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Demographic changes and shared-mobility technology have redefined the urban 

transportation fabric. Bike share, a public short-term bicycle rental program, has emerged 

around the world. Many users find bike share to be a convenient, healthy, and smart 

transportation option that solves first- and last-mile issues. But some are concerned that it 

may challenge existing rail transit systems and reduce ridership. Hence, it is important to 

understand the impacts of a bike share program on rail transit ridership.  

 The Washington metropolitan area lends itself well to studying this topic. Both the 

bike share and rail transit systems in this area, Capital Bikeshare (CaBi) and Metrorail, are 

the largest in the United States. According to the Washington Metropolitan Area Transit 

Authority (WMATA), which operates Metrorail service, CaBi services may challenge 

Metrorail ridership, especially for the short-distance trips. Based on WMATA’s concern, I 

explore whether CaBi substitutes for Metrorail and reduces its ridership. 

An exploratory analysis finds evidence that CaBi can complement Metrorail trips 

in some cases and substitute for rail in others. To estimate CaBi’s impacts more precisely, 



three regression models—the Direct Ridership Model (DRM), the Difference-in-

Difference (DID) model, and the Station-Specific Dummies (SSD) model—were applied.  

The results of the three models consistently demonstrate CaBi’s mixed impacts. 

CaBi may complement some Metrorail trips, but substitute for others, depending on the 

type and time. More importantly, the SSD results found that CaBi’s impacts vary by 

Metrorail station locations, whether a station is a downtown D.C. core station or a non-

core station in peripheral and suburban communities. CaBi reduces core Metrorail station 

ridership by 4,814.4 per month for the number of AM peak exits and by 4,886.9 per month 

for the number of PM peak entries, but increases ridership at non-core stations by up to 

2,781.2 per month, at a high statistical significance level.  

 The finding that CaBi can complement Metrorail ridership is contrary to 

WMATA’s concern that a bike share program poses challenges for Metrorail. Policy 

suggestions are provided to help WMATA maximize the benefits of CaBi’s 

complementary effects.  

 

 

 

 

  



 

 

 

 

 

 

 

ESTIMATING THE IMPACTS OF CAPITAL BIKESHARE ON METRORAIL 

RIDERSHIP IN THE WASHINGTON METROPOLITAN AREA 

 

  

 

by 

 

 

Ting Ma 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 

2017 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Professor Gerrit Jan Knaap, Chair 

Professor Casey Dawkins 

Professor Hiroyuki Iseki 

Dr. Sevgi Erdoğan 

Professor Paul M. Schonfeld 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Ting Ma 

2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



ii 

 

Preface 
This dissertation is submitted for the degree of Doctor of Philosophy at the University of 

Maryland, College Park. The research described herein was conducted under the 

supervision of Professor Gerrit Jan Knaap in the Department of Urban Studies and Planning, 

University of Maryland, between 2012 and 2017. 

 This work is to the best of my knowledge original, except where acknowledgments 

and references are made to previous work. Neither this nor any substantially similar 

dissertation has been or is being submitted for any other degree, diploma or other 

qualification at any other university.  

 An older version of part of this work has been presented in the following 

publications and conferences: 

 

Ting Ma, Chao Liu, and Sevgi Erdoğan. "Bicycle Sharing and Public Transit: Does Capital 

Bikeshare Affect Metrorail Ridership in Washington, DC?"Transportation Research 

Record: Journal of the Transportation Research Board 2534 (2015): 1-9. 

 

Ting Ma, Chao Liu, and Sevgi Erdoğan. "Bicycle Sharing and Transit: Does Capital 

Bikeshare Affect Metrorail Ridership in Washington, DC?"Transportation Research Board 

94th Annual Meeting. No. 15-5660. 2015. 

 

Sevgi Ergodan, Chao Liu, and Ting Ma. “The Effects of Bike Share on Transit Ridership.” 

Transit, Transit-Oriented Development, and Urban Form Symposium. Washington, DC. 

2014. 

 

Ting Ma 

April 2017 

  



iii 

 

Dedication 
A special feeling of gratitude to my loving parents Zhehe Ma and Nianju Chen who raised, 

educated and supported me to reach my potential without any questioning. I also dedicate 

this dissertation to my husband Le An, who has always been by my side through my 

undergraduate, master and Ph.D. study journeys.  

  



iv 

 

Acknowledgements 
During my dissertation period, I received feedback, help, and encouragement from many 

people.  

I thank my academic advisor Dr. Gerrit Knaap at the University of Maryland for 

his excellent guidance through the Ph.D. program and dissertation period. I also appreciate 

his support and help, as well as that of the National Center for Smart Growth Research and 

Education (NCSG), which he directs. During my graduate assistant work at NCSG, I had 

great opportunities to participate several research projects that improved my knowledge 

and skills in urban planning and urban studies.  

I would like to extend my thanks to the amazing faculty members and graduate 

students working together at NCSG: Chao Liu, Sevgi Erdoğan, Casey Dawkins, Hiro Iseki, 

Frederick Ducca, Eli Knaap, Jae Jeon, and Yi Niu. In particular, I would like to thank Chao 

Liu and Sevgi Erdoğan for their support along the way in both my study and life.  

In the summer and fall of 2016, I did two internships with the District Department 

of Transportation. There, I had the opportunity to work on Capital Bikeshare projects, 

particularly analyzing SafeTrack’s impact on Capital Bikeshare ridership. I appreciate the 

great guidance and mentorship of my supervisors, Amanda Stout and John Thomas, and I 

thank Kimberly Lucas for her help with Capital Bikeshare data. I also thank Justin Antos 

at WMATA for helping with Metrorail ridership data. 

  



v 

 

Disclaimer 
The opinions and conclusions expressed or implied in this dissertation are not necessarily 

those of the University of Maryland, College Park, the National Center for Smart Growth 

Research and Education, or the District Department of Transportation.



vi 

 

 

Table of Contents 
 

Preface................................................................................................................................. ii 

Dedication .......................................................................................................................... iii 

Acknowledgements ............................................................................................................ iv 

Disclaimer ........................................................................................................................... v 

Table of Contents ............................................................................................................... vi 

List of Tables ..................................................................................................................... ix 

List of Figures .................................................................................................................... xi 

List of Abbreviations ....................................................................................................... xiii 

Chapter 1: Introduction ....................................................................................................... 1 

1.1 Background ............................................................................................................... 1 

1.2 Research Design ........................................................................................................ 2 

1.3 Outline of Dissertation .............................................................................................. 5 

1.4 Contribution .............................................................................................................. 7 

Chapter 2: Bike Share Programs: A Literature Review .................................................... 10 

2.1 Background ............................................................................................................. 10 

2.2 History ..................................................................................................................... 13 

2.3 Benefits.................................................................................................................... 19 

2.4 Determinants ........................................................................................................... 21 

2.5 Summary ................................................................................................................. 26 

Chapter 3: Study Area ....................................................................................................... 27 

3.1 Washington Metropolitan Area ............................................................................... 27 

3.2 Capital Bikeshare .................................................................................................... 32 

3.2.2 Membership ...................................................................................................... 38 

3.2.3 User Demographics .......................................................................................... 41 

3.2.4 CaBi Trip Analysis ........................................................................................... 45 

3.3 Metrorail .................................................................................................................. 59 

3.3.1 Metrorail Trip Analysis .................................................................................... 64 

3.3.2 Bike Access to Metrorail .................................................................................. 76 

3.4 Summary ................................................................................................................. 79 

Chapter 4: CaBi on Metrorail: Complementary or Substitute? ........................................ 81 

4.1 Microeconomic Theoretical Analysis ..................................................................... 81 



vii 

 

4.2 Empirical Analysis .................................................................................................. 83 

4.2.1 Substitute Effect ............................................................................................... 84 

4.2.2 Complementary Effect ...................................................................................... 87 

4.2.3 CaBi Trips During Metrorail’s SafeTrack ........................................................ 89 

4.3 Literature Review .................................................................................................... 95 

4.4 Summary ................................................................................................................. 99 

Chapter 5: Introduction to Regression Analysis ............................................................. 101 

5.1 Overview of Methods ............................................................................................ 101 

The Direct Ridership Model .................................................................................... 101 

The Difference-in-Difference Model ....................................................................... 103 

The Station-Specific Dummy Analysis ................................................................... 103 

5.2 Overview of Data .................................................................................................. 104 

5.3 Possible Coefficients and Interpretations .............................................................. 107 

Scenario 1 ................................................................................................................ 108 

Scenario 2 ................................................................................................................ 108 

Scenario 3 ................................................................................................................ 110 

Scenario 4 ................................................................................................................ 110 

Scenario 5 ................................................................................................................ 112 

Scenario 6 ................................................................................................................ 112 

Scenario 7 ................................................................................................................ 114 

Scenario 8 ................................................................................................................ 114 

5.4 Summary ............................................................................................................... 116 

Chapter 6: Direct Ridership Model Analysis .................................................................. 117 

6.1 Introduction to the Direct Ridership Model .......................................................... 118 

6.2 Methodology and Data .......................................................................................... 128 

6.3 Results ................................................................................................................... 136 

6.4 Summary ............................................................................................................... 143 

Chapter 7: Difference-in-Difference Analysis ................................................................ 145 

7.1 Standard Difference-in-Difference Model ............................................................ 146 

7.1.1 Equations and Assumptions ............................................................................ 146 

7.1.2 DID in Urban Studies: A Literature Review .................................................. 150 

7.2 Multiple-Groups-and-Multiple-Periods DID: Methodology and Data ................. 153 

7.3 Multiple-Groups-and-Multiple-Periods DID: Results .......................................... 158 

7.4 Summary ............................................................................................................... 163 



viii 

 

Chapter 8: Station-Specific Dummies Analysis ............................................................. 164 

8.1 Methodology and Data .......................................................................................... 164 

8.2 Results ................................................................................................................... 170 

8.2.1 Results of the Regression with mentryam as the Dependent Variable ........... 170 

8.2.2 Results of the Regression with mexitam as the Dependent Variable ............. 173 

8.2.3 Results of the Regression with mentrypm as the Dependent Variable ........... 176 

8.2.4 Results of the Regression with mexitpm as the Dependent Variable ............. 179 

8.3 Summary and Discussion ...................................................................................... 182 

Chapter 9: Summary, Conclusions, and Suggestions ..................................................... 187 

9.1 Summary and Conclusions .................................................................................... 187 

9.2 Policy Suggestions ................................................................................................ 196 

9.3 Further Research ................................................................................................... 202 

Appendices ...................................................................................................................... 205 

Appendix A. Full Descriptive Statistics of the Station-Specific Dummies Model Input

 ..................................................................................................................................... 205 

Appendix B. Full Results of the Station-Specific Dummies Analysis ........................ 209 

Bibliography ................................................................................................................... 217 

 

  



ix 

 

List of Tables 
 

Table 1 Share of Subway and Bicycle Commuters in D.C. vs. the U.S., 2009-2014 ....... 31 

Table 2 Number of CaBi Stations and Docks by Jurisdiction .......................................... 33 
Table 3 Capital Bikeshare Funding Sources ..................................................................... 36 
Table 4 Capital Bikeshare Membership Fees ................................................................... 38 
Table 5 Capital Bikeshare Usage Fees.............................................................................. 39 
Table 6 Registered Members by Type .............................................................................. 40 

Table 7 Change in Use of Non-Bicycle Transportation .................................................... 43 
Table 8 Share of CaBi Trips From/To Metrorail Stations ................................................ 44 

Table 9 Capital Bikeshare Trips by Users' Race/Ethnic Groups ...................................... 45 
Table 10 Capital Bikeshare Trips by Users' Income Group ............................................. 45 
Table 11 Number of Capital Bikeshare Stations and Number of Trips Over Time ......... 46 
Table 12 Capital Bikeshare Trips by the Day of the Week .............................................. 51 

Table 13 Capital Bikeshare Trip Duration ........................................................................ 53 
Table 14 Number of Trips by Account Type .................................................................... 53 
Table 15 Capital Bikeshare Trips by Account Type by Duration .................................... 57 

Table 16 Capital Bikeshare Stations with the Largest Number of Trips Started .............. 58 
Table 17 Capital Bikeshare Stations with the Largest Number of Trips Ended ............... 58 

Table 18 Sequence of Metrorail Station Openings ........................................................... 62 
Table 19 Metrorail Fare Structure..................................................................................... 63 

Table 20 Change in Job Numbers by Sector ..................................................................... 71 
Table 21 Mode of Access, 2007-2012 .............................................................................. 77 

Table 22 $2 Single-Trip Fare’s Top Five Purchase Stations ............................................ 90 
Table 23 Literature on Bikeshare Programs’ Impacts on Rail Transit Ridership ............. 98 
Table 24 Overview of Regression Models ...................................................................... 104 

Table 25 Metrorail and CaBi Ridership Definitions ....................................................... 106 
Table 26 Possible Signs and Scenarios ........................................................................... 107 

Table 27 Literature Review Findings Summary Table —Transit Service Factors ......... 124 
Table 28 Literature Review Findings Summary Table — Socio-Demographic Factors 125 
Table 29 Literature Review Findings Summary Table — Built Environment Factors .. 126 

Table 30 Input data of the Direct Ridership Model ........................................................ 134 
Table 31 Descriptive Statistics of Input Data of The Direct Ridership Model ............... 136 
Table 32 Results of the DRM ......................................................................................... 139 

Table 33 Illustration of the DID estimator ...................................................................... 147 
Table 34 Illustration of the Multiple-Groups-and-Multiple-Periods DID ...................... 157 
Table 35 Descriptive Statistics of DID Input Data ......................................................... 158 
Table 36 Results of Multiple-Groups-and-Multiple-Periods DID .................................. 162 
Table 37 Descriptive Statistics of SSD Input Data ......................................................... 169 

Table 38 Selected Results of SSD with mentryam as the Dependent Variable .............. 171 
Table 39 Selected Results of SSD with mexitam as the Dependent Variable ................ 174 
Table 40 Selected Results of SSD with mentrypm as the Dependent Variable.............. 177 

Table 41 Selected Results of SSD with mexitpm as the Dependent Variable ................ 180 
Table 42 Jobs at Metrorail Station Area by Year ........................................................... 186 
Table 43 Findings on CaBi's Complementary Effects by Method ................................. 194 
Table 44 Findings on CaBi’s Substitute Effect by Method ............................................ 194 



x 

 

Table 45 Model Comparison .......................................................................................... 196 
Table 46 Results of SSD with mentryam and mexitam as the Dependent Variables ..... 209 
Table 47 Results of SSD with mentrypm and mexitpm as the Dependent Variables..... 213 

  



xi 

 

List of Figures 
Figure 1 Research Design—Three Regression Analysis Methods ..................................... 5 
Figure 2 Definition of the Washington Metropolitan Area .............................................. 29 

Figure 3 Capital Bikeshare and Metrorail Station Locations ............................................ 32 
Figure 4 Capital Bikeshare Bicycle and Docking Station ................................................ 34 
Figure 5 Capital Bikeshare Trips by Month by Year ........................................................ 47 
Figure 6 Capital Bikeshare Trips by Day, June 2014 and June 2015 ............................... 49 
Figure 7 2015 CaBi Daily Ridership ................................................................................ 50 

Figure 8 Capital Bikeshare Trips by Time of Day ............................................................ 52 
Figure 9 Capital Bikeshare Trips by Account Type by Month ......................................... 54 

Figure 10 Capital Bikeshare Trips by Account Type by Weekday .................................. 55 
Figure 11 Capital Bikeshare Trips by Account Type by Time of Day ............................. 56 
Figure 12 CaBi O-D Pairs, 2010-2016 ............................................................................. 59 
Figure 13 Metrorail System Map ...................................................................................... 61 

Figure 14 Metrorail Fares by Mile .................................................................................... 63 
Figure 15 Metrorail Average Weekday Daily Boarding, 1977-2015 ............................... 65 
Figure 16 Number of Metrorail Stations, 1977-2015 ....................................................... 66 

Figure 17 Metrorail Average Weekday Daily Boarding per Station, 1977-2015 ............. 67 
Figure 18 Metrorail Boardings vs. CaBi Trips, 2010-2015 .............................................. 68 

Figure 19 Metrorail Average Weekday Daily Boarding per Station and Unemployment 

Rate, 1977-2015 ................................................................................................................ 69 

Figure 20 Metrorail Average Weekday Daily Ridership and Crude Oil Price ................. 70 
Figure 21 Metrorail Annual Ridership (Entry), 2010-2016 .............................................. 74 

Figure 22 Metrorail Monthly Ridership (Entry), 2010-2016 ............................................ 75 
Figure 23 Metrorail Average Weekday vs. Weekend Daily Ridership (Entry), 2010-2016

........................................................................................................................................... 75 

Figure 24 Average Metrorail Ridership by Period (Entry), 2010-2016............................ 76 
Figure 25 Illustration of Rail Transit Commute Trip Segments ....................................... 82 

Figure 26 Complementary Effect Diagram ....................................................................... 83 
Figure 27 Substitute Effect Diagram ................................................................................ 83 
Figure 28 CaBi Trips Originating from Union Station ..................................................... 85 

Figure 29 Travel Time Comparison 1 ............................................................................... 86 
Figure 30 Travel Time Comparison 2 ............................................................................... 86 
Figure 31 CaBi O-D Trips Complementing Metrorail—AM ........................................... 88 

Figure 32 CaBi O-D Trips Complementing Metrorail—PM ............................................ 88 
Figure 33 Weekly CaBi Trips Before and During SafeTrack........................................... 92 
Figure 34 Weekly CaBi Trips by Member vs. Casual Users Before and During SafeTrack

........................................................................................................................................... 93 
Figure 35 Daily CaBi Trips in Surge 2 (Compared with Baseline) .................................. 94 

Figure 36 Daily CaBi Trips in Surge 6 (Compared with Baseline) .................................. 94 
Figure 37 CaBi O-D Pairs with Trip Changes .................................................................. 95 
Figure 38 The Baseline Scenario .................................................................................... 108 

Figure 39 Scenario 1 ....................................................................................................... 109 
Figure 40 Scenario 2 ....................................................................................................... 109 
Figure 41 Scenario 3 ....................................................................................................... 111 
Figure 42 Scenario 4 ....................................................................................................... 111 



xii 

 

Figure 43 Scenario 5 ....................................................................................................... 113 
Figure 44 Scenario 6 ....................................................................................................... 113 
Figure 45 Scenario 7 ....................................................................................................... 115 

Figure 46 Scenario 8 ....................................................................................................... 115 
Figure 47 DRM Data Preparation Process ...................................................................... 129 
Figure 48 Illustration of the Difference-in-Difference Method ...................................... 148 
Figure 49 Non-parallel DID ............................................................................................ 149 
Figure 50 Metrorail Core Stations .................................................................................. 168 

Figure 51 Stations' Fixed Effects in SSD with mentryam as the Dependent Variable ... 172 
Figure 52 Stations' Fixed Effects in SSD with mexitam as the Dependent Variable ..... 175 
Figure 53 Stations' Fixed Effects in SSD with mentrypm as the Dependent Variable ... 178 

Figure 54 Stations' Fixed Effects in SSD with mexitpm as the Dependent Variable ..... 181 
Figure 55 Travel Times by Metrorail and by CaBi between Union Station and Smithsonian

......................................................................................................................................... 184 
Figure 56 Priority Metrorail Stations for CaBi ............................................................... 197 

Figure 57 Illustration of Trip Distance Analysis ............................................................ 203 
 

  



xiii 

 

List of Abbreviations 
ACS – American Community Survey 

CaBi – Capital Bikeshare 

D.C. – District of Columbia 

DDOT – District Department of Transportation 

FHWA – Federal Highway Administration 

FTA – Federal Transit Administration 

FRA – Federal Railroad Administration 

MTA – Maryland Transit Administration 

O-D – Origin-Destination 

USDOT – United States Department of Transportation 

WMATA – Washington metropolitan area Transit Authority 

VRE – Virginia Railway Express 

VDOT – Virginia Department of Transportation 

  



1 

 

Chapter 1: Introduction 

1.1 Background 

How young people get around has been changing. According to the Federal Highway 

Administration (FHWA), the millennial generation is “driving less, making fewer trips, 

and traveling shorter distances” (Federal Highway Administration, 2013). Richard Florida, 

who has been studying what he calls the creative class, found that the new tech-savvy 

generation prefers to live in cities, where they can rent an apartment and use public 

transportation, bike, or walk to work (Florida, 2012). Given the fact that teens are less 

interested in getting driver’s licenses, we can expect the trend toward less driving to 

continue.  

 Recent technologies have changed the transportation industry and culture in central 

cities. Today, besides the traditional bus and rail transit systems, many large cities have car 

sharing, bike sharing, and ridesourcing programs such as Uber and Lyft. The traditional 

definition of public transportation has gradually transformed into the concept of shared 

mobility. At the same time, public transportation agencies recognize these emerging shared 

modes as part of a new urban transportation fabric (Shared-Use Mobility Center, 2016).  

Bike share programs have become popular. Bike share is an innovative, publicly-

accessible short-term bike rental program. A user can rent a bicycle at one station and 

return it to any station within the system. Due to its convenience, affordability and health 

benefits, bike share has become a popular transportation choice around the world, 

especially in higher-density metropolitan areas, and among young millennials. By the end 

of 2016, there were approximately two million public use bicycles in systems in 
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approximately 1,175 cities, municipalities or district jurisdictions, in about 63 countries 

(Meddin, 2017). 

Many urban planners and researchers are optimistic about the role of bike share and 

think it may complement rail trips by providing a solution to the last-mile problem. 

However, some traditional public transportation systems have seen bike share as a 

competitor for ridership. For example, the Washington Metropolitan Area Transit 

Authority (WMATA), which operates the regional Metrorail system serving the 

Washington metropolitan area, claimed in its 2015 Ridership and Revenue report that the 

bike share program is one of the challenges facing Metrorail. WMATA’s concern about 

the bike share program’s negative ridership ramifications for Metrorail is legitimate.1 After 

all, Metrorail has experienced a continuing ridership decline since 2010, the same time the 

regional bike share program, Capital Bikeshare, was officially launched. According to 

WMATA’s analysis, the bike share program has captured short-trip riders with cheaper 

costs and thus led to Metrorail’s ridership loss (WMATA, 2015b).  

1.2 Research Design 

Given this shift, it is urgent to clarify the impact of bike share programs on traditional 

transportation modes such as rail transit. Surprisingly, most previous empirical studies rely 

on data from surveys of bike share program members. Very rarely have researchers 

performed rigorous regression analysis. This research gap is unfortunate. The relationship 

between bike share program use and rail transit ridership is interesting from a researcher’s 

point of view but also, a deeper understanding of the dynamics between shared mobility 

                                                 
1 The report was accessed from WMATA website on September 3, 2016. However, the link 

https://www.wmata.com/about_metro/board_of_directors/board_docs/100815_4BFY2017BudgetRidership

andRevenue.pdf was found broken at the time of writing.  

https://www.wmata.com/about_metro/board_of_directors/board_docs/100815_4BFY2017BudgetRidershipandRevenue.pdf
https://www.wmata.com/about_metro/board_of_directors/board_docs/100815_4BFY2017BudgetRidershipandRevenue.pdf
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and traditional rail transit will help transit operators more precisely predict ridership, and 

public transportation agencies more effectively allocate resources and make regulations.  

This dissertation is dedicated to applying rigorous scientific methods to estimate 

the bike share program’s impacts on rail transit ridership, using as a case study, the 

Washington metropolitan area, which has has the largest rail transit and bike share 

programs in the United States. The Metrorail system began service in the 1970s and the 

Capital Bikeshare system officially launched in 2010. Both systems have been in operation 

for some time and have generated sufficient trip data for empirical analysis. Therefore, the 

Washington metropolitan area lends itself well to exploring the research topic. 

This dissertation answers the research question: What are Capital Bikeshare’s 

impacts on Metrorail ridership in the Washington metropolitan area? Specifically, 

does Capital Bikeshare complement Metrorail and increase Metrorail ridership, or does it 

substitute for Metrorail and decrease ridership?  

As mentioned earlier, Metrorail’s owner and operator, WMATA, is concerned that 

CaBi may be a competitor and replace Metrorail trips. If CaBi is acting as a substitute, it 

would involve two scenarios. First, CaBi docking stations installed near Metrorail stations 

would reduce the ridership of these stations. Second, per one unit of CaBi trip increase, we 

would expect to see some decrease in Metrorail ridership. Thus, I hypothesize: 

 

H1: The existence of a CaBi docking station within a one-quarter mile of a Metrorail 

station is significantly negatively related to the number of Metrorail trips at that station.  
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H2: One CaBi trip initiated or ending at a Metrorail station area is significantly negatively 

related to the Metrorail ridership of that station. 

  

To test these hypotheses, I have designed two sets of quantitative analyses. The first 

set is the descriptive analysis, which includes temporal analysis and spatial analysis. 

Temporal analysis helps outline Metrorail ridership and Capital Bikeshare uses over time, 

while spatial analysis helps identify whether locations of Metrorail and Capital Bikeshare 

trips are related. Tableau and ArcGIS are the two major software tools used in the 

descriptive analysis. 

 In the second set, I offer a slate of regression analysis approaches to quantify CaBi’s 

impacts, specifically, the Direct Ridership Model (DRM), the Difference-in-Difference 

(DID) model, and the Station Specific Dummies (SSD) analysis, as illustrated in Figure 1. 

These methods build on each other and each has its advantages and limitations. I start with 

the Direct Ridership Model, which has been commonly used by transit planners to estimate 

rail transit ridership based on station area characteristics. Unlike traditional DRM, which 

includes transit service, socio-demographic, and built environment factors, the DRM for 

this study is extended to include CaBi trip variables.  

 The DRM discloses that CaBi may have mixed effects on Metrorail. However, it 

has two limitations. First, coefficients of CaBi’s impacts are too large to explain. Second, 

the DRM approach relies on the assumption of random assignment, that the Metrorail 

stations which have CaBi installed nearby is randomly assigned. But this assumtion may 

not hold. CaBi dock locations are likely to result from a planning process. To overcome 

this selection bias, I turn to a quasi-experiment technique, the Difference-in-Difference 

model, to separate Metrorail stations with CaBi nearby from those without CaBi and to 
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estimate their differences before and after the bike share program launch to measure real 

impacts.   

 The DID model reveals useful findings, but the average CaBi effects are not 

statistically significant. Also, the DID results suggest that there may be a relationship 

between CaBi impacts and Metrorail station locations. One possible solution is to split 

Metrorail stations into two groups, downtown and suburban, and to estimate CaBi’s 

impacts by location. Therefore, I apply the Station-Specific Dummies (SSD) method to 

represent Metrorail stations and figure out stations’ differences and CaBi’s effect for each 

station. Also, I visualize stations’ fixed effects and CaBi impacts using ArcGIS maps and 

study the spatial patterns.  

 

Figure 1 Research Design—Three Regression Analysis Methods 

 

 

1.3 Outline of Dissertation 

This dissertation has nine chapters. Chapter 1 provides research background, introduces 

research design, outlines the dissertation structure, and addresses this dissertation’s 

contributions to the existing knowledge on bike share programs’ impacts on rail transit.  
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 Chapter 2 provides a comprehensive literature review on bike share programs’ 

history, usage, benefits and other features. This chapter aims to familiarize the readers with 

bike share programs.  

 Chapter 3 describes the case study area, the Washington metropolitan area, paying 

particular attention to its bike-friendly infrastructure system and culture. Also, included in 

this chapter are sections on Capital Bikeshare and Metrorail. Both sections review program 

histories, membership mechanisms, trip trends over time, characteristics of users and multi-

modal integration policies, accompanied by tables, charts and maps. This chapter aims to 

provide context and a descriptive analysis of the case study. 

Chapter 4 elaborates on the research questions—whether CaBi substitutes for or 

complements Metrorail trips and whether installing CaBi docking stations within an a-

quarter mile of a station increases or decreases ridership. The chapter starts with a price-

demand discussion from a microeconomic perspective, and is followed by empirical 

evidence of CaBi’s substitute and complementary effects. Specially, this chapter includes 

a section on CaBi’s performance during WMATA SafeTrack surges as a case study of its 

substitution impacts. Chapter 4 ends with a literature review of previous studies on bike 

share programs’ impacts on rail transit ridership. 

Chapter 5 moves from descriptive analysis to regression analysis. This chapter 

describes the three regression models that will be applied in later chapters. It also describes 

the input data and its munging and preparation process. Chapter 5 ends with a discussion 

of possible coefficients and their interpretations. Since there are four Metrorail ridership 

measures and four CaBi trip variables, eight scenarios are illustrated as potential regression 

results.  
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Chapters 6, 7, and 8 cover the three regression analyses—the Direct Ridership 

Model, the Difference-in-Difference model, and the Station-Specific Dummies approach. 

Each chapter starts by describing the methodological approach, including model 

specifications, equations, and data, followed by regression results reporting and 

interpretation. These chapters also discuss the limitations of each model. Each chapter ends 

with a summary section highlighting major findings.  

Chapter 9 starts with a summary of analysis findings, addressing CaBi’s 

complementary and/or substitute impacts on Metrorail ridership. Based on that, I suggest 

specific WMATA policies that make the best use of CaBi’s benefits and more general 

suggestions for public transportation agencies to improve multi-modal integration for 

better mobility. Finally, the chapter discusses research dimensions that future studies may 

explore.  

1.4 Contribution 

This dissertation advances the literature on bike share programs’ impacts on rail transit 

ridership in four ways.  

 First, the study data is at a high-resolution and high-frequency level. In most 

previous studies, the authors performed analysis at the system-wide scale. For my 

dissertation, I reached out to WMATA and the District Department of Transportation 

(DDOT) for detailed Metrorail and Capital Bikeshare ridership data. The dataset starts from 

August 2010, before CaBi’s launch in October of that year. This dataset allows me to 

measure CaBi’s impacts with a great deal of precision, in both space and time. Therefore, 

I separate Metrorail ridership into four measures: the number of entries in weekday AM 

peak (variable mentryam), the number of exits in weekday AM peak (variable mexitam), 
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the number of entries in weekday PM peak (variable mentrypm), and the number of exits 

in weekday PM peak (variable mexitpm). Correspondingly, for Capital Bikeshare, trips are 

categorized into: the number of trips starting from Metrorail station area in weekday AM 

peak (variable cstartam), the number of trips ending at Metrorail station area in weekday 

AM peak (variable cendam), the number of trips starting from Metrorail station area in 

weekday PM peak (variable cstartpm), and the number of trips ending at Metrorail station 

area in weekday PM peak (variable cendpm). These categories allow precise identification 

of time and location of CaBi’s impacts on Metrorail ridership. 

 Second, some of this study’s research methods are new to the research question and 

thus provide new perspectives. The Direct Ridership Model is widely-used for estimating 

rail transit factors’ impact. The Difference-in-Difference model allows me to control 

location and time effects and leads to more accurate estimates of the CaBi program’s 

average impacts. The Station-Specific Dummies model reveals how CaBi’s impacts vary 

by station locations. These three methods complement each other, and together, draw a 

picture of the relationship of bike share and rail transit ridership that we’ve never seen 

before.   

Third, besides providing advanced statistical analysis using detailed trip data, I also 

use advanced data visualization tools, Esri’s ArcGIS and Tableau, to map Capital 

Bikeshare and Metrorail trips. Unlike some other urban studies topics, locations matter in 

both bike share and rail transit trip analysis and result interpretation. Visualizing spatial 

patterns using methods such as origin-destination spider diagrams helps link trip numbers 

and their changes to the location context. From this perspective, visualization is part of the 

dissertation’s analysis content, not an auxiliary. 
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Finally, this study is timely. Currently, WMATA has been experiencing some 

transformation. My study includes observations during WMATA’s latest maintenance 

program, SafeTrack, which began in June 2016 and will last one year. During the year, 

WMATA plans to condense three-years of track maintenance work, which will result in 

single tracking and line segment shutdowns that reduce Metrorail’s service frequency and 

capacity. However, SafeTrack provides an invaluable opportunity to observe the substitute 

impacts of Capital Bikeshare, as well as many other transportation alternatives. Including 

the SafeTrack case study in my dissertation increases its link to ongoing urban planning 

practice and thus makes my policy implications more relevant and timely.  

 As a resident of the Washington metropolitan area, I hope my research efforts can 

help the mobility choices for others who live here.  
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Chapter 2: Bike Share Programs: A Literature Review 

2.1 Background 

Where people like to live and work has changed in recent decades. The core American 

Dream—a big, single-family house with a beautiful lawn and white picket fence in a low-

density residence-only suburb has been replaced by a more urbanized “2.0 version.” Newer 

generations are attracted to city downtowns with high-density and mixed-use developments, 

served with convenient public transportation, and enlivened with first-floor retail and 

restaurants. According to Robert Fishman, an urban planning historian at the University of 

Michigan, “in the 1950s, suburbs were the future. The city was then seen as a dingy 

environment. But today it’s these urban neighborhoods that are exciting and diverse and 

exploding with growth” (Wieckowski, 2010).  

 The new millennial generation also has a different transportation preference. 

According to the USDOT, there are 73 million millennials aged 18 to 34 in the United 

States, and they drive less than their parents. By the end of the 2000s, they drove one-fifth 

fewer miles than at the beginning of the decade, partly due to the inconvenience of traffic 

congestion and soaring gasoline prices (DOT, 2015b). Also, between 2001 and 2012, fewer 

people under 34 got their drivers’ licenses. Meanwhile, the number of people who walk or 

bike has increased. According to a national travel survey, since 1995, the share of walking 

in all trips has grown from 5% to more than 10%, mainly for social and recreational 

purposes. In big cities, the share is even higher. For example, in Boston, Washington, D.C., 

New York, and San Francisco, more than 10% of commuters walk to work (DOT, 2015b). 

Regarding bicycle use, between 2000 and 2014, bicycle commuting has seen a 62% growth 
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in the United States (The League of American Bicyclists, 2015). The share of bicycle 

commuting, again, is larger in urban areas. Davis, California has the largest share in the 

nation, 23.2% of its population cycle to work. D.C. has one of the largest share increases. 

Between 2005 and 2014, bicycle commuting share increased by 124%. Following this trend, 

in the future we can expect more non-driving trips in urban areas, with travelers opting for 

public transportation, biking, walking, carsharing, and ridesourcing services.  

 Future travel patterns will also be heavily shaped by this young generations’ 

lifestyle. The millennials are the first generation to have access to the internet during their 

formative years. They are comfortable picking up new technologies to communicate (with 

Skype), to shop (with Amazon and Ebay), to socialize (with Facebook and Twitter), to visit 

(with Airbnb), to navigate (with GPS) and to travel (with Zipcar and Uber). Smartphones 

have become a requisite in daily life to complete various routine activities. One magazine 

declared the smartphone to be the “most important transportation innovation of the decade” 

(DOT, 2015b).  

 In the new era, besides traditional bus and rail transit, we have seen many new 

transportation modes emerging.2 Regarding carsharing programs, now we have short-term 

car rental programs like Zipcar, with easy access/return and smarter Car2Go, as well as 

rental programs like Enterprise’s CarShare and Hertz’s 24/7 offered by more old-school 

car rental companies (Reviews.com, 2015). In total, there are 1.6 million members in 24 

                                                 
2 As Shaheen, an expert in bikeshare analysis, puts, “now it’s not unusual to open your  computer or email 

and find out about two or three new services that have popped up” (Jaffe, 2015a). Almost at the end of this 

dissertation writing process, I learned about microtransit, a smaller-capacity transit service provided by the 

private sector. For anyone interested in a more complete picture of the new transportation options, Google 

“microtransit” to keep yourself up-to-date. Eric Jaffe’s article “How the Microtransit Movement Is Changing 

Urban Mobility” is a good starting point (Jaffe, 2015a).  



12 

 

active carsharing programs in the United States, which has increased by ten times within 

the past seven years (DOT, 2015b).  

Uber and Lyft define another shared transportation mode, ridesourcing services. 

Ridesourcing allows drivers to convert their personal non-commercial vehicles into 

temporary taxis and provide service to people who request a ride via a mobile phone 

application. In the first half of 2015, Uber alone had made more than $3.5 billion dollars 

in gross bookings (total fares charged to app customers, before the drivers get their payment) 

(Solomon, 2016).  

