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This thesis considers the possible limit behaviors of a strong Hamiltonian
cellular flow that is subjected to a Brownian stochastic perturbation.

Three possible limits are identified. When long timescales are considered, the
limit behavior is described by classical homogenization theory. In the intermediate
(finite) time case, it is shown that the limit behavior is anomalously diffusive. This
means that the limit is given by a Brownian motion that is time changed by the
local time of a process on the graph which is associated with the structure of the
unperturbed flow lines (Reeb graph) that one obtains by Freidlin-Wentzell type
averaging. Finally, we consider the case when the motion starts close to, or on,
the cell boundary and derive a limit for the displacement on timescales of order
where o € (0,1) (modulo a logarithmic correction to compensate for the slowdown
of the flow near the saddle points of the Hamiltonian). The latter two cases are
novel results obtained by the author and his collaborators ( [1]).

We also consider two applications of the above results to associated partial dif-



ferential equation (PDE) problems. Namely, we study a two-parameter averaging-
homogenization type elliptic boundary value problem and obtain a precise descrip-
tion of the limit behavior of the solution as a function of the parameters using the
well-known stochastic representation. Additionally, we study a similar parabolic

Cauchy problem.
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Chapter 1: Introduction

1.1 Cellular flow

Consider a smooth, periodic and incompressible vector field v in the plane.
It is well-known that there is a smooth function H, called the Hamiltonian or the

stream function, such that
v=V+H = (-0,,H,0,, H).

We assume that v is periodic and let us also assume for simplicity that the period

is one in both directions. This implies that the most general form H can take is
H(z1,22) = Hper(21, 22) + axy + by

where H,., is periodic with period one in both directions. In this thesis, we are
going to consider the case when H itself is periodic (a = b = 0). As a consequence,
the integral of v over the domain of periodicity is zero which means that the vector
field has no overall drift. We will denote this domain of periodicity by 7, which can
be viewed as a unit square or, alternatively, as a torus.

Our main additional structural assumption is that the critical points of H
are non-degenerate and that there is a level set of H (say H = 0 without loss of

generality) that contains some of the saddle points and forms a lattice in R?, thus



dividing the plane into bounded sets that are invariant under the flow (see Figure

).

L L L L L L
-3 -2 -1 0 1 2 3

Figure 1.2: A period of the flow

Figure 1.1: A period of the generic with stream function H(zy,z9) =
cellular flow sin(xq) sin(xs)

An example to keep in mind is given by H(xy,zs) = sin(zy)sin(ze) (Figure
1.2). Cellular patterns occur sometimes in nature as well, such as the Rayleigh-
Benard flow that occurs when a thin layer of fluid is heated from below and the
warm liquid on the bottom exchanges places with the cold liquid on the top ( [2]).

We call the family of mappings x — x} defined by the ordinary differential
equation

i =o@}), af=uz

the cellular flow associated to the vector field v.

1.2 Stochastically perturbed cellular flow

It is of primary interest to study how a flow described above behaves under

a small stochastic perturbation which leads to the study of the family of stochastic



differential equations
XS = v(XP9)dt + edW,,  X§f =z (1.1)

on some probability space (€2, F,P), where W, is a two dimensional Brownian mo-
tion. We adopt the notation X*¢ to denote the process with a random initial
condition distributed according to some measure p. This convention will be used
for all the processes appearing in this thesis.

[it turns out, however, that on every finite time interval, the solution of

simply approaches the unperturbed flow.

Theorem 1.1 ( [3] Chapter 1, Theorem 1.2). For any T,n > 0, we have

lim P ( sup | X7° —a¥| > n) =0

el0 te[0,7]

This is not surprising as the qualitative effect of the perurbation is a motion
across the flow lines on a timescale of order ¢!, which is much longer than the order
one natural timescale of the deterministic motion. This means that if we want to
study any non-trivial behavior (e.g. transitions between cells), we need to look at
the process on longer timescales. Hence, we introduce X;*° = X'f/z which leads to

the family of stochastic differential equations
1
dX%5(t) = gv(Xx’E(t))dt + dW, X%%(0) = =. (1.2)

This equation describes the behavior of tracer particles diffusing on the advective
background of a strong flow described above.

The long time behavior of stochastic differential equations (SDE) like
has been studied by stochastic homogenization theory. For example, in [4], Freidlin
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proved that for any e > 0, the diffusively rescaled process X% = XG55,/ R converges
weakly to mW’ , where W' is a two dimensional Brownian motion, and D,
is the effective constant diffusivity matrix. Intuitively, the spatial rescaling can be
thought of as an observer zooming out until the microscopic details of the cellular
flow cannot be seen anymore and, for all intents and purposes, can be replaced by
a homogeneous background. The outline of the proof of this result (presented as

in [5]) is the following: Let x be a periodic vector solution to the cell problem
1 1
—Ax + -vVyx = ——v.
€ €
Applying It6’s formula yields, after some elementary manipulations, that
t/e?
Xpt—w = = [y (X075 ) - x(@)] + 5/ V2 (I 4 VX(X29)) dW,.
0

Since the corrector x is bounded and independent of ¢, the drift term converges
to zero. By the ergodic theorem (note that since the flow is incompressible, the
invariant measure of X;”° is the Lebesgue measure), the quadratic variation of the

diffusion term converges to D.sr(e)t where

Deff(E) = 25i,j + 2/ Vxl(x) . VX](I’)CZJI
T

Lévy’s criterion now implies that the limit process is a Brownian motion with con-
stant diffusion coefficient /D, (e).

The behavior of D.ss(e) when ¢ is small has been extensively studied in the
literature under certain geometric restrictions (see e.g. the references in [5]). For

the generic flow, it has been shown in [6] that there is some matrix Dy such that

Dess(e) = 2Dy + o(1)). (1.3)
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This in turn implies that the variance of X;”* grows like O(t/+/c) when ¢ is large and
e is small. See [6], [7] and the references therein for further information on the long
time behavior, while here we simply mention that these results have a wide variety
of applications ranging from flame propagation to swimming (e.g [§], |9], [10], [11],
12, [13).

In this thesis, our goal is to understand what happens in the small £ limit first
when ¢ is of order one and then on some even shorter timescales of order ¢* with
a € (0,1). In the former case, we obtain a limit theorem as € | 0 provided that X,

1/4 and identify the limiting process as a

is considered on spatial scales of order e~
time changed Brownian motion. The time change arising in the construction of the
limiting process is non-trivial and can be described as the local time of a diffusion
process on a certain graph which we describe in Chapter 2.

On the other hand, the case when time is of order €* might seem trivial at
first glance. Indeed, if the process starts from a generic point inside the cells, it will
simply make a few rotations along the flowlines. However, if it starts close enough
to (or on) the separatrix (also called heteroclinic orbits), some non-trivial movement
is immediately possible. It was found that if we consider X;”° on spatial scales of
order =17/ and time scales of order £*loge (which contains a logarithmic term
to compensate for the slowdown of the deterministic flow around the saddles of H),
the limiting process is once again a time changed Brownian motion. However, the
time change now is arising from the local time of a Brownian motion on a similar

graph as before but with infinite edges.

In both cases, the trajectories are diffusive, but the variance grows slower than



proportional to ¢t. This behavior is called anomalous diffusion and it was conjectured
by W. Young ( [14], [15]). The intuitive reasoning is that the time the process spends
locked inside a cell is essentially wasted in terms of spatial movements. On the other
hand, once the process is close to the separatrix, it can make an excursion involving
many cell changes following a random walk pattern. This suggests Brownian limiting
trajectories, but we need to time-change them with some quantity that keeps track
of how much time the process spends in an active state around the separatrix. The
variance of X;”° over these intermediate and short time scales were shown to be
proportional to /¢ rigorously by G. Iyer and A. Novikov( [5]).

Finally, we remark that it is also known what happens when o« = 1. In
[16], Bakhtin showed that starting from a heteroclinic orbit, the process Xslrlgogdt
converges in distribution in a certain special topology to a process that spends all

the time on the set of saddle points and jumps instantaneously between them along

the heteroclinic trajectories.

1.3 Connection to partial differential equations

Let Dr C R? be obtained from a bounded smooth domain D by stretching it

by a factor R. Consider the elliptic Dirichlet problem
—AE + - C o ——7<—x> i D & | —0 (14)
u”’ vvu”’ 11 u”’ .
2 R R7 BDR Y

where f is a bounded continuous function on D and v is a cellular flow as described
above. For simplicity, assume that D contains the origin. This equation for example

describes the concentration of some particles that are injected at rate f after which



they diffuse on the strong convective background of the cellular flow when this
concentration is kept at zero on the boundary of Dg.

There are two parameters in this problem: & measures the inverse of the
strength of the vector field, while R measures the size of the domain. For fixed
R (for example when Dp coincides with exactly one cell) and ¢ | 0, solution to
becomes constant on stream lines. Indeed, multiplying by ¢ and letting ¢ | 0
formally gives us vVu = 0. The precise values of the asymptotics of the solution on
each streamline are determined by an ODE corresponding to the structure of the
level sets according to classical averaging results |3].

If, on the other hand, ¢ is fixed and R T oo, then the asymptotic behavior of u
can be obtained by homogenization (e.g. [17H19]), i.e., by solving an elliptic problem
on D with appropriately chosen constant coefficients.

It was shown in [20] that averaging and homogenization can also be used
to study the two-parameter asymptotics in certain regimes. Namely, if R*log® R <
¢/(elog? €) for some constant ¢ as 1/, R 1 oo, then averaging theory applies. On the
other hand, if R*~® > 1/¢ for some positive «, then homogenization type behavior
is observed. The methods in [20] are analytic, based on investigating the asymp-
totic behavior of the principal Dirichlet eigenvalue of the elliptic operator, and it
seems unlikely that they can be directly applied near the transition regime. To our
knowledge, only numerical results were available in the intermediate cases [21}22]
up until now.

In this thesis, we study the two-parameter asymptotics using a probabilistic
approach and we prove that the crossover from homogenization to averaging occurs
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when R is precisely of order e /4. In order to achieve this, we study the family of
two dimensional diffusion processes [I.2] and then use the well known representation

formula

ToD p (XF)
) =B [ g R s, (15)
0

where Typ,(w) is the first hitting of the boundary of Dp by the trajectory w €
C([0,T);R?). This is in accordance with the fact that the essence of the averaging
and transition regimes can be captured by the mechanism of the exit of the process
X; from Dp (see [20]). Let us remark that the case of non-zero boundary conditions
can also be studied this way if we complement our results with the ones on the exit
locations in [16].

We will also observe a similar phenomenon in connection with the correspond-

ing parabolic problem
1 1
U ) = SAUR () + (@) Ve t), @ (@,0) = f@/B). (16)

where f is a continuous function that vanishes at infinity. Namely, we are going to
show that R =~ 7'/ is once again when the transition occurs between the averaging

and homogenization regimes using the representation formula

. Xx,&
Sl (x,t) :Ef( ]t% ) :




Chapter 2: The main results

2.1 Diffusions on graphs

In this section, we describe the processes that give rise to the time change
discussed in Section [I.2

It is well-known that there is a graph G naturally associated to the structure
of the level sets of H (see Figure R.1). Namely, let £ = {z € R% H(z) = 0} be the
connected level set of H that contains a periodic array of saddle points, and denote
the corresponding level set on the torus by L. Let A;, fort = 1,...,n, be the saddle
points of H in L7. Then L (or L) is the union of heteroclinic orbits connecting the
A;’s and will be referred to as the separatrix. For notational simplicity, we assume
that there are no homoclinic orbits, i.e. ones that connect a saddle to itself. Also, let
U, for i =1,...,n, be the connected components of 7\ L. (There is no particular
connection between the numbering of the U;’s and that of the A;’s. However, by
Euler’s theorem, there is actually the same number of them). For convenience, we
also assume that there are no saddle points of H inside any U;. The graph G will
then have an interior vertex O and n edges connecting O with the exterior vertices
corresponding to the extrema of H. Every other point on an edge corresponds to

the appropriate connected component of a level curve of |H|. Accordingly, |H| will



serve as a local coordinate on each edge I; which gives G a natural metric structure.
In topology terminology, this is known as the Reeb graph of H.
Define

TG, D)=, H)|) ifcel,

to be the mapping that takes U; into an edge I; of the graph in such a way that the
entire set L+ is mapped into O, the extrema inside each U; are mapped into the
corresponding exterior vertices, and each connected component of a level set of H is
mapped into one point on the corresponding edge of the graph. Note that I' is well
defined as QU C L. Naturally, I' can be extended periodically to the entire plane.

