
ABSTRACT

Title of dissertation: ANOMALOUS DIFFUSION
IN STRONG CELLULAR FLOWS:
AVERAGING AND HOMOGENIZATION

Zsolt Pajor-Gyulai, Doctor of Philosophy, 2015

Dissertation directed by: Professor Leonid Koralov
Department of Mathematics

This thesis considers the possible limit behaviors of a strong Hamiltonian

cellular flow that is subjected to a Brownian stochastic perturbation.

Three possible limits are identified. When long timescales are considered, the

limit behavior is described by classical homogenization theory. In the intermediate

(finite) time case, it is shown that the limit behavior is anomalously diffusive. This

means that the limit is given by a Brownian motion that is time changed by the

local time of a process on the graph which is associated with the structure of the

unperturbed flow lines (Reeb graph) that one obtains by Freidlin-Wentzell type

averaging. Finally, we consider the case when the motion starts close to, or on,

the cell boundary and derive a limit for the displacement on timescales of order εα

where α ∈ (0, 1) (modulo a logarithmic correction to compensate for the slowdown

of the flow near the saddle points of the Hamiltonian). The latter two cases are

novel results obtained by the author and his collaborators ( [1]).

We also consider two applications of the above results to associated partial dif-



ferential equation (PDE) problems. Namely, we study a two-parameter averaging-

homogenization type elliptic boundary value problem and obtain a precise descrip-

tion of the limit behavior of the solution as a function of the parameters using the

well-known stochastic representation. Additionally, we study a similar parabolic

Cauchy problem.
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Chapter 1: Introduction

1.1 Cellular flow

Consider a smooth, periodic and incompressible vector field v in the plane.

It is well-known that there is a smooth function H, called the Hamiltonian or the

stream function, such that

v = ∇⊥H = (−∂x2H, ∂x1H).

We assume that v is periodic and let us also assume for simplicity that the period

is one in both directions. This implies that the most general form H can take is

H(x1, x2) = Hper(x1, x2) + ax1 + bx2

where Hper is periodic with period one in both directions. In this thesis, we are

going to consider the case when H itself is periodic (a = b = 0). As a consequence,

the integral of v over the domain of periodicity is zero which means that the vector

field has no overall drift. We will denote this domain of periodicity by T , which can

be viewed as a unit square or, alternatively, as a torus.

Our main additional structural assumption is that the critical points of H

are non-degenerate and that there is a level set of H (say H = 0 without loss of

generality) that contains some of the saddle points and forms a lattice in R2, thus
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dividing the plane into bounded sets that are invariant under the flow (see Figure

1.1).

Figure 1.1: A period of the generic
cellular flow
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Figure 1.2: A period of the flow
with stream function H(x1, x2) =
sin(x1) sin(x2)

An example to keep in mind is given by H(x1, x2) = sin(x1) sin(x2) (Figure

1.2). Cellular patterns occur sometimes in nature as well, such as the Rayleigh-

Benard flow that occurs when a thin layer of fluid is heated from below and the

warm liquid on the bottom exchanges places with the cold liquid on the top ( [2]).

We call the family of mappings x → xxt defined by the ordinary differential

equation

ẋxt = v(xxt ), xx0 = x

the cellular flow associated to the vector field v.

1.2 Stochastically perturbed cellular flow

It is of primary interest to study how a flow described above behaves under

a small stochastic perturbation which leads to the study of the family of stochastic
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differential equations

dX̃x,ε
t = v(X̃x,ε

t )dt+
√
εdWt, Xx,ε

0 = x (1.1)

on some probability space (Ω,F ,P), where Wt is a two dimensional Brownian mo-

tion. We adopt the notation X̃µ,ε to denote the process with a random initial

condition distributed according to some measure µ. This convention will be used

for all the processes appearing in this thesis.

Iit turns out, however, that on every finite time interval, the solution of 1.1

simply approaches the unperturbed flow.

Theorem 1.1 ( [3] Chapter 1, Theorem 1.2). For any T, η > 0, we have

lim
ε↓0

P

(
sup
t∈[0,T ]

|X̃x,ε
t − xxt | > η

)
= 0

This is not surprising as the qualitative effect of the perurbation is a motion

across the flow lines on a timescale of order ε−1, which is much longer than the order

one natural timescale of the deterministic motion. This means that if we want to

study any non-trivial behavior (e.g. transitions between cells), we need to look at

the process on longer timescales. Hence, we introduce Xx,ε
t = X̃x,ε

t/ε which leads to

the family of stochastic differential equations

dXx,ε(t) =
1

ε
v(Xx,ε(t))dt+ dWt, Xx,ε(0) = x. (1.2)

This equation describes the behavior of tracer particles diffusing on the advective

background of a strong flow described above.

The long time behavior of stochastic differential equations (SDE) like (1.2)

has been studied by stochastic homogenization theory. For example, in [4], Freidlin
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proved that for any ε > 0, the diffusively rescaled process X̂x,ε,R
t = Xx,ε

R2t/R converges

weakly to
√
Deff (ε)W

′, where W ′ is a two dimensional Brownian motion, and Deff

is the effective constant diffusivity matrix. Intuitively, the spatial rescaling can be

thought of as an observer zooming out until the microscopic details of the cellular

flow cannot be seen anymore and, for all intents and purposes, can be replaced by

a homogeneous background. The outline of the proof of this result (presented as

in [5]) is the following: Let χ be a periodic vector solution to the cell problem

−∆χ+
1

ε
v∇χ = −1

ε
v.

Applying Itô’s formula yields, after some elementary manipulations, that

Xx,ε,R
t − x = −ε

[
χ
(
Xx,ε
t/ε2

)
− χ(x)

]
+ ε

∫ t/ε2

0

√
2 (I +∇χ(Xx,ε

s )) dWs.

Since the corrector χ is bounded and independent of ε, the drift term converges

to zero. By the ergodic theorem (note that since the flow is incompressible, the

invariant measure of Xx,ε
t is the Lebesgue measure), the quadratic variation of the

diffusion term converges to Deff (ε)t where

Deff (ε) = 2δi,j + 2

∫
T
∇χi(x) · ∇χj(x)dx.

Lévy’s criterion now implies that the limit process is a Brownian motion with con-

stant diffusion coefficient
√
Deff (ε).

The behavior of Deff (ε) when ε is small has been extensively studied in the

literature under certain geometric restrictions (see e.g. the references in [5]). For

the generic flow, it has been shown in [6] that there is some matrix D0 such that

Deff (ε) = ε−1/2(D0 + o(1)). (1.3)
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This in turn implies that the variance of Xx,ε
t grows like O(t/

√
ε) when t is large and

ε is small. See [6], [7] and the references therein for further information on the long

time behavior, while here we simply mention that these results have a wide variety

of applications ranging from flame propagation to swimming (e.g [8], [9], [10], [11],

[12], [13]).

In this thesis, our goal is to understand what happens in the small ε limit first

when t is of order one and then on some even shorter timescales of order εα with

α ∈ (0, 1). In the former case, we obtain a limit theorem as ε ↓ 0 provided that Xx,ε
t

is considered on spatial scales of order ε−1/4, and identify the limiting process as a

time changed Brownian motion. The time change arising in the construction of the

limiting process is non-trivial and can be described as the local time of a diffusion

process on a certain graph which we describe in Chapter 2.

On the other hand, the case when time is of order εα might seem trivial at

first glance. Indeed, if the process starts from a generic point inside the cells, it will

simply make a few rotations along the flowlines. However, if it starts close enough

to (or on) the separatrix (also called heteroclinic orbits), some non-trivial movement

is immediately possible. It was found that if we consider Xx,ε
t on spatial scales of

order ε−(1−α)/4 and time scales of order εα log ε (which contains a logarithmic term

to compensate for the slowdown of the deterministic flow around the saddles of H),

the limiting process is once again a time changed Brownian motion. However, the

time change now is arising from the local time of a Brownian motion on a similar

graph as before but with infinite edges.

In both cases, the trajectories are diffusive, but the variance grows slower than
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proportional to t. This behavior is called anomalous diffusion and it was conjectured

by W. Young ( [14], [15]). The intuitive reasoning is that the time the process spends

locked inside a cell is essentially wasted in terms of spatial movements. On the other

hand, once the process is close to the separatrix, it can make an excursion involving

many cell changes following a random walk pattern. This suggests Brownian limiting

trajectories, but we need to time-change them with some quantity that keeps track

of how much time the process spends in an active state around the separatrix. The

variance of Xx,ε
t over these intermediate and short time scales were shown to be

proportional to
√
t rigorously by G. Iyer and A. Novikov( [5]).

Finally, we remark that it is also known what happens when α = 1. In

[16], Bakhtin showed that starting from a heteroclinic orbit, the process Xx,ε
ε| log ε|t

converges in distribution in a certain special topology to a process that spends all

the time on the set of saddle points and jumps instantaneously between them along

the heteroclinic trajectories.

1.3 Connection to partial differential equations

Let DR ⊆ R2 be obtained from a bounded smooth domain D by stretching it

by a factor R. Consider the elliptic Dirichlet problem

1

2
∆uε,R +

1

ε
v∇uε,R = −f

( x
R

)
in DR, uε,R|∂DR = 0, (1.4)

where f is a bounded continuous function on D and v is a cellular flow as described

above. For simplicity, assume that D contains the origin. This equation for example

describes the concentration of some particles that are injected at rate f after which
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they diffuse on the strong convective background of the cellular flow when this

concentration is kept at zero on the boundary of DR.

There are two parameters in this problem: ε measures the inverse of the

strength of the vector field, while R measures the size of the domain. For fixed

R (for example when DR coincides with exactly one cell) and ε ↓ 0, solution to

(1.4) becomes constant on stream lines. Indeed, multiplying by ε and letting ε ↓ 0

formally gives us v∇u = 0. The precise values of the asymptotics of the solution on

each streamline are determined by an ODE corresponding to the structure of the

level sets according to classical averaging results [3].

If, on the other hand, ε is fixed and R ↑ ∞, then the asymptotic behavior of u

can be obtained by homogenization (e.g. [17–19]), i.e., by solving an elliptic problem

on D with appropriately chosen constant coefficients.

It was shown in [20] that averaging and homogenization can also be used

to study the two-parameter asymptotics in certain regimes. Namely, if R4 log2R ≤

c/(ε log2 ε) for some constant c as 1/ε,R ↑ ∞, then averaging theory applies. On the

other hand, if R4−α ≥ 1/ε for some positive α, then homogenization type behavior

is observed. The methods in [20] are analytic, based on investigating the asymp-

totic behavior of the principal Dirichlet eigenvalue of the elliptic operator, and it

seems unlikely that they can be directly applied near the transition regime. To our

knowledge, only numerical results were available in the intermediate cases [21, 22]

up until now.

In this thesis, we study the two-parameter asymptotics using a probabilistic

approach and we prove that the crossover from homogenization to averaging occurs
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when R is precisely of order ε−1/4. In order to achieve this, we study the family of

two dimensional diffusion processes 1.2 and then use the well known representation

formula

uε,R(x) = E

∫ τ∂DR (Xx,ε
. )

0

f(Xx,ε
s /R) ds, (1.5)

where τ∂DR(ω) is the first hitting of the boundary of DR by the trajectory ω ∈

C([0, T ];R2). This is in accordance with the fact that the essence of the averaging

and transition regimes can be captured by the mechanism of the exit of the process

Xε
t from DR (see [20]). Let us remark that the case of non-zero boundary conditions

can also be studied this way if we complement our results with the ones on the exit

locations in [16].

We will also observe a similar phenomenon in connection with the correspond-

ing parabolic problem

uε,Rt (x, t) =
1

2
∆uε,R(x, t) +

1

ε
v(x)∇uε,R(x, t), ũε(x, 0) = f(x/R). (1.6)

where f is a continuous function that vanishes at infinity. Namely, we are going to

show that R ≈ ε−1/4 is once again when the transition occurs between the averaging

and homogenization regimes using the representation formula

uε,Rt (x, t) = Ef

(
Xx,ε
t

R

)
.
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Chapter 2: The main results

2.1 Diffusions on graphs

In this section, we describe the processes that give rise to the time change

discussed in Section 1.2.

It is well-known that there is a graph G naturally associated to the structure

of the level sets of H (see Figure 2.1). Namely, let L = {x ∈ R2;H(x) = 0} be the

connected level set of H that contains a periodic array of saddle points, and denote

the corresponding level set on the torus by LT . Let Ai, for i = 1, . . . , n, be the saddle

points of H in LT . Then L (or LT ) is the union of heteroclinic orbits connecting the

Ai’s and will be referred to as the separatrix. For notational simplicity, we assume

that there are no homoclinic orbits, i.e. ones that connect a saddle to itself. Also, let

Ui, for i = 1, . . . , n, be the connected components of T \LT . (There is no particular

connection between the numbering of the Ui’s and that of the Ai’s. However, by

Euler’s theorem, there is actually the same number of them). For convenience, we

also assume that there are no saddle points of H inside any Ui. The graph G will

then have an interior vertex O and n edges connecting O with the exterior vertices

corresponding to the extrema of H. Every other point on an edge corresponds to

the appropriate connected component of a level curve of |H|. Accordingly, |H| will
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serve as a local coordinate on each edge Ii which gives G a natural metric structure.

In topology terminology, this is known as the Reeb graph of H.

Define

Γ : T → G, Γ(x) = (i, |H(x)|) if x ∈ U i,

to be the mapping that takes Ui into an edge Ii of the graph in such a way that the

entire set LT is mapped into O, the extrema inside each Ui are mapped into the

corresponding exterior vertices, and each connected component of a level set of H is

mapped into one point on the corresponding edge of the graph. Note that Γ is well

defined as ∂Uk ⊆ LT . Naturally, Γ can be extended periodically to the entire plane.

We will refer to a generic point on the graph as y = (i, z) with the identification

(1, O) ≡ ... ≡ (n,O).

2
1

4
3

O = Γ(L)

Γ(1)

Γ(3)

Γ(2)

Γ(4)

Figure 2.1: The graph corresponding to the structure of the level sets of H on T .

It was shown in [3, Chapter 8] that the non-Markovian processes Γ(Xx,ε
t )

converge in distribution, as ε ↓ 0, to a diffusion on G. Let us describe this limiting
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process briefly. On the ith edge of the graph, the process is a diffusion with generator

Ai =
a(i, z)

2

d2

dz2
+ b(i, z)

d

dz
,

where the coefficients are determined by the Hamiltonian. The behavior of the

process at the interior vertex can also be described in terms of H. More precisely,

for a set of constants αi > 0 with
∑n

i=1 αi = 1, we can define an operator A on the

domain D(A) that consists of the functions F that satisfy:

a) F ∈ C(G) and furthermore F ∈ C2(Ii) for each edge i,

b) AiF (z), z ∈ Ii, which is defined on the union of the interiors of all the edges,

can be extended to a continuous function on G,

c)
∑n

i=1 αiDiF (O) = 0, where DiF (O) is the one-sided interior derivative of F

along the edge Ii.

We then define the operator A by AF |Ii = AiF |Ii . Below, we are going to

write y = (i, z) to refer to a point on G. As shown in [23], A generates a Fellerian

Markov family Y y
t on G. With these notations at hand, we can recall the following

theorem also known as the averaging principle.

Theorem 2.1. Freidlin-Wentzell (1994) The measures on C([0,∞);G) induced by

the processes Γ(Xx,ε
t ) converge weakly to the one induced by the process Y

Γ(x)
t , pro-

vided

a(i, z) =
1

Ti(z)

∫
γi(z)

|∇H(x)|dl, b(i, z) =
1

2Ti(z)

∫
γi(z)

∆H(x)

|∇H(x)|
dl,
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where γi(z) = Γ−1(i, y) and

Ti(z) =

∫
γi(y)

1

|∇H(x)|
dl

is the period of the unperturbed motion on γi(z). The constants {αi}ni=1 are given by

αi =

∫
∂Ui

|∇H(x)|dl.