Bike share programs, which are the focus of my dissertation, are another newly 

emerging transportation mode in the new sharing economy. A detailed introduction to bike 

share programs is provided in the next section.   

A new concept has been emerging in the U.S.: shared mobility. According to FTA, 

shared mobility means “Transportation services that are shared among users.” It includes 

public transit; taxis and limos; bike sharing; carsharing (round-trip, one-way, and personal 

vehicle sharing); ridesharing (carpooling, vanpooling); ridesourcing; scooter sharing; 

shuttle services; neighborhood jitneys; and commercial delivery vehicles providing 

flexible goods movement (Federal Transit Administration, 2016b). As USDOT stated, 

“over the next 30 years, our legal and regulatory system may be increasingly challenged 

by emerging forms of business and travel that transcend traditional legal and planning 

concepts” (DOT, 2015b).  

 Transportation agencies and experts have recognized this change and given funding 

support to assist the transformation into a more walkable and bikeable society. Federal 
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funding for pedestrian and bicycle facilities has increased significantly since 1991, 

reaching $676 million in 2013, or 2% of total federal transportation funding (DOT, 2015b).  

Many cities have included multi-modal transportation options as part of their place-

making strategies to attract and retain young people and businesses (DOT, 2015b). Specific 

strategies related to bicycle use include complete streets programs, streetscape projects, 

greenway and trail planning and design, and bike lane and bike path network planning. 

Some cities with public transportation traditions are optimistic. For example, Helsinki is 

comprehensively transforming its public transportation network into a “mobility on 

demand” system by 2025, so residents will find no reason to own a car (Greenfield, 2014). 

2.2 History 

So, what is a bike share program and how have they developed in recent years? In this 

section, I provide an overview of bike share programs, particularly those in the U.S. 

Bike share refers to bicycle sharing programs in which owners purchase bicycles 

and allow short-term rental use by the public. Most bike share programs install a network 

of bicycle docking stations to provide users convenient access. Users can check out 

bicycles at docking stations and return them to any station in the network. Bike share might 

be free to use, but in most cases, users pay a small fee to initiate the rides.  

 Bike share programs can operate at various levels. Many companies on office 

campuses provide free bike share programs to employees. Google started its bike share 

program in 2008 at Googleplex in Mountain View, California. Later in 2010, Google 

replaced the original bikes with smaller bicycles with 20-inch wheels. Currently, Google 

has more than 1,000 of these GBikes, free for employees to ride between office buildings. 

The multi-colored GBikes quickly became popular and famous as part of Google’s 



14 

 

company culture. Other IT giants such as LinkedIn and Apple have similar bike share 

programs. Employees found that bike share programs are not only a transportation 

alternative but also “a fun, healthy way to relieve work-related stress” and thus improve 

work productivity (Bikes Make Life Better, 2016). 

 Many colleges and universities have bike share programs (Zagster, 2016). 

Princeton University launched its bike share program in 2014. After an expansion in spring 

2016, the system now has 60 bikes and nine stations on campus. Occasionally, universities 

may work with the surrounding municipality to create a bike share program. In May 2016, 

the University of Maryland, in collaboration with the City of College Park, launched a bike 

share program, mBike, for students, faculty, staff, residents and visitors. The mBike 

program offers 120 cruiser bikes, five accessible bikes and 14 docking stations in the city 

and UMD campus.  

Bikeshare programs at the municipal level have received a lot of attention because 

every resident and visitor can be a program user. Municipal bike share programs usually 

install facilities in the public right-of-way. In most cases, jurisdiction governments are 

involved in or lead the planning, funding, administrating, managing, and operating process 

(Pedestrian & Bicycle Information Center, 2016).  

Regarding funding mechanisms, bike share programs can be publicly-owned and 

contractor operated, privately-owned and operated, or non-profit owned and operated 

systems (Gaegauf, 2014). In metropolitan areas, several municipalities may collaborate to 

build a large-scale bike share facility network that provides regional bike share service.  

A typical bike share system consists of docking stations and a bicycle fleet. Bike 

share docking stations have multiple functions. They provide space to store the bicycle 



15 

 

fleet and program facilities such as payment machines. They can be installed in street 

medians, curbside, or even in parking lanes and open space. The National Association of 

City Transportation Officials (NACTO) created a Bike Share Station Siting Guide to 

provide guidance on docking station location planning, technologies and design (National 

Association of City Transportation Officials, 2016). Principles for station sitting include 

being operationally feasible, and being accessible and convenient for both pedestrians and 

bicyclists.  

Bike share programs have become widespread across the world with successful 

programs in the North America, South America, Europe and Asia. As of 2011, 135 bicycle 

sharing programs are in operation in 160 cities and 16 countries, offering approximately 

236,000 bicycles (S. Shaheen, Guzman, & Zhang, 2012). In the United States, the number 

of bicycle sharing programs has reached 15, with 5,238 bicycles and 172,070 members (S. 

A. Shaheen, Martin, Cohen, & Finson, 2012). Large metropolitan areas, such as 

Washington, D.C., Minneapolis-St. Paul, Boston, and New York City have citywide bike 

share programs (T. Hamilton & Wichman, 2015). A Google map, The Bike-sharing World 

Map (www.bikesharingmap.com), provides location information for all bike share 

programs around the world.  

Technologies for bicycle fleet capacity and payment methods have played an 

essential role in bike share programs. Based on the technologies involved in payment and 

security, researchers have categorized bike share programs into four generations (Parkes, 

Marsden, Shaheen, & Cohen, 2013). The first generation was the Witte Fietsen (White 

Bikes) launched in Amsterdam in 1965. According to the literature, dozens of bicycles 

were painted white and made available for public use. They were unlocked, and no payment 
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was required. Bicycles were damaged and even stolen, which resulted in the program’s 

shutdown (DeMaio, 2009; Goodyear, 2017).  

The second-generation bike share program adopted a coin-deposit system for 

payment. Copenhagen launched the first program Bycyklen (City Bikes) in 1995, almost 

30 years after the Netherlands’ first attempt. However, shared bicycles suffered from 

vandalism and theft. The theft risk was not solved until 1996, when Bikeabout, a small 

campus-wide bike share program, equipped bicycles with magnetic-stripe card machines; 

when bikes were checked out, program operators could track the bicycles’ locations 

(Goodyear, 2017). 

As key technologies, such as Radio Frequency Identification (RFID), became 

widespread, third-generation bicycle fleets are used by most current bike share systems. 

Features include credit card payment, GPS tracking, and smartphone apps to show real 

time availability (Zimmerman, 2016).  

 The fourth generation of bike share program will be dockless. Rather than returning 

bicycles to docking stations, users are allowed more flexible returns. Portland’s newly 

launched bike share program, BIKETOWN, uses this type of bicycle fleet and allows 

returns to either a docking station or to any public bike rack available (BIKETOWN, 2016). 

Compared to older versions of bike share, dockless systems have more sophisticated back-

end IT software allowing the provider to track bike locations and allowing users to check-

in and check-out. The cost per fleet is more expensive, but docking station construction 

and operation costs decrease in the long run (Zimmerman, 2016). In addition, BIKETOWN 

users also can make bike reservations for up to 10 minutes, using the mobile app.  
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The next promising technology that will dramatically transform the way we think 

of bike share is e-bikes or electric-assist technology. According to the National League of 

Cities’ report, one of two barriers preventing the growth of bike commuting is the physical 

effort required (The National League of Cities, 2015). The issue can be solved by new e-

bike technology that will add electric pedal assistance to the bicycle fleet. With e-bikes, 

users can travel through hilly landscapes more easily and can travel longer distances. E-

bikes have the potential to attract new users from a population that is less fit or older and 

those interested in longer distance travel (Zimmerman, 2016). The City of Baltimore will 

launch its bike share program in fall 2016; it is planned to be the largest electric pedal-

assist bike share program in the western hemisphere (Baltimore City Department of 

Transportation, 2016). 

 As of the first week of September 2016, according to the Bike-sharing Blog focused 

on bike share programs around the world, there are 1,114 cities with active bike share 

programs, with the total number of public use bicycles at 1.4 million (Meddin, 2016). Most 

shared bicycle fleets are in China (Meddin & DeMaio, 2015). In the United States, nearly 

100 cities in 34 states and the District of Columbia have bike share programs that total 

31,700 bicycles (Zimmerman, 2016).  

 The bike share industry has been growing and has caught a lot of attention. Most 

recently, the car share industry leader, Zipcar, plans to launch a university campus bike 

share program through a partnership with Zagster(Zipcar, 2016). Zipcar’s bike share 

program, Zipbike, will follow the company’s business model, and provide a networked 

shared bicycle service to college students, faculty, and staff. According to Zipcar, Zipbike 

has the potential to relieve congestion and transit strain, save money and hassle, reduce 
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parking demand, and decrease the bicycle theft rate, which is as high as 53%. They plan to 

launch 15 Zipbike programs by the end of 2017 (McFarland, 2016). 

 Bikeshare has even attracted a more traditional motor industry giant, Ford. Earlier 

this month, Ford established a seven-year partnership with Motivate, the operator of D.C.’s 

Capital Bikeshare and New York City’s CitiBike, to change and expand the bike share 

program in California’s Bay Area, starting in San Francisco, under the new name, Ford 

GoBike (Ford Media Center, 2016). By the end of 2018, there will be 7,000 shared bicycles 

in the Bay Area. Unlike other bike share operators, Ford is interested in the data that bike 

share could generate (Rosevear, 2016). Ford plans to add telemetry on shared bicycles that 

will send data to a communication platform. Data on how people bike, especially on those 

hidden paths that only local people know, has the potential to assist in the route planning 

of Ford’s newly purchased crowd-sourced Chariot shuttle service.  

 In the U.S., several acts and policy programs from the federal government have 

encouraged the popularity of bike share programs. The Intermodal Surface Transportation 

Efficiency Act (ISTEA) of 1991 and the subsequent Transportation Equity Act for the 21st 

Century (TEA-21) of 1998 enabled bicycle-transit integration planning and studies at state 

and local level (R. Wang & Liu, 2013). In 2012, the Moving Ahead for Progress in the 21st 

Century (MAP-21) Act created a Transportation Alternatives Program (TAP) to fund 

bicycle and pedestrian projects. As of September 2014, TAP had funded 342 bike and 

pedestrian projects in all 50 states (Joe Lindsey, 2015). In December 2015, the Fixing 

America’s Surface Transportation (FAST) Act was passed, and was considered “an 

improvement on MAP-21 for biking” (Whitaker, 2015). About $800 million in funding per 

year will be assigned to bike and pedestrian projects for five years starting in 2015. Other 
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primary bike share funding sources include Federal Highway Administration (FHWA), 

Federal Transit Authority (FTA), Congestion Mitigation Air Quality (CMAQ) 

Improvement Funds, Department of Health and Human Services, C.D.C., Department of 

Transportation, and so on. Secondary funding sources include municipalities, sponsorship, 

membership, and usage fees (Wasatch Front Regional Council, 2013a).  

2.3 Benefits 

Bike share programs have economic, social, and environmental benefits. First of all, bike 

share can improve transit accessibility by solving the “last-/first-mile” accessibility issue 

by connecting transit stations and the passengers’ final destination, reducing pressure on 

expanding transit service (Tomer, 2012).  

 Convenience is the second benefit, and it is the primary perceived benefit identified 

by bike share users, according to a review of multiple bike share program user surveys 

(Fishman, 2015; Fishman, Washington, & Haworth, 2013). During peak commuting hours, 

bike share bicycles can reach speeds up to 3.1 miles per hour (equivalent to 15 km per 

hour), higher than the speed of cars in congestion, and thus can save commuters travel 

time(Jensen, Rouquier, Ovtracht, & Robardet, 2010; X. Wang, Lindsey, Schoner, & 

Harrison, 2015).  

Bike share programs can increase physical activity and therefore improve 

cardiovascular health and reduce obesity. For example, Fishman et al. (2014) found that in 

2012, London’s bike share program generated an additional 74 million minutes of physical 

activity and the program in Minneapolis/St. Paul led to an increase of 1.4 million minutes 

(Fishman, 2015).  
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Bike share thus attracts many commuters to switch from driving, and thus help 

reduce car use. It is estimated that bike share programs reduce about 56,000 vehicle miles 

per year in Melbourne and Minneapolis/St. Paul and 150,000 miles for Washington, D.C. 

(Fishman, Washington, & Haworth, 2014). According to DDOT’s estimate, 100 Capital 

Bikeshare stations can reduce gasoline use by 15,600 gallon per year, which saves drivers 

$62,400 (District Department of Transportation, 2012). 3 

By reducing car use, bike share programs also reduce congestion and carbon 

emissions. The transportation sector is the second-biggest greenhouse gas (GHG) source 

in the U.S., responsible for 28% of all GHG emissions (DOT, 2015b). Hamilton and 

Wichman (2015) researched bike share’s impact on traffic congestion and found that the 

availability of a bike share system reduces traffic congestion by 2-3% within a 

neighborhood (T. Hamilton & Wichman, 2015). Bicycling is fueled by physical energy, 

which is entirely green, sustainable, and environmentally-friendly.  

Bike share programs also have the potential to reduce bicyclist-involved traffic 

crashes. Fishman and Schepers (2016) compared cycling safety in cities with and without 

bike share programs and found that the former cities have seen fewer cycling injuries and 

fewer severe or fatal injuries (Fishman & Schepers, 2016). Martin et al. (2016) attributed 

bike share users’ higher safety performance to the “larger, slower, and sturdier” bicycle 

design, which prevents aggressive riding behaviors (E. Martin, Cohen, Botha, & Shaheen, 

2016).  

                                                 
3 The estimate was based on DDOT’s survey results. In 2010, Capital Bikeshare generates 1.5 million miles 

of use per year, and 20% Capital Bikeshare riders reported themselves transferred from car use to bike 

sharing.  
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Bike share’s positive economic impact convinced municipalities to invest. Survey 

results found that as high as 82% of program users patronize retail near bike docks (LDA 

Consulting, 2015). Another survey of business owners located within 0.1 miles of a bike 

share station found that 20% agreed that bike share has a positive impact on their sales, and 

70% thought the program benefits the neighborhood in general (Buehler & Hamre, 2014). 

For most cities, offering a bike share program is an active demonstration of their 

commitment to addressing climate change and livability (Fishman et al., 2013).  

Finally, bike share programs have the potential to improve social equity by 

providing affordable and accessible transportation choices to low-income and minority 

populations. In Philadelphia, the Better Bike Share Partnership (BBSP) was created by the 

city government and non-profit bicyclist organizations, and funded by a philanthropic 

organization to “develop a replicable and socially equitable bike sharing model” (Hoe, 

2015). One-third of the program’s 600 bicycles are located in low-income neighborhoods, 

and cash payment is allowed (A. Hamilton, 2015).  

2.4 Determinants 

Several factors influence bike share use. Some are associated with cycling activities in 

general, and others are tied specifically to riding bike share bicycles.  

First, the distance between the trip origin and the destination is a determinant. 

Shorter distances (less than 5 miles) are more likely to be cycled than reached by other 

transit (Krizek & Stonebraker, 2010). Interestingly, if the transfer mode is faster, bikers are 

willing to bike 2 to 5 km (1.2 to 3.1 miles) to connect to the mode. However, if the transfer 

mode is slower, the average cycling distance reduces to 2 to 3 km (1.2 to 1.9 miles) (Krizek 

& Stonebraker, 2010; Martens, 2004).  
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Second, the availability of biking infrastructure has a positive impact on bike share 

use. Buck and Buehler (2012) found that one additional kilometer (0.62 miles) of bike lanes 

within a half-mile of a bike share station is associated with 0.86 additional bike share 

check-outs per day per location (Buck & Buehler, 2012). Wang et al. (2015) found that if 

a bike share station is connected to trails, it will have 50% more trips (X. Wang et al., 2015). 

 Buehler and Pucher (2012) collected bike path data from 90 large American cities 

and performed a rigorous quantitative analysis including the Ordinary Least Squares and 

Binary Logit Proportions regressions. They found that a greater supply of bike paths is 

associated with higher bike commuting rates, after controlling for climate, built 

environment, socioeconomic factors, gasoline prices and other factors. These impacts of 

bike facilities hold for both on-street lanes and off-street paths (Buehler & Pucher, 2012).  

The scales of bike share station networks is positively associated with the number 

of rides. A correlation coefficient of 0.7 was found between bike share supply (measured 

by the number of stations per square kilometers) and demand (measured by the number of 

trips per bike per year), suggesting that bike share demand can be increased by the 

program’s size (Freese & Schönberg, 2014). Therefore, a regional bike share program is 

always desired.  

However, at the micro scale, if bike share stations are placed too close to each other, 

check-out per station may decrease, suggesting systematic waste. The presence of another 

bike share station within 1 km led to 90-95% fewer trips (X. Wang et al., 2015).   

Third, weather has a significant impact on bike share use. Gerhart and Noland (2014) 

comprehensively studied weather’s impacts and found that, in general, the temperature has 

a positive impact on bike share use—more trips are made when the temperature gets higher. 
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But when the temperature gets reaches 93° F or higher, the heat has an adverse impact. Rain 

has a strong impact on bike share use—the average bike share trips per hour dropped from 

122.2 to 58.1 during rain. Rainy weather also decreases bike share trip duration for both 

registered and casual users, but casual users are affected more.  

They also compared the number and duration of trips that start and end within ¼ 

mile of Metrorail stations and those not near Metrorail stations by comparing coefficients’ 

difference. When a Metrorail station is an alternative to bike share, bike share trips in rainy 

weather and dark hours decreased more. In addition, near Metrorail stations, there are more 

bike share trips in peak hours, and fewer trips on weekends.  

Though weather condition impacts were significantly associated with bike share 

use, Gerhart and Noland (2014) found that merely including weather conditions led to 

relatively low R-squared in all models. They suggested including socioeconomic 

characteristics when estimating cycling activities.  

 Weather’s impact on bicycling activities does not hold on a more aggregated level. 

Buehler and Pucher (2012) found that annual precipitation and the number of cold and hot 

days were not statistically significantly associated with bike commuting in large cities 

(Buehler & Pucher, 2012). 

Besides distance, bicycle infrastructure, and weather, a fourth determinant is the 

socio-demographic variables of people near bike share stations. Specifically, in the Nice 

Ride Minnesota system, a 1% increase of white population is associated with a 1.4 – 1.5% 

increase in bike share use. The percentage of senior and young children populations were 

found to negatively affect bike share station activity (X. Wang et al., 2015). 
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Similarly, as a fifth determinant, businesses and jobs near bike share stations have 

a positive impact on trips. In the Nice Ride bike share system in the Minneapolis-St. Paul 

metropolitan area, for every 1,000 more jobs that are accessible from a bike share station, 

there is a 0.8 or 0.9% trip increase. In addition, food service has a positive impact on bike 

share. One additional food business is associated with 1.7% more station use (X. Wang et 

al., 2015).  

Sixth, several built environment factors were found to be associated with bike share 

use. Distances to CBDs, parks, and water bodies were all negatively associated with Nice 

Ride system’s station activity. In particular, 1 km closer to the CBD is related to an 11.5-

11.6% increase in bike share use, indicating that bike share is used more in high-intensity 

urbanized areas. In addition, bike share stations located on university campuses were used 

more (X. Wang et al., 2015).  

Finally, rail transit affects bike share use, but the impacts are mixed. Wang et al. 

(2015) found that the Central Corridor Light Rail Transit in Minneapolis-St. Paul has a 

significantly negative impact on bike share station use. Results from log-linear and  

negative binomial models showed that being near a rail transit station reduced bike share 

station activity by 38.2% and 40.7% (X. Wang et al., 2015).  

 Griffin and Sener (2016) performed a descriptive analysis of the interaction 

between bike share and rail transit trips in Austin, Texas and Chicago, Illinois at the system 

scale level. They mapped bike share stations by the number of embarking trips and found 

that stations with the highest volume are not necessarily located near rail transit entrances. 

In addition, they found very little substitution effect at the system level for Chicago’s Divvy 
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bike share program and attributed that to the system’s being newly launched (Griffin & 

Sener, 2016). 

Proulx (2014) performed research on the impacts of high-frequency transit on the 

pattern of bike share trips, focusing on Capital Bikeshare stations in Washington D.C. and 

using 2013 data. 4 Proulx categorized CaBi trips into groups (weekday vs. weekend, AM 

peak vs. PM peak, trips made by program subscribers vs. casual users, and so on), and got 

mixed regression results: being near high-frequency transit stations was found to be 

significantly associated with CaBi trips only in specific situations, for example, for general 

CaBi trips. Proximity to a Metrobus station is a significant negative factor, but proximity 

to a Metrorail station is not. Metrobus stations are also significantly negatively associated 

with weekend CaBi trips, but again, Metrorail stations are not statistically significant. 

Metrorail stations were positively associated with AM peak CaBi trips per destination and 

PM peak CaBi trips per origin. Though detailed pictures and data were presented in this 

research, it is difficult to conclude the effect of transit on bike share use (Proulx, 2014). 

Research from Melbourne, Australia analyzing activity and trip patterns across 

their system, found a strong relationship between docking station activity and proximity to 

train stations, and this trend was most pronounced during peak hour periods (Lansell, 2011). 

Transit’s effect on bike share use is increased by bad weather. Gebhart and Noland 

(2013) examined the effect of temperature, rainfall, snow, wind, fog and humidity levels’ 

impact on bike share trips, and found that cold temperatures, rain, and high humidity levels 

reduce both the likelihood of using bike share and the duration of trips. Furthermore, they 

                                                 
4 High frequency transit is defined as transit services with 15 minute or better frequency that operate at least 

64% of the hours from 6:00 to 23:00 Monday to Friday, 6:00 to 21:00 Saturday, 7:00 to 20:00 Sunday. 

Services that only operated in the peak hours were excluded. Eighteen routes, including three Metrorail 

lines, satisfied researcher’s requirement.  
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found that bike share trips taken near Metrorail stations (within ¼ mile of a Metrorail 

station) are affected more by rain than trips taken not near Metrorail stations (Gebhart & 

Noland, 2013). 

2.5 Summary 

 This chapter reviews literature on bike share program’s background, history, 

benefits and determinants, to provide the context for my study. Bike share programs are a 

component of a larger paradigm shift into an era of shared mobility. First seen in the 1960s, 

bike share programs can be divided into four generations, based on the technologies applied. 

Most bike share programs today belong to the third generation, supported by credit card 

payment, GPS bike tracking, and smartphone reservation apps.  

 Bike share programs provide a convenient and healthy transportation alternative to 

driving and can save travel time and cost. They improve transit accessibility and solve the 

first- and last-mile issue. Also, they have several external benefits, such as reducing traffic 

congestion and carbon emissions, supporting the local economy, and improving social 

equity.  

Finally, determinants of bike share use include the distance between trip origin and 

destination, the availability of biking infrastructure, the weather, and the people and 

businesses near docks. The proximity to transit stations is a factor, but its impacts are mixed. 

Some found that being near rail transit reduced bike share activity, others found a positive 

impact, while still others found them to be uncorrelated. The impacts may depend on the 

cities in which bike share systems are located.  
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Chapter 3: Study Area 

I have selected the Washington metropolitan area as my case study, because it has both a 

rail transit system (Metrorail) and bike share program (Capital Bikeshare). Both systems 

are the largest in the United States. Most Metrorail stations were built decades ago, with a 

few new stations opening after 2000. Therefore, the system’s physical infrastructure has 

been stable, and the impacts of construction on ridership are limited. Capital Bikeshare is 

one of the earliest bike share programs in the country. Launched in 2010, it has attracted 

millions of users. Compared to other bike share programs in the United States, CaBi is a 

well-established system and has sufficient trip data for analysis.  

In this chapter, I introduce the Washington metropolitan area, its rail transit system, 

Metrorail, and its bike share program, Capital Bikeshare, followed by detailed analysis of 

Metrorail ridership and CaBi trips. Two types of descriptive analysis will be conducted, 

one on temporal trends, such as Metrorail ridership’s 40-year growth and CaBi trips’ 

seasonality, and the other on spatial distributions, such as which stations have the largest 

ridership. The chapter’s goal is to provide a comprehensive introduction to the two systems, 

so readers, especially those from outside this region, can familiarize themselves with the 

research context. More importantly, using a descriptive analysis of trends, patterns, and 

some characterizations of Metrorail and CaBi trips, I identify a suitable dataset for 

statistical analysis that will be elaborated on in later chapters.  

3.1 Washington Metropolitan Area 

The Washington metropolitan area, whose official Census name is the Washington-

Arlington-Alexandria, DC-VA-MD-WV Metropolitan Statistical Area, is anchored in the 
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city of Washington, D.C. It is the nation’s sixth-largest metropolitan area (US Census 

Bureau, 2016) and consists of twenty-four counties and cities in four states. Over six 

million people live and work in this area. 

 Centered in the Census-defined DC-VA-MD-WV Metropolitan Statistical Area is 

Washington, D.C., usually referred as “the District,” and nearby municipalities. This area 

is surrounded by Interstate 495 and referred as “inside the Beltway.” Due to their proximity, 

these counties and cities are closely related in their transportation and economies. The 

Washington metropolitan area Transit Authority (WMATA) was created to serve mainly 

commuters living and working in this region.  

In my study, this Washington, D.C.-anchored, inside-the-beltway area defines the 

Washington metropolitan area. Its counties and cities include Washington, D.C., Prince 

George’s and Montgomery Counties in Maryland, and Arlington and Fairfax Counties, 

Alexandria City, Fairfax City, and Falls Church City in Virginia. Figure 2 illustrates the 

difference between the Census-defined Washington metropolitan area and my definition 

(highlighted in red).  
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Figure 2 Definition of the Washington Metropolitan Area 

 
 

 Several socio-demographic characteristics distinguish the Washington 

metropolitan area as a public-transportation-and-walking-friendly area. As the Capital 

region where the federal government is located, the Washington metropolitan area is the 

nation’s political and cultural center, and has attracted many young professionals 

specializing in government, statistics, law, etc. According to the Census, the median age of 

this area’s population is about 36.  

 Washington provides a lot of office areas. Meanwhile, due to the city’s height limit 

and the significant amount of federal lands not available for private development, space for 

residential uses is restricted. As a result, the Washington metropolitan area has grown into 
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a monocentric spatial structure—downtown D.C. mainly functions as a job center, and 

commuters live in peripheral and suburban neighborhoods.  

 Following this spatial structure is a radiating transportation network. The 

Washington metropolitan area is surrounded by Interstate 495 (I-495). Several radial 

expressways, I-95, I-66, and I-270 connect downtown D.C. or I-495, and with peripheral 

communities in Maryland and Virginia. Public transportation mainly consists of a rail 

transit system, Metrorail, and a bus system provided by WMATA, Metrobus. Commuter 

rail systems provided by MTA and VRE, and local bus systems operate within 

municipalities and include county buses and the D.C. streetcar.  

 Besides public transportation, several other shared mobility modes have recently  

emerged. The Capital Bikeshare program was first launched in 2010 in D.C. alone, and 

soon expanded to other communities in this area. The public car sharing program, Car2Go, 

provides free-floating short-term car rentals in D.C. The ridesourcing programs Uber and 

Lyft allow customers to request rides using their smartphones. The pop-up ride-sharing bus 

Bridj meets on-demand bus commuting needs and can pick up/drop off customers at 

locations that may not be included in fixed bus routes.   

Because of these structures and services, Washington, D.C. has become one of the 

most non-driver-friendly cities in the U.S. Table 1 compares the share of commuters taking 

subway versus those biking to work between 2009 and 2014, using data of American 

Community Survey 2005-2009 and 2010-2014 5-year estimates. Over those six years, both 

the nation and D.C. experienced a slight growth in subway users. The nation’s average 

increased from 1.7% to 1.9%, and D.C.’s share increased from 21.3% to 22.1%. However, 



31 

 

the share of D.C. commuters who bike to work doubled during this time period, from 2.0% 

to 4.1%. This growth outpaced the national average, which only slightly increased by 0.1%.  

 

Table 1 Share of Subway and Bicycle Commuters in D.C. vs. the U.S., 2009-2014 

 2009 2014 

 U.S. D.C. U.S. D.C. 

Subway 1.7% 21.3% 1.9% 22.1% 

Bicycle 0.5% 2.0% 0.6% 4.1% 

  

According to a report prepared by the League of American Bicyclists, Washington, 

D.C. has been ranked in the top tier for bike use (The League of American Bicyclists, 2015). 

In 2014, Washington, D.C. ranked fourth in the nation and first in the East for the share of 

bike commuters in cities with populations between 300,000 and 1 million. The District of 

Columbia, as a state equivalent, has the 3rd largest share change between 2005 and 2014. 

If we total the number of commuters who bike, walk, or take transit, Washington, D.C. has 

the highest share at 53.1% among cities with populations between 300,000 and 1 million.  

It was also ranked second among 30 largest U.S. Metropolitan areas as one of the 

top-tier walkable urban places (Leinberger & Lynch, 2014). Of the area’s different land 

uses, 53% of office, 20% of retail, and 23% of multi-family developments are in Walkable 

Urban Places, defined as developments of substantially higher densities, mixed uses, new 

product types (such as rental apartments over a ground-floor grocery store), and supported 

by multiple transportation options. 

 Municipalities in the Washington metropolitan area have invested in bicycle 

infrastructure. As of 2016, there are 75 miles of bike lanes in the City of Washington alone, 

including six miles of protected lanes (Caro, 2016). In addition, Washington metropolitan 
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area jurisdictions have developed several programs to promote bicycling, such as bike-to-

work days.  

Figure 3 Capital Bikeshare and Metrorail Station Locations 

 

3.2 Capital Bikeshare 

Established in D.C. in September 2010, Capital Bikeshare (CaBi) offered the largest 

bicycle sharing service in the U.S. at that time. The program was initially named SmartBike 

D.C. and only served the City of Washington. Later the District Department of 

Transportation (DDOT) created a coalition with transit authorities in surrounding 

communities—Arlington and Alexandria in Virginia and Montgomery County in 

Maryland—and renamed the expanded program CaBi. The CaBi system consists of bikes 

and the docking stations where users can check out and return them. As of May 15, 2016, 
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CaBi has 380 stations with 6,483 docks. Table 2 lists the number of stations and docks by 

jurisdiction. CaBi began service in Fairfax County, Virginia, in October 2016 (Lazo, 

2016b). 

 

Table 2 Number of CaBi Stations and Docks by Jurisdiction 

Jurisdiction Station Number Station Share Dock Number Dock Share 

D.C. 219 58% 4,139 63.9% 

Arlington 84 22% 1,155 17.8% 

Alexandria 20 5% 314 4.8% 

Montgomery 57 15% 875 13.5% 

Total 380 100% 6,483 100.0% 

  

 Both CaBi’s bikes and docking stations are unique. The CaBi bike, as illustrated in 

Figure 4, is red, DDOT’s official color. The bike frame is sturdy and tires are puncture-

resistant, making bike trips comfortable and safe (though sometimes slow). The bike is also 

equipped with a three-speed shifter, a height-adjustable seat and a front basket to meet 

riders’ various needs.  

 CaBi bikes are stored in docking stations. As Figure 4 shows, a CaBi station usually 

consists of a payment kiosk and multiple bike docking ports. Users can purchase passes 

and get bike codes at the kiosk, and then check out bikes. Each dock also has a slot for the 

bike key allowing regular CaBi users to skip the kiosk and directly check out bikes. All 

CaBi docking stations are solar powered.  
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Figure 4 Capital Bikeshare Bicycle and Docking Station 

 
 

Capital Bikeshare requires docking stations to be installed on a level and stable hard 

surface. The station is about 50 feet long by 8 feet wide. Since the docking stations are 

powered by solar panels, adequate exposure to sunlight (minimum 4 hours a day) is 

required. In addition, the location needs to be safe and accessible for both pedestrian and 

bicyclists, and not conflict with utilities such as hydrants (Capital Bikeshare, 2014). To 

create an efficient bike share network, the distance between docking stations cannot be too 

large or too small. A full 400- to 500-foot block is the minimum distance required (Capital 

Bikeshare, 2014).  

CaBi locates new docking stations using two methods: crowdsourcing and strategic 

planning. An online crowdsourcing map was introduced on the CaBi website in 2011.5 It 

allows the public to suggest where they would like the future stations to be located and to 

                                                 
5 The link to the crowdsourcing tool is: http://www.bikearlington.com/pages/bikesharing/capital-bikeshare-

crowdsourcing-map/.  

http://www.bikearlington.com/pages/bikesharing/capital-bikeshare-crowdsourcing-map/
http://www.bikearlington.com/pages/bikesharing/capital-bikeshare-crowdsourcing-map/
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comment on others’ suggestions. Owen, Neita and Froehlich (2015) analyzed the 

correspondence between the crowdsourced location data and stations’ actual usage and 

found that they are moderately correlated, suggesting crowdsourcing is an effective tool in 

bike share planning (Owen, Neita, & Froehlich, 2015).  

However, besides demand, several other factors such as the existing network and 

feasibility need to be considered. Many jurisdictions made strategic plans to identify 

neighborhoods most suitable for new stations. For example, in its 2015 CaBi Development 

Plan, DDOT considered 19 market study measures to identify areas with high demand for 

bike share use, high revenue potential, high impacts on public welfare and health, and high 

regional accessibility. The Plan also considered three development scenarios and compared 

their estimated operating costs. After this demand analysis and financial feasibility analysis, 

DDOT planned an expansion of 99 stations between 2015 and 2018 (DDOT, 2015). In 

reality, the specific location of docking stations is usually planned through discussion and 

negotiation among stakeholders including the Advisory Neighborhood Commissions 

(ANCs) and Business Improvement Districts (BIDs).  

To use CaBi bicycles, users first purchase a membership at the docking station’s 

kiosk to receive a bike code. Using the code, they can check out a bike from the dock port 

and start the ride. When trips are complete, users return bikes to a docking station. Bicycles 

may be rented at or returned to any docking station, which gives users flexibility. Regular 

users who purchase an annual membership can use a bike key to check out bikes from dock 

ports directly.  

CaBi is a publicly-owned and contractor-operated system. As introduced, CaBi is 

owned by the five participating jurisdictions. Regarding funding, CaBi receives support 
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from federal government, regional and local jurisdictions, as well as private money, as 

shown in Table 3. In 2011, CaBi’s annual operation cost was $2,300,000 (Wasatch Front 

Regional Council, 2013a).  

 

Table 3 Capital Bikeshare Funding Sources 

 2010 2011 2012 Total 

FHWA (CMAQ) 

Improvement Fund 

$5,120,000 $2,000,000  $7,120,000 

   $1,000,000 $1,000,000 

   $320,000 $320,000 

Job Access and Reverse 

Commute (JARC) 

-  $1,300,000 $1,300,000 

Virginia Dept of Rail & 

Public Transportation 

$300,000   $300,000 

Arlington County 

Transportation Funding 

$200,000 - $250,000 $450,000 

Montgomery County -  $500,000 $500,000 

Local Funding $1,280,000 $500,000 $200,000 $1,980,000 

Transportation Management 

Plan (TMP) 

- - $80,000 $80,000 

Private Sector Funds $300,000  - $300,000 

Total $7,200,000 $2,500,000 $3,650,000 $13,350,000 

 

CaBi’s operation is contracted to a private company, Motivate (formerly Alta 

Bicycle Share). One important part of Capital Bikeshare’s routine operation is rebalancing, 

moving bicycles from full docking stations to empty ones, so the system remains balanced. 

The Washington metropolitan area’s spatial structure is segregated, with most jobs 

clustered in downtown D.C. In the morning rush, Capital Bikeshare docking stations near 

workplaces may be packed with returned bicycles, but stations in residential areas are 

empty due to high volumes of check-outs. Motivate rebalances using van vehicles to 

transport about 2,600 bicycles every weekday to ensure the availability of both bicycles 

and dock space. Currently, there are 20 full-time van drivers and four dispatchers working 

on rebalancing (Capital Bikeshare, 2015; Virginia Tech, 2012).  



37 

 

Routine rebalancing may fail to meet the high demand for bikes at specific locations 

during peak hours or special events. For example, during the National Cherry Blossom 

Festival, stations near the Tidal Basin are quickly emptied. During Fourth of July 

celebrations and Presidential Inaugurations, CaBi stations near the National Mall may see 

many returned bikes. CaBi hire bike valets and creates temporary corrals to provide extra 

bikes and to receive bikes when docks are full (Capital Bikeshare, 2016b; Motivate, 2017). 

