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It is generally assumed that the signal-to-noise ratio amatnmaftion content of neural
data acquired noninvasively via magnetoencephalography (MEG) otp sca
electroencephalography (EEG) are insufficient to extractildétanformation about
natural, multi-joint movements of the upper limb. If valid, this assionmould severely
limit the practical usage of noninvasive signals in brain-computer ingefB(CI) systems
aimed at continuous complex control of arm-like prostheses for movemeaired
persons. Fortunately this dissertation research casts doubt on rdm@tyef this
assumption by extracting continuous hand kinematics from MEG sigoligsted during
a 2D center-out drawing task (Bradberry et al. 200&rolmage, 47:1691-700) and
from EEG signals collected during a 3D center-out reachsig(@radberry et al. 2010,
Journal of Neuroscience, 30:3432-7). In both studies, multiple regression was performed
to find a matrix that mapped past and current neural data fronptawdensors to current
hand kinematic data (velocity). A novel method was subsequently edeisat
incorporated the weights of the mapping matrix and the standardizedekmution
electromagnetic tomography (SLORETA) software to revieal the brain sources that

encoded hand kinematics in the MEG and EEG studies were corrabdmatenore

traditional studies that required averaging across trials anddgcts. Encouraged by the



favorable results of these off-line decoding studies, a BClmysi@s developed for on-
line decoding of covert movement intentions that provided users withimesalvisual
feedback of the decoder output. Users were asked to use only theintthtmgnove a
cursor to acquire one of four targets on a computer screen. Wiyhoaoel training
session, subjects were able to accomplish this task. The promesags of this
dissertation research significantly advance the state-ofrth@anoninvasive BCI

systems.
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Chapter 1. Decoding center-out hand velocity from NEG

signals during visuomotor adaptation

The material contained in this chapter is published as Bdberry TJ, Rong F,
Contreras-Vidal JL (2009) Decoding center-out hand velocity fromMEG signals
during visuomotor adaptation. Neurolmage 47:1691-1700. Supplemental material
in the journal publication has been incorporated into the mamn text of this

dissertation chapter.

Abstract

During reaching or drawing, the primate cortex carries inftionabout the current and
upcoming position of the hand. Researchers have decoded hand position, veldcity, a
acceleration during center-out reaching or drawing tasks ffieumal recordings acquired
invasively at the microscale and mesoscale levels. Here epertr that we can
continuously decode information about hand velocity at the macroscadé flem
magnetoencephalography (MEG) data acquired from the scalp dariognter-out
drawing task with an imposed hand-cursor rotation. The grand meaB)(correlation
coefficients (CCs) between measured and decoded velocity profiles were 0.48, 0.40, 0.38,
and 0.28 for the horizontal dimension of movement and 0.32, 0.49, 0.56, and 0.23 for the
vertical dimension of movement where the order of the CCs indigatesxposure,
early-exposure, late-exposure, and post-exposure to the hand-cursaon.roiy

projecting the sensor contributions to decoding onto whole-head scalp weaps,)nd



that a macroscale sensorimotor network carries information abtauledenand velocity

and that contributions from sensors over central and parietal seap enange due to
adaptation to the rotated environment. Moreover, a 3-D linear agimof distributed
current sources using standardized low-resolution brain electrontagaostography
(SLORETA) permitted a more detailed investigation into the aarthetwork that
encodes for hand velocity in each of the adaptation phases. Bengfipledations of
these findings include a noninvasive methodology to examine the neurglates of
behavior on a macroscale with high temporal resolution and the potentmbvide
continuous, complex control of a noninvasive neuromotor prosthesis for movement-

impaired individuals.

Introduction

In the last several decades, great strides have been madeafing how the primate
cortex may encode the current and upcoming position of the hand in spawg dur
reaching or drawing (Scott 2008). In addition to contributing to the bofly
neuroscientific knowledge, these discoveries have begun to bengfimalact society.
Greater elucidation of the neural code for hand movement has ssrae@dmpetus to the
development of brain-controlled prostheses for the movement-impaired popuRrior

to the advent of brain-controlled prostheses, several seminal diesoléd a foundation
with arguably the most momentous discovery being that of a populaticor wecte for
the direction of hand movement in three-dimensions (Georgopoulos et al. 1&8&rK
et al. 1988). At the beginning of this century, researchers launbleefietd of brain-

controlled neuromotor prostheses with the application of the population edgboithm



as well as other methods to extract control signals relatedrtd movement from neural
data (Schwartz et al. 2001). Researchers have demonstratedlitiyet@lgiecode hand
kinematics at the microscale from neuronal signals acquirgtd wicrowires or
microelectrode arrays seated into small patches of sensorioostmal tissue and to use
this information to drive a cursor or robotic arm (Wessberg.e2G00; Serruya et al.
2002; Taylor et al. 2002; Hochberg et al. 2006; Santhanam et al. 2006; oretcl
2008; Velliste et al. 2008; Mulliken et al. 2008). Other intracranialiss have analyzed
neural data at the mesoscale with coarser spatial resolutiondmrtspatial extent from
local field potential (LFP) recordings. For example, hand movemesdtdin and two-
dimensional trajectories have been decoded from LFPs (Mehradlg2003; Mehring et
al. 2004; Leuthardt et al. 2004; Rickert et al. 2005; Scherbergera&i0b; Schalk et al.

2007; Pistohl et al. 2008; Sanchez et al. 2008).

In the late 1990s, pioneering work on the macroscale began to reddpepotentials
acquired noninvasively to hand movement (Kelso et al. 1998; O'Suilleabladir1899).
Some recent noninvasive studies have demonstrated the presence afoacaba
network that carries the neural code for detailed hand movement. Famceshand
movement direction has been decoded from electroencephalograp8y &8 MEG
data (Hammon et al. 2008; Waldert et al. 2008), and hand position and velocity have been
decoded from MEG data collected during continuous joystick and thhckbaements
(Georgopoulos et al. 2005; Jerbi et al. 2007). However, with the exceptitam@ahon et
al., these noninvasive studies have constrained subjects to small &ndevrist

movements as opposed to multijoint drawing or reaching movements, Alest



importantly, the tasks employed for noninvasive decoding of hand position lmeitye

have not incorporated discrete center-out movements.

To examine our hypothesis that hand kinematicsnatfiral, multijoint, center-out

movements are decodable from noninvasive neural signals, we ainoedtiouously
decode hand velocity from MEG data collected during a two-dilmealsdrawing task.
Currently only invasive studies have continuously decoded hand velocity diisorgte
center-out movements. Since MEG coupled with our decoding methodatasilithe
ability to examine sensor involvement on a macroscale with higpaeal resolution, we
also sought to create snapshots of sensor importance in a netwotkhgowveltiple brain
regions across time during adaptation to a hand-cursor rotation. Furthermarmesgeo
examine the importance of estimated current sources in the natgiock SLORETA to
determine whether they corroborated non-decoding visuomotor adaptatibessthat
employed other imaging modalities like EEG (Contreras-Vidat Kerick 2004),
positron emission tomography (PET) (Inoue et al. 2000; Ghilardi 2080; Krakauer et
al. 2004), and functional magnetic resonance imaging (fMRI) @@myet al. 2005;

Seidler et al. 2006).

Materials and methods
Experimental procedure and data collection
The Institutional Review Board of the University of MarylandCallege Park approved

the following experimental procedure. After giving informed condereg healthy, right-



handed subjects drew center-out lines with an optic pen on a glassgppaniened in
front of them while they lay supine with their heads in an ME®rkog dewar located
inside a magnetically shielded room in the Kanazawa Instatif€echnology (KIT)-
Maryland MEG laboratory at the University of Maryland (Fig. 1.18ushions were
positioned in the dewar and under the right elbow to minimize moverhdrg bead and
upper limb respectively. The distance between the glass pan@aahdsubject's head
was adjusted for comfort (approximately 35 cm from nose tip taceh&er of the panel).
A black curtain occluded the subjects’ vision of their hands while vieedback was
provided on a screen located in front of them that displayed thegposftthe pen tip as
a cursor. Subjects were instructed to position the pen tip in le@ ¢0& cm diameter)
located in the middle of the screen, wait for one of four circtgeta (0.5 cm diameter) to
appear in the corner of the screen at 45, 135, 225, or 315°, wait for teettacpange
color, and then draw a straight line to the target as fast afbl@srIhe inter-trial delay
was randomized between 2 and 2.5s. Working space dimensions were a 10 x 10 cm
virtual square. After 40 trials (pre-exposure), the cursor wateth@)° counterclockwise
(exposure). The exposure phase consisted of 240 trials with theegpdgure phase
composed of the first 40 trials and the late-exposure phase compdbedadt 40 trials.
After the exposure phase, the original orientation of the curseregtored, and 20 more
trials were collected and labeled as the post-exposure phasenuntiger of trials
analyzed in the pre-exposure phase was reduced from 40 to 36 becabskathieral
performance during several initial trials of some subjecés woor due to lack of
familiarization with the task. To maintain consistency, the numbéra$ analyzed in

the early- and late-exposure phases was also reduced from 40 to 36.
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Fig. 1.1.Center-out drawing experimental setup and kinematics. (A) Irfitsteand

second panels, a subject is shown lying with his head inside the rslteé@ling dewar
and drawing with an optic pen on a sheet of glass. A black cur@ihtascclude vision
of the upper limbs is additionally shown in the second panel. The thirdl idaseates

the subject's view of the computer screen where visual feedbaittie gfen position
(cursor), center location (home), and peripheral targets was yadplgB) The

superimposed pen (black) and cursor (gray) paths for one represensatdject
confirmed the occurrence of adaptation. Dissociation between thdgea) @nd cursor
(eye) movements due to hand-cursor rotation was evident. (C) Tdre:anfD of the IDE
calculated across subjects for each phase of the task further confirmeatiadapt

A video camera sampled the movement of the pen tip at 60 Hz, and hdaaleMEG

data were acquired from 157 channels at a sampling rate of 1 kHz. The ME®G ggste
coaxial type first-order gradiometers with a magnetiafielsolution of 4 ft/H¥* or 0.8

(ft/cm)/HZ*? in the white noise region. On-line, electronic circuits band-pagsatch-

filtered the MEG data from 1-100 Hz and 60 Hz respectively.



Adaptation confirmation

To quantitatively confirm the occurrence of adaptation, the meaaliditectional error

(IDE) was calculated across subjects for each phase of theAtagctor from the center
location of the screen (home) to the position of the pen at 80 mdreftpen completely
left the center circle determined the initial direction of plenned movement trajectory.
The IDE was calculated as the angular difference betwesnvdator and a vector
extending from the home location to the target. Four sep&tatts were performed
between the IDE in pre-exposure and zero, IDE in pre-exposureaalydexposure, IDE

in pre-exposure and late-exposure, and IDE in pre-exposure and post-exposure.

Signal pre-processing

Data from each MEG sensor were first standardized according to Eq. (1.1):

Sn[t]:s“[t]—_gq for alln from 1 toN (1.2)
D,

where S|[t] and s,[t] are respectively the standardized and measured magnétic fie
strength of senson at timet, ¥.and g, are the mean and standard deviatiors,of
respectively, andN is the number of sensors. The kinematic data were resamptad fr
60 Hz to 1 kHz by using a polyphase filter with a factor’ef For computational
efficiency, the MEG and kinematic data were then decimated L kHz to 100 Hz by
applying a low-pass anti-aliasing filter with a cutoff freqoe of 40 Hz and then
downsampling. The best decoding results were obtained when both tke avi&

kinematic data were subsequently filtered with a zero-phasethtorder, low-pass



Butterworth filter with a cutoff frequency of 15 Hz. The data éach phase of the task

were pre-processed separately.

Decoding model

In the subsequent analyses, we only considered hand velocity based on our previous work
that revealed better decoding of hand velocity than hand position from $if@ls
(Bradberry et al. 2008). To continuously decode hand velocity from the Bignhals, a

linear decoding model was used (Fig. 1.2) (Georgopoulos et al. 2005):

N L

=Xt -1 =D > by Sylt—K] (1.2)
n=1 k=0
N L

V- Yt=10= D" oy Sylt—K] (1.3)
n=1 k=0

wherex[t] andy[t] are the horizontal and vertical position of the pen at time sampl
respectivelyN is the number of MEG sensotsjs the number of time lag§[t — K] is
the magnetic field strength measured at MEG semsrtime lagk, and theb variables
are coefficients obtained through multiple regression. By vatjieagiumber of lags and
sensors independently in a step-wise fashion, the optimal number oflUag20,
corresponding to 200 ms) and the best sendbrs§2; from central and posterior scalp
regions) were determined experimentally. The data for eachepbfthe task were

decoded separately.



MEG Sensor 1

MEG Sensor 62

Sensor Weights for X Velocity Sensor Weights for Y Velocity
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X Velocity Reconstruction from MEG Data at 100 ms (shown above) Y Velocity Reconstruction from MEG Data at t-100 ms (shown above)

X Velocity Reconstruction from MEG Data from t-0 to t-200 ms Y Velocity Reconstruction from MEG Data from t-0 to t-200 ms

Fig. 1.2.Didactic model of the linear decoding method. The top raster ploticsriiae
series of 62 MEG sensors extracted 100 ms prior to the currenttyesacnple of
interest. Through multiple linear regression, sensor weights ggmputed separately for
x andy velocity that transformed the top raster plot to the lowerled right raster plots.
The transformed time series of the sensors were then sumongqutotiuce the
reconstructed velocity profiles (gray) that overlay the measwgketity profiles (black).
The upper velocity profiles are associated with the MEG dadavrs in the example
(100 ms prior to the current velocity sample of interest) and therlowes with MEG

data from O to 200 ms prior to the current velocity sample of interest.



Assessment of decoding accuracy

M-fold cross-validation was used to assess the decoding acclurahys procedure, the
data were divided inta parts (each with approximately 12 s of continuous data, or four
trials), m— 1 parts were used for training, and the remaining part was aseesfing.

The procedure was considered complete when each of tbenbinations of training and
testing data were exhausted, and the mean CC between measuirddcaded hand
velocity was computed across folds. Prior to computing the CC, tleenkiiic signals
were smoothed with a fourth-order, low-pass Butterworth filter with afduémuency of

0.6 Hz. Cross-validation was executed with= 9 for all phases of the task except for
post-exposure whema = 5. For Fig. 1.3B, standardized velocity profiles were computed

with Eqg. (1.1) withs, replaced by a velocity profile.