Note that the classical Freidlin-Wentzell theory requires H(x)→∞ as |x| →

∞. Nevertheless, adapting the results for the compact setting on T is trivial. For a

recent treatment, see [24] or the more general [25].

For the case when short times are considered, we need a different variant of the

averaging principle. Namely, on timescales of order εα| log ε|, the process starting

from LT only has time to wander to a distance of order εα/2 away. This suggests

that the behavior of ε−α/2H(Xx,ε
t ) on these timescales might be non-trivial. Indeed,

let Ḡ be a similar graph as G except that Ḡ has semi-infinite edges and define the

mapping

Γ̄ε : T → Ḡ, Γ̄ε(x) = (i, ε−α/2|H(x)|) if x ∈ U i.

Also let µε be a family of probability measures on R2 such that there is another

probability measure ν on Ḡ so that the pushforward of µε under Γε converges weakly

to ν, i.e.

µε ◦ (Γ̄ε)−1 ⇒ ν

as ε ↓ 0. The next theorem, proved in Section 4.2, asserts that the image of the

process Xx,ε
t , on the short timescales, converges to a generalized skew-Brownian

motion on Ḡ.
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Theorem 2.2. The measures on C([0,∞); Ḡ) induced by the processes Γ̄ε(Zµε,ε
t )

where Zx,ε
t = Xµε,ε

(
αεα| log ε|t

2

)
, converge weakly to the one induced by the process

Ȳ ν
t which is a graph diffusion as described above with

a(i, z) = Ci, b(i, z) = 0,

where

Ci =
α

2

∮
∂Ui

|∇H(x)|dl · lim
ε↓0

| log ε|
Ti(εα/2)

, (2.1)

and αi is as in Theorem 2.1.

It is well-known from the theory of Hamiltonian systems that T (z) ∼ C| log z|

and therefore the limit in (2.1) exists and does not depend on α. Since a(i, z) only

depends on i, we simply have a skew Brownian motion in a generalized sense with

constant diffusivity Ci on each edge. We emphasize that Theorem 2.2 is a new result

that does not trivially follow from Theorem 2.1.

Recall that our goal is to obtain a quantity that captures the amount of time

Xx,ε
t spends around L. In both cases, this is exactly the amount of time Γ(Xx,ε

t )

(or Γ̄ε(Xx,ε
t )) spends in a neighborhood of the interior vertex of G (or Ḡ). This

motivates the relevance of the following notion.

Definition 2.1. The local time of a diffusion Y y0 on a graph G is the unique non-

negative random field

Ly0 = {Ly0
t (y) : (t, y) ∈ [0,∞)×G}

such that the following hold:
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1. The mapping (t, y)→ Ly0
t (y) is measurable, and Ly0

t (y) is adapted.

2. For each y ∈ G, the mapping t → Ly0
t (y) is non-decreasing and constant on

each open interval where Y y0
t 6= y.

3. For every Borel measurable f : G→ [0,∞), we have

∫ t

0

f(Y y0
s )a(Y y0

s )ds = 2

∫
G

f(y)Ly0
t (y)dy a.s.

4. Ly0
t (y) is almost surely jointly continuous in t and y for y 6= O, while

Ly0
t (O) =

n∑
i=1

lim
y→O, y∈Ii

Ly0
t (y) .

The existence and uniqueness of local time for diffusions on the real line is

relatively well studied. These standard results, together with a straightforward

modification of the discussion in Section 2 of [26], give the existence and uniqueness

for the local time on the graph. Note that a−1(·) is locally integrable near the

interior vertex in both cases, which is sufficient for the method of [26] to work.

2.2 Main results

We are now ready to state our limit theorems for Xx,ε
t . For a positive definite

symmetric matrix Q, let W̃Q
t be a two dimensional Brownian motion with covariance

matrix Q. Assume that the families of processes Y y
t and W̃Q

t are independent, and

consider the process W̃Q
Lyt

, where Lyt = Lyt (O) is the local time of Y y
t at the interior

vertex.
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Theorem 2.3. There exists a strictly positive definite matrix Q such that the law

of the process ε1/4Xx,ε
t converges, as ε ↓ 0, to that of W̃Q

L
Γ(x)
t

.

We remark that since G is compact and the interior vertex is accessible, Y
Γ(x)
t

is a positively recurrent process. Consequently, the law of large numbers applied to

the additive functional L
Γ(x)
t implies

L
Γ(x)
t

t
→ ρ(O)

where ρ is the invariant density of Y y
t which can be obtained as the unique normalized

solution of the adjoint equation A∗ρ = 0. (Strictly speaking, the law of large num-

bers has to be applied to the occupation measure
∫
A
L

Γ(x)
t (y)dy =

∫ t
0
χ{Y Γ(x)

t ∈A}dt.)

This means that for large values of t, the variance will grow approximately as ρ(O)t.

On the other hand, after hitting the interior vertex for the first time (which one can

control by solving the appropriate ordinary differential equations corresponding to

A), the graph process will locally have the same path properties as the Brownian

motion. This implies that the expected local time (and hence the variance) will grow

proportionally to
√
t establishing the conjectured anomalous diffusion behavior im-

mediately after the hitting of L. This is in accordance with the variance estimates

in [5].

The anomalous diffusion is even more apparent if we zoom in on what happens

after hitting the separatrix for the first time. To study this, it would be enough to

let the process start from the separatrix, but for the sake of generality, we will only

require that this starting point is at distance no more than of order εα/2 from L.

This means that on timescales of order εα| log ε|, the separatrix can be reached due
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to the fluctuations of the noise.

Theorem 2.4. Let the initial point be distributed according to a measure µε, where

µε ◦ (Γε)−1 converges weakly to some probability measure ν on Ḡ. If L̄νt is the local

time of Ȳ ν
t at the interior vertex, then there exists a strictly positive definite matrix

Q such that the laws of the processes

ε
1−α

4 Xµε,ε

(
αεα| log ε|

2
t

)

converge, as ε ↓ 0, to that of W̃Q

L̄νt
where W̃Q

t and Ȳ ν
t are independent processes.

As we mentioned above, the logarithmic correction in the time scale is neces-

sary to compensate for the slow down of the deterministic component around the

saddle points of H.

We remark that if there are only one type of cell, L̄y simply becomes a constant

multiple of the Brownian local time, and the limit process is the so called fractional

kinetic process of index 1/2 which arises as scaling limits of randomly trapped

random walks with heavy tail trapping times in [27]. The connection is intuitively

explained by noting that the time of an excursion of away from the interior vertex

(when X is trapped inside a cell) is the excursion of a Brownian motion, and its

length is accordingly heavy tailed with index 1/2.

Also note that by well-known Brownian formulas, EL̄Ot = c
√
t with some

constant c > 0 which yields a variance for the limit process that is proportional to

√
t for all times. This is once again an anomalous diffusion type behavior, and it is

in accordance with the variance estimates in [5].
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2.3 Implications for partial differential equations

Let us state the results on the partial differential equation problems introduced

in Section 1.3, starting with the elliptic case (1.4).

The rough intuition is as follows: in the averaging regime (ε � R−4), the

process Xx,ε
t revolves many times close to the flow lines within one cell, but once

the separatrix is reached, the exit from DR happens quickly. This follows from

the typical ε−1/4 fluctuation of the limiting process as the local time immediately

becomes non-zero after the process reaches the boundary.

On the other hand, in the homogenization regime (ε� R−4), the boundary is

far away, and the process visits the interiors of many cells before the exit from DR.

This gives enough time for the process L
Γ(x)
t to start growing nearly linearly in t,

and therefore an overall Brownian behavior of Xx,ε
t to set in. The mean exit time

becomes infinite in the limit.

In the intermediate transition regime (ε ≈ R−4), the time required to leave

DR remains finite and is of the same order as the local time, although L
Γ(x)
t is not

directly proportional to t in this regime.

We will apply Theorem 2.3 in order to obtain the following asymptotic results

for the solution of equation (1.4). The precise statement is as follows:

Theorem 2.5. Let ε ↓ 0 and R = R(ε) ↑ ∞ in (1.4).

1. (Averaging regime) If Rε1/4 ↓ 0, then

uε,R(x)→ f(0) · EτO(Y Γ(x)
· ) ,

17



where τO is the first time when a process on G hits the interior vertex.

2. (Transition regime) If Rε1/4 → C ∈ (0,∞), then

uε,R(x)→ E

∫ τ∂D

0

f
(
W̃

Q/C2

L
Γ(x)
t

)
dt ,

with Q as in Theorem 2.3, where τ∂D is the first time the process W̃
Q/C2

L
Γ(x)
t

hits

the boundary of D.

3. (Homogenization regime) There is a constant c > 0 such that if Rε1/4 ↑ ∞,

then

(ε1/2R2)−1uε,R(x)→ E

∫ τ∂D

0

f(W̃ cQ
t ) dt , (2.2)

where W̃ cQ
t is a Brownian motion with covariance cQ and τ∂D is the first time

the process W̃ cQ
t hits the boundary of D.

Remark 2.1. Note that there is no x dependence on the right hand side of (2.2).

If we scale the problem back to the original domain D and then normalize appropri-

ately, the above result gives us that the limit is the solution of a constant coefficient

Dirichlet problem on D evaluated at the origin. To get the values of this solution at

another point x, we must apply the result to the shifted domain D−x. This way we

can prove that

(ε1/2R2)−1uε,R(Rx)→ E

∫ τ∂D

0

f(x+ W̃ cQ
t ) dt as ε ↓ 0, R ↑ ∞,

which contains the classical homogenization result. Here τ∂D is the first time when

the process x+ W̃ cQ
t hits the boundary of D.
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Remark 2.2. Although it is not an aim of the present paper, Theorem 2.3 can

also be used to derive asymptotics for PDEs with a periodic right hand side. These

techniques are suitable for investigating equations with non-zero boundary data as

well when combined with the results of [16].

Let us consider next the parabolic problem (1.6). We will see once again that

in the averaging regime, the limit of the solution is the solution of an equation that

has one less spatial dimension while in the homogenization regime we obtain an

effective equation that has the same dimensions as the one before taking the limit.

The intuition behind the results is very similar to the elliptic case. In the

averaging regime, reaching the separatrix immediately implies that the process is

of distance O(ε−1/4) from the origin which is much larger than R, and therefore

Xx,ε
t /R is outside the region where f is significant. On the other hand, in the

homogenization regime, we pick up contributions from the entire life of the process.

After rescaling time and space appropriately, the major contribution comes from

the long time behavior of W̃Q

L
Γ(x)
t

which is simply Brownian. The precise results are

summarised in the next theorem.

Theorem 2.6. Let ε ↓ 0 and R = R(ε) ↑ ∞ in (1.6).

1. (Averaging regime) If Rε1/4 ↓ 0, then

uε,R(x, t)→ f(0) · P
(
τO(Y Γ(x)

· ≥ t
)
,

where τO is the first time when a process on G hits the interior vertex.
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2. (Transition regime) If Rε1/4 → C ∈ (0,∞), then

uε,R(x, t)→ Ef(W̃
Q/C2

L
Γ(x)
t

) ,

with Q as in Theorem 2.3.

3. (Homogenization regime) There is a constant c > 0 such that if Rε1/4 ↑ ∞,

then

ε−1/2R−2uε,R(Rx, ε1/2R2t)→ Ef(x+ W̃ cQ
t ) . (2.3)

Remark 2.3. It is not proved strictly speaking, however, it is clear that both in

Theorem 2.5 and Theorem 2.6, we have c = ρ(O). Comparing this with (1.3), we

get

Deff (ε) = ε−1/2(ρ(0)Q+ o(1)).

In both problems, the transition case is interesting. Formally, it was derived

in [14] and [15] that the corresponding parabolic equation involves a fractional time

derivative of order 1/2. The precise mathematical treatment is a future goal of the

author.
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Chapter 3: Intermediate timescales

3.1 Displacement when the process is near the separatrix

In this section, we study the behavior of the process when it is close to the

separatrix. The process spends most of the time in the interiors of the cells where no

cell changes are possible. However, when the process leaves the cell interior, rapid

displacement occurs along the separatrix. We will show what happens during one

excursion, i.e., between the time when the process hits the separatrix and the time

when it goes back to the interior of the domain (the exact meaning of the latter will

be explained below).

First, we need some notations. For any two saddle points, introduce γ(Ai, Aj)

as the set of points in LT that get taken to Aj by the flow ẋ = v(x) and to Ai by

the flow ẋ = −v(x). Since we assumed that the separatrices do not form loops, we

always have γ(Ai, Ai) = ∅.

In a neighborhood of each curve γ(Ai, Aj), we can consider a smooth coordinate

change (x1, x2) → (H, θ) defined by the conditions |∇θ| = |∇H| and ∇θ ⊥ ∇H on

γ(Ai, Aj). This way θ is defined up to multiplication by −1 and up to an additive

constant.

Let V δ = {x ∈ R2 : |H(x)| ≤ δ}. If δ is sufficiently small, we can make a
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continuous coordinate change (x1, x2) → (H, θ) in V δ ∩ Uk. Here θ takes values

in [0,
∫
∂Uk
|∇H|dl], with the endpoints of the interval identified, and satisfies the

conditions (a) θ is smooth in a neighborhood of γ(Ai, Aj) for each Ai, Aj such that

γ(Ai, Aj) ⊂ Uk, (b) |∇θ| = |∇H| on γ(Ai, Aj), and (c) θ is constant on curves

perpendicular to the level sets of H. Note that this way θ is defined uniquely up

to the curve corresponding to θ = 0 and the direction in which θ increases. Using

these new coordinates, we can define what it means for the process to pass a saddle

point. Namely, let

B(Ai, Uk) = {x ∈ V δ ∩ Uk : θ(x) = θ(Ai)} , B(Ai) =
⋃

k:Ai∈∂Uk

B(Ai, Uk).

Observe that B(Ai, Uk) is a curve in Uk transversal to the flow with an endpoint

being the saddle point Ai.

Let π : R2 → T be the quotient map from the plane to the torus and, for

simplicity, let us denote π(V δ) by V δ again. Introduce the stopping times αx,δ,ε0 = 0,

βx,δ,ε0 = inf{t ≥ 0 : Xx,ε
t ∈ L} and recursively define αx,δ,εn and βx,δ,εn as follows.

Given βx,δ,εn−1 , find i and j such that π

(
Xx,ε

βx,δ,εn−1

)
∈ γ(Ai, Aj). Then we define

αx,δ,εn = inf
{
t ≥ βx,δ,εn−1 : π(Xx,ε

t ) ∈
⋃
k 6=i

B(Ak) ∪ ∂V δ
}
,

βx,δ,εn = inf{t ≥ αx,δ,εn : Xx,ε
t ∈ L}.

In other words, αx,δ,εn is the first time after βx,δ,εn−1 that the process either hits ∂V δ, or

goes past a saddle point different from the one behind Xx,ε

βx,δ,εn−1

.

We introduce another pair of sequences of stopping times corresponding to

successive visits to L and ∂V δ. Namely, let µx,δ,ε0 = 0, σx,δ,ε0 = βx,δ,ε0 , and recursively
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define

µx,δ,εn = inf{t ≥ σx,δ,εn−1 : Xx,ε
t ∈ ∂V δ}, σx,δ,εn = inf{t ≥ µx,δ,εn : Xx,ε

t ∈ L}.

