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It is generally assumed that the signal-to-noise ratio and information content of neural 

data acquired noninvasively via magnetoencephalography (MEG) or scalp 

electroencephalography (EEG) are insufficient to extract detailed information about 

natural, multi-joint movements of the upper limb. If valid, this assumption could severely 

limit the practical usage of noninvasive signals in brain-computer interface (BCI) systems 

aimed at continuous complex control of arm-like prostheses for movement impaired 

persons. Fortunately this dissertation research casts doubt on the veracity of this 

assumption by extracting continuous hand kinematics from MEG signals collected during 

a 2D center-out drawing task (Bradberry et al. 2009, NeuroImage, 47:1691-700) and 

from EEG signals collected during a 3D center-out reaching task (Bradberry et al. 2010, 

Journal of Neuroscience, 30:3432-7). In both studies, multiple regression was performed 

to find a matrix that mapped past and current neural data from multiple sensors to current 

hand kinematic data (velocity). A novel method was subsequently devised that 

incorporated the weights of the mapping matrix and the standardized low resolution 

electromagnetic tomography (sLORETA) software to reveal that the brain sources that 

encoded hand kinematics in the MEG and EEG studies were corroborated by more 

traditional studies that required averaging across trials and/or subjects. Encouraged by the 



 

 

favorable results of these off-line decoding studies, a BCI system was developed for on-

line decoding of covert movement intentions that provided users with real-time visual 

feedback of the decoder output. Users were asked to use only their thoughts to move a 

cursor to acquire one of four targets on a computer screen. With only one training 

session, subjects were able to accomplish this task. The promising results of this 

dissertation research significantly advance the state-of-the-art in noninvasive BCI 

systems. 
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Chapter 1: Decoding center-out hand velocity from MEG 

signals during visuomotor adaptation 

 

The material contained in this chapter is published as Bradberry TJ, Rong F, 

Contreras-Vidal JL (2009) Decoding center-out hand velocity from MEG signals 

during visuomotor adaptation. NeuroImage 47:1691–1700. Supplemental material 

in the journal publication has been incorporated into the main text of this 

dissertation chapter. 

 

Abstract 

During reaching or drawing, the primate cortex carries information about the current and 

upcoming position of the hand. Researchers have decoded hand position, velocity, and 

acceleration during center-out reaching or drawing tasks from neural recordings acquired 

invasively at the microscale and mesoscale levels. Here we report that we can 

continuously decode information about hand velocity at the macroscale level from 

magnetoencephalography (MEG) data acquired from the scalp during a center-out 

drawing task with an imposed hand-cursor rotation. The grand mean (n = 5) correlation 

coefficients (CCs) between measured and decoded velocity profiles were 0.48, 0.40, 0.38, 

and 0.28 for the horizontal dimension of movement and 0.32, 0.49, 0.56, and 0.23 for the 

vertical dimension of movement where the order of the CCs indicates pre-exposure, 

early-exposure, late-exposure, and post-exposure to the hand-cursor rotation. By 

projecting the sensor contributions to decoding onto whole-head scalp maps, we found 
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that a macroscale sensorimotor network carries information about detailed hand velocity 

and that contributions from sensors over central and parietal scalp areas change due to 

adaptation to the rotated environment. Moreover, a 3-D linear estimation of distributed 

current sources using standardized low-resolution brain electromagnetic tomography 

(sLORETA) permitted a more detailed investigation into the cortical network that 

encodes for hand velocity in each of the adaptation phases. Beneficial implications of 

these findings include a noninvasive methodology to examine the neural correlates of 

behavior on a macroscale with high temporal resolution and the potential to provide 

continuous, complex control of a noninvasive neuromotor prosthesis for movement-

impaired individuals. 

 

Introduction 

In the last several decades, great strides have been made in revealing how the primate 

cortex may encode the current and upcoming position of the hand in space during 

reaching or drawing (Scott 2008). In addition to contributing to the body of 

neuroscientific knowledge, these discoveries have begun to beneficially impact society. 

Greater elucidation of the neural code for hand movement has served as an impetus to the 

development of brain-controlled prostheses for the movement-impaired population. Prior 

to the advent of brain-controlled prostheses, several seminal discoveries laid a foundation 

with arguably the most momentous discovery being that of a population vector code for 

the direction of hand movement in three-dimensions (Georgopoulos et al. 1986; Kettner 

et al. 1988). At the beginning of this century, researchers launched the field of brain-

controlled neuromotor prostheses with the application of the population vector algorithm 
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as well as other methods to extract control signals related to hand movement from neural 

data (Schwartz et al. 2001). Researchers have demonstrated the ability to decode hand 

kinematics at the microscale from neuronal signals acquired with microwires or 

microelectrode arrays seated into small patches of sensorimotor cortical tissue and to use 

this information to drive a cursor or robotic arm (Wessberg et al. 2000; Serruya et al. 

2002; Taylor et al. 2002; Hochberg et al. 2006; Santhanam et al. 2006; Truccolo et al. 

2008; Velliste et al. 2008; Mulliken et al. 2008). Other intracranial studies have analyzed 

neural data at the mesoscale with coarser spatial resolution but wider spatial extent from 

local field potential (LFP) recordings. For example, hand movement direction and two-

dimensional trajectories have been decoded from LFPs (Mehring et al. 2003; Mehring et 

al. 2004; Leuthardt et al. 2004; Rickert et al. 2005; Scherberger et al. 2005; Schalk et al. 

2007; Pistohl et al. 2008; Sanchez et al. 2008). 

  

In the late 1990s, pioneering work on the macroscale began to relate scalp potentials 

acquired noninvasively to hand movement (Kelso et al. 1998; O'Suilleabhain et al. 1999). 

Some recent noninvasive studies have demonstrated the presence of a macroscale 

network that carries the neural code for detailed hand movement. For instance, hand 

movement direction has been decoded from electroencephalography (EEG) and MEG 

data (Hammon et al. 2008; Waldert et al. 2008), and hand position and velocity have been 

decoded from MEG data collected during continuous joystick and trackball movements 

(Georgopoulos et al. 2005; Jerbi et al. 2007). However, with the exception of Hammon et 

al., these noninvasive studies have constrained subjects to small finger and wrist 

movements as opposed to multijoint drawing or reaching movements. Also, most 
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importantly, the tasks employed for noninvasive decoding of hand position and velocity 

have not incorporated discrete center-out movements. 

 

To examine our hypothesis that hand kinematics of natural, multijoint, center-out 

movements are decodable from noninvasive neural signals, we aimed to continuously 

decode hand velocity from MEG data collected during a two-dimensional drawing task. 

Currently only invasive studies have continuously decoded hand velocity during discrete 

center-out movements. Since MEG coupled with our decoding method facilitates the 

ability to examine sensor involvement on a macroscale with high temporal resolution, we 

also sought to create snapshots of sensor importance in a network covering multiple brain 

regions across time during adaptation to a hand-cursor rotation. Furthermore, we aimed to 

examine the importance of estimated current sources in the network using sLORETA to 

determine whether they corroborated non-decoding visuomotor adaptation studies that 

employed other imaging modalities like EEG (Contreras-Vidal and Kerick 2004), 

positron emission tomography (PET) (Inoue et al. 2000; Ghilardi et al. 2000; Krakauer et 

al. 2004), and functional magnetic resonance imaging (fMRI) (Graydon et al. 2005; 

Seidler et al. 2006). 

 

 

Materials and methods 

Experimental procedure and data collection 

The Institutional Review Board of the University of Maryland at College Park approved 

the following experimental procedure. After giving informed consent, five healthy, right-
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handed subjects drew center-out lines with an optic pen on a glass panel positioned in 

front of them while they lay supine with their heads in an MEG recording dewar located 

inside a magnetically shielded room in the Kanazawa Institute of Technology (KIT)-

Maryland MEG laboratory at the University of Maryland (Fig. 1.1A). Cushions were 

positioned in the dewar and under the right elbow to minimize movement of the head and 

upper limb respectively. The distance between the glass panel and each subject's head 

was adjusted for comfort (approximately 35 cm from nose tip to the center of the panel). 

A black curtain occluded the subjects' vision of their hands while visual feedback was 

provided on a screen located in front of them that displayed the position of the pen tip as 

a cursor. Subjects were instructed to position the pen tip in a circle (0.5 cm diameter) 

located in the middle of the screen, wait for one of four circle targets (0.5 cm diameter) to 

appear in the corner of the screen at 45, 135, 225, or 315°, wait for the target to change 

color, and then draw a straight line to the target as fast as possible. The inter-trial delay 

was randomized between 2 and 2.5 s. Working space dimensions were a 10 × 10 cm 

virtual square. After 40 trials (pre-exposure), the cursor was rotated 60° counterclockwise 

(exposure). The exposure phase consisted of 240 trials with the early-exposure phase 

composed of the first 40 trials and the late-exposure phase composed of the last 40 trials. 

After the exposure phase, the original orientation of the cursor was restored, and 20 more 

trials were collected and labeled as the post-exposure phase. The number of trials 

analyzed in the pre-exposure phase was reduced from 40 to 36 because the behavioral 

performance during several initial trials of some subjects was poor due to lack of 

familiarization with the task. To maintain consistency, the number of trials analyzed in 

the early- and late-exposure phases was also reduced from 40 to 36. 
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Fig. 1.1. Center-out drawing experimental setup and kinematics. (A) In the first and 

second panels, a subject is shown lying with his head inside the MEG recording dewar 

and drawing with an optic pen on a sheet of glass. A black curtain used to occlude vision 

of the upper limbs is additionally shown in the second panel. The third panel illustrates 

the subject's view of the computer screen where visual feedback of the pen position 

(cursor), center location (home), and peripheral targets was displayed. (B) The 

superimposed pen (black) and cursor (gray) paths for one representative subject 

confirmed the occurrence of adaptation. Dissociation between the pen (hand) and cursor 

(eye) movements due to hand-cursor rotation was evident. (C) The mean ± SD of the IDE 

calculated across subjects for each phase of the task further confirmed adaptation.  

A video camera sampled the movement of the pen tip at 60 Hz, and whole-head MEG 

data were acquired from 157 channels at a sampling rate of 1 kHz. The MEG system used 

coaxial type first-order gradiometers with a magnetic field resolution of 4 ft/Hz1/2 or 0.8 

(ft/cm)/Hz1/2 in the white noise region. On-line, electronic circuits band-pass and notch-

filtered the MEG data from 1–100 Hz and 60 Hz respectively. 
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Adaptation confirmation 

To quantitatively confirm the occurrence of adaptation, the mean initial directional error 

(IDE) was calculated across subjects for each phase of the task. A vector from the center 

location of the screen (home) to the position of the pen at 80 ms after the pen completely 

left the center circle determined the initial direction of the planned movement trajectory. 

The IDE was calculated as the angular difference between this vector and a vector 

extending from the home location to the target. Four separate t-tests were performed 

between the IDE in pre-exposure and zero, IDE in pre-exposure and early-exposure, IDE 

in pre-exposure and late-exposure, and IDE in pre-exposure and post-exposure. 

 

Signal pre-processing 

Data from each MEG sensor were first standardized according to Eq. (1.1): 

ns

nn
n SD

sts
tS

−
=

][
][      for all n from 1 to N                                             (1.1) 

where Sn[t] and sn[t] are respectively the standardized and measured magnetic field 

strength of sensor n at time t, and SDsn are the mean and standard deviation of sn 

respectively, and N is the number of sensors. The kinematic data were resampled from 

60 Hz to 1 kHz by using a polyphase filter with a factor of 5/3. For computational 

efficiency, the MEG and kinematic data were then decimated from 1 kHz to 100 Hz by 

applying a low-pass anti-aliasing filter with a cutoff frequency of 40 Hz and then 

downsampling. The best decoding results were obtained when both the MEG and 

kinematic data were subsequently filtered with a zero-phase, fourth-order, low-pass 
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Butterworth filter with a cutoff frequency of 15 Hz. The data for each phase of the task 

were pre-processed separately. 