We will refer to a generic point on the graph as y = (i, z) with the identification

Figure 2.1: The graph corresponding to the structure of the level sets of H on T.

It was shown in [3, Chapter 8| that the non-Markovian processes I'(X;™)

converge in distribution, as € | 0, to a diffusion on G. Let us describe this limiting

10



process briefly. On the i¢th edge of the graph, the process is a diffusion with generator

) d
5 12 + b(’taz)aa

where the coefficients are determined by the Hamiltonian. The behavior of the
process at the interior vertex can also be described in terms of H. More precisely,

for a set of constants a; > 0 with """  a; = 1, we can define an operator A on the

domain D(A) that consists of the functions F' that satisfy:

a) F € C(G) and furthermore F' € C?(I;) for each edge i,

b) A;F(z), z € I;, which is defined on the union of the interiors of all the edges,

can be extended to a continuous function on G,

c) Y, 0;D;F(O) = 0, where D,F(O) is the one-sided interior derivative of F

along the edge I;.

We then define the operator A by AF

L = AF

1,- Below, we are going to
write y = (i, z) to refer to a point on G. As shown in [23], A generates a Fellerian
Markov family ;Y on G. With these notations at hand, we can recall the following

theorem also known as the averaging principle.

Theorem 2.1. Freidlin-Wentzell (1994) The measures on C([0,00); G) induced by

the processes I'(X["°) converge weakly to the one induced by the process Ytr(m), pro-

vided

a(i, z) =

. D) = 1 AH(x)
/Mz)’VH( I, (i, 2) 2n<z>L.<z> NG

7

Ti(=)
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1
6= | re

is the period of the unperturbed motion on v;(z). The constants {«;}_, are given by

i = / IV H (2)]dl.
oU;

Note that the classical Freidlin-Wentzell theory requires H(x) — oo as |z| —
0o. Nevertheless, adapting the results for the compact setting on 7 is trivial. For a
recent treatment, see [24] or the more general [25].

For the case when short times are considered, we need a different variant of the
averaging principle. Namely, on timescales of order €*|loge|, the process starting

@/2 away. This suggests

from L7 only has time to wander to a distance of order ¢
that the behavior of e=/2H (X;"°) on these timescales might be non-trivial. Indeed,

let G be a similar graph as G except that G has semi-infinite edges and define the

mapping

7T =G, ) =(,e *?|H@)|) it €Ty,

Also let pf be a family of probability measures on R? such that there is another
probability measure v on G so that the pushforward of y° under I'* converges weakly
to v, i.e.

pfo (Tt =vw
as € | 0. The next theorem, proved in Section [£.2] asserts that the image of the
process X;*°, on the short timescales, converges to a generalized skew-Brownian

motion on G.

12



Theorem 2.2. The measures on C([0,00); Q) induced by the processes T°(Z! )
where Z)° = XH# <w>, converge weakly to the one induced by the process

Y which is a graph diffusion as described above with
a(i, z) = Cj, b(i,z) =0,

where

— . |loge|

and o is as in Theorem [2.1]

It is well-known from the theory of Hamiltonian systems that 7'(z) ~ C|log z|
and therefore the limit in exists and does not depend on «a. Since a(i, z) only
depends on i, we simply have a skew Brownian motion in a generalized sense with
constant diffusivity C; on each edge. We emphasize that Theorem is a new result
that does not trivially follow from Theorem

Recall that our goal is to obtain a quantity that captures the amount of time
X;® spends around L. In both cases, this is exactly the amount of time I'(X;")
(or [¥(X;"%)) spends in a neighborhood of the interior vertex of G (or G). This

motivates the relevance of the following notion.

Definition 2.1. The local time of a diffusion YY° on a graph G is the unique non-

negative random field
LY ={L{"(y) : (t,y) € [0,00) x G}
such that the following hold:

13



1. The mapping (t,y) — L{°(y) is measurable, and L{"(y) is adapted.

2. For each y € G, the mapping t — L{°(y) is non-decreasing and constant on

each open interval where Y;*° # y.

3. For every Borel measurable f : G — [0, 00), we have
¢
| rmais =2 [ joLrwdy  as
0 G

4. L{(y) is almost surely jointly continuous in t and y for y # O, while

n

1) =3 lim_ L(y) .

y—0, yel;

i=1

The existence and uniqueness of local time for diffusions on the real line is
relatively well studied. These standard results, together with a straightforward
modification of the discussion in Section 2 of [26], give the existence and uniqueness
for the local time on the graph. Note that a~!(-) is locally integrable near the

interior vertex in both cases, which is sufficient for the method of [26] to work.

2.2 Main results

We are now ready to state our limit theorems for X;*°. For a positive definite
symmetric matrix ), let V~VtQ be a two dimensional Brownian motion with covariance
matrix Q. Assume that the families of processes Y, and WtQ are independent, and
consider the process Wg,, where LY = LY(O) is the local time of Y} at the interior

vertex.

14



Theorem 2.3. There exists a strictly positive definite matriz () such that the law

of the process e/ X converges, as e | 0, to that of me).
t

We remark that since GG is compact and the interior vertex is accessible, Ytr(x)

is a positively recurrent process. Consequently, the law of large numbers applied to

the additive functional L' implies

LF(if)

—— = (0)

where p is the invariant density of ;¥ which can be obtained as the unique normalized
solution of the adjoint equation A*p = 0. (Strictly speaking, the law of large num-
bers has to be applied to the occupation measure [, LE ) (y)dy = IN X{Ytr(z)eA}dt.)
This means that for large values of ¢, the variance will grow approximately as p(O)t.
On the other hand, after hitting the interior vertex for the first time (which one can
control by solving the appropriate ordinary differential equations corresponding to
A), the graph process will locally have the same path properties as the Brownian
motion. This implies that the expected local time (and hence the variance) will grow
proportionally to v/t establishing the conjectured anomalous diffusion behavior im-
mediately after the hitting of £. This is in accordance with the variance estimates
in [5].

The anomalous diffusion is even more apparent if we zoom in on what happens
after hitting the separatrix for the first time. To study this, it would be enough to
let the process start from the separatrix, but for the sake of generality, we will only
require that this starting point is at distance no more than of order €*/? from L.

This means that on timescales of order €*|log ¢, the separatrix can be reached due

15



to the fluctuations of the noise.

Theorem 2.4. Let the initial point be distributed according to a measure p®, where
pe o (I)~Y converges weakly to some probability measure v on G. If LV is the local
time of Y at the interior vertex, then there exists a strictly positive definite matrix

@ such that the laws of the processes

52 ute <ae°‘|210g 5|t>

converge, as € |} 0, to that of Wgy where WtQ and Y are independent processes.
t

As we mentioned above, the logarithmic correction in the time scale is neces-
sary to compensate for the slow down of the deterministic component around the
saddle points of H.

We remark that if there are only one type of cell, LY simply becomes a constant
multiple of the Brownian local time, and the limit process is the so called fractional
kinetic process of index 1/2 which arises as scaling limits of randomly trapped
random walks with heavy tail trapping times in [27]. The connection is intuitively
explained by noting that the time of an excursion of away from the interior vertex
(when X is trapped inside a cell) is the excursion of a Brownian motion, and its
length is accordingly heavy tailed with index 1/2.

Also note that by well-known Brownian formulas, EL® = ¢/t with some
constant ¢ > 0 which yields a variance for the limit process that is proportional to
V/t for all times. This is once again an anomalous diffusion type behavior, and it is

in accordance with the variance estimates in [5].
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2.3 Implications for partial differential equations

Let us state the results on the partial differential equation problems introduced
in Section starting with the elliptic case .

The rough intuition is as follows: in the averaging regime (¢ < R™%), the
process X, revolves many times close to the flow lines within one cell, but once
the separatrix is reached, the exit from Dpg happens quickly. This follows from
the typical e=%/* fluctuation of the limiting process as the local time immediately
becomes non-zero after the process reaches the boundary.

On the other hand, in the homogenization regime (¢ > R™*), the boundary is
far away, and the process visits the interiors of many cells before the exit from Dg.

) to start growing nearly linearly in ¢,

This gives enough time for the process Lf(x
and therefore an overall Brownian behavior of X, to set in. The mean exit time
becomes infinite in the limit.

In the intermediate transition regime (¢ ~ R™*), the time required to leave

)

Dpg remains finite and is of the same order as the local time, although Ltr(x is not

directly proportional to ¢ in this regime.
We will apply Theorem [2.3]in order to obtain the following asymptotic results

for the solution of equation ((1.4). The precise statement is as follows:
Theorem 2.5. Let ¢ | 0 and R = R(e) 1 oo in (1.4).
1. (Averaging regime) If Re'/* | 0, then

u(z) = f(0) - Ero(Y)

17



where To s the first time when a process on G hits the interior vertexz.

2. (Transition regime) If Re'/* — C € (0, 00), then
ToD B )
UE’R(x) — E/O f < I%/(g > dt ,

with () as in Theorem where Top 1S the first time the process Wfr/gf hits
t

the boundary of D.

3. (Homogenization regime) There is a constant ¢ > 0 such that if Re'/* 1 oo,

then

(V2R (z) - B / TBD FWeQydt (2.2)
0

where WtCQ is a Brownian motion with covariance cQ) and Top is the first time

the process WtCQ hits the boundary of D.

Remark 2.1. Note that there is no x dependence on the right hand side of .
If we scale the problem back to the original domain D and then normalize appropri-
ately, the above result gives us that the limit is the solution of a constant coefficient
Dirichlet problem on D evaluated at the origin. To get the values of this solution at
another point x, we must apply the result to the shifted domain D — x. This way we

can prove that
ToD -
(eV2R?)~\wsR(Rx) — E/ fle+We9) dt as €10, R1 oo,
0

which contains the classical homogenization result. Here Typ is the first time when

the process x + WfQ hits the boundary of D.
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Remark 2.2. Although it is not an aim of the present paper, Theorem can
also be used to derive asymptotics for PDEs with a periodic right hand side. These
techniques are suitable for investigating equations with non-zero boundary data as

well when combined with the results of [10)].

Let us consider next the parabolic problem . We will see once again that
in the averaging regime, the limit of the solution is the solution of an equation that
has one less spatial dimension while in the homogenization regime we obtain an
effective equation that has the same dimensions as the one before taking the limit.

The intuition behind the results is very similar to the elliptic case. In the
averaging regime, reaching the separatrix immediately implies that the process is
of distance O(¢~'/%) from the origin which is much larger than R, and therefore
X/?/R is outside the region where f is significant. On the other hand, in the
homogenization regime, we pick up contributions from the entire life of the process.
After rescaling time and space appropriately, the major contribution comes from
the long time behavior of Wftm) which is simply Brownian. The precise results are

summarised in the next theorem.
Theorem 2.6. Let e | 0 and R = R(¢) 1 oo in (1.4).
1. (Averaging regime) If ReY/* | 0, then
u(z, 1) = f(0) - P (1o (Y > 1)

where To s the first time when a process on G hits the interior vertez.
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2. (Transition regime) If Re'/* — C € (0, 00), then

uE’R(x,t) — Ef(WLQF/(S) ),

with @ as in Theorem[2.3.

3. (Homogenization regime) There is a constant ¢ > 0 such that if Re'/* 1 oo,
then

e V2R2uS (R, e 2 R*) — Bf (z + W) . (2.3)

Remark 2.3. It is not proved strictly speaking, however, it is clear that both in
Theorem and Theorem [2.6, we have ¢ = p(O). Comparing this with (1.3), we

get

Degs(e) = e 2(p(0)Q + o(1)).