Let

Sx,δ,εn = Xx,ε

σx,δ,εn
−Xx,ε

σx,δ,εn−1

, n ≥ 1, T x,δ,εn = σx,δ,εn − µx,δ,εn , n ≥ 0,

be the displacement between successive visits to L and the time spent on the n-th

downcrossing of V δ, respectively. We will use the following notion of uniform weak

convergence of probability measures.

Definition 3.1. Given two families of random variables, fx,ε and gx, with values

in a metric space M and indexed by a parameter x, we will say that fx,ε converge

to gx in distribution uniformly in x if

Eϕ(fx,ε)→ Eϕ(gx) ,

as ε→ 0, uniformly in x for each ϕ ∈ Cb(M).

Let ηx,δ,ε be the random vector with values in {1, . . . , n} defined by

ηx,δ,ε = i if Xx,ε

µx,δ,ε1

∈ Ui, i = 1, . . . , n,

i.e., ηx,δ,ε = i if the process ends up in Ui after the first upcrossing of V δ. The main

result of this section is the following theorem:

Theorem 3.1. There are a 2 × 2 non-degenerate matrix Q, a vector (p1, . . . , pn),

and functions a(δ), b1(δ), . . . , bn(δ) that go to zero as δ → 0, such that

(ε1/4Sx,δ,ε1 , ηx,δ,ε)→
(√

δ(1 + a(δ))
√
ξN(0, Q), ηδ

)
(3.1)
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in distribution as ε ↓ 0, uniformly in x ∈ L for all sufficiently small δ > 0. ξ is

an exponential random variable with parameter one, N is a two dimensional normal

with covariance matrix Q, independent of ξ, and ηδ is a random vector with values

in {1, . . . , n} independent of ξ and N such that P(ηδ = i) = pi + bi(δ).

Before proving Theorem 3.1, let us briefly discuss one implication. Let T x,ε :=

T x,δ,ε0 be the time it takes the process starting at x to reach the separatrix. Let T̄ y

be the time it takes the limiting process Y y
t on the graph to reach the vertex O. By

the averaging principle [23], T x,ε → T̄ Γ(x) in distribution uniformly in x ∈ T . This,

together with Theorem 3.1 and the strong Markov property of the process imply

the following lemma.

Lemma 3.1. For fixed m and δ, the random vectors

(T x,δ,ε0 , ε1/4Sx,δ,ε1 , T x,δ,ε1 , ε1/4Sx,δ,ε2 , . . . , T x,δ,εm−1, ε
1/4Sx,δ,εm )

converge, as ε ↓ 0, to a random vector with independent components. The limiting

distribution for each of the components ε1/4Sx,δ,ε1 , . . . , ε1/4Sx,δ,εm is given by Theo-

rem 3.1, i.e., it is equal to the distribution of
√
δ(1 + a(δ))

√
ξN(0, Q). The limiting

distribution of T x,δ,ε0 is the distribution of T̄ Γ(x). The limiting distribution for each

of the components T x,δ,ε1 , . . . , T x,δ,εm−1 is equal to the distribution of T̄ ζ, where ζ is a

random initial point for the process on the graph, chosen to be at distance δ from

the vertex O, in such a way that ζ belongs to the i-th edge with probability pi + bi(δ).

Proof. By the averaging principle ( [23]), T x,δ,ε0 → T̄ Γ(x) in distribution uniformly

in x ∈ T . The convergence of other components of the random vector to their
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respective limits follows from Theorem 3.1. The independence of the components

of the limiting vector immediately follows from the strong Markov property of the

process Xx,ε
t and the fact that the convergence in Theorem 3.1 is uniform with

respect to x.

We will prove Theorem 3.1 by proving a more abstract lemma on Markov

chains with a small probability of termination at each step, and demonstrating that

the conditions of the lemma are satisfied in the situation of Theorem 3.1.

Let M be a metric space which can be written as a disjoint union

M = X t C1 t . . . t Cn ,

where the sets Ci are closed. Assume also that X is a σ-locally compact separa-

ble subspace, i.e., locally compact that is the union of countably many compact

subspaces. Let pε(x, dy), 0 ≤ ε ≤ ε0, be a family of transition probabilities on M

and let g ∈ Cb(M,R2). Later, pε(x, dy) will come up as transition probabilities of

a certain discrete time process associated to Xx,ε
t . We assume that the following

properties hold:

1. p0(x,X) = 1 for all x ∈M and pε(x,X) = 1 for all x ∈M\X.

2. p0(x, dy) is weakly Feller, meaning the map x 7→
∫
M
f(y)p0(x, dy) belongs to

Cb(M) if f ∈ Cb(M).

3. There exist bounded continuous functions h1, . . . , hn : X → [0,∞) such that

ε−
1
2pε(x,Ci)→ hi(x), uniformly in x ∈ K if K ⊆ X is compact,
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while supx∈X |ε−
1
2pε(x,Ci)| ≤ c for some positive constant c. We also have

J(x) := h1(x) + . . .+ hn(x) > 0 for x ∈ X. (3.2)

4. pε(x, dy) converges weakly to p0(x, dy) as ε → 0, uniformly in x ∈ K for

K ⊆ X compact.

5. The transition functions satisfy a strong Doeblin condition uniformly in ε.

Namely, there exist a probability measure η on X, a constant a > 0, and an

integer m > 0 such that

pmε (x,A) ≥ aη(A) for x ∈M, A ∈ B(X), ε ∈ [0, ε0].

It then follows that for every ε, there is a unique invariant measure λε(dy) on

M for pε(x, dy), and the associated Markov chain is uniformly exponentially

mixing, i.e., there are Λ > 0, c > 0, such that

|pkε(x,A)− λε(A)| ≤ ce−Λk for all x ∈M, A ∈ B(M), ε ∈ [0, ε0].

6. The function g is such that
∫
M
g dλε = 0 for each ε ∈ [0, ε0].

Lemma 3.2. Suppose that assumptions 1–6 above are satisfied and let Zx,ε
k be the

Markov chain on M starting at x, with transition function pε. Let τ = τ(x, ε) be

the first time when the chain reaches the set C = C1 t . . . t Cn. Let e(Zx,ε
k ) = i if

Zx,ε
k ∈ Ci. Then

(
ε

1
4 (g(Zx,ε

1 ) + . . .+ g(Zx,ε
τ )), e(Zx,ε

τ )
)
→ (F1, F2) (3.3)

in distribution, uniformly in x ∈ X, where F1 takes values in R2, F2 takes values in

{1, . . . , n}, and F1 and F2 are independent. The random variable F1 is distributed
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as (ξ/
∫
X
Jdλ0)

1
2N(0, Q̄), where ξ is exponential with parameter one independent of

N(0, Q̄) and Q̄ is the matrix such that

(g(Zx,0
1 ) + . . .+ g(Zx,0

k ))/
√
k → N(0, Q̄) in distribution as k →∞.

The random variable F2 satisfies P(F2 = i) =
∫
X
hi dλ

0/
∫
X
J dλ0, i = 1, . . . , n.

Before we proceed with the proof of Lemma 3.2, let us show that it does indeed

imply Theorem 3.1.

Proof of Theorem 3.1. Let L0 = L\{A ∈ R2 : π(A) ∈ {Ai, i = 1, . . . , n}}. Define

M̄ = L0 t ∂V δ. Let us define a family of transition functions p̄ε(x, dy) on M̄ . For

x ∈ L0, we define p̄ε(x, dy) as the distribution of Xx,ε
τ with τ = µx,δ,ε1 ∧ βx,δ,ε1 . In

other words, it is the measure induced process that stops when it reaches either the

boundary of V δ or the separatrix after passing by a saddle point. For x ∈ ∂V δ,

let p̄ε(x, dy) coincide with the distribution of Xx,ε
τ̄ with τ̄ = βx,δ,ε0 , i.e., the measure

induced by the process that stops when it reaches the separatrix. Since almost

every trajectory of Xx,ε
t that starts outside of the set of saddle points does not

contain saddle points, p̄ε is indeed a stochastic transition function. Let Z̄x,ε
k be the

corresponding Markov chain starting at x ∈ M̄ .

While we introduced M̄ as a subset of R2, it is more convenient to keep track

of π(Z̄x,ε
k ) and the latest displacement separately. Let ϕ : M̄ → M := π(M̄) × Z2

map x ∈ M̄ into (π(x), ([x1], [x2])), where [x1] and [x2] are the integer parts of the

first and second coordinates of x. Define the Markov chain Zx,ε
k on M via

Z
π(x),ε
0 = (π(x), 0), Z

π(x),ε
k = (ϕ1(Z̄x,ε

k ), ϕ2(Z̄x,ε
k )− ϕ2(Z̄x,ε

k−1)), k ≥ 1.
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Let X = π(L0)×Z2 = (LT \{A1, . . . , An})×Z2 and Ci = (π(∂V δ)∩Ui)×Z2. Thus

M = X t C1 t . . . t Cn as required. The transition functions pε(x, dy) are defined

as the transition functions for the Markov chain Zx,ε
k .

For x = (q, ξ) ∈M , define g((q, ξ)) = ξ ∈ Z2, which corresponds to the integer

part of the displacement during the last step if the chain is viewed as a process on

R2, where only the integer parts of the initial and end points are counted. From the

definition of the stopping times βx,δ,εk , it follows that ϕ2(Z̄x,ε
k ) − ϕ2(Z̄x,ε

k−1) can only

take a finite number of values (roughly speaking, the process Xx,ε
t makes transitions

from one domain of periodicity to a neighboring one or to itself between the times

βx,δ,εk and βx,δ,εk+1 ). Therefore, g(Z
π(x),ε
k ) is bounded almost surely, uniformly in x and

k. Also, it is continuous in the product topology of π(M̄)× Z2.

The paper [6] contains some detailed results on the behavior of the process

Xx,ε
t near the separatrix. The main idea behind those results is that the process can

be considered in (H, θ) coordinates in the vicinity of L. In those coordinates, after

an appropriate re-scaling, the limiting process (as ε→ 0) is easily identified.

Note that in [6], the width of the separatrix region is of order εα1 with some

α1 ∈ (1/4, 1/2), while here, it is of width δ. The results we are about to refer to can

all be easily seen to hold with εα1 replaced by δ, our current case being simpler.

The existence of the limit of the transition functions pε in the sense of Assump-

tion (4) was justified in [6, Lemma 3.1]. This limit is denoted by p0. An explicit

formula for the density of p0 was also provided ( [6, formula (9)]), which implies that

Assumption (2) is satisfied. Observe that the probability of βx,δ,ε1 being less than

µx,δ,ε1 tends to one as ε ↓ 0 uniformly in x ∈ L by [6, formula (26)]. This implies
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Property (1).

Let us sketch the proof of the Doeblin condition (5). Fix a1, a2, a3 ∈ γ(Ai, Aj) ⊂

Uk with some Ai, Aj, and Uk. The points are ordered in the direction of the flow

v. Let γ′ be the part of γ(Ai, Aj) that lies between a2 and a3. Let J = {(H, θ) ∈

V δ
⋂
Uk :
√
ε ≤ H ≤ 2

√
ε, θ = θ(a1)}. We can assume that a1, a2, and a3 are chosen

in such a way that ϕ2 is constant on J
⋃
γ′. It is not difficult to show that there is

m > 0 such that

P
(
ϕ2(Xx,ε

t ) = ϕ2(x), Xx,ε
t ∈ J for some αx,δ,εm < t < βx,δ,εm

)
> c > 0

for all x ∈ L. Roughly speaking, this statement means that the process has a positive

chance of going to a particular curve at a distance
√
ε from the separatrix, transversal

to the flow lines, prior to passing by m saddle points. This is not surprising since

the motion consists of advection with speed of order 1/ε and diffusion of order one.

The proof follows along the same lines as the proof of Lemma 3.1. in [6]. Now the

distribution of Xx,ε
βx,δ,0

has a component with density strictly bounded from below

on γ′, uniformly in x ∈ J , as follows from (63) in [24]. This implies the Doeblin

condition for Zx,ε
k .

With our definition of g,

∫
M

g(x) dλε(x)

(∫
M

Eτx dλε(x)

)−1

= lim
t→∞

(EXx,ε
t /t),

where τx is the random transition time for our Markov chain, and the right hand

side is the effective drift for the original process starting from an arbitrary point x.

Note that limt→∞(EXx,ε
t /t) =

∫
T v(x)dx = 0, which implies Property (6).
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Property (3) follows from [6, Lemma 4.1 and Lemma 4.3]. Indeed, the former

lemma describes the asymptotics of the distribution of H(Xx,ε

αx,δ,ε1

), while the latter

one describes the probability of the process starting at x to exit the boundary

layer before reaching the separatrix, assuming that H(x) is fixed. The two lemmas,

together with the Markov property of the process, imply Property (3). The functions

hi(x) = hδi (x) depend on δ and can be identified as

hδi (x) = lim
ε→0

ε−1/2P
(

the process starting atXx,ε

αx,δ,ε1

reaches ∂V δ∩Ui before reaching L
)
.

From [6, Lemma 4.1 and Lemma 4.3] (with δ now playing the role of εα1) it follows

that ∫
X

hδi (x) dλ0(x) = δ−1(p̄i + b̄i(δ)), i = 1, . . . , n,

where p̄i > 0 and b̄i(δ) → 0 as δ → 0. Now Lemma 3.2 implies that Theorem 3.1

holds with

Q = Q̄/(p̄1 + . . .+ p̄n) , pi = p̄i/(p̄1 + . . .+ p̄n) .

Finally, let us show that Q̄ is non-degenerate. Assuming by contradiction

that this is not the case, there is a unit vector e ∈ R2 such that the function

ḡ = 〈e, g〉 : X → R has the property that

(
ḡ(Zx,0

1 ) + . . .+ ḡ(Zx,0
k )
)
/
√
k → 0 , (3.4)

in distribution as k →∞. It follows from
∫
X
ḡ dλ0 = 0 and from exponential mixing

that the sum

G(x) =
∞∑
k=0

Eḡ(Zx,0
k )

converges in L2(X,λ0).
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Let zk denote the process which is Zx,0
k started from the invariant distribution

λ0. It follows from [28, Thm 11] that under our assumption (3.4),

0 = EG2(zk)− E([EG(Zx,ε
1 )]|x=zk)

2. (3.5)

By the definition of G, we have the following identity:

ḡ(zk) = Uk+1 +G(zk)−G(zk+1), (3.6)

where Uk+1 = U(zk, zk+1) = G(zk+1) − [EG(Zx,ε
1 )]|x=zk . It is straightforward to see

that

EU2
k+1 = EG2(zk+1)− E([EG(Zx,ε

1 )]|x=zk)
2 = 0

by (3.5). This implies that Uk+1 = 0 almost everywhere with respect to λ0. Com-

bining this fact with k = 0 and (3.6), we get that

ḡ(x) = G(x)−G(Zx,0
1 ) ,

almost surely for λ0-almost all x. Recall that x ∈ X can be written as x = (q, ξ),

where q ∈ π(L0) and ξ ∈ Z2. Since Zx,0
1 does not depend on ξ, while ḡ(x) = 〈e, ξ〉,

we can write G(x) = G̃(q) + 〈e, ξ〉 for some function G̃. Thus

G̃(q) = G̃
(
(Zx,0

1 )1
)

+
〈
e, (Zx,0

1 )2
〉
, (3.7)

where (Zx,0
1 )1 ∈ π(L0) and (Zx,0

1 )2 ∈ Z2. Thus for λ0-almost all x, we have G̃(q) =

G̃
(
(Zx,0

1 )1
)

almost surely on the event 〈e, (Zx,0
1 )2〉 = 0. Let λ0 denote the projection

of λ0 onto π(L0). An explicit expression for the density of p0 (found in formula (9)

of [6]) implies that (Zx,0
k )1, k ≥ 1, has density with respect to the Lebesgue measure

on π(L0), and the density is bounded from below for sufficiently large k. Therefore
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λ̄0 is equivalent with the Lebesgue measure and the distribution of (Zx,0
1 )1 is abso-

lutely continuous with respect to λ
0

for each x. Therefore, by the Markov property,

G̃(q) = G̃
(
(Zx,0

k )1
)

almost surely on the event 〈e, (Zx,0
1 )2〉 = . . . = 〈e, (Zx,0

k )2〉 = 0,

for λ0-almost all x. For sufficiently large k, the (sub-probability) distribution of

(Zx,0
k )1 restricted to this event has a positive density with respect to λ

0
. (The latter

statement is a consequence of the geometry of the flow. Roughly speaking, given two

points on the separatrix that belong to the same cell of periodicity, the process Z̄x,0
k

can go with positive probability from the first point to an arbitrary neighborhood of

the second point without leaving the cell of periodicity.) Therefore, G̃ is λ0-almost

everywhere constant. By (3.7), this implies that 〈e, (Zx,0
1 )2〉 = 0 for λ0-almost all

x. Again by the Markov property, 〈e, (Zx,0
k )2〉 = 0 for λ0-almost all x for each k.