Sensor sensitivity curves

A curve depicting the relationship between decoding accuracy and the moinsle@sors
was computed for theandy dimensions of hand velocity for each subject for each phase
of the task. A similar method to examine this relationship has bsed to analyze
neuronal recordings (Sanchez et al. 2004). First, for each subgeeagh phase of the

task, each sensor was assigned a rank according to Eq. (1.4):

L M
R, M(L+1)Zz,/bmnkx2+bmnky2 for alln from 1 toN (1.4)
k=l

0 m=1

whereR, is the rank of sensar andM is the number of folds of the cross-validation
procedure. Second, the decoding model was iteratively executed wytithenhighest-

ranked sensor, the four highest-ranked sensors, the seven highest-rardaed, sc.

10



until all sensors were used. For each phase of the task, the rB&amftthe CCs
computed across subjects was plotted against the number of semsaltg, €ach plot
was fitted to a double-exponential curve, and the coefficient ofrdietation, R, was

calculated as a measure of the goodness of fit.

Scalp maps of sensor contributions

To graphically assess the relative contributions of scalpmegio the reconstruction of
hand velocity, the across-subject means of ih@rom Egs. (1.2) and (1.3)) vector
magnitude were projected onto a time series (— 200 to 0 ms iimiecte of 10 ms) of
scalp maps for each phase of the task. These spatial renderisgssof contributions
were produced by the topoplot function of EEGLAB version 6.01b, an open-source
MATLAB toolbox for electrophysiological data processing (Deloramel Makeig 2004,
http://sccn.ucsd.edu/eeglabl/), that performs biharmonic spline integootdtthe sensor
values before plotting them (Sandwell 1987). To examine which timeneagsthe most
important for decoding, for each scalp map, the percentage of nembiam contribution
for a phase of the task was computed as

N
z \ bni><2 + I:)niyz

%T, =100%x —"=% for alli from O toL (1.5)

where % is the percentage of reconstruction contribution for a scalp map at time lag

11



Comparison of scalp maps across adaptation

Right-tailed, paired-tests determined statistically significaptg 0.05) changes in sensor
contributions between phases of the task. Three contrasts betweealthenaps were
computed for increases from baseline (pre-exposure): early-expespre-exposure,
late-exposure — pre-exposure, and post-exposure — pre-exposure; andritrestscwere
computed for decreases from baseline: pre-exposure — early-expoiexposure —
late-exposure, and pre-exposure — post-exposure. The ressitaneés were converted to
z scores and then rendered onto scalp maps with the topoplot function ofABEGL
(Delorme and Makeig 2004) with increases and decreases repcesetit hot and cool

colors respectively.

Cortical source localization

To better estimate the cortical sources of hand velocity encadiegch phase of the
task, we used standardized low-resolution brain electromagnetic raphyg
(SLORETA) software version 20081104 (Pascual-Marqui 2002,
http://www.uzh.ch/keyinst/loreta.htm). SLORETA computes instantane®s,linear,
distributed and discrete solutions for the MEG/EEG inverse problenghwdompare
well with respect to linear inverse algorithms like minimum na@wotution, weighted
minimum norm solution, and weighted resolution optimization (Pascuetv&002).
These solutions are computed within a three-shell spherical head timadeses a lead
field computed with a boundary element method applied to the MNI52 template (Fuchs et
al. 2002). The head model includes scalp, skull, and brain compartméetdrdin

compartment is restricted to the cortical matter of a head Insmdeegistered to the

12



Talairach brain atlas (Talairach and Tournoux 1988). This compartmeoties 6239
voxels at 5 mm resolution with each voxel containing a current dipplesenting the
integrated activity within the corresponding spatial vicinity. $aasor coordinates of the
MEG helmet that were entered into SLORETA had been previoudgured in the KIT-

Maryland MEG laboratory.

To identify sources that were sensitive to velocity encodingfowed the sources that
best correlated with the most meaningful sensors from the decaahgsia using the
following method. Pre-processed MEG signals from all 157 channels for each sugject
each phase of the task were fed to SLORETA to estimatentusources. These MEG
signals had been pre-processed in the same manner as for deccalnoigrdized,
downsampled, and low-pass filtered. From the scalp map with theshigbeentage of
reconstruction contribution (- 100 ms), the fifteen sensor weights pogsdissihighest
values were selected. The CCs were then computed between tredidgua series from
the fifteen sensors with the 6239 time series from the sLORE6Iions and averaged
across subjects. Each CC was multiplied by the magnitude atghnession weighb
(from Eqgs. (1.2) and (1.3)) vector of the sensor in the correlation analysiseddun that
fifteen sensors were chosen for the correlation analysisbeeeasuse of the observation
that the sensor sensitivity curves began to plateau around fittesars (Fig. 1.4). Next
the highest 5% of the CCs (weighted ijywere set to the value one, and the rest of the
CCs were set to zero. Finally these binary-thresholded CCspiatted onto an axial

slice of the brainZ=55 mm) from the Colin27 volume (Holmes et al. 1998), the MRI
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template that best illustrated our regions of interest. All tedaroordinates of regions of

interest are in Talairach space.

Ancillary analysis: decoding from artifact-cleaned MEG data

Unintended contributions of eye movements to the decoding of hand moviment
potential confound in all MEG, EEG, and ECoG studies, including our .stdydid not
experimentally control eye movements; however, we performed allagn@nalysis.
The following procedure was separately performed on data frompdese of the task.
The continuous kinematic and MEG data for a phase of the task plgrmt® discrete
single trials of center-out drawing. Ocular, muscular, and aaalitifacts were removed
by using independent component analysis (ICA) to extract indepecmiapbnents (ICs)
and then comparing the ICs to templates of known artifacts Her purpose of
categorization and subsequent removal of the artifacts (Rong anei@srtidal 2006).
The MEG data were downsampled to 60 Hz to match the samplingfrétte kinematic
data and then standardized (Eq. (1.1)). The same central and postdpaarsas were
used in the decoding modé@l € 62), and no time lags = 0) were used because of the
discontinuities due to concatenation. Cross-validation with half ofidke as testing and
the other half as training was performed for 500 runs with tiglestrials shuffled and
concatenated before each run. The mean and SD of the CCs for the 500erans

calculated for each subject during each phase of the task.
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Results

Hand kinematics confirmed adaptation

During early-exposure to the cursor rotation, we observed curved handdpatis the

subjects’ effort to counteract the imposed rotation (Fig. 1.1BhdHaaths became
straighter in late-exposure as subjects adapted to the novebrememt. In post-
exposure, after-effects, which consisted of hand paths curved in the epgiosation

from those in early-exposure, indicated that adaptation had occureedlsé/confirmed
the occurrence of adaptation quantitatively by computing the melaratiboss subjects
for each phase of the task and comparing it between phases (Fig.Th&dDE was not
significantly different from zero in pre-exposure (two-taitedst; p = 0.34). The IDE

increased in early-exposure relative to pre-exposure, decreakdd-axposure relative
to early-exposure, and increased again in post-exposure relative-expgosure (one-

tailed, paired-tests,p < 0.001).

MEG signals contained decodable hand velocity information

We employed a linear decoding model (Egs. (1.2) and (1.3)) to reconbiuutrizontal

(x) and vertical ) velocity components of hand movement from the activity of the MEG
sensors (Fig. 1.2). The mean CCxafelocity decreased during each consecutive phase of
the adaptation task (Fig. 1.3A). Interestingly the mean Cg€w@locity increased until
post-exposure at which point it drastically decreased. In tefrmglividual subjects, the
mean CCs ranged from 0.23 to 0.56 (Table 1.1), and examples of smoothed,
reconstructed hand velocity profiles matched the measuredityefwofiles well (Fig.

1.3B).
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Fig. 1.3.Decoding accuracy for hand velocity. (A) The across-subjeanmesD of the
CCs between measured and decoded hand velocity profiles is plgbeately forx
(horizontal, black) andy (vertical, white) velocity for each phase of the task. (B)
Examples of smoothed and standardized measured (black) and decodé¢dnémchy
velocity profiles for late-exposure exhibited high decodingueszy. The left and right
columns contairx andy velocity profiles respectively. Each row contains data for a
single subject, and the CC between the measured and decoded velstid i® the left

of each plot.
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Table 1.1.Mean and SD (in parentheses) of CCs for each subject daahgphase of

the visuomotor adaptation task.

Pre Early Late Post

XVel Y Vel XVel Y Vel X Vel Y Vel X Vel Y Vel

0.64 047 0.44 0.62 0.53 0.73 0.10 -0.02

Subject 1 (0.09) (0.16) (0.11) (0.13) (0.13) (0.12) (0.21) (0.13)
Subiect 2 045 029 056 045 040 052 010 037
J (0.16) (0.14) (0.10) (0.11) (0.18) (0.21) (0.07) (0.13)
Sublect 3 048 023 046 053 049 063 042 026
) (0.14) (0.21) (0.16) (0.18) (0.12) (0.24) (0.16) (0.14)
Sublect 4 060 033 021 023 021 044 055 046
) (0.08) (0.22) (0.20) (0.11) (0.18) (0.15) (0.07) (0.13)
Subect 5 017 026 026 058 024 047 017 0.2
) (0.21) (0.30) (0.13) (0.14) (0.15) (0.22) (0.32) (0.13)
048 032 040 049 038 056 028 023

Grand Mean

(0.15) (0.08) (0.12) (0.13) (0.12) (0.10) (0.17) (0.17)
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Number of sensors and decoding accuracy were exponentially related

The linear decoding model produced one weight per sensor per timbdagfore, the
importance of the contribution of a sensor to the decoding procagsaaticular time lag
could be considered the vector magnitude of its regression weigihigt aime lag. We
ranked the sensors and reran the decoding procedure with the mosainhpensor, the
four most important sensors, the seven most important sensors, etall weatilsors were
used. These sensor sensitivity curves of mean CC vs. the numleasofssfit a double-
exponential function well ¢ = 0.95-1.00) (Fig. 1.4). For all phases of the task, the

curves peaked then plateaued, or nearly plateaued, near 15 sensors.
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Fig. 1.4.Decoding accuracy vs. number of sensors. The top and bottom rowscontai
plots of mean (black) £ SD (gray) of the CCs across subysctthhe number of sensors
for x andy velocity respectively. Columns organize the plots by phase ofatkeR?
values between the mean CC curve and a fitted double-exponentiahceiisplayed at

the bottom of each plot.

A macroscale sensorimotor network encoded hand velocity

To graphically assess the relative contributions of scalp red¢gotige reconstruction of
hand velocity, we projected the across-subject means of the vedjnitudas of the
sensor weights onto a time series (- 200 to 0 ms in incrementsno$)16f scalp maps
for each phase of the adaptation task. The scalp maps for eaah gth#se task
resembled each other, so only those for pre-exposure are showf.pAY. A network
of sensors over central and posterior scalp areas contributed to debaduh velocity
with a salient member of the network over the contralatedbimarea. Although the
scalp maps of the different phases appeared similar upon visspéction, we
investigated the presence of statistically significant increaskdecreases in early-, late-
, and post-exposure relative to baseline (pre-exposure). We observece rotil
differences between phases of the task in scalp areas over atexdiopremotor and
posterior parietal cortices in particular (Fig. 1.5B). To bettimate the cortical sources
that gave rise to the scalp maps at — 100 ms (the highest pge@itaeconstruction
contribution), we correlated the fifteen best sensors with the sowsegmated by
SLORETA. After weighting the CCs by the vector magnitudethefsensor weights, the

top 5% were binary-thresholded and plotted on an axial slice (Fig). 1rb@ll phases of
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the task, the contralateral precentral gyrus (PrG) and posicggttes (PoG) and the
ipsilateral superior parietal lobule (SPL) and precuneus (PCofleddor hand velocity.
The contralateral inferior parietal lobule (IPL) and ipsildteredial frontal gyrus,
containing the supplementary motor area (SMA), additionally encamtdtbhd velocity
in all phases except pre-exposure. Finally the lateral prencotvex of the bilateral
middle frontal gyrus (MFG) and ipsilateral superior frontal gy&KEG) were involved in

hand velocity encoding only in early- and post-exposure.

Ancillary analysis: similar decoding resulted from artifact-cleaned MEG data
Regarding the ancillary analysis of artifact-cleaned ME@,dalthough there was a
notable drop in decoding accuracy fovelocity in pre- and post-exposure, there was no
statistically significant difference in the resultant me&s©f the subjects for any phase

of the task (two-tailed, pairgetest;p > 0.05) (Table 1.2).
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Fig. 1.5.Sensorimotor networks associated with hand velocity during visuomotor
adaptation. (A) The mean vector magnitudes of the sensor weightstlfi@rinear
decoding model revealed the importance of neural regions when intechaad
projected onto a time series (- 200 to 0 ms in increments of 10 raslpf maps for the
pre-exposure phase (other phases were similar). Light and dark iegogsent high and
low contributors respectively. The highest sensor weighting oMBE& signals led the
velocity output by 100 ms, so the display of scalp maps are ceraeyedd — 100 ms.
The percentage of reconstruction contributioT)%s displayed above each scalp map.
Due to space limitations, only seven of the twenty-one scalp arapshown. (B) The
rows respectively contain thescores of differences between early- and pre-exposure,
late- and pre-exposure, and post- and pre-exposure. Increased (+) ssmbeblbd-)
contributions of sensors are mapped to hot and cool colors respectivehyhéC
estimated cortical sources involved in hand velocity encoding duringasie were
represented on an axial slice from an MRI template §5). The sources and their
Talairach coordinatex,(y, z) were the PrG (- 41, — 11, 55), PoG (- 45, — 17, 55), SPL
(30, — 46, 55), PCu (3, — 61, 55), IPL (- 41, — 41, 55), SMA (5, - 2, 55), MFG (19, 18,

55 and - 24, 20, 55), and SFG (19, 12, 55).
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Table 1.2.Mean and SD (in parentheses) of the CCs for each subject during each phase

of the visuomotor adaptation task for the decoding procedure with artifact-cleaned MEG

data.
Pre Early Late Post

XVel Y Vel XVel Y Vel X Vel Y Vel X Vel Y Vel
Subiect 1 0.44 0.46 0.52 0.37 0.46 0.66 0.44 0.09
) (0.09) (0.10) (0.07) (0.09) (0.12) (0.08) (0.14) (0.16)
Subiect 2 0.21 -0.17 0.18 0.13 0.37 0.31 0.02 0.13
) (0.09) (0.10) (0.11) (0.09) (0.07) (0.09) (0.16) (0.18)
Subiect 3 0.42 0.05 0.75 0.54 0.66 0.63 0.63 0.15
) (0.08) (0.13) (0.05) (0.06) (0.07) (0.05) (0.10) (0.20)
Subiect 4 0.70 0.04 0.41 0.24 0.47 0.54 0.44 -0.02
) (0.05) (0.15) (0.09) (0.10) (0.08) (0.06) (0.12) (0.16)
Subiect 5 0.55 0.26 0.32 0.36 0.38 0.48 0.20 0.20
) (0.10) (0.17) (0.09) (0.11) (0.15) (0.13) (0.20) (0.22)
0.46 0.13 0.44 0.33 0.47 0.52 0.35 0.11

Grand Mean

(0.16) (0.21) (0.19) (0.14) (0.10) (0.12) (0.21) (0.07)
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Discussion

Our results demonstrate that we can continuously decode information about hang velocit
from natural, multijoint, center-out movements from MEG signal¢ect@d during a
drawing task that requires visuomotor adaptation to a hand-cwtron. With the
systematic addition of sensors to the decoding model, the decodinga@accur
exponentially increases before reaching a plateau. Additionally, arostale
sensorimotor network composed of central and posterior scalp remnoondes for hand
velocity in all phases of adaptation, and the differences in ME@sor importance
between phases capture the evolution of cortical involvement duriagtagicn.
Furthermore, localization of cortical sources permits a moraleetinvestigation into

the cortical regions that encode for hand velocity in different adaptation phases.