In both problems, the transition case is interesting. Formally, it was derived
in [14] and [15] that the corresponding parabolic equation involves a fractional time
derivative of order 1/2. The precise mathematical treatment is a future goal of the

author.
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Chapter 3: Intermediate timescales

3.1 Displacement when the process is near the separatrix

In this section, we study the behavior of the process when it is close to the
separatrix. The process spends most of the time in the interiors of the cells where no
cell changes are possible. However, when the process leaves the cell interior, rapid
displacement occurs along the separatrix. We will show what happens during one
excursion, i.e., between the time when the process hits the separatrix and the time
when it goes back to the interior of the domain (the exact meaning of the latter will
be explained below).

First, we need some notations. For any two saddle points, introduce v(A4;, 4,)
as the set of points in £ that get taken to A; by the flow & = v(z) and to A; by
the flow & = —v(x). Since we assumed that the separatrices do not form loops, we
always have v(A;, A;) = 0.

In a neighborhood of each curve y(A4;, A;), we can consider a smooth coordinate
change (x1,22) — (H,0) defined by the conditions |V0| = |VH| and VO L VH on
(A, A;). This way 6 is defined up to multiplication by —1 and up to an additive
constant.

Let VO = {x € R? : |[H(z)| < 6}. If § is sufficiently small, we can make a
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continuous coordinate change (x1,72) — (H,0) in V° N U,. Here 6 takes values
in [0, [, ov, |VH|dl], with the endpoints of the interval identified, and satisfies the
conditions (a) # is smooth in a neighborhood of v(A4;, A;) for each A;, A; such that
(A, Aj) € Uy, (b) |VO] = |[VH| on v(A;, A;), and (c) 0 is constant on curves
perpendicular to the level sets of H. Note that this way 6 is defined uniquely up
to the curve corresponding to § = 0 and the direction in which 6 increases. Using
these new coordinates, we can define what it means for the process to pass a saddle
point. Namely, let
B(AnUy) ={x e V°NTy : 0(x) =0(A)},  B(A)= |J B(A,Uk).
k:A;€0Uy,
Observe that B(A;,Uy) is a curve in Uy transversal to the flow with an endpoint
being the saddle point A;.
Let 7 : R? — T be the quotient map from the plane to the torus and, for
simplicity, let us denote 7(V°) by V° again. Introduce the stopping times ag’é’f =0,
20 — inf{t > 0 : X™° € £} and recursively define a9 and 5% as follows.

Given 8%°F, find i and j such that 7 (X;f&,s) € v(A;, A;). Then we define

%€ = inf {t > ButF (X)) € U B(Ag) U av6}>
kiti

[T = inf{t > a®% : X € L}.

In other words, a®%¢ is the first time after ﬁ,ff’f that the process either hits 9V?, or

x,0,e *
n—1

goes past a saddle point different from the one behind X;’E
We introduce another pair of sequences of stopping times corresponding to

. .. S 5 5 .
successive visits to £ and V9. Namely, let pg>® = 0, 05> = 37, and recursively
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define

P = inf{t > o™ . X" € 9V}, 0% =inf{t > p>% . XF e L}.
Let
55768 szsés Xzzaésﬂ Z 1’ T;767€ = 0-:;756 /‘1“2567 Z 07
On—1

be the displacement between successive visits to £ and the time spent on the n-th
downcrossing of V?, respectively. We will use the following notion of uniform weak

convergence of probability measures.

Definition 3.1. Given two families of random variables, f*¢ and g, with values
m a metric space M and indexed by a parameter x, we will say that f** converge

to g* in distribution uniformly in x if

Ep(f*) = Ep(g)
as € — 0, uniformly in x for each ¢ € Cp(M).
Let ™% be the random vector with values in {1,...,n} defined by

noof =g if X"”IE(;EEUZ-, i=1,...,n,

i.e., n™%¢ = q if the process ends up in U; after the first upcrossing of V°. The main

result of this section is the following theorem:

Theorem 3.1. There are a 2 X 2 non-degenerate matrixz Q), a vector (p1,...,pn),

and functions a(9), b1(9),...,b,(0) that go to zero as § — 0, such that

(48570 %) = (VO(1+ a(6)VEN(0,Q),n°) (3.1)

23



in distribution as € | 0, uniformly in x € L for all sufficiently small 6 > 0. & is
an exponential random variable with parameter one, N is a two dimensional normal

with covariance matriz Q, independent of &, and n° is a random vector with values

in {1,...,n} independent of & and N such that P(n° = i) = p; + b;(6).

Before proving Theorem let us briefly discuss one implication. Let T%¢ :=
Ty %€ he the time it takes the process starting at  to reach the separatrix. Let TY
be the time it takes the limiting process ;¥ on the graph to reach the vertex O. By
the averaging principle [23], 7%° — TV in distribution uniformly in € 7. This,
together with Theorem and the strong Markov property of the process imply

the following lemma.

Lemma 3.1. For fized m and &, the random vectors

x,0,e _1/4 ox,0e e _1/4 ox,d,e x,0,e _1/4 ox,0,e
(T, YA Spoe Tpoe eVasyos L TE0% !/ gmoe)

» T m—1»

converge, as € | 0, to a random vector with independent components. The limiting
distribution for each of the components e'/4ST%¢ . &1/48%0< s given by Theo-
rem i.e., it is equal to the distribution of V(1 + a(6))vEN(0,Q). The limiting
distribution of Tg’é’g is the distribution of TV®) . The limiting distribution for each
of the components Tf"s’a, e ,Trfl’i’f is equal to the distribution of TC, where  is a

random initial point for the process on the graph, chosen to be at distance § from

the vertex O, in such a way that  belongs to the i-th edge with probability p; + b;(9).

Proof. By the averaging principle ( [23]), Ty 9€ _y TT(® in distribution uniformly

in x € T. The convergence of other components of the random vector to their
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respective limits follows from Theorem [3.1 The independence of the components
of the limiting vector immediately follows from the strong Markov property of the
process X;° and the fact that the convergence in Theorem is uniform with

respect to x. ]

We will prove Theorem by proving a more abstract lemma on Markov
chains with a small probability of termination at each step, and demonstrating that
the conditions of the lemma are satisfied in the situation of Theorem [3.1]

Let M be a metric space which can be written as a disjoint union
M=XUCU...uc,,

where the sets C; are closed. Assume also that X is a o-locally compact separa-
ble subspace, i.e., locally compact that is the union of countably many compact
subspaces. Let p.(z,dy), 0 < e < &% be a family of transition probabilities on M
and let g € Cy(M,R?). Later, p.(x,dy) will come up as transition probabilities of
a certain discrete time process associated to X;”°. We assume that the following

properties hold:

1. po(z,X)=1for all x € M and p.(x,X) =1 for all z € M\ X.

2. po(z,dy) is weakly Feller, meaning the map = — [, f(y)po(z,dy) belongs to

Co(M) if f € Cp(M).
3. There exist bounded continuous functions hy, ..., h, : X — [0,00) such that
e 2p.(z,C;) = hi(z), uniformly in z € K if K C X is compact,
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while sup,c y |e2p-(, C;)| < ¢ for some positive constant ¢. We also have

J(x):=hi(z)+ ...+ hy(z) >0 forx € X. (3.2)

. pe(x,dy) converges weakly to po(z,dy) as ¢ — 0, uniformly in x € K for

K C X compact.

. The transition functions satisfy a strong Doeblin condition uniformly in ¢.
Namely, there exist a probability measure 7 on X, a constant a > 0, and an

integer m > 0 such that
pl(x, A) > an(A) for x € M, Ae B(X), € €[0,e0].

It then follows that for every e, there is a unique invariant measure A*(dy) on
M for p.(z,dy), and the associated Markov chain is uniformly exponentially

mixing, i.e., there are A > 0,¢ > 0, such that

pF(z, A) = X (A)] < ce™ forall z e M, Ae B(M), ¢ €0,

6. The function ¢ is such that fM gdA® =0 for each € € [0, g

Lemma 3.2. Suppose that assumptions 1-6 above are satisfied and let Z,° be the

Markov chain on M starting at x, with transition function p.. Let 7 = 7(x,¢) be

the first time when the chain reaches the set C = Cy U ... UC,. Let e(Z,°) =i if

Zp° € Cy. Then

(02 + ..+ 9(229)),e(22)) = (P, Fo) (33)

in distribution, uniformly in x € X, where F, takes values in R?, F, takes values in

{1,...,n}, and Fy and Fy are independent. The random variable Fy is distributed
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as (&§/ [y Jd)\o)%N(O, Q), where & is exponential with parameter one independent of

N(0,Q) and Q is the matriz such that
(g(Z7°) + ...+ g(Z7°)/)VE = N(0,Q) in distribution as k — oo.
The random variable Fy satisfies P(Fy = 1) = [ hidA\°/ [ JdX°, i =1,... n.

Before we proceed with the proof of Lemma[3.2] let us show that it does indeed

imply Theorem

Proof of Theorem[3.1. Let Lo = L\{A € R? : 7(A) € {A;,i = 1,...,n}}. Define
M = Lo U3V, Let us define a family of transition functions p.(z,dy) on M. For
x € Ly, we define p.(z,dy) as the distribution of X*¢ with 7 = x> A 7%, In
other words, it is the measure induced process that stops when it reaches either the
boundary of V? or the separatrix after passing by a saddle point. For z € 9V?,
let p.(x,dy) coincide with the distribution of X2 with 7 = 2"°¢, i.e., the measure
induced by the process that stops when it reaches the separatrix. Since almost
every trajectory of X;*° that starts outside of the set of saddle points does not
contain saddle points, p. is indeed a stochastic transition function. Let Z,f’a be the
corresponding Markov chain starting at = € M.

While we introduced M as a subset of R?, it is more convenient to keep track
of m(Z,°) and the latest displacement separately. Let p : M — M := w(M) x Z*
map x € M into (7(z), ([z1], [22])), where [z;] and [x5] are the integer parts of the

first and second coordinates of . Define the Markov chain Z,f’a on M via

Zg(z)’s = (m(x),0), Z,Z(x)’e = (@1(21?5)7 902(21::75) - ‘PZ(ZZ;C’—El))’ k> 1.
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Let X = n(Ly) x Z* = (L7\{Ay, ..., An}) x Z? and C; = (m(0V°)NU;) x Z*. Thus
M=XUC,U...UC, as required. The transition functions p.(x,dy) are defined
as the transition functions for the Markov chain Z;°.

For z = (¢,&) € M, define g((q,&)) = & € Z?, which corresponds to the integer
part of the displacement during the last step if the chain is viewed as a process on
R?, where only the integer parts of the initial and end points are counted. From the

22 it follows that ¢y(Z5F) — pa(Z5F,) can only

definition of the stopping times /3
take a finite number of values (roughly speaking, the process X, makes transitions
from one domain of periodicity to a neighboring one or to itself between the times
,f’é’a and ﬁ,ff’f). Therefore, g(Z,:f(x)’E) is bounded almost surely, uniformly in x and
k. Also, it is continuous in the product topology of m(M) x Z2.
The paper [6] contains some detailed results on the behavior of the process
X} near the separatrix. The main idea behind those results is that the process can
be considered in (H,#) coordinates in the vicinity of £. In those coordinates, after
an appropriate re-scaling, the limiting process (as ¢ — 0) is easily identified.

@ with some

Note that in [6], the width of the separatrix region is of order e
aj € (1/4,1/2), while here, it is of width . The results we are about to refer to can
all be easily seen to hold with e* replaced by 4, our current case being simpler.

The existence of the limit of the transition functions p. in the sense of Assump-
tion (4) was justified in [6, Lemma 3.1]. This limit is denoted by py. An explicit
formula for the density of pg was also provided ( [6}, formula (9)]), which implies that
Assumption (2) is satisfied. Observe that the probability of Bf"s’g being less than

x,0,e

w7 tends to one as ¢ | 0 uniformly in € £ by [6, formula (26)]. This implies
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Property (1).