  

Decoding model 

In the subsequent analyses, we only considered hand velocity based on our previous work 

that revealed better decoding of hand velocity than hand position from MEG signals 

(Bradberry et al. 2008). To continuously decode hand velocity from the MEG signals, a 

linear decoding model was used (Fig. 1.2) (Georgopoulos et al. 2005): 

∑∑
= =

−=−−
N

n

L

k
nnkx ktSbtxtx

1 0

][]1[][                 (1.2) 

∑∑
= =

−=−−
N

n

L

k
nnky ktSbtyty

1 0

][]1[][                (1.3) 

where x[t] and y[t] are the horizontal and vertical position of the pen at time sample t 

respectively, N is the number of MEG sensors, L is the number of time lags, Sn[t − k] is 

the magnetic field strength measured at MEG sensor n at time lag k, and the b variables 

are coefficients obtained through multiple regression. By varying the number of lags and 

sensors independently in a step-wise fashion, the optimal number of lags (L = 20, 

corresponding to 200 ms) and the best sensors (N = 62; from central and posterior scalp 

regions) were determined experimentally. The data for each phase of the task were 

decoded separately.  
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Fig. 1.2. Didactic model of the linear decoding method. The top raster plot contains time 

series of 62 MEG sensors extracted 100 ms prior to the current velocity sample of 

interest. Through multiple linear regression, sensor weights were computed separately for 

x and y velocity that transformed the top raster plot to the lower left and right raster plots. 

The transformed time series of the sensors were then summed to produce the 

reconstructed velocity profiles (gray) that overlay the measured velocity profiles (black). 

The upper velocity profiles are associated with the MEG data shown in the example 

(100 ms prior to the current velocity sample of interest) and the lower ones with MEG 

data from 0 to 200 ms prior to the current velocity sample of interest.  

 

 

 



 

 

 10 

 

Assessment of decoding accuracy 

M-fold cross-validation was used to assess the decoding accuracy. In this procedure, the 

data were divided into m parts (each with approximately 12 s of continuous data, or four 

trials), m − 1 parts were used for training, and the remaining part was used for testing. 

The procedure was considered complete when each of the m combinations of training and 

testing data were exhausted, and the mean CC between measured and decoded hand 

velocity was computed across folds. Prior to computing the CC, the kinematic signals 

were smoothed with a fourth-order, low-pass Butterworth filter with a cutoff frequency of 

0.6 Hz. Cross-validation was executed with m = 9 for all phases of the task except for 

post-exposure where m = 5. For Fig. 1.3B, standardized velocity profiles were computed 

with Eq. (1.1) with sn replaced by a velocity profile. 

 

Sensor sensitivity curves 

A curve depicting the relationship between decoding accuracy and the number of sensors 

was computed for the x and y dimensions of hand velocity for each subject for each phase 

of the task. A similar method to examine this relationship has been used to analyze 

neuronal recordings (Sanchez et al. 2004). First, for each subject and each phase of the 

task, each sensor was assigned a rank according to Eq. (1.4): 

∑∑
= =

+
+

=
L

k

M

m
mnkymnkxn bb

LM
R

0 1

22

)1(

1
     for all n from 1 to N          (1.4) 

where Rn is the rank of sensor n and M is the number of folds of the cross-validation 

procedure. Second, the decoding model was iteratively executed with only the highest-

ranked sensor, the four highest-ranked sensors, the seven highest-ranked sensors, etc. 
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until all sensors were used. For each phase of the task, the mean ± SD of the CCs 

computed across subjects was plotted against the number of sensors. Finally, each plot 

was fitted to a double-exponential curve, and the coefficient of determination, R2, was 

calculated as a measure of the goodness of fit.  

 

Scalp maps of sensor contributions 

To graphically assess the relative contributions of scalp regions to the reconstruction of 

hand velocity, the across-subject means of the b (from Eqs. (1.2) and (1.3)) vector 

magnitude were projected onto a time series (− 200 to 0 ms in increments of 10 ms) of 

scalp maps for each phase of the task. These spatial renderings of sensor contributions 

were produced by the topoplot function of EEGLAB version 6.01b, an open-source 

MATLAB toolbox for electrophysiological data processing (Delorme and Makeig 2004, 

http://sccn.ucsd.edu/eeglab/), that performs biharmonic spline interpolation of the sensor 

values before plotting them (Sandwell 1987). To examine which time lags were the most 

important for decoding, for each scalp map, the percentage of reconstruction contribution 

for a phase of the task was computed as 

∑∑

∑

= =

=

+

+

×=
L

k

N

n
nkynkx

N

n
niynix
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bb

bb

T

0 1

22

1

22

%100%      for all i from 0 to L          (1.5) 

where %Ti is the percentage of reconstruction contribution for a scalp map at time lag i.  
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Comparison of scalp maps across adaptation 

Right-tailed, paired t-tests determined statistically significant (p < 0.05) changes in sensor 

contributions between phases of the task. Three contrasts between the scalp maps were 

computed for increases from baseline (pre-exposure): early-exposure – pre-exposure, 

late-exposure – pre-exposure, and post-exposure – pre-exposure; and three contrasts were 

computed for decreases from baseline: pre-exposure – early-exposure, pre-exposure – 

late-exposure, and pre-exposure – post-exposure. The resultant t scores were converted to 

z scores and then rendered onto scalp maps with the topoplot function of EEGLAB 

(Delorme and Makeig 2004) with increases and decreases represented with hot and cool 

colors respectively. 

 

Cortical source localization 

To better estimate the cortical sources of hand velocity encoding in each phase of the 

task, we used standardized low-resolution brain electromagnetic tomography 

(sLORETA) software version 20081104 (Pascual-Marqui 2002,  

http://www.uzh.ch/keyinst/loreta.htm). sLORETA computes instantaneous, 3-D linear, 

distributed and discrete solutions for the MEG/EEG inverse problem, which compare 

well with respect to linear inverse algorithms like minimum norm solution, weighted 

minimum norm solution, and weighted resolution optimization (Pascual-Marqui 2002). 

These solutions are computed within a three-shell spherical head model that uses a lead 

field computed with a boundary element method applied to the MNI52 template (Fuchs et 

al. 2002). The head model includes scalp, skull, and brain compartments. The brain 

compartment is restricted to the cortical matter of a head model co-registered to the 
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Talairach brain atlas (Talairach and Tournoux 1988). This compartment includes 6239 

voxels at 5 mm resolution with each voxel containing a current dipole representing the 

integrated activity within the corresponding spatial vicinity. The sensor coordinates of the 

MEG helmet that were entered into sLORETA had been previously measured in the KIT-

Maryland MEG laboratory. 

 

To identify sources that were sensitive to velocity encoding, we found the sources that 

best correlated with the most meaningful sensors from the decoding analysis using the 

following method. Pre-processed MEG signals from all 157 channels for each subject and 

each phase of the task were fed to sLORETA to estimate current sources. These MEG 

signals had been pre-processed in the same manner as for decoding: standardized, 

downsampled, and low-pass filtered. From the scalp map with the highest percentage of 

reconstruction contribution (− 100 ms), the fifteen sensor weights possessing the highest 

values were selected. The CCs were then computed between the squared time series from 

the fifteen sensors with the 6239 time series from the sLORETA solutions and averaged 

across subjects. Each CC was multiplied by the magnitude of the regression weight b 

(from Eqs. (1.2) and (1.3)) vector of the sensor in the correlation analysis. The reason that 

fifteen sensors were chosen for the correlation analysis was because of the observation 

that the sensor sensitivity curves began to plateau around fifteen sensors (Fig. 1.4). Next 

the highest 5% of the CCs (weighted by b) were set to the value one, and the rest of the 

CCs were set to zero. Finally these binary-thresholded CCs were plotted onto an axial 

slice of the brain (z = 55 mm) from the Colin27 volume (Holmes et al. 1998), the MRI 
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template that best illustrated our regions of interest. All reported coordinates of regions of 

interest are in Talairach space. 

 

Ancillary analysis: decoding from artifact-cleaned MEG data 

Unintended contributions of eye movements to the decoding of hand movement is a 

potential confound in all MEG, EEG, and ECoG studies, including our study. We did not 

experimentally control eye movements; however, we performed an ancillary analysis. 

The following procedure was separately performed on data from each phase of the task. 

The continuous kinematic and MEG data for a phase of the task were split into discrete 

single trials of center-out drawing. Ocular, muscular, and cardiac artifacts were removed 

by using independent component analysis (ICA) to extract independent components (ICs) 

and then comparing the ICs to templates of known artifacts for the purpose of 

categorization and subsequent removal of the artifacts (Rong and Contreras-Vidal 2006). 

The MEG data were downsampled to 60 Hz to match the sampling rate of the kinematic 

data and then standardized (Eq. (1.1)). The same central and posterior scalp areas were 

used in the decoding model (N = 62), and no time lags (L = 0) were used because of the 

discontinuities due to concatenation. Cross-validation with half of the data as testing and 

the other half as training was performed for 500 runs with the single trials shuffled and 

concatenated before each run. The mean and SD of the CCs for the 500 runs were 

calculated for each subject during each phase of the task. 
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Results 

Hand kinematics confirmed adaptation 

During early-exposure to the cursor rotation, we observed curved hand paths due to the 

subjects' effort to counteract the imposed rotation (Fig. 1.1B). Hand paths became 

straighter in late-exposure as subjects adapted to the novel environment. In post-

exposure, after-effects, which consisted of hand paths curved in the opposite direction 

from those in early-exposure, indicated that adaptation had occurred. We also confirmed 

the occurrence of adaptation quantitatively by computing the mean IDE across subjects 

for each phase of the task and comparing it between phases (Fig. 1.1C). The IDE was not 

significantly different from zero in pre-exposure (two-tailed t-test; p = 0.34). The IDE 

increased in early-exposure relative to pre-exposure, decreased in late-exposure relative 

to early-exposure, and increased again in post-exposure relative to pre-exposure (one-

tailed, paired t-tests, p < 0.001). 

 

MEG signals contained decodable hand velocity information 

We employed a linear decoding model (Eqs. (1.2) and (1.3)) to reconstruct the horizontal 

(x) and vertical (y) velocity components of hand movement from the activity of the MEG 

sensors (Fig. 1.2). The mean CC of x velocity decreased during each consecutive phase of 

the adaptation task (Fig. 1.3A). Interestingly the mean CC of y velocity increased until 

post-exposure at which point it drastically decreased. In terms of individual subjects, the 

mean CCs ranged from 0.23 to 0.56 (Table 1.1), and examples of smoothed, 

reconstructed hand velocity profiles matched the measured velocity profiles well (Fig. 

1.3B). 
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Fig. 1.3. Decoding accuracy for hand velocity. (A) The across-subject mean ± SD of the 

CCs between measured and decoded hand velocity profiles is plotted separately for x 

(horizontal, black) and y (vertical, white) velocity for each phase of the task. (B) 

Examples of smoothed and standardized measured (black) and decoded (gray) hand 

velocity profiles for late-exposure exhibited high decoding accuracy. The left and right 

columns contain x and y velocity profiles respectively. Each row contains data for a 

single subject, and the CC between the measured and decoded velocity is listed to the left 

of each plot.  
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Table 1.1. Mean and SD (in parentheses) of CCs for each subject during each phase of 

the visuomotor adaptation task. 

 Pre Early Late Post 

 X Vel Y Vel X Vel Y Vel X Vel Y Vel X Vel Y Vel 

Subject 1 
0.64 

(0.09) 
0.47 

(0.16) 
0.44 

(0.11) 
0.62 

(0.13) 
0.53 

(0.13) 
0.73 

(0.12) 
0.10 

(0.21) 
-0.02 

(0.13) 

Subject 2 
0.45 

(0.16) 
0.29 

(0.14) 
0.56  

(0.10) 
0.45 

(0.11) 
0.40 

(0.18) 
0.52 

(0.21) 
0.10 

(0.07) 
0.37 

(0.13) 

Subject 3 
0.48 

(0.14) 
0.23 

(0.21) 
0.46 

(0.16) 
0.53 

(0.18) 
0.49 

(0.12) 
0.63 

(0.24) 
0.42 

(0.16) 
0.26 

(0.14) 

Subject 4 
0.60 

(0.08) 
0.33 

(0.22) 
0.21 

(0.20) 
0.23 

(0.11) 
0.21 

(0.18) 
0.44 

(0.15) 
0.55 

(0.07) 
0.46 

(0.13) 

Subject 5 
0.17 

(0.21) 
0.26 

(0.30) 
0.26 

(0.13) 
0.58 

(0.14) 
0.24 

(0.15) 
0.47 

(0.22) 
0.17 

(0.32) 
0.02 

(0.13) 

Grand Mean 
0.48 

(0.15) 
0.32 

(0.08) 
0.40 

(0.12) 
0.49 

(0.13) 
0.38 

(0.12) 
0.56 

(0.10) 
0.28 

(0.17) 
0.23 

(0.17) 
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Number of sensors and decoding accuracy were exponentially related 

The linear decoding model produced one weight per sensor per time lag; therefore, the 

importance of the contribution of a sensor to the decoding process at a particular time lag 

could be considered the vector magnitude of its regression weights at that time lag. We 

ranked the sensors and reran the decoding procedure with the most important sensor, the 

four most important sensors, the seven most important sensors, etc. until all sensors were 

used. These sensor sensitivity curves of mean CC vs. the number of sensors fit a double-

exponential function well (R2 = 0.95–1.00) (Fig. 1.4). For all phases of the task, the 

curves peaked then plateaued, or nearly plateaued, near 15 sensors. 
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Fig. 1.4. Decoding accuracy vs. number of sensors. The top and bottom rows contain 

plots of mean (black) ± SD (gray) of the CCs across subjects vs. the number of sensors 

for x and y velocity respectively. Columns organize the plots by phase of the task. R2 

values between the mean CC curve and a fitted double-exponential curve are displayed at 

the bottom of each plot.  