Hand velocity information is represented on multiple spatial scales

Researchers have firmly established the existence of a goputade for hand position

and velocity at the microscale level via neuronal recordingsrffépoulos et al. 1986;
Kettner et al. 1988; van Hemmen and Schwartz 2008). Recently, some
electrocorticography (ECoG) studies demonstrated that a populedide for these
kinematic parameters also exists on a mesoscale (Schadlkk803@; Pistohl et al. 2008;
Sanchez et al. 2008). The most striking result of our study is S&tsmrimotor network

on a larger spatial scale encodes hand kinematics during naturajpintutienter-out
movements, and, furthermore, does so during adaptation to a screerhamdootation.

In sensor space, this network spans central and posterior sensoEadaMEG sensor
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reflects the contributions of millions of neurons, but yet, we candsitiode information

about hand velocity.

Further regarding spatial scale, we asked whether a densglingpiof the scalp space
could improve decoding accuracy. Since the curves of mean CC vs. thernoimbe
sensors reveal there to be an optimal, or near optimal, number ofsskssothan 62 for

all phases of the task (Fig. 1.4), we conclude that the additiom& sensors would not
substantially improve the decoding accuracy. The decreased meamdemozliracy and
increased SD of the CCs during post-exposure is likely due to #ieg) small amount

of data collected and analyzed during this phase of the task. Tradl avereased mean
decoding accuracy of velocity during adaptation was potentially due to the fact that
during exposure, the 60-degree rotation had a greater affect on hanchenbwe they
direction than thex direction, and thus may have recruited more neural resources to

handle they direction (Contreras-Vidal and Kerick 2004).

Several interesting pieces of evidence serve to validatatérpietation of our decoding
results. First, the greatest sensor contributions across tgeetzur at 100 ms prior to
the current kinematic sample under reconstruction for all phagbe ¢ésk (Fig. 1.5A).
Given that prior research has established approximately 100 maraf data in the past
to be important for planning the current movement (Mehring et al. Z294inski et al.
2003), this finding is not unexpected. In our previous report leading up tcttluy
(Bradberry et al. 2008), we discovered that hand velocity wasr b#gteoded than

position (post-publication analysis: two-tailed, paitgdst;p < 0.0001). This is another
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confirmatory finding, given that the motor cortex represents vglbeatter than position
as has been demonstrated, in particular, by studies aimed at dedwmokEmgatic

parameters for neuroprosthetic control (Schwartz et al. 2001). Fudhe the salient
region of high activation over the left motor area is expesiede subjects drew with

their right hands.

Regional comparison to non-decoding studies of visuomotor adaptation

In sensor space, across adaptation we find significant contributiohantdb velocity
decoding over the mediolateral premotor and posterior parietalaeap with respect to
pre-exposure (Fig. 1.5B). Previous studies demonstrated that th&lpaneé premotor
cortices are involved in a visuomotor network for reaching (Wis#. €t997; Burnod et

al. 1999), and an EEG study of visuomotor adaptation reported fronto-pahdta
(Contreras-Vidal and Kerick 2004). To speak more specifically aboutdtieal areas
involved with visuomotor adaptation and encoding of hand kinematics, we rpedor
source localization (Fig. 1.5C). Multiple similarities existtween the cortical regions
found in our study and those of fMRI and PET studies of visuomotor aidaptaéhe left
PrG, PoG, and IPL have been shown to be involved during visuomotor adaptation to a
rotation of visual feedback by a fMRI studies by Graydon e280%) and Seidler et al.
(2006). In PET studies, the right SPL has been observed to inaneastgvation during
visuomotor adaptation tasks by Inoue et al. (2000), Ghilardi et al. (2000), and Krakauer
al. (2004). Inoue et al., Krakauer et al., and Seidler et al. haveeabsaled an increase in

activation of SMA/preSMA during visuomotor adaptation. Finally the M&e SFG
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(lateral premotor cortex) have been shown to be active in visuoaxaptation by Inoue

et al. and Seidler et al.

Regional comparison to other decoding studies

Regarding decoding of hand kinematics, the common involvement acrkssofathe
PrG, PoG, SPL, and PCu implies that these areas form thefaroteand velocity
encoding in familiar and unfamiliar environments while the SMAerk premotor
cortex, and IPL encode for hand velocity only during adaptation. Decodiraraf
kinematics has been reported for PrG and PoG at a micro&mdegopoulos et al. 1986;
Moran and Schwartz 1999; Wessberg et al. 2000; Serruya et al. 2002artz et al.
2004), mesoscale (Schalk et al. 2007, Pistohl et al. 2008; Sanchez260&), and
macroscale (Jerbi et al. 2007). This decoding role has also bedreddorthe SPL at the
microscale (Averbeck et al. 2005; Averbeck et al. 2009; Mulliken .e2@0D8) and
macroscale (Jerbi et al. 2007). The SMA/preSMA, lateral prenoatrtex, and IPL have
also been observed to encode movement kinematics (Moran and Schwartz 1999;
Schwartz et al. 2004; Jerbi et al. 2007; Tankus et al. 2009). OrhHystigferent note, a
PET study that examined the control of movement velocity, discdvhesinvolvement
of left PrG, left PoG, right SPL, and mediolateral premotor goff@irner et al. 1998).
To our knowledge, we are the first to report that the PCus@ayle in the encoding of

detailed hand kinematics.
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Could eye movements have inadvertently aided hand velocity decoding?
Unintended contributions of eye movements to the decoding of hand movimeent
potential confound in all MEG, EEG, and ECoG studies, including our st\dydo not
experimentally control eye movements; however, our ancillarysisalwhich removes
ocular activity with an ICA-based method, demonstrates that oculaements do not

significantly affect decoding (Table 1.2).

Potential application to neuromotor prosthetic control

Most studies involving noninvasive BCI systems have focused on 1)assfidation of
mental tasks to form a low bandwidth communication channel (Pfultescheal. 2006;
Mellinger et al. 2007) or 2) continuous control of a cursor by subjebts through
relatively lengthy biofeedback training, learn to modulate the pawesne or more
frequency bands of neural signals to control one or more dimensiocnssof movement
(Wolpaw and McFarland 2004; McFarland et al. 2008). The lack of focus analidgc
detailed kinematics of natural hand movements could be partly due tntivended
presumption that this information cannot be decoded from noninvasivessigeatlded
from the scalp (Lebedev and Nicolelis 2006). Despite this presumptierg exist
several important exceptions to the lack of noninvasive studies aameéveloping
decoding methods for controlling neuromotor prostheses. One study has decoded
continuous joystick coordinates from MEG signals acquired duringnuamis pentagon
drawing in the absence of visual feedback of movement (Georgopetudds2005), and
another study has decoded information regarding hand tangentialtydlom MEG

signals acquired during trackball movements in two dimensionki @eal. 2007). Our
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study primarily differs from the two aforementioned studies ihweadecode continuous
hand velocity frommultijoint movements during eenter-out drawing task that requires
adaptation to a novedcreen-cursor rotation. The center-out nature of our task is
meaningful because it allows comparison to invasive decoding studliggdiromotor
prostheses and emphasizes a desired function of the first gemerfathese devices. In
terms of the visuomotor adaptation component, further investigation may@rogight
into how the brain adapts to a tool such as a neuromotor prosthesiddl.ebal. 2005),
and, hence, potentially advance the understanding of how to achiegeneffto-
adaptation of the brain and decoding model. On a final comparative reotanweach
iteration of our decoding model with a relatively small set ahiing data composed of
16 (post-exposure) to 32 (pre-, early-, and late-exposure) trials. shill amount of
training data is meaningful because it may translate to aasuiastreduction in the time

required for a patient to gain mastery over the control of a neuromotor prosthesis.

What remains to be elucidated is whether the decoding method presethedreport
will also be applicable to EEG, which is better suited than MBGah ambulatory
prosthetic system. In terms of EEG-based decoding of movememh@i@rs, several
recent studies have decoded the direction of hand movement (Hamnabn2608;
Waldert et al. 2008), but, to our knowledge, researchers have yepdda successful
decoding of continuous hand position or velocity from EEG (a comprehemrsivehsn
peer-reviewed journals did not produce any studies). In the futureyilvapply our
decoding method to EEG signals to examine the application of this agiiavmodality

to continuous, complex control of a neuromotor prosthesis.
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Chapter 2: Reconstructing three-dimensional hand meements

from noninvasive electroencephalographic signals

The material contained in this chapter is published as Bdberry TJ, Gentili RJ,
Contreras-Vidal JL (2010) Reconstructing three-dimensional hananovements from
noninvasive  electroencephalographic signals. J Neurosci 30:3432-3437.
Supplemental material in the journal publication has beenncorporated into the

main text of this dissertation chapter.

Abstract

It is generally thought that the signal-to-noise ratio,#wedwidth, and the information
content of neural data acquireid noninvasive scalp electroencephalography (EEG) are
insufficientto extract detailed information about natural, multijoint movemehtthe
upper limb. Here, we challenge this assumption by continuodstpding three-
dimensional (3D) hand velocity from neural datguired from the scalp with 55-channel
EEG during a 3D center-otgaching task. To preserve ecological validity, five subjects
self-initiated reaches and self-selected targets. Eye newsmere controlled so they
would not confound the interpretatiohthe results. With only 34 sensors, the correlation
betweemmeasured and reconstructed velocity profiles compared reasavelbly that
reported by studies that decoded hand kinemdtiosr neural activity acquired
intracranially. We subsequentxamined the individual contributions of EEG sensors to

decodingto find substantial involvement of scalp areas over the sensorimartiex
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contralateral to the reaching hand. Using standardit®d-resolution brain
electromagnetic tomography (sLORETA), vigentified distributed current density
sources related to hanélocity in the contralateral precentral gyrus, postceglyals,
and inferior parietal lobule. Furthermore, we discovetteat movement variability
negatively correlated with decodingccuracy, a finding to consider during the
development of brain—computerterface systems. Overall, the ability to continuously
decode8D hand velocity from EEG during natural, center-out reachatds promise for
the furtherance of noninvasive neuromotprostheses for movement-impaired

individuals.

Introduction

In the last decade, research into the neural coding of moveaasgegenerated enthusiasm
for its potential to restore functi@a movement-impaired individuals. The field of brain—
computerinterface (BCI) systems deals with interpreting the necwdeand generating
commands to control an assistive device. To ¢hid, researchers have extracted hand
trajectories or velocityprofiles from neuronal signals acquired with electrodes seated
directly into cortical tissue and, in some cases, used Hiesmatics to command a
robotic arm in real time (Wessbergatt 2000; Serruya et al. 2002; Taylor et al. 2002;
Hochberget al. 2006; Kim et al. 2006; Mulliken et al. 2008; Truccsatlal. 2008; Velliste

et al. 2008). Investigators have aksxtracted hand kinematics from intracranial local
field potentialsobtained through less invasive electrocorticography (Sakta#it. 2007,

Pistohl et al. 2008; Sanchez et al. 2008).
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In contrast to decoding studies that acquired intracranial nectraity, little work has
been done to continuously decode natumalltijoint hand kinematics from neural signals
acquired noninvasivelyOnly a few studies report continuous decoding of two-
dimensional(2D) hand and tool kinematics from magnetoencephalography (MEG)
(Georgopoulos et al. 2005; Jerbi et al. 2007; Bradbergt. 2008, 2009a). Although
MEG demonstrates a proof of conceptjs immobile and therefore unsuitable for
practical BCI systemdlowever, electroencephalography (EEG) is suitable for pedctic
BCI systems, but, with the exception of our preliminary sti@igdberry et al. 2009b),
researchers have not demonstrateatinuous decoding of hand kinematics from EEG.
Instead, mosSEEG studies have discretely classified the direction/spe2D dand/wrist
movements or different motor imagery tasksaaingle-trial basis (Mellinger et al. 2007;
Hammon et al2008; Waldert et al. 2008; Gu et al. 2009), or they have demons2iated
continuous control of a cursor through biofeedback trai(Wglpaw and McFarland
2004). The lack of attention to reconstructimematics of natural hand movements from
EEG could be becausmme researchers consider training subjects to modulate EEG
activity, independent of reconstructing hand kinematicssufiice for 2D control
(Wolpaw and McFarland 2004). The laakattention could also be due to the assumption
that EEG signalkack sufficient signal-to-noise ratio, bandwidth, and informatioamtent

to decode hand kinematics (Lebedev and Nicolelis 2006).

To examine our hypothesis that kinematics of natural hand movearentdecodable
from EEG signals and, hence, may serve as sigmwals for controlling neuromotor

prostheses, we aimed to continuowstyract hand velocity from signals collected during
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a three-dimensioné&BD) center-out reaching task. To assure a realistic task, subgrets
not cued: they chose which target to acquire and whanititte movement. Since EEG
coupled with our decoding methéatilitated the investigation of sensor contributions to
decodingwith high temporal resolution, we examined the location of safiensors
across time lags. Using standardized low-resolubi@in electromagnetic tomography
(SLORETA) (Pascual-Marq002), we further estimated the sources most involved in
encodinghand velocity. Moreover, we investigated the relationship betweeading

accuracy and movement variability.