Let us sketch the proof of the Doeblin condition (5). Fix ay, as, ag € y(A;, A;) C
U}, with some Ai, Aj, and Ug. The points are ordered in the direction of the flow
v. Let 4" be the part of v(A;, A;) that lies between ay and as. Let J = {(H,0) €
VPN Uy : e < H<2ye,0=0(a1)}. We can assume that a1, ay, and as are chosen
in such a way that 9 is constant on JJ7'. It is not difficult to show that there is

m > (0 such that
P (02 X7F) = a(x), X{° € J for some ol <t < f2%¢) > ¢ >0

for all x € L. Roughly speaking, this statement means that the process has a positive
chance of going to a particular curve at a distance /¢ from the separatrix, transversal
to the flow lines, prior to passing by m saddle points. This is not surprising since
the motion consists of advection with speed of order 1/e and diffusion of order one.
The proof follows along the same lines as the proof of Lemma 3.1. in [6]. Now the
distribution of ngm has a component with density strictly bounded from below
on v/, uniformly in z € J, as follows from (63) in [24]. This implies the Doeblin
condition for Z;*.

With our definition of g,

/M g(x) dN(z) ( /M Ede)\E(x)>_l:tliglo(EXf’E/t),

where 7% is the random transition time for our Markov chain, and the right hand
side is the effective drift for the original process starting from an arbitrary point z.

Note that limy_.(EX;*/t) = [ v(z)dz = 0, which implies Property (6).

29



Property (3) follows from [6, Lemma 4.1 and Lemma 4.3]. Indeed, the former

x,0,e
1

lemma describes the asymptotics of the distribution of H (Xz’8 ), while the latter
one describes the probability of the process starting at z to exit the boundary
layer before reaching the separatrix, assuming that H(z) is fixed. The two lemmas,
together with the Markov property of the process, imply Property (3). The functions

hi(x) = h{(x) depend on ¢ and can be identified as

h(z) = lime /2P <the process starting at Xzf,(;,E reaches 0V°NU; before reaching £> :

e—0 1

From [6, Lemma 4.1 and Lemma 4.3] (with § now playing the role of ¢*) it follows

that

/Xh;?(g;) d\(x) =67 (p; +b,(8)), i=1,...,n,
where p; > 0 and b;(§) — 0 as 6 — 0. Now Lemma implies that Theorem |3.1
holds with

Q=Q/pr+...+Dn), pi=0i/(D1+...4Dn) -

Finally, let us show that @ is non-degenerate. Assuming by contradiction
that this is not the case, there is a unit vector e € R? such that the function

g = (e, g) : X — R has the property that
(G(Z7°) + ...+ 9(Z%) [VE— 0, (3.4)

in distribution as k — oc. It follows from [ + 9dXo = 0 and from exponential mixing

that the sum

G(z) =) Eg(Z")

k=0

converges in L?(X, \Y).
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Let 2z denote the process which is Z,f’o started from the invariant distribution

Ao- It follows from [28, Thm 11] that under our assumption ({3.4)),
0= EG*(z1) — B([EG(Z7°)]]a=x,)*. (3.5)
By the definition of GG, we have the following identity:

9(zk) = Urt1 + G(z) — Glar41), (3.6)

where Ugy1 = U(zg, 2k11) = G(2k11) — [EG(Z7%)]| o=, - It is straightforward to see
that

EUyy = BG*(2k11) — B([BG(Z)]|o=2,)* = 0

by (3.5). This implies that Uy, = 0 almost everywhere with respect to Ag. Com-

bining this fact with £ = 0 and (3.6)), we get that
g(z) = G(z) — G(Z7")

almost surely for A%-almost all z. Recall that z € X can be written as z = (g, ),
where q € 7(Ly) and £ € Z?. Since 7% does not depend on &, while g(x) = (e, &),

we can write G(z) = G(q) + (e, £) for some function G. Thus
Gla) = G((Z7")") + (e (Z7)7) | (3.7)

where (Z7°)! € w(Ly) and (Z7°)? € Z2. Thus for A%-almost all z, we have G(q) =
G((Z7°)!) almost surely on the event (e, (Z7"°)?) = 0. Let Xy denote the projection
of A% onto 7(Ly). An explicit expression for the density of py (found in formula (9)
of [6]) implies that (Z,f’o)l, k > 1, has density with respect to the Lebesgue measure
on 7(Ly), and the density is bounded from below for sufficiently large k. Therefore
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Ao is equivalent with the Lebesgue measure and the distribution of (Z{"°)! is abso-
lutely continuous with respect to N for each z. Therefore, by the Markov property,
G(q) = G((Z7°)') almost surely on the event (e, (Z{*)?) = ... = (e, (Z7"°)?) = 0,
for A\%-almost all z. For sufficiently large k, the (sub-probability) distribution of
(Z7)! restricted to this event has a positive density with respect to . (The latter
statement is a consequence of the geometry of the flow. Roughly speaking, given two
points on the separatrix that belong to the same cell of periodicity, the process Z,f’o
can go with positive probability from the first point to an arbitrary neighborhood of
the second point without leaving the cell of periodicity.) Therefore, G is Ag-almost
everywhere constant. By (3.7), this implies that (e, (Z{"*)?) = 0 for Ag-almost all
x. Again by the Markov property, (e, (Z,f’o)z) = 0 for Ag-almost all = for each k.
Observe, however, that the process Z,‘f’o starting at an arbitrary point x on the
separatrix, has a positive probability of going to any other cell of periodicity if & is

sufficiently large. This yields a contradiction, and thus ) is non-degenerate. O
Now let us turn to the proof of Lemma [3.2] Let
Q={w=(z,21,...,251) : k>0, x,29,...,2, € X,i € {1,...,n}}

be the space of sequences that start at x € X and end when the sequence enters
C =C1U...UC,, at which point only the index of the set that the sequence enters
is taken into account. The Markov chain Z,° together with the stopping time 7

determine a probability measure u. on €2, namely,

fe(, A Agi) = / / pel, dz)po(z1, dz) - - - pe(wpr, dza)pe (2, C),
Ay A,
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where Ay, ..., Ay € B(X). We introduce another probability measure on € via

Va(xaAb s 7Ak>i) =

:/ e—ﬁ<J<x>+..-+J<wk_1>>ps(“f?dxl)...psmfl’d“”k) (1 — e VT hy(a)
A Ap pe(z, X) Pe(Tp-1, X) J(xg)

where J(z) was defined in . More precisely, we consider a Markov chain Z;° on
the state space X with transition function p.(x,dy) = p-(z,dy)/p:(x, X). We can
adjoin the states {1,...,n} to the space X and assume that at each step the process
may get killed by entering a terminal state i with probability (1 — e~ V&’ (xk))M
i =1,...,n. Let 0 be the number of steps after which the process is killed. To
clarify our notations, let us stress that Z,‘f’s is a conservative Markov chain, and the
killing is expressed through the presence of the random variable o defined on the
same probability space. Then v.(z, Ay,..., Ay, 1) is the probability that the chain
starting at x visits the sets Ay, ..., A; and then enters the terminal state i. With a
slight abuse of notation we can view ¢ as a random variable on 2 as well.

We will prove in Lemma [3.4] that we can replace the measure p with v in a

certain sense. First, however, we need to derive a few properties of Z%¢. Note that

it inherits the strong Doeblin property, which holds uniformly in ¢, i.e.,
pr(x, A) > an(A) for z € X, Ae B(X), € €[0,e].
This implies the uniform exponential mixing, i.e., there are A > 0, ¢ > 0, such that
98z, A) = X¥(A)] < ce™ forall z € X, A e B(X), € €[0,&),

where p, is the transition function for the chain and ) is the invariant measure
associated with the transition function p.(z, A).
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Lemma 3.3. Let g € C,(M,R) satisfy Assumption (6). For each o > 0, we have

/ gd)°
X

for some constant C' and each € € [0, &¢).

< Cel/re (3.8)

Proof. By the exponential mixing,

[ stwit.an - [ s +| [ sittdn - [ )] <ac

for z € X, e € (0,g0]. It is also easy to see by induction that

/X 9(y)pE (x, dy) — /M g(y)pﬁ(l’,dy)' < e\/ek (3.9)

Now we can take k = [¢7%] in these two inequalities, proving (3.8 since [,, g(y)\°(dy) = 0.

]

The last two inequalities of the above proof with g replaced by an arbitrary

bounded continuous function f imply that

/Xf(y)*(dy)—/Mf(y)XE(dy)%0 as e ] 0.

We also know that A\*(M \ X) — 0 and \* = \° as € | 0, as immediately follows
from the properties of p. (the latter statement can be also found in Lemma 2.1

in [6]). Therefore,
/ F)X*(dy) —/ FWA(dy) =0 ase |0,
X X
that is 5\5 = N asel0.

Lemma 3.4. For every § > 0 there is ¢’ > 0 such that for e < &' there is a set ).
with v-(.) > 1 — 0 such that du./dv. € (1 —06,140) on Q..
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Proof. To choose the set )., note that

V(o =k)=E [e—f( (ETo )+t IEED) (1 - 6—\/&1@:’5))] _

Using the law of large numbers for the Markov chain Z%¢ which can be applied
uniformly in € due to the uniform mixing (a consequence of assumption 5.), and

the boundedness of J (a consequence of assumption 3.), we conclude that for every

) <

1 > 0, there is a ky independent of ¢ such that

(‘ '“ZO G =

for k > ko, where J. = [, J(u)dX*(u). Therefore

[a/V/e]

V(0 < a/vE) < 1vf(o < ko) +n+ (1 — e VEsiPuex J(w)) Z e~ VelkJe—kn)
k=ko

Since J. — Jy > 0, and since 7 was arbitrary, we have v*(c < a//e) < §/8 (for
all sufficiently small €) if @ is small enough. Similarly one can show that v*(c >
b/\/€) < /8 if we choose b to be sufficiently large. We set Q! = { /g0 € [a, ]}
Note that v.(Q!) > 1 — /4. Also note that

hi(Z7°)
(75

V(o =k, hi(ar) <) = B [e7VER=0 TE (1 — e VEIED)y o

Using the inequality z7!(1 —e™*) < ¢ for z, ¢ > 0, this is less than or equal to n\/e.

This means that if n > 0 is choosen small enough, then
Ve (Veo € [a,b], hi(z,) < ;i) < §/4n for each i =1,...,n

We set Q2 = U {veo € [a,b], hi(z,) < n;4}.
Fix v > 0 to be specified later. Let Ky C X be a compact set such that
A (X \ Ky) < /3. This is possible by the o-compactness of X. Take an open
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set U C X such that Ky C U and K = U is compact, which is possible by local
compactness of X. Note that \°(X \ U) < v/3. By the weak law of large numbers

(which holds uniformly in & due to the uniform mixing),

e€(0,e0]

N-1
(11 -
sup P (‘N E X{Z;%K}—)\E(X\K) >’y/3) <d/4
J=0

for large enough N. Elementary properties of weak convergence imply
M(X\EK) < M(X\U) <X(X\U)+7/3 < 27/3

for small enough €. This means that the set

o—1
2b
Q? = {\/EU € [CL, b]aZX{xﬁZK} > 7;0} -

=0
/v

C S VEo € [a,b], ) Xpmery = V([b/ Ve +1)
=0

has 1°(Q2) < §/4 if ¢ is sufficiently small.

Similarly, by the ergodic theorem, one can show, by possibly making K larger,
that Q! = {\/e0 € [a,b], 2, ¢ K} has v°(Q2) < §/4 for sufficiently small . There-
fore Q. = QL\ (Q2U Q2 UQ?) has () > 1 4.

Observe that

dpe _ pe(xv X) o 'pa(xk—h X) pg(l'k, CZ) ‘](xk>

. (x,21,...,2k,1) = T T T — e Ty (g) on ..