 

A macroscale sensorimotor network encoded hand velocity 

To graphically assess the relative contributions of scalp regions to the reconstruction of 

hand velocity, we projected the across-subject means of the vector magnitudes of the 

sensor weights onto a time series (− 200 to 0 ms in increments of 10 ms) of scalp maps 

for each phase of the adaptation task. The scalp maps for each phase of the task 

resembled each other, so only those for pre-exposure are shown (Fig. 1.5A). A network 

of sensors over central and posterior scalp areas contributed to decoding hand velocity 

with a salient member of the network over the contralateral motor area. Although the 

scalp maps of the different phases appeared similar upon visual inspection, we 

investigated the presence of statistically significant increases and decreases in early-, late-

, and post-exposure relative to baseline (pre-exposure). We observed notable focal 

differences between phases of the task in scalp areas over mediolateral premotor and 

posterior parietal cortices in particular (Fig. 1.5B). To better estimate the cortical sources 

that gave rise to the scalp maps at − 100 ms (the highest percentage of reconstruction 

contribution), we correlated the fifteen best sensors with the sources estimated by 

sLORETA. After weighting the CCs by the vector magnitudes of the sensor weights, the 

top 5% were binary-thresholded and plotted on an axial slice (Fig. 1.5C). In all phases of 
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the task, the contralateral precentral gyrus (PrG) and postcentral gyrus (PoG) and the 

ipsilateral superior parietal lobule (SPL) and precuneus (PCu) encoded for hand velocity. 

The contralateral inferior parietal lobule (IPL) and ipsilateral medial frontal gyrus, 

containing the supplementary motor area (SMA), additionally encoded for hand velocity 

in all phases except pre-exposure. Finally the lateral premotor cortex of the bilateral 

middle frontal gyrus (MFG) and ipsilateral superior frontal gyrus (SFG) were involved in 

hand velocity encoding only in early- and post-exposure. 

 

Ancillary analysis: similar decoding resulted from artifact-cleaned MEG data 

Regarding the ancillary analysis of artifact-cleaned MEG data, although there was a 

notable drop in decoding accuracy for y velocity in pre- and post-exposure, there was no 

statistically significant difference in the resultant mean CCs of the subjects for any phase 

of the task (two-tailed, paired t-test; p > 0.05) (Table 1.2). 
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Fig. 1.5. Sensorimotor networks associated with hand velocity during visuomotor 

adaptation. (A) The mean vector magnitudes of the sensor weights from the linear 

decoding model revealed the importance of neural regions when interpolated and 

projected onto a time series (− 200 to 0 ms in increments of 10 ms) of scalp maps for the 

pre-exposure phase (other phases were similar). Light and dark colors represent high and 

low contributors respectively. The highest sensor weighting of the MEG signals led the 

velocity output by 100 ms, so the display of scalp maps are centered around − 100 ms. 

The percentage of reconstruction contribution (%T) is displayed above each scalp map. 

Due to space limitations, only seven of the twenty-one scalp maps are shown. (B) The 

rows respectively contain the z scores of differences between early- and pre-exposure, 

late- and pre-exposure, and post- and pre-exposure. Increased (+) and decreased (−) 

contributions of sensors are mapped to hot and cool colors respectively. (C) The 

estimated cortical sources involved in hand velocity encoding during the task were 

represented on an axial slice from an MRI template (z = 55). The sources and their 

Talairach coordinates (x, y, z) were the PrG (− 41, − 11, 55), PoG (− 45, − 17, 55), SPL 

(30, − 46, 55), PCu (3, − 61, 55), IPL (− 41, − 41, 55), SMA (5, − 2, 55), MFG (19, 18, 

55 and − 24, 20, 55), and SFG (19, 12, 55).  
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Table 1.2. Mean and SD (in parentheses) of the CCs for each subject during each phase 

of the visuomotor adaptation task for the decoding procedure with artifact-cleaned MEG 

data. 

 

 Pre Early Late Post 

 X Vel Y Vel X Vel Y Vel X Vel Y Vel X Vel Y Vel 

Subject 1 
0.44 

(0.09) 
0.46 

(0.10) 
0.52 

(0.07) 
0.37 

(0.09) 
0.46 

(0.12) 
0.66 

(0.08) 
0.44 

(0.14) 
0.09 

(0.16) 

Subject 2 
0.21 

(0.09) 
-0.17 

(0.10) 
0.18 

(0.11) 
0.13 

(0.09) 
0.37 

(0.07) 
0.31 

(0.09) 
0.02 

(0.16) 
0.13 

(0.18) 

Subject 3 
0.42 

(0.08) 
0.05 

(0.13) 
0.75  

(0.05) 
0.54  

(0.06) 
0.66 

(0.07) 
0.63 

(0.05) 
0.63 

(0.10) 
0.15 

(0.20) 

Subject 4 
0.70 

(0.05) 
0.04 

(0.15) 
0.41 

(0.09) 
0.24 

(0.10) 
0.47 

(0.08) 
0.54 

(0.06) 
0.44 

(0.12) 
-0.02 

(0.16) 

Subject 5 
0.55 

(0.10) 
0.26 

(0.17) 
0.32 

(0.09) 
0.36 

(0.11) 
0.38 

(0.15) 
0.48 

(0.13) 
0.20 

(0.20) 
0.20 

(0.22) 

Grand Mean 
0.46 

(0.16) 
0.13 

(0.21) 
0.44 

(0.19) 
0.33 

(0.14) 
0.47 

(0.10) 
0.52 

(0.12) 
0.35 

(0.21) 
0.11 

(0.07) 

 

 

 



 

 

 24 

 

Discussion 

Our results demonstrate that we can continuously decode information about hand velocity 

from natural, multijoint, center-out movements from MEG signals collected during a 

drawing task that requires visuomotor adaptation to a hand-cursor rotation. With the 

systematic addition of sensors to the decoding model, the decoding accuracy 

exponentially increases before reaching a plateau. Additionally, a macroscale 

sensorimotor network composed of central and posterior scalp regions encodes for hand 

velocity in all phases of adaptation, and the differences in MEG sensor importance 

between phases capture the evolution of cortical involvement during adaptation. 

Furthermore, localization of cortical sources permits a more detailed investigation into 

the cortical regions that encode for hand velocity in different adaptation phases. 

 

Hand velocity information is represented on multiple spatial scales 

Researchers have firmly established the existence of a population code for hand position 

and velocity at the microscale level via neuronal recordings (Georgopoulos et al. 1986; 

Kettner et al. 1988; van Hemmen and Schwartz 2008). Recently, some 

electrocorticography (ECoG) studies demonstrated that a population code for these 

kinematic parameters also exists on a mesoscale (Schalk et al. 2007; Pistohl et al. 2008; 

Sanchez et al. 2008). The most striking result of our study is that a sensorimotor network 

on a larger spatial scale encodes hand kinematics during natural, multijoint center-out 

movements, and, furthermore, does so during adaptation to a screen cursor-hand rotation. 

In sensor space, this network spans central and posterior sensor areas. Each MEG sensor 
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reflects the contributions of millions of neurons, but yet, we can still decode information 

about hand velocity. 

 

Further regarding spatial scale, we asked whether a denser sampling of the scalp space 

could improve decoding accuracy. Since the curves of mean CC vs. the number of 

sensors reveal there to be an optimal, or near optimal, number of sensors less than 62 for 

all phases of the task (Fig. 1.4), we conclude that the addition of more sensors would not 

substantially improve the decoding accuracy. The decreased mean decoding accuracy and 

increased SD of the CCs during post-exposure is likely due to the relatively small amount 

of data collected and analyzed during this phase of the task. The overall increased mean 

decoding accuracy of y velocity during adaptation was potentially due to the fact that, 

during exposure, the 60-degree rotation had a greater affect on hand movement in the y 

direction than the x direction, and thus may have recruited more neural resources to 

handle the y direction (Contreras-Vidal and Kerick 2004). 

 

Several interesting pieces of evidence serve to validate the interpretation of our decoding 

results. First, the greatest sensor contributions across time lags occur at 100 ms prior to 

the current kinematic sample under reconstruction for all phases of the task (Fig. 1.5A). 

Given that prior research has established approximately 100 ms of neural data in the past 

to be important for planning the current movement (Mehring et al. 2004; Paninski et al. 

2003), this finding is not unexpected. In our previous report leading up to this study 

(Bradberry et al. 2008), we discovered that hand velocity was better decoded than 

position (post-publication analysis: two-tailed, paired t-test; p < 0.0001). This is another 
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confirmatory finding, given that the motor cortex represents velocity better than position 

as has been demonstrated, in particular, by studies aimed at decoding kinematic 

parameters for neuroprosthetic control (Schwartz et al. 2001). Furthermore, the salient 

region of high activation over the left motor area is expected since subjects drew with 

their right hands. 

 

Regional comparison to non-decoding studies of visuomotor adaptation 

In sensor space, across adaptation we find significant contributions to hand velocity 

decoding over the mediolateral premotor and posterior parietal scalp areas with respect to 

pre-exposure (Fig. 1.5B). Previous studies demonstrated that the parietal and premotor 

cortices are involved in a visuomotor network for reaching (Wise et al. 1997; Burnod et 

al. 1999), and an EEG study of visuomotor adaptation reported fronto-parietal shifts 

(Contreras-Vidal and Kerick 2004). To speak more specifically about the cortical areas 

involved with visuomotor adaptation and encoding of hand kinematics, we performed 

source localization (Fig. 1.5C). Multiple similarities exist between the cortical regions 

found in our study and those of fMRI and PET studies of visuomotor adaptation. The left 

PrG, PoG, and IPL have been shown to be involved during visuomotor adaptation to a 

rotation of visual feedback by a fMRI studies by Graydon et al. (2005) and Seidler et al. 

(2006). In PET studies, the right SPL has been observed to increase in activation during 

visuomotor adaptation tasks by Inoue et al. (2000), Ghilardi et al. (2000), and Krakauer et 

al. (2004). Inoue et al., Krakauer et al., and Seidler et al. have also revealed an increase in 

activation of SMA/preSMA during visuomotor adaptation. Finally the MFG and SFG 
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(lateral premotor cortex) have been shown to be active in visuomotor adaptation by Inoue 

et al. and Seidler et al. 

 

Regional comparison to other decoding studies 

Regarding decoding of hand kinematics, the common involvement across tasks of the 

PrG, PoG, SPL, and PCu implies that these areas form the core for hand velocity 

encoding in familiar and unfamiliar environments while the SMA, lateral premotor 

cortex, and IPL encode for hand velocity only during adaptation. Decoding of hand 

kinematics has been reported for PrG and PoG at a microscale (Georgopoulos et al. 1986; 

Moran and Schwartz 1999; Wessberg et al. 2000; Serruya et al. 2002; Schwartz et al. 

2004), mesoscale (Schalk et al. 2007, Pistohl et al. 2008; Sanchez et al. 2008), and 

macroscale (Jerbi et al. 2007). This decoding role has also been ascribed to the SPL at the 

microscale (Averbeck et al. 2005; Averbeck et al. 2009; Mulliken et al. 2008) and 

macroscale (Jerbi et al. 2007). The SMA/preSMA, lateral premotor cortex, and IPL have 

also been observed to encode movement kinematics (Moran and Schwartz 1999; 

Schwartz et al. 2004; Jerbi et al. 2007; Tankus et al. 2009). On a slightly different note, a 

PET study that examined the control of movement velocity, discovered the involvement 

of left PrG, left PoG, right SPL, and mediolateral premotor cortex (Turner et al. 1998). 