Also, CaBi has an innovative incentive program to encourage users to rebalance the system. 

In summer 2011, they established a Reverse Rider Rewards program to provide members 

with an incentive to ride a bike from typically full stations to typically empty stations 

(goDCgo, 2011). The ratio between reverse trips and forward trips was about 10:1 

(Pitingolo, 2012).  

CaBi’s success has made bike share a favorite idea among governments in this area. 

The Maryland Transit Administration (MTA) is partnering with the City of Baltimore to 

create a bike share program with 50 stations across the city. In addition, MTA plans to 

spend $500,000 to fund bike share dock installation at 15 MTA MARC, Metro subway, 

and light rail stations. According to MTA Administrator Paul Comfort, “bike share 

provides customers with an effective first and last mile options for their commute” (MTA, 

2016). The Northern Virginia Transportation Commission (NVTC) oversees the Transform 

66 Multimodal Project and is proposing $500,000 to add 16 Capital Bikeshare stations in 

the City of Falls Church; some will be located adjacent to Metrorail stations. Similarly, 

NVTC found that Capital Bikeshare “will serve as a first-mile/last-mile solution, with the 

potential to increase daily trips at the two Falls Church Metrorail stations by 450” (NVTC, 
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2016). Fairfax County, VA approved a $1.7 million plan to bring Capital Bikeshare to 

Reston and Tysons Corner (Fairfax County, 2016). 

3.2.2 Membership 

Capital Bikeshare is based on a membership system. There are seven membership options: 

single-trip, 24-hour, 3-day, Day Key, 30-day, annual or annual installment. The single-trip 

fare was added in June 2016 to assist travel during WMATA’s SafeTrack period. Table 4 

summarizes CaBi membership costs.  

Table 4 Capital Bikeshare Membership Fees 

Single Trip $2 

24-hour $8 

3-day $17 

Day key $10 initial fee + $7/day 

30-day $28 

Annual $85 

Annual with Monthly Installments $96 ($8/month for 12 months) 

 

With any CaBi membership, the first 30 minutes of a trip is free and incremental 

charges are added per hour afterward. The total costs vary by membership type and use 

time. Table 5 lists CaBi usage fees for different membership types. For example, a 100-

minute trip would cost an annual member $10.50 (in addition to $85 membership cost), 

which includes a free 30-minute ride, a $1.50 fee for the 2nd 30 minutes, a $3.00 fee for the 

3rd 30 minutes, and a $6 fee for the remainder.  
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Table 5 Capital Bikeshare Usage Fees 

Ride Time Total Hourly Fee 

24-hour and 3-day 

Members 

Total Hourly Fee 

Day Key, 30-Day, Annual, and Annual 

with Monthly Installments Members 

0 - 29:59 min FREE FREE 

30:00 - 59:59 min $2.00 $1.50 

60:00 - 89:59 min $6.00 $4.50 

90:00 - 119:59 min $14.00 $10.50 

2:00:00 - 2:29:59 hours $22.00 $16.50 

2:30:00 - 2:59:59 hours $30.00 $22.50 

3:00:00 - 3:29:59 hours $38.00 $28.50 

3:30:00 - 3:59:59 hours $46.00 $34.50 

4:00:00 - 4:29:59 hours $54.00 $40.50 

4:30:00 - 4:59:59 hours $62.00 $46.50 

5:00:00 - 5:29:59 hours $70.00 $52.50 

5:30:59 - 5:59:59 hours $78.00 $58.50 

6:00:00 - 6:29:59 hours $86.00 $64.50 

6:30:59 - 23:59:59 hours $94.00 $70.50 

 

Recently, Capital Bikeshare initiated programs to provide low-cost memberships. 

For example, through the Capital Bikeshare Community Partners Program, organizational 

memberships are provided to local non-profits, government agencies and social services 

organizations at low annual membership cost. Those organizations’ employees can get an 

annual membership for $5, and an extended free trip duration of 60 minutes (compared to 

the regular 30 minutes). Capital Bikeshare estimated that shifting from bus to bike share 

would save a commuter up to $638.75 per year if he or she use CaBi to replace one bus trip 

every day (Hilary Angus, 2016).  

CaBi categorizes daily, 3-day, and single-trip fare memberships as casual in its trip 

recording system; 30-day, annual, and annual with monthly installments are labeled as a 

member. Though one may argue that commuters who use CaBi multiple times a month 

may still purchase a daily pass each time and labelling them as a casual user may not be 

precise, this dissertation uses CaBi’s definition of casual and member.  
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As of May 15, 2016, there are 29,797 active members registered in the CaBi system. 

In addition, 952,371 casual users purchased daily or 3-day fares. Table 6 breaks down 

membership by type.  

 

Table 6 Registered Members by Type 

Membership Count Status 

24-hour or Day key 855,057 Cumulative 

3-day 67,314 Cumulative 

30-day 315 Active 

Annual or Annual with Monthly Installments 29,474 Active 

 

One issue with Capital Bikeshare membership is its affordability. According to 

DDOT Director Leif Dormsjo, “by including need-based Capital Bikeshare annual 

memberships, we are ensuring that all District residents can use this healthy, affordable 

and efficient means of travel” (District Department of Transportation, 2016).  

To incentivize bike share commuting, Capital Bikeshare, through its Community 

Partners Program, provides organizational discounted membership to government agencies, 

non-profit organizations, and social services organizations (Capital Bikeshare, 2016a). 

Organizational memberships include: 

• A $5 annual membership for their clients 

• 60 minutes of ride time included with every trip (normally 30) 

• A Capital Bikeshare helmet 

• An introduction to the Bikeshare system 

• Instruction on how to use the stations 

• How-To-Ride classes with the Washington Area Bicyclist Association 

Currently, the Community Partners Program is available to employers with offices 

in the District of Columbia, but is planned for Arlington County and the City of Alexandria 
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(Capital Bikeshare, 2016a). Montgomery County has its own low-income membership 

program “MCLiberty” to provide free bike share memberships to qualified low-income 

individuals (Montgomery County Government, 2017). The County also offered discounted 

membership through a Job Access and Reverse Commute Program (JARC), a program 

which has expired (Federal Transit Administration, 2016a). 

3.2.3 User Demographics 

Capital Bikeshare has conducted three member surveys, in 2011, 2012, and 2014, to 

analyze who uses CaBi and how they use it (LDA Consulting, 2012, 2013, 2015). Survey 

results have revealed interesting findings about CaBi members and their bike share 

behaviors and preferences. 

According to the 2012 Customer Survey, among all of the 3,731 survey participants, 

63% are under the age of 35, 57% are male, and 80% are Caucasian. Of members, 95% 

possess a four-year college degree, and 56% hold advanced degrees. Nine out of ten survey 

participants are employed, and 78% work and live in D.C. The majority of users (91%) 

agreed that CaBi helps them get around more easily, faster, and over shorter distances. Of 

members, 80% use CaBi as a new travel option, or as a one-way travel option, and 52% 

find bike sharing helpful in reducing their transportation costs. Finally, 57% use CaBi to 

exercise. It is also important to acknowledge that the program draws many non-residents 

and tourists. In 2013, visitors took more than 200,000 rides. 

The survey also asked users whether and how they have shifted their use of rail 

transit since CaBi became available. Of respondents, 54% reported Metrorail stations as 

their trip origins/destinations. Among them, 9% made trips starting or ending at Metrorail 

stations more than ten times in one month. Compared to other public transportation modes, 
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Metrorail stations attract more CaBi trips (21% of respondents cycle to/from bus stops, and 

10% to other commuter rail stations—MARC, VRE, and Amtrak). When asked how they 

would travel if the CaBi program were not available, 44% responded that they would take 

bus or Metrorail instead. As to Metrorail use, 61% reported that they used Metrorail less 

often, and 4% reported using it more often, after joining the CaBi program. There is some 

support for expanding CaBi near Metrorail station, 17% of respondents stated that they 

would support that expansion.  

 The survey also asked respondents whether and how they changed their use of non-

bicycle transportation modes since they joined CaBi. Respondents could select one 

response from “Much less often,” “Less often,” “About the same,” “More often” and 

“Much more often.” Table 7 summarizes those responses for each transportation mode 

asked in the three survey years. 
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Table 7 Change in Use of Non-Bicycle Transportation 

  2011 2012 2014 

Metrorail 

Much less often 10% 21% 20% 

Less often 37% 40% 38% 

About the same 46% 35% 38% 

More often 7% 4% 4% 

Bus 

Much less often 7% 19% 21% 

Less often 32% 33% 31% 

About the same 55% 45% 45% 

More often 6% 3% 3% 

Walk 

Much less often 2% 8% 7% 

Less often 29% 46% 44% 

About the same 52% 39% 41% 

More often 17% 7% 8% 

Driving 

Much less often 11% 20% 27% 

Less often 30% 30% 28% 

About the same 59% 49% 44% 

More often 0% 1% 1% 

Taxi 

Much less often 17% 31% 27% 

Less often 36% 29% 32% 

About the same 46% 39% 40% 

More often 1% 1% 1% 

 

Table 7 also demonstrates Capital Bikeshare’s substitute effect on Metrorail. Of 

respondents, 47% used Metrorail less or much less often in 2011. This share increased to 

61% in 2012 and 58% in 2014. In particular, CaBi users who responded that they take 

Metrorail much less often doubled from 10% in 2011 to 21% in 2012 and 20% in 2014. 

Conversely, only 7% of respondents claimed that they use Metrorail more since joining 

Capital Bikeshare. That number decreased to 4% in 2012 and 2014, showing that CaBi’s 

complementary effect on Metrorail has reduced over the years.  

 Not only does Capital Bikeshare reduce Metrorail rides, but it also decreases the 

use of other non-bicycle transportation modes. CaBi’s effect on bus usage, according to the 

respondents, is very similar to the effect on Metrorail. In 2011, 39% claimed that they take 
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bus rides less or much less often. The share increased to 52% in 2012 and 2014, suggesting 

that half of the respondents use the bus less. CaBi also appears to reduce driving 

frequencies with 55% of respondents driving less or much less often in 2014, which is 14% 

more than the share in 2011.  

 In addition, the surveys asked whether and how often CaBi member users took rides 

that started or ended at Metrorail stations in the past month. In 2012, 54% respondents 

reported making at least one trip from/to Metrorail stations. In 2014, the number increased 

to 64%. Respondents answering that they make 1-2 trips, 3-5 trips, 6-10 trips and 11 or 

more trips starting or ending at Metrorail stations rose by 1-3% in each group.  

Table 8 Share of CaBi Trips From/To Metrorail Stations 

 2012 2014 

0 trips 46% 36% 

1-2 trips 22% 25% 

3-5 trips 15% 18% 

6-10 trips 8% 9% 

11 or more trips 9% 12% 

Survey data only reflects answers of the respondents, and may not capture all CaBi 

users. To better understand users’ demographics, since April 2015, CaBi has collected 

socio-economic information at the trip level. I contacted DDOT and Motivate and received 

a trip-level user demographic dataset that covers between April 2015 and August 2016. 

The analysis below is a complement to the surveys’ findings. 

Table 9 shows the number of trips made by users of different races. About two-

thirds of trips are made by white or Caucasian riders, followed by Asian at 9.6%, and 

Hispanic at 8.9%. Black or African American riders make 6.5% of total trips.  
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Table 9 Capital Bikeshare Trips by Users' Race/Ethnic Groups 

Race/Ethnic Group Number of Trips % of Total Number of Trips 

White or Caucasian 82,666 60.3% 

Black or African American 8,850 6.5% 

Asian 13,186 9.6% 

Hispanic or Latino 12,175 8.9% 

American Indian or Alaska Native 643 0.5% 

Other 5,467 4.0% 

Prefer not to answer 14,036 10.2% 

 

Table 10 shows the number of trips made by users in different income groups. 

Riders who make less the $25,000 per year made 21% of trips, a group that could be college 

students. The second largest income group of users is those making between $50,000 and 

$74,999. They make 19% of all trips.  

 

Table 10 Capital Bikeshare Trips by Users' Income Group 

Income Level Number of Trips % of Total Number of Trips 

Less than $25,000 29,254 21.4% 

$25,000 - $49,999 24,068 17.6% 

$50,000 - $74,999 26,135 19.1% 

$75,000 - $99,999 16,623 12.1% 

$100,000 - $149,999 10,896 8.0% 

$150,000 or more 5,268 3.8% 

Prefer not to answer 24,779 18.1% 

3.2.4 CaBi Trip Analysis 

In this section, I perform a comprehensive analysis of Capital Bikeshare trips using two 

datasets provided by CaBi operator Motivate Co. The first trip dataset includes start date 

and time, start station name and station number, end date and time, end station name and 

station number, trip duration, and membership type of each CaBi trip made since the 

program’s official launch through August 5, 2015. The second dataset includes socio-

economic information about the CaBi users: birth year, race/ethnicity, and income level. 

This user dataset is new, and trips were made between April 13, 2015 and August 5, 2016.  
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Trip Growth 

In 2010, Capital Bikeshare had 107 stations and reached 115,937 trips at the end of the 

year. The average number of trips made per station was 1,084. Because it was a new 

program, the average trip number per station was not high. But since its second year, CaBi 

has become an attractive transportation option. As Table 11 shows, the number of trips per 

station in 2011 increased to 8,475, more than eight times the 2010 number. Both the number 

of stations and number of trips increased over the years. As of August 5, 2016, there were 

401 Capital Bikeshare stations. The highest number of annual trips was in 2015, more than 

3 million trips. (At the time of writing, the 2016 annual trip number is not available.) As 

for the number of trips made per station, the largest number took place in 2012. For each 

station, about 10,580 trips were started.  

 

Table 11 Number of Capital Bikeshare Stations and Number of Trips Over Time 

Year Number of CaBi 

Stations 

Number of Trips Started Number of Trips per 

Station 

2010* 107 115,937 1,084 

2011 145 1,228,879 8,475 

2012 192 2,031,415 10,580 

2013 306 2,557,267 8,357 

2014 347 2,914,714 8,400 

2015 358 3,187,108 8,903 

2016** 401 1,921,950 4,793 
*2010 only has trips between October and December      

**2016 only has trips between January and August 

 

Weather’s Impacts 

The literature review in Section 2.4 found that weather has significant impacts on bike 

share use. This was confirmed by my analysis of CaBi trips. First, CaBi trips show a 

seasonal pattern. Figure 5 shows the number of trips by month between 2011 and 2015 

(2010 and 2016 were dropped because the dataset only covers part of these two years), 
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with each line representing one year. From the graph, we can identify a seasonal pattern 

that is consistent over years. More CaBi trips are made between April and October, 

compared to the rest of the year. I found temperature to be an appropriate explanation: 

people tend to cycle more in warmer weather.  

Figure 5 Capital Bikeshare Trips by Month by Year 

 
 

 The finding that CaBi trips are affected by weather is consistent with previous 

studies. Fishman (2015) studied bike share trips by month in multiple cities and found that 

more trips were made in spring and fall than in winter. This seasonal pattern in Washington, 

D.C. was also observed in bike share trips in New York, London, and Boston (Fishman, 

2015). 
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 The peak month varies in different years. May was the peak month in 2011, 

September was the peak month in 2012 and August was the peak month in 2013. The 

number of rainy days may explain the inconsistency since literature review in Section 2.4 

suggests that bike share trips plunge dramatically on rainy days. To test the theory, I 

compared daily CaBi trips for June 2014 and June 2015. In Figure 6, the light blue bar 

represents 2014 data and 2015 data is represented by the dark blue bar. One day, June 27, 

stands out; on that day, the number of CaBi trips made in 2014 was more than twice the 

number made in 2015. According to archived news articles, on June 27, 2015, D.C. region 

had a record-setting rainfall.6 In fact, the rainfall total was 11.9 inches, making June 2015 

the second highest on record since 1871. Thus, the precipitation is likely to cause CaBi 

trips’ monthly fluctuations between April and October.  

                                                 
6 Washington Post. Saturday soaker sets daily record in D.C.; second wettest June.  

https://www.washingtonpost.com/news/capital-weather-gang/wp/2015/06/28/saturday-soaker-sets-daily-

record-in-d-c-june-2nd-wettest-on-record/  

https://www.washingtonpost.com/news/capital-weather-gang/wp/2015/06/28/saturday-soaker-sets-daily-record-in-d-c-june-2nd-wettest-on-record/
https://www.washingtonpost.com/news/capital-weather-gang/wp/2015/06/28/saturday-soaker-sets-daily-record-in-d-c-june-2nd-wettest-on-record/


49 

 

Figure 6 Capital Bikeshare Trips by Day, June 2014 and June 2015 

 
 

 I also created a graph to identify single days with the largest CaBi trips, using the 

2015 data. As Figure 7 shows, the winter season, which is before mid-April and after mid-

November, has the smallest number of CaBi trips per day. The daily trip number in winter 

could get down to 1,000. Conversely, during non-winter seasons, the average daily CaBi 

trip number is larger than 10,000. The annual peak took place during the 2015 National 

Cherry Blossom Festival in late April, and about 17,000 trips were made each day.  
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Figure 7 2015 CaBi Daily Ridership 

 

The finding that weather impacts CaBi trips leads to an important implication for 

data preparation for regression analysis in the later chapters. First, the month effects should 

be controlled for, for example, by using dummy variables. Second, if only trips in a specific 

time of year are used, I should avoid using trips made in the winter when there are fewer 

numbers of CaBi trips due to cool weather and snowy/icy road conditions. Third, to 

eliminate weather’s impacts and trip fluctuation by day, it is better to use the average 

numbers of CaBi trips, rather than using actual trip numbers.  Finally, if needed, the 

analysis should also avoid CaBi trips during the National Cherry Blossom Festival and 

other events to exclude weekday tourist trips.  

 

Weekday 

Table 12 shows the number of Capital Bikeshare trips by day of the week. Trips are almost 

evenly distributed among weekdays, about 2 million trips every day. Friday has a slightly 

higher share than other days (14.8%), followed by Wednesday and Thursday (both at 

14.6%). Sunday has the smallest share of trips, at 13.5%.  
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Table 12 Capital Bikeshare Trips by the Day of the Week 

Weekday Number of Trips % of Total Number of Trips 

Monday 1,932,009 13.8% 

Tuesday 1,985,752 14.2% 

Wednesday 2,036,185 14.6% 

Thursday 2,035,985 14.6% 

Friday 2,067,555 14.8% 

Saturday 2,015,257 14.4% 

Sunday 1,884,527 13.5% 

 

 

Time of Day 

Within a day, Capital Bikeshare trips have two peak periods. The AM peak happens at 8 

am. The PM peak occurs between 5 pm and 6 pm, and lasts two hours. This AM-PM peak 

pattern is consistent with peak patterns found in other transportation modes, suggesting 

that many riders have been using CaBi for commuting. Comparing the two peaks, we see 

the PM peak has more trips per hour and lasts longer. One possible explanation is that 

commuters tend to rush in the morning and may choose transportation modes with a higher 

hourly speed, but after work, they tend to have more time and may choose CaBi for its 

affordability or flexibility. Another possibility is that in the evening CaBi attracts not only 

commuters to bike home, but also casual users to bike for other purposes, such as shopping, 

socializing at restaurants or bars, workouts, or sightseeing. 

 



52 

 

Figure 8 Capital Bikeshare Trips by Time of Day 

 
 

 

Trip Duration 

About 90% of Capital Bikeshare trips last 30 minutes or less. Assuming the average 

bicycling speed is 9.6 miles per hour, within 30 minutes, one can reach destinations within 

4.8 miles. Two factors impact trip duration. First, bicycling demands physical energy. 

Second, Capital Bikeshare has a policy that trips within 30 minutes are free.  
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Table 13 Capital Bikeshare Trip Duration 

Duration Number of Trips % of Total Number of Trips 

30 minutes or less 12,562,947 90.0% 

30 - 60 minutes 804,878 5.8% 

60 - 90 minutes 261,944 1.9% 

90 - 120 minutes 144,102 1.0% 

120 - 150 minutes 75,441 0.5% 

150 minutes or more 107,958 0.8% 

 

Trip by Account Type 

As noted earlier, Capital Bikeshare provides two account choices: casual and member. 

Table 14 shows the number of trips made by users in each of these two accounts. Since the 

launch of Capital Bikeshare program, 79.3% trips are made by members.  

Table 14 Number of Trips by Account Type 

Account Type Number of Trips % of Total Number of Trips 

Casual 2,881,663 20.7% 

Member 11,075,549 79.3% 

 

Casual Capital Bikeshare riders and members differ in when and how they bike. 

Figure 9 shows the number of trips by account type by month. Members make more trips 

than casual users, confirming findings of Table 14 above. The most popular months for 

casual users peak between April and August. It seems that casual bike share riders are likely 

to be tourists, who come to town for the Cherry Blossoms in April and sightseeing in the 

summer. The number of member trips is high between March and November, which 

reflects commuters’ and residents’ high and lasting demand.  
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Figure 9 Capital Bikeshare Trips by Account Type by Month 

 
Note: Only trips made between 2011 and 2015 are included.  

 

As expected, trips made by member and casual users have different distributions 

among weekdays. Members tend to ride more during weekdays than on the weekends, 

while casual users make CaBi trips mostly on the weekends.  
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Figure 10 Capital Bikeshare Trips by Account Type by Weekday 

 
 

In terms of time of day, trips made by members duplicate the total trip pattern that 

peaks twice a day, at 8 am, and between 5 pm and 6 pm. However, trips made by casual 

users have an entirely different pattern. Their number of trips gradually increases as the 

day starts, reaching a relatively high level around noon, maintaining that level to 5 pm, and 

decreasing into the night. There is no peak. Figure 11 again confirms the guess that 

members are most likely to be commuters, and casual members are tourists.  
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Figure 11 Capital Bikeshare Trips by Account Type by Time of Day 

 
 

Table 15 lists the number of trips by duration made by casual CaBi users and 

members. Trips made by casual users tend to last longer than those made by members. For 

members, as much as 97.3% of trips are 30 minutes or less. Only 61.9% of trips made by 

casual members are in that duration range. Of trips made by casual users, 19.5% last 

between 30 minutes and 60 minutes, a proportion about ten times higher than member trips 

at 2.2%. In addition, about 15% of casual bikers make trips longer than one hour, while 

nearly no members (less than 0.4%) make trips that long. 
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Table 15 Capital Bikeshare Trips by Account Type by Duration 

 Casual Member 

Duration Number of 

Trips 

% of Total 

Number of 

Trips 

Number of 

Trips 

% of Total 

Number of 

Trips 

30 minutes or 

less 

1,781,919 61.8% 10,780,974 97.3% 

30 - 60 minutes 562,094 19.5% 242,780 2.2% 

60 - 90 minutes 236,856 8.2% 25,088 0.2% 

90 - 120 

minutes 

135,368 4.7% 8,734 0.1% 

120 - 150 

minutes 

71,372 2.5% 4,069 0.0% 

 

In summary, comparing trips made by members and casual users shows that 

members tend to be commuters and residents while casual users tend to be tourists. 

Members use Capital Bikeshare mostly on weekdays in warm weather. Their trips have a 

shorter duration (less than 30 minutes), and have AM and PM peaks, reflecting general 

commuting needs. Casual users bike more on the weekends in warm weather and during 

events. They spent more time bicycling, and thus there is no peak. 

 

Most Popular Stations 

Which Capital Bikeshare stations are the systems most popular? Table 16 and Table 17 list 

the top stations ranked by the number of trips started and ended, respectively. Interestingly, 

the two tables have nearly the same stations in the same order. The top five stations are the 

same in both tables; Dupont Circle is the most popular, followed by Union Station, 15th & 

P St NW, Lincoln Memorial, and Jefferson Dr & 14th St NW. The next five stations are 

also the same, though their rankings are slightly different in the two tables: New Hampshire 

Avenue & T St NW, 17th & Corcoran St NW, Thomas Circle, 14th & V St NW, and Eastern 

Market Metro.  



58 

 

 

Table 16 Capital Bikeshare Stations with the Largest Number of Trips Started 

Ranking Start Station (Station ID) Number of Trips 

1 Massachusetts Ave & Dupont Circle NW (31200) 325,055 

2 Columbus Circle / Union Station (31623) 313,940 

3 15th & P St NW (31201) 230,595 

4 Lincoln Memorial (31258) 214,088 

5 Jefferson Dr & 14th St SW (31247) 200,533 

6 New Hampshire Ave & T St NW (31229) 185,684 

7 17th & Corcoran St NW (31214) 184,551 

8 Thomas Circle (31241) 183,931 

9 14th & V St NW (31101) 183,826 

10 Eastern Market Metro / Pennsylvania Ave & 7th St SE 

(31613) 

177,193 

 

Table 17 Capital Bikeshare Stations with the Largest Number of Trips Ended 

Ranking End Station (Station ID) Number of Trips 

1 Massachusetts Ave & Dupont Circle NW (31200) 365,837 

2 Columbus Circle / Union Station (31623) 321,519 

3 15th & P St NW (31201) 256,137 

4 Lincoln Memorial (31258) 212,008 

5 Jefferson Dr & 14th St SW (31247) 206,675 

6 14th & V St NW (31101) 196,522 

7 17th & Corcoran St NW (31214) 191,824 

8 New Hampshire Ave & T St NW (31229) 185,090 

9 Thomas Circle (31241) 176,316 

10 Eastern Market Metro / Pennsylvania Ave & 7th St SE 

(31613) 

173,274 

Source: CaBi 

 

Figure 12 maps all CaBi O-D trip pairs between 2010 and 2016. From the map, 

almost all top 1,000 O-D pairs with the largest number of CaBi trips are in central D.C., 

bounded by Columbia Heights (north), the Navy Yard (south), Capitol Hill (east), and 

Georgetown (west). Three hot spots can be identified in D.C. from the map. They are 

Dupont Circle, Union Station, and Eastern Market.   
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On the border or outside D.C., there are several areas with large CaBi trip numbers: 

Alexandria, Arlington, Pentagon City and Crystal City in Virginia, and Takoma and 

Takoma Park in Maryland.  

 

Figure 12 CaBi O-D Pairs, 2010-2016 

 
 

3.3 Metrorail 

WMATA was created by an interstate compact in 1967 to plan, build, and operate a 

regional transit system in the Washington metropolitan area. The regional transportation 

system includes two elements: Metrorail, the rail transit service, and Metrobus, the bus 
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system. As of the end of 2015, Metrorail has made 206 million trips, and Metrobus has 

made 130 million trips (WMATA, 2016a). 

 Metrorail construction began in 1969, and the first phase between Farragut North 

and Rhode Island Avenue opened in 1976. In the following years, Metrorail experienced 

significant expansion and grew into a system with five lines and 86 stations. The Silver 

Line opened in the summer of 2014, adding five more stations to the network. In addition, 

Maryland is planning a light rail line, the Purple Line, which will connect to four Metrorail 

stations at Bethesda, Silver Spring, College Park, and New Carrollton. Figure 13 maps all 

the stations and lines, and Table 18 lists the sequence of Metrorail openings.  
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Figure 13 Metrorail System Map 
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Table 18 Sequence of Metrorail Station Openings 

Line Segment Stations Miles* Date 

Red Farragut North to Rhode Island Ave 5 4.6 3/29/1976 

Red Gallery Place     1 none 12/15/1976 

Red To Dupont Circle    1 1.1 1/17/1977 

Blue, Orange 

National Airport to Stadium-

Armory   17 11.8 7/1/1977 

Red To Silver Spring    4 5.7 2/6/1978 

Orange To New Carrollton    5 7.4 11/20/1978 

Orange To Ballston-MU     4 3 12/1/1979 

Blue To Addison Rd    3 3.6 11/22/1980 

Red To Van Ness-UDC    3 2.1 12/5/1981 

Yellow Gallery Place to Pentagon   1 3.3 4/30/1983 

Blue To Huntington     4 4.2 12/17/1983 

Red To Grosvenor-Strathmore     5 6.8 8/25/1984 

Red To Shady Grove    4 7 12/15/1984 

Orange To Vienna     4 9.1 6/7/1986 

Red To Wheaton     2 3.2 9/22/1990 

Green To U St    3 1.7 5/11/1991 

Blue To Van Dorn St   1 3.9 6/15/1991 

Green To Anacostia     3 2.9 12/28/1991 

Green To Greenbelt     4 7 12/11/1993 

Blue To Franconia-Springfield     1 3.3 6/29/1997 

Red To Glenmont     1 1.4 7/25/1998 

Green Columbia Heights to Fort Totten  2 2.9 9/18/1999 

Green To Branch Ave    5 6.5 1/13/2001 

Blue To Largo Town Center   2 3.2 12/18/2004 

Red NoMa-Gallaudet U     1 none 11/20/2004 

Silver To Wiehle-Reston East    5 11.7 7/26/2014 

 Total system 91 118  

* The sum of miles does not equal the total because of rounding 

 

Metrorail’s fare system is based on time and distance (WMATA, 2014b). Metrorail 

fares vary during peak hours and non-peak hours. According to WMATA, the AM peak, 

runs from system opening to 9:30 am, while the PM peak runs from 3 pm to 7 pm on 

weekdays and midnight to closing on weekends. Distance is the other factor in setting fares. 

WMATA charges $0.326 per additional mile between three and six miles and $0.288 per 
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extra mile greater than six miles during peak hours, and $0.244 and $0.216 for off-peak 

hours. Senior and disabled riders are charged for half the peak fare. Table 19 and Figure 

14 illustrate Metrorail’s fare structure. 

Table 19 Metrorail Fare Structure 

 
Regular Fares 

Senior & Disabled 

Fares 

 Peak Off-Peak  

First 3 composite miles $2.150   One-half peak fare 

Each additional composite mile more 

than 3 and less than or equal to 6 

$0.326   

 

Each composite mile greater than 6 $0.288    

Maximum peak fare $5.900    

First 3 composite miles  $1.750  One-half peak fare 

Each additional composite mile more 

than 3 and less than or equal to 6 

 $0.244  

 

Each composite mile greater than 6  $0.216   

Maximum off-peak fare  $3.600   

A $1.00 surcharge applies to all non-SmarTrip® single-ride fares ($0.50 for senior & 

disabled) 

 

Figure 14 Metrorail Fares by Mile 
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SmarTrip is the farecard to access Metrorail and other local transit facilities such 

as the D.C. Circulator bus, Montgomery County’s RideOn bus, and TheBus in Prince 

George’s County. SmarTrip is rechargeable and value can be added at SmarTrip vending 

machines at most Metrorail stations. Card holders can register their cards to view personal 

balances and usage history online. One advantage of using SmarTrip, besides convenience, 

is that it gives a 50-cent discount on transfers from Metrobus to Metrorail or vice versa 

within two hours, and free transfers between Metrobuses or Metrorail trains.  

Metrorail fares are among the highest in the nation. Esteban and Muyskens (2016) 

collected fare ranges for major U.S. rail transit systems and found that Metrorail fares are 

the second highest, lower only than BART in San Francisco. After adjusting for cost-of-

living, most BART fares are cheaper than Metrorail’s (Esteban & Muyskens, 2016).  

 Besides SmarTrip, WMATA offers various pass options, including a One Day 

Pass, 7-Day Short Trip Pass, 7-Day Fast Pass, 28-Day Fast Pass, and special passes for 

students and people in need (WMATA, 2014b).  

3.3.1 Metrorail Trip Analysis 

Metrorail has a much longer operation history than the Capital Bikeshare program. In this 

section, I first review Metrorail ridership between 1977 and 2015 to get a full picture. For 

more in-depth Metrorail trip analysis, I then focus on trips generated between August 2010, 

slightly before CaBi installation, and May 2016, a scope consistent with my Capital 

Bikeshare trip analysis. 

Metrorail Ridership 1977-2015 

Figure 15 shows the average weekday daily boarding for the whole Metrorail 

system between 1977 and 2015. Over the past four decades, overall Metrorail ridership has 
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been increasing. But ridership growth has not been consistent. There are three quick-

growth periods, the system’s opening in the late 1970s, between mid-1980s and 1990, and 

in the first decade of the 21st century. Interestingly, each fast growth period was followed 

by some decreases and stagnancies. The latest peak was in 2009. Since then, ridership has 

been declining.  

Figure 15 Metrorail Average Weekday Daily Boarding, 1977-2015 

 
 

The increases in Metrorail ridership could result from system expansion. As Figure 

16 illustrates, the total number of stations increased over the years. When Metrorail first 

opened in 1977, there were 24 stations. After two decades of expansion, the system reached 

86 stations in 2001. The most recent expansion took place in 2014 when the Silver Line 

with four stations was added to the network, for a total of 91 stations. 
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Figure 16 Number of Metrorail Stations, 1977-2015 

 
 

Therefore, ridership per station is a better measurement of overall ridership since it 

normalizes the effects of system expansion. Figure 17 shows the average weekday daily 

boarding per station between 1977 and 2015 and identifies three ridership peaks. The first 

peak took place in 1980 after a three-year increase period. However, ridership plummeted 

since 1980 and reached a low in 1984. The second peak happened in 1990 with per station 

ridership slightly higher than that of 1980. The second low arrived in 1996. Since 1996, 

per station ridership climbed each year and reached the third peak in 2009. Then a decrease 

began, with the worst one between 2014 and 2015 after the Silver Line stations’ opening.  
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Figure 17 Metrorail Average Weekday Daily Boarding per Station, 1977-2015 

 
 

What caused the decreases in Metrorail ridership? The official launch of Capital 

Bikeshare program in 2010 might be a reason. As illustrated in Figure 18, as CaBi trips 

increased between 2010 and 2015, Metrorail ridership kept decreasing, suggesting a 

correlation.  
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Figure 18 Metrorail Boardings vs. CaBi Trips, 2010-2015 

 
 

Also, WMATA, in its blog, reminded people of historical fluctuations and 

attributed this decrease to the overall economy. To test this hypothesis, I overlaid Metrorail 

average weekday daily boarding per station (the blue line in Figure 19) with D.C.’s 

unemployment rate (the orange line in Figure 19) to see whether there is a relationship.7 

As the figure shows, there may be a negative association between them. In general, each 

time Metrorail ridership increased, unemployment rates decreased, especially in 1980, 

1990, 2001, and 2008. However, there is an exception in recent years. Since 2012, the 

unemployment rate has plummeted, indicating a strong economy. However, Metrorail 

ridership kept decreasing. Therefore, the unemployment rate could explain historical 

ridership fluctuations, but we need other factors to explain the most recent decrease.  

                                                 
7 Unemployment rate data was accessed from Bureau of Labor Statistics, 2016 
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Figure 19 Metrorail Average Weekday Daily Boarding per Station and Unemployment 

Rate, 1977-2015 

 
 

 Gasoline prices, which are a significant cost of driving, also have an impact on 

Metrorail ridership. The annual price of crude oil per barrel (the red line in Figure 20) has 

a pattern that corresponds with Metrorail ridership except in 2009.8 As crude oil prices 

increased, we see more commuters switching to Metrorail for its lower travel costs. When 

oil prices dropped, a decrease in Metrorail ridership followed. However, the price elasticity 

is not consistent. In the 1980s and the 1990s when oil prices were lower, a small price 

increase could trigger a significant Metrorail ridership growth, which peaked in 1990. 

                                                 
8 Crude oil here refers the West Texas Intermediate (WTI) grade crude oil, Cushing, Oklahoma. WTI has 

been used as a benchmark in oil pricing, and Cushing, Oklahoma is the major trading hub for crude oil. 

Price data source: US. Energy Information Administration, Crude Oil Prices: West Texas Intermediate 

(WTI) - Cushing, Oklahoma [ACOILWTICO], retrieved from FRED, Federal Reserve Bank of St. Louis; 

https://fred.stlouisfed.org/series/ACOILWTICO, September 15, 2016. Note that the price is not seasonally 

adjusted. 
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However, though oil prices increased fourfold since 2000, Metrorail ridership grew at a 

much lower rate and amount. The ridership in 2008 was 8,829, about the same level as 

previous peaks (8,516 in 1990 and 8,255 in 1980). Therefore, commuters’ demand for 

driving is less elastic to oil price than previously.  