By the definition of 2}, it suffices to consider k(¢) € [a/+/2,b/+/2]. By the definition
of h; and J, the product of the last two fractions converges to 1 uniformly as ¢ | 0

(here we use the definition of 92, Q% and Assumption (3)). Also note that

k(e)—1
[T ooty ) — e VEDm | =
=0
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k(e)—1 k(e)—1
ST (1= Ve e en) - I oo
=0 =0

Using the fact that | [Ta;—[] b:] <> |ai—b;| when |a;], |b;] < 1 and the boundedness

part of Assumption (3), this is less than or equal to

k(e)—1
1—\/_28 c(z5,Cy) — e V@) <
7=0 =1
k(e)—-1 n
<\/_ZZVL ;) — e p.(x;,Ci)| + o(1)
7j=0 =1

where we used the Taylor expansion of the exponential. Note that by Assumption

(3), we have for small enough ¢ that

k(e)—1 k(e)
2bc
Ve Z |hi($j)—e Y2p. (x5, C; )| < () z:; X{z;¢K} T by < yb(dbc/a + 1),

where the definition of Q2 was used in the last inequality. Since v was arbitrary and

k(e)—1

NG Z J(z;) < neyek(e) < neb,
=0
we have shown that
-1
pe(xj,X)/e_‘ﬁzﬁfglJ(’”j) —1| <9

for small enough e provided that k(e) € [a/+/e,b/\/€], which implies the desired

result. O

Proof of Lemma |3.2. Using Lemma we restate Lemma in terms of the
Markov chain ZZ’E. Note first that we can restrict the function g (originally defined
on M) to the space X at the expense that the average of g is not zero anymore but

satisfies (3.8)) instead.
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Recall that () is the matrix such that
(9(Z7%) + ...+ 9(Zi°) /VEk = N(0,Q)

in distribution as k — oo. Let Q(¢) be such that

(25 + .+ 920~ b /X gd3:) IV = N(0.Q(c)

in distribution as £ — oo. From with £ = 1 and ¢ replaced by an arbitrary
bounded continuous function f on X, it follows that p.(z, dy) =2 po(z, dy) uniformly
in x € K for K C X compact, since we assumed that the same convergence holds
for p.(x,dy). This and the strong Doeblin property for p.(z,dy) easily imply that
Q(e) = Q as ¢ | 0 (this was proved in Lemma 2.1 (c) of [6] under an additional
assumption that f X gdS\‘E = 0, which is now replaced by )

We still have the functions h; defined on X, and we assume that the chain ter-
minates by entering the stated € {1,...,n} with probability (1—e~Ve/@)h,(z)/J(z).
Let o be the time when the chain terminates. Let the random variable € be equal to
1 if the process terminates by entering the state 7. Since the function ¢ is bounded,
omitting one last term in the sum on the left hand side of does not affect the

limiting distribution. Now we can recast (3.3) as follows:

(920 + .+ 9(Z59)),6) = (R, Fo)
in distribution. Fix ¢t € R?. For i € {1,...,n}, we have that

.>:

= B (e E 00056 — i [/ VE] < 0 < [b/VE]) + 0la,bye),

~

B (g(em ST 9(Z708). 5
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where

0(a,b,e)| =

E( (VA9 9(Z0)t). 6= [a/\/_} or o > [Wﬂ)‘
<V (0 < [a/Ve] or o> [b/VE]),

which was shown in the proof of Lemma to converge to zero as a — 0,b — oo
uniformly in €. Let £ be an exponential random variable with parameter one on
some probability space (£, F’, P') independent of the process. By summing over

different possible values of o,

E <€i<€1/4 S5 927, €= ) =d(a,b,e)+ (3.10)
1b/vE) B ot oz v .
g (i <co i)

where we used the definition of v, and the fact that
Plc<é<d)=e(1—e@9), (3.11)

Note that by the law of large numbers, (3.11), and the uniform exponential

mixing property of Z%*,

[b/ ] k—1
By (ZJ (%) <—<ZJ Z“)— Ve M NE N (289 S0 (3.12)
k=la/\/e] 3=0

as € — 0 uniformly in 0 < a < b, where J, = Jx J( w)d\(u) > 0. Note that the fact
that there are O(1/4/¢) terms in the sum is not a problem since the contribution
from each term is O(eg). Observe that h;(z)/J(z) < 1 and therefore the factor

proceeding P’ on the right hand side of (3.10)) is bounded. Therefore, due to (3.12)),

the main term in (3.10)) can be replaced by

[b/Ve] . :
7 5 b (et s i, g
k=[a/+/€]
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Uniform exponential mixing also tells us that there is a constant C' such that

for every 0 < kg < k we have

< Qe Mo

lesk

B () () B ()

(3.14)

It is easy to see that fixing kg > 0, i.e., dropping finitely many terms from the sum

in the exponent in does not change the limit (it only introduces an overall
error term of order g'/4).

Since we have uniform exponential mixing in ¢ for the the transition function

Pe(z, dy) (i.e. for the process Z,f’g), and from the fact that A\* = \°, it follows that

sup — 0, (3.15)

ke([a/ Vel [b/Ve]]

B (m(Z5) = [ hwaw)

as € | 0. Choosing a < 1/4, it follows from (3.8)) that

sup
ke(la/ Vel [b/Vell

E (e%”“ Z?:f°g<2f*5>’t>) ~B (ei@/‘* S5m0 (9027 I gd;g)ﬁ)' =0,

as € | 0. On the other hand, we have the following version of the central limit

theorem:

sup
ke(la/ /e [b/ Vel

— 0,

E <ei<51/4 Zf;fo (g(Z]?vf)_fX gd}5)7t>> . Eei<\/E51/4'N(07Q)7t>

as € | 0, which holds thanks to the uniform strong Doeblin property and the fact

that Q(g) — Q as € | 0.

Combining this with (3.10]), (3.13)), (3.14]), and (3.15]), and using the fact that

je — Jy, we obtain that

lim sup

_ . 0 00 B
B <ei<51/4 Z§:lg(zf,6),t>;é _ z) _ M/ Eei\/g(N(O,Q),wJOe—sJOdS < ce Mo,
el0 0

[ JdA
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Since t and ky were arbitrary, this implies the desired result. O

We close this section by stating a technical lemma that gives us control over

how far away the process wanders during an upcrossing. Its proof relies on the same
. . . k ~ T,

arguments as the proof of Lemma considering the maximum of >, g(Z;™)

until o and using the invariance principle for Markov chains.

Lemma 3.5. For each n > 0, there is o9 > 0 such that

lim sup P(51/4 sup | X[ —z| > 7)) <

el0 cRr2 ogtgaf*“’s

whenever 0 < § < dy.

3.2 Proof of Theorem [2.3

The first step in the proof of Theorem is to show tightness of the family
of measures induced by /4(X7° — ), 0 < e < 1, x € R?2. We will then show the
convergence of one-dimensional distributions. The convergence of finite-dimensional
distributions (and therefore the statement of the theorem) will then follow from the
Markov property.

Define D} ? t0 be the number of downcrossings from level § to 0 by the trajec-
tory of the process Y}¥ up until time ¢, where we start counting after the first visit

to the vertex. Namely, set #3 =0, 70 = inf{t > 0:Y,Y = 0}, and recursively define
00 =inf{t >7° :YY=6}, =inf{t>0:YY=0}, n>1,

where |Y}Y] is the Euclidean distance of Y*¥ from the interior vertex O. Finally, let
DY = sup{n >0:7° < t}.
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Lemma 3.6. We have
lim E[6DY° — LY| = 0
510

for eacht >0 and y € G.

The proof of this result is almost identical to [26, Section 2], the only difference
being the replacement of the condition a(i,y) > ¢ > 0 by the local integrability of
(a(i,y))~? (and hence of (a(i,y))™!) at the interior vertex. As already noted earlier,
this is indeed the case here since our graph process arises from the averaging of a
Hamiltonian, see [3, Chapter 8], so that a=2(i,y) only diverges logarithmically as
y — 0.

For the proof of tightness, we are going to need the following two simple results.

Lemma 3.7. Let Z; be a sequence of independent zero mean variables with a com-
mon distribution Z, such that all the moments are finite. Then there exists a uni-

versal constant C' such that

E|Z,;|1O
KIO )

P(rl/2 max |Z1 + ... + Zin| > K) <C
1<m<l

for all K > 0.

Proof. By taking the 10th power and using Chebyshev’s inequality;,

p (max |Z1 4+ ..o+ 2| > K\/) ——FK max ]Zl +. + Za' . (3.16)

1<

1
K105

Since the Z; are independent centered random variables,

E(Z + ...+ 7)Y Z EZ,... 7, =
11,5810 =1
+ > C(l,mi,...,ms)EZ™ - .. -EZ™,

mi+...4+ms5=10, m;#1
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where |C'(I,mq, ...,ms)| < CI® for some constant C' > 0. By Holder’s inequality, the
sum is bounded by CI°E|Z|'® with a possibly different constant C' > 0. The partial

sums of the Z;-s form a martingale so that, by Doob’s maximal inequality,

10\ Zi+ ...+ 7"
sup (l5E max |Z; + ...+ Zm|10) < <—) sup E ’M < CE|Z|".
>1 1<m<l 9 >1 Vi
The claim now follows at once. O

Lemma 3.8. We have

lim sup E(L?/tY/?)" < oo

t—0

for every n € N.

Proof. By Lemma 2.3 in [26] with F(y) = |y — O] being the distance of y € G from

the interior vertex, we get that

t t
0= [ alile) YO+ [ olits). v s+ I
0 0

By the uniqueness of the Skorokhod-reflection, see e.g. |29, Section 3.6.C|, we have

the representation

L? = max <— /Osa(i(s),YSO) dW, — /Osb(i(s),YsO) ds) : (3.17)

0<s<t
This implies that there is a standard Brownian motion B such that

ION\"™ - t . n
(tl—/g) <C <§I<183§|Bi J3(ali(s) v )y2ds| T 1/2/0 |b(1(3)aYso)’d3) :

and thus the proof is finished by noting that a and b are bounded on the graph. [J

Lemma 3.9. The family of measures induced by the processes {e¥/*(X}° =) }oce<t ver?
18 tight.
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Proof. By the Markov property, it is sufficient to prove that for each > 0 there

are r € (0,1) and gy > 0 such that

P< sup [eV4(XP — z)| > 77) <rnp, (3.18)

0<t<r
for all € < ¢y and = € R?.

Take Z = EN(0,Q) and let Z?, Z3, etc. be independent identically dis-
tributed. Assume that their distribution coincides with the distribution of v/d(1 +
a(6))Z, where a(é) is the same as in the right hand side of (4.1)).

Applying Lemma with K = nk~'/2/4, we see that for a given 1 > 0, there

are ko € (0,1) and §; > 0 such that

P( max |Z8+...+ 25| > 77/4) < k'n/4, (3.19)

1<m<k/é

whenever & € (0,kp) and § € (0,6;). From (3.19) and Lemma it follows that

there is £1(k,d) > 0 such that

P( max eV4SP0° 4 4 §Ese| > n/3> < k'3, (3.20)

1<m<k/é

provided that ¢ < g1(k,d). It is not difficult to see that this estimate and those
below are uniform in x. Combining (3.20) and Lemma 3.5} it now follows that there

is e9(k,d) > 0 such that

P( sup eY4X7°—z| > 77/2) < k'n/2. (3.21)
0st<ofis
provided that € < e5(k, 9).

Note that by Lemma3.6|for a given > 0, we can find r > 0 and § = d(r) > 0
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such that

sup P(DY° > r'/4/8) < sup P(LY > r¥*) + nr /4 < r?B(LY /rY/?)® +r /4 < nr/3
yeG yeG
(3.22)
if 6 < 09, where the second inequality follows from the Chebyshev inequality and

the strong Markov property, while the last inequality follows from Lemma [3.8] As

a consequence of Lemma , we see that there is e5(r, ) such that

P(on% 5 < 7) < P(DE = /4/8) 4 r/6 (3.23)

if e < e3(r,0).

Clearly,

P<Os<1t1£) eV X —2)| > n) < P(a[ﬁ’f}i/é] < r) —I—P( sup eV XTE x| > n>
=T 0<t<oy,
[(r1/4/5)
so that, choosing r > 0 sufficiently small, combining (3.21) with & = r'/4, (3.22),
and (3.23) with 6 < min(dy,d2) and € < min(e(k,d),ea(k,d),e5(r,6)), we obtain

(3.18), which implies tightness. n

For the proof of convergence of one-dimensional distributions, we are going to

need a lemma that is a straightforward consequence of tightness.