To our knowledge, we are the first to report that the PCu plays a role in the encoding of 

detailed hand kinematics. 
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Could eye movements have inadvertently aided hand velocity decoding? 

Unintended contributions of eye movements to the decoding of hand movement is a 

potential confound in all MEG, EEG, and ECoG studies, including our study. We do not 

experimentally control eye movements; however, our ancillary analysis, which removes 

ocular activity with an ICA-based method, demonstrates that ocular movements do not 

significantly affect decoding (Table 1.2). 

 

Potential application to neuromotor prosthetic control 

Most studies involving noninvasive BCI systems have focused on 1) the classification of 

mental tasks to form a low bandwidth communication channel (Pfurtscheller et al. 2006; 

Mellinger et al. 2007) or 2) continuous control of a cursor by subjects who, through 

relatively lengthy biofeedback training, learn to modulate the power of one or more 

frequency bands of neural signals to control one or more dimensions of cursor movement 

(Wolpaw and McFarland 2004; McFarland et al. 2008). The lack of focus on decoding 

detailed kinematics of natural hand movements could be partly due to the unfounded 

presumption that this information cannot be decoded from noninvasive signals recorded 

from the scalp (Lebedev and Nicolelis 2006). Despite this presumption, there exist 

several important exceptions to the lack of noninvasive studies aimed at developing 

decoding methods for controlling neuromotor prostheses. One study has decoded 

continuous joystick coordinates from MEG signals acquired during continuous pentagon 

drawing in the absence of visual feedback of movement (Georgopoulos et al, 2005), and 

another study has decoded information regarding hand tangential velocity from MEG 

signals acquired during trackball movements in two dimensions (Jerbi et al. 2007). Our 
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study primarily differs from the two aforementioned studies in that we decode continuous 

hand velocity from multijoint movements during a center-out drawing task that requires 

adaptation to a novel screen-cursor rotation. The center-out nature of our task is 

meaningful because it allows comparison to invasive decoding studies for neuromotor 

prostheses and emphasizes a desired function of the first generation of these devices. In 

terms of the visuomotor adaptation component, further investigation may provide insight 

into how the brain adapts to a tool such as a neuromotor prosthesis (Lebedev et al. 2005), 

and, hence, potentially advance the understanding of how to achieve efficient co-

adaptation of the brain and decoding model. On a final comparative note, we ran each 

iteration of our decoding model with a relatively small set of training data composed of 

16 (post-exposure) to 32 (pre-, early-, and late-exposure) trials. This small amount of 

training data is meaningful because it may translate to a substantial reduction in the time 

required for a patient to gain mastery over the control of a neuromotor prosthesis. 

 

What remains to be elucidated is whether the decoding method presented in this report 

will also be applicable to EEG, which is better suited than MEG for an ambulatory 

prosthetic system. In terms of EEG-based decoding of movement parameters, several 

recent studies have decoded the direction of hand movement (Hammon et al. 2008; 

Waldert et al. 2008), but, to our knowledge, researchers have yet to report successful 

decoding of continuous hand position or velocity from EEG (a comprehensive search in 

peer-reviewed journals did not produce any studies). In the future, we will apply our 

decoding method to EEG signals to examine the application of this noninvasive modality 

to continuous, complex control of a neuromotor prosthesis. 
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Chapter 2: Reconstructing three-dimensional hand movements 

from noninvasive electroencephalographic signals 

 

The material contained in this chapter is published as Bradberry TJ, Gentili RJ, 

Contreras-Vidal JL (2010) Reconstructing three-dimensional hand movements from 

noninvasive electroencephalographic signals. J Neurosci 30:3432–3437. 

Supplemental material in the journal publication has been incorporated into the 

main text of this dissertation chapter. 

  

Abstract 

It is generally thought that the signal-to-noise ratio, the bandwidth, and the information 

content of neural data acquired via noninvasive scalp electroencephalography (EEG) are 

insufficient to extract detailed information about natural, multijoint movements of the 

upper limb. Here, we challenge this assumption by continuously decoding three-

dimensional (3D) hand velocity from neural data acquired from the scalp with 55-channel 

EEG during a 3D center-out reaching task. To preserve ecological validity, five subjects 

self-initiated reaches and self-selected targets. Eye movements were controlled so they 

would not confound the interpretation of the results. With only 34 sensors, the correlation 

between measured and reconstructed velocity profiles compared reasonably well to that 

reported by studies that decoded hand kinematics from neural activity acquired 

intracranially. We subsequently examined the individual contributions of EEG sensors to 

decoding to find substantial involvement of scalp areas over the sensorimotor cortex 
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contralateral to the reaching hand. Using standardized low-resolution brain 

electromagnetic tomography (sLORETA), we identified distributed current density 

sources related to hand velocity in the contralateral precentral gyrus, postcentral gyrus, 

and inferior parietal lobule. Furthermore, we discovered that movement variability 

negatively correlated with decoding accuracy, a finding to consider during the 

development of brain–computer interface systems. Overall, the ability to continuously 

decode 3D hand velocity from EEG during natural, center-out reaching holds promise for 

the furtherance of noninvasive neuromotor prostheses for movement-impaired 

individuals.  

  

Introduction 

In the last decade, research into the neural coding of movement has generated enthusiasm 

for its potential to restore function to movement-impaired individuals. The field of brain–

computer interface (BCI) systems deals with interpreting the neural code and generating 

commands to control an assistive device. To this end, researchers have extracted hand 

trajectories or velocity profiles from neuronal signals acquired with electrodes seated 

directly into cortical tissue and, in some cases, used these kinematics to command a 

robotic arm in real time (Wessberg et al. 2000; Serruya et al. 2002; Taylor et al. 2002; 

Hochberg et al. 2006; Kim et al. 2006; Mulliken et al. 2008; Truccolo et al. 2008; Velliste 

et al. 2008). Investigators have also extracted hand kinematics from intracranial local 

field potentials obtained through less invasive electrocorticography (Schalk et al. 2007; 

Pistohl et al. 2008; Sanchez et al. 2008). 
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In contrast to decoding studies that acquired intracranial neural activity, little work has 

been done to continuously decode natural, multijoint hand kinematics from neural signals 

acquired noninvasively. Only a few studies report continuous decoding of two-

dimensional (2D) hand and tool kinematics from magnetoencephalography (MEG) 

(Georgopoulos et al. 2005; Jerbi et al. 2007; Bradberry et al. 2008, 2009a). Although 

MEG demonstrates a proof of concept, it is immobile and therefore unsuitable for 

practical BCI systems. However, electroencephalography (EEG) is suitable for practical 

BCI systems, but, with the exception of our preliminary study (Bradberry et al. 2009b), 

researchers have not demonstrated continuous decoding of hand kinematics from EEG. 

Instead, most EEG studies have discretely classified the direction/speed of 2D hand/wrist 

movements or different motor imagery tasks on a single-trial basis (Mellinger et al. 2007; 

Hammon et al. 2008; Waldert et al. 2008; Gu et al. 2009), or they have demonstrated 2D 

continuous control of a cursor through biofeedback training (Wolpaw and McFarland 

2004). The lack of attention to reconstructing kinematics of natural hand movements from 

EEG could be because some researchers consider training subjects to modulate EEG 

activity, independent of reconstructing hand kinematics, to suffice for 2D control 

(Wolpaw and McFarland 2004). The lack of attention could also be due to the assumption 

that EEG signals lack sufficient signal-to-noise ratio, bandwidth, and information content 

to decode hand kinematics (Lebedev and Nicolelis 2006). 

  

To examine our hypothesis that kinematics of natural hand movements are decodable 

from EEG signals and, hence, may serve as new signals for controlling neuromotor 

prostheses, we aimed to continuously extract hand velocity from signals collected during 
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a three-dimensional (3D) center-out reaching task. To assure a realistic task, subjects were 

not cued: they chose which target to acquire and when to initiate movement. Since EEG 

coupled with our decoding method facilitated the investigation of sensor contributions to 

decoding with high temporal resolution, we examined the location of salient sensors 

across time lags. Using standardized low-resolution brain electromagnetic tomography 

(sLORETA) (Pascual-Marqui 2002), we further estimated the sources most involved in 

encoding hand velocity. Moreover, we investigated the relationship between decoding 

accuracy and movement variability.  

 

Materials and methods 

Experimental procedure 

The Institutional Review Board of the University of Maryland at College Park approved 

the experimental procedure. After giving informed consent, five healthy, right-handed 

subjects sat upright in a chair and executed self-initiated center-out reaches to self-

selected push button targets near eye-level (Fig. 2.1). We instructed subjects to attempt to 

make uniformly distributed random selections of the eight targets without counting. The 

elbow of the reaching arm was unsupported, and the non-reaching arm relaxed in the lap. 

Subjects took approximately 4 s to reach to the peripheral target and then return to the 

center target. To mitigate the influence of eye movements on reconstruction, subjects 

were instructed to fixate an LED on the center target throughout data collection and to 

only blink when their hand was resting at the center target. To ensure the minimization of 

eye movements, a researcher monitored the subjects’ eyes during data collection, and the 

correlation between electro-ocular activity and hand kinematics was analyzed off-line 
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(see section on eye movement analysis). For each subject, the experiment concluded after 

each target was acquired at least ten times. While the required movements were familiar 

to the subjects, none of the subjects had previous experience with the task. 

 

 

Fig. 2.1. Experimental setup and finger paths. The reaching apparatus is shown in the 

middle along with the Cartesian coordinate system we employed. The distance from the 

center position to each of the targets was approximately 22 cm. Mean finger paths for 

center-to-target (black) and target-to-center (gray) movements exhibited movement 

variability among subjects. 
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Data collection 

A 64-sensor Electro-Cap was placed on the head according to the extended International 

10-20 system with ear-linked reference and used to collect 58 channels of EEG activity. 

Continuous EEG signals were sampled at 1000 Hz and amplified 500 times via a 

Synamps I acquisition system and Neuroscan v.4.2 software. Additionally the EEG 

signals were band-pass filtered from 0.5 to 100 Hz and notch filtered at 60 Hz. Electro-

ocular activity was measured with a bipolar sensor montage with sensors attached 

superior and inferior to the orbital fossa of the right eye for vertical eye movements and 

to the external canthi for horizontal eye movements. Hand position was sampled at 100 

Hz using an Optotrak motion sensing system (Northern Digital, Inc) that tracked an 

infrared LED secured to the fingertip with double-sided adhesive tape. Event markers of 

push button presses and releases were sent from the apparatus containing the push 

buttons to the Neuroscan and Optotrak systems for off-line synchronization of EEG and 

kinematic data. 

 

Signal pre-processing 

For computational efficiency and to match the sampling rate of the kinematic data, the 

EEG data were decimated from 1 kHz to 100 Hz by applying a low-pass anti-aliasing 

filter with a cutoff frequency of 40 Hz and then downsampling by a factor of 10. A zero-

phase, fourth-order, low-pass Butterworth filter with a cutoff frequency of 1 Hz was then 

applied to the kinematic and EEG data. The cutoff frequency was determined 

experimentally with influence by previous noninvasive and ECoG studies that 

demonstrated the importance of low frequencies for noninvasive decoding (Jerbi et al. 
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2007; Schalk et al. 2007; Waldert et al. 2008; Bradberry et al. 2008, 2009a). Next, the 

temporal difference of the EEG data was computed (i.e.,  [ ] [ ] [ ]1~~ −−= tvtvtv nnn  where [ ]tvn  

and [ ]tvn
~  are respectively the backward-differenced and pre-differenced EEG voltage of 

sensor n at time t). In order to examine relative sensor contributions in the scalp map 

analysis described in a section below, data from each EEG sensor were standardized 

according to Eq. (2.1): 
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where [ ]tSn  and [ ]tvn  are respectively the standardized and  differenced voltage at sensor 

n at time t, 
nvµ  and 

nvσ  are the mean and standard deviation of nv  respectively, and N is 

the number of sensors. 

 

Decoding method 

To continuously decode hand velocity from the EEG signals, a linear decoding model 

was employed similar to that described by Georgopoulos et al. (2005) for MEG signals. 