Materials and methods

Experimental procedure

The Institutional Review Board of the University of MarylandCallege Park approved
the experimental procedure. After giving informed consent, five lheatight-handed
subjects sat upright in a chair and executed self-initiated reeutereaches to self-
selected push button targets near eye-level (Fig. 2.1). Wadtedrsubjects to attempt to
make uniformly distributed random selections of the eight targét®wt counting. The
elbow of the reaching arm was unsupported, and the non-reachinglaxedri the lap.
Subjects took approximately 4 s to reach to the peripheral targehamddturn to the
center target. To mitigate the influence of eye movements on taedion, subjects
were instructed to fixate an LED on the center target througthtat collection and to
only blink when their hand was resting at the center target. Toeetigiminimization of
eye movements, a researcher monitored the subjects’ eyes datiangptlection, and the

correlation between electro-ocular activity and hand kinematas analyzed off-line
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(see section on eye movement analysis). For each subject, thenexpaoncluded after
each target was acquired at least ten times. While the edgmovements were familiar

to the subjects, none of the subjects had previous experience with the task.
87 SUZ Subject 4
m A
X S
Subject 1 A Subject 5
y j ’}

,\ .\.4_-—\ \ =

Fig. 2.1. Experimental setup and finger paths. The reaching apparasi®ws in the
middle along with the Cartesian coordinate system we employeddiBtance from the
center position to each of the targets was approximately 22 ciem Kweger paths for
center-to-target (black) and target-to-center (gray) movesmerhibited movement

variability among subjects.
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Data collection

A 64-sensor Electro-Cap was placed on the head according ¢xtdraded International
10-20 system with ear-linked reference and used to collect 58 chahie<s activity.
Continuous EEG signals were sampled at 1000 Hz and amplified 506 tvimea
Synamps | acquisition system and Neuroscan v.4.2 software. AdditiohalfEEG
signals were band-pass filtered from 0.5 to 100 Hz and notcledlt&r 60 Hz. Electro-
ocular activity was measured with a bipolar sensor montage withorse attached
superior and inferior to the orbital fossa of the right eye fatioz eye movements and
to the external canthi for horizontal eye movements. Hand positiorsavagled at 100
Hz using an Optotrak motion sensing system (Northern Digital, tima) tracked an
infrared LED secured to the fingertip with double-sided adhésie. Event markers of
push button presses and releases were sent from the apparatusingpnkee push
buttons to the Neuroscan and Optotrak systems for off-line synchiionizd EEG and

kinematic data.

Signal pre-processing

For computational efficiency and to match the sampling rate okitreenatic data, the
EEG data were decimated from 1 kHz to 100 Hz by applying apkmss- anti-aliasing
filter with a cutoff frequency of 40 Hz and then downsampling gcéor of 10. A zero-
phase, fourth-order, low-pass Butterworth filter with a cutef§érency of 1 Hz was then
applied to the kinematic and EEG data. The cutoff frequency wagsmiledel
experimentally with influence by previous noninvasive and ECoG stuthas

demonstrated the importance of low frequencies for noninvasive decddiry €t al.
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2007; Schalk et al. 2007; Waldert et al. 2008; Bradberry et al. 2008, 20094) tie

temporal difference of the EEG data was computed (igt]=V,[t]-V,[t -1] wherev,[t]
and v,[t] are respectively the backward-differenced and pre-differenc&l uoage of

sensor n at time t). In order to examine relative sensor comrisuin the scalp map
analysis described in a section below, data from each EEG seaserstandardized
according to Eq. (2.1):

Vn[t] — Hy,

S,[t] = for alln from 1 toN (2.1)

Vi

where s,[t] andv,[t] are respectively the standardized and differenced vadtagensor

n at timet, », ando, are the mean and standard deviatiowofespectively, and is

the number of sensors.

Decoding method

To continuously decode hand velocity from the EEG signals, a liremxdthg model
was employed similar to that described by Georgopoulos et al. (BIOBEG signals.
In general, the model finds a linear combination of past andrrisses series data from
multiple EEG sensors that reconstructs the current kinersatnple of a dimension of

hand velocity. In equation form:

N L

] =Xt -1 =a, + D > byoSylt—k] (2.2)
n=1 k=0
N L

Vitl-yit-1=a, + > > by Syt K] (2.3)

n=1 k=0
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N L
At -At-1=a,+ ) > bySilt—Kl (2.4)

n=1 k=0
where x[t]-xt-1], y[t]-yit-1], and Zt]-4t-1] are the horizontal, vertical, and depth
velocities of the hand at time samplespectivelyN is the number of EEG sensoks(=
10) is the number of time lags, [t - k] is the standardized difference in voltage measured
at EEG senson at time lagk, and thea andb variables are weights obtained through
multiple linear regression. The number of lags10, corresponding to 100 ms) was
chosen based on a previous study that reconstructed hand kinematiceframsignals
acquired with MEG (Bradberry et al. 2009a). The three most frestadors (FP1, FPZ,
and FP2 of the International 10-20 system) were excluded from thgsiantl further
mitigate the influence of any eye movements on reconstructiamtingsin anN of 55

Sensors.

For each subject, the collected continuous data contained approximat&igl80An
8x8-fold cross-validation procedure was employed to assess thdimig@ccuracy. In
this procedure, the entire continuous data were divided into 8 parts, Wpeetssed for
training, and the remaining part was used for testing. The veldaity and EEG data
were synchronized, so thatnf samples of velocity were to be reconstructed then the
alignedm samples of EEG data from a single sensor were used alond.@vitgged
versions of thesen EEG samples for a total af(10 + 1) samples per sensor (plus one for
the offseta). Based on the sampling rate of 100 Hz and collection duration of
approximately 5 minutes per subjent,was about 3750 samples per training fold and

26,250 samples per testing fold. The cross-validation procedure was cedsidmplete
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when each of the 8 combinations of training and testing data werestetiaand the
mean Pearson correlation coefficient ljetween measured and reconstructed kinematics
was computed across folds. Prior to computinthe kinematic signals were smoothed
with a zero-phase, fourth-order, low-pass Butterworth filteh &itcutoff frequency of 1

Hz.

Sensor sensitivity curves
Curves depicting the relationship between decoding accuracy andrtiteer of sensors
used in the decoding method were plotted forxthg andz dimensions of hand velocity.

First, for each subject, each of the 55 sensors was assigned a rank according to

1

R"_L+1

L
Z\/bnkx2 +byy” +by,”  foralln from 1 toN (2.5)
k=0

whereR, is the rank of sensar, and theb variables are the best regression weights. This
ranking procedure is similar to the one described by Sanchalz €004). Next, the
decoding method with cross-validation as described above and ranking meth®d w
iteratively executed using backward elimination with a decrensésq of three (52
highest-ranked sensors, 49 highest-ranked sensors, 46 highest-rankes, ®03. The
mean and standard error of the mean (SEM) wdlues computed across subjects were

plotted against the number of sensors.

Scalp maps of sensor contributions
To graphically assess the relative contributions of scalp reg¢gotige reconstruction of

hand velocity, the across-subject mean of the magnitude of thb bestors (from Egs.

38



(2.2) — (2.4)) was projected onto a time series (-100-0 ms in increraedd ms) of
scalp maps. These spatial renderings of sensor contributions pneetaced by the
topoplot function of EEGLAB, an open-source MATLAB toolbox for
electrophysiological data processing (Delorme and Makeig 2004;
http://sccn.ucsd.edu/eeglabl/), that performs biharmonic spline integootdtthe sensor
values before plotting them (Sandwell 1987). To examine which timeneagsthe most
important for decoding, for each scalp map, the percentage of

reconstruction contribution was defined as

N

Z\/bnix2 + bniy2 + bniz2

%T; =100% x — =2 for alli from O toL (2.6)

=
3 Pbue? +bg® +bg?

n=1 k=0

where %; is the percentage of reconstruction contribution for a scalp map at time lag

Source estimation with SLORETA

To better estimate the sources of hand velocity encoding, we wsethistized low-
resolution brain electromagnetic tomography (SLORETA) so@twaersion 20081104
(Pascual-Marqui 2002; http://www.uzh.ch/keyinst/loreta.htm). Prepraté&ds€ signals
from all 55 channels for each subject were fed to SLORETAtima&® current sources.
These EEG signals had been pre-processed in the same manfaer decoding:
standardized, downsampled, and low-pass filtered. Fivsiues were computed between
the squared time series of each of the 55 sensors with the 623%eiiee from the
SLORETA solution and then averaged across subjects. Second, theumaxiwas

assigned to each voxel after being multiplied by the regressahtb (from Egs. (2.2)
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—(2.4)) of its associated sensor. The regression weights had beed puolin the
regression solution at time lag -60 ms, which had the highesternage of
reconstruction contribution. Third, for visualization purposes, the highesofs%e
voxels ¢ values weighted bp) were set to the value one, and the rest ofr tkhalues
were set to zero. Finally these binary-thresholdgdlues were plotted onto axial slices
of the brain from the Colin27 volume (Holmes et al. 1998), the magnetonance
imaging (MRI) template that best illustrated our regions rdkerest. All reported

coordinates of regions of interest are in Montreal Neurological Irs{iiiNI) space.

Movement variability

For each subject, three measures of movement variability wengutedn the coefficient
of variation (CV) for movement time (MT), the CV for movememigth (ML), and the
kurtosis of movement. MT and ML were computed on a trial basis wiialalefined as
the release of a pushbutton to the press of a pushbutton (centeetodartarget-to-
center). The mean and SD of the measures were then computed, &lviaes divided

by the mean to produce the CV. Kurtosis was defined as

4
k=EM=tn) g 2.7)
Oh

wherek is the kurtosisk() is the expected value operatbiis the hand velocity, ang,
and o, are respectively the mean and SD of the hand velocity. Simglle of velocity

profiles for x, y, and z dimensions were resampled to normalize for length and then
concatenated before computing kurtosis. The relationship between emveaniability

and decoding accuracy was examined by computbejween the quantities. The sample
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sizes were smalln(= 5) for decoding accuracy and each measure of movement
variability, so 10,000 values were bootstrapped for each comparison, and the median
and confidence intervals of the resultant non-Gaussian distributiorscaleulated using

the bias-corrected and accelerated {Bfercentile method (Efron and Tibshirani 1998).

Eye movement analysis

When reconstructing a behavioral variable from neural activitg, inportant to ensure
the minimization of co-occurring, correlated behavioral variablist may
simultaneously influence neural activity. To this end for our regctask, in addition to
instructing subjects to fixate a center LED, we needed to iroonfthat
electrooculographic (EOG) activity only minimally correlatedhamand velocity. We
computedr values between EOG velocity and hand velocity across 10 timg-E@3
ms) with both signals low-pass filtered at 1 Hz as in tise cdé hand kinematic decoding

from EEG.

Results

Our EEG decoding method reconstructed 3D hand-velocity prodésonably well. We
guantified the decoding accuracy by computthg mean of Pearsonis between
measured and reconstructed hamdbcity across cross-validation folds. Fgprand z
velocities,the decoding accuracy peaked at 0.38 and 0.32, respectwtlypnly 34
sensors (Fig. 2.2A,B). Fox velocity with 34 sensorghe decoding accuracy of 0.19
remained relatively unaffectdny the number of sensors. Thus, we used 34 sensors for

subsequerdinalyses. In addition to quantitatively analyzing decoding accwisnally
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comparing reconstructed and measured velocity prafde8rmed their similarities (Fig.
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Fig. 2.2. EEG decoding accuracy of hand velocity. (A) The mean (blackEM (gray)

of ther values across subjects £ 5) vs. the number of sensors exhibited a peak at 34
sensors. (B) With 34 sensors, we computed the mean + SEM of/éhges across cross-
validation folds ( = 8) for each subject for (black),y (gray), andz (white) velocities.

(C) Reconstructed (black) and measured (gray) velocity profdesnonstrated
similarities. Exemplar velocity profiles from the subjectshwthe best (Subject 1, top

row) and worst (Subject 5, bottom row) decoding accuracies are shown.
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Scalp maps depicted the contributions of the 34 sensorsetsvark of frontal, central,
and parietal regions (Fig. 2.3A)Vithin this network, sensor CP3 made the greatest
contribution.nterestingly, CP3 lies roughly above the primary sensorincotbex that is
contralateral to the reaching hand. Concertimg lags, EEG data from 60 ms in the past
supplied the mosinformation with 16.0% of the total contribution. At 60 nvge
localized the EEG sources to confirm that the primary senstor cortex (precentral
gyrus and postcentral gyrus) was indeethaor contributor along with the inferior

parietal lobule (IPL§Fig. 2.3B).

A 5.2% 6.9% 16.0% 9.1% 10.1% 5.0%

009000

5.6% 10.7% 15.6% 8.5% 7.3%

L 1 . 1 1 1 L L 1 J
-90 -80 -70 -60 50 -40 -30 -20 -10 [}

Timt:a (ms)

Sensor Contribution

|
-100

Fig. 2.3. Scalp and current sources that encoded hand velocity. (A) Mearb) scalp
maps of the best 34 sensors revealed a network of frontal, centdalpaaietal

involvement along with a large individual contribution from sensor CP3. lagttdark
colors represent high and low contributors, respectively. Eaclp soab with its
percentage contribution is displayed above its associated 10 m&agmeevealing the
16.0% maximal contribution of EEG data at 60 ms in the past. (B) &itaaV localized
sources (yellow) from 60 ms in the past onto MRI structuralgesato reveal the
involvement of the precentral gyrus£ —30,y = —30,z = 52), postcentral gyrus € —35,

y =-30,2=47), and IPLX = -35,y = -36,z= 42).
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Additionally, we compared the relationship between decodaugiracy, shown in Fig.
2.2B, and movement variability. To quantthovement variability, we computed the CV
for MT and ML (Fig. 2.4A) and the kurtosis of the velocity profi€gy. 2.4B). Thenigh
kurtosis values indicated outlier-prone, super-Gausdistnbutions (kurtosis, >0). We
found that movement variabilitpegatively correlated with decoding accuracy (Fig.
2.4C). Fig. 2.1 aids in visually depicting this relationship by showhagsubject 1, with

the best decoding accuracy, performed straigbtahes.
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Fig. 2.4. Relationship between movement variability and decoding accurAgylHe

CVs for MT (black) and ML (white) ranged across subjects. TB¢ kurtosis of the
velocity profiles also varied across subjects. (C) All movememiability measures
demonstrated high negative correlations with the decoding accuraeym sn Fig. 2.2B.