Figure 20 Metrorail Average Weekday Daily Ridership and Crude Oil Price 

 
A third explanation for the recent ridership decline is the decrease of federal 

government jobs. According to WMATA, more than a third of the federal workforce 

commutes by Metrorail (WMATA, 2016a). However, between 2010 and 2015, federal 

government employment decreased by 12,900, or 6.1% (WDCEP, 2016). The job loss in 

this sector, by absolute value, was the largest among all industries, and by proportion, it 

was the third largest loss, as shown in Table 20. 
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Table 20 Change in Job Numbers by Sector 

 Change 2006-2010 Change 2010-2015 

Sector 

Change in 

thousands Change in % 

Change in 

thousands Change in % 

Mining, Logging, & 

Construction 1.8 15.0% 3.8 35.6% 

Manufacturing    -0.8 -44.4% -0.1 -9.1% 

Wholesale Trade   0 0.9% 0 0.9% 

Retail Trade   4.3 23.9% 3.9 21.2% 

Transportation & Utilities  -0.8 -14.8% 0.2 5.4% 

Information    -5.2 -23.2% -1.7 -8.9% 

Financial Activities   1.3 4.3% 3.8 14.0% 

Professional & Business 

Services 10 6.6% 14.4 9.7% 

Education & Health 

Services 33.7 35.9% 19.7 18.3% 

Leisure & Hospitality  15.5 28.6% 10 16.8% 

Other Services   10.6 17.5% 5.9 9.0% 

Federal Government   4.9 2.5% -12.9 -6.1% 

  

Metrorail ridership by federal government employees has been further discouraged 

by Congress’ transportation subsidy policy. The federal governments, as well as many 

other major employers in D.C., have participated in WMATA’s SmartBenefits Program to 

provide employees with pre-tax transportation subsidies (WMATA, 2016b). Interested 

employees load pre-tax money onto SmarTrip cards for Metrorail and other transit 

commuting. In other words, the SmartBenefits program allows certain transportation costs 

to be tax-free. In 2013, the maximum SmartBenefits subsidy was $245 per month for public 

transportation. The SmartBenefits program has an enormous impact on Metrorail ridership. 

According to WMATA’s statistics, 42% of all trips were made by SmartBenefits riders. In 

particular, 84% of federal employees who commute by Metrorail pay by SmartBenefits.  

However, the maximum benefits were reduced to $130 per month in January 2014, 

almost half the previous amount (Lunney, 2013). This policy change discouraged federal 
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government riders and decreased the number trips paid by SmartBenefits by 6,400 per 

average weekday (WMATA, 2014a). Meanwhile, parking subsidies were increased by $5 

to $250, almost twice the value of public transportation subsidies. Therefore, it is 

reasonable to think that 6,400 public transportation trips were replaced by driving.  

 Besides these external factors, many riders criticize Metrorail’s poor maintenance 

and its service deficiencies. Right before the most recent ridership decrease, in June 2009, 

two Red Line trains collided due to a faulty circuit and killed nine people aboard (eight of 

whom were passengers) and injured more than 50 (National Transportation Safety Board, 

2010). More recent incidents include a deadly smoke incident in a Yellow Line tunnel in 

January 2015, the derailment of a Blue Line train in August 2015, an electrical fire at the 

Stadium-Armory station in October 2015, and the derailment of a Silver Line train in July 

2016. The National Transportation Safety Board conducted investigations into some of 

these incidents. In its Yellow Line tunnel smoke investigation report, the NTSB made 

technical recommendations on operations, and also recommended that the U.S. Department 

of Transportation to transfer oversight responsibility of WMATA’s transit rail operations 

to the Federal Railroad Administration (FRA) (National Transportation Safety Board, 

2016). However, since NTSB has limited enforcement power, and despite Transportation 

Secretary Anthony Foxx’s letter supporting the transfer (DOT, 2015a), few changes have 

been made since the incident.  

 WMATA has been aware of customer complaints about poor service quality. 

According to its 2015 survey, Metrorail customer satisfaction dropped from 84% in fiscal 

year 2013 to 67% in fiscal year 2015, while Metrobus satisfaction rate remained at the 
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same level. The survey report suggested that “the only way to substantially improve 

satisfaction is through sustained and consistent service delivery” (WMATA, 2015c). 

Despite critics and doubts, WMATA does not seem pessimistic about future 

ridership. Projected regional population and job growth, and a significant amount of 

ongoing/planned transit-oriented development near Metrorail stations led to WMATA’s 

conclusion that “while the growth trajectory for the region continues to be strong…the 

underlying spatial and economic data tells us that the region will continue to depend on 

Metro to get around” (WMATA, 2015a). However, as a recent newspaper article noted, 

Metrorail again experienced a ridership loss of 12% in 2016 (Smith, 2017). Its current 

weekday daily ridership is over 100,000 less than that was in 2009. 

 

Metrorail Ridership 2010-2016 

Analysis of 2010-2016 Metrorail ridership data provides more information on recent 

ridership trends and patterns. 9  As Figure 21 shows, over time, annual ridership has 

decreased, from 216 million trips in 2011 to 198 million trips in 2015, a reduction of 8.3%.  

                                                 
9 2010-2016 Metrorail ridership data was prepared and shared by WMATA. Data was received in May 

2016. 
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Figure 21 Metrorail Annual Ridership (Entry), 2010-201610 

 
Metrorail ridership by month, as shown in Figure 22, does not have a strong 

seasonal pattern, partly because the train is weatherproofed. In general, there are more trips 

made in warm weather seasons, between March and November, than the colder winter 

season. Ridership peaks in April, July, and October.  

                                                 
10 Note that the dataset covers a period between September 2010 and May 2016. Therefore, the 2010 and 

2016 ridership in this figure (shown in light blue) is only part of the actual annual total. 



75 

 

Figure 22 Metrorail Monthly Ridership (Entry), 2010-2016 

 
By separating Metrorail ridership into weekday and weekend trips, we can see that 

the average number of weekday passengers decreased more than the weekend trip number.  

Figure 23 Metrorail Average Weekday vs. Weekend Daily Ridership (Entry), 2010-2016 
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In a day, Metrorail trips have two peaks, one in the morning and one in the evening 

after work. The PM peak has the largest number of trips, more than 2,000 per day. The AM 

peak has a slightly smaller number of trips, about 1,800. Evening and late night have the 

least number of trips. 

Figure 24 Average Metrorail Ridership by Period (Entry), 2010-2016 

 
 

3.3.2 Bike Access to Metrorail 

According to WMATA’s 2012 Metrorail customer survey, about 1% of passengers use a 

bike to access a station. Out of 243,253 total AM peak passengers, 2,384 bicycle to 

Metrorail stations and start a Metro trip. Compared to other modes of access as illustrated 

in Table 21, the share of bike access is small.  However, it increased the most between 

2007 and 2012, by 54% (WMATA, 2013a). 
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Table 21 Mode of Access, 2007-2012 

Mode of access 2007 2012 2007-2012  

% change Weekday AM  

Peak Trips 

Share Weekday AM  

Peak Trips 

Share 

Walk 78,460 32.6% 89860 36.9% 15% 

Park & Ride 68,969 28.7% 61559 25.3% -11% 

Metrobus 34,952 14.5% 32672 13.4% -7% 

Other bus 17,620 7.3% 19994 8.2% 13% 

Shuttle -- -- 4905 2.0%  

Dropped off 21,911 9.1% 18723 7.7% -15% 

Commuter train 9,002 3.7% 328 0.1% -96% 

Ride sharing 2,463 1.0% 2085 0.9% -15% 

Bicycle 1,550 0.6% 2384 1.0% 54% 

Total 240,512 100% 243253 100% 1% 

 

WMATA accommodates bikes on Metro to assist bicycling and rail transit 

integration three ways: allowing bicycles on Metrorail, providing Bike & Ride facilities at 

stations, and providing Capital Bikeshare information. WMATA allows privately owned 

regular bicycles11, on Metrorail during weekday non-peak hours (weekdays except 7 am – 

10 am and 4 am – 7 am) and all day Saturday and Sunday. The number of bicycles on 

Metrorail is restricted to two per rail car on weekdays, and four per rail car on weekends. 

Bicycles are not permitted on Metrorail on July 4, Inauguration Day or other events and 

holidays. Regulations on foldable bicycles are less strict; they are allowed on Metrorail 

during all operational hours, if they remain folded and securely fastened. Bicycles are not 

allowed to use the center door of each rail car or escalators in Metrorail stations.  

For Metrorail riders who need to park their bicycles, WMATA provides three 

facilities: bicycle racks, bicycle lockers, and Bike & Ride facilities. WMATA currently 

                                                 
11 According to WMATA, regular bicycles are defined as maximum size 80" long, 48" high, and 22" wide. 

No tricycles, training wheels or tandem bicycles.  
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owns and operates about 2,400 bicycle racks, which are free to use. For riders who need 

more protection from theft, vandalism, and inclement weather, WMATA provides 2,400 

bicycle lockers that hold one bicycle each and biking gear. Bicycle lockers are box-shaped 

storage space about four feet high by six feet five inches deep by three feet wide at the door, 

narrowing toward the back of the locker. Unlike the free bicycle racks, lockers are rented 

for $120 per year.  

Currently, WMATA’s Bike & Ride facilities are provided only at the College Park-

University of Maryland station. Two more facilities, at the East Falls Church and Vienna 

stations. are under construction (expected to be completed in early 2016). Compared to 

bike racks, WMATA’s Bike & Ride has two advantages. First, the Bike & Ride facilities 

are monitored via security cameras, and only riders with registered SmarTrip cards can 

enter for up to 10 minutes each time. Second, Bike & Ride facilities are sheltered. Without 

wet seats and slippery pedals, bicycles are safer to ride. Compared to the lockers, Bike & 

Ride facilities are free and convenient. Metrorail riders can park bicycles at Bike & Ride 

facilities with SmarTrip® card access. To enable this function, Metrorail riders need to 

start an account and register their SmarTrip cards on the WMATA website, as well as sign 

up for access to Bike & Ride facilities. Riders are allowed to park bicycles in station 

facilities for up to ten days.  

To assist Metrorail riders finding biking information, WMATA lists biking 

amenities by type at each station.12 In total, 81 Metrorail stations are equipped with bike 

racks, 55 with bike lockers, and three with Bike & Ride facilities. WMATA also provides 

                                                 
12 See webpage http://www.wmata.com/rail/stations.cfm 

http://www.wmata.com/rail/stations.cfm
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information on Capital Bikeshare, including a map showing locations of Metrorail stations 

and Capital Bikeshare docks.13 

With all these bicycling assistance programs, more riders are biking to Metrorail 

stations. According to WMATA’s customer surveys, the number of riders bicycling to 

Metrorail in the morning rush hour increased from 1,550 to 2,380 between 2007 and 2012. 

In 2012, the share of bicycle access accounted for 1% of entries in the AM peak. WMATA 

predicts that by 2020, the share will increase to 2% (WMATA, 2013b). 

3.4 Summary 

The Washington metropolitan area provides a good case study. Not only is it the home of 

the Metrorail system and Capital Bikeshare, but it is also public-transportation- and biking- 

friendly. 4% commuters bike to work and 22% take rail transit, which is more than six to 

ten times the national average. In the rest of Chapter 3, I studied Metrorail and Capital 

Bikeshare program features and trip trends, preparing for the later regression analysis. I 

analyzed how CaBi users changed their use of other transportation modes, and using survey 

data, found very mixed attitudes. As of 2014, 58% of survey respondents reported that they 

made fewer Metrorail trips than previously, while 42% said they used Metrorail more often 

or maintained the same level. Also, 64% reported that their CaBi trips started or ended at 

Metrorail stations.  

 A closer look at CaBi trips also reveals program characteristics. CaBi trips are 

seasonal: there are more trips in the warmer weather between May and October. They also 

follow peak commuting hours as do other transportation modes. Regarding account type, 

                                                 
13 The map can be accessed from 

http://www.wmata.com/rail/bikesharing_maps/CaBi.cfm?station_name=Metro%20Center&lat=38.898303

&lon=-77.028099  

http://www.wmata.com/rail/bikesharing_maps/CaBi.cfm?station_name=Metro%20Center&lat=38.898303&lon=-77.028099
http://www.wmata.com/rail/bikesharing_maps/CaBi.cfm?station_name=Metro%20Center&lat=38.898303&lon=-77.028099
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weekday trips are mostly made by commuters, while on weekends there are more casual 

trips made by casual users. These CaBi characteristics have important implications for 

regression models, specifically, that CaBi trips affected by extreme weather conditions and 

recreational trips need to be eliminated. 

 Metrorail ridership has been declining since 2010, despite the opening of five Silver 

Line stations in 2014. I charted Metrorail ridership and CaBi trip numbers between 2010 

and 2015 and found that as CaBi trip numbers increased, Metrorail ridership declined, 

suggesting a possible correlation between the two.   
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Chapter 4: CaBi on Metrorail: Complementary or Substitute? 

The exploration of Metrorail and CaBi historic trips in the last chapter suggests that they 

may be correlated. In this chapter, I discuss CaBi’s impacts on Metrorail ridership from 

both theoretical and empirical perspectives. In general, CaBi can have two types of impacts: 

complementary effects and substitute effects. Complements are pairs of goods that are used 

together, such as coffee and sugar, and gasoline and automobiles. When the price of good 

A is reduced, both quantity of good A and good B will increase. Substitutes are pairs of 

goods that can replace each other, such as coffee and tea. When the price of good A 

increases, the quantity of good B will increase since demand for A decreases. If Metrorail 

is coffee, is CaBi’s role sugar or tea?  

In this chapter, I elaborate on the complementary-substitute discussion using three 

methods. First, from the perspective of microeconomics, I discuss how CaBi as a 

complementary and substitute good would drive the demand-supply. Second, I look for 

empirical evidence of CaBi’s impacts by conducting case studies of two Metrorail stations 

and nearby CaBi activities. Particularly, I map changes in CaBi trips during Metrorail’s 

SafeTrack maintenance periods Surge 2 and Surge 6. Finally, I review the current literature 

on bike share programs’ impacts on rail transit ridership, focusing on methodologies and 

major findings. 

4.1 Microeconomic Theoretical Analysis 

As illustrated in Figure 25, a complete rail transit trip constitutes three segments: the 

segment between activity origin and rail transit station A, the in-haul trip between rail 

transit station A and station B, and the last segment between station B and activity 
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destination. The first and last segments are usually called the first mile and the last mile. 

Since rail transit is fixed infrastructure, travel time of the complete trip largely hinges on 

speed of the first-mile and last-mile connections.  

Figure 25 Illustration of Rail Transit Commute Trip Segments 

 

 How to fill the first mile and last-mile gaps depends on distance and cost. If the 

distance is small, most rail transit commuters may choose walking. When distances get 

larger, they are more likely to use driving, bus, and biking. Travel cost is another concern, 

which can be measured as monetary cost or time cost. Driving may have the lowest time 

cost, but parking may be the most expensive among all choices. Walking is free, but it also 

has the lowest speed.  

 Therefore, the cost of a complete rail transit trip can be written as: 

𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙 =  𝐶𝑜𝑠𝑡𝑓𝑖𝑟𝑠𝑡−𝑚𝑖𝑙𝑒 +  𝐶𝑜𝑠𝑡𝑟𝑎𝑖𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + 𝐶𝑜𝑠𝑡𝑙𝑎𝑠𝑡−𝑚𝑖𝑙𝑒 (1) 

 Figure 26 and Figure 27 show the demand curve of bike share and rail transit trips. 

P denotes travel cost and Q denotes the number of trips. As the cost of bike share decreases 

from P1 to P2, the demand for bike share increases from D1 to D2. If bike share 

complements rail transit, as illustrated in Figure 26, we would see the demand curve shifts 

right. More commuters take rail transit even if the travel cost of rail transit remains the 

same. Conversely, if bike share substitutes for rail transit, as illustrated in Figure 27, rail 

transit demand curve shifts to the left, demonstrating that commuters switch from rail 

transit to bike share.  



83 

 

Figure 26 Complementary Effect Diagram 

   

Figure 27 Substitute Effect Diagram 

 

4.2 Empirical Analysis 

One way to observe the complementary and substitute effect of CaBi is to map where trips 

originate and end, and their relationship to Metrorail stations. In this section, I analyze 

where CaBi trips cluster when Metrorail is in regular operation and where trips cluster 

when stations are closed. This section’s purpose is to provide empirical evidence showing 

that CaBi can have both complementary and substitute effects on Metrorail ridership.  
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4.2.1 Substitute Effect 

As introduced in Chapter 3, mapping the origin and destination of CaBi trips is useful in 

showing their spatial distribution patterns. In this subsection, I focus on two CaBi stations 

located near high-ridership Metrorail stations, and analyze the role of CaBi trips by 

mapping O-D pairs.  

Union Station is the Metrorail station with the most passengers. Table 27 shows 

CaBi trips that originate from Union Station in the weekday AM peak period of 2015. 

Black lines represent O-D pairs with more than 1,000 trips, and gray lines are those with 

500-1,000 trips. O-D pairs with fewer than 500 trips were excluded for better visualization 

results. As the map shows, all these CaBi trips end at CaBi docking stations that cannot be 

reached via Metrorail without at least one transfer. Therefore, it is reasonable to think that 

Metrorail morning commuters use CaBi as their last-mile solution to travel between Union 

Station and their workplaces.  
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Figure 28 CaBi Trips Originating from Union Station 

 
 Figure 28 demonstrates that for commuters, CaBi provides a more direct 

link between Metrorail stations and workplaces, but does it save travel time? To answer 

this, I selected two CaBi O-D pairs from the map above and input both origins and 

destinations into Google Maps to calculate travel time by Metrorail and by CaBi, assuming 

trips are made at 8:00 am. The two CaBi O-D pairs are Union Station (CaBi docking station 

number 31623) – Smithsonian Museum (31217), and Union Station (31623) – Navy Yard 

(31208).  

 Figure 29 shows the travel time between Union Station and Smithsonian Museum 

by Metrorail and travel time by CaBi bicycle starting at 8:00 am on a typical weekday 

morning. It takes 20 minutes and one transfer for Metrorail riders to make the trip, but only 
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takes 12 minutes for CaBi biking. If we consider the crowding of trains during the AM 

peak as well as the views along bicycle routes, CaBi is a better choice.  

Figure 29 Travel Time Comparison 1 

  
 

Figure 30 shows travel time by Metrorail and by CaBi between Union Station and 

Navy Yard. CaBi saves almost half the travel time compared to Metrorail. Both Figure 29 

and .  

Figure 30 suggest that CaBi could substitute for Metrorail trips starting from Union 

Station and ending in downtown D.C., particularly for Metrorail trips that require a transfer.  

Figure 30 Travel Time Comparison 2 
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4.2.2 Complementary Effect 

As discussed, CaBi can complement Metrorail ridership by solving the last-mile problem, 

especially for commuters who live in lower-density suburban communities served by 

limited public transportation resources. The Takoma and Silver Spring Metrorail stations 

provide good examples. Figure 31 and Figure 32 show CaBi trips near two stations in the 

weekday AM peak and PM peak separately. Black and gray lines represent CaBi O-D pairs 

with arrows illustrating the direction toward destinations. In Figure 31 we see that in the 

morning, CaBi trips start from neighborhoods located far from the two Metrorail stations 

and end at docking stations near Metrorail stations. We see same O-D trips in the PM peak 

but in the opposite directions, showing that after work, commuters take Metrorail to Silver 

Spring and Takoma, get off the train, and ride CaBi bicycles to complete their journey 

home. We could imagine that, without CaBi, there would be fewer commuters taking 

Metrorail because of the last-mile/first-mile gap. Therefore, CaBi induced Metrorail riders 

by increasing accessibility to Metrorail stations using a low-cost and convenient mode.  
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Figure 31 CaBi O-D Trips Complementing Metrorail—AM 

 
Figure 32 CaBi O-D Trips Complementing Metrorail—PM 
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4.2.3 CaBi Trips During Metrorail’s SafeTrack 

Two events in 2016 provide great opportunities to study Capital Bikeshare’s substitute 

effects on Metrorail ridership. The first took place on March 16, 2016, when Metrorail was 

shut down for one-day emergency safety inspections (WTOP, 2016). The action was 

unprecedented and disrupted commuters, and thus provided an opportunity to observe how 

people travel without Metrorail.  

 To help with the commute during this one-day shut down, Capital Bikeshare offered 

free 24-hour memberships at all docking stations and corral services in downtown D.C. to 

ensure that bicycles were available for riders to pick-up and docking space was available 

for bicycle return (Lazo, 2016a). Comparing the number of Capital Bikeshare trips during 

that day with the trip number in the previous same weekday (Wednesday), Adam Russell 

(2016) found that total ridership increased by 21% (Russell, 2016). Most of the increase 

was from casual users who purchased a temporary Capital Bikeshare pass for one to three 

days. It is reasonable to assume that many new casual users were frequent Metrorail users. 

Therefore, Capital Bikeshare has the potential to substitute for Metrorail in a certain 

situation. In addition, many employers allowed telecommuting or taking leave during 

Metrorail’s shut down but if all employees were required to commute, we would likely see 

a larger increase in Capital Bikeshare trips.  

 The second opportunity is the ongoing SafeTrack, which is an intensive and 

accelerated track maintenance program started June 2016 and lasting for one year. 

According to WMATA, Metrorail is currently open 135 out of 168 hours per week, leaving 

insufficient time for maintenance and other necessary track work. Therefore, during the 

SafeTrack period, WMATA will close the system at midnight on weekends as well as 
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expand weekday maintenance opportunities. In addition, WMATA-planned weekday 

single tracking and line-segment shutdowns resulted in 15 SafeTrack Surges. In this 

chapter, I analyze how Capital Bikeshare changed during two SafeTrack surges, Surge 2 

and Surge 6, to identify Capital Bikeshare’s role in assisting Metrorail riders’ commute 

journeys.  

To compete for commuters during the SafeTrack period, many transportation 

providers such as Uber and Lyft offers aggressive deals and discounts (Sturdivant, 2016). 

Similarly, Capital Bikeshare developed new policies to attract commuters who used to take 

Metrorail every day.  

First, a $2 single trip fare was introduced on June 4, 2016. The new fare allows 

CaBi riders to take a single trip of up to 30 minutes for $2. After 30 minutes, the normal 

24-hour pass usage fees apply. The $2 single trip fare was successful. In June and July, 

there were 70,568 fares sold. Table 22 lists the five CaBi stations with the largest number 

of purchased $2 single-trip fares. All of them are located in the National Mall area, 

indicating that single-trip fares have been used primarily by tourists. 

Table 22 $2 Single-Trip Fare’s Top Five Purchase Stations 

Station Location # of Trips % of Total Trips 

Jefferson Dr & 14th St SW 3,989 5.1% 

Lincoln Memorial 3,460 4.4% 

Smithsonian / Jefferson Dr & 12th St SW 2,424 3.1% 

Henry Bacon Dr & Lincoln Memorial Circle NW 2,170 2.8% 

4th St & Madison Dr NW 1,588 2.0% 

 

CaBi’s second strategy was adding corral service, expanding the number of 

downtown bike share corrals from two to six, located at 21st & I Street NW (existing), 13th 

& New York Ave. NW (existing), 17th & K Street NW (new), 5th & F Street NW (new), 
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Maryland Ave. & Independence Ave. SW (new), and 20th & Virginia Ave. NW (new). 

Corrals were introduced in March 2016 to solve the issue of CaBi docks filled in the 

morning with returned bikes making it difficult for users to return bikes. Before SafeTrack, 

there were about 160 bikes returned to AM corrals. During SafeTrack, more than 400 bikes 

were parked at corrals every day.   

In addition, CaBi expanded capacities for docks located near affected Metrorail 

stations. During Surge 2, Benning Road and Minnesota Avenue docks were expanded. 

During Surge 6, Union Station CaBi docks were expanded. In addition, the Eastern Market 

dock was temporarily relocated to accommodate shuttle bus boarding.  

Finally, CaBi increased marketing to attract new users during SafeTrack periods. It 

conducted a media campaign on traditional radio, internet radio (Pandora), social media 

(Instagram), as well as print advertising and ads at CaBi docks and on the website. The 

effort received a lot of public attention.  

Comparing the number of CaBi trips before and during SafeTrack finds the 

shutdown of Metrorail stations boosted demand for CaBi. Figure 33 illustrates the weekly 

CaBi trip numbers since March, which is the CaBi busy season. Weekly trips before 

SafeTrack are colored in blue, trips during the SafeTrack period in orange, and trips during 

Surge 2 and Surge 6 are in red. In general, there were more CaBi trips during SafeTrack, 

particularly considering that CaBi trips usually peak in the spring during the Cherry 

Blossom Festival. Trips during Surge 2 and Surge 6 did not have the highest values 

compared to other SafeTrack weeks. A couple of weeks with relatively low volumes of 

CaBi trips were found during SafeTrack and could be attributed to weather variation. 
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Figure 33 Weekly CaBi Trips Before and During SafeTrack 

 
Both member trips and casual user trips increased significantly during the 

SafeTrack period, as illustrated in Figure 34. Orange bars represent weekly trips made by 

member users, and blue bars represent trips by casual users.  
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Figure 34 Weekly CaBi Trips by Member vs. Casual Users Before and During SafeTrack 

 
Figure 35 and Figure 36 show the difference between daily CaBi trips during Surge 

2 and Surge 6 (in dark blue) compared to their baseline periods (in light blue). For each 

surge, I chose the same amount of days in the same weekdays right before SafeTrack. For 

Surge 2, which began on Saturday, June 18 and ended on Sunday, July 3, the baseline 

period is Saturday, May 14 to Sunday, May 29. Surge 6 began on Monday, August 1 and 

ended on Sunday, August 7, and its baseline period is between Monday, May 23 and 

Sunday, May 29. When determining the baseline, I also considered the same dates in 2015. 

However, CaBi experienced rapid expansion and added a lot of stations to the system. It is 

impossible to attribute trips change to SafeTrack alone. Therefore, I decided to use the days 

right before the SafeTrack as the baseline periods.  
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Figure 35 Daily CaBi Trips in Surge 2 (Compared with Baseline) 

 
Figure 36 Daily CaBi Trips in Surge 6 (Compared with Baseline) 

 
 

The O-D analysis confirmed that SafeTrack increases CaBi trips. Figure 37 maps 

O-D pairs by the trip change between Surge 2 and its baseline, zoomed to the impacted 

area between the Eastern Market Metro station and the Minnesota Ave station/Benning 

Road station. Red lines represent O-D pairs that have an increase of more than 50 trips, 

orange lines are those with 20-50 more trips, and yellow lines are those with a less than 20 
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trip increase. A similar analysis was performed for Surge 6, zoomed into the impacted 

region. However, no significant trip increase was observed.  

Figure 37 CaBi O-D Pairs with Trip Changes 

 

4.3 Literature Review 

In this section, I review the literature on bike share programs’ impacts on rail transit. My 

focus is the methods used and the impacts found. The findings of each significant study are 

presented and summarized at the end of this section. 

Shaheen et al. (2013) completed a member survey of four bike share systems, BIXI 

in Montreal, BIXI in Toronto, Capital Bikeshare in Washington, D.C., and Nice Ride in 

Minneapolis/St. Paul (the Twin Cities). Specifically, they asked how the bike share 
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program shifted the participants’ use of rail transit. They report both increases and 

decreases in rail transit use. About 35% of participants in Montreal, Toronto, and 

Washington, D.C. reported that they use rail transit less often than before, while about 9% 

reported increased transit use due to the bike share program. The Twin Cities have a net 

increase in rail transit use; 15% either use rail transit much more often or more often than 

before, while only 3% use rail transit less often than before (S. A. Shaheen, Martin, & 

Cohen, 2013). 

Martin and Shaheen (2014) mapped home locations of survey participants, and 

found a relationship between where people live and how their modal shift is affected. In 

Washington, D.C., CaBi members who reported a decreased use of rail transit mostly live 

in the downtown area, while those who increased their rail transit use were more likely to 

live in the suburbs (E. W. Martin & Shaheen, 2014). 

Fishman (2015) found bike share’s mode substitution to be an emerging theme in 

the literature. He charted the substitution rate of bike share programs on other 

transportation modes based on member surveys. The paper notes, “a study of a BSP in 

Shanghai showed that the majority of users are replacing walking and public transport (Zhu, 

Pang, Wang, & Timmermans, 2013).” (Fishman, 2015) 

According to another study, 96% of Salt Lake City’s surveyed users responded that 

their bike share program, GREENbike is an enhancement to existing public transportation 

and 30% claimed that they use mass transit more often than before (Wasatch Front 

Regional Council, 2013b). 

Table 23 summarizes methods and major findings of these studies. Surprisingly, all 

the papers have used the survey method, and charts and graphs are major analysis tools. 
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Surveys provide good first-hand data, however, due to the low response rate, the survey 

may not be the most reliable research method. Also, since only bike share program 

members were surveyed, there is a selection bias. Ideally, a rigorous regression analysis 

with detailed actual trip data may be more suitable for answering the research question on 

CaBi’s impacts. 
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Table 23 Literature on Bikeshare Programs’ Impacts on Rail Transit Ridership 

Paper Case Method Findings Impacts 

Shaheen et al. (2013) Montreal, Toronto, and 

Washington, D.C. 

Survey About 35 percent of participants reported that they use rail 

transit less often than before 

substitute 

Shaheen et al. (2013) The Twin Cities survey 15 percent use rail transit, either much more often or more 

often than before, while only 3 percent use rail transit less 

often than before 

complementary and 

substitute 

Martin and Shaheen (2014) Washington, D.C. survey CaBi members who reported a decreased use of rail transit 

mostly live in downtown area, while those who increased 

rail transit use are more likely to live in the suburbs 

complementary and 

substitute 

Zhu, Pang, Wang, & 

Timmermans (2013), 

quoted in Fishman (2015) 

Shanghai survey The majority of users are replacing walking and public 

transport 

substitute 

Wasatch Front Regional 

Council (2013) 

Salt Lake City survey GREENbike is an enhancement to the existing public 

transportation, and 30% claimed that they use mass transit 

more often than before 

complementary 
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4.4 Summary 

This chapter started with a discussion of CaBi’s potential complementary and substitute 

impacts on Metrorail ridership from a microeconomic perspective. On the one hand, the 

combination of CaBi and Metrorail may cost less than driving and parking, and thus 

increase the demand for Metrorail. On the other hand, CaBi may replace Metrorail for 

lower travel times and cost, and result in a decrease in Metrorail ridership.  

Both theories are supported by empirical evidence. Union Station is a popular 

station for CaBi trips. A comparison of routes and travel times by Metrorail and CaBi 

between Union Station and Smithsonian concludes that because CaBi saves half the travel 

time by enabling travel across the National Mall and by saving transfer time, it is likely to 

substitute for Metrorail. CaBi’s complementary effects were found at the Takoma Park 

station, which has many CaBi trips ending at the station area in the morning and starting in 

the evening, suggesting that commuters use CaBi to bridge the distance between the 

Takoma Park Metrorail station and their homes. 

WMATA’s SafeTrack maintenance shut down Metrorail stations and provides a 

good opportunity to observe CaBi’s substitute effects. The number of CaBi trips during 

SafeTrack increased compared to the same days of the week just before the Metrorail 

stations’ shutdown. Also, CaBi sold 70,568 $2 trip fares, which were designed to help 

commuters affected by the single tracking and shutdown of Metrorail stations, indicating 

an increased demand. Finally, the Origin-Destination map shows that the increased trips 

started or ended near closed Metrorail stations, demonstrating CaBi’s substitute impacts. 

A review of the extant literature shows that most studies of bike share programs’ 

impacts on rail transit ridership rely on survey data. Surveys provide good first-hand data, 
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however, since only bike share program members are surveyed, there can be a selection 

bias. Further, surveys tend to have small sample sizes and do not directly represent travel 

behavior.  There is potential value, therefore, in regression analysis of ridership data.  
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Chapter 5: Introduction to Regression Analysis 

Results of the descriptive analysis performed in Chapters 3 and 4 suggest that there may 

be a relationship between CaBi trips generated and ended at Metrorail station area and the 

Metrorail ridership of that station. To identify and measure CaBi’s impacts, in this chapter, 

I apply a series of regression analyses. Regression analysis helps to understand how 

Metrorail ridership changes when a CaBi docking station is installed and when the number 

of CaBi trip changes, controlling for other factors.  

  After careful consideration, I applied three regression models to test CaBi’s 

impacts on Metrorail ridership. They are the Direct Ridership Model (DRM), the 

Difference-in-Difference (DID) Model, and the Station-Specific Dummies (SSD) model. 

In this chapter, I provide an overview of these models (Section 5.1) and the input data 

(Section 5.2). I then discuss the possible results and their interpretation (Section 5.3). This 

chapter serves as an introduction to regression analysis. The chapters that follow cover a 

detailed analysis and results discussion (Chapter 6 for the Direct Ridership Model, Chapter 

7 for the Difference-in-Difference Model, and Chapter 8 for the Station-Specific Dummies 

Analysis).  

5.1 Overview of Methods 

The Direct Ridership Model 

A Direct Ridership Model is a regression model used to estimate rail transit ridership at the 

station level using internal and external transit data. The DRM was widely used by transit 

planners to replace the traditional four-step travel demand modeling process (Parsons 

Brinckerhoff, Cervero, Howard/Stein-Hudson Associates, & Zupan, 1996). More 
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importantly, the DRM is responsive to development activity and it can predict ridership at 

the station level. 

Literature has shown that rail transit ridership is likely to be affected by three 

groups of factors: transit service on the transit line and stations of interest, the socio-

demographics of people living and working near the station, and the character of the built 

environment in the station areas. Transit service includes factors such as operation hours, 

train headway/frequency, and the reliability of schedules, fare, and safety. Station features, 

such as transfer/terminal stations and the number of parking spaces, also affect transit’s 

attractiveness to commuters. The socio-demographics of people in the station area 

determines the travel demand and whether the station produces or attracts trips. Factors 

like low car ownership and low household income were found to contribute to rail transit 

ridership. The character of the built environment such as land use, density, and design 

affects the accessibility of rail transit stations. Transit-oriented development, high-density 

and mixed-use, is believed to have a positive impact on rail transit ridership by providing 

proximity and accessibility to rail transit facilities (Calthorpe, 1993). 

The existing DRM studies rarely include the availability of bike share as a factor. 

In fact, most researchers assume that commuters walk to rail transit stations. However, as 

shared mobility modes emerge, commuters can now use bike share to access rail transit 

stations. Therefore, the existing Direct Ridership Model must expand to reflect the impacts 

of bike share programs. 

Ideally, all variables in the Direct Ridership Model should be time-varying. 

However, annual data of socio-demographics and built environment are not available. The 

actual input data for the Direct Ridership Model includes average weekday peak period 
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Metrorail and CaBi ridership for each year between 2010 and 2015, as well as static transit 

service, socio-demographics, and built environment data.  

The Difference-in-Difference Model 

The Direct Ridership Model assumes that CaBi docks are randomly assigned to Metrorail 

stations. However, this assumption may not hold. The installation of CaBi docking stations 

resulted from strategic planning. Thus, those Metrorail stations with CaBi installed nearby 

may be different from stations without CaBi. This systematic difference is called the 

location effect.  

Separating Metrorail stations into two groups, those with CaBi installed in the 

station areas, and those without CaBi, we can see the CaBi program as a policy intervention 

and treatment. Also, there are data for each group pre-treatment and post-treatment. From 

the perspective of quasi-experiment, the Difference-in-Difference model can be used to 

control both the time and location effects to estimate CaBi’s real impacts. 

The Station-Specific Dummy Analysis 

The Difference-in-Difference model reveals CaBi’s average program effect. Results 

suggest that CaBi’s impacts on Metrorail ridership might be associated with station 

locations. To test this theory, I conduct a Station-Specific Dummies analysis to measure 

CaBi’s impacts on core stations and non-core stations, based on WMATA’s definition of 

system core. I also input more detailed data. The data for SSD are monthly Metrorail 

ridership and CaBi trips between August 2010 and August 2015. Years and months are 

controlled using dummy variables. Also, to compensate for not having time-varying control 
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variables, I created dummies for 91 Metrorail stations to control for their stations’ fixed 

effects.  

 The three regression analysis methods grow from the limitation of the earlier 

methods. Step by step, they gradually reveal how CaBi affects Metrorail ridership. 

Together they reflect my search for the most suitable methods. Table 24 summarizes the 

highlights of each model.  