In general, the model finds a linear combination of past and present time series data from 

multiple EEG sensors that reconstructs the current kinematic sample of a dimension of 

hand velocity. In equation form: 
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where [ ] ]1[ −− txtx , [ ] ]1[ −− tyty , and [ ] ]1[ −− tztz  are the horizontal, vertical, and depth 

velocities of the hand at time sample t respectively, N is the number of EEG sensors, L (= 

10) is the number of time lags, [ ]ktSn −  is the standardized difference in voltage measured 

at EEG sensor n at time lag k, and the a and b variables are weights obtained through 

multiple linear regression. The number of lags (L=10, corresponding to 100 ms) was 

chosen based on a previous study that reconstructed hand kinematics from neural signals 

acquired with MEG (Bradberry et al. 2009a). The three most frontal sensors (FP1, FPZ, 

and FP2 of the International 10-20 system) were excluded from the analysis to further 

mitigate the influence of any eye movements on reconstruction, resulting in an N of 55 

sensors. 

 

For each subject, the collected continuous data contained approximately 80 trials. An 

8x8-fold cross-validation procedure was employed to assess the decoding accuracy. In 

this procedure, the entire continuous data were divided into 8 parts, 7 parts were used for 

training, and the remaining part was used for testing. The velocity data and EEG data 

were synchronized, so that if m samples of velocity were to be reconstructed then the 

aligned m samples of EEG data from a single sensor were used along with 10 lagged 

versions of these m EEG samples for a total of m(10 + 1) samples per sensor (plus one for 

the offset a). Based on the sampling rate of 100 Hz and collection duration of 

approximately 5 minutes per subject, m was about 3750 samples per training fold and 

26,250 samples per testing fold. The cross-validation procedure was considered complete 
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when each of the 8 combinations of training and testing data were exhausted, and the 

mean Pearson correlation coefficient (r) between measured and reconstructed kinematics 

was computed across folds. Prior to computing r, the kinematic signals were smoothed 

with a zero-phase, fourth-order, low-pass Butterworth filter with a cutoff frequency of 1 

Hz. 

 

Sensor sensitivity curves 

Curves depicting the relationship between decoding accuracy and the number of sensors 

used in the decoding method were plotted for the x, y, and z dimensions of hand velocity. 

First, for each subject, each of the 55 sensors was assigned a rank according to  
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where Rn is the rank of sensor n, and the b variables are the best regression weights. This 

ranking procedure is similar to the one described by Sanchez et al. (2004). Next, the 

decoding method with cross-validation as described above and ranking method were 

iteratively executed using backward elimination with a decrement step of three (52 

highest-ranked sensors, 49 highest-ranked sensors, 46 highest-ranked sensors, etc.). The 

mean and standard error of the mean (SEM) of r values computed across subjects were 

plotted against the number of sensors. 

 

Scalp maps of sensor contributions 

To graphically assess the relative contributions of scalp regions to the reconstruction of 

hand velocity, the across-subject mean of the magnitude of the best b vectors (from Eqs. 
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(2.2) – (2.4)) was projected onto a time series (-100–0 ms in increments of 10 ms) of 

scalp maps. These spatial renderings of sensor contributions were produced by the 

topoplot function of EEGLAB, an open-source MATLAB toolbox for 

electrophysiological data processing (Delorme and Makeig 2004; 

http://sccn.ucsd.edu/eeglab/), that performs biharmonic spline interpolation of the sensor 

values before plotting them (Sandwell 1987). To examine which time lags were the most 

important for decoding, for each scalp map, the percentage of  

reconstruction contribution was defined as 
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where %Ti is the percentage of reconstruction contribution for a scalp map at time lag i. 

 

Source estimation with sLORETA 

To better estimate the sources of hand velocity encoding, we used standardized low-

resolution brain electromagnetic tomography (sLORETA) software version 20081104 

(Pascual-Marqui 2002; http://www.uzh.ch/keyinst/loreta.htm). Preprocessed EEG signals 

from all 55 channels for each subject were fed to sLORETA to estimate current sources. 

These EEG signals had been pre-processed in the same manner as for decoding: 

standardized, downsampled, and low-pass filtered. First, r values were computed between 

the squared time series of each of the 55 sensors with the 6239 time series from the 

sLORETA solution and then averaged across subjects. Second, the maximum r was 

assigned to each voxel after being multiplied by the regression weight b (from Eqs. (2.2) 
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–(2.4)) of its associated sensor. The regression weights had been pulled from the 

regression solution at time lag −60 ms, which had the highest percentage of 

reconstruction contribution. Third, for visualization purposes, the highest 5% of the 

voxels (r values weighted by b) were set to the value one, and the rest of the r values 

were set to zero. Finally these binary-thresholded r values were plotted onto axial slices 

of the brain from the Colin27 volume (Holmes et al. 1998), the magnetic resonance 

imaging (MRI) template that best illustrated our regions of interest. All reported 

coordinates of regions of interest are in Montreal Neurological Institute (MNI) space. 

 

Movement variability 

For each subject, three measures of movement variability were computed: the coefficient 

of variation (CV) for movement time (MT), the CV for movement length (ML), and the 

kurtosis of movement. MT and ML were computed on a trial basis with a trial defined as 

the release of a pushbutton to the press of a pushbutton (center-to-target or target-to-

center). The mean and SD of the measures were then computed, and the SD was divided 

by the mean to produce the CV. Kurtosis was defined as  
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where k is the kurtosis, E() is the expected value operator, h is the hand velocity, and hµ  

and hσ  are respectively the mean and SD of the hand velocity. Single trials of velocity 

profiles for x, y, and z dimensions were resampled to normalize for length and then 

concatenated before computing kurtosis. The relationship between movement variability 

and decoding accuracy was examined by computing r between the quantities. The sample 
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sizes were small (n = 5) for decoding accuracy and each measure of movement 

variability, so 10,000 r values were bootstrapped for each comparison, and the median 

and confidence intervals of the resultant non-Gaussian distributions were calculated using 

the bias-corrected and accelerated (BCa) percentile method (Efron and Tibshirani 1998). 

 

Eye movement analysis 

When reconstructing a behavioral variable from neural activity, it is important to ensure 

the minimization of co-occurring, correlated behavioral variables that may 

simultaneously influence neural activity. To this end for our reaching task, in addition to 

instructing subjects to fixate a center LED, we needed to confirm that 

electrooculographic (EOG) activity only minimally correlated with hand velocity. We 

computed r values between EOG velocity and hand velocity across 10 time lags (-100 

ms) with both signals low-pass filtered at 1 Hz as in the case of hand kinematic decoding 

from EEG. 

 

Results 

Our EEG decoding method reconstructed 3D hand-velocity profiles reasonably well. We 

quantified the decoding accuracy by computing the mean of Pearson's r between 

measured and reconstructed hand velocity across cross-validation folds. For y and z 

velocities, the decoding accuracy peaked at 0.38 and 0.32, respectively, with only 34 

sensors (Fig. 2.2A,B). For x velocity with 34 sensors, the decoding accuracy of 0.19 

remained relatively unaffected by the number of sensors. Thus, we used 34 sensors for 

subsequent analyses. In addition to quantitatively analyzing decoding accuracy, visually 
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comparing reconstructed and measured velocity profiles confirmed their similarities (Fig. 

2.2C).  

 

Fig. 2.2. EEG decoding accuracy of hand velocity. (A) The mean (black) ± SEM (gray) 

of the r values across subjects (n = 5) vs. the number of sensors exhibited a peak at 34 

sensors. (B) With 34 sensors, we computed the mean ± SEM of the r values across cross-

validation folds (n = 8) for each subject for x (black), y (gray), and z (white) velocities. 

(C) Reconstructed (black) and measured (gray) velocity profiles demonstrated 

similarities. Exemplar velocity profiles from the subjects with the best (Subject 1, top 

row) and worst (Subject 5, bottom row) decoding accuracies are shown. 
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Scalp maps depicted the contributions of the 34 sensors as a network of frontal, central, 

and parietal regions (Fig. 2.3A). Within this network, sensor CP3 made the greatest 

contribution. Interestingly, CP3 lies roughly above the primary sensorimotor cortex that is 

contralateral to the reaching hand. Concerning time lags, EEG data from 60 ms in the past 

supplied the most information with 16.0% of the total contribution. At 60 ms, we 

localized the EEG sources to confirm that the primary sensorimotor cortex (precentral 

gyrus and postcentral gyrus) was indeed a major contributor along with the inferior 

parietal lobule (IPL) (Fig. 2.3B). 

 

 

Fig. 2.3. Scalp and current sources that encoded hand velocity. (A) Mean (n = 5) scalp 

maps of the best 34 sensors revealed a network of frontal, central, and parietal 

involvement along with a large individual contribution from sensor CP3. Light and dark 

colors represent high and low contributors, respectively. Each scalp map with its 

percentage contribution is displayed above its associated 10 ms time lag, revealing the 

16.0% maximal contribution of EEG data at 60 ms in the past. (B) We overlaid localized 

sources (yellow) from 60 ms in the past onto MRI structural images to reveal the 

involvement of the precentral gyrus (x = –30, y = –30, z = 52), postcentral gyrus (x = –35, 

y = –30, z = 47), and IPL (x = –35, y = –36, z = 42). 
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Additionally, we compared the relationship between decoding accuracy, shown in Fig. 

2.2B, and movement variability. To quantify movement variability, we computed the CV 

for MT and ML (Fig. 2.4A) and the kurtosis of the velocity profiles (Fig. 2.4B). The high 

kurtosis values indicated outlier-prone, super-Gaussian distributions (kurtosis, >0). We 

found that movement variability negatively correlated with decoding accuracy (Fig. 

2.4C). Fig. 2.1 aids in visually depicting this relationship by showing that subject 1, with 

the best decoding accuracy, performed straighter reaches.  

 

 

Fig. 2.4. Relationship between movement variability and decoding accuracy. (A) The 

CVs for MT (black) and ML (white) ranged across subjects. (B) The kurtosis of the 

velocity profiles also varied across subjects. (C) All movement variability measures 

demonstrated high negative correlations with the decoding accuracy shown in Fig. 2.2B. 

Rectangles demarcate the confidence intervals for the bootstrapped r values, with each 
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rectangle possessing a horizontal line at the median. The confidence intervals are 70, 90, 

and 70%, respectively, for MT, ML, and kurtosis. 

 

We computed r values between EOG velocity and hand velocity across time lags to 

confirm that they only minimally correlated (Fig. 2.5). 

 

 

Fig. 2.5. Cross-correlation between EOG velocity and hand velocity. We computed r 

values between EOG velocity and hand velocity across 10 time lags (-100 ms) with both 

signals low-pass filtered at 1 Hz. The across-subject mean (n = 5) r values exhibited low 

correlation of vertical (A) and horizontal (B) EOG velocities with x (solid), y (dashed), 

and z (dotted) dimensions of hand velocity. 

  

Discussion 

In the last decade, researchers have pushed the boundaries of noninvasive neural 

decoding in the interest of developing BCI systems for the movement impaired. To 

further stretch the limits, we continuously reconstructed 3D hand velocity of natural, 

multijoint, center-out movements from only 34 channels of EEG data. A sensorimotor 

network composed of frontal, central, and parietal scalp regions encoded for hand 
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velocity, with the strongest contributions coming from cortical regions of the precentral 

gyrus, postcentral gyrus, and IPL at 60 ms in the past. Furthermore, the intersubject 

variability in movement may explain the intersubject variability in decoding accuracy due 

to their negative correlation. 

  

The sensor sensitivity curves for y and z velocities peak at 0.35 for 34 sensors before 

they begin decreasing. A common occurrence in machine learning is that, as the number 

of input features increases, prediction increases up to a point, then prediction may 

decrease due to overfitting the model to the training data, which is likely the case here 

(Alpaydin 2004). The curve for x velocity remains nearly flat 0.20 after an initial rapid 

increase (Fig. 2.2A). We made the common assumption that the brain employs a hand-

centered Cartesian coordinate system. However, the possibility exists that the brain could 

represent a different coordinate system (e.g., joint space or multiple interacting frames of 

reference) or desired muscular activity (Gourtzelidis et al. 2001; Wu and Hatsopoulos 

2006, 2007). The dimensions of an alternate representation could correlate better with y 

and z velocities than x velocity, potentially explaining the uniqueness of the sensitivity 

curve for x velocity. Nonetheless, in future studies when subjects are asked to use motor 

imagery to control a cursor or virtual arm in 3D via our decoder, we expect their neural 

activity to adapt to overcome an initial imperfect choice of representation framework, as 

Ganguly and Carmena (2009) observed in an invasive BCI experiment. 