Observe, however, that the process Z̄x,0
k starting at an arbitrary point x on the

separatrix, has a positive probability of going to any other cell of periodicity if k is

sufficiently large. This yields a contradiction, and thus Q̄ is non-degenerate.

Now let us turn to the proof of Lemma 3.2. Let

Ω = {ω = (x, x1, . . . , xk; i) : k ≥ 0, x, x1, . . . , xk ∈ X, i ∈ {1, . . . , n}}

be the space of sequences that start at x ∈ X and end when the sequence enters

C = C1 t . . .tCn, at which point only the index of the set that the sequence enters

is taken into account. The Markov chain Zx,ε
k together with the stopping time τ

determine a probability measure µε on Ω, namely,

µε(x,A1, . . . , Ak; i) =

∫
A1

. . .

∫
Ak

pε(x, dx1)pε(x1, dx2) · · · pε(xk−1, dxk)pε(xk, Ci),
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where A1, . . . , Ak ∈ B(X). We introduce another probability measure on Ω via

νε(x,A1, . . . , Ak, i) =

=

∫
A1

· · ·
∫
Ak

e−
√
ε(J(x)+...+J(xk−1))pε(x, dx1)

pε(x,X)
· · · pε(xk−1, dxk)

pε(xk−1, X)

(1− e−
√
εJ(xk))hi(xk)

J(xk)

where J(x) was defined in (3.2). More precisely, we consider a Markov chain Z̃x,ε
k on

the state space X with transition function p̃ε(x, dy) = pε(x, dy)/pε(x,X). We can

adjoin the states {1, . . . , n} to the space X and assume that at each step the process

may get killed by entering a terminal state i with probability (1 − e−
√
εJ(xk))hi(xk)

J(xk)
,

i = 1, . . . , n. Let σ be the number of steps after which the process is killed. To

clarify our notations, let us stress that Z̃x,ε
k is a conservative Markov chain, and the

killing is expressed through the presence of the random variable σ defined on the

same probability space. Then νε(x,A1, . . . , Ak, i) is the probability that the chain

starting at x visits the sets A1, . . . , Ak and then enters the terminal state i. With a

slight abuse of notation we can view σ as a random variable on Ω as well.

We will prove in Lemma 3.4, that we can replace the measure µε with νε in a

certain sense. First, however, we need to derive a few properties of Z̃x,ε. Note that

it inherits the strong Doeblin property, which holds uniformly in ε, i.e.,

p̃mε (x,A) ≥ aη(A) for x ∈ X, A ∈ B(X), ε ∈ [0, ε0].

This implies the uniform exponential mixing, i.e., there are Λ > 0, c > 0, such that

|p̃kε(x,A)− λ̃ε(A)| ≤ ce−Λk for all x ∈ X, A ∈ B(X), ε ∈ [0, ε0],

where p̃ε is the transition function for the chain and λ̃ε is the invariant measure

associated with the transition function p̃ε(x,A).
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Lemma 3.3. Let g ∈ Cb(M,R) satisfy Assumption (6). For each α > 0, we have∣∣∣∣∫
X

gdλ̃ε
∣∣∣∣ ≤ Cε1/2−α (3.8)

for some constant C and each ε ∈ [0, ε0].

Proof. By the exponential mixing,∣∣∣∣∫
X

g(y)p̃kε(x, dy)−
∫
X

g(y)λ̃ε(dy)

∣∣∣∣+

∣∣∣∣∫
M

g(y)pkε(x, dy)−
∫
M

g(y)λε(dy)

∣∣∣∣ ≤ c1e
−Λk

for x ∈ X, ε ∈ (0, ε0]. It is also easy to see by induction that∣∣∣∣∫
X

g(y)p̃kε(x, dy)−
∫
M

g(y)pkε(x, dy)

∣∣∣∣ ≤ c2

√
εk. (3.9)

Now we can take k = [ε−α] in these two inequalities, proving (3.8) since
∫
M
g(y)λε(dy) = 0.

The last two inequalities of the above proof with g replaced by an arbitrary

bounded continuous function f imply that∫
X

f(y)λ̃ε(dy)−
∫
M

f(y)λε(dy)→ 0 as ε ↓ 0.

We also know that λε(M \ X) → 0 and λε ⇒ λ0 as ε ↓ 0, as immediately follows

from the properties of pε (the latter statement can be also found in Lemma 2.1

in [6]). Therefore, ∫
X

f(y)λ̃ε(dy)−
∫
X

f(y)λ0(dy)→ 0 as ε ↓ 0,

that is λ̃ε ⇒ λ0 as ε ↓ 0.

Lemma 3.4. For every δ > 0 there is ε′ > 0 such that for ε ≤ ε′ there is a set Ωε

with νε(Ωε) ≥ 1− δ such that dµε/dνε ∈ (1− δ, 1 + δ) on Ωε.
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Proof. To choose the set Ωε, note that

νε(σ = k) = Ẽ
[
e−
√
ε(J(Z̃x,ε1 )+...+J(Z̃x,εk−1))(1− e−

√
εJ(Z̃x,εk ))

]
.

Using the law of large numbers for the Markov chain Z̃x,ε, which can be applied

uniformly in ε due to the uniform mixing (a consequence of assumption 5.), and

the boundedness of J (a consequence of assumption 3.), we conclude that for every

η > 0, there is a k0 independent of ε such that

P̃

(∣∣∣1
k

k−1∑
j=0

J(Z̃x,ε
j )− Jε

∣∣∣ ≥ η

)
≤ η

for k ≥ k0, where Jε =
∫
X
J(u)dλε(u). Therefore

νε(σ < a/
√
ε) ≤ νε(σ < k0) + η + (1− e−

√
ε supu∈X J(u))

[a/
√
ε]∑

k=k0

e−
√
ε(kJε−kη).

Since Jε → J0 > 0, and since η was arbitrary, we have νε(σ < a/
√
ε) < δ/8 (for

all sufficiently small ε) if a is small enough. Similarly one can show that νε(σ >

b/
√
ε) < δ/8 if we choose b to be sufficiently large. We set Ω1

ε = {
√
εσ ∈ [a, b]}.

Note that νε(Ω
1
ε) ≥ 1− δ/4. Also note that

νε(σ = k, hi(xk) < η; i) = Ẽ

[
e−
√
ε
∑k−1
j=0 J(Z̃x,εj )(1− e−

√
εJ(Z̃x,εk ))χ{hi(Z̃x,εk )<η}

hi(Z̃
x,ε
k )

J(Z̃x,ε
k )

]
.

Using the inequality x−1(1− e−cx) < c for x, c > 0, this is less than or equal to η
√
ε.

This means that if η > 0 is choosen small enough, then

νε(
√
εσ ∈ [a, b], hi(xσ) < η; i) < δ/4n for each i = 1, . . . , n.

We set Ω2
ε =

⋃n
i=1{
√
εσ ∈ [a, b], hi(xσ) < η; i}.

Fix γ > 0 to be specified later. Let K0 ⊂ X be a compact set such that

λ0 (X \K0) < γ/3. This is possible by the σ-compactness of X. Take an open
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set U ⊆ X such that K0 ⊆ U and K = Ū is compact, which is possible by local

compactness of X. Note that λ0(X \ U) < γ/3. By the weak law of large numbers

(which holds uniformly in ε due to the uniform mixing),

sup
ε∈(0,ε0]

P̃

(∣∣∣∣∣ 1

N

N−1∑
j=0

χ{Z̃x,εj /∈K} − λ̃
ε(X \K)

∣∣∣∣∣ > γ/3

)
< δ/4

for large enough N . Elementary properties of weak convergence imply

λ̃ε(X \K) ≤ λ̃ε(X \ U) ≤ λ0(X \ U) + γ/3 < 2γ/3

for small enough ε. This means that the set

Ω3
ε =

{
√
εσ ∈ [a, b],

σ−1∑
j=0

χ{xj /∈K} ≥ γ
2b

a
σ

}
⊆

⊆

√εσ ∈ [a, b],

[b/
√
ε]∑

j=0

χ{xj /∈K} ≥ γ([b/
√
ε] + 1)


has νε(Ω3

ε) < δ/4 if ε is sufficiently small.

Similarly, by the ergodic theorem, one can show, by possibly making K larger,

that Ω4
ε = {

√
εσ ∈ [a, b], xσ /∈ K} has νε(Ω4

ε) < δ/4 for sufficiently small ε. There-

fore Ωε = Ω1
ε \ (Ω2

ε ∪ Ω3
ε ∪ Ω4

ε) has νε(Ωε) > 1− δ.

Observe that

dµε
dνε

(x, x1, . . . , xk, i) =
pε(x,X) · · · pε(xk−1, X)

e−
√
ε(J(x)+...+J(xk−1))

pε(xk, Ci)

1− e−
√
εJ(xk)

J(xk)

hi(xk)
on Ωε.

By the definition of Ω1
ε, it suffices to consider k(ε) ∈ [a/

√
ε, b/
√
ε]. By the definition

of hi and J , the product of the last two fractions converges to 1 uniformly as ε ↓ 0

(here we use the definition of Ω2
ε, Ω4

ε, and Assumption (3)). Also note that∣∣∣∣∣∣
k(ε)−1∏
j=0

pε(xj, X)− e−
√
ε
∑k(ε)−1
j=0 J(xj)

∣∣∣∣∣∣ =
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=

∣∣∣∣∣∣
k(ε)−1∏
j=0

(
1−
√
ε

n∑
i=1

ε−1/2pε(xj, Ci)

)
−

k(ε)−1∏
j=0

e−
√
εJ(xj)

∣∣∣∣∣∣ .
Using the fact that |

∏
ai−

∏
bi| ≤

∑
|ai−bi| when |ai|, |bi| ≤ 1 and the boundedness

part of Assumption (3), this is less than or equal to

k(ε)−1∑
j=0

∣∣∣∣∣1−√ε
n∑
i=1

ε−1/2pε(xj, Ci)− e−
√
εJ(xj)

∣∣∣∣∣ ≤
≤
√
ε

k(ε)−1∑
j=0

n∑
i=1

∣∣hi(xj)− ε−1/2pε(xj, Ci)
∣∣+ o(1),

where we used the Taylor expansion of the exponential. Note that by Assumption

(3), we have for small enough ε that

√
ε

k(ε)−1∑
j=0

∣∣hi(xj)− ε−1/2pε(xj, Ci)
∣∣ ≤ 2bc

k(ε)

k(ε)−1∑
j=0

χ{xj /∈K} + bγ < γb(4bc/a+ 1),

where the definition of Ω3
ε was used in the last inequality. Since γ was arbitrary and

√
ε

k(ε)−1∑
j=0

J(xj) ≤ nc
√
εk(ε) ≤ ncb,

we have shown that ∣∣∣∣∣∣
k(ε)−1∏
j=0

pε(xj, X)

/
e−
√
ε
∑k(ε)−1
j=0 J(xj) − 1

∣∣∣∣∣∣ < δ

for small enough ε provided that k(ε) ∈ [a/
√
ε, b/
√
ε], which implies the desired

result.

Proof of Lemma 3.2. Using Lemma 3.4, we restate Lemma 3.2 in terms of the

Markov chain Z̃x,ε
k . Note first that we can restrict the function g (originally defined

on M) to the space X at the expense that the average of g is not zero anymore but

satisfies (3.8) instead.
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Recall that Q̄ is the matrix such that

(g(Zx,0
1 ) + . . .+ g(Zx,0

k ))/
√
k → N(0, Q̄)

in distribution as k →∞. Let Q̄(ε) be such that

(
g(Z̃x,0

1 ) + . . .+ g(Z̃x,0
k )− k

∫
X

gdλ̃ε

)
/
√
k → N(0, Q̄(ε))

in distribution as k → ∞. From (3.9) with k = 1 and g replaced by an arbitrary

bounded continuous function f onX, it follows that p̃ε(x, dy)
ε→0⇒ p0(x, dy) uniformly

in x ∈ K for K ⊆ X compact, since we assumed that the same convergence holds

for pε(x, dy). This and the strong Doeblin property for p̃ε(x, dy) easily imply that

Q̄(ε) → Q̄ as ε ↓ 0 (this was proved in Lemma 2.1 (c) of [6] under an additional

assumption that
∫
X
gdλ̃ε = 0, which is now replaced by (3.8)).

We still have the functions hi defined on X, and we assume that the chain ter-

minates by entering the state i ∈ {1, . . . , n} with probability (1−e−
√
εJ(x))hi(x)/J(x).

Let σ be the time when the chain terminates. Let the random variable ẽ be equal to

i if the process terminates by entering the state i. Since the function g is bounded,

omitting one last term in the sum on the left hand side of (3.3) does not affect the

limiting distribution. Now we can recast (3.3) as follows:

(
ε

1
4

(
g(Z̃x,ε

1 ) + . . .+ g(Z̃x,ε
σ )
)
, ẽ
)
→ (F1, F2)

in distribution. Fix t ∈ R2. For i ∈ {1, . . . , n}, we have that

Ẽ
(
ei〈ε1/4

∑σ
j=1 g(Z̃

x,ε
j ),t〉; ẽ = i

)
=

= Ẽ
(
ei〈ε1/4

∑σ
j=1 g(Z̃

x,ε
j ),t〉; ẽ = i;

[
a/
√
ε
]
≤ σ ≤

[
b/
√
ε
])

+ δ(a, b, ε),
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where

|δ(a, b, ε)| =
∣∣∣Ẽ(ei〈ε1/4 ∑σ

j=1 g(Z̃
x,ε
j ),t〉; ẽ = i;σ <

[
a/
√
ε
]

or σ >
[
b/
√
ε
])∣∣∣ ≤

≤ νε
(
σ <

[
a/
√
ε
]

or σ >
[
b/
√
ε
])
,

which was shown in the proof of Lemma 3.4 to converge to zero as a → 0, b → ∞

uniformly in ε. Let ξ be an exponential random variable with parameter one on

some probability space (Ω′,F ′, P ′) independent of the process. By summing over

different possible values of σ,

Ẽ
(
ei〈ε1/4

∑σ
j=1 g(Z̃

x,ε
j ),t〉; ẽ = i

)
= δ(a, b, ε)+ (3.10)

+

[b/
√
ε]∑

k=[a/
√
ε]

Ẽ

(
hi(Z̃

x,ε
k )

J(Z̃x,ε
k )

ei〈ε1/4
∑k
j=1 g(Z̃

x,ε
j ),t〉P′

(√
ε
k−1∑
j=0

J(Z̃x,ε
j ) < ξ ≤

√
ε

k∑
j=0

J(Z̃x,ε
j )

))
.

where we used the definition of νε and the fact that

P′(c < ξ ≤ d) = e−c(1− e−(d−c)). (3.11)

Note that by the law of large numbers, (3.11), and the uniform exponential

mixing property of Z̃x,ε,

Ẽ

[b/
√
ε]∑

k=[a/
√
ε]

∣∣∣∣P′( k−1∑
j=0

J(Z̃x,ε
j ) <

ξ√
ε
<

k∑
j=0

J(Z̃x,ε
j )

)
−
√
εe−kJ̃ε

√
εJ(Z̃x,ε

k )

∣∣∣∣→ 0 (3.12)

as ε→ 0 uniformly in 0 < a < b, where J̃ε =
∫
X
J(u)dλ̃ε(u) > 0. Note that the fact

that there are O(1/
√
ε) terms in the sum is not a problem since the contribution

from each term is O(ε). Observe that hi(x)/J(x) ≤ 1 and therefore the factor

proceeding P ′ on the right hand side of (3.10) is bounded. Therefore, due to (3.12),

the main term in (3.10) can be replaced by

√
ε

[b/
√
ε]∑

k=[a/
√
ε]

Ẽ
(
hi(Z̃

x,ε
k )ei〈ε1/4

∑k
j=1 g(Z̃

x,ε
j ),t〉

)
e−kJ̃ε

√
ε. (3.13)
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Uniform exponential mixing also tells us that there is a constant C such that

for every 0 < k0 < k we have∣∣∣∣Ẽ(hi(Z̃x,ε
k )e

i
〈
ε1/4

∑k−k0
j=1 g(Z̃x,εj ),t

〉)
− Ẽ

(
hi(Z̃

x,ε
k )
)

Ẽ

(
e
i
〈
ε1/4

∑k−k0
j=1 g(Z̃x,εj ),t

〉)∣∣∣∣ < Ce−Λk0 .