Lemma 3.10. Forn > 0 and f € Cy(R?) that is uniformly continuous, we can find

an r > 0 such that

sup. [Ef(V/4(XZE — 1)) — Bf(eV1(X5 — )] <, (3.21)
e€(0,1]

EA(78) — EfWY)| < (3.25)
for each pair of stopping times 7" < 7" that satisfy P(7" > 17"+ 1) <r.
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Proof. By the tightness result above, for each a > 0 we can find r > 0 such that

sup P<51/4 sup |X;° — x| > a) < a.
z€eR? 0<t<r

Using that f is uniformly continuous, we can choose a(n) small enough so that we

can write

E|f(eVY (X2 —2)) — f(eYY(XE —a)| < g +P(EVXES — X5 > a)

,7—//

After conditioning on X and using the strong Markov property, the second term

is seen to be bounded from above by

sup P<51/4 sup | X} —1z)| > a) +P(" =7 >r)<a+r,
z€R? 0<t<r

which finishes the proof of (3.24])) once « and r are chosen to be small enough. The

proof of (3.25)) is similar. O

Let us fix t > 0, f € Cp(R?) uniformly continuous, and 7 > 0. To show the

convergence of one-dimensional distributions, it suffices to prove that
[Bf(4XE7 = 2)) = BF (W)l <n (3.26)

for all sufficiently small e. As we discussed in the introduction, the main contribution
to X;*° (found in the first term on the left hand side of (3.26))) comes from the
excursions between £ and OV, i.e., the upcrossings of V?. Also, the local time in the
second term on the left hand side of can be related to the number of excursions
(i.e., upcrossings) between the interior vertex and the set I'({z : |H(z)| = §}) on
the graph G that happen before time t. These two observations will lead us to the

proof of (3.26)).
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In order to choose an appropriate value for §, we need the following lemma (a

simple generalization of the central limit theorem).

Lemma 3.11. Suppose that Ny are N-valued random variables independent of the
family {Z?} that satisfy ENs < C/§ for some C > 0. Let f € Cy(R?) and let WtQ

be a Brownian motion with covariance @, independent of {Ns}. Then
Ef(Z)+...+Z%,) —Bf(W5,) =0 as 5 10.

Let €°(t) be the (random) time that elapses before the time spent by the

process YV, aside from the upcrossings, equals ¢, i.e.,
o0
Et)=t+> (0N (t) =10 Ne'(t)).
n=1
In other words, we stop a ‘special’ clock every time the process hits the vertex O,
and re-start it once the process reaches the level set {|y| = 6}. Then €°(¢) is the
actual time that elapses when the special clock reaches time ¢t. Let N5 = Nty’6 be
the number of upcrossings of the interval [0, 6] by the process Y¥ prior to time €°(t).
Similarly, let e>¢(¢) be the time that elapses before the time spent by the

process X, aside from the upcrossings, equals t. Let N/ be the number of

upcrossings by the process X, prior to time 65’5(75).

Lemma 3.12. We have e*(t) — t and §(N?° — DY) — 0 in L' as 6 | 0 for each

y e G.

Proof. The first statement implies that most of the time is spent on downcrossings

rather than upcrossings. Its proof is contained in the proof of Lemma 2.2 in [26].
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The second statement follows from the first one together with the Markov property

of the process and Lemmas [3.6) and [3.8 O

From Lemmas B.12] and B.6 it follows that the conditions of Lemma B.11] are

satisfied with our choice of Ns. We can therefore choose g > 0 such that

sup [Ef(Z2) + ...+ vatr(m),a) —Ef (Ws\,m),a) <n/10 (3.27)

yeG

whenever § < dg.

Choose r is such that (3.24) and (3.25) in Lemma hold with 7/10 instead

of . Also, use Lemma and Lemma to choose § < 9§, sufficiently small so

that
Ef (W2 i) —EF (W )| <10 (3.28)

and

PN/ > 6D/ 40y <, P(E(t)>t+7)<r/2.

From the weak convergence of the processes, the latter implies that there is ¢y > 0
such that

P(e®(t) >t +7r) <7

for ¢ < 9. By Lemma these inequalities imply that

B/ (X7, — ) — EfFE (X — )| < /10, (3.29)

and

Ef (ng{mé) ~Ef (Wg}tpw) <n/10. (3.30)

In what follows ¢ is fixed at this value.
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Choose N large enough so that
Ef(Z2 +... + vatr(z),,;) —Ef(Z0+ ...+ Zjvtp(z),éwﬂ <n/10 (3.31)
and by possibly increasing NV, let ¢; > 0 be such that

BFE X, —a) — EfE X =) <n/l0 (332)

ede (t)/\ojc\,";’5

for all e < &;. The latter can be done by noting that by Lemma [3.1] for every a,
one can select an N such that
P02 < (1)) < (3.33)
for every small enough €. Indeed,
P00 < e (t)) = P(TPF 4+ .. + TH0 < 1).

For fixed N and 4, the random variable T 4. + ij,’d’s converges in distribution

to some random variable 73 as ¢ | 0. Choose N large enough so that
P(7y < t) < /2,

which implies (3.33). Both N and ¢ are fixed now.

By Lemma there is £5() > 0 such that
B85 4+ Sﬁfimfm)) ~Ef(Z+ ...+ Z;‘V{(I),éANn <n/10  (3.34)

if ¢ < 5. It it here where we used the fact that the displacements during upcrossings
become independent, in the limit of € | 0, from the times spent on downcrossings.

We also have that there is an €3 > 0 such that

BfE(S5 4+ 4 S;?@WAN)) - Ef(‘fl“(X:;(t)mff@ —2))| <1/10  (3.35)
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for all € < e3.

Collecting (3.29), (3.32)), (3.35)), (3.34), (3.31)), (3.27), (3.30), and (3.28)), we

obtain (3.26)) for ¢ < min{ey, €1, €2, €3}, which completes the proof of Theorem .

]

Remark 3.1. [t is not difficult to show (and it indeed follows from the proof) that

convergence in Theorem [2.5) is uniform in x € R?.
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Chapter 4: Short timescales

4.1 Proof of Theorem [2.4

The idea of the proof is to establish a setup similar to the one we had for the
intermediate time case so that the arguments in Section can be repeated. To do
this, let us define V% = {x € R? : |H(x)| < §2*/2} and consider the (H,#) coordi-
nates in V%*NU}. Once again, 0 € 0, faUk |V H|dl] and the endpoints of the interval
are identified. Using these new coordinates, we can define the relevant quantities
just as in Chapter [3] For the sake of completeness, we repeat this definitions in the

present context.
B(A,Up) ={z € V*NT; : 0(x) =0(A)},  B(A)= |J B(A,Uk).
k:A;€0Uy

Let 7 : R2 — T be the quotient map from the plane to the torus and, for simplicity,
let us denote 7(V%¢) by V%€ again. Let Z° = X% (%) and introduce the

stopping times o2 = 0, B2 = inf{t > 0 : Z"* € £} and recursively define

A€ — inf {t > o0 m(z7 (1) € | B(Ak)uav&f} i (279 (B0F)) € v( Ay, A;)
ki

and B%% = inf{t > a®%¢ : X%*(t) € L}. In other words, a®%¢ is the first time after

ﬁx"s’a that the process either hits V¢, or goes past a saddle point different from

n—1

the one behind Z7=(5%).

n—1
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We introduce another pair of sequences of stopping times corresponding to

successive visits to £ and V¢ Namely, let & = 0, 05 = 2%, and recursively

define
P =inf{t > o™ . Z%5(t) € OV}, 0% =inf{t > u=%° . Z°(t) € L}
Let

x,0,e __ r7x,e( 1,0, T,6( _T,0, r,0,e __ 1,0, x,0,&
S0 = Z%(ap®?) = Z% (o, 0r), n > 1, To% = gp® — ™ n >0,

n—1

be the displacement between successive visits to £ and the time spent on the n-th
downcrossing of V%€, respectively.

Let 7% be the random vector with values in {1,...,n} defined by

77%6’6 — i if Zx,s(ﬂﬂlﬁ,&s) elU;,, 1=1,...,n,

i.e., ®% =i if the process ends up in U; after the first upcrossing of V<.

Our first task is to describe how far Z%¢(t) can travel from L before hitting

V¢ and we do that by adapting Theorem to the current situation.

Theorem 4.1. There is a 2 X 2 non-degenerate matriz Q) and a vector (p1,...,pn)

such that
(51770‘51”"75’5, 7€) = (\OEN(0,Q),n) in distribution as € | 0 (4.1)

uniformly in x € L. Here £ is an exponential random variable with parameter one,
N is a two dimensional normal with covariance matrix QQ, independent of &, and
n is a random vector with values in {1,...,n} independent of & and N such that
P(n=1i)=pi.

52



This is a simple modification of Theorem [3.1] the main difference being that
after reaching B(A4;), the probability of getting absorbed in the cell interior before
1—05)/2.

going back to L is ~ &

It is not hard to deduce the following consequence of Theorem [2.2]

Lemma 4.1. Denote by T the time it takes for Z%(t) to reach the separatriz.
Also let TY be the analogous quantity for YY(t), i.e. the time it takes for YY(t) to

reach the interior vertex O. Then

e—0

TH0e L v
where p€ and v are measures satisfying the requirements of Theorem [2.3

Theorems [4.1] and Lemma [4.1| combined with the strong Markov property

imply

Corollary 4.1. For fized m, the random wvectors
)
pe,be 122 qufde ppfde 122 oufde psbe _1=2 quebe
(T4 "% e Sy 05 T ™ e Sy o8 L. Tk % e x SH%9)

converge, as € | 0, to a random vector with independent components. The limiting

5 _ o
woe L eUm/AGETE s given by

distribution for each of the components e('=)/48
Theorem i.e., it is equal to the distribution of \/EN(0,Q). The limiting dis-
tribution of Ty S0 s the distribution of TV, while the limiting distribution for each
of the components T°F, ... T™%, is equal to the distribution of TC, where ¢ is a

random initial point for the process on the graph, chosen to be at distance & from

the vertex O, in such a way that ¢ belongs to the i-th edge with probability p;.
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Using Corollary [4.1] the proof of Theorem is the same as that of the

intermediate time case in Section B.2

4.2 The averaging principle on the short time scales

4.2.1 Convergence to the limit

Let Y/ = I'°(Z"°). In order to prove Theorem , we will show that the
unique weak limit point of Y#*¢ is the solution of the martingale problem of the
operator A. The proof is very similar to the verification of the original averaging

principle in [3] and we follow the approach presented in [24].

Let ¥5¢ = Y%,

Theorem 4.2. Let A be the generator of a diffusion on G (as defined in Chapter
@) and ¥ C D(A) be a set that separates measures on G. Also, let D be a subset of
D(A) large enough such that W C (A — A)(D) for every A > 0. Assume that for any

feD, T>0,KCG compact and any n > 0, we have

s [BA0F) - 1)~ [ AT 0 (12)

ze(le)~H(K)
as € = 0. Then, if the family {Y" }.c0z is tight, Y*<(t) converges weakly
in C([0,00),G) to the unique solution of the martingale problem associated to the

operator A and the initial measure v.

As in the case of the corresponding result of Freidlin and Wentzell [3], this

result can be proved using tightness, the strong Markov property and by taking
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U =N ,CHL;)NCy(G) and D = N ,Cyt (I;)ND(A). As the verification is completely
analogous, we omit the proof.

Tightness will be proved in Section [£.2.4] the rest of this section is devoted to
proving ([£.2). It is clear that it suffices to show this with K = {d(O,y) < Hy} for
some Hy.

We first state several lemmas needed in the proof of the first of which
tells us that the process does not wander too far into the cell interior over any finite

time interval. It will be proved in Section [4.2.4]

Lemma 4.2. For everyn > 0,17 > 0, and Hy > 0, there is a constant H; > 0 and

go > 0 such that we have

|H(x)|<e*/2H, t€[0,T

sup P ( sup |H(Z")| > 50“/2[—[1) <n (4.3)
whenever € < &g.

