— P.SPM
—&- PDP-SPM

Energy consumption per jteration

1 12000 |
\&\ﬁ
0.5 . -
3 7 a

)) ®
Number of processors

(b} discrete voltage and speed changes

Fig. 6. The energy consumption per iteration by using different SPM schemes on benchmark TGFF8 with different number of processors and

different deadlines (12000, 6000, and 4500).

[2] R.P.Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs
for free”, Proc. Int. Workshop Hardware/Software Codesign,
pp: 97-101, 1998.

[3] F. Gruian, “System-level design methods for low-energy ar-
chitectures containing variable voltage processors”, Proc. of
the Workshop on Power-Aware Compuiing Systems, pp. 1-
12, 2000.

[4] S. Hua, G. Qu, and S. S. Bhattacharyya, “Energy-efficient
multi-processor implementation of embedded software”, Srd
ACM International Conference on Embedded Software, pp.
257-273, Oct. 2003,

[5] F.Liberato, S. Lauzac, R. Relhem, and D. Mosse, “Fault tol-

erant real-time global scheduling on multiprocessors”, Proe.

of the 10th IEEE Euromicro Workshop in Real-Time Sys-

terns, June 1999.

J. Luo and N. K. Jha, “Power-conscious joint scheduling of

periodic task graphs and aperiodic tasks in distributed real-

time embedded systems”, IEEE/ACM International Confer-

ence on Computer-Aided Design, pp. 357-364, Nov. 2000.

835

[7] R. Mishra, N. Rastogi, D. Zhu, D. Mosse, and R. Mel-

hem, “Energy aware scheduling for distributed real-time |

systems”, International Parallel and Distributed Processing

Symposium, pp. 1-9, 21b., 2003.

G. Qu, “What is the limit of energy saving by dynamic

voltage scaling?” IEEE/ACM International Conference on

Computer-Aided Design, pp. 560-563, 2001.

G.C. Sih and E.A. Lee, “A compile-time scheduling heuris-

tic for interconnection-constrained heterogeneous processor

architectures”, JEEE Tran. on Parallel and Distributed Sys-

tems, Vol 4, pp. 175-187, 1993.

[10] Y. Zhang, X. Hu, and D. Chen, “Task scheduling and volt-
age selection for energy minimization”, ACM/IEEE Design
Automation Conference Proceedings, pp. 183-188, 2002.

8]

(9]

[11] ¥. Zhang, X. Hu, and D. Chen, “Energy minimization of
real-time tasks on variable voltage processars with transi-
tion energy overhead”, ACM/IEEE Asia and South Pacific
Design Automation Conference, pp. 65-70, 2003.

.