(3.14)

It is easy to see that fixing k0 > 0, i.e., dropping finitely many terms from the sum

in the exponent in (3.13) does not change the limit (it only introduces an overall

error term of order ε1/4).

Since we have uniform exponential mixing in ε for the the transition function

p̃ε(x, dy) (i.e. for the process Z̃x,ε
k ), and from the fact that λ̃ε ⇒ λ0, it follows that

sup
k∈[[a/

√
ε],[b/

√
ε]]

∣∣∣∣Ẽ(hi(Z̃x,ε
k )
)
−
∫
X

hi(u)dλ0(u)

∣∣∣∣→ 0 , (3.15)

as ε ↓ 0. Choosing α < 1/4, it follows from (3.8) that

sup
k∈[[a/

√
ε],[b/

√
ε]]

∣∣∣∣Ẽ(ei〈ε1/4 ∑k−k0
j=1 g(Z̃x,εj ),t

〉)
− Ẽ

(
e
i
〈
ε1/4

∑k−k0
j=1 (g(Z̃x,εj )−

∫
X gdλ̃ε),t

〉)∣∣∣∣→ 0 ,

as ε ↓ 0. On the other hand, we have the following version of the central limit

theorem:

sup
k∈[[a/

√
ε],[b/

√
ε]]

∣∣∣∣Ẽ(ei〈ε1/4 ∑k−k0
j=1 (g(Z̃x,εj )−

∫
X gdλ̃ε),t

〉)
− Ẽei〈

√
kε1/4·N(0,Q̄),t〉

∣∣∣∣→ 0 ,

as ε ↓ 0, which holds thanks to the uniform strong Doeblin property and the fact

that Q̄(ε)→ Q̄ as ε ↓ 0.

Combining this with (3.10), (3.13), (3.14), and (3.15), and using the fact that

J̃ε → J0, we obtain that

lim sup
ε↓0

∣∣∣∣Ẽ(ei〈ε1/4 ∑k
j=1 g(Z̃

x,ε
j ),t〉; ẽ = i

)
−
∫
X
hidλ

0∫
X
Jdλ0

∫ ∞
0

Ẽei
√
s〈N(0,Q̄),t〉J0e

−sJ0ds

∣∣∣∣ ≤ ce−Λk0 .
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Since t and k0 were arbitrary, this implies the desired result.

We close this section by stating a technical lemma that gives us control over

how far away the process wanders during an upcrossing. Its proof relies on the same

arguments as the proof of Lemma 3.2 considering the maximum of
∑k

j=1 g(Z̃x,ε
j )

until σ and using the invariance principle for Markov chains.

Lemma 3.5. For each η > 0, there is δ0 > 0 such that

lim
ε↓0

sup
x∈R2

P
(
ε1/4 sup

0≤t≤σx,δ,ε1

|Xx,ε
t − x| > η

)
< η

whenever 0 < δ ≤ δ0.

3.2 Proof of Theorem 2.3

The first step in the proof of Theorem 2.3 is to show tightness of the family

of measures induced by ε1/4(Xx,ε
t − x), 0 < ε ≤ 1, x ∈ R2. We will then show the

convergence of one-dimensional distributions. The convergence of finite-dimensional

distributions (and therefore the statement of the theorem) will then follow from the

Markov property.

Define Dy,δ
t to be the number of downcrossings from level δ to 0 by the trajec-

tory of the process Y y
t up until time t, where we start counting after the first visit

to the vertex. Namely, set θδ0 = 0, τ δ0 = inf{t ≥ 0 : Y y
t = 0}, and recursively define

θδn = inf{t ≥ τ δn−1 : Y y
t = δ}, τ δn = inf{t ≥ θδn : Y y

t = 0}, n ≥ 1,

where |Y y
t | is the Euclidean distance of Y t,y from the interior vertex O. Finally, let

Dy,δ
t = sup{n ≥ 0 : τ δn ≤ t}.
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Lemma 3.6. We have

lim
δ↓0

E|δDy,δ
t − L

y
t | = 0

for each t > 0 and y ∈ G.

The proof of this result is almost identical to [26, Section 2], the only difference

being the replacement of the condition a(i, y) ≥ c > 0 by the local integrability of

(a(i, y))−2 (and hence of (a(i, y))−1) at the interior vertex. As already noted earlier,

this is indeed the case here since our graph process arises from the averaging of a

Hamiltonian, see [3, Chapter 8], so that a−2(i, y) only diverges logarithmically as

y → 0.

For the proof of tightness, we are going to need the following two simple results.

Lemma 3.7. Let Zi be a sequence of independent zero mean variables with a com-

mon distribution Z, such that all the moments are finite. Then there exists a uni-

versal constant C such that

P
(
l−1/2 max

1≤m≤l
|Z1 + . . .+ Zm| > K

)
≤ C

E|Zi|10

K10
,

for all K > 0.

Proof. By taking the 10th power and using Chebyshev’s inequality,

P

(
max

1≤m≤l
|Z1 + . . .+ Zm| ≥ K

√
l

)
≤ 1

K10l5
E max

1≤m≤l
|Z1 + . . .+ Zm|10 . (3.16)

Since the Zi are independent centered random variables,

E(Z1 + ...+ Zl)
10 =

l∑
i1,...,i10=1

EZi1 ...Zi10 =

+
∑

m1+...+m5=10, mi 6=1

C(l,m1, ...,m5)EZm1 · ... · EZm5 ,
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where |C(l,m1, ...,m5)| ≤ Cl5 for some constant C > 0. By Holder’s inequality, the

sum is bounded by Cl5E|Z|10 with a possibly different constant C > 0. The partial

sums of the Zi-s form a martingale so that, by Doob’s maximal inequality,

sup
l≥1

(
l−5E max

1≤m≤l
|Z1 + . . .+ Zm|10

)
≤
(

10

9

)10

sup
l≥1

E

∣∣∣∣Z1 + . . .+ Zl√
l

∣∣∣∣10

≤ CE|Z|10 .

The claim now follows at once.

Lemma 3.8. We have

lim sup
t→0

E(L0
t/t

1/2)n <∞

for every n ∈ N.

Proof. By Lemma 2.3 in [26] with F (y) = |y −O| being the distance of y ∈ G from

the interior vertex, we get that

|Y 0
t | =

∫ t

0

a(i(s), Y 0
s )dWs +

∫ t

0

b(i(s), Y 0
s ) ds+ L0

t .

By the uniqueness of the Skorokhod-reflection, see e.g. [29, Section 3.6.C], we have

the representation

L0
t = max

0≤s≤t

(
−
∫ s

0

a(i(s), Y 0
s ) dWs −

∫ s

0

b(i(s), Y 0
s ) ds

)
. (3.17)

This implies that there is a standard Brownian motion B such that

(
L0
t

t1/2

)n
≤ C

(
max
0≤s≤t

|B 1
t

∫ s
0 (a(i(s),Y 0

s ))2ds|+ t−1/2

∫ t

0

|b(i(s), Y 0
s )| ds

)n
,

and thus the proof is finished by noting that a and b are bounded on the graph.

Lemma 3.9. The family of measures induced by the processes {ε1/4(Xx,ε
t −x)}0<ε≤1,x∈R2

is tight.

43



Proof. By the Markov property, it is sufficient to prove that for each η > 0 there

are r ∈ (0, 1) and ε0 > 0 such that

P
(

sup
0≤t≤r

|ε1/4(Xx,ε
t − x)| > η

)
≤ rη , (3.18)

for all ε ≤ ε0 and x ∈ R2.

Take Z =
√
ξN(0, Q) and let Zδ

1 , Zδ
2 , etc. be independent identically dis-

tributed. Assume that their distribution coincides with the distribution of
√
δ(1 +

a(δ))Z, where a(δ) is the same as in the right hand side of (4.1).

Applying Lemma 3.7 with K = ηk−1/2/4, we see that for a given η > 0, there

are k0 ∈ (0, 1) and δ1 > 0 such that

P
(

max
1≤m≤k/δ

|Zδ
1 + . . .+ Zδ

m| > η/4
)
≤ k4η/4 , (3.19)

whenever k ∈ (0, k0) and δ ∈ (0, δ1). From (3.19) and Lemma 3.1, it follows that

there is ε1(k, δ) > 0 such that

P
(

max
1≤m≤k/δ

ε1/4|Sx,δ,ε1 + . . .+ Sx,δ,εm | > η/3
)
≤ k4η/3 , (3.20)

provided that ε ≤ ε1(k, δ). It is not difficult to see that this estimate and those

below are uniform in x. Combining (3.20) and Lemma 3.5, it now follows that there

is ε2(k, δ) > 0 such that

P
(

sup
0≤t≤σx,δ,ε

[k/δ]

ε1/4|Xx,ε
t − x| > η/2

)
≤ k4η/2 . (3.21)

provided that ε ≤ ε2(k, δ).

Note that by Lemma 3.6 for a given η > 0, we can find r > 0 and δ2 = δ2(r) > 0
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such that

sup
y∈G

P(Dy,δ
r ≥ r1/4/δ) < sup

y∈G
P(Lyr ≥ r1/4) + ηr/4 ≤ r2E(L0

r/r
1/2)8 + ηr/4 ≤ ηr/3

(3.22)

if δ ≤ δ2, where the second inequality follows from the Chebyshev inequality and

the strong Markov property, while the last inequality follows from Lemma 3.8. As

a consequence of Lemma 3.1, we see that there is ε3(r, δ) such that

P
(
σx,δ,ε

[r1/4/δ]
< r
)
≤ P(Dy,δ

r ≥ r1/4/δ) + ηr/6 (3.23)

if ε ≤ ε3(r, δ).

Clearly,

P
(

sup
0≤t≤r

|ε1/4(Xx,ε
t −x)| > η

)
≤ P

(
σx,δ,ε

[r1/4/δ]
< r
)

+ P
(

sup
0≤t≤σx,δ,ε

[r1/4/δ]

ε1/4|Xx,ε
t −x| > η

)
so that, choosing r > 0 sufficiently small, combining (3.21) with k = r1/4, (3.22),

and (3.23) with δ < min(δ1, δ2) and ε < min(ε1(k, δ), ε2(k, δ), ε3(r, δ)), we obtain

(3.18), which implies tightness.

For the proof of convergence of one-dimensional distributions, we are going to

need a lemma that is a straightforward consequence of tightness.

Lemma 3.10. For η > 0 and f ∈ Cb(R2) that is uniformly continuous, we can find

an r > 0 such that

sup
ε∈(0,1]

|Ef(ε1/4(Xx,ε
τ ′′ − x))− Ef(ε1/4(Xx,ε

τ ′ − x))| < η, (3.24)

|Ef(W̃Q
τ ′′)− Ef(W̃Q

τ ′ )| < η (3.25)

for each pair of stopping times τ ′ ≤ τ ′′ that satisfy P(τ ′′ > τ ′ + r) ≤ r.
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Proof. By the tightness result above, for each α > 0 we can find r > 0 such that

sup
x∈R2

P
(
ε1/4 sup

0≤t≤r
|Xx,ε

t − x| > α
)
< α.

Using that f is uniformly continuous, we can choose α(η) small enough so that we

can write

E|f(ε1/4(Xx,ε
τ ′′ − x))− f(ε1/4(Xx,ε

τ ′ − x)| < η

3
+ P(ε1/4|Xx,ε

τ ′′ −X
x,ε
τ ′ | > α)

After conditioning on Xx,ε
τ ′ and using the strong Markov property, the second term

is seen to be bounded from above by

sup
x∈R2

P
(
ε1/4 sup

0≤t≤r
|Xx,ε

t − x)| > α
)

+ P(τ ′′ − τ ′ > r) ≤ α + r,

which finishes the proof of (3.24) once α and r are chosen to be small enough. The

proof of (3.25) is similar.

Let us fix t > 0, f ∈ Cb(R2) uniformly continuous, and η > 0. To show the

convergence of one-dimensional distributions, it suffices to prove that

|Ef(ε1/4(Xx,ε
t − x))− Ef(W̃Q

L
Γ(x)
t

)| < η (3.26)

for all sufficiently small ε. As we discussed in the introduction, the main contribution

to Xx,ε
t (found in the first term on the left hand side of (3.26)) comes from the

excursions between L and ∂V δ, i.e., the upcrossings of V δ. Also, the local time in the

second term on the left hand side of (3.26) can be related to the number of excursions

(i.e., upcrossings) between the interior vertex and the set Γ({x : |H(x)| = δ}) on

the graph G that happen before time t. These two observations will lead us to the

proof of (3.26).
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In order to choose an appropriate value for δ, we need the following lemma (a

simple generalization of the central limit theorem).

Lemma 3.11. Suppose that Nδ are N-valued random variables independent of the

family {Zδ
i } that satisfy ENδ ≤ C/δ for some C > 0. Let f ∈ Cb(R2) and let W̃Q

t

be a Brownian motion with covariance Q, independent of {Nδ}. Then

Ef(Zδ
1 + . . .+ Zδ

Nδ
)− Ef(W̃Q

δNδ
)→ 0 as δ ↓ 0.

Let eδ(t) be the (random) time that elapses before the time spent by the

process Y y
· , aside from the upcrossings, equals t, i.e.,

eδ(t) = t+
∞∑
n=1

(θδn ∧ eδ(t)− τ δn−1 ∧ eδ(t)).

In other words, we stop a ‘special’ clock every time the process hits the vertex O,

and re-start it once the process reaches the level set {|y| = δ}. Then eδ(t) is the

actual time that elapses when the special clock reaches time t. Let Nδ = Ny,δ
t be

the number of upcrossings of the interval [0, δ] by the process Y y
· prior to time eδ(t).

Similarly, let eδ,ε(t) be the time that elapses before the time spent by the

process Xx,ε
t , aside from the upcrossings, equals t. Let Nx,δ,ε

t be the number of

upcrossings by the process Xx,ε
t prior to time eδ,ε(t).