Rectangles demarcate the confidence intervals for the kaguistir values, with each
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rectangle possessing a horizontal line at the median. The enocdédntervals are 70, 90,

and 70%, respectively, for MT, ML, and kurtosis.

We computedr values between EOG velocity and hand velocity across time dags t

confirm that they only minimally correlated (Fig. 2.5).
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Fig. 2.5. Cross-correlation between EOG velocity and hand velocity. We cechput
values between EOG velocity and hand velocity across 10 tgsgH{400 ms) with both
signals low-pass filtered at 1 Hz. The across-subject mrearbjr values exhibited low
correlation of vertical (A) and horizontal (B) EOG velocitieshm (solid), y (dashed),

andz (dotted) dimensions of hand velocity.

Discussion

In the last decade, researchers have pushed the boundamemin¥asive neural
decoding in the interest of developing BSistems for the movement impaired. To
further stretch the limitsye continuously reconstructed 3D hand velocity of natural,
multijoint, center-out movements from only 34 channels of EEG data. A sensorimotor

network composed of frontal, central, and parietal scalp regonsded for hand
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velocity, with the strongest contributioneming from cortical regions of the precentral
gyrus, postcentragyrus, and IPL at 60 ms in the past. Furthermore, the intersubject
variability in movement may explain the intersubject variabifitgecoding accuracy due

to their negative correlation.

The sensor sensitivity curves fprandz velocities peak a#0.35 for 34 sensors before
they begin decreasing. A common occurrenc@achine learning is that, as the number
of input featuredncreases, prediction increases up to a point, then predictaon
decrease due to overfitting the model to the training edtech is likely the case here
(Alpaydin 2004). The curve for velocity remains nearly flat0.20 after an initial rapid
increasgFig. 2.2A). We made the common assumption that the brain enmgplogad-
centered Cartesian coordinate system. However, the posshkibtg that the brain could
represent a different coordinatgstem (e.g., joint space or multiple interacting frames of
reference) or desired muscular activity (Gourtzelidis e@D1; Wu and Hatsopoulos
2006, 2007). The dimensions of alternate representation could correlate better with
and z velocities thanx velocity, potentially explaining the uniquenesdsthe sensitivity
curve forx velocity. Nonetheless, in futustudies when subjects are asked to use motor
imagery to contro& cursor or virtual arm in 3D via our decoder, we expect tieeiral
activity to adapt to overcome an initial imperfect chateepresentation framework, as

Ganguly and Carmena (2009) obserivedn invasive BCI experiment.

To our knowledge, apart from our preliminary study (Bradbetrgl. 2009b), studies on

continuously decoding hand kinematiecsm EEG do not exist. Therefore, we cannot
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directly compareour results to the literature. However, two studies report off-line,
continuous reconstruction of 3D hand kinematics from intracrar@atonal activity
(Wessberg et al. 2000; Kim et al. 200&)d several studies report off-line, continuous
reconstructiorof 2D hand and tool kinematics from MEG (Georgopoulos e2G05;

Jerbi et al. 2007; Bradberry et al. 2008, 2009afh®MEG investigations, Bradberry et

al. (2008, 2009a) exclusivegmploys a center-out movement paradigm, dadacto
standardfor comparison among decoding studies with BCI implicatidiese other
studies report slightly highervalues (Table 2.1ut uniquely our study involves more
ambitious experimentasettings, such as more reaching targets, greater extent of

multijoint movements, self-initiated movements, and self-selected targets.

Strengthening the validity of our decoding results, scalp raapsestimated current
sources indicate involvement of the contralaterahary sensorimotor region and the
IPL. Other studies confiritinat the primary sensorimotor cortex encodes hand kinematics
at a microscale (Georgopoulos et al. 1986; Moran and Sch®@0& Wessberg et al.
2000; Serruya et al. 2002; Schwaetal. 2004; Kim et al. 2006), mesoscale (Schalk et al.
2007; Pistohl et al. 2008; Sanchez et al. 2008), and macr@isetde et al. 1998; Jerbi et

al. 2007). Several MEG studie=port that the IPL also encodes hand kinematics (Jerbi et
al. 2007; Bradberry et al. 2009a). Regardless of scale, decoditigpds like the one we
report here rely on a subsecond histofyneural data to reconstruct hand kinematics
(Serruya et aR002, Sanchez et al. 2008; Bradberry et al. 2009a). Our abfcac®00 ms

lag aligns with this convention as well as the ratiottadé these lags consist of planning

activity of the brain associatedith the current kinematic sample of the hand.
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Furthermoreacross lags the sensor contributions initially increase, geék ms, and
then decrease, possibly revealing a temporal tucuimge for our task. Since only low-
frequency components of tBEG signals seem to carry information about hand velocity,
slow cortical potentials emerge as the best candidates for a ngsiaphical

interpretation of these findings (Birbaumer et al. 1990).

Table 2.1.Comparison to most relevant off-line decoding studies of hand kinematics

Neural average

Subjects Reaching / Drawing Task ~ Cued? r r r
) Data g g X y z "

Wessberg et al. monkeys single  3D; table>1 of 4 food tray Yes 0.50* 0.45* 0.65* 0.53

2000 (n=2) units positions>mouth

Kim et al. 2006  monkey single  3D; table>1 of 4 food tray  Yes _ _ _ 0_42_
(n=1) units positions>mouth> table

Bradberry et al. humans MEG  2D; center of DP1 of 4 Yes 048 0.3 - 0.40

2009a (n=5) peripheral targets of DP

center of DT

Present study humans EEG 3D; center PB1 of 8 No 0.19 0.38 0.32 0.29

(n=5) peripheral PB®center PB

DT: drawing tablet, PB: push button

» Since Wessberg et al. (2000) provide the evolution @fer time, and the duration of
our task is approximately 5 minutes; we used their repaoxgted, andr, values at 5
minutes into their task.

" For the Kim et al. (2006) study, we computed the average bettegnreportedr
during movement andduring rest for their best decoding method.

* For the Bradberry et al. (2009a) studyandr, were taken from only the pre-exposure

phase (no novel visuomotor transformation imposed).
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An important topic in BCI research involves how decoding methodg adapt or
facilitate user adaptation to novel environmepts cognitive states. To evaluate
adaptation, the user of a BSjistem must receive feedback (e.g., visual or kinesthetic) of
imagined movements while manipulating a brain-controlled dewigeal time. In the
future, it will be essential to provideibjects with real-time feedback to investigate their
ability to adapt their EEG activity to a fixed decoder (i.e., tesaliigy of our decoder to
generalize). To improve performanitas expected that subjects will "modify" regression
weightsby modulating their EEG activity. Decoder generalization teaently been
demonstrated and analyzed in monkeys by Gangnty Carmena (2009). Regarding
humans, researchers have not thoroughbtyzed generalization; regardless, comparably
impressive 2[zontrol has been demonstrated by sensorimotor rhythms déoweEEG
(Wolpaw and McFarland 2004) and single neurons (Hochéerd. 2006). Given this
evidence, we expect our decoding metfutsdEEG to permit 3D brain control by humans

in real time.

Regarding the negative correlation between movement variabibitglecoding accuracy,
we offer two potential explanationgor the more technical explanation, increased
movement variabilityould degrade decoding accuracy due to less similar peiE G+
kinematic exemplars. Conversely, less movement variabgisylts in more similar
exemplars for training. A more neuralated explanation is that subjects differ in their
ability to perform the task without practice; hence, the strengtha pfiori neural
representations of the required movements diffieese differing strengths could directly

relate to the accuraaeyith which the representations can be extracted. Indeed, a previous
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study confirms that motor learning produces more accurate poedici movement
direction from an ensemble of neuronal activityprimary motor cortex (Cohen and
Nicolelis 2004). This findings important to consider as real-time BCI systems based on

ourdecoder are investigated in the future.

In conclusion, despite the common assumption that EEG sidmalst possess decodable
information about detailed, complérand movements, we demonstrate otherwise. The
locations of thenost important sensors to decoding are interpretable indfghevious
studies and corroborate our claims. In the hgare, the question should be addressed of
how well subjectan adapt to our decoder of 3D kinematics when feedback of the

decoder output is provided.
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Chapter 3: A noninvasive brain-computer interface gstem
with efficient decoder calibration based on obserwsmon of

cursor movement

Abstract

Most current noninvasive brain-computer interface (BCI) syssmed at cursor control
are based on neural signals acquired with electroencephalogEpGy. (A limitation of
these current BCI systems is the lengthy training timeekweg¢o months) required by
users to achieve satisfactory multidimensional control. To addnesdirhitation, we
investigated a novel approach for continuously decoding imagined movenoentSEG
signals in a BCI experiment involving five subjects that performebree-phase task:
calibration, practice, and target acquisition. During the calibrapibase, subjects
imagined moving their right arm/finger to track a cursor that moved in two diomensn
a computer screen (10 min). A decoding initialization procedurethes executed to
find the decoder parameters that best mapped 34 EEG signals to dldsmizental and
vertical cursor velocities (=10 min) (Bradberry et al. 2@10leurosci 30). Through
subsequent investigation of the cortical sources that encoded for observed cursty;, veloci
a large neural network that comprised brain regions considered afpdn® human
mirror neuron system (MNS) was engaged. During the practiasephafter an initial
manual adjustment of cursor speed to comfortable values by investigatlO min),
subjects used the calibrated decoder to move the cursor withthiogights in two

dimensions as desired without task constraints for 10 min. Duringuthet tacquisition
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phase, subjects used their thoughts to move the cursor to a targedappesred
pseudorandomly at the top, bottom, left, or right side of the comput@&nsdfesubjects
did not acquire the target within 15s, the trial was aborted, anavaanget appeared.
Four 10-minute runs of target acquisition were performed. The mesdangdard error
(SE) of the target hit rate was 73 + 4% across subjectsuansd A snapshot of cortical
sources that maximally encoded for cursor velocity duringtdnget acquisition phase
primarily differed from that of the calibration phase by revepnla more widespread
involvement of the primary sensorimotor cortex and decreased invaiveofethe
putative MNS. Our results suggest that the reported approach toumrdly decoding
imagined movements from EEG signals substantially reducesingatime for
noninvasive BCI systems and allows for unigue insights into the alréigions involved
in encoding imagined and observed movements under different task acusstrai
Moreover, our decoding method serves as a novel tool for studyimtpveédopment and
plasticity of neural representations underlying action observatidraetion production at

the macroscale afforded by EEG.

Introduction

Brain-computer interface (BCIl) systems may potentially provitgvement-impaired
persons with the ability to interact with their environment usingy ¢dméir thoughts to
control assistive devices such as communication programs and stifanlaarms.

Currently the most promising BCI systems rely on neuralassgacquired noninvasively

with electroencephalography (EEG) (Wolpaw and McFarland 200#)vasively with
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microelectrode arrays seated into cortical tissue (Hochbergal. 2006) or

electrocorticography (ECoG) (Schalk et al. 2008).

Noninvasive EEG-based BCI systems for 2D cursor control requlvgects to learn to
modulate sensorimotor rhythms to move a cursor to acquire taf@&ipaw and
McFarland 2004). These types of studies based on sensorimotor shrghuired weeks
to months of training before satisfactory levels of performameeattained. Relative to
EEG signals, the increased signal-to-noise ratio and bandwidtivadively acquired
neural data are commonly thought to be factors that reduceathmg¢ time required by
users of invasive BCI systems (Schalk et al. 2008). In addition, stodlieetraplegic
humans with implanted microelectrode arrays have exclusively démat@us2D control
of a cursor through imagined natural movement (Hochberg et al. 2006etkam2008).
This decoding of imaginedatural movement is also a likely factor in reduced training

time.

However, recently several off-line decoding studies demonstthéedeconstruction of
cursor and hand kinematics from noninvasive magnetoencephalography M@ GEG
(Bradberry et al. 2009a, 2010). The noise and bandwidth limitations of thevasively
acquired signals did not impede decoding kinematiasatiral movement. This finding
infers that a BCI system based on the decoding method reported éenstinoses may
require little training time. In this study, we sought to investighe use of the decoding
method reported in those studies in an EEG-based BCI system dusingle session

lasting less than two hours that required only a brief (10 minpratibn phase.
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Moreover, we hypothesized that if the neural representation of \isoxa@ment during
observation could be decoded, this information could be harnessed focdméiol of a
computer cursor as previously demonstrated by invasive studies (Hgpattbal 2006;
Kim et al. 2008). Thus, we examined the involvement of neural regioesdading
cursor velocity during observation of computer-controlled cursor moveamehtiuring

tasks requiring a brain-controlled cursor to acquire targets in 2D space.

Materials and methods

Experimental tasks

The Institutional Review Board of the University of MarylandCallege Park approved

the experimental procedure. After giving informed consent, five lheatight-handed
subjects performed a three-phase task: calibration, practiceared acquisition. In all
phases, their EEG signals were acquired while they sat upnghtchair with hands
resting in their laps at arm’s length away from a compuatenitor that displayed a
workspace of dimensions 30 x 30 cm and a cursor of diameter 1.5 cm (0.20% of
workspace) (Fig. 3.1). Subjects were instructed to remain stilfedax their muscles to

reduce the introduction of artifacts into the EEG recordings.
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Fig. 3.1. Diagram of data processing flow for EEG-based BCIl experimaimien the
switches are in positionA, the system is in observation/calibration mode. In
observation/calibration mode, a subject observes a replay of a pb@css cursor
movements on a computer screen while data from N (34) EEG semearsntinuously
acquired by an EEG system that amplifies and band-pass fitterdata fronfrg; (0.01)

to Fg2 (30) Hz before storing them. Afterwards, the EEG data and olosewesor
velocity are used to compute the decoder weights. When the switehespsitionB,
the system is in practice or target acquisition mode. In peastade, after the EEG data
are stored, they are continuously temporally differenced, lowfpessd atF 1 (1) Hz,
laggedL (11) times (a lag of 0 also occurs), decoded for cursor velbgitiie calibrated
decoder from the preceding calibration phase, low-pass fileganh atF , (1) Hz, and

gain adjusted before being displayed on the computer monitor as f@sdahck to the
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subject. The practice mode differs from the target acquisition modbeat, during
practice, the gains preceding the cursor display are manufllgted by investigators
(difference not depicted in diagram), and no targets are presehe screen (unlike the
screen in the diagram that shows a target on the rightlargrett acquisition mode,
subjects attempt to move the cursor to targets that appear pselatoha at the left,

right, top, or bottom of the screen.