Table 24 Overview of Regression Models 

Model Research question Data 

requirements 

Direct 

Ridership 

Model 

How many Metrorail ridership changes occur when 

CaBi trip increases by one unit, after controlling for 

transit service, demographics, and built environment 

features at the station area? 

Cross-sectional 

Difference-

in-

Difference 

How many Metrorail ridership changes occur when 

CaBi docking stations were installed at the station area, 

after controlling for Metrorail station location 

differences and time effect? 

Panel 

Station-

Specific 

Dummies 

For each Metrorail station, how many ridership changes 

occur when a CaBi docking station was installed, after 

controlling for station location fixed effect and time 

effect? 

panel 

 

Note that for all models, I assume a linear relationship between Metrorail ridership 

and other variables. I also tried the negative binomial regression model. However, results 

are not statistically significant, suggesting that the model is not a good fit. 

5.2 Overview of Data 

The major data inputs for the models are Metrorail ridership and CaBi trips. Original 

Metrorail ridership data were shared by WMATA. The dataset includes the number of 

passengers entering and exiting at each Metrorail station by six time periods, which, 

according to WMATA’s definitions, are early morning (12:00 am – 5:00 am), AM peak 
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(5:00 am – 9:30 am), midday (9:30 am – 3:00 pm), PM peak (3:00 – 7:00 pm), evening 

(7:00 pm – 9:30 pm), and midnight (9:30 pm – 12:00 am).  

CaBi trip data was downloaded from CaBi’s website. The dataset includes 

information on the origin docking station and the destination dock, and trip duration (the 

actual biking route is not included). The trip data was tracked back to August 2010, two 

months before the CaBi program’s official launch that October.   

 The unit of my study is the Metrorail station area, defined as a ¼-mile radius. The 

one-quarter mile is determined by the average walking distance for ordinary people, since 

most riders walk from activity origin to station and from station to destination. Also, many 

previous studies suggest using ¼-mile as the station catchment. In their study, Cervero and 

Guerra (2011) compared the relationships between different sized catchment areas and rail 

transit ridership. Catchments tested include 0.25 miles, 0.50 miles, 0.75 miles, 1.00 miles, 

1.25 miles, and 1.50 miles. Population and job densities within a ¼-mile radius of a rail 

station have the largest coefficients, suggesting that ridership is more influenced by density 

in a ¼-mile catchment area (Cervero & Guerra, 2011). Therefore, I decided to use a ¼-

mile distance as the definition of Metrorail station area, and CaBi docking stations are 

deliberately confined to those located within the station areas. 

 CaBi trip analysis in Chapter 3 provides insights into data preparation. First, 

weekend CaBi trips are more likely to be recreational rides, and they do not replace 

Metrorail trips. Thus, to study CaBi’s interplay with Metrorail, I exclude both Metrorail 

and CaBi weekend trips and focus on trips in the AM and PM peaks. Second, the weather 

has a considerable influence on CaBi trips. To eliminate its impacts, I calculate average 

CaBi trips, instead of using the actual number of daily AM/PM peak trips.  
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 Also, to maximize the benefits of the detailed Metrorail ridership and CaBi trip data, 

I split them by time and by type. For Metrorail ridership, I have four measures: mentryam, 

mexitam, mentrypm, and mexitpm (in which entry and exit indicate the type and am and pm 

indicate the time). Similarly, I split the CaBi trips starting from and ending at Metrorail 

station areas as “start” and “end,” and thus have four CaBi measures, which are cstartam, 

cendam, cstartpm, and cendpm. Table 25 lists all eight variables and their definitions.  

Table 25 Metrorail and CaBi Ridership Definitions 

Variable Definition 

mentryam Number of passengers that enter Metrorail station in weekday AM peak 

mexitam Number of passengers that exit Metrorail station in weekday AM peak 

mentrypm Number of passengers that enter Metrorail station in weekday PM peak 

mexitpm Number of passengers that exit Metrorail station in weekday PM peak 

cstartam Number of CaBi trips originating from Metrorail station in weekday AM peak 

cendam Number of CaBi trips ending at Metrorail station in weekday AM peak 

cstartpm Number of CaBi trips originating from Metrorail station in weekday PM peak 

cendpm Number of CaBi trips ending at Metrorail station in weekday PM peak 

 

Variables in Table 25 help solve the research question of CaBi trips’ impacts on 

Metrorail ridership. Models with these inputs aim to test hypothesis 1 and to estimate how 

ridership change if CaBi trips increase by one unit. Slightly different, testing hypothesis 2 

requires a dummy variable indicating whether a Metrorail station has any CaBi docks 

installed nearby. The dummy variable has a value of 1 if the station has CaBi docks within 

¼ mile.  

Besides Metrorail ridership and CaBi trip variables, the three models require 

different additional data input. Therefore, a detailed data introduction and descriptive 

statistics will be provided for each model in chapters 6, 7, and 8.  
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5.3 Possible Coefficients and Interpretations 

Values and signs of coefficients can illustrate relationships between Metrorail ridership 

and CaBi trips. Because both the dependent variable (Metrorail ridership) and the 

independent variable (CaBi trip numbers) have four measures, there are a total of eight 

coefficients. Table 26 lists all these signs and the scenarios and interpretations they may 

suggest. In this session, I go through each scenario in the table and visualize the 

relationships. I refer to these scenarios and discussions in later chapters when I discuss the 

actual regression results.   

Table 26 Possible Signs and Scenarios 

Scenario Dependent var. 

Metrorail ridership 

Independent var. 

CaBi trip number 

Sign Interpretation 

1 mentryam cstartam - Substitute effect 

2 mentryam cendam + Complementary effect (first-mile solution) 

3 mexitam cstartam + Complementary effect (last-mile solution) 

4 mexitam cendam - Substitute effect 

5 mentrypm cstartpm - Substitute effect 

6 mentrypm cendpm + Complementary effect (first-mile solution) 

7 mexitpm cstartpm + Complementary effect (last-mile solution) 

8 mexitpm cendpm - Substitute effect 

 

Figure 38 illustrates the baseline scenario. Imagine two gray dots representing a 

commuter’s home and workplace. Before CaBi became an option, the commuter could take 

Metrorail or drive to work. If the commuter takes trains, we would see one Metrorail station 

near their home and the other station near the workplace. Let us denote them as M1 and 

M2, respectively. If Metrorail stations are too far to access, the commuter is likely to drive. 

After the CaBi program’s launch in 2010, there is a third option—bike sharing. Assume 

Metrorail stations M1 and M2 both have CaBi docking stations within a ¼-mile radius; we 

denote the CaBi station near M1 as C1 and the one near M2 as C2. 
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Figure 38 The Baseline Scenario 

 
 

Scenario 1 

In Scenario 1, as Figure 39 illustrates, the commuter takes Metrorail to work. The arrowed 

line Home-M1-M2-Workplace simulates the morning commute trip. However, the 

introduction of CaBi provides an alternative, and the commuter may take the route Home-

C1-C2-Workplace. Therefore, Metrorail station M1 may experience a decrease in the 

number of passenger boardings in the AM peak, as some commuters switch to CaBi (and 

the number of trips starting at CaBi station C1 may increase). This substitute effect would 

be reflected by the negative sign of coefficient cstartam.  

Scenario 2 

In Scenario 2, the commuter lives far from a Metrorail station and drives to work. The 

factor preventing them from taking trains is the first-mile gap of no public transportation 

between home and Metrorail station M1. The installation of CaBi station C1 perfectly 

solved this issue. The commuter now can pick-up a bike near home, cycle to CaBi station 
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C1, and get on the train at Metrorail station M1. In this scenario, we would expect that the 

number of mentryam at M1 increases with the number of cendam at C2, leading to a 

positive sign. 

 

Figure 39 Scenario 1 

 
 

Figure 40 Scenario 2 
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Scenario 3 

Like Scenario 2 in which CaBi solves the first-mile connection problem, in Scenario 3 

CaBi solves the last-mile issue. The last-mile gap is between Metrorail station M2 and the 

commuter’s workplace. Sometimes, due to the lack of public transportation, the distance 

between M2 and the workplace is too great to walk and thus becomes a barrier. However, 

with CaBi station C2, the commuter can grab a bike after the train trip. Since Washington, 

D.C. ranked as the 6th most congested place in the nation, the combination of Metrorail-

CaBi is likely to be faster than driving. In this scenario, we could expect a positive sign 

between mexitam and cstartam, showing that CaBi provides a last-mile problem solution 

for Metrorail. 

Scenario 4 

Scenario 4, as does Scenario 1, shows how CaBi replaces part of Metrorail commuting 

trips. The number of passengers exiting at Metrorail station M2 in the morning peak is 

likely to decline after CaBi station C2’s opening. If the Scenario 4 is true, we may find a 

negative coefficient in the regression with variables cendam and mexitam. 
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Figure 41 Scenario 3 

 
Figure 42 Scenario 4 

 



112 

 

Scenario 5 

Scenarios 5 through 8 are the counterparts of Scenarios 1 through 4 in the weekday PM 

peak, rather than the AM peak; commuting trips originate at the workplace and end at home. 

In Scenario 5, the commuters used to take Metrorail to get home. However, with CaBi’s 

opening, they switched to bike sharing. Therefore, we see a negative sign between the 

number of boardings at Metrorail station M2, mentrypm, and the number of trips starting 

at CaBi station C2, cstartpm, indicating that CaBi substitutes for Metrorail. 

Scenario 6 

In Scenario 6, from work to home during the PM peak, the commuter used to drive home 

because Metrorail station M2 was too far to walk to from the workplace. CaBi provided 

the first-mile solution and bridged the gap between workplace and M1. Therefore, after 

CaBi opened, the commuter bikes between workplace and C2, and then takes the train at 

M2 to return home. The CaBi trip has a positive and complementary effect on Metrorail, 

and in this scenario, we expect to find a positive sign between cendpm and mentrypm.  
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Figure 43 Scenario 5 

 
 

Figure 44 Scenario 6 
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Scenario 7 

In Scenario 7, the opening of CaBi solved the last-mile issue near the commuter’s home by 

connecting Metrorail station M1 and home. Therefore, we would expect to find a positive 

relationship between mexitpm and cstartpm. 

Scenario 8 

In Scenario 8, during evening peak hours, CaBi solves the last-mile gap between Metrorail 

station M1 and the commuter’s home, and thus competes with Metrorail. Metrorail 

ridership measure mexitpm may decrease as CaBi trip count cendpm increases. Therefore, 

we may see a negative sign for the cendpm coefficient, indicating that CaBi substitutes for 

the Metrorail ride home. 
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Figure 45 Scenario 7 

 
 

Figure 46 Scenario 8 
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5.4 Summary 

This chapter is an introduction into the three regression models that will be used to measure 

CaBi program’s impacts on Metrorail ridership. They are the Direct Ridership Model, the 

Difference-in-Difference model, and the Station-Specific Dummies model.  

Model input data are Metrorail ridership and CaBi trip numbers/program dummy 

at the Metrorail station level. To take advantage of the high-resolution and high-frequency 

data, Metrorail and CaBi ridership are divided into four measures each; for Metrorail: 

mentryam, mexitam, mentrypm, and mexitpm, and for CaBi: cstartam, cendam, cstartpm, 

and cendpm. Components entry, exit, start, and end indicate trip’s types, and am and pm 

indicate the time when the trip was made. For models that measure CaBi’s program impacts, 

I will input a dummy variable that takes the value of 1 to indicate Metrorail stations with 

CaBi installed nearby.  

At the end of this chapter, I discussed possible coefficients of CaBi variables and 

interpreted the scenarios. Contents in this chapter create a foundation of regression results 

analysis used in later chapters.   
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Chapter 6: Direct Ridership Model Analysis 

The Direct Ridership Model (DRM) is a popular method of estimating rail transit ridership 

at the station level. It is built on intensive literature about factors of rail transit ridership. 

In the model, rail transit ridership is expressed as the result of internal and external factors, 

usually including transit service features, the socio-demographics of people living and 

working in the station areas, and characteristics of the built environment around the stations.  

The existing DRM assumes that commuters walk to rail transit stations, and so 

considers the number of people working and living nearby and the pedestrian environment. 

However, as more bike share stations are added to the network, it is equally likely for 

commuters to ride shared bikes to stations. Therefore, in this chapter, I expand the DRM 

to include CaBi trips as a factor of Metrorail ridership, after controlling for Metrorail transit 

service, socio-demographics and built environment factors.  

This chapter starts with an introduction to the DRM, a literature review of ridership 

factors, and the model’s application in transit planning. A description of methodology, 

model specifications and data will be provided later, followed by a presentation of 

regression results and interpretations. This chapter is built on an article I co-authored and 

published in the journal of Transportation Research Record, but methodology and data 

have since been significantly updated.14 

                                                 
14 Ting Ma, Chao Liu, and Sevgi Erdoğan. "Bicycle sharing and public transit: does Capital Bikeshare affect 

Metrorail ridership in Washington, DC?"Transportation Research Record: Journal of the Transportation 

Research Board 2534 (2015): 1-9. 
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6.1 Introduction to the Direct Ridership Model 

The Direct Ridership Model (DRM), as its name shows, aims to predict rail transit ridership 

at the station level. It provides an alternative to the traditional four-step travel demand 

model that estimates ridership based on activities at the level of Transportation Analysis 

Zone (TAZ). The DRM is built on study findings on the factors of rail transit ridership, 

including transit service on the line and station, the socio-demographic characteristics of 

people living and working near stations, and the built environment features. In this section, 

I review the literature on their impacts and the application of DRM in transit planning, 

followed by a highlight of the model’s advantages.  

First, transit service, including hours of operation, train headway/frequency, 

speed/travel time, availability of seats/train crowdedness, the reliability of schedules, fare, 

and safety, is one of the determining factors of rail transit ridership. According to a recent 

survey of rail transit riders, “service frequency and travel time are of paramount importance” 

(Transit Center, 2016). This finding was confirmed by empirical studies. Evans (2004) 

found that, on average, a one percent service frequency change, despite the direction, is 

associated with 0.5% ridership change. In the Boston case study, as commuter rail 

frequency increased, the system attracted 1,441 new riders, 64% of whom switched from 

driving, 15% from carpooling, and 19% from the bus (Evans, 2004). Taylor et al. (2009) 

found that transit fares and service frequency have significant impacts on ridership. Transit 

fare has a negative impact, and service frequency has a positive impact, both at very high 

confidence level (p-value < 0.0001) (Taylor, Miller, Iseki, & Fink, 2009). Parking 

availability at activity destinations and parking cost was found to be associated with rail 

transit ridership. A survey of downtown Portland employees on the impact of increased 
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parking costs on mode share found that 12% of commuters who drove alone to work 

switched to transit with the assistance of discounted transit benefits (Bianco, 2000). 

Second, the socio-demographics of people who live and work in rail transit station 

areas were found to be critical to ridership. Population and jobs are two major socio-

demographic measures found in empirical studies. Their strong influence on rail ridership 

was first studied a half century ago. Quoted from Cervero and Guerra’s publication, Meyer, 

Kain, and Wohl (1965) addressed density’s importance; “nothing is so conducive to the 

relative economy of rail transit as high volumes and population density” (Cervero & Guerra, 

2011; Meyer, Kain, & Wohl, 1966). In their comparison study, Pushkarev and Zupan (1977) 

found that high density (between 7 and 30 dwellings per acre) was necessary for high transit 

use (Pushkarev & Zupan, 1977).15 Cervero and Guerra (2011) compared the capital costs 

of 59 U.S. rail transit investment projects with population and job density and found that 

to achieve a high cost-effectiveness, the average population density for light-rail system 

needs to reach 30 people per gross acre; for a heavy rail system, 45 people per gross acre. 

They define high cost-effectiveness as $0.58 per passenger mile (Cervero & Guerra, 2011).  

The literature also suggests that the built environment plays a role attracting 

commuters to taking trains. The characteristics of the built environment are sometimes 

referred to as the 5Ds:  density (of development), diversity (of activities), design (of public 

space), destination accessibility, and distance (to rail transit stations) (Ewing & Cervero, 

2010). Early survey studies found that 27% to 45% of residents living near rail transit 

stations commute by rail transit in different cities and areas (Cervero, 1994, 2004, 2007). 

                                                 
15 I did not read the original book. Findings were based on David Printchard’s reading notes on Pushkarev 

and Zupan (1977). The reading notes were accessed from this link: 

http://davidpritchard.org/sustrans/PusZup77/  

http://davidpritchard.org/sustrans/PusZup77/
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Boarnet and Crane (2001) found that the built environment changes travel behavior by 

influencing travel speed and distance (Boarnet and Crane 2001b, 224). Ozbill, Peponis, 

and Bafna (2009) found that accessible street lengths from a rail transit station within a  ½-

mile radius to be a significant factor, after controlling for transit service and other built 

environment measures (Ozbil, Peponis, & Bafna, 2009). The built environment’s impacts 

on rail transit ridership have inspired urban designers to create high-density and mixed-

used Transit-Oriented Development (TOD) at rail transit stations (Calthorpe, 1993).  

Rather than analyzing the impact of each group of factors, more researchers 

conducted studies to include factors of all three categories at one time. Kuby, Barranda, 

and Upchurch (2004) pooled data from 268 stations in nine U.S. cities and tested the 

impacts of 17 factors. They found 12 independent variables significantly associated with 

rail transit ridership. Among them, several transit service factors, including the availability 

of park-and-ride service, bus connections, whether a station is a terminal and/or transfer 

are found to be positively associated with rail transit ridership. The only service factor that 

has a negative relationship with ridership is centrality, a measure of a station’s relative 

location in the system. In terms of socio-demographic variables, the total number of jobs 

and population, as well as the percentage of renters, is positively associated with rail transit 

ridership. Built environment variables, distance to airports and whether the station is 

located at a jurisdiction border, are also found to be positive (Kuby, Barranda, & Upchurch, 

2004).  

Chu (2004) studied factors of rail transit ridership in Florida, and his results show 

more socio-demographic influences on ridership. The share of people under 18 who live in 

the catchment is negatively associated with ridership, while the share of the senior 
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population has a positive impact. Interestingly, results also show that females tend to take 

more rides. The share of the Hispanic population has huge influence; a 1% share increase 

leads to 5.3 more weekday total boardings. The share of the white population is negatively 

related to transit ridership. In addition, the median household income of people living in a 

station catchment was found to be negatively associated with ridership. These results may 

suggest that in Florida minority and lower-income groups tend to use rail transit more (Chu, 

2004). 

In a study of Bay Area Rapid Transit (BART) ridership (a heavy rail system), 

among multiple predictive models with different measures of ridership and in different 

formats (such as log-log), the authors found that the model presented in multiplicative, log-

log form was the best fit. In that model, employment and population density were positively 

associated with ridership, with elasticities of 0.2 and 0.5, respectively. Feeder bus service 

density was also a strong predictor and a 1% increase in feeder bus service per square mile 

of the catchment is positively associated with a 35% ridership increase. Transit fare to CBD 

has a negative impact with an elasticity of -0.4 (Parsons Brinckerhoff et al., 1996).  

Guerra, Cervero, and Tischler (2011) pooled data from 832 heavy rail stations, 589 

light rail stations, and 36 bus rapid transit stations and quantified the factors’ impact. All 

three categories—service, socio-demographics, and the built environment—were found to 

be significant. Transit service measures (park-and-ride spaces, feeder bus service and 

frequency), built environment factors (distance to CBD), and socio-demographic variables 

(population and jobs) were all found to be positively significant at 99% (Guerra, Cervero, 

& Tischler, 2011). 
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Liu et al. (2014) studied rail transit in Maryland (which includes some WAMTA 

rail transit stations) and found that transit service factors have a strong association with 

ridership. Being a terminal station, feeder bus service, and level of service was found to 

positively influence ridership. Distance to CBD has a negative yet significant impact. The 

number of jobs within a ½-mile radius has a small but significant impact. However, 

population density was not found to be significant, partly due to the high proportion of 

commuters who drive to rail transit stations (Liu, Erdogan, Ma, & Ducca, 2014).  

Different factors affect light rail and commuter rail differently. A Transit 

Cooperative Research Program (TCRP) report separated light rail and commuter rail and 

studied the impact of the built environment and socio-economic factors. Population density, 

the number of jobs in CBD, feeder bus connections to rail transit stations, and parking 

availability were positively associated with the ridership of both rail modes. Distance to 

CBD also was associated with the two modes, but the relationship was log-linear for light 

rail and quadratic for commuter rail. Income affected the ridership of commuter rail 

ridership, but not of light rail (Parsons Brinckerhoff et al., 1996).  

Whether factors are found to be associated with rail transit ridership and how big 

or small the relationship largely depends on the study’s object and scale, as demonstrated 

by a series of studies by Thompson and Brown as well as others conducted by collaborated 

researchers. Thompson and Brown (2006) performed multivariate regression analysis to 

explain the variation in ridership change between 1990 and 2000, and found different 

factors for differently-scaled metropolitan areas. In general, population change, service 

frequency change, and service coverage change offer the best explanation for the variation. 

For medium-sized MSAs, defined as those with a population between 1 million and 5 
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million, two factors, service coverage and frequency were found positively associated with 

rail ridership. For small-size MSAs with a population less than 1 million, multi-destination 

(or so-called decentralization) was found to have the strongest explanatory power 

(Thompson & Brown, 2006). In that vein, Brown and Neog (2012) studied the impact of 

decentralized layout on rail transit ridership in metropolitan areas larger than 500,000 

persons in 2000. They found no statistical association between the strength of the CBD and 

ridership measured in passenger kilometers (per capita). However, they did find other 

factors have significant impacts on rail transit ridership, including service frequency, 

service coverage, percent of MSA households that don’t own cars, and the unemployment 

rate (Brown & Neog, 2012). When looking at the Atlanta metropolitan area, Brown and 

Thompson (2008) found that decentralization was positively associated with the ridership 

on the regional rail transit system. They found that employment outside the CBD but within 

the rail transit service area positively influences ridership, with an elasticity of 1.331. In 

addition, rail service and fare also significantly affect ridership(Brown & Thompson, 2008). 

Therefore, studies using data for transit systems in large metropolitan areas and in small 

areas may end up with different results. 

 Findings of prior studies on transit service, socio-demographics, and built 

environment are summarized in Table 27, Table 28, and Table 29. 
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Table 27 Literature Review Findings Summary Table —Transit Service Factors 

 

 

                                                 
16 Three models are built in this publication. Included in the table are results from the third model, Endogenous Trip-Chaining, Activity Space, Transit 

Demand, Residential Location, and Density. Please read the original publication for details.  

 Transit service 

Paper/Factor Feeder 

bus 

Parking 

availability 

Terminal Transfer Fare Operating 

speed 

Frequency Service 

coverage 

Regional 

transit 

connection 

(Parsons Brinckerhoff 

et al., 1996) (pooled 

study) 

+ + +       

(Parsons Brinckerhoff 

et al., 1996) (BART 

system) 

+    -     

(Concas & DeSalvo, 

2014)16 

         

(Pushkarev & Zupan, 

1977) 

         

(Casello, 2007)     - -    

(Brown & Neog, 2012)        + +  

(Brown & Thompson, 

2008) 

    -     

(Guerra & Cervero, 

2010) 

 +     +   

(Ozbil et al., 2009)  +  +      

(Cervero & Guerra, 

2011) 

+ + +    +  + 

(Evans, 2004) +   + -  +   

(Chu, 2004)          
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Table 28 Literature Review Findings Summary Table — Socio-Demographic Factors 

 

 

 

 

 

                                                 
17 Three models are built in this publication. Included in the table are results from the third model, Endogenous Trip-Chaining, Activity Space, Transit 

Demand, Residential Location, and Density. Please read the original publication for details.  

 Socio-demographics 

Paper/Factor Income Households 

with no car 

Unemployment 

rate 

People 

under 

18 

Senior 

population 

Female 

population 

Hispanic White 

(Parsons Brinckerhoff et 

al., 1996) (pooled study) 

+        

(Parsons Brinckerhoff et 

al., 1996) (BART system) 

        

(Concas & DeSalvo, 

2014)17 

        

(Pushkarev & Zupan, 

1977) 

        

(Casello, 2007)         

(Brown & Neog, 2012)   + -      

(Brown & Thompson, 

2008) 

        

(Guerra & Cervero, 2010)         

(Ozbil et al., 2009)         

(Cervero & Guerra, 2011)         

(Evans, 2004)         

(Chu, 2004) - +  - + + + - 
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Table 29 Literature Review Findings Summary Table — Built Environment Factors 

 

Note: Methodologies and models/estimators varied for literature. Please read the original publications for details.

                                                 
18 Three models are built in this publication. Included in the table are results from the third model, Endogenous Trip-Chaining, Activity Space, Transit 

Demand, Residential Location, and Density. Please read the original publication for details.  

 Built Environment 

Paper/Factor Employment 

or density 

Population 

or density 

Distance to 

CBD 

Distance 

to the 

nearest 

subcenter 

Retail 

density 

Pedestrian 

environment 

Street 

configuration 

(Parsons Brinckerhoff et 

al., 1996) (pooled study) 

+ + - (light rail) 

+ (commuter 

rail) 

    

(Parsons Brinckerhoff et 

al., 1996) (BART system) 

+ +      

(Concas & DeSalvo, 

2014)18 

  - - + -  

(Pushkarev & Zupan, 1977)  +      

(Casello, 2007)        

(Brown & Neog, 2012)         

(Brown & Thompson, 

2008) 

+       

(Guerra & Cervero, 2010) + +      

(Ozbil et al., 2009)  + +    + 

(Cervero & Guerra, 2011) + + +     

(Evans, 2004)        

(Chu, 2004) +       
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 Findings on transit service, socio-demographics, and built environment measures 

may be associated with rail transit ridership and lead to the development of a ridership 

prediction model at the station level. This direct demand model was used at least since the 

1980s and recently was called the Direct Ridership Model (DRM). A 1996 TCRP report 

co-authored by Parsons Brinckerhoff, Cervero, Howard/Stein-Hudson, and Zupan, used 

data from 261 light rail stations across 19 lines in 11 metropolitan areas, and 550 commuter 

rail stations across 47 lines in six metropolitan areas to quantify the effect of each factor 

on ridership by mode. The models, as stated in the report, “bypass the usual four-step travel 

demand modeling process with a simplified approach that estimates transit demand directly, 

incorporating trip generation, mode choice, trip distribution, and trip assignment features” 

(Parsons Brinckerhoff et al., 1996). Several studies reviewed in the last subsection also 

covered the topic of DRM. 

 The DRM has several advantages. First, it provides analysis at a much more fine-

grained scope, which is different from the conventional four-step transportation demand 

model. The transportation demand model inputs data at the Traffic Analysis Zone (TAZ) 

level, with zone sizes that range from block groups to census tracts. Some find that this 

approach “tend(s) to be too gross to pick up fine-grained design and land-use-mix features 

of neighborhood-scale initiatives” (Cervero, 2006; Duduta, 2013). The DRM measures at 

the rail transit station level, usually within a ¼- to ½-mile radius of the station entrance, 

which is smaller than a TAZ.  

 The second advantage is DRM’s responsiveness to Transit-Oriented Development 

(TOD) at station areas. TOD, which is usually high-density, mixed-use development, 

attracts millennial population who commute by rail transit. DRM can capture micro-level 
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changes in land use and population to provide precise and quick-response transit ridership 

predictions (Cervero, 2006; Fehr & Peers, 2005). In addition, due to its size, DRM is much 

less costly than transportation demand model (Cervero, 2006). 

6.2 Methodology and Data 

The Direct Ridership Model regression can be expressed as the results of CaBi trips, transit 

service, socio-demographics, and built environment variables, as shown in Equation (2). 

CaBi trips are further split into the number of trips starting from the station areas and the 

number of trips ending in the station areas.  

R𝑖 =  𝛼 + 𝛽1𝐶𝑎𝐵𝑖𝑠𝑡𝑎𝑟𝑡𝑖 + 𝛽2𝐶𝑎𝐵𝑖𝑒𝑛𝑑𝑖 + ∑ 𝛾𝑚𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑚𝑖

𝑀

𝑚=1

+ ∑ 𝛿𝑛𝑠𝑜𝑐𝑖𝑜 𝑑𝑒𝑚𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠𝑛𝑖

𝑁

𝑛=1

+ ∑ 𝜃𝑘𝑏𝑢𝑖𝑙𝑡 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑘𝑖

𝐾

𝑘=1

+ 𝑒 (2)

 

Here, i indexes Metrorail stations with CaBi installed nearby, and R𝑖 is a measure 

of the number of riders at station i. The terms transit service, socio-demographic, and built 

environment contain groups of factors of service features, of people living and working in 

the station areas, and of the physical environment. Their coefficients 𝛾𝑚, 𝛿𝑛, and 𝜃𝑘 are 

assumed to be constant across the years due to data limitations. 

The data preparation process is illustrated in Figure 47. Original Metrorail and CaBi 

trips are first aggregated to a Metrorail station area, defined as a ¼-mile radius. Weekend 

trips are removed to focus on commuting trips. Both Metrorail and CaBi trips are further 

split into four measures, reflecting the type and the time of day (AM and PM peak). To 

eliminate weather impacts, I calculate the average ridership, rather than using the original 

daily AM/PM trips, and only keep trips made in August.   
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Figure 47 DRM Data Preparation Process 

 

Therefore, Equation (2) can be specialized into Equation (3), (4), (5), and (6), each 

with one of four Metrorail ridership measures as the dependent variable: 

𝑚𝑒𝑛𝑡𝑟𝑦𝑎𝑚𝑖 =  𝛼 + 𝛽1𝑐𝑠𝑡𝑎𝑟𝑡𝑎𝑚𝑖 + 𝛽2𝑐𝑒𝑛𝑑𝑎𝑚𝑖 + ∑ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑚𝑖 ∗ 𝛾𝑚

𝑀

𝑚=1

+ ∑ 𝑠𝑜𝑐𝑖𝑜 𝑑𝑒𝑚𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑛𝑖 ∗ 𝛿𝑛

𝑁

𝑛=1

+ ∑ 𝑏𝑢𝑖𝑙𝑡 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑘𝑖 ∗ 𝜃𝑘

𝐾

𝑘=1

+ 𝜀𝑖 (3)
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𝑚𝑒𝑥𝑖𝑡𝑎𝑚𝑖 =  𝛼 + 𝛽1𝑐𝑠𝑡𝑎𝑟𝑡𝑎𝑚𝑖 + 𝛽2𝑐𝑒𝑛𝑑𝑎𝑚𝑖 + ∑ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑚𝑖 ∗ 𝛾𝑚

𝑀

𝑚=1

+ ∑ 𝑠𝑜𝑐𝑖𝑜 𝑑𝑒𝑚𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑛𝑖 ∗ 𝛿𝑛

𝑁

𝑛=1

+ ∑ 𝑏𝑢𝑖𝑙𝑡 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑘𝑖 ∗ 𝜃𝑘

𝐾

𝑘=1

+ 𝜀𝑖 (4)

 

 

𝑚𝑒𝑛𝑡𝑟𝑦𝑝𝑚𝑖 =  𝛼 + 𝛽1𝑐𝑠𝑡𝑎𝑟𝑡𝑝𝑚𝑖 + 𝛽2𝑐𝑒𝑛𝑑𝑝𝑚𝑖 + ∑ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑚𝑖 ∗ 𝛾𝑚

𝑀

𝑚=1

+ ∑ 𝑠𝑜𝑐𝑖𝑜 𝑑𝑒𝑚𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑛𝑖 ∗ 𝛿𝑛

𝑁

𝑛=1

+ ∑ 𝑏𝑢𝑖𝑙𝑡 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑘𝑖 ∗ 𝜃𝑘

𝐾

𝑘=1

+ 𝜀𝑖 (5)

 

 

𝑚𝑒𝑥𝑖𝑡𝑝𝑚𝑖 =  𝛼 + 𝛽1𝑐𝑠𝑡𝑎𝑟𝑡𝑝𝑚𝑖 + 𝛽2𝑐𝑒𝑛𝑑𝑝𝑚𝑖 + ∑ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑚𝑖 ∗ 𝛾𝑚

𝑀

𝑚=1

+ ∑ 𝑠𝑜𝑐𝑖𝑜 𝑑𝑒𝑚𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑛𝑖 ∗ 𝛿𝑛

𝑁

𝑛=1

+ ∑ 𝑏𝑢𝑖𝑙𝑡 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑘𝑖 ∗ 𝜃𝑘

𝐾

𝑘=1

+ 𝜀𝑖 (6)

 

 

CaBi is not the only and probably not the most significant determinant of Metrorail 

ridership. A literature review suggests many variables that can be included in the DRM. 

However, what data to include in this study largely depends on their availability. As Table 

30 shows, transit service measures include the number of trains per hour, the number of 

parking spaces provided in WMATA’s facilities, the number of bus stops within ¼-mile of 

Metrorail station, and whether the station is a transfer or terminal station, a total of five 

variables. Socio-demographic variables include job density, housing unit density, and the 
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share of renters in the station area (renters are likely to commute by public transportation).19 

Built environment variables include employment mix and road density. For consistency, 

all these data are transformed into the Metrorail station or station area level. Below I 

introduce data and computation method for each control variable.  

The number of trains per hour passing the station, tph, captures the transit service 

supply capacity. The data was converted from Metrorail AM/PM-peak headways (in 

minutes) using data accessed from WMATA website.20 Equation (7) shows the method, 

with l indicating six Metrorail lines since they have different scheduled headways. It is 

expected that the larger tph a station has, the more commuters take trains at that station.  

𝑡𝑝ℎ =  ∑
60

ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑙

6

𝑙=1

 (7) 

 Variables terminal and transfer indicate whether a station is a terminal, or whether 

it is a transfer station. Data was accessed from WMATA api, using Python data analysis 

libraries.21 Terminal stations are expected to have more entries in the morning and exits in 

the evening, but fewer exits in the morning and entries in the evening, given the 

Washington metropolitan area’s monocentric spatial structure with jobs located in 

downtown D.C. and commuters living in suburban communities. Conversely, transfer 

stations are usually in between downtown and terminal stations and assist commuters’ 

transfer between two Metrorail lines. Thus, we would expect to see fewer people entering 

or exiting at transfer stations.  

                                                 
19 I also considered other socio-demographic variables including the percentage of white population, the 

percentage of households with zero cars, and the education level. However, their preliminary results are not 

statistically significant and signs not as expected. Therefore, I did not include them in the final version of 

regression input. 
20 The link for Metrorail headway data is: https://www.wmata.com/schedules/timetables/index.cfm.  
21 The link for WMATA api is: https://developer.wmata.com/.  

https://www.wmata.com/schedules/timetables/index.cfm
https://developer.wmata.com/
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 The number of parking space available in WMATA facilities, parkct, and the 

number of bus stops at the station area, bus, capture the share of Metrorail riders who drive 

or take the bus to access stations. Data on parking spaces comes from WMATA api. The 

number of bus stops at station area was computed in ArcGIS, using bus stop location 

information accessed from WMATA’s General Transit Feed Specification(GTFS).22  

 Variables jobden and huden represent the number of jobs and housing units per acre 

of unprotected land at the station area. Data was prepared by the Environment Protection 

Agency (EPA) in its 2013 Smart Location Database (SLD), using data from the Census 

and other sources. Jobs and housing units at the station area show the commuting demand. 

The higher job density is likely to be associated with a larger number of AM exits and PM 

entries while the higher housing unit density is likely to be related to the larger number of 

AM entries and PM exits. Rental apartments tend to have a different location preference, 

compared to single family housing units. The share of renters, rentp, reflects the diversity 

and dynamics of development at the station area. We would expect to see a positive 

association between it and Metrorail ridership in all four measures. Data of rentp comes 

from the American Community Survey (ACS) 2010-2014 5-year estimate. Note that the 

ACS 5-year estimates should not be interpreted “for any specific day, period, or year within 

the multiyear time period”(U.S. Census Bureau, 2008). Therefore, the share of renters is 

assumed to be constant over the years.  

 Built environment variables mix and roadden represent the land use mix and the 

density of roads. Both data come from EPA’s SLD database. The land use mix is calculated 

as the sum of entropies of five employment categories in the block group compared to the 

                                                 
22 The link to WMATA’s GTFS is: https://www.wmata.com/about/developers/.  

https://www.wmata.com/about/developers/
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area. Road density is in the unit of miles per square mile. Based on the literature, we would 

expect to see them having positive impacts on ridership.  