Lemma 3.12. We have eδ(t) → t and δ(Ny,δ
t −D

y,δ
t ) → 0 in L1 as δ ↓ 0 for each

y ∈ G.

Proof. The first statement implies that most of the time is spent on downcrossings

rather than upcrossings. Its proof is contained in the proof of Lemma 2.2 in [26].
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The second statement follows from the first one together with the Markov property

of the process and Lemmas 3.6 and 3.8.

From Lemmas 3.12 and 3.6 it follows that the conditions of Lemma 3.11 are

satisfied with our choice of Nδ. We can therefore choose δ0 > 0 such that

sup
y∈G

∣∣∣Ef(Zδ
1 + . . .+ Zδ

N
Γ(x),δ
t

)− Ef
(
W̃Q

δN
Γ(x),δ
t

)∣∣∣ ≤ η/10 (3.27)

whenever δ ≤ δ0.

Choose r is such that (3.24) and (3.25) in Lemma 3.10 hold with η/10 instead

of η. Also, use Lemma 3.6 and Lemma 3.12 to choose δ < δ0 sufficiently small so

that ∣∣∣Ef(W̃Q

δD
Γ(x),δ
t

)
− Ef

(
W̃Q

L
Γ(x)
t

)∣∣∣ < η/10 (3.28)

and

P(δN
Γ(x),δ
t > δD

Γ(x),δ
t + r) ≤ r, P(eδ(t) > t+ r) ≤ r/2 .

From the weak convergence of the processes, the latter implies that there is ε0 > 0

such that

P(eδ,ε(t) > t+ r) ≤ r

for ε < ε0. By Lemma 3.10, these inequalities imply that

|Ef(ε1/4(Xx,ε
eδ,ε(t)

− x))− Ef(ε1/4(Xx,ε
t − x))| < η/10 , (3.29)

and ∣∣∣Ef(W̃Q

δN
Γ(x),δ
t

)
− Ef

(
W̃Q

δD
Γ(x),δ
t

)∣∣∣ < η/10 . (3.30)

In what follows δ is fixed at this value.
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Choose N large enough so that

|Ef(Zδ
1 + . . .+ Zδ

N
Γ(x),δ
t

)− Ef(Zδ
1 + . . .+ Zδ

N
Γ(x),δ
t ∧N

)| < η/10 (3.31)

and by possibly increasing N , let ε1 > 0 be such that

|Ef(ε1/4(Xx,ε
eδ,ε(t)

− x))− Ef(ε1/4(Xx,ε

eδ,ε(t)∧σx,δ,εN

− x))| < η/10 (3.32)

for all ε ≤ ε1. The latter can be done by noting that by Lemma 3.1, for every α,

one can select an N such that

P(σx,δ,εN ≤ eδ,ε(t)) < α (3.33)

for every small enough ε. Indeed,

P(σx,δ,εN ≤ eδ,ε(t)) = P(T x,δ,ε1 + . . .+ T x,δ,εN ≤ t).

For fixed N and δ, the random variable T x,δ,ε1 + . . .+T x,δ,εN converges in distribution

to some random variable τ̃ δN as ε ↓ 0. Choose N large enough so that

P(τ̃ δN ≤ t) < α/2,

which implies (3.33). Both N and δ are fixed now.

By Lemma 3.1, there is ε2(δ) > 0 such that

|Ef(ε1/4(Sx,δ,ε1 + . . .+ Sx,δ,ε
N

Γ(x),δ,ε
t ∧N

))− Ef(Zδ
1 + . . .+ Zδ

N
Γ(x),δ
t ∧N

)| < η/10 (3.34)

if ε ≤ ε2. It it here where we used the fact that the displacements during upcrossings

become independent, in the limit of ε ↓ 0, from the times spent on downcrossings.

We also have that there is an ε3 > 0 such that

|Ef(ε1/4(Sx,δ,ε1 + . . .+ Sx,δ,ε
N

Γ(x),δ,ε
t ∧N

))− Ef(ε1/4(Xx,ε

eδ,ε(t)∧σx,δ,εN

− x))| < η/10 (3.35)
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for all ε < ε3.

Collecting (3.29), (3.32), (3.35), (3.34), (3.31), (3.27), (3.30), and (3.28), we

obtain (3.26) for ε ≤ min{ε0, ε1, ε2, ε3}, which completes the proof of Theorem 2.3.

Remark 3.1. It is not difficult to show (and it indeed follows from the proof) that

convergence in Theorem 2.3 is uniform in x ∈ R2.
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Chapter 4: Short timescales

4.1 Proof of Theorem 2.4

The idea of the proof is to establish a setup similar to the one we had for the

intermediate time case so that the arguments in Section 3.2 can be repeated. To do

this, let us define V δ,ε = {x ∈ R2 : |H(x)| ≤ δεα/2} and consider the (H, θ) coordi-

nates in V δ,ε∩Uk. Once again, θ ∈ [0,
∫
∂Uk
|∇H|dl] and the endpoints of the interval

are identified. Using these new coordinates, we can define the relevant quantities

just as in Chapter 3. For the sake of completeness, we repeat this definitions in the

present context.

B(Ai, Uk) = {x ∈ V δ,ε ∩ Uk : θ(x) = θ(Ai)} , B(Ai) =
⋃

k:Ai∈∂Uk

B(Ai, Uk).

Let π : R2 → T be the quotient map from the plane to the torus and, for simplicity,

let us denote π(V δ,ε) by V δ,ε again. Let Zx,ε
t = Xx,ε

(
αεα| log ε|t

2

)
and introduce the

stopping times αx,δ,ε0 = 0, βx,δ,ε0 = inf{t ≥ 0 : Zx,ε
t ∈ L} and recursively define

αx,δ,εn = inf
{
t ≥ βx,δ,εn−1 : π(Zx,ε(t)) ∈

⋃
k 6=i

B(Ak)∪∂V δ,ε
}

if π(Zx,ε(βx,δ,εn−1 )) ∈ γ(Ai, Aj)

and βx,δ,εn = inf{t ≥ αx,δ,εn : Xx,ε(t) ∈ L}. In other words, αx,δ,εn is the first time after

βx,δ,εn−1 that the process either hits ∂V δ,ε, or goes past a saddle point different from

the one behind Zx,ε(βx,δ,εn−1 ).
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We introduce another pair of sequences of stopping times corresponding to

successive visits to L and ∂V ε. Namely, let µx,δ,ε0 = 0, σx,δ,ε0 = βx,δ,ε0 , and recursively

define

µx,δ,εn = inf{t ≥ σx,δ,εn−1 : Zx,ε(t) ∈ ∂V δ,ε}, σx,δ,εn = inf{t ≥ µx,δ,εn : Zx,ε(t) ∈ L}.

Let

Sx,δ,εn = Zx,ε(σx,δ,εn )− Zx,ε(σx,δ,εn−1 ), n ≥ 1, T x,δ,εn = σx,δ,εn − µx,δ,εn , n ≥ 0,

be the displacement between successive visits to L and the time spent on the n-th

downcrossing of V δ,ε, respectively.

Let ηx,δ,ε be the random vector with values in {1, . . . , n} defined by

ηx,δ,ε = i if Zx,ε(µx,δ,ε1 ) ∈ Ui, i = 1, . . . , n,

i.e., ηx,δ,ε = i if the process ends up in Ui after the first upcrossing of V δ,ε.

Our first task is to describe how far Zx,ε(t) can travel from L before hitting

V δ,ε, and we do that by adapting Theorem 3.1 to the current situation.

Theorem 4.1. There is a 2× 2 non-degenerate matrix Q and a vector (p1, . . . , pn)

such that

(ε
1−α

4 Sx,δ,ε1 , ηx,δ,ε)→ (
√
δξN(0, Q), η) in distribution as ε ↓ 0 (4.1)

uniformly in x ∈ L. Here ξ is an exponential random variable with parameter one,

N is a two dimensional normal with covariance matrix Q, independent of ξ, and

η is a random vector with values in {1, . . . , n} independent of ξ and N such that

P(η = i) = pi.
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This is a simple modification of Theorem 3.1, the main difference being that

after reaching B(Ai), the probability of getting absorbed in the cell interior before

going back to L is ∼ ε(1−α)/2.

It is not hard to deduce the following consequence of Theorem 2.2.

Lemma 4.1. Denote by T x,δ,ε the time it takes for Zx,ε(t) to reach the separatrix.

Also let T̄ y be the analogous quantity for Ȳ y(t), i.e. the time it takes for Y y(t) to

reach the interior vertex O. Then

T µ
ε,δ,ε ε→0⇒ T̄ ν

where µε and ν are measures satisfying the requirements of Theorem 2.2.

Theorems 4.1 and Lemma 4.1 combined with the strong Markov property

imply

Corollary 4.1. For fixed m, the random vectors

(T µ
ε,δ,ε

0 , ε
1−α

4 Sµ
ε,δ,ε

1 , T µ
ε,δ,ε

1 , ε
1−α

4 Sµ
ε,δ,ε

2 , . . . , T µ
ε,δ,ε

m−1 , ε
1−α

4 Sµ
ε,δ,ε

m )

converge, as ε ↓ 0, to a random vector with independent components. The limiting

distribution for each of the components ε(1−α)/4Sµ
ε,δ,ε

1 , . . . , ε(1−α)/4Sµ
ε,δ,ε

m is given by

Theorem 4.1, i.e., it is equal to the distribution of
√
ξN(0, Q). The limiting dis-

tribution of T µ
ε,δ,ε

0 is the distribution of T̄ ν, while the limiting distribution for each

of the components T x,δ,ε1 , . . . , T x,εm−1 is equal to the distribution of T̄ ζ, where ζ is a

random initial point for the process on the graph, chosen to be at distance δ from

the vertex O, in such a way that ζ belongs to the i-th edge with probability pi.
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Using Corollary 4.1, the proof of Theorem 2.4 is the same as that of the

intermediate time case in Section 3.2.

4.2 The averaging principle on the short time scales

4.2.1 Convergence to the limit

Let Ȳ µε,ε
t = Γε(Zµε,ε

t ). In order to prove Theorem 2.2, we will show that the

unique weak limit point of Ȳ µε,ε is the solution of the martingale problem of the

operator A. The proof is very similar to the verification of the original averaging

principle in [3] and we follow the approach presented in [24].

Let Ȳ x,ε = Ȳ δx,ε.

Theorem 4.2. Let A be the generator of a diffusion on Ḡ (as defined in Chapter

2) and Ψ ⊆ D(A) be a set that separates measures on Ḡ. Also, let D be a subset of

D(A) large enough such that Ψ ⊆ (λ−A)(D) for every λ > 0. Assume that for any

f ∈ D, T > 0, K ⊆ Ḡ compact and any η > 0, we have

sup
x∈(Γ̄ε)−1(K)

∣∣∣∣Ef(Ȳ x,ε
T )− f(Γ̄ε(x))−

∫ T

0

Af(Ȳ x,ε
t )dt

∣∣∣∣→ 0 (4.2)

as ε → 0. Then, if the family {Ȳ µε,ε}ε∈(0,ε0] is tight, Ȳ µε,ε(t) converges weakly

in C([0,∞), Ḡ) to the unique solution of the martingale problem associated to the

operator A and the initial measure ν.

As in the case of the corresponding result of Freidlin and Wentzell [3], this

result can be proved using tightness, the strong Markov property and by taking
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Ψ = ∩ni=1C2
b (Ii)∩Cb(G) and D = ∩ni=1C4

b (Ii)∩D(A). As the verification is completely

analogous, we omit the proof.

Tightness will be proved in Section 4.2.4, the rest of this section is devoted to

proving (4.2). It is clear that it suffices to show this with K = {d(O, y) ≤ H0} for

some H0.

We first state several lemmas needed in the proof of (4.2) the first of which

tells us that the process does not wander too far into the cell interior over any finite

time interval. It will be proved in Section 4.2.4.

Lemma 4.2. For every η > 0, T > 0, and H0 > 0, there is a constant H1 > 0 and

ε0 > 0 such that we have

sup
|H(x)|≤εα/2H0

P

(
sup
t∈[0,T ]

|H(Zx,ε
t )| ≥ εα/2H1

)
< η (4.3)

whenever ε < ε0.

Let H1 > 0 and λx,εH1
be the first time Zx,ε

t reaches the set

γ(εα/2H1) = {H(z) = εα/2H1}.

Then (4.3) can be reformulated as

sup
|H(x)|≤εα/2H0

P
(
λx,εH1
≤ T

)
< η (4.4)

Let β ∈ (α/2, α ∧ 1/2), and let γ̄k = γk(ε
β) = γ(εβ) ∩ Uk. Define γ̄ = ∪kγ̄k =

γ(εβ). This is a level set that is farther from L than the typical fluctuation of H(Zx,ε
t )

in finite time, but close enough so that the process will make infinitely many travels

between γ̄ and L. Let τx,ε be the first time when Zx,ε
t reaches γ̄ and κx,ε when it
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first reaches L. The following lemma gives us estimates on the expectation of these

stopping times.

Lemma 4.3. For sufficiently small ε, we have

sup
x∈L

Eτx,ε ≤ ε2β−α. (4.5)

Moreover, for every H0 > 0, there is a K ∈ (0,∞) such that

sup
|H(x)|≤εα/2H0

Eλx,εH0
< K (4.6)

for sufficiently small ε.

Here, (4.6) follows from Lemma 4.4 [6] by the appropriate time change. Simi-

larly, (4.5) follows Lemma 4.2 in [6]. It also follows from Lemma 4.4 in [6] that

sup
x∈γ̄

Eκx,ε = k1
εβ−α

log ε
(1 + o(1)). (4.7)

However, this formula blows up and therefore is of limited use in this case.

The following estimate is singled out as a separate lemma as it does not im-

mediately follow from the previous literature and will be proved.

Lemma 4.4. For any H0 > 0 and small enough ε,

sup
x∈γ̄

Eκx,ε ∧ λx,εH0
= O(εβ−α/2)

Using κ and τ , we can define the following sequence of stopping times κx,ε0 = 0,

τx,ε1 = τx,ε, and inductively define

τx,εn = inf{t > κx,εn−1 : Zx,ε
t ∈ γ̄}, κx,εn = inf{t > τn : Zx,ε

t ∈ L}.
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From here therein, we adopt the convention of only writing the indices referring to

x, ε only once whenever these stopping times are involved in a more complicated

formula. Using these times, we can define the discrete time Markov chains ξ1
n =

Zx,ε(τn) and ξ2
n = Zx,ε(κn) with state space γ and L respectively. We denote the

transition operators by P ε
1 (x, dy) and P ε

2 (x, dy) respectively.

Lemma 4.5. There exists a c ∈ (0, 1), ε0 > 0, n0 > 0 and probability measures νεL

and νεγ on L and γ̄ respectively such that

sup
x∈γ̄

dTV ((P ε
1 )n(x, dy), νεγ̄(dy)) ≤ cn, sup

x∈L
dTV ((P ε

2 )n(x, dy), νεL(dy)) ≤ cn (4.8)

where dTV is the total variation distance.

The proof of this result is completely analogous to the one presented in Section

7 of [24]. It is also true that there is a constant c such that

lim
ε↓0

νεγ̄(γk) = cαi (4.9)

We will estimate contributions to (4.2) of three different types: until the first

hitting of γ̄, on intervals [τx,εi , κx,εi ] (downcrossings), and on intervals [κx,εi , τx,εi+1] (up-

crossings). This is acheived by the following lemma, which will be proved in Section

4.2.3.

Lemma 4.6. For any f ∈ D, we have that the following estimates hold as ε ↓ 0 for

H0 > 0.