Let H; > 0 and A3} be the first time Z;”° reaches the set

Then (4.3)) can be reformulated as

sup PN <T)<n (4.4)
|H () <eo/2Ho
Let 8 € (a/2,a A1/2), and let 5, = () = v(”) N Uy. Define ¥ = Uy, =

v(eP). This is a level set that is farther from £ than the typical fluctuation of H(Z;)

in finite time, but close enough so that the process will make infinitely many travels

)

between ¥ and L. Let 7%¢ be the first time when Z;”° reaches ¥ and x*¢ when it
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first reaches L. The following lemma gives us estimates on the expectation of these

stopping times.
Lemma 4.3. For sufficiently small €, we have

516112 Er®e < g2~ (4.5)

Moreover, for every Hy > 0, there is a K € (0,00) such that

sup  EXNp < K (4.6)
|H(x)|<e*/2H,

for sufficiently small ¢.

Here, (4.6) follows from Lemma 4.4 [6] by the appropriate time change. Simi-

larly, (4.5) follows Lemma 4.2 in [6]. It also follows from Lemma 4.4 in [6] that

gh—a
sup Ex™° =k
zey log e

(1+ o(1)). (4.7)

However, this formula blows up and therefore is of limited use in this case.
The following estimate is singled out as a separate lemma as it does not im-

mediately follow from the previous literature and will be proved.

Lemma 4.4. For any Hy > 0 and small enough ¢,

sup E&™° A N = O(P~/2)
xTEY

Using x and 7, we can define the following sequence of stopping times k5 = 0,

71° = 7%¢ and inductively define
TP = inf{t > k%%, Z5° e q), KPS =inf{t > 7, : Z'° € L}
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From here therein, we adopt the convention of only writing the indices referring to
x, € only once whenever these stopping times are involved in a more complicated
formula. Using these times, we can define the discrete time Markov chains &} =
Z%¢(1,) and &2 = Z®¢(k,) with state space v and L respectively. We denote the

transition operators by Pf(z,dy) and P§(x,dy) respectively.

Lemma 4.5. There exists a ¢ € (0,1), &9 > 0, ng > 0 and probability measures v%

and v5 on L and 7 respectively such that

sup dpy ((P)"(z, dy), v5(dy)) < ", supdry ()" (2, dy), vz(dy)) < " (4.8)

TEY zeL

where dry s the total variation distance.

The proof of this result is completely analogous to the one presented in Section

7 of [24]. It is also true that there is a constant ¢ such that

lin () = o (4.9)

We will estimate contributions to (4.2)) of three different types: until the first

hitting of 7, on intervals [7,"%, k;*°] (downcrossings), and on intervals [«

) Vg

i Tina) (up-

crossings). This is acheived by the following lemma, which will be proved in Section

423

Lemma 4.6. For any f € D, we have that the following estimates hold as e | 0 for

Hy > 0.

AN
sup E Af(YE%)ds|| — 0 (4.10)

/2| H(x)|<Ho

F7250) — @) — |

0
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N
sup | E | F(VE5,, ) — F(T*(x)) - /0 AF(VE)ds| | = 0 (8777) (4.11)

ey

‘E[f(ﬁ”"e)—f(%”"a)— [ anme]| —oeen) )

Finally, we need to have control over the number of these transitions between

L and 4 which we can acheive by the following Lemma also proved in Section 4.2.3|

Lemma 4.7. There is a constant r > 0, such that for all sufficiently small €, we
have

sup Be """ <1 — pefo/?
xrey

Moreover, by the Markov property, we have

sup  Ee ™ < (1 —ref=e/2)" (4.13)
/2| H(x)|<Ho

Proof of . Let fe D, T >0, and n > 0 fixed. We will argue that whenever ¢
is sufficiently small, the supremum on the left hand side of (4.2) is less than 7.
First we want to exclude the possibility that the process can wander too far

into the cell interior. More precisely, the difference of (4.2)) and

B T/\Af{’j B
s (BAVES,, )~ A0 — [ AR @

|H (x)|<e*/2Hy

is less than

A+ TIAFI)  sup  P(XG <T)

|H (z)|<e®/2Ho

which can be made 1/10 by (4.4). Therefore, it remains to prove (4.14)).
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Let 7 be the first stopping time 7°° that is larger than 7' A A}, meaning

~T,E . xT.€ x,E
Ty = (min 7.°°) A Ay
H1 <niTn2T n ) H1

If we replace T'A A3 in (4.14) by 77, the error we make can be estimated using

the strong Markov property of Z;"* at time T'A A} as

F@,E

A0 = S5, 0 = [ Arar

e
TANGS

E <

< sup B

|H (z)|<e>/2H,

) AN )
V) = @) = [ apea

This is less than /10 for every |H(z)| < e*/?Hy by (4.10)). Therefore, it remains to

prove

~T,E
THI

BF(VE0) — f(0°(x) — [ AF(YiE*)dt

0

sup

<
|H (x)|<e*/2Hy 5

We will acheive this by breaking up the interval [0, 7x,| into what happens
before the process first reaches 7, and the successive series of downcrossings and

upcrossings afterwards. More precisely,

E

A0 = 1) = [ AR

AN
=B FV5,) — @) = [ AR +

oo - KYEANGS -
+ ) Bxprreamn B | f(V03,,) — F° () - /O Af (Y5 dt +
n=1

y=2Zz7)

# Y BxpuearaB [ 10729 - ) - [ aseroe]
n=1 -

y=2Z5;

provided that the sums converge absolutely (which follows from the arguments be-
low). The supremum of the first term over the region where |H (z)| < */2Hj is less
than n/5 by if £ is sufficiently small. To finish the proof, we have to estimate
the two infinite sums.
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Note that by (4.13),

—a n—1
EX{TZE ~, 8} < EX{IQZE <T} < EX (1 - Tgﬁ /2) 9

e

whenever ¢ is sufficiently small and |H (z)| < ¢*/2H,. Taking the sum in n leads to

sup ZEX{T“ <rrey < K(r,T)e ~(B=a/2),

| ‘<EO‘/2H0 n=1

On the other hand, implies that for sufficiently small e, we have

sup |E

TEY

RTEANE )
AT~ 1@ = [ A | < Sk

This implies that

kY /\)\H1 B
wp (S Bt [£025,) - ) - [0 asea
|H ‘<5a/2H0 n=1 0
X, Hm’g/\Ag}}‘i \L,E S
sup B | £(V35,,) = FT@) — [ AR ]| sup 3" B <
zey 0 |H (2)|<e*/2Ho ,—y
The same argument allows us to write
00 - - TVLHE B
sup [ Bxgue s B [f(l@”“)—f(%””)— / Af(Yt””)dt]
|H(x)|<e*/2Ho |},—1 0

< igﬁ*a/?

y=27,

Ui
< =,
5}

so we are done if we can justify starting from the invariant measure v, in the second

expectation. The absolute value of the difference

> Bpugecmel B[ F72) — F050) - [ Arr| -
0 y="Z,

n=1
TVLHE

- ZEXW oE [f(Y:ﬂﬂ - rwe - [ Af(Y;’“)dt}

can be bounded from above by

sup
zeL

o 172 - o - [ Az

e 1x6£

ZsupdTV((P) (z, dy), vz (dy))

which is less than 7/5 for small enough ¢ by (4.10) and (4.8). This finishes the

proof.
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4.2.2 Logarithmic decay of the averaged diffusion coefficient

In this section, we are going to prove the following lemma which captures the
inverse logarithmic decay of the averaged diffusion coefficient given by Theorem

near the separatrix.

Lemma 4.8. Let C; = a(i,z) from Then for every Hy > 0, every smooth

g R? = R with supcp ) 9(t, ¥) < 0o for each x € R, there is an 9 > 0 such that

R AN ta
E/ g(s,s_o‘/QH(Zt’ ) §| log 5||VH(Z§’”€)|2 — C’i(x)] ds = 0(5’3_“/2).
0
(4.15)

uniformly for all x € 7,

Tz’s/\/\il’g «
B / o(s, =P H(Z)) [ 2o VH(Z29) — Cign] ds = (1)
0
(4.16)

uniformly in |H(z)| € [°, Hye*/?),
whenever € < gg.

Proof. We sketch the proof of the first part, the verification of the second statement

is similar. Let x¢(z) be the solution of the deterministic equation

i = e* loge| VT H (2f) ri(r)==x
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and let T¢(x) = inf{t > 0 : z5(x) = x}. It is not hard to verify that if H(z) = &7,

(0
— 1

< CT*(x) >

)

7% (2) N
/ glto + 1, H(w)) [ 5 log el VH ()? — €] di
0

for any ¢ty > 0. Using that T¢(x) = cye'~*(1 + o(1)) for H(z) = &7, which follows
from the Hamiltonian nature of the system, and Lemma 3.3 of [24], a similar bound

can be shown to hold for the process Z%¢, namely

T¢(x)
E / glto +t,e 2 H(ZF)) [%HogsHVH(Zf’E)F —ci] dt| < 0T (x)
0

_1‘.
17)

We are going to use (4.17)) with 7 close enough to a/2. This allows us to conclude

@]
2y
(

that the contribution to the integral in (4.15)) when the process is close to levels of
order £€*/? is much less than the time it spends there.

By Ito’s formula, it is not hard to show that

H(Z:E) — H f/TE 22)dW, + Oe).

The integral has a centered Gaussian distribution with variance

T (x)
| wHEPs=§  wH@ = § VHEGE 0,
0 y(H(x)) oU,

for x € V. Consequently, there is a standard normal random variable A/ such that

H(Z75)— H(x) = \/E\/fiw |\VH(y)|dl - N + O <62+Ta> N.

Using that

olog |H (2)]

TE — 1—
(x) =ce loge

an invariance principle suggests that H(Z,”®) can be approximated by the process

| log £|
dHE = ¢ fﬁ|VH diy | 22 qu,.
\/ " og 171"
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with HS = H(Z}®) up until it exits from Uy, NV, Let us introduce Hf = e~ */2H¢

and note that it solves

| log €|

dH: = ¢ —
allogel|/2 + | log Hy|

W,  Hi = *?H(ZY).

It follows from this that for small values of €, the dynamics is approximately Brow-
nian. Brownian formulas imply that, when H(Z;™), the expected exit time of Z;*
from U, N V% is O(£°~%/2). Similarly, we can conclude that the time spent by
|H(Z;°)| in some interval [0,£?] for any v > a/2 converges to zero. These two facts

combined with (4.17)) imply (4.15)).

]

This lemma also yields the following corollary, which we will need to prove

tightness.

Lemma 4.9. For every Hy, T > 0, we have that there is a constand C > 0 and an

go > 0 such that

cT
[Tog <]

TANg;
sup E/ \VH(Z%)|dt <
0

|H(x)|<e*/2Hy

whenever € < gg.

Proof. Let g = 1. For |H(z)| < e*?Hy and Let 74, as in, we have

x,e x,€
TTEANY

TANG, .
E/ \VH(ZP%)Pdt < E/ \VH(Z5%) Pdt+
0 0

0

I RV ANGE
+ 3 E [Xppecnz B /O |VH(Zf’5)|2dt] +
)

+ 2B X B /O

yE

|VH<Z?5>|2dt]
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It is straightforward to see using Lemma that all terms are O(1/|loge|) times
the expected value of the length of the interval of integration. The claim follows

now in a straightforward way. n

Remark 4.1. Note that the assertions of Lemma [{.9 and therefore Lemma [4.9
remain valid if we let Hy depend on e provided Hy(e) < C|logel)) for some C >0

for small enough €.