  

To our knowledge, apart from our preliminary study (Bradberry et al. 2009b), studies on 

continuously decoding hand kinematics from EEG do not exist. Therefore, we cannot 
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directly compare our results to the literature. However, two studies report off-line, 

continuous reconstruction of 3D hand kinematics from intracranial neuronal activity 

(Wessberg et al. 2000; Kim et al. 2006), and several studies report off-line, continuous 

reconstruction of 2D hand and tool kinematics from MEG (Georgopoulos et al. 2005; 

Jerbi et al. 2007; Bradberry et al. 2008, 2009a). Of the MEG investigations, Bradberry et 

al. (2008, 2009a) exclusively employs a center-out movement paradigm, the de facto 

standard for comparison among decoding studies with BCI implications. These other 

studies report slightly higher r values (Table 2.1), but uniquely our study involves more 

ambitious experimental settings, such as more reaching targets, greater extent of 

multijoint movements, self-initiated movements, and self-selected targets. 

 

Strengthening the validity of our decoding results, scalp maps and estimated current 

sources indicate involvement of the contralateral primary sensorimotor region and the 

IPL. Other studies confirm that the primary sensorimotor cortex encodes hand kinematics 

at a microscale (Georgopoulos et al. 1986; Moran and Schwartz 1999; Wessberg et al. 

2000; Serruya et al. 2002; Schwartz et al. 2004; Kim et al. 2006), mesoscale (Schalk et al. 

2007; Pistohl et al. 2008; Sanchez et al. 2008), and macroscale (Kelso et al. 1998; Jerbi et 

al. 2007). Several MEG studies report that the IPL also encodes hand kinematics (Jerbi et 

al. 2007; Bradberry et al. 2009a). Regardless of scale, decoding methods like the one we 

report here rely on a subsecond history of neural data to reconstruct hand kinematics 

(Serruya et al. 2002, Sanchez et al. 2008; Bradberry et al. 2009a). Our choice of a 100 ms 

lag aligns with this convention as well as the rationale that these lags consist of planning 

activity of the brain associated with the current kinematic sample of the hand. 
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Furthermore, across lags the sensor contributions initially increase, peak at 60 ms, and 

then decrease, possibly revealing a temporal tuning curve for our task. Since only low-

frequency components of the EEG signals seem to carry information about hand velocity, 

slow cortical potentials emerge as the best candidates for a neurophysiological 

interpretation of these findings (Birbaumer et al. 1990). 

 

Table 2.1. Comparison to most relevant off-line decoding studies of hand kinematics 

 

Subjects 

Neural 

Data 
Reaching / Drawing Task Cued? rx ry rz 

average 

r 

Wessberg et al. 

2000 

monkeys 

(n = 2) 

single 

units 

3D; table�1 of 4 food tray 

positions�mouth 

Yes 0.50* 0.45* 0.65*   0.53 

Kim et al. 2006 monkey 

(n = 1) 

single 

units 

3D; table�1 of 4 food tray 

positions�mouth� table 

Yes – – –   0.44† 

Bradberry et al. 

2009a 

humans 

(n = 5) 

MEG 2D; center of DT�1 of 4 

peripheral targets of DT� 

center of DT 

Yes 0.48‡ 0.32‡ –   0.40 

Present study humans 

(n = 5) 

EEG 3D; center PB�1 of 8 

peripheral PBs�center PB 

No 0.19 0.38 0.32   0.29 

DT: drawing tablet, PB: push button 

* Since Wessberg et al. (2000) provide the evolution of r over time, and the duration of 

our task is approximately 5 minutes; we used their reported rx, ry, and rz values at 5 

minutes into their task. 

† For the Kim et al. (2006) study, we computed the average between their reported r 

during movement and r during rest for their best decoding method. 

‡ For the Bradberry et al. (2009a) study, rx and ry were taken from only the pre-exposure 

phase (no novel visuomotor transformation imposed). 
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An important topic in BCI research involves how decoding methods may adapt or 

facilitate user adaptation to novel environments or cognitive states. To evaluate 

adaptation, the user of a BCI system must receive feedback (e.g., visual or kinesthetic) of 

imagined movements while manipulating a brain-controlled device in real time. In the 

future, it will be essential to provide subjects with real-time feedback to investigate their 

ability to adapt their EEG activity to a fixed decoder (i.e., test the ability of our decoder to 

generalize). To improve performance, it is expected that subjects will "modify" regression 

weights by modulating their EEG activity. Decoder generalization has recently been 

demonstrated and analyzed in monkeys by Ganguly and Carmena (2009). Regarding 

humans, researchers have not thoroughly analyzed generalization; regardless, comparably 

impressive 2D control has been demonstrated by sensorimotor rhythms derived from EEG 

(Wolpaw and McFarland 2004) and single neurons (Hochberg et al. 2006). Given this 

evidence, we expect our decoding method for EEG to permit 3D brain control by humans 

in real time. 

  

Regarding the negative correlation between movement variability and decoding accuracy, 

we offer two potential explanations. For the more technical explanation, increased 

movement variability could degrade decoding accuracy due to less similar pairs of EEG–

kinematic exemplars. Conversely, less movement variability results in more similar 

exemplars for training. A more neural related explanation is that subjects differ in their 

ability to perform the task without practice; hence, the strengths of a priori neural 

representations of the required movements differ. These differing strengths could directly 

relate to the accuracy with which the representations can be extracted. Indeed, a previous 
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study confirms that motor learning produces more accurate predictions of movement 

direction from an ensemble of neuronal activity in primary motor cortex (Cohen and 

Nicolelis 2004). This finding is important to consider as real-time BCI systems based on 

our decoder are investigated in the future. 

  

In conclusion, despite the common assumption that EEG signals do not possess decodable 

information about detailed, complex hand movements, we demonstrate otherwise. The 

locations of the most important sensors to decoding are interpretable in light of previous 

studies and corroborate our claims. In the near future, the question should be addressed of 

how well subjects can adapt to our decoder of 3D kinematics when feedback of the 

decoder output is provided.  
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Chapter 3: A noninvasive brain-computer interface system 

with efficient decoder calibration based on observation of 

cursor movement 

 

Abstract 

Most current noninvasive brain-computer interface (BCI) systems aimed at cursor control 

are based on neural signals acquired with electroencephalography (EEG). A limitation of 

these current BCI systems is the lengthy training time (weeks to months) required by 

users to achieve satisfactory multidimensional control. To address this limitation, we 

investigated a novel approach for continuously decoding imagined movements from EEG 

signals in a BCI experiment involving five subjects that performed a three-phase task: 

calibration, practice, and target acquisition. During the calibration phase, subjects 

imagined moving their right arm/finger to track a cursor that moved in two dimensions on 

a computer screen (10 min). A decoding initialization procedure was then executed to 

find the decoder parameters that best mapped 34 EEG signals to observed horizontal and 

vertical cursor velocities (~10 min) (Bradberry et al. 2010 J Neurosci 30). Through 

subsequent investigation of the cortical sources that encoded for observed cursor velocity, 

a large neural network that comprised brain regions considered a part of the human 

mirror neuron system (MNS) was engaged. During the practice phase, after an initial 

manual adjustment of cursor speed to comfortable values by investigators (~10 min), 

subjects used the calibrated decoder to move the cursor with their thoughts in two 

dimensions as desired without task constraints for 10 min. During the target acquisition 
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phase, subjects used their thoughts to move the cursor to a target that appeared 

pseudorandomly at the top, bottom, left, or right side of the computer screen. If subjects 

did not acquire the target within 15s, the trial was aborted, and a new target appeared. 

Four 10-minute runs of target acquisition were performed. The mean ± standard error 

(SE) of the target hit rate was 73 ± 4% across subjects and runs. A snapshot of cortical 

sources that maximally encoded for cursor velocity during the target acquisition phase 

primarily differed from that of the calibration phase by revealing a more widespread 

involvement of the primary sensorimotor cortex and decreased involvement of the 

putative MNS. Our results suggest that the reported approach to continuously decoding 

imagined movements from EEG signals substantially reduces training time for 

noninvasive BCI systems and allows for unique insights into the cortical regions involved 

in encoding imagined and observed movements under different task constraints. 

Moreover, our decoding method serves as a novel tool for studying the development and 

plasticity of neural representations underlying action observation and action production at 

the macroscale afforded by EEG. 

  

Introduction 

Brain-computer interface (BCI) systems may potentially provide movement-impaired 

persons with the ability to interact with their environment using only their thoughts to 

control assistive devices such as communication programs and smart artificial arms. 

Currently the most promising BCI systems rely on neural signals acquired noninvasively 

with electroencephalography (EEG) (Wolpaw and McFarland 2004) or invasively with 
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microelectrode arrays seated into cortical tissue (Hochberg et al. 2006) or 

electrocorticography (ECoG) (Schalk et al. 2008). 

 

Noninvasive EEG-based BCI systems for 2D cursor control require subjects to learn to 

modulate sensorimotor rhythms to move a cursor to acquire targets (Wolpaw and 

McFarland 2004). These types of studies based on sensorimotor rhythms required weeks 

to months of training before satisfactory levels of performance are attained. Relative to 

EEG signals, the increased signal-to-noise ratio and bandwidth of invasively acquired 

neural data are commonly thought to be factors that reduce the training time required by 

users of invasive BCI systems (Schalk et al. 2008). In addition, studies of tetraplegic 

humans with implanted microelectrode arrays have exclusively demonstrated 2D control 

of a cursor through imagined natural movement (Hochberg et al. 2006; Kim et al. 2008). 

This decoding of imagined natural movement is also a likely factor in reduced training 

time. 

 

However, recently several off-line decoding studies demonstrated the reconstruction of 

cursor and hand kinematics from noninvasive magnetoencephalography (MEG) and EEG 

(Bradberry et al. 2009a, 2010). The noise and bandwidth limitations of the noninvasively 

acquired signals did not impede decoding kinematics of natural movement. This finding 

infers that a BCI system based on the decoding method reported in those studies may 

require little training time. In this study, we sought to investigate the use of the decoding 

method reported in those studies in an EEG-based BCI system during a single session 

lasting less than two hours that required only a brief (10 min) calibration phase. 



 

 

 54 

 

Moreover, we hypothesized that if the neural representation of visual movement during 

observation could be decoded, this information could be harnessed for brain-control of a 

computer cursor as previously demonstrated by invasive studies (Hochberg et al. 2006; 

Kim et al. 2008). Thus, we examined the involvement of neural regions in encoding 

cursor velocity during observation of computer-controlled cursor movement and during 

tasks requiring a brain-controlled cursor to acquire targets in 2D space. 

 

Materials and methods 

Experimental tasks 

The Institutional Review Board of the University of Maryland at College Park approved 

the experimental procedure. After giving informed consent, five healthy, right-handed 

subjects performed a three-phase task: calibration, practice, and target acquisition. In all 

phases, their EEG signals were acquired while they sat upright in a chair with hands 

resting in their laps at arm’s length away from a computer monitor that displayed a 

workspace of dimensions 30 x 30 cm and a cursor of diameter 1.5 cm (0.20% of 

workspace) (Fig. 3.1). Subjects were instructed to remain still and relax their muscles to 

reduce the introduction of artifacts into the EEG recordings. 

 

 



 

 

 55 

 

 

Fig. 3.1. Diagram of data processing flow for EEG-based BCI experiment. When the 

switches are in position A, the system is in observation/calibration mode. In 

observation/calibration mode, a subject observes a replay of a pilot subject’s cursor 

movements on a computer screen while data from N (34) EEG sensors are continuously 

acquired by an EEG system that amplifies and band-pass filters the data from FB1 (0.01) 

to FB2 (30) Hz before storing them. Afterwards, the EEG data and observed cursor 

velocity are used to compute the decoder weights. When the switches are in position B, 

the system is in practice or target acquisition mode. In practice mode, after the EEG data 

are stored, they are continuously temporally differenced, low-pass filtered at FL1 (1) Hz, 

lagged L (11) times (a lag of 0 also occurs), decoded for cursor velocity by the calibrated 

decoder from the preceding calibration phase, low-pass filtered again at FL2 (1) Hz, and 

gain adjusted before being displayed on the computer monitor as visual feedback to the 
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subject. The practice mode differs from the target acquisition mode in that, during 

practice, the gains preceding the cursor display are manually adjusted by investigators 

(difference not depicted in diagram), and no targets are present on the screen (unlike the 

screen in the diagram that shows a target on the right). In target acquisition mode, 

subjects attempt to move the cursor to targets that appear pseudorandomly at the left, 

right, top, or bottom of the screen. 