1.

sup
εα/2|H(x)|≤H0

∣∣∣∣∣E
[
f(Ȳ x,ε

τ∧λx,εH0

)− f(Γε(x))−
∫ τx,ε∧λx,εH0

0

Af(Ȳ x,ε
s )ds

]∣∣∣∣∣→ 0 (4.10)
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2.

sup
x∈γ̄

∣∣∣∣∣E
[
f(Ȳ x,ε

κ∧λH0
)− f(Γε(x))−

∫ κx,ε∧λx,εH0

0

Af(Ȳ x,ε
s )ds

]∣∣∣∣∣ = o
(
εβ−α/2

)
(4.11)

3. ∣∣∣∣E [f(Ȳ νL,ε
τ )− f(Ȳ νL,ε

0 )−
∫ τνL,ε

0

Af(Ȳ νL,ε
s )ds

]∣∣∣∣ = o
(
εβ−α/2

)
(4.12)

Finally, we need to have control over the number of these transitions between

L and γ̄ which we can acheive by the following Lemma also proved in Section 4.2.3.

Lemma 4.7. There is a constant r > 0, such that for all sufficiently small ε, we

have

sup
x∈γ̄

Ee−κ
x,ε ≤ 1− rεβ−α/2

Moreover, by the Markov property, we have

sup
εα/2|H(x)|≤H0

Ee−κ
x,ε
n ≤

(
1− rεβ−α/2

)n
(4.13)

Proof of (4.2). Let f ∈ D, T > 0, and η > 0 fixed. We will argue that whenever ε

is sufficiently small, the supremum on the left hand side of (4.2) is less than η.

First we want to exclude the possibility that the process can wander too far

into the cell interior. More precisely, the difference of (4.2) and

sup
|H(x)|≤εα/2H0

∣∣∣∣∣Ef(Ȳ x,ε
T∧λH1

)− f(Γε(x))−
∫ T∧λx,εH1

0

Af(Ȳ x,ε
t )dt

∣∣∣∣∣ (4.14)

is less than

(||f ||+ T ||Af ||) sup
|H(x)|≤εα/2H0

P(λx,εH1
≤ T )

which can be made η/10 by (4.4). Therefore, it remains to prove (4.14).
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Let τ̃x,ε be the first stopping time τx,εn that is larger than T ∧ λx,εH1
, meaning

τ̃x,εH1
= ( min

n:τn≥T
τx,εn ) ∧ λx,εH1

If we replace T ∧ λx,εH1
in (4.14) by τ̃x,εH1

, the error we make can be estimated using

the strong Markov property of Zx,ε
t at time T ∧ λx,εH1

as∣∣∣∣∣E
[
f(Ȳ x,ε

τ̃H1
)− f(Ȳ x,ε

T∧λH1
))−

∫ τ̃x,ε

T∧λx,εH1

Af(Ȳ x,ε
t )dt

]∣∣∣∣∣ ≤
≤ sup
|H(x)|≤εα/2H1

∣∣∣∣∣E
[
f(Ȳ x,ε

τ∧λx,εH1

)− f(Γε(x))−
∫ τx,ε∧λx,εH1

0

Af(Ȳ x,ε
t )dt

]∣∣∣∣∣ .
This is less than η/10 for every |H(x)| ≤ εα/2H0 by (4.10). Therefore, it remains to

prove

sup
|H(x)|≤εα/2H0

∣∣∣∣∣Ef(Ȳ x,ε
τ̃H1

)− f(Γε(x))−
∫ τ̃x,εH1

0

Af(Ȳ x,ε
t )dt

∣∣∣∣∣ ≤ 4η

5
.

We will acheive this by breaking up the interval [0, τ̃H1 ] into what happens

before the process first reaches γ̄, and the successive series of downcrossings and

upcrossings afterwards. More precisely,

E

[
f(Ȳ x,ε

τ̃H1
)− f(Γε(x))−

∫ τ̃x,εH1

0

Af(Ȳ x,ε
t )dt

]
=

= E

[
f(Ȳ x,ε

τ∧λH1
)− f(Γε(x))−

∫ τx,ε∧λx,εH1

0

Af(Ȳ x,ε
t )dt

]
+

+
∞∑
n=1

Eχ{τx,εn <τ̃x,εH1
}E

[
f(Ȳ y,ε

κ∧λH1
)− f(Γε(y))−

∫ κy,ε∧λy,εH1

0

Af(Ȳ y,ε
t )dt

]
y=Zx,ετn

+

+
∞∑
n=1

Eχ{κx,εn <τ̃x,εH1
}E

[
f(Ȳ y,ε

τ )− f(Γε(y))−
∫ τy,ε

0

Af(Ȳ y,ε
t )dt

]
y=Zx,εκn

,

provided that the sums converge absolutely (which follows from the arguments be-

low). The supremum of the first term over the region where |H(x)| ≤ εα/2H0 is less

than η/5 by (4.10) if ε is sufficiently small. To finish the proof, we have to estimate

the two infinite sums.
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Note that by (4.13),

Eχ{τx,εn <τ̃x,εH1
} ≤ Eχ{κx,εn−1<T} ≤ Eχ

{e−κ
x,ε
n−1>e−T }

≤ eT
(
1− rεβ−α/2

)n−1
,

whenever ε is sufficiently small and |H(x)| ≤ εα/2H0. Taking the sum in n leads to

sup
|H(x)|≤εα/2H0

∞∑
n=1

Eχ{τx,εn <τ̃x,ε} ≤ K(r, T )ε−(β−α/2).

On the other hand, 4.11 implies that for sufficiently small ε, we have

sup
x∈γ̄

∣∣∣∣∣E
[
f(Ȳ x,ε

κ∧λH1
)− f(Γε(x))−

∫ κx,ε∧λx,εH1

0

Af(Ȳ x,ε
t )dt

]∣∣∣∣∣ < η

5K
εβ−α/2.

This implies that

sup
|H(x)|≤εα/2H0

∣∣∣∣∣
∞∑
n=1

Eχ{τx,εn <τ̃x,ε}E

[
f(Ȳ y,ε

κ∧λH1
)− f(Γε(y))−

∫ κy,ε∧λH1

0

Af(Ȳ y,ε
t )dt

]
y=Zx,ετn

∣∣∣∣∣ ≤
sup
x∈γ̄

∣∣∣∣∣E
[
f(Ȳ x,ε

κ∧λH1
)− f(Γε(x))−

∫ κx,ε∧λx,εH1

0

Af(Ȳ x,ε
t )dt

]∣∣∣∣∣ sup
|H(x)|≤εα/2H0

∞∑
n=1

Eχ{τx,εn <τ̃x,ε} ≤
η

5
.

The same argument allows us to write

sup
|H(x)|≤εα/2H0

∣∣∣∣∣
∞∑
n=1

Eχ{κx,εn <τ̃x,ε}E

[
f(Ȳ νL,ε

τ )− f(Ȳ νL,ε
0 )−

∫ τνL,ε

0

Af(Ȳ νL,ε
t )dt

]∣∣∣∣∣ < η

5
,

so we are done if we can justify starting from the invariant measure νL in the second

expectation. The absolute value of the difference

∞∑
n=1

Eχ{κx,εn <τ̃x,ε}E

[
f(Ȳ y,ε

τ )− f(Γε(y))−
∫ τy,ε

0

Af(Ȳ y,ε
t )dt

]
y=Zx,εκn

−

−
∞∑
n=1

Eχ{κx,εn <τ̃x,ε}E

[
f(Ȳ νL,ε

τ )− f(Ȳ νL,ε
0 )−

∫ τνL,ε

0

Af(Ȳ νL,ε
t )dt

]
can be bounded from above by

sup
x∈L

∣∣∣∣E [f(Ȳ x,ε
τ )− f(Γε(x))−

∫ τx,ε

0

Af(Ȳ x,ε
t )dt

]∣∣∣∣ ∞∑
n=1

sup
x∈L

dTV ((P ε
2 )n(x, dy), νεL(dy))

which is less than η/5 for small enough ε by (4.10) and (4.8). This finishes the

proof.
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4.2.2 Logarithmic decay of the averaged diffusion coefficient

In this section, we are going to prove the following lemma which captures the

inverse logarithmic decay of the averaged diffusion coefficient given by Theorem 2.1

near the separatrix.

Lemma 4.8. Let Ci = a(i, z) from (2.1) Then for every H0 > 0, every smooth

g : R2 → R with supt∈[0,∞) g(t, x) <∞ for each x ∈ R, there is an ε0 > 0 such that

1.

E

∫ κx,ε∧λx,εH0

0

g(s, ε−α/2H(Zx,ε
t ))

[α
2
| log ε||∇H(Zx,ε

s )|2 − Ci(x)

]
ds = o(εβ−α/2).

(4.15)

uniformly for all x ∈ γ̄,

2.

E

∫ τx,ε∧λx,εH0

0

g(s, ε−α/2H(Zx,ε
t ))

[α
2
| log ε||∇H(Zx,ε

s )|2 − Ci(x)

]
ds = o(1).

(4.16)

uniformly in |H(x)| ∈ [εβ, H0ε
α/2],

whenever ε < ε0.

Proof. We sketch the proof of the first part, the verification of the second statement

is similar. Let xεt(x) be the solution of the deterministic equation

ẋε = εα−1| log ε|∇⊥H(xε) xεt(x) = x
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and let T ε(x) = inf{t > 0 : xεt(x) = x}. It is not hard to verify that if H(x) = εγ,∣∣∣∣∣
∫ T ε(x)

0

g(t0 + t, ε−α/2H(xt))
[α

2
| log ε||∇H(xt)|2 − Ci

]
dt

∣∣∣∣∣ ≤ CT ε(x)

∣∣∣∣ α2γ − 1

∣∣∣∣ ,
for any t0 > 0. Using that T ε(x) = cγε1−α(1 + o(1)) for H(x) = εγ, which follows

from the Hamiltonian nature of the system, and Lemma 3.3 of [24], a similar bound

can be shown to hold for the process Zx,ε, namely∣∣∣∣∣E
∫ T ε(x)

0

g(t0 + t, ε−α/2H(Zx,ε
t ))

[α
2
| log ε||∇H(Zx,ε

t )|2 − Ci
]
dt

∣∣∣∣∣ ≤ CT ε(x)

∣∣∣∣ α2γ − 1

∣∣∣∣ .
(4.17)

We are going to use (4.17) with γ close enough to α/2. This allows us to conclude

that the contribution to the integral in (4.15) when the process is close to levels of

order εα/2 is much less than the time it spends there.

By Itô’s formula, it is not hard to show that

H(Zx,ε
T ε )−H(x) =

√
ε

∫ T ε(x)

0

∇H(xεs)dWs +O(ε).

The integral has a centered Gaussian distribution with variance∫ T (x)

0

|∇H(xεs)|2ds =

∮
γ(H(x))

|∇H(y)|dl =

∮
∂Uk

|∇H(y)|dl +O(εα/2),

for x ∈ V δ,ε. Consequently, there is a standard normal random variable N such that

H(Zx,ε
T ε )−H(x) =

√
ε

√∮
∂Uk

|∇H(y)|dl · N +O
(
ε

2+α
4

)
N .

Using that

T ε(x) = cε1−α log |H(x)|
log ε

,

an invariance principle suggests that H(Zx,ε
t ) can be approximated by the process

dHε
t = c

√∮
∂Uk

|∇H(y)|dl

√
| log ε|
| log |Hε

t |
dWt.
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with Hε
0 = H(Zx,ε

0 ) up until it exits from Uk ∩ V δ,ε. Let us introduce H̃ε
t = ε−α/2Hε

t

and note that it solves

dH̃ε
t = c

| log ε|
α| log ε|/2 + | log H̃ε

t |
dWt H̃ε

0 = ε−α/2H(Zx,ε
0 ).

It follows from this that for small values of ε, the dynamics is approximately Brow-

nian. Brownian formulas imply that, when H(Zx,ε
0 ), the expected exit time of Zx,ε

t

from Uk ∩ V δ,ε is O(εβ−α/2). Similarly, we can conclude that the time spent by

|H(Zx,ε
t )| in some interval [0, εγ] for any γ > α/2 converges to zero. These two facts

combined with (4.17) imply (4.15).

This lemma also yields the following corollary, which we will need to prove

tightness.

Lemma 4.9. For every H0, T > 0, we have that there is a constand C > 0 and an

ε0 > 0 such that

sup
|H(x)|≤εα/2H0

E

∫ T∧λx,εH1

0

|∇H(Zx,ε
t )|2dt ≤ CT

| log ε|

whenever ε < ε0.

Proof. Let g ≡ 1. For |H(x)| ≤ εα/2H0 and Let τ̃H0 as in, we have

E

∫ T∧λx,εH1

0

|∇H(Zx,ε
t )|2dt ≤ E

∫ τx,ε∧λx,εH0

0

|∇H(Zx,ε
t )|2dt+

+
∞∑
n=1

E

[
χ{τx,εn <τ̃x,εH0

}E

∫ κy,ε∧λy,εH0

0

|∇H(Zx,ε
t )|2dt

]
y=Zx,ετn

+

+
∞∑
n=1

E

[
χ{κx,εn <τ̃x,εH0

}E

∫ τy,ε

0

|∇H(Zx,ε
t )|2dt

]
y=Zx,εκn

.
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It is straightforward to see using Lemma 4.8 that all terms are O(1/| log ε|) times

the expected value of the length of the interval of integration. The claim follows

now in a straightforward way.

Remark 4.1. Note that the assertions of Lemma 4.9 and therefore Lemma 4.9

remain valid if we let H0 depend on ε provided H0(ε) ≤ C| log ε|)) for some C > 0

for small enough ε.

4.2.3 Proof of the necessary estimates

In this section, we prove Lemma 4.4, Lemma 4.7, and Lemma 4.6 relying on

Lemma 4.8.

Proof of Lemma 4.4. We apply Itô’s formula to (ε−α/2H(Zx,ε
t ))2 − Cit at time

t = κx,ε ∧ λx,εH0
and then take expectations with x ∈ γ̄ to get

H2
0 P(λx,εH0

≤ κx,ε)− CiEκx,ε ∧ λx,εH0
= (4.18)

= ε2β−α +

∫ κx,ε∧λx,εH0

0

[α
2
| log ε||∇H(Zx,ε

t )|2 − Ci
]
dt+O(εα/2| log ε|)Eκx,ε ∧ λx,εH0

.

(4.19)

It follows from Lemma 4.3 in [6] that for some c > 0, we have

P(λx,εH0
≤ κx,ε) ≤ 1

H0

εβ−α/2 + cεα/2| log ε| (4.20)

Since α/2 < β < α, this is easily seen to be O(εβ−α/2).

Rearranging (4.18), using (4.20), and (4.15) with g ≡ 0, gives

Eκx,ε ∧ λx,εH0
=

O(εβ−α/2)

Ci +O(εα/2| log ε|)

which proves the claim.
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Proof of Lemma 4.7. Applying Itô-s formula for exp
(
−
√

2
Ciεα

H(Zx,ε
t )− t

)
at time

t = κx,ε∧λx,εH0
and taking expectations gives us, after simple manipulations, that for

x ∈ γ̄

Ee−κ
x,ε∧λx,εH0 = Ee−κ

x,ε∧λx,εH0χ{λx,εH0
≤K}

(
1− ε−

√
2
Ci
H0

)
+ e

−
√

2
Ci
εβ−α/2

+

+ E

∫ κx,ε∧λx,εH0

0

e
−
√

2
Ciε

αH(Zx,εs )−t
[
α

2Ci
| log ε||∇H(Zx,ε

s )|2 − 1

]
dt+O(εα/2| log ε|).