 It is worthwhile to point out that data for control variables are not time-variant. 

Transit service data collected from WMATA website represents the most recent situation. 

EPA’s SLD was prepared one time in 2013, and thus data for the built environment 

variables and some socio-demographic measures are for that year only. Also, the ACS 5-

year estimates represent the condition for the whole five years and can not be interpreted 

for a specific period of time within the five years. Since the control variables are not time 

varying, the Pooled OLS (POLS) regression method is used. 
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Table 30 Input data of the Direct Ridership Model 

Dependent variables 

Category Variable Definition Data Source Geography Year 

Metrorail 

ridership 

mentryam The number of commuters that enter Metrorail station during 

weekday AM peak 

WMATA Metrorail station 2010-2015 

mexitam The number of commuters that exit Metrorail station during 

weekday AM peak 

WMATA Metrorail station 2010-2015 

mentrypm The number of commuters that enter Metrorail station during 

weekday PM peak 

WMATA Metrorail station 2010-2015 

mexitpm The number of commuters that exit Metrorail station during 

weekday PM peak 

WMATA Metrorail station 2010-2015 

Independent variables 

Category Variable Definition Data Source Geography Year 

CaBi trip 

number 

cstartam The number of CaBi trips starting from Metrorail station area 

during weekday AM peak 

CaBi Metrorail station 

area 

2010-2015 

cendam The number of CaBi trips ending at Metrorail station area during 

weekday AM peak 

CaBi Metrorail station 

area 

2010-2015 

cstartam The number of CaBi trips starting from Metrorail station area 

during weekday PM peak 

CaBi Metrorail station 

area 

2010-2015 

cendam The number of CaBi trips ending at Metrorail station area during 

weekday PM peak 

CaBi Metrorail station 

area 

2010-2015 

Transit 

service 

tph Number of trains per hour WMATA Metrorail station 2017 

terminal Whether the station is a terminal WMATA 

API 

Metrorail station 2016 

transfer Whether the station is a transfer WMATA 

API 

Metrorail station 2016 

parkct The number of parking space available WMATA 

API 

Metrorail station 2016 

bus The number of bus stops at station area WMATA 

GTFS 

Metrorail station 

area 

2016 

Socio-

demographics 

jobden The number of jobs per acre of land that is not protected from 

development 
ACS, SLD

23
 Metrorail station 

area 

2013 

                                                 
23 Job data from American Community Survey 2010-2014 5-year estimates, unprotected land data from Smart Location Database (original data from 

Census, Navtep parks, PAD-US) 
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huden The number of housing units that is not protected from 

development 
ACS, SLD

24
 Metrorail station 

area 

2013 

rentp The share of renters among all population ACS Metrorail station 

area 

2010-2014 

5-year 

estimate 

Built 

environment  

mix Employment entropy variable based on the 5-tier employment 

categories from LEHD  

SLD Metrorail station 

area 

2013 

roadden Length of roads per acre  SLD
25

 Metrorail station 

area 

2013 

 

 

                                                 
24 Housing unit data from American Community Survey 2010-2014, unprotected land data from Smart Location Database (original data from Census, 

Navtep parks, PAD-US) 
25 Smart Location Database (road network from NAVSTREETS) 
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Table 31 presents the descriptive statistics of all variables. In total, there are 526 

observations, including 86 stations for years between 2010 and 2013, and 91 stations for 

2014 and 2015. The increase in station numbers was due to the opening of Silver Line 

stations in July 2014. Among them, 184 Metrorail stations have CaBi docking stations 

installed within ¼-mile.  

Table 31 Descriptive Statistics of Input Data of The Direct Ridership Model 

Variable Obs Mean Std. Dev. Min Max 

mentryam 526 2,525.1 1,870.4 16.2 9,631.2 

mexitam 526 2,297.8 3,251.5 102.1 14,201.0 

mentrypm 526 2,829.2 3,505.2 141.6 15,969.0 

mexitpm 526 2,745.1 1,874.4 251.0 11,258.7 

cstartam 526 6.4 15.7 0.0 163.4 

cendam 526 9.9 25.3 0.0 171.9 

cstartpm 526 14.5 34.0 0.0 201.2 

cendpm 526 11.7 26.0 0.0 193.9 

tph 526 17.0 8.0 5.0 45.0 

parkct 526 686.6 1262.1 0.0 5,745.0 

transfer 526 1.6 0.9 1.0 5.0 

terminal 526 0.1 0.3 0.0 1.0 

bus 526 12.5 9.9 0.0 48.0 

jobden 526 49.5 79.6 0.1 345.2 

huden 526 0.8 0.6 0.0 2.3 

rentp 526 0.5 0.2 0.2 1.0 

 

6.3 Results 

Table 32 reports the results of the DRM specification described in equations (2), (3), (4), 

and (5), estimated using OLS regression. These equations have different Metrorail 

ridership measures as the dependent variables, which are mentryam, mexitam, mentrypm, 

and mexitpm respectively. The tables include the coefficients of each variable, their p-

values, and the R-squared values indicating the model’s explanatory power. The signs and 

values of coefficients of CaBi trip variables indicate whether CaBi poses a positive or 
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negative impact and how big the impact is. At first glance, CaBi’s impacts on Metrorail 

ridership are mixed since coefficients’ signs and values vary. Findings on control variables 

are consistent with previous studies that transit service, socio-demographics and built 

environment features impact rail transit ridership.  

First, CaBi can complement Metrorail. Specifically, one unit of CaBi trip increase 

starting from Metrorail stations in the AM peak, or cstartam, is positively associated with 

49.1 exits from Metrorail stations. Also, one unit of CaBi trip increase ending at Metrorail 

stations in the PM peak, or cendpm, is positively associated with 57.9 entries into Metrorail 

stations. Both relationships are statistically significant at the 0.000 level. One likely 

explanation is that in the morning, commuters who complete their Metrorail rides check 

out bikes at CaBi docking stations nearby and bike to their workplaces. After work, they 

use CaBi to access Metrorail stations and then take trains home. Therefore, CaBi solves 

the gap between Metrorail stations and commuters’ workplaces and attracts more people 

taking Metrorail, which is consistent with Scenario 3 and Scenario 6 in Chapter 5.  

Second, CaBi can have negative impacts on Metrorail ridership. One unit of CaBi 

trip increase ending at Metrorail station areas in the morning (cendam) is negatively 

associated with 16.8 Metrorail AM exits (mexitam). Also, one unit of CaBi trip increase 

starting near Metrorail stations in the PM peak (cendpm) is negatively associated with 37.4 

entries into Metrorail stations (mentrypm). Both are statistically significant. Results show 

that CaBi rides may replace some Metrorail trips. These two relationships are consistent 

with Scenario 4 and Scenario 5 in Chapter 5.  

Third, the positive relationships between cstartam and mentryam and between 

cendpm and mexitpm suggest that CaBi docking stations were installed at Metrorail stations 
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with large riderships. If we separate Metrorail stations into two groups, the group with 

CaBi nearby may systematically have more passengers than the group without CaBi. In 

other words, 𝐶𝑎𝐵𝑖𝑠𝑡𝑎𝑟𝑡𝑖 and 𝐶𝑎𝐵𝑖𝑒𝑛𝑑𝑖 in Equation (1) are likely to be correlated with the 

error term 𝜀𝑖 and lead to a biased estimate.  

Fourth, comparing the R-squared value, we see that regressions with mexitam and 

mentrypm as the dependent variables have an R-squared larger than 0.8, suggesting that 

more than 80% of observations can be explained by the DRM model. The remaining two 

regressions (with mentryam and mexitpm) as the dependent variables have an R-squared of 

about 0.5.  

  



139 

 

Table 32 Results of the DRM 

mentryam mexitam mentrypm mexitpm 

   Coef. P  Coef. P  Coef. P  Coef. P 

cstartam 36.0* 0.000 cstartam 49.1* 0.000 cstartpm -37.4* 0.000 cstartpm -35.0* 0.000 

cendam -9.8* 0.030 cendam -16.8* 0.000 cendpm 57.9* 0.000 cendpm 57.0* 0.000 

tph 56.9* 0.000 tph 138.6* 0.000 tph 180.8* 0.000 tph 81.6* 0.000 

parkct 1.0* 0.000 parkct 0.5* 0.000 parkct 0.6* 0.000 parkct 0.9* 0.000 

transfer -410.0* 0.001 transfer -256.0 0.043 transfer -385.9* 0.005 transfer -509.6* 0.000 

terminal 683.4* 0.029 terminal -1151.9* 0.000 terminal -1292.5* 0.000 terminal 448.7 0.177 

bus 24.5* 0.004 bus 58.5* 0.000 bus 61.9* 0.000 bus 44.8* 0.000 

jobden -4.4* 0.000 jobden 22.8* 0.000 jobden 22.7* 0.000 jobden -2.1 0.126 

huden 366.8* 0.010 huden -1438.2* 0.000 huden -1222.7* 0.000 huden 287.7 0.051 

rentp 785.0* 0.042 rentp 2688.0* 0.000 rentp 2953.4* 0.000 rentp 1636.7* 0.000 

mix -323.3 0.394 mix 495.3 0.193 mix 809.1 0.055 mix 419.2 0.302 

roadden 31.2* 0.018 roadden 79.0* 0.000 roadden 86.5* 0.000 roadden 42.5* 0.003 

_cons -38.6 0.929 _cons -4324.3* 0.000 _cons -5026.7* 0.000 _cons -1412.3* 0.003 

R2= 0.552 R2 = 0.851 R2 = 0.844 R2 = 0.495 

* Statistically different from zero at 5% significance level 
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DRM regression results also confirm that transit service, socio-demographics, and 

built environment factors play roles in rail transit ridership. Regarding transit service, the 

number of trains passing Metrorail stations per hour is positively associated with four 

Metrorail ridership measures. An additional one train per hour would increase ridership by 

up to 180.8. It demonstrates that transit service supply can significantly increase ridership.  

The number of parking spaces provided by WMATA is positively associated with 

four Metrorail ridership measures. One parking space’s impacts range between 0.5 and 1.0 

ridership. Providing more parking spaces would increase the number of AM entries and 

the number of PM exits in larger magnitudes, suggesting that many commuters combine 

driving and Metrorail to complete their trips.  

 Being a transfer station or a terminal station has different effects on Metrorail 

ridership. Transfer stations have reduced entries and exits. But being a terminal station is 

positively associated with the number of AM entries and the number of PM exits. Terminal 

stations are likely to be near commuters’ residences. Therefore, they serve as origins in the 

morning and destinations in the evening. 

 The availability of other public transportation in Metrorail station areas has positive 

impacts on the station’s ridership. As results show, one bus stop in a Metrorail station area 

has the potential to increase up to 61.9 Metrorail rides. The small P-values in all four 

regressions mean that bus stops’ influences are statistically significant. The finding may 

suggest that many commuters would combine Metrorail and other public transportation 

modes to complete their trips.  

  Socio-demographics of people who live and work in Metrorail station areas are 

also significantly associated with Metrorail ridership. The density of jobs within ¼ mile 
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positively affects the number of Metrorail AM exits and PM entries. However, the density 

of housing units in the station area is negatively associated with Metrorail ridership 

measures mexitam and mentrypm. Putting them together, we could see that the Washington 

metropolitan area has a job-housing mismatch that results in a large number of commuting 

trips. Residential areas, which are likely to be suburban communities with a high density 

of housing units, serve as origins in the morning. The higher the housing unit density, the 

more Metrorail AM entries are generated. Metrorail rail stations near workplaces with a 

high density of jobs, such as downtown D.C., experience high passenger volumes exiting 

the stations in the morning. The higher the job density in workplaces, the more Metrorail 

AM exits.  

 Housing units here refer to single-family houses. However, since the Washington 

metropolitan area has the nation’s highest cost of living, many people live in apartments. 

Unlike housing unit density, renter density is positively associated with all four Metrorail 

ridership measures. One possible explanation is that apartments are located in both 

suburban communities and in downtown D.C. In some cases, apartments are in Transit-

Oriented Development areas. Thus, Metrorail stations near apartments can be both origins 

and destinations and have high volumes of entries and exits. 

 Built environment characteristics are mostly positively associated with Metrorail 

ridership. A higher level of mixed land uses increases activity in the station areas, thus 

making them safe and vibrant. The higher road density improves accessibility to Metrorail 

stations and attracts pedestrians to use Metrorail. They both boost Metrorail ridership. 

However, it is puzzling why the coefficient values of CaBi trip variables are so 

large. Common sense says that not all CaBi activities are related to Metrorail rides so we 
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would expect to see that one CaBi trip would lead to less than one Metrorail ride. But 

coefficients of CaBi trip variables range from -37.4 to -9.8 for negative impacts and from 

36.0 to 57.9 for positive impacts. The coefficients suggest that one CaBi trip is associated 

with at least nine Metrorail rides, which sounds unrealistic. I came up with three possible 

explanations. The first possibility is the omitted variables, which means variables included 

in the DRM fail to capture all Metrorail ridership factors and lead to an overestimation of 

CaBi’s effect. Another possibility could be the unmatched scales between CaBi trip 

numbers and Metrorail ridership. As Table 31 shows, on average there are ten CaBi trips 

starting or ending at each Metrorail station area, while per station, Metrorail ridership is 

2,500. Also, the standard deviation of Metrorail ridership is about 200 times that of CaBi 

trips. Therefore, the estimated impacts of each CaBi trip are much larger than expected.  

 Besides the finding that coefficients are too large, the DRM method has two 

limitations. First, the DRM model is the Ordinary Least Square (OLS) estimator and thus 

all OLS assumptions still apply here. However, which Metrorail stations have CaBi 

installed is not randomly selected; as introduced in Chapter 3, the selections are based on 

crowdsourcing and strategic planning. Therefore, in Equation (1), 𝐶𝑎𝐵𝑖𝑠𝑡𝑎𝑟𝑡𝑖  and 

𝐶𝑎𝐵𝑖𝑒𝑛𝑑𝑖 are likely to be correlated with the error term 𝜀𝑖, and violates assumptions of the 

best linear unbiased estimator (BLUE).  

Second, the estimator used in the DRM is Pooled OLS (POLS), which treats all 

Metrorail stations in different years as if they are cross-sectional data. It has ignored the 

panel structure of the original dataset, and assumed that observations are serially 

uncorrelated. However, the factor of time may have played a key role in this study because 
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CaBi is a newly launched program that has been expanding in recent years. Therefore, 

alternative research methods with the capacities to deal with panel data are highly desired.  

6.4 Summary 

The Direct Ridership Model is a common method of estimating rail transit ridership at the 

station level. The current DRM considers transit service features, socio-demographics of 

people living and working in the station areas, and characteristics of the built environment. 

In this Chapter, I expanded the model to include bike share trip variables to analyze how 

CaBi influences Metrorail ridership.  

  Results are mixed. CaBi can complement some Metrorail trips, but substitute for 

others. The number of CaBi trips starting from Metrorail stations is positively associated 

with the number of passengers exiting the stations in the morning, and the number of CaBi 

trips ending at station areas is positively associated with the number of Metrorail entries in 

the after-work commuting peak. They demonstrate CaBi’s complementary effects and 

suggest that CaBi solves the connection gap between Metrorail stations and workplace. On 

the other hand, the negative relationship between the number of CaBi trips ending at a 

station area and Metrorail exits in the AM peak, and between the number of CaBi trips 

starting at station area and Metrorail entries in the PM peak suggest that CaBi may also 

replace Metrorail trips and thereby reduce ridership. Putting them together, we see that 

CaBi’s impacts are mixed. Since the complementary effects are statistically significant, we 

can reject the hypothesis that CaBi only replaces Metrorail.  

 However, the DRM has its limitations. Coefficients are found to be too large, which 

might be caused by the omitted variable. Also, Metrorail stations that have CaBi installed 

nearby is not a random selection and violates the critical assumption for a best linear 
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unbiased estimator (BLUE) OLS estimator. Finally, the DRM took the pooled data as input 

and ignored that the original dataset is panel data. Therefore, though the DRM provides 

useful insights, sophisticated regression models that can handle panel data and the quasi-

experimental research environment are highly desired.   
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Chapter 7: Difference-in-Difference Analysis 

As discussed in Chapter 5, the Direct Ridership Model is based on a random-assignment 

assumption. It assumes that Metrorail stations that have CaBi docking stations installed are 

randomly selected, and thus the unobservable determinants of Metrorail ridership change 

would not be correlated with the installation of CaBi docking stations. If we separate 

Metrorail stations into two groups: the treatment group, which are Metrorail stations with 

CaBi docks installed nearby and the control group, Metrorail stations that do not have CaBi, 

we would expect that no difference between the two groups before the treatment was posed. 

This random-assignment assumption is an ideal research environment, since it allows 

researchers to cleanly identify CaBi’s impacts.  

However, pure random selection rarely exists in the fields of urban planning and 

public policy. As introduced in Chapter 3, the locations of CaBi docking stations are the 

result of a joint process of crowdsourcing and public transportation agencies’ strategic 

planning. It is very likely that Metrorail stations with CaBi docks installed within ¼ mile 

differ systematically from those stations without CaBi nearby; they may have larger 

ridership even in the absence of the CaBi program. 

If we call the ideal random-assignment research environment the natural 

experiment, we can call this real but not random environment the quasi-experiment. A 

quasi-experiment is one that lacks the element of random assignment to treatment or 

control. It has a lower degree of randomization. We could assume there is an internal 

validity and the treatment and control groups may not be comparable at a baseline. 

Therefore, the regression analysis method we choose for quasi-experiment will need to 

reflect the baseline difference between the control and the treatment group.  
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The Difference-in-Difference (DID) approach is a quasi-experimental technique to 

overcome the randomization assumption. It admits that the treatment group and the control 

group have a systematic difference even in the absence of the treatment and seeks to 

estimate that difference. In this chapter, I apply the DID method to identify the CaBi 

program’s real impacts on Metrorail ridership. I start with a brief introduction to the DID 

method, including its equations, assumptions, and a literature review of its use in urban 

studies and transportation research. However, the standard DID form, which has two 

groups and two time periods, does not apply to my research question and dataset. Therefore, 

I introduce a specific DID form with multiple groups and multiple periods and apply it to 

my study. Later, I expand the DID to include transit service, socio-demographics, and built 

environment characteristics. The chapter ends with a summary of regression analysis 

findings and a discussion of DID’s limitations. 

7.1 Standard Difference-in-Difference Model 

7.1.1 Equations and Assumptions 

The Difference-in-Difference model is built on the concept that there are systematic 

differences between the control and treatment groups even before policy intervention. Let’s 

denote the control group as C, and the treatment group as T. Or we can use one dummy 

variable 𝐷𝑇  to denote them. When 𝐷𝑇  equals 1 it means a treatment group. When 𝐷𝑇   

equals 0 it is a control group. There are systematic differences between the control and 

treatment groups, which we can denote as 𝛽1. This systematic difference is cross-sectional, 

and constant over time.  
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 We also have two periods of time in the quasi-experiments, one pre-policy time, 

and the other post-policy time. Similarly, let dummy variable 𝐷𝑡 denote each time. If 𝐷𝑡 

equals 1 it refers to post-policy time, and if 0 it refers to pre-policy time.  

 In addition, we will need the interactive term 𝐷𝑡 ∙ 𝐷𝑇 to denote the treatment group 

in the post-policy time. In total, the DID model input is broken down into four groups of 

data:  

• The control group before the experiment: C-before 

• The treatment group before the experiment: T-before 

• The control group after the experiment: C-after 

• The treatment group after the experiment: T-after 

These four data groups are separated using combinations of dummy variables. The 

equation can be expressed as: 

y =  𝛽0 +  𝛿0𝐷𝑡 + 𝛽1𝐷𝑇 + 𝛿1 𝐷𝑡 ∙ 𝐷𝑇 +  𝜇 (8) 

where 𝐷𝑡 denotes a dummy variable for the post-policy period t, and 𝐷𝑇 for those in the 

treatment group T. Table 33 illustrates estimators for treatment and control groups in both 

before and after time periods. The last column is the after-before effect for each group, 

with 𝛿1 referring to the difference between the after-before changes of the treatment and 

control groups, which is the coefficient of interest in the DID analysis (Wooldridge, 2015). 

Table 33 Illustration of the DID estimator 

 Before After After-Before 

Control group 𝛽0 𝛽0 + 𝛿0 𝛿0 

Treatment group  𝛽0 +  𝛽1 𝛽0 +  𝛿0 + 𝛽1

+  𝛿1  
𝛿0 +  𝛿1 

Difference between treatment 

and control groups 
𝛽1 𝛽1 + 𝛿1 𝛿1 
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Figure 48 illustrates parameters in the DID estimator. The X-axis measures time, 

with before and after represented in two time stamps. The Y-axis is the measure of 

dependent variables. The treatment group and control group are represented by red and 

black lines. The difference between the two groups is captured by 𝛽1, which is consistent 

along the time. Over time, control group experiences a growth, as captured by time effect 

𝛿0. If our policy of interest has no impact on treatment group, we could expect the treatment 

group’s growth to follow the control group’s pattern, except for the mere location effect. 

The treatment group’s growth under the null policy impact assumption is illustrated by the 

dotted black line. However, the treatment group is very likely to be affected by the policy 

of interest, and experiences additional growth. In the diagram, the policy effect is captured 

by 𝛿1 in the diagram.  

 

Figure 48 Illustration of the Difference-in-Difference Method 
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The DID approach relies on the strong assumption that the change in ridership of 

stations in the treatment and control groups would have been the same if the treatment 

group remained untreated. As illustrated in Figure 49, the dotted line, which represents the 

treatment group’s outcome growth over time without the CaBi program, should be parallel 

to the black line. However, if the treatment group’s ridership grows at a different rate, the 

DID estimator will be biased. As illustrated in Figure 49, the actual over-time change of 

treatment group (under the without-treatment condition) follows the red line, rather than 

the black dotted line. As illustrated in Figure 49, the actual over-time change of treatment 

group (under the without-treatment condition) follows the red line, rather than the black 

dotted line. The estimated treatment effect 𝛿1 in Figure 49 (non-parallel path scenario) 

should be smaller than the estimated 𝛿1 in Figure 48 (parallel path assumption). If we 

ignore this assumption, we would overestimate CaBi program’s treatment effect.  

Figure 49 Non-parallel DID 

 



150 

 

7.1.2 DID in Urban Studies: A Literature Review  

According to Imbens and Wooldridge (2007), the work by Ashenfelter and Card (1985) on 

estimating the effect of the 1976 Comprehensive Employment and Training Act (CETA) 

on workers’ earning made the Difference-in-Difference model popular and widespread 

(Ashenfelter & Card, 1984; Imbens & Wooldridge, 2007). Since then, DID has been used 

in quantitative studies using time-series data to measure the impacts of policy programs.  

 Card and Krueger (1994) performed a DID analysis to quantify how changes in 

minimum wages affect employment. They looked at fast-food industry jobs in New Jersey 

where the minimum wage increased in 1992 as the treatment group. Employment in 

Pennsylvania where there was no increase in the minimum wage at that time was the 

control group. They used DID to compared the changes before and after the policy (Card 

& Krueger, 1993).  

 Abadie, Diamond, and Hainmueller (2010) used DID to analyze the impact of 

Proposition 99, a large-scale tobacco control program, on tobacco sales in California. 

California was the treatment group and the rest United States were the control group. Given 

that locations of states vary, the distance between a state and California was included as a 

weight to adjust its influence. In addition, the authors introduced an interesting and 

effective visualization method to show both tobacco sales in a synthetic California, based 

on model results and on actual sales over the years (Abadie, Diamond, & Hainmueller, 

2012).  

DID has also been used to study built environment’s impact on public health 

(measured as obesity rate and BMI). In a literature review of methodologies, Martin, 

Ogilvie, and Suhrcke (2014) found that the Difference-in-Difference model “enables 
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control of unobserved individual differences and common trends” (A. Martin, Ogilvie, & 

Suhrcke, 2014). Branas et al. (2011) studied the association between safety measures and 

greening vacant lots using decades-long data. To adjust the fixed effects of the different 

urban neighborhoods, Branas et al. introduced two interaction terms, one urban section by 

year interaction to account for geographic variability over time, and the other section by 

pre-treatment baseline outcome interaction to adjust for regression to the mean. They found 

that greening vacant properties is associated with a reduction in gun assaults in all four 

neighborhoods of Philadelphia, and with an additional reduction in vandalism in one 

neighborhood. In addition, greening vacant lots helps reduce residents’ stress levels and 

increase their exercise. Dill et al. (2014) used DID to analyze whether adding bicycle 

boulevards is associated with increased physical activity (Dill, McNeil, Broach, & Ma, 

2014). 

Dríguez-Lesmes, Trujillo, and Valderrama (2014) used DID to analyze the impact 

of public libraries on students’ educational performance. They divided schools into two 

groups, one close to newly opened public libraries, and the other far away from libraries. 

They compared the change in test scores of students in schools near libraries before and 

after the libraries’ opening, with the score change of students in schools not near libraries. 

They found the difference was not statistically significant. Therefore, they concluded that 

opening public libraries has no impact on educational quality (Rodríguez-Lesmes, Trujillo, 

& Valderrama, 2014).  

Recently, Difference-in-Difference analysis gained popularity in transportation-

related studies, particularly for research on the impact of new transit investment, such as 

light rail. DID can tackle the endogeneity of transit infrastructure allocation (Moreno-
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Monroya & Ramosb, 2015). Many scholars have also used DID to estimate the effect of 

rail transit infrastructure’s impact on the real estate market. McDonald and Osuji (1995) 

used a standard DID in log-normal form to estimate the impact of a new transit line between 

downtown Chicago and Midway Airport. They found that a 15.4% increase in land values 

within near transit station can be attributed to the proximity factor (McDonald & Osuji, 

1995). Billings (2011) included DID in the hedonic model to estimate new light rail 

transit’s impact on the real estate market in Charlotte, North Carolina and found that LRT 

increased the price of single-family properties within one-mile by 4%, and condominium 

prices by 11.3% (Billings, 2011). Similarly, Cao (2016) studied the impact of two stages 

of light rail investment on the St. Paul real estate market, and found that the announcement 

of a Full Funding Grant Agreement tended to increase the number of building permits by 

24% and the value by 80%; the announcement of preliminary engineering had no positive 

impacts (Cao & Porter-Nelson, 2016). 

 Holzer, Quigley, and Raphael (2002) performed DID analysis to study whether 

extending San Francisco’s BART heavy rail system impacted minority employment at 

companies near new transit stations. They conducted two surveys of business owners—the 

first before opening and a second, one year after opening. Business owners were divided 

into two groups, those near a transit station and those far away. The standard DID analysis 

results showed that opening the BART extension significantly increased the hiring of 

Hispanic employees, by 20.3%. Then the authors regressed the change in minority 

employment on a business’ distance from a transit station, controlling for factors such as 

unionized status and firm size, and found again that the distance to station is negatively 

associated with employers’ propensity to hire Hispanics (Holzer, Quigley, & Raphael, 
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2003). Similarly, to study transit’s impact on a minority group, Hess (2016) used DID to 

analyze light rail’s impact on demographic characteristics of nearby neighborhoods. He 

found that light trail has a negative treatment effect on the share of black residents (Hess, 

2016). 

Boarnet, Wang, and Houston (2016) studied Los Angeles’s newly opened Expo 

light rail transit line impacts on personal vehicle greenhouse gas (GHG) emissions and 

found that the opening significantly reduced on average daily CO2 emission from motor 

vehicles by 3,145g (Boarnet, Wang, & Houston, 2016). DID was also applied to study light 

rail’s impact on other travel behavior measures (Boarnet et al., 2013). Schuetz (2014) 

studied rail transit’s impact on retail activities using DID but found no significant 

association in three of four MSAs in California and one negative association in the 

Sacramento MSA (Schuetz, 2014). A more complicated spatial Difference-in-Difference 

estimator was created by Dube et al. (2014) to decompose the marginal effect to include 

spatial spillover (Dubé, Legros, Thériault, & Des Rosiers, 2014). 

In summary, DID has become a common method to study the real social and 

economic impacts of new and expanded transit projects by separating both time effect and 

the difference between control and treatment groups. If longitudinal data is available and a 

control group can be identified, DID is a preferred method.  

7.2 Multiple-Groups-and-Multiple-Periods DID: Methodology and Data 

From the perspective of DID, the launch of the CaBi program can be taken as a quasi-

experiment. The Metrorail system has been in operation for decades. In 2010, the 

introduction of CaBi was a policy intervention, or treatment, that has been imposed on 

selected Metrorail stations. These stations can be labeled as the “treatment group,” while 
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the rest are the “control group.” Both the treatment and control groups existed before CaBi 

installation, therefore, besides the “treatment-control” dimension, we also have a “before- 

after” dimension. Together, four groups result from these two-by-two dimensions: 

• The treatment group before the experiment, T-before: Metrorail stations WITH 

CaBi installed between 2010 and 2015 in the years BEFORE CaBi installation 

• The control group before the experiment, C-before: Metrorail stations WITHOUT 

CaBi installed between 2010 and 2015 in the years BEFORE CaBi installation 

• The treatment group after the experiment, T-after: Metrorail stations WITH CaBi 

installed between 2010 and 2015 in the years AFTER CaBi installation 

• The control group after the experiment, C-after: Metrorail stations WITHOUT 

CaBi installed between 2010 and 2015 in the years AFTER CaBi installation 

The equation can be expressed as: 

R =  𝛽0 +  𝛿0𝐷𝑡 +  𝛽1𝐷𝑇 +  𝛿1 𝐷𝑡 ∙ 𝐷𝑇 +  𝜇 (9) 

where 𝐷𝑡 denotes a dummy variable for the after CaBi program launch in 2010, and 

𝐷𝑇  for Metrorail stations with CaBi installed nearby. 𝐷𝑡 ∙ 𝐷𝑇  is an interactive term 

denoting Metrorail stations with CaBi installed, and in the years between 2011 and 2015 

after CaBi’s program launch. The hypothesis H2, that CaBi has a negative impact on 

Metrorail ridership, can be translated here to a negative 𝛿1.  

However, there is a barrier to applying the standard Difference-in-Difference (DID) 

model to my research on the impact of CaBi. Since its launch in 2010, CaBi has been 

gradually expanded. Therefore, there are multiple policy events and thus multiple “before” 

and “after” time periods. For example, for Metrorail stations with CaBi docking stations 

installed in 2011, 2010 is a “before” year and 2011 is an “after” year. But for those stations 
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with CaBi installed in 2012, both 2010 and 2011 are “before” years, while 2012 is a new 

“after” year. Similarly, there is more than one pair of “control-treatment” groups. 

 To handle this complexity, I use “multiple-groups-and-multiple-periods DID,” 

which is a natural extension of the two-group, two-time-period standard DID, as shown in 

Equation (10). 

R𝑡,𝑖 =  𝛽1 + ∑ 𝛾𝑡 ∗ 𝑦𝑒𝑎𝑟𝑡

6

𝑡=2

+ ∑ 𝛿𝑖 ∗ 𝑔𝑟𝑜𝑢𝑝𝑖

6

𝑖=2

+  𝛽2 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑖 +  𝑒 (10) 

where R𝑡,𝑖 is the ridership of Metrorail station in group i in year t. 𝑦𝑒𝑎𝑟𝑡 for t = 2, …, 6 is 

a vector of dummy variables taking the value 1 when the observation belongs to the tth year 

between 2010 and 2015, and the category of reference for year is 2010.  𝑔𝑟𝑜𝑢𝑝𝑖 for i = 

2, …, 6 is a vector of dummy variables taking the value 1 when the Metrorail station had 

CaBi installed nearby in the ith year between 2010 and 2015 and zero otherwise. Since CaBi 

was launched in October 2010 and the input trip number was in August that year, 𝑔𝑟𝑜𝑢𝑝1 

is the control group, indicating stations without CaBi installed. The dummy variable 

𝐶𝑎𝐵𝑖𝑡,𝑖 equal 1 if the station is in the treatment group and in a year after CaBi’s installation.  

In Equation (1), the intercept 𝛽1 indicates the average station ridership in 2010. 

Coefficients of the year dummies—𝛾𝑡—measure the year effects on all stations in the 

system, compared to the base year 2010. I assume that 𝛾𝑡 is an external factor which is 

influenced by elements at the macro level such as the overall regional economy and 

gasoline price. Coefficient of station group dummies—𝛿𝑖 —indicates the difference in 

ridership if a station has CaBi installed nearby in years 2011, 2012, 2013, 2014, and 2015, 

as compared to the control group, which is stations without CaBi installed nearby. Finally, 
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the coefficient  𝛽2 is the focus of interest, which measures the average CaBi treatment 

effect at the station level. 

To illustrate this method, assume three Metrorail stations, A, B, and C. Station A 

has no CaBi installed in any year between 2010 and 2015, B had CaBi installed in 2011, 

and C had CaBi installed in 2012. Table 34 illustrates input values for these three stations. 

It is worthwhile to highlight that 𝐶𝑎𝐵𝑖 has a value 1 for the year CaBi was installed and 

each year after the installation. 
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Table 34 Illustration of the Multiple-Groups-and-Multiple-Periods DID 

  2010 2011 2012 2013 2014 2015 𝑔2010 𝑔2011 𝑔2012 𝑔2013 𝑔2014 𝑔2015 𝐶𝑎𝐵𝑖 

A 1           1           0 

A   1         1           0 

A     1       1           0 

A       1     1           0 

A         1   1           0 

A           1 1           0 

B 1             1         0 

B   1           1         1 

B     1         1         1 

B       1       1         1 

B         1     1         1 

B           1   1         1 

C 1               1       0 

C   1             1       0 

C     1           1       1 

C       1         1       1 

C         1       1       1 

C           1     1       1 
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 Input data are based on the same dataset for the DRM. Metrorail ridership and CaBi 

trips are transformed to be at the Metrorail station level. Metrorail ridership data are the 

average weekday daily AM/PM ridership of August between 2010 and 2015. August was 

chosen because CaBi was officially launched in October 2010 so August is a good month 

for a before-after analysis. Rather than using CaBi trips, DID intakes three dummy 

variables. The time scope matches that of Metrorail ridership. Ideally, station-wise control 

variables should be included in the model. However, time-variant data are not available. 

Table 35 describes the statistics of DID input data. 

Table 35 Descriptive Statistics of DID Input Data 

Variable Obs Mean Std. Dev. Min Max 

entryam 526 2525.1 1870.4 16.2 9631.2 

exitam 526 2297.8 3251.5 102.1 14201.0 

entrypm 526 2829.2 3505.2 141.6 15969.0 

exitpm 526 2745.1 1874.4 251.0 11258.7 

2010 526 0.2 0.4 0.0 1.0 

2011 526 0.2 0.4 0.0 1.0 

2012 526 0.2 0.4 0.0 1.0 

2013 526 0.2 0.4 0.0 1.0 

2014 526 0.2 0.4 0.0 1.0 

2015 526 0.2 0.4 0.0 1.0 

𝑔2010 526 0.4 0.5 0.0 1.0 

𝑔2011 526 0.4 0.5 0.0 1.0 

𝑔2012 526 0.1 0.3 0.0 1.0 

𝑔2013 526 0.0 0.0 0.0 0.0 

𝑔2014 526 0.1 0.3 0.0 1.0 

𝑔2015 526 0.0 0.0 0.0 0.0 

CaBi 526 0.4 0.5 0.0 1.0 

 

7.3 Multiple-Groups-and-Multiple-Periods DID: Results 

Table 36 reports the results of the multiple groups and multiple periods DID regressions. 

From left to right, the table shows coefficients and p-values by variable for each of four 
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regression equations with mentryam, mexitam, mentrypm, and mexitpm as the dependent 

variable.  

 First, in 2010, on average, a Metrorail station without CaBi installed nearby, which 

belongs to the control group, has 3,014.3 passengers entering the station and 789.2 exiting 

in the morning, and 1,093.9 entering and 2,760.6 exiting in the evening. The sum of 

morning trips is very close to the sum of evening trips, suggesting that weekday Metrorail 

trips are mostly made by commuters.  

 Second, as coefficients of the year dummies show, Metrorail kept losing ridership 

in all four measures between 2010 and 2015. The only exceptions are mexitam and 

mentrypm which had small increases in 2011. 