 

Calibration 

During the 10-minute calibration phase, subjects were instructed to imagine moving their 

right arm/finger to track a computer-controlled cursor that moved in two dimensions on 

the computer screen. The movements of the computer-controlled cursor were generated 

by replaying a pilot subject’s brain-controlled cursor movements from one of his practice 

runs (this pilot subject did not participate as one of the five subjects in this study). 

Histograms of the horizontal and vertical positions and velocities of the computer-

controlled movements indicated approximately uniform coverage of the workspace and 

biological motion respectively (Fig. 3.2). The decoding procedure described in a section 

below was subsequently executed (~10 min of computation time) to calibrate the decoder 

so that it best mapped the EEG signals to observed horizontal and vertical cursor 

velocities. During pilot testing, we discovered that asking subjects to visually fixate the 

center of the workspace while simultaneously tracking the cursor added attentional 

demands that burdened the subjects and likely compromised the decoding; therefore, we 

told subjects they were free to move their eyes but to always maintain eye contact and 

spatial attention with the moving cursor. 
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Fig. 3.2. Histograms of observed cursor kinematics during the calibration phase. (A) 

Histograms of horizontal (left) and vertical (right) positions indicated approximately 

uniform coverage of the workspace. (B) Histograms of horizontal (left) and vertical 

(right) positions inferred movements with bell-shaped velocity profiles (although these 

are more super-Gaussian than typical point-to-point movements), indicative of biological 

motion. The velocity histograms actual peak near 5000 but were truncated so the shape of 

the base could be viewed. 

 

Practice 

During the practice phase, the subjects used the calibrated decoder to attempt to move the 

cursor with their thoughts in two dimensions as desired (without task constraints). They 

were instructed to figure out for themselves how to best control the cursor by exploring 

the workspace. They were also informed as to where the target locations would be in the 
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target acquisition phase that would follow. Again, they were free to move their eyes. 

During the initial portion of the practice phase, horizontal and vertical gains were 

independently adjusted by the investigators to balance cursor speed so that the velocity of 

the brain-controlled cursor was comfortable to the subjects. After the gains were 

manually adjusted (~10 min), subjects practiced moving the cursor without task 

constraints for 10 minutes. 

 

Target acquisition 

During the target acquisition phase, subjects were instructed to use their thoughts to move 

the cursor in two dimensions to reach a peripheral target (1.3% of workspace) that would 

appear pseudorandomly at the top, bottom, left, or right side of the computer screen (Fig. 

3.1). They were informed that if they did not did not acquire the target within 15 s, a new 

target would appear, and the trial was considered a failure. Four 10-minute runs of target 

acquisition were performed with a 1-minute rest interval between runs. 

 

Data acquisition 

A 64-sensor Electro-Cap was placed on the head according to the extended International 

10-20 system with ear-linked reference and used to collect 58 channels of EEG activity. 

Continuous EEG signals were sampled at 100 Hz and amplified 1000 times via a 

Synamps I acquisition system and Neuroscan v4.3 software. Additionally the EEG 

signals were band-pass filtered from 0.01 to 30 Hz. Electroocular (EOG) activity was 

measured with a bipolar sensor montage with sensors attached superior and inferior to the 

orbital fossa of the right eye for vertical eye movements and to the external canthi for 
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horizontal eye movements. The EEG signals were continuously sent to the BCI2000 

software system for online processing and storage (Schalk et al. 2004, 

http://bci2000.org). BCI2000 was responsible for moving the cursor based on our 

decoder function, which we integrated into the open source software system. BCI2000 

was also responsible for storing cursor movement data as well as collecting markers of 

workspace events such as target acquisition. Electromyographic (EMG) signals were 

amplified and collected at 2000 Hz from two bipolar surface electrodes over the flexor 

carpi radialis and extensor digitorum muscles of the right forearm using an Aurion 

ZeroWire system (10-1000 Hz bandwidth, constant electrode gain of 1000). 

 

Decoding method 

The decoding method employed in this study has been previously described so will only 

briefly be described here (Bradberry et al. 2010). First, a fourth-order, low-pass 

Butterworth filter with a cutoff frequency of 1 Hz was applied to the kinematic and EEG 

data. Next, the first-order temporal difference of the EEG data was computed. To 

continuously decode cursor velocity from the EEG signals, a linear decoding model was 

employed: 
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where [ ] ]1[ −− txtx  and [ ] ]1[ −− tyty  are the horizontal and vertical velocities of the cursor 

at time sample t respectively, N is the number of EEG sensors, L (= 11) is the number of 
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time lags, [ ]ktSn −  is the difference in voltage measured at EEG sensor n at time lag k, 

and the a and b variables are weights obtained through multiple linear regression. Only 

the most important sensors (N = 34) for velocity reconstruction found in Bradberry et al. 

(2010) were used for decoding. 

 

For the calibration phase, a 10x10-fold cross-validation procedure was employed to 

assess the reconstruction accuracy of observed cursor velocity from EEG signals. In this 

procedure, the entire continuous data were divided into 10 parts, 9 parts were used for 

training, and the remaining part was used for testing. The cross-validation procedure was 

considered complete when each of the 10 combinations of training and testing data were 

exhausted, and the mean Pearson correlation coefficient (r) between measured and 

reconstructed kinematics was computed across folds. Prior to computing r, the kinematic 

signals were smoothed with a fourth-order, low-pass Butterworth filter with a cutoff 

frequency of 1 Hz. For the ensuing practice and target acquisition phases, the regression 

weights (a and b variables) for the cross-validation fold with the highest r were used for 

online decoding. 

 

Scalp maps of sensor contributions 

To graphically assess the relative contributions of scalp regions to the reconstruction of 

cursor velocity, the decoding procedure described in the section above was run on 

standardized EEG signals, and the across-subject mean of the magnitude of the best b 

vectors (from Eqs. (3.2) and (3.3)) was projected onto a time series (-110–0 ms in 

increments of 10 ms) of scalp maps. These spatial renderings of sensor contributions 
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were produced by the topoplot function of EEGLAB, an open-source MATLAB toolbox 

for electrophysiological data processing (Delorme and Makeig 2004; 

http://sccn.ucsd.edu/eeglab/), that performs biharmonic spline interpolation of the sensor 

values before plotting them (Sandwell 1987). To examine which time lags were the most 

important for decoding, for each scalp map, the percentage of reconstruction contribution 

was defined as 
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∑
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for all i from 0 to L, where %Ti is the percentage of reconstruction contribution for a 

scalp map at time lag i. 

 

Source estimation with sLORETA 

To better estimate the sources of cursor velocity encoding, we used standardized low-

resolution brain electromagnetic tomography (sLORETA) software version 20081104 

(Pascual-Marqui 2002; http://www.uzh.ch/keyinst/loreta.htm). Preprocessed (low-pass 

filtered and differenced) EEG signals from all 34 channels for each subject were fed to 

sLORETA to estimate current sources. First, r values were computed between the 

squared time series of each of the 34 sensors with the 6239 time series from the 

sLORETA solution and then averaged across subjects. Second, the mean of the r values 

multiplied by the regression weights b (from Eqs. (3.1) and (3.2)) of their associated 

sensors were assigned to each voxel. The regression weights had been pulled from the 

regression solution at the time lag with maximum %Ti, which had the highest percentage 
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of reconstruction contribution. Third, for visualization purposes, the upper quartile of 

voxels (r values weighted by b) was set to the value one, and the rest of the r values were 

set to zero. Finally these binary-thresholded r values were plotted onto a surface model of 

the brain. 

 

Eye and muscle activity analysis 

To assess the contribution of eye activity to decoding, the decoding procedure was 

executed off-line with channels of vertical and horizontal EOG activity included with the 

34 channels of EEG activity. The percent contribution of these eye channels was then 

assessed by dividing the absolute value of their regression weights by the sum of the 

absolute value of all the regression weights. To assess whether muscle activity 

inadvertently aided cursor control, we cross correlated EMG signals from flexor and 

extensor muscles of the right forearm with the x and y components of cursor velocity over 

200 positive and negative lags (-2s to 2s in increments of 10ms). Prior to the cross 

correlation, the EMG signals were decimated 20 times after applying a 40 Hz low-pass 

antialiasing filter, rectified by taking the absolute value, low-pass filtered with a fourth-

order, low-pass Butterworth filter at 1 Hz, and first-order differenced. 

 

Results 

Calibration 

During the calibration phase, subjects tracked the movement of a computer-controlled 

cursor, and we subsequently calibrated the decoder based on the cursor velocity and EEG 

signals. We quantified the accuracy of each subject’s calibrated decoder by computing the 
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mean of Pearson's r between measured and reconstructed cursor velocities across cross-

validation folds (Fig. 3.3). Across subjects, the decoding accuracies for x and y velocities 

were correlated (r = 0.67) even though the decoding accuracy for x velocity was 

consistently higher than that for y velocity. The across-subject mean r values for x and y 

velocities were 0.68 and 0.50 respectively, indicating high decoding accuracy for 

observed cursor movement. 

 

Fig. 3.3. EEG decoding accuracy of observed cursor velocity during the calibration 

phase. We computed the mean ± standard error (SE) of the decoding accuracies (r values) 

across cross-validation folds (n = 10) for each subject for x (black) and y (white) cursor 

velocities. 

 

Scalp maps of sensor contributions to the reconstruction of observed cursor movements 

in the calibration phase depicted the contributions as a network of frontal, central, and 

parietal regions (Fig. 3.4). Within this network, sensors over the frontocentral (F1, FCZ) 

and primary sensorimotor cortices (CP1-CP4) made the greatest contribution. Concerning 
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time lags, EEG data from 50 ms in the past supplied the most information with 12.4% of 

the total contribution. In source space at 50 ms in the past, the precentral gyrus (PrG), 

postcentral gyrus (PoG), lateral premotor (LPM) cortex, superior temporal sulcus (STS), 

and dorsal and ventral portions of lateral prefrontal cortex (LPC) played a large role in 

the encoding of observed cursor velocity (Fig. 3.5). 

 

Fig. 3.4. Scalp sensor contributions to the reconstruction of observed cursor velocity 

during the calibration phase. Mean (n = 5) scalp maps of the sensors revealed a network 

of frontal, central, and parietal involvement. In particular, F1, FCZ, and CP1-CP4 made 

the largest contribution. Light and dark colors represent high and low contributors, 

respectively. Each scalp map with its percentage contribution is displayed above its 

associated 10 ms time lag, revealing the 12.4% maximal contribution of EEG data at 50 

ms in the past. 
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Fig. 3.5. Sources that maximally encoded observed cursor velocity during the calibration 

phase. We overlaid localized sources (yellow) from 50 ms in the past onto a model of the 

brain in different orientations to reveal the involvement of the PrG (1), PoG (2), LPM (3), 

STS (4), and dorsal and ventral LPC (5). 

 

Target acquisition 

During the target acquisition phase, subjects controlled the cursor with their EEG signals 

to hit targets that appeared one at a time pseudorandomly at the left, top, right, or bottom 

of the workspace. The length-normalized cursor paths confirmed the subjects’ ability to 

move from the center to the target (Fig 3.6). 
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Fig. 3.6. Mean brain-controlled cursor paths. Each colored path is the mean of the length-

normalized trials for a single direction (left, top, right, or bottom) across all trials of all 

runs for a subject. Trials in which subjects did not acquire the target within 15 s were not 

included in the analysis. The workspace dimensions were 30 x 30 cm. 

 

For each target of each subject, the target hit rate and movement time (MT) across runs 

are given in Table 3.1. The overall means ± SE of the hit rate and MT were 73 ± 4% and 

8.18 ± 0.18 s. 