Calibration

During the 10-minute calibration phase, subjects were instructetatgine moving their
right arm/finger to track a computer-controlled cursor that movedendimensions on
the computer screen. The movements of the computer-controlled cursogevesrated
by replaying a pilot subject’s brain-controlled cursor movemfata one of his practice
runs (this pilot subject did not participate as one of the five sishja this study).

Histograms of the horizontal and vertical positions and velocitieth@fcomputer-

controlled movements indicated approximately uniform coverage of thkespace and
biological motion respectively (Fig. 3.2). The decoding procedure degaribe section

below was subsequently executed (~10 min of computation time)ilboatalthe decoder
so that it best mapped the EEG signals to observed horizontal achlveursor

velocities. During pilot testing, we discovered that asking subgectisually fixate the
center of the workspace while simultaneously tracking the cuadded attentional
demands that burdened the subjects and likely compromised the decbdistpre, we

told subjects they were free to move their eyes but to alwaystaim eye contact and

spatial attention with the moving cursor.
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Fig. 3.2. Histograms of observed cursor kinematics during the calibrai@se. (A)
Histograms of horizontal (left) and vertical (right) positiomslicated approximately
uniform coverage of the workspace. (B) Histograms of horizoiefl) and vertical
(right) positions inferred movements with bell-shaped velocity leoffalthough these
are more super-Gaussian than typical point-to-point movementsatindiof biological
motion. The velocity histograms actual peak near 5000 but were truiscetieel shape of

the base could be viewed.

Practice

During the practice phase, the subjects used the calibrated dexattempt to move the
cursor with their thoughts in two dimensions as desired (withoutc@asstraints). They
were instructed to figure out for themselves how to best contrautssr by exploring

the workspace. They were also informed as to where the taoggions would be in the
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target acquisition phase that would follow. Again, they were freendoe their eyes.
During the initial portion of the practice phase, horizontal and vergams were
independently adjusted by the investigators to balance cursor spied e velocity of
the brain-controlled cursor was comfortable to the subjects. Alter gains were
manually adjusted (~10 min), subjects practiced moving the cursithouv task

constraints for 10 minutes.

Target acquisition

During the target acquisition phase, subjects were instructed to use their shouglotve
the cursor in two dimensions to reach a peripheral target (1.3% ofpagssthat would
appear pseudorandomly at the top, bottom, left, or right side of the amsptten (Fig.
3.1). They were informed that if they did not did not acquire the tangiein 15 s, a new
target would appear, and the trial was considered a failure. Faumil@e runs of target

acquisition were performed with a 1-minute rest interval between runs.

Data acquisition

A 64-sensor Electro-Cap was placed on the head according ¢xtdraded International
10-20 system with ear-linked reference and used to collect 58 chafirieiss activity.
Continuous EEG signals were sampled at 100 Hz and amplified 1000 vVimes
Synamps | acquisition system and Neuroscan v4.3 software. Additioha&l\EEG
signals were band-pass filtered from 0.01 to 30 Hz. Electroodhfa6G] activity was
measured with a bipolar sensor montage with sensors attached sapéroferior to the

orbital fossa of the right eye for vertical eye movements arttiéd external canthi for
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horizontal eye movements. The EEG signals were continuously sehé tBGI12000
software system for online processing and storage (Schalk let 2@04,
http://bci2000.org). BCI2000 was responsible for moving the cursor based on our
decoder function, which we integrated into the open source softwstensyBCI2000
was also responsible for storing cursor movement data as wabllasting markers of
workspace events such as target acquisition. ElectromyographiG)(EMnals were
amplified and collected at 2000 Hz from two bipolar surface elestrader the flexor
carpi radialis and extensor digitorum muscles of the right foreasing an Aurion

ZeroWire system (10-1000 Hz bandwidth, constant electrode gain of 1000).

Decoding method

The decoding method employed in this study has been previously deswilgd only
briefly be described here (Bradberry et al. 2010). First, a Haader, low-pass
Butterworth filter with a cutoff frequency of 1 Hz was appliedhe kinematic and EEG
data. Next, the first-order temporal difference of the EEG daa computed. To

continuously decode cursor velocity from the EEG signals, a lineadoey model was

employed:
N L

- Xt -1 =a,+ Y > byS,[t—Kl (3.1)
n=1k=0
N L

Vil - yt-1=a, + > > by St —K] (3.2)

n=1k=0
where x[t]- Xt -1] and y[t]- yit -1] are the horizontal and vertical velocities of the cursor

at time samplé respectivelyN is the number of EEG sensoks(= 11) is the number of
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time lags, S,[t-k] is the difference in voltage measured at EEG semsdrtime lagk,

and thea andb variables are weights obtained through multiple linear regressidg. O
the most important sensod € 34) for velocity reconstruction found in Bradberry et al.

(2010) were used for decoding.

For the calibration phase, a 10x10-fold cross-validation procedure mpoyed to
assess the reconstruction accuracy of observed cursor velootyEEEG signals. In this
procedure, the entire continuous data were divided into 10 parts, 9 eaetused for
training, and the remaining part was used for testing. The-cadsstion procedure was
considered complete when each of the 10 combinations of training angd tietia were
exhausted, and the mean Pearson correlation coeffigigrbefween measured and
reconstructed kinematics was computed across folds. Prior to computiregkinematic
signals were smoothed with a fourth-order, low-pass Buttemwidter with a cutoff
frequency of 1 Hz. For the ensuing practice and target acquipitiases, the regression
weights & andb variables) for the cross-validation fold with the highestere used for

online decoding.

Scalp maps of sensor contributions

To graphically assess the relative contributions of scalp red¢gotige reconstruction of
cursor velocity, the decoding procedure described in the section aboveumvam
standardized EEG signals, and the across-subject mean of theudegpfitthe besb
vectors (from Egs. (3.2) and (3.3)) was projected onto a time d9eti#8-0 ms in

increments of 10 ms) of scalp maps. These spatial renderingsnebr contributions
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were produced by the topoplot function of EEGLAB, an open-source MéSTioolbox

for electrophysiological data processing (Delorme and Makeig 2004;
http://sccn.ucsd.edu/eeglabl/), that performs biharmonic spline integootdtthe sensor
values before plotting them (Sandwell 1987). To examine which timeneagsthe most
important for decoding, for each scalp map, the percentage of nembiam contribution

was defined as

N
Z\/bnix2 + bniy2 + bniz2

9%T, =100% x — =1 (3.3)

N
ZZ\/bnkxz + bnky2 + by

n=1k=0

for all i from O toL, where % is the percentage of reconstruction contribution for a

scalp map at time laig

Source estimation with SLORETA

To better estimate the sources of cursor velocity encodingysee standardized low-
resolution brain electromagnetic tomography (SLORETA) so#twaersion 20081104
(Pascual-Marqui 2002; http://www.uzh.ch/keyinst/loreta.htm). Preprate@ew/-pass
filtered and differenced) EEG signals from all 34 channeleémh subject were fed to
SLORETA to estimate current sources. Finstyalues were computed between the
squared time series of each of the 34 sensors with the 6239 timas em the
SLORETA solution and then averaged across subjects. Second, the ntlean wdlues
multiplied by the regression weights (from Egs. (3.1) and (3.2)) of their associated
sensors were assigned to each voxel. The regression weightedraguiled from the

regression solution at the time lag with maximur,%hich had the highest percentage
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of reconstruction contribution. Third, for visualization purposes, the uppetilguair
voxels ¢ values weighted bly) was set to the value one, and the rest of treues were
set to zero. Finally these binary-thresholde@lues were plotted onto a surface model of

the brain.

Eye and muscle activity analysis

To assess the contribution of eye activity to decoding, the decqulowgdure was
executed off-line with channels of vertical and horizontal EOgviicincluded with the
34 channels of EEG activity. The percent contribution of these legenels was then
assessed by dividing the absolute value of their regression wéighte sum of the
absolute value of all the regression weights. To assess wheth&slemactivity
inadvertently aided cursor control, we cross correlated EMBats from flexor and
extensor muscles of the right forearm with xrendy components of cursor velocity over
200 positive and negative lags (-2s to 2s in increments of 10ms). tBritve cross
correlation, the EMG signals were decimated 20 times giiglyiag a 40 Hz low-pass
antialiasing filter, rectified by taking the absolute value, [mags filtered with a fourth-

order, low-pass Butterworth filter at 1 Hz, and first-order differenced.

Results

Calibration
During the calibration phase, subjects tracked the movement of putemtontrolled
cursor, and we subsequently calibrated the decoder based on the dostr aed EEG

signals. We quantified the accuracy of each subject’s calibrated dégodemputinghe
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mean of Pearsontsbetween measured and reconstructed cwedorities across cross-
validation folds (Fig. 3.3). Across subjects, the decoding accuracigsandy velocities
were correlatedr(= 0.67) even though the decoding accuracy Xovelocity was
consistently higher than that fgrvelocity. The across-subject meamalues forx andy
velocities were 0.68 and 0.50 respectively, indicating high decoding agctma

observed cursor movement.
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Fig. 3.3. EEG decoding accuracy of observed cursor velocity during thieratadn
phase. We computed the mean * standard error (SE) of the decoding acureatiess)
across cross-validation folds € 10) for each subject for (black) andy (white) cursor

velocities.

Scalp maps of sensor contributions to the reconstruction of observed owgements
in the calibration phase depicted the contributions astaork of frontal, central, and
parietal regions (Fig. 3.4\Vithin this network, sensors over the frontocentral (F1, FCZ)

and primary sensorimotor cortices (CP1-CP4) made the greatgsbution. Concerning
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time lags, EEG data from 50 ms in the past supplied theinfoshation with 12.4% of
the total contribution. In source space at 50 ms in the past, thenpedagyrus (PrG),
postcentral gyrus (PoG), lateral premotor (LPM) cortex, suptmporal sulcus (STS),
and dorsal and ventral portions of lateral prefrontal cortex JLui#*&/ed a large role in

the encoding of observed cursor velocity (Fig. 3.5).

A 5.7% 5.1% 52% 7% 101% 1.2%
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Fig. 3.4. Scalp sensor contributions to the reconstruction of observed cursor welocit
during the calibration phase. Mean< 5) scalp maps of the sensors revealed a network
of frontal, central, and parietal involvement. In particular, F1Z, and CP1-CP4 made
the largest contribution. Light and dark colors represent high and lowilzdats,
respectively. Each scalp map with its percentage contributiahsayed above its
associated 10 ms time lag, revealing the 12.4% maximal contmbotiEEG data at 50

ms in the past.
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Fig. 3.5.Sources that maximally encoded observed cursor velocity duringlibeation
phase. We overlaid localized sources (yellow) from 50 ms in theopesa model of the
brain in different orientations to reveal the involvement of the PrG (1), PoG (2), 8PM (

STS (4), and dorsal and ventral LPC (5).

Target acquisition

During the target acquisition phase, subjects controlled the curdotheir EEG signals
to hit targets that appeared one at a time pseudorandomly eftthed, right, or bottom
of the workspace. The length-normalized cursor paths confirmed thec®llgbility to

move from the center to the target (Fig 3.6).
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Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

S e ] o] 0

Fig. 3.6.Mean brain-controlled cursor paths. Each colored path is the méam lehgth-
normalized trials for a single direction (left, top, right, or bolt@oross all trials of all
runs for a subject. Trials in which subjects did not acquire tigettarithin 15 s were not

included in the analysis. The workspace dimensions were 30 x 30 cm.

For each target of each subject, the target hit rate andmeoxdime (MT) across runs
are given in Table 3.1. The overall means * SE of the hit rate dnddve 73 £ 4% and

8.18 £0.18 s.

To examine whether subjects adapted across runs of the targetitemyyphase, the
target hit rate for all targets taken together was fittesbsac runs with a double
exponential curve for each subject (Fig. 3.7). The hit rate of g¢alffeand 4 worsened
initially and then began to improve. Only subjects 3 and 5 demonstrasety glesitive

adaptation.
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Table 3.1.Mean (SE) of the hit rate and MT for each target of each subject acro¢a runs

= 4)
Left Top Right Bottom Mean
Hit Hit Hit Hit Hit
MT MT MT MT MT
% % % % %
94 7.30 66 8.80 98 7.43 55 10.7 78 8.56
Subject 1
(2) (0.60) (8) (057) (2) (0.49)  (9) (0.68)  (11)  (0.80)
83 8.97 96 7.70 85 7.68 85 7.12 87 7.87
Subject 2
(5) (0.49 (4) (0.49 (2) (0.55) (4) (0.40) 3) (0.39)
84 7.51 45 11.8 100 5.50 67 8.89 74 8.44
Subject 3
(9) (053) (4 (0.93) (0) (0.37) (9 (0.58)  (12)  (1.33)
71 6.86 33 9.49 65 9.87 21 8.59 47 8.70
Subject 4
(7) (0.67) (7)) (142) (8 (0.79) (4) (1.39) (12)  (0.67)
57 10.0 100 5.58 60 9.06 100 4.59 79 7.32
Subject 5
(14) (0.69) (0) (0.26) (18) (0.70)  (O) (0.18)  (12) (1.32)
78 8.13 68 8.69 81 7.91 65 7.98 73 8.18
Mean

(6) (0.60) (13) (1.03) (8) (0.75) (14)  (1.02) (4)  (0.18)
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Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
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Fig. 3.7. Changes in target hit rate across runs. Each bar represengsgiiehit rate
across targets. A double exponential curve was fitted to the tatgaetes across runs for
each subject (red). The coefficient of determinatiof) @ the fit is displayed within

each subplot. Subjects 3 and 5 most clearly demonstrated positive adaptation across runs

Scalp maps of sensor contributions to the brain-controlled cursor yelmié generated
from the mean of each subject’s best run in the target acquiptiase. They depicted
the contributions as having shifted to be more focused within cengiahse(Fig. 3.8).

As in the calibration phase, EEG data from 50 ms in the past edpfile most

information with 12.1% of the total contribution. In source space at 5(hriseipast,
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compared to the calibration phase, a large shift occurred fromaan(feointo-central) to
posterior (centro-posterior) neural regions. More specificaltgre was much less
involvement of the LPC, the PrG and PoG exhibited an even more widésprea

involvement, and the inferior parietal lobule (IPL) made a large contribution3Biy
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Fig. 3.8. Scalp sensor contributions to the brain-controlled cursor velocitygllie
target acquisition phase. Mean € 5) scalp maps of the sensors weights from the
subjects’ best runs revealed a network that had shifted to involve ceatral regions
than the network of the calibration phase. Light and dark colors reptaglnand low
contributors, respectively. Each scalp map with its percentagekledgitn is displayed
above its associated 10 ms time lag, revealing the 12.1% maximdbabtah of EEG

data at 50 ms in the past.
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Fig. 3.9. Sources that maximally encoded brain-controlled cursor velakiting the
target acquisition phase. We overlaid localized sources (yellmw) 50 ms in the past
onto a model of the brain in different orientations to reveal a sutstanvolvement of
PrG (1) and PoG (2) and some involvement of LPM (3). As in thbrasibn phase, the
STS (4) was involved. In contrast to the calibration phase, the LPQla¥ed a minor

role, and the IPL (6) played a major role.