Here, we used that Eκx,ε ∧ λx,εH0
≤ Eλx,εH0

< K for some K > 0 by (4.6). After

elementary manipulations, we see that

Ee−κ
x,ε∧λx,εH0 = e

−
√

2
Ci
εβ−α/2

+

(
1− ε−

√
2
Ci
H0

)
P(λx,ε0 ≤ κx,ε) + o(εβ−α/2)

by β < α and the application of (4.15) with g(s, z) = e−
√

2/Ciz−s. (4.20) implies

that this can be written as

Ee−κ
x,ε∧λx,εH0 = e

−
√

2
Ci
εβ−α/2

+
1− ε−

√
2
Ci
H0

H0

εβ−α/2 + o(εβ−α/2).

The result follows from this formula by elementary considerations using that the

function x−1(1 − e−x) is strictly between 0 and 1 for every x > 0 and that κx,ε ≥

κx,ε ∧ λx,εH0
.

Proof of Lemma 4.6. Let us prove (4.12) first. By splitting up the expectation of

f(Y νL,ε
τ ) with respect to which edge it belongs to, one can write

E

[
f(Y νL,ε

τ )− f(Ȳ νL,ε
0 )−

∫ τνL,ε

0

Af(Ȳ νL,ε
s )ds

]
=

= εβ−α/2
n∑
i=1

νεL(γ̄i)DiF (0) + ||Af ||Eτx,ε.

The sum in the first term converges to some constant times
∑n

i=1 αiDiF (0) = 0 by

(4.9). On the other hand, the second term is of order ε2β−α by (4.5) which proves

the claim.
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To prove (4.10), note that for |H(x)| ≤ εβ, we have τx,ε ≤ λx,εH0
. Using this and

(4.5), we can write

sup
|H(x)|≤εβ

∣∣∣∣∣E
[
f(Ȳ x,ε

τ∧λH0
)− f(Γε(x))−

∫ τx,ε∧λx,εH0

0

Af(Ȳ x,ε
s )ds

]∣∣∣∣∣ ≤ 2||f ′||εβ−α/2+||Af ||ε2β−α.

We still have to show that (4.10) holds for starting points |H(x)| ∈ [εβ, εα/2H0]. Let

fx(y) = f(y, i(x)). Using Itô’s formula for fx(ε
−α/2H(Zx,ε

t )) at time τx,ε ∧ λx,εH0
and

taking expectations gives for |H(x)| ∈ [εβ, εα/2H0]∣∣∣∣∣E
[
f(Ȳ x,ε

τ∧λH0
)− f(Γε(x))−

∫ τx,ε∧λx,εH0

0

Af(Ȳ x,ε
s )ds

]∣∣∣∣∣ =

=

∣∣∣∣∣E
[
fx(ε

−α/2H(Zx,ε
τ∧λH0

))− fx(Γε(x))−
∫ τx,ε∧λx,εH0

0

Afx(ε−α/2H(Zx,ε
s ))ds

]∣∣∣∣∣ ≤
≤

∣∣∣∣∣E
∫ τx,ε∧λx,εH0

0

1

2
f ′′x (ε−α/2H(x))

[α
2
| log ε||∇H(Zx,ε

s )|2 − Ci
]
ds

∣∣∣∣∣+O(εα/2 log ε)Eλx,εH0
.

Now (4.10) follows from β < α, (4.16) with g(s, z) = f ′′x (z)/2, and (4.6).

The proof of (4.11) is similar to this last case. Again by Itô’s formula and

taking expectations,∣∣∣∣∣E
[
f(Ȳ x,ε

κ∧λH0
)− f(Γε(x))−

∫ κx,ε∧λx,εH0

0

Af(Ȳ x,ε
s )ds

]∣∣∣∣∣ ≤
≤

∣∣∣∣∣E
∫ κx,ε∧λx,εH0

0

1

2
f ′′x (ε−α/2H(x))

[α
2
| log ε||∇H(Zx,ε

s )|2 − Ci
]
ds

∣∣∣∣∣+O(εα/2 log ε)Eλx,εH0
.

Using β < α and (4.6), the last term is o(εβ−α/2). To show that the first term is

also of the same order, we use (4.15) with g(s, z) = f ′′x (z)/2.

4.2.4 Tightness

Lemma 4.10. The family of processes Y µε,ε is tight.
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We will now prove Lemma 4.2 which we recall for convenience.

Lemma 4.11. For every η > 0, T > 0 and H0 > 0, there are H ′0, ε0 > 0 such that

we have

sup
|H(x)|≤εα/2H0

P

(
max
t∈[0,T ]

|H(Zx,ε
t )| ≥ εα/2H ′0

)
< η (4.21)

whenever ε < ε0.

Proof. Applying Itô’s formula for H(Zx,ε
t ), we get

ε−α/2H(Zx,ε
t ) =

= ε−α/2H(x) +

√
α log ε

2

∫ t

0

∇H(Zx,ε
s )dWs +

αεα/2 log ε

4

∫ t

0

∆H(Zx,ε
s )ds.

This implies that if ε1 > 0 is such that εα/2 log ε < h for every ε < ε1 and H ′0 >

H0 + α||∆H||h/4 then

sup
|H(x)|≤εα/2H0

P

(
max
t∈[0,T ]

|H(Zx,ε
t )| ≥ εα/2H ′0

)
≤

≤ sup
|H(x)|≤εα/2H0

P

max
t∈[0,T ]

∣∣∣∣∫ t

0

∇H(Zx,ε
s )dWs

∣∣∣∣ ≥
√

2
(
H ′0 −H0 − α||∆H||

4
h
)

√
α| log ε|

 .

holds for every ε < ε1. By the martingale moment inequality and Lemma 4.9, there

is an ε0 such that

sup
|H(x)|≤εα/2H0

P

(
max
t∈[0,T ]

|H(Zx,ε
t )| ≥ εα/2H ′0

)
≤
α| log ε| sup|H(x)|≤εα/2H0

E
∫ T

0
|∇H(Zx,ε

t )|2dt
2(H ′0 −H0 − α||∆H||h

4
)2

(4.22)

We will show that the numerator is bounded as ε ↓ 0 and therefore the lemma

is proved if we choose H ′0 large enough. To do this, let Hε
1 = H2| log ε| for some

H2 > 0. We can write

E

∫ T

0

|∇H(Zx,ε
t )|2dt ≤ E

∫ T∧λx,ε
H1(ε)

0

|∇H(Zx,ε
t )|2dt+T ||∇H||2P(λx,εH1(ε) ≤ T ). (4.23)
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By the same analysis as the one led to (4.22), we have

sup
|H(x)|≤εα/2H0

P(λx,εH1(ε) ≤ T ) ≤
α| log ε|E

∫ T
0
|∇H(Zx,ε

t )|2dt
2(H2| log ε| −H0 − α||∆H||h

4
)2
≤

≤ αT | log ε|||∇H||2

2(H2| log ε| −H0 − α||∆H||h
4

)2
≤ C

| log ε|
.

Combining (4.22) with this, Lemma 4.9, Remark 4.1, and (4.23) proves the claim.

We are going to use Theorem 2.1 from [23], which is in turn a variant of

Theorem 1.4.6 in [30].

Theorem 4.3. Assume that for every compact K ⊆ Ḡ and sufficiently small ρ,

there is a constant Aρ such that for every a ∈ K, there exists a function faρ on G

such that faρ (a) = 1, faρ (y) = 0 for d(y, a) ≥ ρ, 0 ≤ faρ (y) ≤ 1 everywhere, and

faρ (Y µe,ε(t)) + Aρt is a submartingale for all ε. Then, if (4.21) is also satisfied the

family {Y µε,ε}ε∈(0,ε0] is tight.

Proof of Lemma 4.10. Inspired by the proof of Lemma 3.2 in Chapter 8 of [23],

let h be a smooth function on [0, 1] such that h(0) = 1, h(1) = 0 and 0 ≤ h ≤ 1

everywhere, and define

faρ (y) =


h(5d(y, a)/ρ) if d(a,O) > 2ρ/5

h(5d(y,O)/ρ− 2) if d(a,O) ≤ 2ρ/5

Note that faρ satisfies the requirements in Theorem 4.3.

Also observe that gρ,εa (x) = faρ (Γε(x)) = faρ (ε−α/2H(x)) is twice continuously

differentiable (as h′(0) = h′′(0) = h′(−2) = h′′(−2) = 0) and its gradient is orthog-
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onal to the flow-lines. Therefore by Itô’s formula, we get

faρ (Y µε,ε) = M ε,a(t) +
α

4

∫ t

0

∂yyf
a
ρ (Y µε,ε)|∇H(Zµε,ε)|2 log εds+

+

∫ t

0

∂yf
a
ρ (ε−α/2H(Zε

s))∆H(Zµε,ε)εα/2 log εds,

where M ε,a is a martingale. Note that the integrand in the second term is bounded

for small enough ε by some constant A1
ρ. Using Lemma 4.9, the expectation of

the first integral is also bounded by some A2
ρt. Therefore, by the strong Markov

property,

E[faρ (Y µε,ε(t))|Fs] ≥ faρ (Y µε,ε(s))− (A1
ρ + A2

ρ)(t− s)

As µε ◦ (Γε)−1, Y µε,ε(0) is tight and thus the proof is completed by Theorem

4.3 with Aρ = A1
ρ + A2

ρ.
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Chapter 5: Proofs of the PDE results

5.1 The elliptic problem

Proof of Theorem 2.5. Part 1. By the representation formula,

uε,R(x) = E

∫ τ∂DR (Xx,ε
· )

0

f(Xx,ε
s /R) ds ,

which can be decomposed as

E

∫ τL(Xx,ε
· )

0

f(Xx,ε
s /R)ds+ E

∫ τ∂DR (Xx,ε
· )

τL(Xx,ε
· )

f(Xx,ε
s /R) ds ,

where τL is the first time the process hits the separatrix. The first term can easily

be seen to converge by the averaging principle (Theorem 2.1) to f(0)EτO(Y
Γ(x)
· ),

and thus it remains to show that the second term converges to zero. It suffices to

show that E(τ∂DR(Xx,ε
. )− τL(Xx,ε

. ))→ 0 as ε→ 0.

With a slight abuse of notation, let T be the copy of the domain of period-

icity that contains the origin. Recall that LT is the projection of L on the torus.

Equivalently, we can view it as a set on the plane that is the intersection of L and

T . Thus it is sufficient to show that

sup
x∈LT

Eτ∂DR(Xx,ε
. )→ 0 as ε ↓ 0, R = R(ε) . (5.1)
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We claim that

sup
x∈LT

P(τ∂DR(Xx,ε
· ) > K)→ 0 as ε ↓ 0, R = R(ε) (5.2)

for each K > 0, and that there is ε0 > 0 such that

sup
ε∈(0,ε0]

sup
x∈R2

P(τL(Xx,ε
· ) > 1) < 1 . (5.3)

The latter easily follows from the averaging principle (see [3], Chapter 8), while the

former will be justified below.

Note that

sup
x∈LT

Eτ∂DR(Xx,ε
· ) ≤

∫ ∞
0

sup
x∈LT

P(τ∂DR(Xx,ε
· ) > K) dK .

By (5.2), the integrand tends to zero for each K. Also note that the integrand

decays exponentially in K, uniformly in ε, as follows from (5.2), (5.3), and the

Markov property of the process. This justifies (5.1).

We still need to prove (5.2). For a given value of δ > 0 and all sufficiently

small ε, we have

τ∂DR(Xx,ε
· ) ≤ τB(0,δ)(ε

1/4Xx,ε
· ) ,

where τB(0,δ) is the time to reach the boundary of the ball of radius δ centered at

the origin. By Theorem 2.3,

P(τB(0,δ)(ε
1/4Xx,ε

· ) > K)→ P(τB(0,δ)(W̃
Q
L0
.
) > K) as ε ↓ 0 ,

since the boundary of the event on the right hand side has probability zero. It

remains to note that we can make the right hand side arbitrarily small by choosing
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a sufficiently small δ. This is possible since P(L0
t > 0) = 1 for each t > 0 (as follows

from (3.17) and the elementary properties of the Brownian motion).

Part 2. Let us first assume that f ≥ 0. Observe that for each t > 0 we have

E

∫ τ∂DR (Xx,ε
. )∧t

0

f(R−1Xx,ε
s )ds = E

∫ τ∂D(R−1Xx,ε
. )∧t

0

f
(
R−1Xx,ε

s

)
ds =: EI tf (R

−1Xx,ε
· ).

By Theorem 2.3, the processes R−1Xx,ε
. converge weakly to C−1WQ

L
Γ(x)
·

. Since

I tf is bounded and is continuous almost surely with respect to the measure induced

by C−1WQ

L
Γ(x)
·

, we have

E

∫ τ∂DR (Xx,ε
. )∧t

0

f(Xx,ε
s /R) ds→ E

∫ τ∂D(C−1WQ

L
Γ(x)
·

)∧t

0

f(C−1WQ

L
Γ(x)
s

) ds as ε ↓ 0.

(5.4)

As in the proof of Part 1, we have that P(τ∂DR(Xx,ε
. ) > K) decays exponentially in

K, uniformly in ε, which justifies the fact that we can take t = ∞ in (5.4). The

general case follows by taking f = f+ − f−.

Part 3. The PDE result easily follows from the weak convergence of the

corresponding processes. More precisely, let X̄x,ε
t = R−1(ε)Xx,ε

ε1/2R(ε)2t
. We need to

show that

X̄x,ε
· ⇒ W̃ cQ

. as ε ↓ 0. (5.5)

It follows from [6] that

ε1/4Xx,ε
k·√
k
⇒ W̃D(ε)

· as k →∞, (5.6)

where D(ε) = D0 + o(1) and D0 is a constant multiple of Q. (Strictly speaking,

the result in [6] concerns the finite dimensional distributions, but the generalization

to the functional CLT is standard in this situation.) Moreover, it is not difficult to
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show (by following the proof in [6] and using arguments similar to those in the the

proof of Lemma 3.2) that the convergence is uniform in ε. Therefore, (5.6) implies

(5.5) with cQ = D0.

5.2 The parabolic problem

Proof of Theorem 2.6. Consider first Part 1 and note that

uε,R(x, t) = E

(
Xx,ε
t

R

)
= Ef

(
Xx,ε
t

R

)
χ{t>τL} + f(0)P(τL ≥ t) + o(1)

where the second term on the right hand side converges to f(0)P(τO ≥ t) by Theorem

2.1. To show that the first term converges to zero, we can clearly assume without

loss of generality that x ∈ L. Pick an η > 0. Then, as f vanishes at infinity, there

exists a K > 0 such that |f(x)| < η/2 whenever |x| > K. With this, we can write

Ef

(
Xx,ε
t

R

)
χ{t>τL} ≤

η

2
+ ||f ||∞P(Xx,ε

t ≤ KR).

For any δ > 0, we have ε1/4R < δ if ε is small enough. For such an ε, we have

P(Xx,ε
t ≤ KR) ≤ P(|ε1/4Xx,ε

t | < Kδ)→ P(W̃Q

LOt
< Kδ)

as ε ↓ 0 by Theorem 2.3. Since P (LOt > 0) = 1 for each t > 0, the right hand side

can be made less than η/2 by choosing δ small enough. Since η was arbitrary, the

result follows.

Part 2 is proved easily by noticing that Theorem 2.3 and the fact that f is

continuous and bounded implies

uε,R(x, t) = Ef

(
Xx,ε
t

R

)
= Ef

(
ε1/4Xx,ε

t

ε1/4R

)
→ Ef

(
W

Q/C2

L
Γ(x)
t

)
.

Part 3 follows similarly from (5.5) and then referring to Remark 2.1.
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