 

To examine whether subjects adapted across runs of the target acquisition phase, the 

target hit rate for all targets taken together was fitted across runs with a double 

exponential curve for each subject (Fig. 3.7). The hit rate of subjects 2 and 4 worsened 

initially and then began to improve. Only subjects 3 and 5 demonstrated clearly positive 

adaptation. 
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Table 3.1. Mean (SE) of the hit rate and MT for each target of each subject across runs (n 

= 4) 

 Left Top Right Bottom Mean 

 Hit

% 
MT 

Hit

% 
MT 

Hit

% 
MT 

Hit 

% 
MT 

Hit 

% 
MT 

Subject 1 
94 

(2) 

7.30 

(0.60) 

66  

(8) 

8.80 

(0.57) 

98   

(2) 

7.43 

(0.49) 

55 

(9) 

10.7 

(0.68) 

78 

(11) 

8.56 

(0.80) 

Subject 2 
83 

(5) 

8.97 

(0.49) 

96 

(4) 

7.70 

(0.49) 

85   

(2) 

7.68 

(0.55) 

85 

(4) 

7.12 

(0.40) 

87 

(3) 

7.87 

(0.39) 

Subject 3 
84 

(9) 

7.51 

(0.53) 

45 

(4) 

11.8 

(0.93) 

100 

(0) 

5.50 

(0.37) 

67 

(9) 

8.89 

(0.58) 

74 

(12) 

8.44 

(1.33) 

Subject 4 
71 

(7) 

6.86 

(0.67) 

33 

(7) 

9.49 

(1.42) 

65  

(6) 

9.87 

(0.79) 

21 

(4) 

8.59 

(1.39) 

47 

(12) 

8.70 

(0.67) 

Subject 5 
57 

(14) 

10.0 

(0.69) 

100 

(0) 

5.58 

(0.26) 

60 

(18) 

9.06 

(0.70) 

100 

(0) 

4.59 

(0.18) 

79 

(12) 

7.32 

(1.32) 

Mean 
78 

(6) 

8.13 

(0.60) 

68 

(13) 

8.69 

(1.03) 

81   

(8) 

7.91 

(0.75) 

65 

(14) 

7.98 

(1.02) 

73 

(4) 

8.18 

(0.18) 
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Fig. 3.7. Changes in target hit rate across runs. Each bar represents the target hit rate 

across targets. A double exponential curve was fitted to the target hit rates across runs for 

each subject (red). The coefficient of determination (R2) of the fit is displayed within 

each subplot. Subjects 3 and 5 most clearly demonstrated positive adaptation across runs.  

 

Scalp maps of sensor contributions to the brain-controlled cursor velocity were generated 

from the mean of each subject’s best run in the target acquisition phase. They depicted 

the contributions as having shifted to be more focused within central regions (Fig. 3.8). 

As in the calibration phase, EEG data from 50 ms in the past supplied the most 

information with 12.1% of the total contribution. In source space at 50 ms in the past, 
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compared to the calibration phase, a large shift occurred from anterior (fronto-central) to 

posterior (centro-posterior) neural regions. More specifically, there was much less 

involvement of the LPC, the PrG and PoG exhibited an even more widespread 

involvement, and the inferior parietal lobule (IPL) made a large contribution (Fig. 3.9). 

 

Fig. 3.8. Scalp sensor contributions to the brain-controlled cursor velocity during the 

target acquisition phase. Mean (n = 5) scalp maps of the sensors weights from the 

subjects’ best runs revealed a network that had shifted to involve more central regions 

than the network of the calibration phase. Light and dark colors represent high and low 

contributors, respectively. Each scalp map with its percentage contribution is displayed 

above its associated 10 ms time lag, revealing the 12.1% maximal contribution of EEG 

data at 50 ms in the past. 
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Fig. 3.9. Sources that maximally encoded brain-controlled cursor velocity during the 

target acquisition phase. We overlaid localized sources (yellow) from 50 ms in the past 

onto a model of the brain in different orientations to reveal a substantial involvement of 

PrG (1) and PoG (2) and some involvement of LPM (3). As in the calibration phase, the 

STS (4) was involved. In contrast to the calibration phase, the LPC (5) played a minor 

role, and the IPL (6) played a major role. 

 

Contributions of eyes and muscles 

A concern in BCI studies is that eye or muscle movements may contaminate EEG signals 

thereby inadvertently aiding the control of a device/environment that should be controlled 

by thought-generated neural signals alone. In the pilot testing for our study, we found that 

asking subjects to visually fixate the center of the workspace while simultaneously 
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tracking the cursor added attentional demands that burdened the subjects and likely 

compromised the decoding; therefore, we did not constrain eye movements. However, we 

executed the off-line decoding procedure with channels of vertical and horizontal EOG 

activity included, and assessed the percent contribution of these eye channels (Table 

3.2.). The percent contributions were low for the calibration and target acquisition phases 

except for a very high percent contribution (94.9%) to x velocity reconstruction for 

Subject 4 during target acquisition. Interestingly, this subject had the lowest decoding 

accuracy of all participants, suggesting that eye movements disrupted decoding. To 

assess whether muscle activity aided cursor control, we cross correlated EMG signals 

from flexor and extensor muscles of the right forearm with the x and y components of 

cursor velocity to find that all correlations were low (Table 3.3.). 
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Table 3.2. Percent contribution of EOG activity to cursor velocity reconstruction 

 

Calibration 

Target 

acquisition 

(best run) 

 X Y X Y 

Subject 1 0.30 1.58 0.00 0.01 

Subject 2 0.00 0.01 0.20 0.18 

Subject 3 1.99 9.60 1.54 0.47 

Subject 4 0.00 0.01 94.9 0.04 

Subject 5 0.34 0.65 0.06 0.03 
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Table 3.3. Mean (SD) of maximum absolute r values from cross correlation of forearm 

flexor and extensor EMG activity with x and y components of cursor velocity 

 

 
Calibration 

Target acquisition 

(best run) 

 X Y X Y 

Flexor 0.05 (0.04) 0.05 (0.04) 0.04 (0.02) 0.07 (0.03) 

Extensor 0.03 (0.02) 0.04 (0.01) 0.07 (0.08) 0.05 (0.04) 

 

Discussion 

In this study, we report the first EEG-based BCI system that employs continuous 

decoding of imagined continuous hand movements. Furthermore, we emphasize that the 

system requires only a single session of decoder calibration and subject practice (~40 

min) before subjects can operate it. The off-line decoding results of the calibration phase 

that used observation of biologically plausible cursor movement were higher than those 

of invasive BCI studies and may imply, as discussed below, the involvement of a 

widespread MNS in humans. Also discussed below is the fact that, in the on-line target 

acquisition phase, subjects controlled a cursor with their EEG signals alone with 

accuracies comparable to other noninvasive and invasive BCI studies aimed at 2D cursor 

control. 
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Calibration 

BCI systems are ultimately intended for movement impaired persons; therefore, it is 

important that the decoder calibration and/or subject training procedures not require overt 

movement. For this reason, we used a decoder calibration procedure similar to that 

described by Hochberg et al. (2006) that requires only observation of biologically 

plausible cursor movement. This type of training for BCI systems presumably engages 

the MNS, which predicts and interprets one’s own actions and the actions of others 

(Tkach et al. 2008). In fact, neuronal activity acquired from intracortical microelectrode 

arrays implanted in the dorsal premotor cortex (PMd) and the arm area of the PrG 

(primary motor cortex, M1), common sites for BCI-related studies, exhibits qualities of 

mirror neurons during observation of cursor movements (Cisek and Kalaska 2004; 

Wahnoun et al. 2006; Tkach et al. 2007). 

 

Current electrophysiological correlates of the putative human MNS, as acquired through 

EEG, are based on modulation of the mu rhythm (8–13 Hz), which exhibits suppression 

during action observation and action performance (Perry and Bentin 2009). These EEG 

correlates at the scalp level have been reported to be similar to those revealed by neural 

hemodynamics acquired with functional magnetic imaging (fMRI) (Perry and Bentin 

2009). However, for examining, in spatial detail, the widespread networks of cortical 

regions that may compose the human MNS, arguably fMRI is considered by many to be 

the best tool. Since our examination of cortical sources that encoded observed cursor 

velocity revealed some regions commonly held to comprise the canonical human MNS 

(ventral LPM, STS, and LPC (Iacoboni and Dapretto 2006)) and regions reportedly 
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containing mirror neurons related to the task (PMd, M1) (Cisek and Kalaska 2004; 

Wahnoun et al. 2006; Tkach et al. 2007), our method may provide detailed temporal and 

spatial temporal information about the internal representations of both observed and 

executed actions, which is not provided by the study of mu rhythm dynamics or 

hemodynamics alone. Therefore, our approach may be suitable for future investigation 

into the development and plasticity of the hypothesized MNS in humans. Interestingly, 

that our subjects’ mean decoding accuracy was double that of studies that acquired neural 

signals with intracranial microelectrode arrays (Kim et al. 2008; Truccolo et al. 2008) 

could be attributed to capturing more information for reconstruction by recording neural 

signals from an MNS network instead of only mirror neurons in M1. Our method also 

provides further evidence that the MNS is involved during observed cursor movement by 

indicating the presence of planning activity that peaks at 50 ms in the past, excluding the 

decoding of passive viewing as an explanation and suggesting predictive decoding 

informed by forward models (Miall 2003). 

 

Target acquisition 

Our study is the first noninvasive EEG-based BCI study to employ continuous decoding 

of imagined natural movement. Previous work in EEG-based BCI systems for cursor 

control required subjects to learn to modulate sensorimotor rhythms to move the cursor 

akin to neuro/biofeedback training. These studies based on sensorimotor rhythms 

required weeks to months of training before levels of performance were deemed 

sufficient for reporting (Wolpaw and McFarland 2004). We believe the fact that we used 

a decoder based on imagined/observed natural movement reduced the training 
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requirements of our study to only a single brief practice session (~20 min), a significant 

advancement. Table 3.4 compares our study to Wolpaw and McFarland (2004). 

 

An ECoG study based on sensorimotor rhythms for 2D cursor control that had objectives 

similar to ours also observed that several subjects clearly adapted over a short period of 

time (Schalk et al. 2008). Although this ECoG study reduced training time compared to 

Wolpaw and McFarland (2004), some drawbacks included that pre-training time was still 

taken for the initial selection of control features and for training subjects to first move the 

cursor in one dimension at a time. We were able to bypass these two pre-training steps. 

Another drawback of the ECoG study was that all five subjects used overt movement for 

initial selection of features, and two subjects used overt movement throughout the study. 

Table 3.4 compares our study to Schalk et al. (2008). 

 

The results of our target acquisition phase compare favorably to those in tetraplegic 

humans that were implanted with intracortical arrays in the arm area of M1 (Hochberg et 

al. 2006; Kim et al. 2008) even though the performance results of those studies (Table 

3.4) were only computed on data collected weeks to months after training began. 
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Table 3.4. Comparison to most relevant human BCI studies of 2D cursor control 

 

Number 

of 

subjects 

Neural 

data 

Target size 

as % of 

workspace 

Timeout 

(s) 

Movement 

time (s) 

Target 

hit %  

Wolpaw and 

McFarland 2004 
4 EEG 4.9 10 1.9 92 

Hochberg et al. 

2006 
1 

single 

units 
NA 7 2.5 85 

Kim et al. 2008 
2 

single 

units 
1.7 7 3.1 75 

Schalk et al. 

2008 
5 ECoG 7 16.8 2.4 63 

Present study 5 EEG 1.3 15 8.2 73 

 

Besides differences in training time, our study differs from the aforementioned studies in 

its reporting of cortical sources involved in encoding cursor control. The most notable 

differences between the regions that encoded for observed cursor velocity and brain-

controlled cursor velocity were with the PrG, PoG, IPL, and LPC. There was a more 

widespread contribution from the PrG, PoG, and IPL during brain control, which could 

simply reflect the increased involvement of imagined motor execution (Miller et al. 2010) 

especially since these regions have previously been shown to be engaged in encoding 

cursor kinematics (Jerbi et al. 2007; Bradberry et al. 2009a). The contribution from the 

LPC was largely attenuated during brain-controlled cursor movements, suggesting a 
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transition out of the imitative learning environment of cursor observation (Vogt et al. 

2007). 

 

In the near future, it will be important for patients with impaired upper limb movement to 

test our noninvasive BCI system since they are the target population for this assistive 

technology. Since our results indicate that calibration of our decoder and initial subject 

practice require a short amount of time in a single session, we expect to avoid burdening 

patients with a lengthy training. Employing our method will also permit future 

investigations into the putative human MNS, potentially providing further insights into 

training protocols for BCI systems. 
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Appendix A: Demographics and Institutional Review Board 

(IRB) approval 

A.1. Demographics 

The subjects of all studies were right-handed males between the ages of 18 

and 45 recruited from the students and faculty of the University of Maryland 

at College Park. 
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A.2. IRB approval of human subjects research 

A.2.1. MEG study of Chapter 1 

IRB approval letter 
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IRB-stamped consent form 
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A.2.2. EEG studies of Chapters 2 and 3 

IRB approval letter 
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IRB-stamped consent form 
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