 Third, there are systematic differences among Metrorail station groups. Note that 

𝑔2013  and 𝑔2015  were omitted due to multilinearity. In fact, although CaBi has been 

expanding every year, the number of Metrorail stations with CaBi installed nearby did not 

change in 2013 and 2015. Metrorail stations with CaBi installed nearby in 2013 were the 

same stations as in 2012, and stations with CaBi in 2015 were the same as in 2014. For 

station groups 𝑔2011 , 𝑔2012 , and 𝑔2014 , coefficients indicate systematic ridership 

differences for four measures. Metrorail stations with CaBi installed nearby in 2011, or 

𝑔2011 , tend to have more mexitam and mentrypm than the control group stations. On 

average, one 𝑔2011 group station has 3,746.5 more mexitam and 4,311.4 more mentrypm, 

and both are statistically significant at 0.000. The results confirm that CaBi docking 

stations were planned for and installed at Metrorail stations with higher ridership in 2011. 

Comparing coefficients of 𝑔2011 with those of 𝑔2012 and 𝑔2014, we can see that through 

the years, the systematic differences between the treatment and control groups decrease. 
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So do the statistical significance levels. A possible explanation is that the CaBi docks were 

installed at Metrorail stations that had the largest numbers of mexitam and mentrypm. 

During CaBi’s expansion, Metrorail ridership gradually played a less significant role and 

CaBi began to consider other factors, such as proximity to activity centers.  

 Conversely, Metrorail stations with CaBi installed in 2011 and 2012 have fewer 

mentryam than the control group. However, this trend was reversed; 𝑔2014 stations have 

more mentryam. Putting these pieces together we see a bigger picture on how CaBi was 

expanded. At the beginning of the program, only Metrorail stations with the highest 

mexitam and mentrypm, which are likely to be stations in downtown D.C., had CaBi 

installed near them. In 2014, new CaBi docks were installed at Metrorail stations near 

commuters’ residences, leading to a positive mentryam difference. Therefore, regarding 

the location, CaBi started in downtown D.C., the area’s job center, and gradually expanded 

into suburban communities, where commuters’ homes are located.  

Finally, coefficients suggest that CaBi docks at Metrorail stations, on average, lead 

to an increase in Metrorail ridership measures mentryam by 217.4 and mexitpm by 196.2, 

the numbers of AM station entries and the numbers of PM station exits. However, a closer 

look reveals that CaBi may also have negative ramifications for Metrorail. Installing CaBi 

within ¼-mile of Metrorail stations reduces the number of passengers exiting those stations 

in the morning, or mexitam, by 14.6 and reduces the number of commuters entering stations 

in the evening, or mentrypm, by 51.8. A quick comparison of coefficients reveals that the 

magnitude of CaBi’s complementary effect exceeds the magnitude of its substitute effect.  

Also, relating Metrorail ridership measures to station locations, we might interpret 

the results as: CaBi reduces Metrorail ridership at stations in downtown D.C. and increases 
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ridership at stations in suburban communities. One possibility is that CaBi solved the 

connection gap between commuters’ homes and Metrorail stations, and thus boosted the 

number of AM boardings and the number of PM exits. By comparison, due to its 

convenience and flexibility, CaBi near commuters’ workplaces may substitute for 

Metrorail, and lead to the decrease of Metrorail ridership measures mexitam and mentrypm.  

However, CaBi’s treatment effects are not statistically significant. The p-values for 

coefficients of 𝐷𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑝𝑜𝑠𝑡  in four equations are 0.504, 0.976, 0.920, and 0.553 

respectively, indicating low confidence levels. Since results are not statistically significant, 

the discussion of CaBi’s complementary effects on ridership at stations near commuters’ 

homes and substitute effects on ridership at stations near their workplaces are only 

hypothetical.  
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Table 36 Results of Multiple-Groups-and-Multiple-Periods DID 

mentryam mexitam mentrypm mexitpm 

 Coef. P  Coef. P  Coef. P  Coef. P 

2011 -36.1 0.907 2011 48.5 0.917 2011 0.9 0.999 2011 -44.2 0.888 

2012 -125.8 0.697 2012 -34.4 0.944 2012 -62.2 0.904 2012 -130.0 0.693 

2013 -137.2 0.672 2013 -38.4 0.937 2013 -61.7 0.905 2013 -135.3 0.681 

2014 -320.8 0.348 2014 -102.6 0.842 2014 -122.3 0.822 2014 -274.8 0.429 

2015 -419.8 0.219 2015 -197.1 0.702 2015 -240.7 0.658 2015 -411.4 0.237 

𝑔2011 -914.3* 0.006 𝑔2011 3746.5* 0.000 𝑔2011 4311.4* 0.000 𝑔2011 194.9 0.561 

𝑔2012 -849.6* 0.018 𝑔2012 734.4* 0.173 𝑔2012 840.6 0.140 𝑔2012 -576.6 0.113 

𝑔2013   𝑔2013   𝑔2013   𝑔2013   

𝑔2014 282.8* 0.318 𝑔2014 337.0 0.430 𝑔2014 655.9 0.146 𝑔2014 417.2 0.148 

𝑔2015   𝑔2015   𝑔2015   𝑔2015 0.0  

𝐷𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑝𝑜𝑠𝑡 217.4 0.504 𝐷𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑝𝑜𝑠𝑡 -14.6 0.976 𝐷𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑝𝑜𝑠𝑡 -51.8 0.920 𝐷𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑝𝑜𝑠𝑡 196.2 0.553 

_cons 3014.3* 0.000 _cons 789.2* 0.050 _cons 1093.9* 0.010 _cons 2760.6* 0.000 

R2 = 0.055 R2 = 0.288 R2 = 0.318 R2 = 0.026 

* Statistically different from zero at 5% significance level 
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7.4 Summary 

In Chapter 8, I use the Difference-in-Difference approach, a quasi-experimental technique, 

to overcome the deficiency of DRM’s random selection assumption. A standard DID 

separates Metrorail stations into treatment and control groups, and measures their pre-

intervention and post-intervention outcomes. The difference between the treatment group’s 

after-before ridership change and the control group’s change can therefore be ascribed to 

the CaBi program.  

 However, since CaBi expanded every year between 2010 and 2015, the two-group 

two-period format does not apply here. In fact, there is one control group, five treatment 

groups (Metrorail stations with CaBi installed in different years), a pre-intervention period 

and five post-intervention periods. Therefore, a special multiple-group-and-multiple-

period DID is introduced to capture all differences.  

 The analysis finds that having CaBi installed nearby reduces 14.6 Metrorail AM 

peak exits and 51.8 PM peak entries, but increases 217.4 AM peak entries and 196.2 PM 

peak exits. Given the fact that Metrorail stations in downtown D.C. tend to have a larger 

number of exits in the morning and entries in the evening, we may interpret results to show 

that CaBi reduces Metrorail ridership at stations in downtown D.C. and increases ridership 

at stations near commuters’ homes.  

 However, none of CaBi’s impacts are statistically significant. Therefore, the 

discussion of the relationship between CaBi’s impacts and Metrorail station location is 

merely hypothetical. A new model separating CaBi’s impacts by location and with more 

detailed trip data may help test the theory.  
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Chapter 8: Station-Specific Dummies Analysis 

Both the DRM and DID approaches reveal interesting findings, but they have limitations. 

The DRM relies on a strong random assignment assumption, and DID results are not 

statistically significant. Also, DID results imply that CaBi’s impacts may vary by the 

location of Metrorail stations—that the program may reduce ridership at downtown D.C. 

stations and increase ridership at stations in suburban residential communities. To test this 

theory, I apply the Observation-Specific Dummies (OSD) approach to the research 

question and create a Station-Specific Dummies (SSD) model to measure CaBi’s impacts 

by station location. Also, I improve control variables and the input data in the new model. 

Besides the year effects, I control for the month effect since explorative analysis found a 

seasonal pattern. I also control for stations’ fixed effects to compensate for the lack of time-

varying transit service, socio-demographic, and built environment variables. Finally, I 

introduce a new dataset, monthly ridership between 2010 and 2015, to study the question. 

Some of the regression results are mapped using ArcGIS to identify spatial patterns. 

8.1 Methodology and Data 

The Observation-Specific Dummies (OSD) or Unique-Event Dummies approach (UED), 

first introduced by Salkever in 1976, is a convenient device in applied regression analysis 

(Kennedy, 2003; Oksanen, 1986; Salkever, 1976). In this model, one dummy variable 

represents one observation. For a model with N observations, N-1 dummies would be 

created while the constant variable represents the other observation, which is usually called 

the base. Coefficients of the N-1 dummies indicate the differences between each of the N-

1 observations and the base observation. The Observation-Specific Dummies (OSD) has 
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been used especially when the number of observations in one time period is too small 

(Kennedy, 2003). If time defines different observations, then the Observation-Specific 

Dummies is also called the Period-Specific Dummies (Kennedy, 2003).  

 The Observation-Specific Dummies approach is well suited for exploring CaBi’s 

impacts on Metrorail stations. As discussed earlier in Chapter 6, time-varying station-level 

control variables are not available. However, by assigning a dummy to each Metrorail 

station, the OSD can control for station fixed effects. Since the observations are stations in 

this study, the Observation-Specific Dummies can be renamed as the Station-Specific 

Dummies (SSD).  

 Besides including station fixed effect dummies, I also improve the controlling for 

time effects. In the DID model, year dummies are used to control time effects. However, it 

may also worth to control for the month effects as the explorative analysis results in 

Chapter 3 found seasonal patterns in CaBi and Metrorail trips. Therefore, I included 12 

month dummies in the SSD model.  

After time effects (by year and by month) and station fixed effect, the third group 

of variables are CaBi’s impacts by Metrorail station location, whether a station is a 

downtown D.C. core station or a non-core station in peripheral and suburban communities.   

Therefore, three dimensions in the interplay between CaBi and Metrorail captured 

in the SSD model are the time effects at the system level, the stations’ fixed effects derived 

from their unique locations, and CaBi impacts varying by station location. The model is 

expressed as: 

𝑅𝑡,𝑚,𝑠 =  𝛽1 + ∑ 𝛼𝑡𝑦𝑒𝑎𝑟𝑡

6

𝑡=2

+ ∑ 𝛾𝑚𝑚𝑜𝑛𝑡ℎ𝑚

12

𝑚=2

+ ∑ 𝛿𝑠𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠

91

𝑠=1
𝑠≠44

+𝛽2𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 + 𝛽3𝑛𝑜𝑛𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 + 𝑒 (11)

 



166 

 

where 𝑅𝑡,𝑚,𝑠 is the Metrorail ridership of station s in month m of year t. 

 To maximize the benefits of detailed trip data, rather than using the same dataset as 

in the DRM and the DID, I improved the input data for the SSD. The new dataset includes 

monthly AM/PM peak Metrorail ridership and CaBi trip measures for each month between 

August 2010 and August 2015, a total of 61 months. Weekend trips are excluded to focus 

on commuting trips. Therefore, for time effects, I have two groups of dummy variables: 

𝑦𝑒𝑎𝑟𝑡  for t = 2, …, 6 is a vector of dummy variables taking the value 1 when the 

observation belongs to the tth year of 2010-2015 and zero otherwise, and 𝑚𝑜𝑛𝑡ℎ𝑚 for m = 

2, …, 12 is a vector of dummy variables taking the value 1 when an observation belongs 

to the mth month of January-December and zero otherwise. 

 I also assume that every Metrorail station is unique in attracting passengers and 

receiving CaBi’s impacts. This assumption differs from earlier methods in that it takes each 

Metrorail station as a unit and admits the correlation between ridership and station. To 

represent this effect, I introduced 91 dummy variables for 91 Metrorail stations. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

for s = 1, …, 91 is a vector of dummy variables taking the value 1 when the observation 

belongs to the sth station and zero otherwise. The 44th station, King Street is the base for 

station dummy, and 2010 and January the bases for the year and month dummies.  

Finally, I created two dummy variables 𝑐𝑜𝑟𝑒𝑠 and 𝑛𝑜𝑛𝑐𝑜𝑟𝑒𝑠 to represent Metrorail 

station locations, categorized as core stations and non-core stations. The concept of core 

stations comes from WMATA. In its report, Station Access and Capacity Study, WMATA 

identified 29 stations as the system core (WMATA, 2008). Some of them, such as the 

Arlington Cemetery, do not function as core stations due to land use at the station area. 

Therefore, I remove stations in Virginia and keep those only in D.C. as my definition of 
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the system core. The 23 core stations are: Anacostia, Archives-Navy Memorial, Capitol 

South, Dupont Circle, Eastern Market, Farragut North, Farragut West, Federal Center SW, 

Federal Triangle, Foggy Bottom, Gallery Place-Chinatown, Judiciary Square, L'Enfant 

Plaza, McPherson Square, Metro Center, Mt. Vernon Square-UDC, Navy Yard, New York 

Ave, Potomac Avenue, Smithsonian, Stadium-Armory, Union Station, and Waterfront. 

Figure 50 shows core and non-core stations.  

If a station is defined as a core station, 𝑐𝑜𝑟𝑒𝑠 takes the value of 1. Otherwise, it has 

the value of zero. 𝑛𝑜𝑛𝑐𝑜𝑟𝑒𝑠 is a similar dummy. It represents a station outside the Metrorail 

system core, which are stations in peripheral and suburban communities. 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 is a 

dummy variable which equals to one when station s has CaBi installed nearby in month m 

of year t. If station s is one of the core stations, dummy variable 𝑐𝑜𝑟𝑒𝑠 takes the value 1. 

Similarly, if s is not a core station, 𝑛𝑜𝑛𝑐𝑜𝑟𝑒𝑠  takes the value 1. 𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠  and 

𝑛𝑜𝑛𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 represent the interaction terms between the type of station (core vs. 

non-core) and its exposure to CaBi program.  
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Figure 50 Metrorail Core Stations 

 

All variables in the model are dummies, and thus a base group is needed. I selected 

the King Street station as my base group because its ridership is closest to the average of 

all stations. Therefore, in Equation (11), the coefficient 𝛽1, the intercept, indicates ridership 

of Metrorail station King Street in January 2010. Coefficients 𝛼𝑡 and 𝛾𝑚 represent the year 

effect and the month effect on ridership. 𝛿𝑠 indicates the station fixed effect of station s, 

compared to King Street station. 𝛽2 and 𝛽3 are CaBi program’s average effects on core 

stations and non-core stations. Therefore, the ridership of King Street station (which is a 

non-core station) in month m of year t can be expressed as 𝑅𝑡,𝑚,𝐾𝑖𝑛𝑔 𝑆𝑡𝑟𝑒𝑒𝑡 =  𝛽1 + 𝛼𝑡 +

𝛾𝑚 + 𝛽3, and the ridership of a core station N can be written as 𝑅𝑡,𝑚,𝑁 =  𝛽1 + 𝛼𝑡 + 𝛾𝑚 +

𝛿𝑁 + 𝛽2. 

Since Metrorail ridership has four measures, mentryam, mexitam, mentrypm, and 

mexitpm, Equation (11) can be further specified into Equations (12), (13), (14), and (15): 
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𝑚𝑒𝑛𝑡𝑟𝑦𝑎𝑚𝑡,𝑚,𝑠 =  𝛽1 + ∑ 𝛼𝑡𝑦𝑒𝑎𝑟𝑡

6
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12

𝑚=2
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91

𝑠=1
𝑠≠44

+𝛽2𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 + 𝛽3𝑛𝑜𝑛𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 + 𝑒 (12)

 

𝑚𝑒𝑥𝑖𝑡𝑎𝑚𝑡,𝑚,𝑠 =  𝛽1 + ∑ 𝛼𝑡𝑦𝑒𝑎𝑟𝑡

6
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+ ∑ 𝛾𝑚𝑚𝑜𝑛𝑡ℎ𝑚

12

𝑚=2
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91

𝑠=1
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+𝛽2𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 + 𝛽3𝑛𝑜𝑛𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 + 𝑒 (13)

 

𝑚𝑒𝑛𝑡𝑟𝑦𝑝𝑚𝑡,𝑚,𝑠 =  𝛽1 + ∑ 𝛼𝑡𝑦𝑒𝑎𝑟𝑡

6
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+ ∑ 𝛾𝑚𝑚𝑜𝑛𝑡ℎ𝑚
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𝑚=2

+ ∑ 𝛿𝑠𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠
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𝑠=1
𝑠≠44

+𝛽2𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 + 𝛽3𝑛𝑜𝑛𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 + 𝑒 (14)

 

𝑚𝑒𝑥𝑖𝑡𝑝𝑚𝑡,𝑚,𝑠 =  𝛽1 + ∑ 𝛼𝑡𝑦𝑒𝑎𝑟𝑡
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𝑡=2

+ ∑ 𝛾𝑚𝑚𝑜𝑛𝑡ℎ𝑚
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+ ∑ 𝛿𝑠𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠
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𝑠=1
𝑠≠44

+𝛽2𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 + 𝛽3𝑛𝑜𝑛𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑎𝐵𝑖𝑡,𝑚,𝑠 + 𝑒 (15)

 

Table 37 lists part of the descriptive statistics of input data. Due to the large number 

of dummy variables in the model, the full descriptive statistics is provided in Appendix A. 

In total, there are 5,316, made at 86 stations over 61 months and including the five 

additional Silver Line stations over 14 months (stations opened in July 2014).  

Table 37 Descriptive Statistics of SSD Input Data 

Variable Obs Mean Std. Dev. Min Max 

mentryam 5,316 55,735.5 40,970.6 142.0 242,376.0 

mexitam 5,316 50,593.1 71,375.3 1,205.0 340,978.0 

mentrypm 5,316 61,343.4 76,167.3 1,574.0 381,632.0 

mexitpm 5,316 59,526.9 41,472.7 1,004.0 289,758.0 

core 5,316 0.3 0.4 0.0 1.0 

noncore 5,316 0.7 0.4 0.0 1.0 

CaBi 5,316 0.5 0.5 0.0 1.0 

core * CaBi 5,316 0.3 0.4 0.0 1.0 

noncore * CaBi 5,316 0.2 0.4 0.0 1.0 
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8.2 Results 

The results of four regressions (with mentryam, mexitam, mentryam, and mexitpm as the 

dependent variables) have about 109 coefficients each and are too long to show completely 

in the text. Therefore, only part of the results are displayed in the text; the full results are 

shown in Appendix B.  

Table 38 illustrates the findings in four parts. The left three columns in the first row 

show coefficients and the p value of the constant, the King Street station, with CaBi’s 

effects on core and non-core stations following. Below that are year and month effects. The 

three columns to the right are coefficients and p values of the other 90 stations. The 

coefficient values indicate the ridership differences between a station and the base station, 

the King Street station. To save space, I only show 20 stations, the top 10 and the last 10, 

ranked by sizes of coefficients.  

8.2.1 Results of the Regression with mentryam as the Dependent Variable 

As Table 38 shows, in 2010, the King Street station had 60,968.5 monthly entries in the 

AM peak. A small P value indicates that the constant is statistically significant at the 0.000 

level. CaBi has positive impacts on both core and non-core stations. Specifically, the 

presence of CaBi in a Metrorail station area would increase the number of monthly AM 

entries of core stations by 2,471 and that of non-core stations by 1,111.8. P values are 

smaller than 0.05, showing CaBi’s impacts are statistically significant.  

 Year effects and month effects are as expected. Over the years, mentryam slightly 

increased in 2011, but then decreased since 2012. The 2015 estimated ridership is 6,085.8 

less than the 2010 level, and the difference is statistically significant. Coefficients of month 
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dummies show that Metrorail trips have seasonality. There are more trips made between 

March and October, and the differences are statistically significant.  

Table 38 Selected Results of SSD with mentryam as the Dependent Variable 

mentryam 

 coef. p  coef. p 

King Street  

(base) 
60,968.5* 0.000 Union Station 136,184.9* 0.000 

CaBi core 2,471.0* 0.013 Shady Grove 129,093.1* 0.000 

CaBi non-core 1,111.8* 0.023 Vienna 127,068.3* 0.000 

2011 127.7 0.771 Pentagon 68,256.8* 0.000 

2012 -1,221.6* 0.006 New Carrollton 64,817.0* 0.000 

2013 -1,998.7* 0.000 Huntington 63,804.9* 0.000 

2014 -3,660.6* 0.000 Silver Spring 61,896.8* 0.000 

2015 -6,085.8* 0.000 West Falls Church 57,760.1* 0.000 

Feb -1,634.6* 0.001 Franconia-Springfield 57,178.5* 0.000 

Mar 4,556.3* 0.000 Pentagon City 54,469.9* 0.000 

Apr 5,647.5* 0.000 Capitol South -45,141.0* 0.000 

May 4,539.5* 0.000 Tysons Corner -48,221.1* 0.000 

Jun 6,478.0* 0.000 Spring Hill -48,803.0* 0.000 

Jul 5,058.1* 0.000 Judiciary Square -52,753.1* 0.000 

Aug 2,159.7* 0.000 Greensboro -53,103.0* 0.000 

Sep 2,244.3* 0.000 Federal Center SW -53,807.6* 0.000 

Oct 3,259.5* 0.000 Archives-Navy Memorial -55,234.4* 0.000 

Nov -2,083.9* 0.000 Smithsonian -56,658.2* 0.000 

Dec -5,992.4* 0.000 Federal Triangle -59,009.1* 0.000 

   Arlington Cemetery -60,504.7* 0.000 

R2 = 0.970 

* Statistically different from zero at 5% significance level 

 

 Metrorail stations are unique, as the small p values suggest. I ranked stations by 

coefficients, and found that those with the largest numbers of AM entries are either terminal 

stations such as Shady Grove and New Carrollton, or transit hubs such as Union Station. 

Conversely, stations with the smallest numbers of AM entries are those in downtown D.C. 

(Judiciary Square and Archives-Navy Memorial), stations located in other job centers 



172 

 

(Tysons Corner), or stations with a special land use (Arlington Cemetery). I mapped the 

stations’ fixed effects (equal to the sum of constant and coefficients of the station) in 

ArcGIS. Figure 51 confirms the spatial pattern that compared to downtown stations, those 

in peripheral areas have more AM entries. 

Figure 51 Stations' Fixed Effects in SSD with mentryam as the Dependent Variable 
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8.2.2 Results of the Regression with mexitam as the Dependent Variable 

Table 39 shows selected results of regression with mentryam as the dependent variable in 

the same format as Table 38. It reveals that there were 47,297.9 exits at the King Street 

station per month in 2010. In 2011, the number slightly increased by 1,198.2, suggesting 

that more commuters exit Metrorail stations in the morning. However, this increase did not 

last long. In 2014, mexitam dropped to a level below 2010’s, as suggested by the negative 

coefficient. Mexitam in 2015 was 4,882.7 less than in 2010, and the decline was statistically 

significant. 

CaBi’s impacts are mixed and vary by station location. It has a negative impact on 

Metrorail AM exits at core stations. The presence of CaBi docks at a station area decreases 

monthly mexitam of core stations by 4,814.4. However, CaBi increases mexitam of non-

core stations by 2,143.3. Both the complementary effect and substitute effect are 

statistically significant.  

Again, month plays a role in Metrorail ridership; more commuters take trains in the 

warm weather. June, April, and July are the top three months in terms of mexitam number. 

Results also show spatial patterns of AM exits by station. Core stations, even after 

controlling for CaBi’s impacts, have the largest morning exits. The non-core station with 

similar numbers is Pentagon. All stations have thousands of jobs near them and are 

destinations of morning commute trips. Stations with the lowest levels of AM exits are 

located in peripheral areas, and some in residence-heavy neighborhoods. Figure 52 

visualizes this spatial pattern. 
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Table 39 Selected Results of SSD with mexitam as the Dependent Variable 

mexitam 
 Coef. P  Coef. P 

King Street (base) 47,297.9* 0.000 Farragut North 252,908.0* 0.000 

CaBi core -4,814.4* 0.000 Farragut West 251,839.7* 0.000 

CaBi non-core 2,143.3* 0.000 Metro Center 238,956.0* 0.000 

2011 1,198.2* 0.014 L'Enfant Plaza 204,653.1* 0.000 

2012 -331.2 0.504 Union Station 179,529.3* 0.000 

2013 -1,131.7* 0.023 McPherson Square 159,432.8* 0.000 

2014 -2,741.1* 0.000 Foggy Bottom 157,149.8* 0.000 

2015 -4,882.7* 0.000 
Gallery Place-

Chinatown 
154,546.5* 0.000 

Feb -1,158.5* 0.030 Dupont Circle 91,639.5* 0.000 

Mar 4,196.2* 0.000 Pentagon 87,273.7* 0.000 

Apr 5,128.2* 0.000 Congress Heights -44,059.5* 0.000 

May 4,355.1* 0.000 Arlington Cemetery -44,095.2* 0.000 

Jun 5,990.1* 0.000 Deanwood -44,311.9* 0.000 

Jul 4,708.8* 0.000 Cleveland Park -44,573.8* 0.000 

Aug 2,213.3* 0.000 Morgan Blvd. -44,787.1* 0.000 

Sep 2,416.3* 0.000 Benning Road -44,943.5* 0.000 

Oct 3,202.8* 0.000 Forest Glen -45,114.6* 0.000 

Nov -1,644.1* 0.003 Landover -45,206.6* 0.000 

Dec -5,217.6* 0.000 Cheverly -45,407.2* 0.000 

   Capitol Heights -45,423.3* 0.000 

R2 = 0.988 

* Statistically different from zero at 5% significance level 
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Figure 52 Stations' Fixed Effects in SSD with mexitam as the Dependent Variable 
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8.2.3 Results of the Regression with mentrypm as the Dependent Variable 

Results of SSD regression with mentrypm as the dependent variable are similar to results 

of SSD with mexitam as the dependent variable (Section 8.2.2). In 2010, the King Street 

station had a monthly ridership of 59,189. The presence of a CaBi dock within ¼ mile of a 

Metrorail station would decrease the number of entries at core stations, but increase those 

of non-core stations. The results are statistically significant.  

 Year effects and month effects are found to be similar to results in 8.2.1 and 8.2.2. 

Mentrypm increased slightly and insignificantly in 2011, and declined in the years after. 

The 2015 level is 5,881.7 less than the 2010 level. Seasonality is confirmed by coefficients 

of month dummies. Again, July, April, and June are the top three months. Each shows more 

than 7,000 monthly PM entries.  

Very similar to results of SSD with mexitam, stations with the largest ridership are 

those located in downtown D.C. Stations in residence-heavy peripheral neighborhoods, 

such as Forest Glen and Landover, have the smallest numbers of PM peak entries. This 

spatial pattern is illustrated in Figure 53. 
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Table 40 Selected Results of SSD with mentrypm as the Dependent Variable 

mentrypm  
Coef. P  Coef. P 

King Street (base) 59,189.0* 0.000 Metro Center 268,757.1* 0.000 

CaBi core -4,886.9* 0.000 Farragut North 261,316.2* 0.000 

CaBi non-core 2,458.4* 0.000 Farragut West 225,669.8* 0.000 

2011 541.6* 0.342 L'Enfant Plaza 212,256.5* 0.000 

2012 -960.3* 0.098 Union Station 204,890.3* 0.000 

2013 -2,071.2* 0.000 Gallery Place-Chinatown 194,572.3* 0.000 

2014 -4,037.2* 0.000 Foggy Bottom 163,104.9* 0.000 

2015 -5,881.7* 0.000 McPherson Square 143,681.5* 0.000 

Feb -2,926.9* 0.000 Dupont Circle 111,480.3* 0.000 

Mar 5,217.7* 0.000 Smithsonian 104,045.0* 0.000 

Apr 7,828.0* 0.000 Congress Heights -51,131.9* 0.000 

May 5,036.5* 0.000 Benning Road -51,232.4* 0.000 

Jun 7,043.6* 0.000 Naylor Road -51,493.0* 0.000 

Jul 7,940.5* 0.000 Addison Road -51,823.7* 0.000 

Aug 3,669.5* 0.000 Deanwood -53,761.9* 0.000 

Sep 1,344.2* 0.035 Forest Glen -53,780.9* 0.000 

Oct 3,342.1* 0.000 Capitol Heights -54,208.6* 0.000 

Nov -2,594.3* 0.000 Morgan Blvd. -55,328.8* 0.000 

Dec -5,319.5* 0.000 Landover -55,366.8* 0.000 

   Cheverly -56,019.3* 0.000 

R2 = 0.986 

* Statistically different from zero at 5% significance level 
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Figure 53 Stations' Fixed Effects in SSD with mentrypm as the Dependent Variable 
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8.2.4 Results of the Regression with mexitpm as the Dependent Variable 

Table 41 shows selected results for regression with mexitpm as the dependent variable. 

Results in this section are similar to those of the regression with mentryam as the dependent 

variable (Section 8.3.1). First, the base station, King Street, has 68,797.2 monthly exits in 

the weekday PM peak. Second, this number decreased each year between 2011 and 2015. 

In 2015, the number of passengers getting off the train was 6,825.9 less than that number 

in 2010. The loss was about 10% over six years.  

 CaBi has had positive impacts on the number of PM peak exits for all stations but 

the magnitude varies by location. CaBi increases mexitpm of core stations by 2,781.2 on 

average, and that of non-core stations by 1,336.4. Both impacts are statistically significant.  

 Month effects are similar to previous findings in that there are more trips between 

March and October, compared to other months. 

 Stations are unique. The small p values show that each station is statistically 

different from the King Street station. The spatial pattern of mexitpm is similar to that of 

mentryam in Section 8.2.1, that terminal stations and transit hubs have the largest number 

of exits in the PM peak. Interestingly, three Silver Line stations, McLean, Spring Hill and 

Greensboro, have the lowest exits in the PM peak. Figure 54 illustrates the spatial pattern. 
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Table 41 Selected Results of SSD with mexitpm as the Dependent Variable 

mexitpm  
Coef. P 

 
Coef. P 

King Street 

(base) 

68,797.2* 0.000 Union Station 171,029.7* 0.000 

CaBi core 2,781.2* 0.015 Vienna 91,888.9* 0.000 

CaBi non-core 1,336.4* 0.018 Shady Grove 87,724.7* 0.000 

2011 -221.7* 0.663 Pentagon City 80,555.9* 0.000 

2012 -1,649.0* 0.002 Gallery Place-

Chinatown 

79,934.7* 0.000 

2013 -2,699.7* 0.000 Dupont Circle 64,426.8* 0.000 

2014 -4,444.4* 0.000 Pentagon 49,680.0* 0.000 

2015 -6,825.9* 0.000 Silver Spring 42,688.1* 0.000 

Feb -2,849.9* 0.000 New Carrollton 40,474.1* 0.000 

Mar 5,177.8* 0.000 West Falls Church 39,405.9* 0.000 

Apr 7,926.6* 0.000 Medical Center -52,196.6* 0.000 

May 5,377.8* 0.000 Eisenhower Avenue -52,842.2* 0.000 

Jun 7,121.3* 0.000 Deanwood -53,304.3* 0.000 

Jul 7,844.7* 0.000 Judiciary Square -54,090.2* 0.000 

Aug 3,881.0* 0.000 McLean -54,154.0* 0.000 

Sep 1,458.3* 0.011 Federal Triangle -55,301.3* 0.000 

Oct 3,235.8* 0.000 Spring Hill -56,357.2* 0.000 

Nov -2,267.5* 0.000 Federal Center SW -60,062.1* 0.000 

Dec -4,694.3* 0.000 Greensboro -60,335.1* 0.000    
Arlington Cemetery -61,164.2* 0.000 

R2 = 0.961 

* Statistically different from zero at 5% significance level 
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Figure 54 Stations' Fixed Effects in SSD with mexitpm as the Dependent Variable 
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8.3 Summary and Discussion 

Looking at the four regression results together, we can reach several interesting findings. 

First, regarding the yearly change, Metrorail lost ridership in four all measures, but in two 

different paths. The measure mexitpm started losing ridership immediately upon CaBi’s 

program launch. The estimated ridership kept decreasing every year between 2010 and 

2015. In 2015, mexitpm was about 6,825.9 smaller than their 2010 levels, about a 10% loss. 

On the other hand, the other three ridership measures, mentryam, mexitam, and mentrypm, 

experienced an initial increase followed by a steady decline. The increases between 2010 

and 2010 varied, from mentryam’s 127.7 to mexitam’s 1,198.2. Since 2011, they began to 

decrease. In 2012, they decreased to below their 2010 levels. In 2015, they were about 

5,000 smaller than they were in 2010, at a high statistical significance level.  

The time effects found in this Station-Specific Dummy analysis are consistent with 

the effects found in the Difference-in-Difference analysis in the last chapter, as well as 

descriptive analysis results earlier in Chapter 3. They justify the importance of including a 

panel data in estimating a bike share program’s impact on existing public transportation. If 

we fail to ignore the time effect, we might overestimate CaBi’s positive impacts. From this 

perspective, the DID and the SSD are better suited the DRM.  

Second, the results confirm the seasonality of Metrorail trips. Coefficients of month 

dummies indicate how Metrorail ridership fluctuates over seasons. Four Metrorail ridership 

measures share the same pattern—more trips made in the warmer seasons between March 

and October. The highest ridership takes place in April, June, or July, depending on the 

ridership measure. The highest ridership can take up to 13.4% of the estimated ridership of 

the base station. The lowest ridership happens in December, partly due to low temperatures, 
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and partly due to the holiday season. The time impacts of months on Metrorail ridership 

are all statistically significant.  

Third, Metrorail stations are unique and statistically significantly different from the 

base station, King Street. Using ArcGIS, I mapped the stations’ fixed effects on each 

Metrorail station’s ridership and identified spatial patterns. Stations with the largest 

numbers of mentryam and mexitpm tend to be terminal stations and transfer hubs, while 

stations with the largest number of mexitam and mentrypm are those located in downtown 

D.C. One likely explanation is the Washington metropolitan area’s monocentric spatial 

structure that concentrates jobs in downtown D.C. and workers’ homes in peripheral and 

suburban communities, thus generating AM inbound commuting flows and PM outbound 

flows. This residence-workplace segregation is a likely result of D.C.’s building height 

restriction and limited land supply.  

Finally, CaBi has statistically significant impacts on Metrorail ridership, after 

carefully controlling for time effects (by year and month) and stations’ fixed effects. All 

CaBi variables are significant at a 95% confidence level. However, whether CaBi 

complements or substitutes Metrorail ridership varies by locations—whether a station is a 

downtown D.C. core station or a non-core station in peripheral and suburban communities. 

If a Metrorail station is one of the 23 core stations, its AM exits and PM entries are likely 

to be negatively affected by CaBi docking stations installed nearby. Conversely, CaBi has 

complementary effects on non-core Metrorail ridership, in all four measures. 

Regarding their magnitude, CaBi’s substitute impacts are estimated to be 4,814.4 

for mexitam, and 4,886.9 for mentrypm for core stations. Converted to a percentage, they 
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are about 8-10% of the estimated system average ridership. CaBi’s complementary impacts 

are slightly smaller, ranging from 1.8% to 4.5%.  

I propose two theories explaining CaBi’s different impacts on core and non-core 

stations—trip length and downtown job loss. 

 First, bike share activities consume a considerable amount of physical energy and 

thus people tend to bike within 1.5 miles. If the distance is longer, commuters are more 

likely to use rail transit. Development density in downtown D.C. results in many short-

distance trips that can be covered by CaBi. What’s more, Metrorail runs on fixed routes 

and stops at fixed stations requiring commuters to make transfers or walk after the train 

trip. One example is Union Station, discussed in Section 4.2.1. Suppose a commuter needs 

to travel from Union Station to Smithsonian. By Metrorail, they need to make one transfer 

at Gallery Place (Chinatown) or Metro Center, and the trip takes about 20 minutes, as 

illustrated in Figure 55 (the left). However, using CaBi, the commuter can bike across the 

National Mall, saving half the travel time. Therefore, for short-Euclidean-distance trips in 

downtown D.C., CaBi has the potential to replace Metrorail. 

Figure 55 Travel Times by Metrorail and by CaBi between Union Station and Smithsonian 

  
Left: by Metrorail                                             Right: by CaBi 
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 However, commute trips to downtown D.C. that originate in peripheral areas and 

in suburban communities usually are longer than a couple of miles. Commuters still have 

to rely on rail transit. CaBi may be able to solve the first-mile connection problem and 

make Metrorail stations accessible, but it can by no means replace Metrorail. Hence, CaBi 

is more likely to complement Metrorail trips originating or ending at stations in suburban 

areas. 