Contributions of eyes and muscles

A concern in BCI studies is that eye or muscle movements ordgroinate EEG signals
thereby inadvertently aiding the control of a device/environment that should be leontrol
by thought-generated neural signals alone. In the pilot testing for our stedgund that

asking subjects to visually fixate the center of the workspacée veiinultaneously
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tracking the cursor added attentional demands that burdened the sualni@clikely

compromised the decoding; therefore, we did not constrain eye movemewesvéetl, we

executed the off-line decoding procedure with channels of vedrmhlhorizontal EOG
activity included, and assessed the percent contribution of thesehagyaets (Table
3.2.). The percent contributions were low for the calibration and tacoggiisition phases
except for a very high percent contribution (94.9%)xteelocity reconstruction for
Subject 4 during target acquisition. Interestingly, this subjectth@dowest decoding
accuracy of all participants, suggesting that eye movementsptidr decoding. To
assess whether muscle activity aided cursor control, we covsslated EMG signals
from flexor and extensor muscles of the right forearm withxtlaady components of

cursor velocity to find that all correlations were low (Table 3.3.).
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Table 3.2.Percent contribution of EOG activity to cursor velocity reconstruction

Target
Calibration acquisition

(best run)

Subject1 030 158 0.00  0.01

Subject2 000 001 020 018

Subject 3  1.99 9.60 154 047

Subject4  0.00 0.01 94.9 0.04

Subject5 034 065 006  0.03
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Table 3.3.Mean (SD) of maximum absolutevalues from cross correlation of forearm

flexor and extensor EMG activity withandy components of cursor velocity

Target acquisition

Calibration
(best run)
X Y X Y
Flexor 0.05(0.04) 0.05(0.04) 0.04(0.02) 0.07 (0.03)

Extensor  0.03(0.02) 0.04 (0.01) 0.07 (0.08) 0.05 (0.04)

Discussion

In this study, we report the first EEG-based BCIl systhiat £mploys continuous
decoding of imagined continuous hand movements. Furthermore, we erepthasithe
system requires only a single session of decoder calibration arettspbactice (~40
min) before subjects can operate it. The off-line decoding resiultee calibration phase
that used observation of biologically plausible cursor movement wgherthan those
of invasive BCI studies and may imply, as discussed below, the invehteof a
widespread MNS in humans. Also discussed below is the fact thae iontline target
acquisition phase, subjects controlled a cursor with their EEG Isigalane with
accuracies comparable to other noninvasive and invasive BCI studes at 2D cursor

control.
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Calibration

BCI systems are ultimately intended for movement impairedopesr therefore, it is
important that the decoder calibration and/or subject training guoes not require overt
movement. For this reason, we used a decoder calibration procedula somihat
described by Hochberg et al. (2006) that requires only observatidnolofgically
plausible cursor movement. This type of training for BCI syst@nesumably engages
the MNS, which predicts and interprets one’s own actions and thensaf others
(Tkach et al. 2008). In fact, neuronal activity acquired from intra@rtnicroelectrode
arrays implanted in the dorsal premotor cortex (PMd) and the aaea of the PrG
(primary motor cortex, M1), common sites for BCl-related studighjbits qualities of
mirror neurons during observation of cursor movements (Cisek and kKa¥04;

Wahnoun et al. 2006; Tkach et al. 2007).

Current electrophysiological correlates of the putative humars Ml acquired through
EEG, are based on modulation of the mu rhythm (8-13 Hz), which exsilpfgession
during action observation and action performance (Perry and Bentin 2009¢ EBE&
correlates at the scalp level have been reported to be simitanse revealed by neural
hemodynamics acquired with functional magnetic imaging (fMfRerry and Bentin
2009). However, for examining, in spatial detail, the widespreadonike$wof cortical
regions that may compose the human MNS, arguably fMRI is condibgrenany to be
the best tool. Since our examination of cortical sources that enadesiived cursor
velocity revealed some regions commonly held to comprise the canboiwain MNS

(ventral LPM, STS, and LPC (lacoboni and Dapretto 2006)) and regionste@iyo
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containing mirror neurons related to the task (PMd, M1) (Cisek Kaddska 2004;
Wahnoun et al. 2006; Tkach et al. 2007), our method may provide detailed teamgora
spatial temporal information about the internal representations af dlmgerved and
executed actions, which is not provided by the study of mu rhythmndgsaor
hemodynamics alone. Therefore, our approach may be suitable dog favestigation
into the development and plasticity of the hypothesized MNS in hunhatesestingly,
that our subjects’ mean decoding accuracy was double that ofssthdieacquired neural
signals with intracranial microelectrode arrays (Kim let2808; Truccolo et al. 2008)
could be attributed to capturing more information for reconstructiorecyrding neural
signals from an MNS network instead of only mirror neurons in M1. Cethod also
provides further evidence that the MNS is involved during observedram@vement by
indicating the presence of planning activity that peaks am$ the past, excluding the
decoding of passive viewing as an explanation and suggesting predustcoding

informed by forward models (Miall 2003).

Target acquisition

Our study is the first noninvasive EEG-based BCI study to engmatinuous decoding
of imagined natural movement. Previous work in EEG-based BCI sydtentarsor

control required subjects to learn to modulate sensorimotor rhythm®ve the cursor
akin to neuro/biofeedback training. These studies based on sensorimgiomsh
required weeks to months of training before levels of performance wWeemed
sufficient for reporting (Wolpaw and McFarland 2004). We believe dbethat we used

a decoder based on imagined/observed natural movement reduced theg trai
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requirements of our study to only a single brief practicei@@$s20 min), a significant

advancement. Table 3.4 compares our study to Wolpaw and McFarland (2004).

An ECoG study based on sensorimotor rhythms for 2D cursor conttdiatiaobjectives

similar to ours also observed that several subjects clearpteatiaver a short period of
time (Schalk et al. 2008). Although this ECoG study reduced tratimmeg compared to
Wolpaw and McFarland (2004), some drawbacks included that pre-trainiagvasa still

taken for the initial selection of control features and foning subjects to first move the
cursor in one dimension at a time. We were able to bypassttheg@e-training steps.
Another drawback of the ECoG study was that all five subjeets agert movement for
initial selection of features, and two subjects used overt movehrewnighout the study.

Table 3.4 compares our study to Schalk et al. (2008).

The results of our target acquisition phase compare favorably to ithdséraplegic
humans that were implanted with intracortical arrays in theaea of M1 (Hochberg et
al. 2006; Kim et al. 2008) even though the performance results of shagies (Table

3.4) were only computed on data collected weeks to months after training began.
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Table 3.4.Comparison to most relevant human BCI studies of 2D cursor control

Number Target size
Neural Timeout Movement Target
of as % of
data (s) time (s) hit%
subjects workspace
Wolpaw and
4 EEG 4.9 10 1.9 92
McFarland 2004
Hochberg et al. single
1 NA 7 2.5 85
2006 units
Kim et al. 2008 single
2 1.7 7 3.1 75
units
Schalk et al.
5 ECoG 7 16.8 2.4 63
2008
Present study 5 EEG 1.3 15 8.2 73

Besides differences in training time, our study differs framdforementioned studies in
its reporting of cortical sources involved in encoding cursor contra. Mbst notable
differences between the regions that encoded for observed cursatyvalwt brain-
controlled cursor velocity were with the PrG, PoG, IPL, and LPCreTlas a more
widespread contribution from the PrG, PoG, and IPL during brain conthathveould
simply reflect the increased involvement of imagined motor execution (Milkdr 2010)
especially since these regions have previously been shown toghgeel in encoding
cursor kinematics (Jerbi et al. 2007; Bradberry et al. 2009a). difteilution from the

LPC was largely attenuated during brain-controlled cursor movemenggesting a
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transition out of the imitative learning environment of cursor obsemwdWogt et al.

2007).

In the near future, it will be important for patients with inmpeiupper limb movement to
test our noninvasive BCI system since they are the target papufati this assistive
technology. Since our results indicate that calibration of our decodemaial subject
practice require a short amount of time in a single sessioexpext to avoid burdening
patients with a lengthy training. Employing our method will alsermit future
investigations into the putative human MNS, potentially providing @urthsights into

training protocols for BCI systems.
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Appendix A: Demographics and Institutional Review Bard

(IRB) approval

A.1. Demographics
The subjects of all studies were right-handed mhéts/een the ages of 18
and 45 recruited from the students and facultyhefWniversity of Maryland

at College Park.
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A.2. IRB approval of human subjects research

A.2.1. MEG study of Chapter 1

IRB approval letter

UNIVERSITY OF

2000 Lew Huilding
College Park, Maryland 207423111
IO ANE 4212 TEL M. 3141475 FaX

INSTTTLITH RN AL REVIE® BLMLEN

Reference: TRE HSR Identification Number 04-0152

March 24, 2004

MEMORANDUM

TO: Dr, Jose Contreras-Vidal
Bruce Swett
Feng Rong

Department of Kinesiclogy

FROM: Dir. Phyvlis Moser-Veillon, Co-Chairperson
Dr. Mare Rogers, Co-Chairperson
Institutional Review Board

PROJECT ENTITLED:
‘EEG/MEG Study of Error Detection and Visuomotor Learning
(Centinuation of IRB/HSR PROTOCOL NUMBER 03-0120)"

The Institutional Review Board (IRE) concurs with the departmental Human
Subjects Review Committee's [HSRC's) preliminary review of the application concerning
the above referenced project. The IRB has approved the application and the research
involving human subjects described therein,  We ask that any future communications
with our office regarding this research reference the IRE HSR identification number
indicated above.

We also ask that you not make any changes to the approved protocol without frst
notifying and obtaining the approval of the IRB. Also, please report any deviations from
the approved protocol to the Chairpersen of vour departmental HSEC. I vou have any
questions or concerns, please do not hesitate to contact us at irb@deans umd.edu.
Thank vou,

ADDITIONAL INFORMATION REGARDING IRB/HSRC APFROVALS

EXPIRATION OF IRB APPROVAL—Approval of non-exempt projecis expires one year after the
official date of IRB approval, approval of exempt projects expires three years after that date. If vou
expect to be collecting or analyzing data after the expiration of IRB approval, please contact the
HERC Chairperson in your department about submitting a renewal application. ([PLEASE NOTE:
If you are not collecting data from human subjects and any on-geoing data analysis does not
inerease the risk to subjects, a renewal application would not be necessary.)

STUDENT RESEARCHERS—Unless otherwise reguested, the TRE will send copies of
approval paperwork to the supervising faculty researcher [or advisor) of a project. We ask
that such persons pass on that paperwork or a copy 1o any student researchers working
on that project. That paperwork mav be needed by students in order to apply for
graduation., PLEASE BE ADVISED THA {E IRB MAY NOT BE ABLE TO PROVIDE COFPIES
OF THAT PAFERWORHK, particularly if several years have passed since the date of the
original approval.

Enclosures (where appropriate), will include stamped copy of informed consent forms included in application
and any copies of the application not needed by the IRB; copies of this memorandum and any comsent forms
to be sent o the Chairperson of the Human Subjects Review Committes
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IRB-stamped consent form

Project Title:

Statement of Age
of Participant:

Purpose of the

Research Project:

Procedures Used:

CONSENT FORM: Student
Page 1 of 2 Papes

Cognitive Motor Behavior Laboratory
Department of Kinesiology
University of Maryland College Park
Initials Date

EEG / MEG Study of Error Detection and Processing.

I hereby state that T am over 18 years of age, in good physical and emotional
health, and would like to participate in a program of research being conducted by
Professor Jose Contreras-Vidal, Ph.D., of the Department of Kinesiology at the
University of Marvland , College Park, Maryland 20742, and associates.

The purpose of the current research is to study how the brain detects errors, and
modifies internal processes 1o correct them, in the young vs. the elderly; and in
persons with Parkinson's disease vs. those with no known health conditions.

{Check which procedures will be used)

Creneral Procedures:  All participants will complete a form to assess their
physical health. Persons with a prior, medical diagnosis of Parkinson's discase
will complete an additional form about their medication. A brief assessment of
thinking abilities will be given, by asking a series of questions,

Task-Specific Procedires:

EEG (Electrocncephalograph). Participants will have a nylon cap with
EEG sensors in it placed on their head. A gel that helps make the connection will
be put on the Participant's head, where the contacts touch the scalp, Participants
will sit in @ comfortable chair, with his‘her hand resting on a table. Participants
will perform movement tasks, using a pen to draw on a tablet that records the
movement. Participants will be asked to move the pen towards a target, while
wizaring a cap with EEG senszors on their head, The EEG sensors detect electrical
activity al the scalp. The EEG does not put any electricity into a person's body,
EMNES498p students will be compensated with 1 lab participation credit (see
sechion on Compensation below).

MEG (Magnetoelectroencephalograph). Participants will lie on a bed
inside a magnetically-shielded room for up to three hours, Participants will be
asked to remove any metal objects (watches, belts, ete.), and their shoes.
Participants will lie on the bed in a darkened room, looking &t a computer image,
while moving a pen across a glass surface, Participants will be asked to move the
pen towards a target, while lying quietly with their head in the MEG recording
device, Participants may rest their arms between trigls. The MEG measures the
magretic fields created by activity in the brain. The MEG does not put any
electricity into a person’s body, KMNES498p students will be compensated with 1
lab participation credit (see section on Compensation below).

Principal Imvestigator: Jose Contreras-Vidal, PhD Depl. of Kinesiology, 2363 HHP Bldg.
University of Maryland at College Park_ College Park, MD 20742 Phone: 301-405-2495
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Compensation:

Confidentiality:

Benefits:

Freedom to
Withdraw:

Informed Consent:

Printed Name of Participant:

Signature of Wilness:

CONSENT FORM: Student
Page 2 of 2 Pages
Cognitive Motor Behavior Laboratory
Department of Kinesiology
University of Maryland College Park

Students recruited from KNES498p will be offered the option to use participation
in the study as an allernative to a lab / participation assignment (or may use
participation in the study to replace their lowest lab / participation grade), Lab /
participation sccounts for 25% of the student's grade in KNES498p. Student
participation is purely optional; there is no penalty for not participating in the
study.