4.2.3 Proof of the necessary estimates

In this section, we prove Lemma Lemma [£.7] and Lemma [4.6] relying on
Lemma 4.8
Proof of Lemma . We apply Ito’s formula to (e7*/2H(Z7°))? — Cit at time

t = k™ A N, and then take expectations with z € 7 to get

HP(NjE < 6™°) — CEER™ A XY = (4.18)

KTE AN
_ 26 +/ 0 [%| loge||VH(ZP)|? - C’i] dt + O(*/?| log |\ Ex™ A M.
0

(4.19)
It follows from Lemma 4.3 in [6] that for some ¢ > 0, we have
1
P(\5, < w™°) < Feﬂ_"‘ﬂ + ce*?|log €| (4.20)
0
Since a/2 < 3 < a, this is easily seen to be O(e?~%/2).
Rearranging (4.18]), using (4.20)), and (4.15)) with g = 0, gives
(9(6,8—04/2)
Ex™ AN NG =
" Ho = Cy + O(e2/2| log gl
which proves the claim. O
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Proof of Lemma . Applying Ito-s formula for exp (— c sa 2_H(ZM) — t> at time

t = R"S AN , and taking expectations gives us, after simple manipulations, that for

rey
KTE T,e _ /2 _ /2 B—a/2
Ee *""MHo = Ee " AAHOX{)\IE<K} (1 —€ ciHO) +e VG +
QCE/\A?IS H(Zz 6) : o 9 9
+E/ NI log | TH(Z3) — 1| dt + O(=?]loge]).
0 7

Here, we used that Ex™ A A < EXS < K for some K > 0 by (4.6). After

elementary manipulations, we see that

Ee xs/\)\z; — ¢ \/Czigﬁfa/Q n (1 B 8_\/072_110) P()\g,s < /im,z-:) + O(Eﬁia/Z)

by f < « and the application of (4.15) with g(s,z) = e~ 2/Ciz=s (14,20 implies

that this can be written as

Tap  1— e V&
T ANEE — ] 2P — i B _
Ee™™ "o =¢ VG 4 P2 (P,
0

The result follows from this formula by elementary considerations using that the
function z71(1 — e™%) is strictly between 0 and 1 for every z > 0 and that x%¢ >
KPS N XY O
Proof of Lemma . Let us prove first. By splitting up the expectation of

f(Yr==) with respect to which edge it belongs to, one can write

vy €

TVL
B | rree) - 137) - / Af(Te)ds| =
0
= ¢ “/QZV )+ LAF|[Er=.
The sum in the first term converges to some constant times » ., a;D;F'(0) = 0 by

(4.9). On the other hand, the second term is of order 2/~ by (4.5) which proves

the claim.
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To prove (4.10), note that for |H(x)| < e, we have 7 < Xj;°. Using this and

(4.5)), we can write

sup |E < 2| f[[7 ]| AS |2

|H (z)|<ef

) g
FV5,) = £ = [ Aras

We still have to show that (4.10]) holds for starting points |H ()| € [¢7,e%/2H,]. Let
fo(y) = f(y,i(x)). Using It&’s formula for f,(e™*/H(Z,%)) at time 7% A A}; and

taking expectations gives for |H ()| € [¢?, %/ H,)

) AN
B F(725,,) — S0 = [ Areas| | -
TI’E/\)\Z;
~ [B| fle ez, ) - £0%@) - [ Afx(é‘"“/QH(ZZ’E))dS] <
0

+ O(c*?log e)EN,.

IN

‘f'z"f/\)\”z;‘E
B[ e @) [ gl VH(Z)? - 0 ds
0

Now (4.10)) follows from f < «, (4.16) with g(s,z) = f2(z)/2, and (4.6).
The proof of (4.11)) is similar to this last case. Again by Itd’s formula and

taking expectations,

<

) S A
B F5,,) — F@) = [ Aras

<

ﬁz,s/\)\;}’; " a2 a e (2
E —f7(e H(z)) §|1og£\|VH(ZS )= Cil ds
0

51z + O(e*?log e)ENG..

Using 8 < « and (4.6), the last term is o(e®~*/2). To show that the first term is

also of the same order, we use (4.15)) with g(s, z) = f/(z)/2. O

4.2.4 Tightness

Lemma 4.10. The family of processes Y ¢ is tight.
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We will now prove Lemma which we recall for convenience.

Lemma 4.11. For every n > 0,7 > 0 and Hy > 0, there are Hj,e9 > 0 such that
we have
sup P (max |H(Z{)| > sa/zH') n (4.21)
|H(x)|§5a/2H0 tG[OT
whenever € < &g.
Proof. Applying Ito’s formula for H(Z,), we get
O PH(Z) =

1 t a/?l
= e 2 (z) + 4/ 2 ggg/ VH(Zf’a)dWS+#/ AH(Z5)ds.
0 0

This implies that if ¢ > 0 is such that e*/2loge < h for every ¢ < &, and H}, >

Hy + o||AH||h/4 then

sup P <maX |H(Z)| > eo‘/QH’)
te[0,T]

|H(2)|<e*/2Hg
\/§ <H6 — Hy— OCHA4HHh>
< sup P | max / VH(ZY%)
|H (z)|<e2/2Hy t€[0,7] \/a| log €|

holds for every ¢ < ;. By the martingale moment inequality and Lemma[4.9] there

is an g such that

T T,€
> allog el sup, g () <caremy B fy [VH(Z,7)|?dt
of|A
Q(H(/) o HO o I 4H||h)2
(4.22)

sup P (max |H(Z)| > */*H]
|H(@)|<ee/2Ho  \1€I0T]

We will show that the numerator is bounded as € | 0 and therefore the lemma
is proved if we choose H|, large enough. To do this, let Hf = Hs|loge| for some

Hs > 0. We can write
T T/\)\

B / VH(Z5)2dt < B / V|V H(ZE) Pt + TV HIPPON L, < T). (4.23)
0 0
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By the same analysis as the one led to (4.22)), we have

_ ofloge|E [ IV H(Z5%) 2t

sup P\, <T) al[AH[R)> =
4

i<z, O T T 2(Hy|loge| — Ho —

aT|logel||[VH|? . C
~ 2(H,|loge| — Hy — M)Q = |logel|

Combining (4.22)) with this, Lemma Remark [4.1] and (4.23) proves the claim.

]

We are going to use Theorem 2.1 from [23], which is in turn a variant of

Theorem 1.4.6 in [30].

Theorem 4.3. Assume that for every compact K C G and sufficiently small p,
there is a constant A, such that for every a € K, there exists a function f7 on G
such that fi(a) = 1, fi(y) = 0 for d(y,a) > p, 0 < fi(y) < 1 everywhere, and
fo(YH2(t)) + At is a submartingale for all €. Then, if is also satisfied the

Jamily {Y" =} c0,00) is tight.

Proof of Lemma . Inspired by the proof of Lemma 3.2 in Chapter 8 of [23],
let h be a smooth function on [0, 1] such that h(0) = 1, h(1) = 0and 0 < h < 1

everywhere, and define

h(5d(y,a)/p) if d(a,0) > 2p/5
foy) =
h(5d(y,0)/p—2) if d(a,0) <2p/5
Note that f; satisfies the requirements in Theorem 4.3

Also observe that g7<(z) = f3([*(z)) = fg(»s*“/QH(x)) is twice continuously

differentiable (as h'(0) = h”(0) = h'(—2) = h"(—2) = 0) and its gradient is orthog-
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onal to the flow-lines. Therefore by It0’s formula, we get

t
FUYre) = Mo(t) + % / Dyy fo(YH5)|VH(Z" %) * log eds+
0
t
- / Oyfe(e P H(Z2)AH (2" %)e™? log eds,
0
where M is a martingale. Note that the integrand in the second term is bounded

for small enough ¢ by some constant All). Using Lemma , the expectation of

the first integral is also bounded by some Azt. Therefore, by the strong Markov

property,

BIfe (Y =(0)|F] = f(Y"9(s)) — (A, + AD)(t — 5)

As pf o (%)L, Y#9¢(0) is tight and thus the proof is completed by Theorem

[.3 with A, = A} + A2,
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Chapter 5:  Proofs of the PDE results

5.1 The elliptic problem

Proof of Theorem [2.5. Part 1. By the representation formula,
TBDR (X ’ )
) =E [ F(X4/R)ds |
0

which can be decomposed as

TL;(X.QC’E) T@DR(X- ’E)
B[ secemis+e F(X2#/R) ds
0 T,

£(X%)
where 7, is the first time the process hits the separatrix. The first term can easily
be seen to converge by the averaging principle (Theorem to f(0)Ero (Y. ™),
and thus it remains to show that the second term converges to zero. It suffices to
show that E(rop,(X™°) — 7.(X*¢)) - 0 as e — 0.
With a slight abuse of notation, let 7 be the copy of the domain of period-
icity that contains the origin. Recall that £ is the projection of £ on the torus.
Equivalently, we can view it as a set on the plane that is the intersection of £ and

T . Thus it is sufficient to show that

sup Etgp,(X*°) =0 ase |0, R= R(e). (5.1)

zeLT
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We claim that

sup P(1op,(X*°) > K) -0 ase]0, R= R(e) (5.2)

xeLT

for each K > 0, and that there is g > 0 such that

sup sup P(7(X®%)>1) < 1. (5.3)

e€(0,e0] z€R2
The latter easily follows from the averaging principle (see [3], Chapter 8), while the
former will be justified below.

Note that
sup Ergp, (X*F) < / sup P(1op, (X*°) > K)dK .
cELT 0 xeLy

By , the integrand tends to zero for each K. Also note that the integrand
decays exponentially in K, uniformly in ¢, as follows from , , and the
Markov property of the process. This justifies .

We still need to prove . For a given value of § > 0 and all sufficiently
small €, we have

TBDR<X.I’€) < TB(0,5)(€1/4X.$’5) ,

where Tp(gs) is the time to reach the boundary of the ball of radius ¢ centered at

the origin. By Theorem
P(p(04)(e/*X"%) > K) = P(7p05) (W) > K) ase 0,

since the boundary of the event on the right hand side has probability zero. It

remains to note that we can make the right hand side arbitrarily small by choosing
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a sufficiently small §. This is possible since P(L? > 0) = 1 for each t > 0 (as follows
from ([3.17)) and the elementary properties of the Brownian motion).

Part 2. Let us first assume that f > 0. Observe that for each ¢ > 0 we have
ToDp (XTE)AE Top(RTIX™E)AL
E/ f(Rlef’E)ds = E/ f (RleS“) ds =: E[}(R*IX?’E).
0 0

By Theorem the processes R™!X ¢ converge weakly to C_1W§?<I)' Since
I} is bounded and is continuous almost surely with respect to the measure induced

by C’1W§F<w>, we have

oD (XTE)At Tap(CTIW G At
E /O F(X*/R)ds — E /O & f(C*WLQg(z)) ds ase 0.

(5.4)
As in the proof of Part 1, we have that P(7yp, (X*°) > K) decays exponentially in
K, uniformly in e, which justifies the fact that we can take t = oo in . The

general case follows by taking f = f, — f_.
Part 3. The PDE result easily follows from the weak convergence of the
corresponding processes. More precisely, let X = R ()X, Rt We need to

show that

X% = W as e} 0. (5.5)

It follows from [6] that

1/4X£[7E ~
St SN Whe as k — oo, (5.6)
vk
where D(e) = Dy + o(1) and Dy is a constant multiple of (). (Strictly speaking,
the result in [6] concerns the finite dimensional distributions, but the generalization

to the functional CLT is standard in this situation.) Moreover, it is not difficult to
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show (by following the proof in [6] and using arguments similar to those in the the
proof of Lemma that the convergence is uniform in €. Therefore, (5.6 implies
(5.5) with cQ = Dj. O

5.2 The parabolic problem

Proof of Theorem [2.6, Consider first Part 1 and note that

uf(r,t) = E (Xéﬁ) =Ef (ng) X{t>re}y T F0)P(72 > 1) +0(1)

where the second term on the right hand side converges to f(0)P(7o > t) by Theorem
2.1 To show that the first term converges to zero, we can clearly assume without
loss of generality that x € £. Pick an n > 0. Then, as f vanishes at infinity, there

exists a K > 0 such that |f(z)| < n/2 whenever |z| > K. With this, we can write

X~ U ne
B (%5 ) Vs < 3+ IIPOXE < KE)

For any 6 > 0, we have /4R < § if ¢ is small enough. For such an e, we have
P(X/° < KR) < P(|e"*X"| < K6) = P(W, < K¢)

as € | 0 by Theorem . Since P(LY > 0) = 1 for each ¢ > 0, the right hand side
can be made less than 7/2 by choosing ¢ small enough. Since n was arbitrary, the
result follows.

Part 2 is proved easily by noticing that Theorem and the fact that f is

continuous and bounded implies

. XJ?,&‘ 61/4XJ?,8 02
w (1) :Ef( L ) —Ef (ﬁ) o (WLQ{/(I))

Part 3 follows similarly from (5.5) and then referring to Remark . O]
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