All information collected in the study is confidential, and my name will not be
identified at any time, or linked with the data collected (including data stored
electronically). The data I provide will generally be grouped with data provided
by others for reporting and presentation. Data collected will be secured ina
locked filing cabinet in the Cognitive Motor Behavior Lab, in HHP.

1 understand that as a result of sitting or lying still for a prolonged period of time,
| may experience some discomfort. Also, in the MEG study, T will be lying on
my back in an enclosed, dimly lit room for the duration of the study. There are no
other known risks. The MEG device does not generate magnetic fields, it records
the magnetic fields that are naturally generated by my own brain's activity.

I understand that the research study is not designed to help me personally, either
physically or emotionally. The study is intended to further our understanding of
voluniary movement, error detection, brain functoning, and Parkinson's disease.

I understand that I am free to ask questions aboul the study, or to withdraw from
the study at any time, without penalty.

I understand that the University of Maryland does not provide any medical care or
hospitalization insurance coverage for participants in this research study: nor will
the University of Maryland pay any medical expenses or provide any
compensation for any injury sustained as a result of participation in this research
study, except as required by law,

T am voluntarily making a decision whether or not participate in the research
study described above, My signature indicates thai [ have decided to participate
herving read the information provided above and having had all of my questions
answered. | will be given a capy of this consent form io keep. "

Signature of Participant:

Date of Signares:

Principal Investigator: Jose Contreras-Vidal, PhD Dept. of Kinesiology, 2333 fﬁﬁ B'H'g_,‘-f]ﬂﬁ

University of Maryland at College Park, College Park, MD 20742 Phone: 3

1-405-2495 |
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A.2.2. EEG studies of Chapters 2 and 3

IRB approval letter

January 25, 2010

To: Investigator: Jose Luis Contreras-Vidal
Co-Investigator(s): Not Applicable
Student Investigator: Trent Jason Bradberry
Department: KNES - Kinesiology

From: Joseph M. Smith, MA_ CIM
Manager
University of Maryland, College Park

Re: IRB Application Number: 06-0031 (PAS# 1954 4)
Project Title: “MNon-invasive neural prosthetics for reaching”™

Approval Date: 01-22-2010
Expiration Date:  01-22-2011
Tvpe of Application: Renewal
Tvpe of Research: Non-Exempt

Tvpe of Review: Expedited

The University of Maryland, College Park Institutional Review Board (IEB) approved vour IRB
application. The research was approved in accordance with the University’s IRB policies and
procedures and 45 CFR. 46, the Federal Policy for the Protection of Human Subjects. Please
reference the above-cited IRB application number in any future commmunications with our office
regarding this research.

Recruitment/Consent: For research requiring written imnformed consent, the

IRB-approved and stamped informed consent document 1s enclosed. The IREB approval
expiration date has been stamped on the informed consent document. Please keep copies of the
consent forms used for this research for three years after the completion of the research.

Continuing Review: If vou want to continue to collect data from human subjects or analyze

data from human subjects after the expiration date for this approval, you must submit a renewal
application to the IRB Office at least 30 days before the approval expiration date.
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Modifications: Any changes to the approved protocol must be approved by the IRB before the
change is implemented except when a change 15 necessary to eliminate apparent immediate
hazards to the subjects. If vou want to modify the approved protocol, please submit an IRB
addendum application to the IRB Office.

Unanticipated Problems Involving Risks: You must promptly report any unanticipated
problems mvolving risks to subjects or others to the IRB Manager at 301-405-0678 or
Jsmith@umresearch umd. edu.

Student Researchers: Unless otherwise requested, this IRB approval document was sent to the
Principal Investigator (PI). The PI should pass on the approval document or a copy to the
student researchers. This IRB approval document may be a requirement for smudent researchers
applying for graduation. The IRB may not be able to provide copies of the approval documents
if several years have passed since the date of the original approval.

Additional Information: Please contact the IRB Office at 301-405-4212 if vou have any IRB-
related questions or concerns.
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IRB-stamped consent form

Page | o4
Imals  Dae S

CONSENT FORM

Project Title

Non-invasive neural prosthetics for reaching

. Why is this research being done?

This s a research project being conducted by Jose L. Contreras-Yidal, Ph.D.,
Trent Bradberry, Harshavardhan Agashe. and Rodolphe Gentili. Ph.D. at the
University of Maryland, College Park. We are inviting vou to participate in
this rescarch project because vou are an 18 - 653 veur old. healthy, right-
handed person residing in the greater Washingron, DC area. The purpose of
this research project is to develop non-imvasive neural prosthetics that will
improve the quality of life of individuals with impaired movement of their
upper limbs due to injury or disease.

"What will | be asked 1o do?

e

7.

You will be asked to perform the checked procedure in the C vgnitive Motor
Neuroscience Lab in the Health and Human Performance Building:

[ Procedure 1: Data Collection

You will be asked to do the following during the preparation stage {1 houry:

Fill out a form with your personal health information.

Have your head fitted with an electroencephalography (EEG) cap with
up 10 128 hollow sensors. The sensors will be filled with conductive ol
toensure good physical contact with vour scalp.

Have a reference sensor placed on VOur ear.

Have eye activity recorded with sensors around your right eve.

Have your head stabilized with a chin rest to minimize head moverment.
Have 6 infrared emitting diode (IRED) markers placed on your reaching
arm. The marker will be visible only 10 the camera system used o track
the movement of your finger,

Wear a data-collection glove,

You will be asked to perform either (a) or (b) indicated below:

t4) Reaching movements to § targets using the following instructions (43

minutes):

. Press the center target,

2. Inyour mind, select one of the 8 targets.

3. Reach o your selected rarget.

4 After you have reached the target, retum vour hand to the center
position.

3. Adter 20 practice trials, there will be 40 ials per target for o total of 320
trials. |

. You may rest between any trials without negatively aftfecting the study.

(b) Reaching movements to and grasping 8 obiects or tools using the
tollowing instructions (45 minutes)

L. Start with your arm in the resting position,

2. In your mind. select one of the 8 objects or wals,

3. When the indicator light turns sreen, reach and grasp the selected object,

4 Return vour hand to the resting position.

S After 20 practice trials, there will be 40 teials per tarzet for a total of 320 1

-

Yo wilf e paid 200 and may be invited baek to perform Pre

trials.
You may rest hetween any ik withont negativehy affecting the studs

&
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' Project Title

| Non-invasive neural prosthetics for reaching

| What will | be asked to da?
| [continued)

5

-

[

b s

bl

=l

ok

e

L Procedure 2; Testing of Computer Cursor Control by Experienced Subjects

You will be asked 10 do the following during the preparation stage {1 hour);
I

-

Fill vut a torm with your personal health information.

Have vour head fitted with an electroencephalography (FEG) cap with
up to 64 hollow sensors. The sensors will be filled with conductive gel
to ensure good physical contact with your scalp,

Have a reference sensor placed on your car.

Have cye activity recorded with sensors around vour right eye.

Have your head stabilized with a chin rest to minimize head movement.
Have electromyography (EMG) sensors placed on the skin of VOUr arm
and shoulder with double-sided adhesive tape. Specifically the sensors
will be positioned over two muscles responsible for maoving your upper
arm (anterior and posterior deltoids) and two muscles responsible for
moving your forearm (biceps and triceps), The sensors are used for
recording the inadvertent muscle activity you may generate.

You will be asked o perform fmagined reaching movements to § largets
using the following instructions (435 minutes):
I

Keep your hand and arm stationary throughout the entire experiment.

Watch the computer cursor move to the target on the computer sereen as

you continue to imagine reaching to the actual 1arger,
If you accidentally acquire the wrong target, verbally say so.
Think about vour hand being in a center position.

Watch the computer cursor move Lo the center position on the computer

SCTECH 48 YOU Continue to imagine reaching to the center position.

The task will end when you reach 160 times or 43 minutes clapse, which

ever oceurs first,
You may rest between any trials without negatively affecting the study.

You will be paid $10 plus $0.16 for each trial completed in less than 10
seconds for a maximum payment of $20. You may be invited back to
perform Procedure 3.

L Procedure 3: Testing of Robotic Arm Control by Experienced Subjects

rou will be asked to do the following during the preparation stage (| hour):
I.

Fill out a form with your personal health information,

Have your head fitted with an clectroencephalography (EEG) cap with

up to 64 hollow sensors. The sensors will be filled with conductive el
to ensure good physical contact with vour scalp,

Have a reference sensor placed on vour car,

Have eye activity recorded with sensors around vour right eye,

Have your head stabilized with a chin rest to minimize head movement.
Have electromyography (EMG) sensors placed on the <kin of vour arm
and shoulder with double-sided adhesive tape. Specifically the sensors
will be positioned over two muscles responsible for moving your upper
i fameror and poste
MUIEE vour Furear

wodeitonds ) and teeo muse les responsihle for

m (hiceps and rceps) The sensors are used for

Y OYOu may

recording the inadvertent muscle activy

senerate
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Project Title

Non-invasive neural prosthetics for reaching

| What will | be asked to do?
| (continued)

You will be asked to perform imagined reaching movements 1o ¥ targets

using the following instructions (15 minutes):

Keep vour hand and arm stationary throughout the entire experiment.
Watch the robotic arm move 1o the target as vou continue to imaying
reaching to it

It you accidentally acquire the wrong target. verbally say so.

Think about vour hand being in a center position.

Wateh the robotic arm meve o the center position as you continue to
imagine reaching to the center position,

The task will end when you reach 160 times or 45 minutes elapse. which
ever oceurs first,

You may rest between any trials without negatively atfecting the study.

You will be paid S10 plus $0.16 for cach trial completed in less than 10
seconds for a maximum payment of $20.

CIProcedure 4: Testing of Robotic Arm Control by Novice Subjects

You will be asked to do the following during the preparation stage (1 hour):

ol

e e

_O‘.

Fill vut a form with your personal health information.

Have your head fitted with an electroencephalography ( EEG) cap with
32 to 64 hollow sensors. The sensors will be filled with conductive gel
to ensure good physical contact with your scalp.

Have a reference sensor placed on vour ear.

Have eye activity recorded with sensors around vour right eye,

Have your head stabilized with a chin rest to minimize head movernent,
Have clectromyography (EMG) sensors placed on the skin of your arm
and shoulder with double-sided adhesive tape. Specifically the sensors
will be positioned over two muscles responsible for moving vour upper
arm (anterior and posterior deltoids) and two museles responsible for
moving vour forearm (biceps and triceps). The sensors are used for
recording the inadvertent muscle activity vou may generate,

Wou will be asked to perform imaginee reaching movements to 8 targets
using the following instructions {45 minutes )

Le¥]

Y et

You will be paid $11 plus S 16 for o

sevonds for g maximusn pasvment of §

Keep vour hund and arm stationary throughout the entire experiment.
Wateh the robotic arm move to the target as vou continue to imagine
reaching to it

It you acerdentally acquire the wrong target, verbally sav so.

Think about your hand being in a center position.

Watch the robotic arm move to the center position as vou continue to
itmagine reaching to the center position.

The task will end when vou reach 160 times or 45 minutes clapse, which |
|

ever oecurs first,
You may rest between any trials without negatively affecting the study

ach trial completed in tess than 10
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| Project Title

Non-invasive neural prosthetics for reaching

| What about
I confidentiality?

We will do our best to keep vour personal information confidential, To help protect vour
confidentiality. names will nat be identified at any time or linked with the data cullected

| (including data stored electronically), A code will be placed on the survey and other

collected data. The data provided will generally be grouped with data provided by others
for reporting and presemtation. Data collected will be secured in a locked filing cabinet in
the Cognitive Motor Neuroscience Lab, in the Health and Human Performance Building.
Only the Principal Investigator and his collaborators will have access to this locked file
cabinet. If we write a report or article about this research project, vour identity will be
protected to the maximum extent possible,

This research project involves making videotapes of vou. The videotapes will only be
used by the investigators o confirm your movements if there are issues with the data
obtained from the other recording equipment. The videotapes will be secured with the
other data as deseribed above. These videotapes will be destroyed when the study
concludes.

I agree to be videotaped during my participation in this study

1 do not agree to be videomped during my participation in this study

"What are the risks of this
- research?

You may experience a mild degree of physical discomfort due to prolonged sitting during
the EEG cap preparation time and experiment time and removal of the adhesive SCCUrng

the hand markers and EMG sensors, mental fatigue due to concentration, and/or physical

futigue in the reaching arm if participating in Procedure 1.

What are the benefits of
this research?

You will not personally benefit from this study: however, individuals with impaired upper
limb movement will greatly benefit from the proposed research, The ability o manipulate
the environment will be restored to the motor-disabled population by the use of the
thought-controlled neural prosthetic devices developed from this study,

Do I have to be in this

| research?

May | stop participating
at any time?

Your participation in this research is completely voluntary. You may choose not to take

partatall. 1f vou decide to participate in this rescarch, You nmay stop participating at any

time. If you decide not to participate in this study or if ¥ou stop participating at any time,
you will not be penalized or lose any benefits to which vou otherwise qualily.

Is any medical treatment
available if | am injured?

The University of Maryland does not provide any medical, hospitalization, or other
insurance for participants in this research study, nor will the University of Marvland
provide any medical treatiment or compensation for any injury sustained as a result of
participation in this research study, except as required by law.

What if | have questions?

This research 1s being conducted by José L. Contreras-Vidal, Ph.D_. Trent Bradberry and
Harshavardhan Agashe at the University of Maryland, College Park. If vou have any
questions about the research study itselt, please contact José L, Contreras-Vidal at 30-
405-2495 or pepeunvidumd.edu. 1f you have questions about vour rights as a rescarch
subject or wish 1o report a research-reluted injury, please contact: Institutional Review
Board Office, University of Maryland, College Park, Maryland, 20742;

irbra deans.umd.cdu; 301-405-0678

This research has been reviewed according to the University of Marviand, College Park

IRB procedures for research involving human subjeets, fr TRE APPROVED 1

i Statement of Age of Your signature indicates that: TR f '
l. Subject and Consent ~ youare at least 18 years of age ! JAN 29 o i |
| the research has been explained to vou i’ -

! vour guestions have been fully answered [FNIVERS Y OF aagy

" Signature and Date

CNAME OF SUBJEC _
SIGNATURE OF SUBIFCT
CDATE

vou freely and voluntarily choase 1o particpaic ethis
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