Second, further ridership loss may be explained by omitted external factors. My 

Station-Specific Dummies analysis equation captures three contributing factors to 

Metrorail ridership: time effect, station location effect, and CaBi’s impacts. However, there 

are several external elements that may boost or decrease Metrorail ridership, such as jobs 

in a station area. If downtown D.C. Metrorail station areas lost significantly more jobs than 

the other stations, the demands for rail transit commutes would decrease, bringing down 

the number of AM peak exits and PM peak entries. To test this, I pulled data from the 

Bureau of Labor Statistics and calculated job numbers for stations with negative CaBi 

impacts—including McPherson Square, Metro Center, Federal Triangle, Smithsonian, and 

L’Enfant Plaza. Table 42 lists each station’s job numbers between 2010 and 2014, and the 

last row reports the average numbers of all 91 stations.26  As we can see, except for 

McPherson Square, these stations each lost many jobs, ranging from 374 to 10,096, far 

more than the Metrorail system average, which is only 52. Therefore, jobs loss at Metrorail 

stations may explain why downtown D.C. lost more ridership than stations in peripheral 

areas. 

 

                                                 
26 Data was accessed from the Longitudinal Employer-Household Dynamics (LEHD) 2010 – 2014. 
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Table 42 Jobs at Metrorail Station Area by Year 

Station 2010 2011 2012 2013 2014 2014-2010  

Change 

McPherson Square 39,405 46,590 42,914 39,003 42,176 2,771 

Metro Center 45,391 55,994 45,742 40,985 45,017 -374 

Federal Triangle 31,220 33,121 21,915 24,057 21,124 -10,096 

Smithsonian 9,499 12,783 4,060 4,050 4,260 -5,239 

L’Enfant Plaze 26,066 21,904 26,612 15,572 19,006 -7,060 

System Average 7,091 7,210 6,872 7,045 7,039 -52 

 

 However, neither trip length data or high-quality job data is available at the time 

of writing. I discuss the possibility conducting future research when data are available in 

the next chapter.   
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Chapter 9: Summary, Conclusions, and Suggestions 

9.1 Summary and Conclusions 

This dissertation’s overriding purpose is to determine the impacts of a bike share program 

on rail transit ridership. To accomplish that goal, I performed a case study of the 

Washington metropolitan area, focusing on its Capital Bikeshare and Metrorail systems. 

The interplay between the two modes has generated different opinions. Many find CaBi to 

be a convenient, affordable, and healthy transportation option, while others, such as 

WMATA, which operates Metrorail, is concerned that CaBi may replace Metrorail and 

reduce its ridership.  

Previous researchers have studied the relationship between CaBi and Metrorail and 

reached interesting findings, but most studies rely on data from CaBi member surveys. 

Since only CaBi users would participate in the survey, the data is likely to be biased. 

Therefore, this dissertation is dedicated to improving the existing knowledge by using 

rigorous regression analysis with detailed trip data. Based on WMATA’s concerns, I 

designed the research hypotheses as: CaBi trips have only a substitute effect, and that 

having CaBi installed near Metrorail stations reduces Metrorail ridership. 

 Bike share programs are new. So, a literature review helped develop a better 

understanding of its features and factors. In Chapter 2, I reviewed the research background 

and found that the emergence of bike share programs is a component of the bigger 

paradigm switch into an era of shared mobility. First seen in the 1960s, bike share programs 

can be divided into four generations, based on technologies applied. Most bike share 



188 

 

programs today are the third generation, supported by credit card payment, GPS bike 

tracking, and smartphone reservation apps.  

Regarding how shared bikes are used, we tend to see more trips in warmer weather, 

during commuting peaks, and trips tend to be short-distances. Bike share programs have 

multiple benefits, such as the potential to reduce car use and thus to reduce carbon 

emissions. Bike sharing also encourages a healthy life style and benefits local retailers. At 

the end of this chapter, I reviewed the literature on factors of bike share activities. Besides 

factors such as the distance between origin and destination, weather, and biking 

infrastructure, accessibility to rail transit was found to have a big influence. However, the 

impacts are mixed. Some found that being near rail transit reduces bike share activities, 

some found a positive impact, while others found them uncorrelated.  

 The Washington metropolitan area provides a good case study based on its Capital 

Bikeshare and Metrorail systems. In Chapter 3, I studied Metrorail and Capital Bikeshare 

programs’ features and trip trends, preparing for the later regression analysis. Using survey 

data, I particularly analyzed how CaBi users change their use of other transportation modes, 

and found very mixed attitudes. As of 2014, 58% of survey respondents reported they made 

fewer Metrorail trips than before, while 42% said they used Metrorail more or maintained 

the same level of use. Also, 64% reported that their CaBi trips started or ended at Metrorail 

stations.  

 A closer look at CaBi trips also reveals the program’s characteristics. CaBi trips 

have seasonality—there are more trips during the warmer weather and tourist season 

between May and October. Trips also follow the commuting peak hours as do other 

transportation modes. Regarding account type, weekday trips are mostly made by 



189 

 

commuters, while on weekends there are more casual trips made by casual users. These 

CaBi characteristics have important implications for regression models, specifically that 

CaBi trips affected by extreme weather conditions and recreational trips need to be 

eliminated. 

 Metrorail ridership has been declining since 2010, despite the opening of the Silver 

Line stations in 2014. I charted Metrorail ridership and CaBi trip numbers between 2010 

and 2015 in one graph and found that as CaBi trip numbers increased, Metrorail ridership 

declined, suggesting a possible correlation between the two.  

Chapter 4 starts with a discussion on CaBi’s potential complementary and 

substitute impacts on Metrorail ridership from the microeconomic perspective. On the one 

hand, the combination of CaBi and Metrorail may cost less than driving and parking, and 

thus increase the demand for Metrorail. On the other hand, CaBi may replace Metrorail for 

lower travel time and cost, and result in a decrease in Metrorail ridership.  

Both theories are supported by empirical evidence. A comparison of routes and 

travel times by Metrorail and CaBi between Union Station and Smithsonian concludes that 

because CaBi saves half the travel time by enabling travel across the National Mall and by 

saving transfer time it is likely to substitute for Metrorail. CaBi’s complementary effects 

were found at the Takoma Park station, which has many CaBi trips ending at the station 

area in the morning and starting in the evening, suggesting that commuters use CaBi to 

bridge the distance between Takoma Park Metrorail station and their homes. 

WMATA’s SafeTrack maintenance period involves temporarily shutting down 

Metrorail stations and is a good opportunity to observe CaBi’s substitute effects. The 

number of CaBi trips during SafeTrack periods increased compared to the same days of 
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the week right before a Metrorail station’s shutdown. Also, CaBi’s $2 trip fare, which was 

designed to help commuters affected by the single tracking and Metrorail shutdowns, sold 

70,568, indicating an increased demand. Finally, an origin-destination map shows that the 

increased trips started or ended near closed Metrorail stations, demonstrating CaBi’s 

substitute impacts. 

A review of the extant literature shows that most studies of a bike share program’s 

impacts on rail transit ridership rely on survey data. Analysis tools are mostly charts and 

graphs. Surveys provide good first-hand data, however, since only bike share program 

members were surveyed, there is a selection bias. Also, due to the low respondent rate, a 

survey may not be the most suitable method.  

 Regression analysis with detailed actual trip data is highly desirable for answering 

the question of CaBi’s impacts on Metrorail ridership. In Chapter 5, I introduce three 

regression models that fit the research question and data availability—the Direct Ridership 

Model, the Difference-in-Difference model, and the Station-Specific Dummies model. To 

maximize the benefits of the high-resolution and high-frequency data, Metrorail and CaBi 

ridership are divided into four measures. For Metrorail, ridership measures are mentryam, 

mexitam, mentrypm, and mexitpm, and for CaBi, they are cstartam, cendam, cstartpm, and 

cendpm. Components entry, exit, start, and end indicate trip types, and am and pm indicate 

trip times. Additional predictors were included and transformations were made to meet 

various model requirements.  

Chapter 6 reports methodology, data, and results of the Direct Ridership Model. 

The DRM is a common method of estimating rail transit ridership at the station level. The 

current DRM considers transit service features, socio-demographics of people living and 
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working in station areas, and built environment characteristics. In this Chapter, I introduced 

the DRM model and extended it with bike share trip variables to analyze how CaBi 

influences Metrorail ridership.  

Results are mixed. CaBi can complement and substitute for Metrorail, as suggested 

by the positive associations between the number of CaBi trips started at Metrorail stations 

and the number of AM station exits, and between the number of CaBi trips ended at station 

areas and the number of PM peak Metrorail entries. The former indicates that CaBi solves 

the last-mile connection gap between Metrorail stations and workplaces. The latter 

suggests that CaBi bridges the gap between workplaces and Metrorail stations and thus 

attracts more commuters switching to Metrorail. Thus, DRM findings rejected the research 

hypotheses that CaBi only competes with Metrorail for riders. 

However, the DRM has its limitations. Coefficients are found to be larger than 

expected, which might be caused by omitted variables. Also, Metrorail stations that have 

CaBi installed nearby are not randomly assigned, violating the critical assumption for a 

BLUE OLS estimator. Finally, the DRM pooled the observations over time, thus failing to 

capture systemic variation in the variables and their impacts over time. Therefore, though 

the DRM provides useful insights, sophisticated regression models capable of handling 

panel data and the quasi-experimental research environment are highly desired. 

In Chapter 7, I use the Difference-in-Difference approach, a quasi-experimental 

technique, to address the random-assignment assumption in the DRM. A standard DID 

establishes a treatment group and a control group, and measures their pre-intervention 

outcomes and post-intervention outcomes. The difference between the treatment group’s 
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after-before ridership change and the control group’s change can therefore be ascribed to 

the CaBi program.  

 However, since CaBi expanded every year between 2010 and 2015, the two-group 

two-period format does not apply here. In fact, there is a control group, five treatment 

groups (for Metrorail stations with CaBi installed in different years), a pre-intervention 

period and five post-intervention periods. Therefore, a special multiple-group-and-

multiple-period DID is introduced to capture all differences.  

 Signs of coefficients suggest that CaBi increases Metrorail AM entries and PM 

exits but decreases AM exits and PM entries, which indicates that CaBi’s impacts might 

be related to station locations. However, large P values prevent me from drawing that 

conclusion. Therefore, in Chapter 8, I designed a Station-Specific Dummies model to 

estimate CaBi’s impacts by location (core vs. non-core Metrorail stations), after controlling 

for the year effects and stations’ fixed effect. SSD results confirm that CaBi’s impacts vary 

by location. It decreases Metrorail AM exits by 4,818.4 per month and PM entries by 

4,886.9 per month for core stations, but increases them for non-core stations and also 

increases AM entries and PM exits for all stations. Metrorail ridership increases that 

resulted from CaBi’s complementary effects range between 1,111.8 and 2,781.2 per month. 

Results for the year effects confirm the SSD results that every year between 2010 

and 2015, Metrorail lost ridership systematically. In 2015, the total loss reached 10%. 

Month also matters to Metrorail ridership. Months between March and October tend to 

have higher ridership while December has the lowest.  

Also, the spatial patterns of Metrorail stations’ fixed effects were identified by 

regression results and maps. Stations in downtown D.C. have more AM exits and PM 
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entries, while stations in peripheral and suburban areas, particularly terminal and multi-

modal transit hub stations, have larger numbers of AM entries and PM exits. These patterns 

echo the area’s monocentric spatial structure, which has resulted from D.C.’s building 

height restriction and tight land supply.  

The trip length is a possible explanation for CaBi’s negative impacts on core 

stations’ Metrorail ridership measures mexitam and mentrypm. CaBi trips, according to 

prior literature, are usually less than 1.5 miles. The high density in downtown D.C. with 

street grid is suitable for short-distance CaBi trips. Also, CaBi can save commuters 

unnecessary transfers as Metrorail runs on fixed routes and stops at fixed stations. 

 However, commuting trips to downtown D.C. that originate in peripheral areas and 

suburban communities are usually longer than a couple of miles. Commuters still have to 

rely on rail transit. In these cases, CaBi may be able to solve the first-mile connection 

problem and make Metrorail stations accessible, but by no means can it replace Metrorail. 

Hence, CaBi is more likely to complement Metrorail trips originating or ending at stations 

in suburban areas. 

CaBi’s negative impacts on downtown stations may be explained by job changes at 

those stations. The Longitudinal Employer-Household Dynamics(LEHD) data shows that 

Metro Center, Federal Triangle, Smithsonian, and L’Enfant Plaza lost up to 10,000 jobs 

each. Therefore, the additional ridership loss at these stations may result from a decreased 

commuting demand, not the CaBi program. However, without available data, this can’t be 

further tested. 

To summarize findings from various analyses, Table 43 lists CaBi’s 

complementary effects and Table 44 lists its substitute effects. In short, these alternative 
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specifications yield the consistent conclusion that CaBi program has both complementary 

and substitute effects and may lead to an increase or decrease of Metrorail ridership. This 

finding rejects the research hypothesis that CaBi only poses negative impacts on Metrorail. 

What’s more, CaBi tends to substitute for Metrorail at downtown D.C. core stations, while 

complementing it at stations in peripheral and suburban areas.  

 

Table 43 Findings on CaBi's Complementary Effects by Method 

Method 1: Direct Ridership Model 

• One CaBi cstartam is positively associated with 49.1 average daily Metrorail 

mexitam. 

• One CaBi cendpm is positively associated with 57.9 average daily Metrorail 

mentryam. 

Method 2: Difference-in-Difference 

• Having CaBi in station area increases the average daily Metrorail mentryam by 

217.4. 

• Having CaBi in station area increases the average daily Metrorail mexitpm by 196.2. 

Method 3: Station-Specific Dummies Analysis 

• Having CaBi in station area increases ridership in four measures by up to 

2,781.2 per month. 

Note: Bold font indicates statistically significant results. 

 

Table 44 Findings on CaBi’s Substitute Effect by Method 

Method 1: Direct Ridership Model 

• One CaBi cendam is negatively associated with 16.789 Metrorail mexitam. 

• One CaBi cstartpm is negatively associated with 40.640 Metrorail mentrypm. 

Method 2: Difference-in-Difference 

• Having CaBi in station area decreases Metrorail mexitam by 14.6. 

• Having CaBi in station area decreases Metrorail mentrypm by 51.8. 

Method 3: Station-Specific Dummies Analysis 

• Having CaBi in station area decreases core station ridership by 4,814.4 per 

month for mexitam and by 4,886.9 per month for mentrypm. 

Note: Bold font indicates statistically significant results. 

 

 Putting the two tables together, we can see that CaBi has mixed impacts on 

Metrorail ridership. CaBi may complement some Metrorail trips, but substitute for others, 
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depending on the type and time. More importantly, the SSD results found that CaBi’s 

impacts vary by Metrorail station locations, whether at a downtown D.C. core station or a 

non-core station in peripheral and suburban communities. CaBi reduces core Metrorail 

station ridership by 4,814.4 per month for the number of AM peak exits and by 4,886.9 per 

month for the number of PM peak entries, but increases ridership at non-core stations by 

up to 2,781.2 per month, at a high statistical significance level. 

 Also, it is worthwhile to compare the three regression models. Table 45 summarizes 

model features, significances of coefficients of CaBi variables, and R-squared values. The 

DRM takes cross-sectional average weekday daily AM/PM ridership per year as the input. 

It controls for other Metrorail ridership factors such as transit service, socio-demographics, 

and built environment characteristics, though data were not time varying. Coefficients of 

CaBi variables estimated using DRM are statistically significant. R-squared values, 

ranging between 0.495 and 0.851, suggest that the DRM is moderately fitted. The DID 

overcomes the unrealistic assumption of random assignment and controls for the systematic 

difference in ridership between Metrorail stations without and with CaBi installed nearby. 

Though coefficients signal a possible relationship between station location and CaBi’s 

impacts, results are not statistically significant. The low values of R-squared also fail to 

justify the DID as a good model for this study. The SSD model controls for time effect (by 

year and by month) and station fixed effect for each station. Also, it takes more detailed 

monthly AM/PM ridership data as input, increasing the number of observations to 5,316. 

Results are as expected and statistically significant at a high confidence level. What’s more, 

the large R-squared values indicate a good fit. Therefore, the SSD is the best model to test 

CaBi’s impacts on Metrorail ridership. 
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Table 45 Model Comparison 

 Features Significance R2 

DRM Cross-sectional; 

Average weekday daily AM/PM ridership 

per year; 

526 obs.; 

Controlling for transit service, socio-

demographics, and built environment 

(time-invariant). 

Significant 0.495-0.851 

DID Panel; 

Average weekday daily AM/PM ridership 

per year; 

526 obs.; 

Controlling for the systematic ridership 

difference between the control and the 

treatment groups.  

Not significant 0.026-0.318 

SSD Panel; 

Monthly; 

5,316 obs.; 

Controlling for time effect, station fixed 

effect. 

Significant 0.961-0.988 

 

9.2 Policy Suggestions 

Regression analysis results find that CaBi may substitute for Metrorail in some cases, but 

it also can complement Metrorail rides. This finding suggests that there is no need for 

WMATA to consider bike share programs as a challenge to Metrorail ridership. Instead, 

bike sharing’s complementary effect has the potential to increase Metrorail ridership. 

The SSD analysis results show that CaBi has complementary impacts on non-core 

stations suggest WMATA should work with CaBi to expand docks at Metrorail station 

areas in peripheral and suburban areas. CaBi stations should be installed in residential 

neighborhoods within 1.5-miles of Metrorail stations. These stations serve as the origins 

of morning CaBi trips and the destinations of PM peak trips. Together, these two groups 
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of CaBi stations connect commuters’ homes with Metrorail stations, and attract them to 

commuting via the CaBi-Metrorail combination.  

 I performed GIS analysis to identify priority Metrorail stations for CaBi installation 

using three criteria. First, I focus on the non-core stations in peripheral and suburban 

communities since CaBi has complementary effects on these stations. Second, I prioritize 

stations with relative smaller numbers of AM-peak entries. Third, I overlaid a land use GIS 

layer to identify stations in residential area since housing units are proxies for the 

commuting demand. After the process, the following stations are identified as the priorities: 

Addison Road, Capitol Heights, Cheverly, Forest Glen, Greensboro, Landover, McLean, 

Morgan Boulevard, Naylor Road, Prince George’s Plaza, Spring Hill, Twinbrook, Tysons 

Corner, Van Dorn Street, West Hyattsville, Wheaton, and White Flint. Figure 56 shows 

these stations as red dots.  

 

 

 

 

 

 

 

 

 

 

Figure 56 Priority Metrorail Stations for CaBi 
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CaBi stations should be installed as close to Metrorail station entrances as possible. 

A seamless transfer between CaBi and Metrorail helps to reduce the total travel time and 

thus improve the combined modes’ attractiveness. Also, Metrorail stations may provide 

shelter to bicycle fleets, and thus keep bikes dry and clean. 

 Besides installing CaBi at non-core stations, other strategies may also help transfer 

riders between Metrorail and CaBi, and thus attract commuters using both. Integrating the 

CaBi and Metrorail payment systems would be an effective way to attract commuters to 

use both systems. Currently, bike share and rail transit payments are separate. Metrorail 

fares are paid using SmarTrip card or temporary pass ticket, while CaBi takes credit cards 



199 

 

or CaBi ride keys. Experience in Europe and Asia suggest that integrating payments would 

benefit both modes.  

 There are two ways to integrate payments. One would allow the rail transit fare card 

to also pay for bike share use. Los Angeles has set a model for this approach. Metro (the 

rail transit system’s name) users can check-out a shared bicycle at a docking station using 

a Metro TAP card (the system’s pre-paid access card) that has been registered online for 

bike share access. The integration attracts commuters to take Metro by simplifying the 

transfer process.  

 Another way, which is more technology-forward, is mobile ticketing for both the 

Metrorail and CaBi systems. In 2016, the national smartphone penetration was higher than 

80% (comScore, 2016) and Near Field Communication (NFC) technology is becoming 

more widespread; it enables payment by holding the smartphone a few centimeters from a 

receiving device. Several transit systems in the U.S.—Portland and Dallas—have adopted 

mobile ticketing supported by NFC. Passengers can pass a fare gate by scanning their cell 

phone at an NFC device. Transit tickets are charged to the bank account linked to the 

smartphone’s NFC app.  

 WMATA’s 2014 pilot project to test the use of NFC was not successful, leading 

WMATA to abandon the program after concluding that the market isn’t ready for this 

technology. Now, three years later, people are more comfortable with contactless payment 

thanks to the popularity of D.C.’s mobile parking payment program. WMATA may re-

consider NFC to keep its Metrorail system up-to-date (Duggan, 2014).  

 The bike share industry is also considering NFC-equipped smartphone payment. 

New dockless shared bikes are designed to carry a smartlock that enables smartphone 
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checkout (Bluegogo, 2017). An NFC reader can be installed with smartlocks for mobile 

payment, which would create an opportunity to integrate bike share and rail transit payment 

using an NFC-equipped smartphone(Boegner et al., 2016).  

Another strategy that to integrate bike share and rail transit use is the multi-modal 

trip planner mobile app. A trip planner tool is effective for providing schedule and fleet 

information for commuters’ trip decisions. Currently, WMATA does not have an official 

mobile app though some train tracking tools have been developed by individuals. However, 

none have integrated Capital Bikeshare information. Given the fact people live and work 

in different places in Washington metropolitan area and use transportation services in more 

than one jurisdiction, a regional trip planner application with all public transportation 

choices is in great demand. Ideally, users could check train and bus schedules and make a 

Capital Bikeshare reservation 10 minutes before they exit Metrorail stations for a seamless 

travel experience.  

Ridesourcing companies pioneered integrating information with rail transit 

agencies’ mobile apps. For example, in Dallas, DART riders can access Uber via the 

agency’s mobile ticketing app. Similar tools have been developed in Atlanta, Los Angeles, 

and Minneapolis (Jaffe, 2015b).  

Besides integrating bike share information in mobile applications developed by 

transit agencies, another good platform is Google products. Currently, Google trip planner 

embedded in Google Maps provides estimated driving, bus and/or rail transit and walking 

time between two locations. A new ride-sharing tab was introduced to Google Maps 

Android and iOS app in March 2016 (Paul, 2016). North American Google Maps users can 

check Uber availability and estimated price from the tab. More recently, in September 2016, 
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Lyft, Uber’s main competitor, was integrated into the tab service (Nicas, 2016). For cyclists, 

there is a bicycling tab, showing the distance between input locations and estimated time 

based on speed assumptions. The bicycling tab should be upgraded to include bike share 

docking stations and bicycle availability. When users enter origin and destination, Google 

Maps would recommend bike share docking stations (one near the trip origin and the other 

near destination) to complete the trip via bike share. Google could also enable an online 

shared bicycle reservation. Ideally, rather than providing only single-mode estimated travel 

information, the next generation of trip planners should provide multi-modal travel options. 

The tool would enable commuters who use bike share to reach rail transit to estimate 

distance, time, cost, and availability of combined modes.  

Technically speaking, one important step toward integrating bike share and rail 

transit information and schedule data is to standardize the format of open data. The General 

Transit Feed Specification (GTFS), a transit schedule open data format initiated by Google, 

has been widely used. A similar format for bike share, the General Bikeshare Feed 

Specification (GBFS), which included information on docking station locations, bike, and 

dock availability, and pricing information, has been under development under the North 

American Bikeshare Association’s leadership (North American Bikeshare Association, 

2015). Standardized open bike share data, will enable more bike share and multi-modal trip 

planner applications to help people choose the best transportation mode(s) to meet their 

needs.  

In a nutshell, WMATA should take CaBi’s complementary effects as an 

opportunity, and collaborate to increase commuters’ accessibility to Metrorail. In terms of 

physical planning, WMATA should work with CaBi to add docks at non-core stations to 
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fill commuters’ last-mile gap between Metrorail stations and their homes. Also, emerging 

technologies may accelerate the integration of CaBi and Metrorail information, particularly 

payment via smartphone, to attract more millennium generation users to combining CaBi 

and Metrorail for commuting.  

9.3 Further Research 

While the regression results constitute robust evidence of bike share’s impacts on rail 

transit ridership, there are additional dimensions in which future research could extend my 

analysis. Some of them rely on the availability of data and variables, and some would need 

more advanced econometric models to overcome methodological barriers.   

First, it would be ideal to control DRM variables—transit service, socio-

demographics of people living and working in the station area, and built environment 

characteristics should be time-variant. The Washington metropolitan area is one of the most 

dynamic places in the U.S. and we would expect to see neighborhoods redeveloping within 

a couple years. Failing to include time-variant data may lead to ascribing the ridership 

change to CaBi and overestimating the program’s impact. However, Metrorail station areas 

are small, and the Census provides estimates at the block group level only in their American 

Community Survey (ACS) 5-year estimate. Therefore, annual data for socio-demographic 

variables are not available at the time of writing.  

Second, the difference between CaBi’s impacts on Metrorail core and non-core 

stations suggest that trip distance may play a role. Metrorail trips in downtown D.C. tend 

to be shorter-distance and more likely to be replaced by CaBi. One method of exploring 

the influence of trip distance on CaBi impacts would be to conduct a before-after 

comparison using O-D pairs. Figure 57 illustrates the method. Imagine two Metrorail 
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stations, M1 and M2, which are the origin and the destination of a commuting trip. Imagine 

three CaBi stations, two of which, C1 and C2, are located near M1, and the third, C2, is 

near M2. If the distance between M1 and M2 is short, we would expect to see an increase 

of CaBi trips from C1 to C3 and from C2 to C3, and simultaneously a decrease of Metrorail 

trips from M1 to M2, resulting from CaBi’s substitute effect. What’s more, by performing 

regression analysis, we would expect to find that the decrease of Metrorail trips is 

statistically significantly associated with the increase of CaBi trips. 

Figure 57 Illustration of Trip Distance Analysis 

 

 

Another issue not addressed in my dissertation is the possibility of spatial 

correlation. It is reasonable to expect that the ridership of one Metrorail station is correlated 

with its neighboring station. Similarly, one could expect spatial correlation on Capital 

Bikeshare stations. Although spatial correlation is often ignored in applied work because 

correcting can be difficult, there are great benefits in addressing it.  
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Finally, self-selection generally refers to an agent making a choice depending on 

factors that are unobservable to the agent. Among users who combine CaBi and Metrorail, 

demographic features such as age, gender, and health may play an essential role. In 

particular, according to CaBi user surveys, the majority of CaBi members are young white 

men who are highly educated and in good shape. It is reasonable to assume that commuters 

who combine CaBi and Metrorail are very likely to be a small proportion of these white 

young male CaBi frequent users and thus we see the barrier of self-selection.  
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Appendices 

Appendix A. Full Descriptive Statistics of the Station-Specific Dummies Model Input 

Variable Obs Mean Std. Dev. Min Max 

mentryam 5,316 55735.5 40970.6 142.0 242376.0 

mexitam 5,316 50593.1 71375.3 1205.0 340978.0 

mentrypm 5,316 61343.4 76167.3 1574.0 381632.0 

mexitpm 5,316 59526.9 41472.7 1004.0 289758.0 

core 5,316 0.3 0.4 0.0 1.0 

noncore 5,316 0.7 0.4 0.0 1.0 

CaBi 5,316 0.5 0.5 0.0 1.0 

CaBi core 5,316 0.3 0.4 0.0 1.0 

CaBi noncore 5,316 0.2 0.4 0.0 1.0 

2011 5,316 0.2 0.4 0.0 1.0 

2012 5,316 0.2 0.4 0.0 1.0 

2013 5,316 0.2 0.4 0.0 1.0 

2014 5,316 0.2 0.4 0.0 1.0 

2015 5,316 0.1 0.3 0.0 1.0 

Feburary 5,316 0.1 0.3 0.0 1.0 

March 5,316 0.1 0.3 0.0 1.0 

April 5,316 0.1 0.3 0.0 1.0 

May 5,316 0.1 0.3 0.0 1.0 

June 5,316 0.1 0.3 0.0 1.0 

July 5,316 0.1 0.3 0.0 1.0 

August 5,316 0.1 0.3 0.0 1.0 

September 5,316 0.1 0.3 0.0 1.0 

October 5,316 0.1 0.3 0.0 1.0 

November 5,316 0.1 0.3 0.0 1.0 

December 5,316 0.1 0.3 0.0 1.0 

Addison Road 5,316 0.0 0.1 0.0 1.0 
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Anacostia 5,316 0.0 0.1 0.0 1.0 

Archives-Navy Memorial 5,316 0.0 0.1 0.0 1.0 

Arlington Cemetery 5,316 0.0 0.1 0.0 1.0 

Ballston 5,316 0.0 0.1 0.0 1.0 

Benning Road 5,316 0.0 0.1 0.0 1.0 

Bethesda 5,316 0.0 0.1 0.0 1.0 

Braddock Road 5,316 0.0 0.1 0.0 1.0 

Branch Avenue 5,316 0.0 0.1 0.0 1.0 

Brookland 5,316 0.0 0.1 0.0 1.0 

Capitol Heights 5,316 0.0 0.1 0.0 1.0 

Capitol South 5,316 0.0 0.1 0.0 1.0 

Cheverly 5,316 0.0 0.1 0.0 1.0 

Clarendon 5,316 0.0 0.1 0.0 1.0 

Cleveland Park 5,316 0.0 0.1 0.0 1.0 

College Park-U of MD 5,316 0.0 0.1 0.0 1.0 

Columbia Heights 5,316 0.0 0.1 0.0 1.0 

Congress Heights 5,316 0.0 0.1 0.0 1.0 

Court House 5,316 0.0 0.1 0.0 1.0 

Crystal City 5,316 0.0 0.1 0.0 1.0 

Deanwood 5,316 0.0 0.1 0.0 1.0 

Dunn Loring 5,316 0.0 0.1 0.0 1.0 

Dupont Circle 5,316 0.0 0.1 0.0 1.0 

East Falls Church 5,316 0.0 0.1 0.0 1.0 

Eastern Market 5,316 0.0 0.1 0.0 1.0 

Eisenhower Avenue 5,316 0.0 0.1 0.0 1.0 

Farragut North 5,316 0.0 0.1 0.0 1.0 

Farragut West 5,316 0.0 0.1 0.0 1.0 

Federal Center SW 5,316 0.0 0.1 0.0 1.0 

Federal Triangle 5,316 0.0 0.1 0.0 1.0 

Foggy Bottom 5,316 0.0 0.1 0.0 1.0 

Forest Glen 5,316 0.0 0.1 0.0 1.0 
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Fort Totten 5,316 0.0 0.1 0.0 1.0 

Franconia-Springfield 5,316 0.0 0.1 0.0 1.0 

Friendship Heights 5,316 0.0 0.1 0.0 1.0 

Gallery Place-Chinatown 5,316 0.0 0.1 0.0 1.0 

Georgia Avenue-Petworth 5,316 0.0 0.1 0.0 1.0 

Glenmont 5,316 0.0 0.1 0.0 1.0 

Greenbelt 5,316 0.0 0.1 0.0 1.0 

Greensboro 5,316 0.0 0.1 0.0 1.0 

Grosvenor 5,316 0.0 0.1 0.0 1.0 

Huntington 5,316 0.0 0.1 0.0 1.0 

Judiciary Square 5,316 0.0 0.1 0.0 1.0 

King Street 5,316 0.0 0.1 0.0 1.0 

L'Enfant Plaza 5,316 0.0 0.1 0.0 1.0 

Landover 5,316 0.0 0.1 0.0 1.0 

Largo Town Center 5,316 0.0 0.1 0.0 1.0 

McLean 5,316 0.0 0.1 0.0 1.0 

McPherson Square 5,316 0.0 0.1 0.0 1.0 

Medical Center 5,316 0.0 0.1 0.0 1.0 

Metro Center 5,316 0.0 0.1 0.0 1.0 

Minnesota Avenue 5,316 0.0 0.1 0.0 1.0 

Morgan Blvd. 5,316 0.0 0.1 0.0 1.0 

Mt. Vernon Square-UDC 5,316 0.0 0.1 0.0 1.0 

Navy Yard 5,316 0.0 0.1 0.0 1.0 

Naylor Road 5,316 0.0 0.1 0.0 1.0 

New Carrollton 5,316 0.0 0.1 0.0 1.0 

New York Ave 5,316 0.0 0.1 0.0 1.0 

Pentagon 5,316 0.0 0.1 0.0 1.0 

Pentagon City 5,316 0.0 0.1 0.0 1.0 

Potomac Avenue 5,316 0.0 0.1 0.0 1.0 

Prince George's Plaza 5,316 0.0 0.1 0.0 1.0 

Reagan Washington National Airport 5,316 0.0 0.1 0.0 1.0 
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Rhode Island Avenue 5,316 0.0 0.1 0.0 1.0 

Rockville 5,316 0.0 0.1 0.0 1.0 

Rosslyn 5,316 0.0 0.1 0.0 1.0 

Shady Grove 5,316 0.0 0.1 0.0 1.0 

Shaw-Howard University 5,316 0.0 0.1 0.0 1.0 

Silver Spring 5,316 0.0 0.1 0.0 1.0 

Smithsonian 5,316 0.0 0.1 0.0 1.0 

Southern Avenue 5,316 0.0 0.1 0.0 1.0 

Spring Hill 5,316 0.0 0.1 0.0 1.0 

Stadium-Armory 5,316 0.0 0.1 0.0 1.0 

Suitland 5,316 0.0 0.1 0.0 1.0 

Takoma 5,316 0.0 0.1 0.0 1.0 

Tenleytown-AU 5,316 0.0 0.1 0.0 1.0 

Twinbrook 5,316 0.0 0.1 0.0 1.0 

Tysons Corner 5,316 0.0 0.1 0.0 1.0 

U Street-Cardozo 5,316 0.0 0.1 0.0 1.0 

Union Station 5,316 0.0 0.1 0.0 1.0 

Van Dorn Street 5,316 0.0 0.1 0.0 1.0 

Van Ness-UDC 5,316 0.0 0.1 0.0 1.0 

Vienna 5,316 0.0 0.1 0.0 1.0 

Virginia Square-GMU 5,316 0.0 0.1 0.0 1.0 

Waterfront 5,316 0.0 0.1 0.0 1.0 

West Falls Church 5,316 0.0 0.1 0.0 1.0 

West Hyattsville 5,316 0.0 0.1 0.0 1.0 

Wheaton 5,316 0.0 0.1 0.0 1.0 

White Flint 5,316 0.0 0.1 0.0 1.0 

Wiehle 5,316 0.0 0.1 0.0 1.0 

Woodley Park-Zoo 5,316 0.0 0.1 0.0 1.0 
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Appendix B. Full Results of the Station-Specific Dummies Analysis 

 

Table 46 Results of SSD with mentryam and mexitam as the Dependent Variables 

mentryam mexitam  
Coef. P  Coef. P 

CaBi core 2,471.0 0.013 CaBi core -4,814.4 0.000 

CaBi non-core 1,111.8 0.023 CaBi non-core 2,143.3 0.000 

2011 127.7 0.771 2011 1,198.2 0.014 

2012 -1,221.6 0.006 2012 -331.2 0.504 

2013 -1,998.7 0.000 2013 -1,131.7 0.023 

2014 -3,660.6 0.000 2014 -2,741.1 0.000 

2015 -6,085.8 0.000 2015 -4,882.7 0.000 

Feb -1,634.6 0.001 Feb -1,158.5 0.030 

Mar 4,556.3 0.000 Mar 4,196.2 0.000 

Apr 5,647.5 0.000 Apr 5,128.2 0.000 

May 4,539.5 0.000 May 4,355.1 0.000 

Jun 6,478.0 0.000 Jun 5,990.1 0.000 

Jul 5,058.1 0.000 Jul 4,708.8 0.000 

Aug 2,159.7 0.000 Aug 2,213.3 0.000 

Sep 2,244.3 0.000 Sep 2,416.3 0.000 

Oct 3,259.5 0.000 Oct 3,202.8 0.000 

Nov -2,083.9 0.000 Nov -1,644.1 0.003 

Dec -5,992.4 0.000 Dec -5,217.6 0.000 

King Street (base) 60,968.5 0.000 King Street (base) 47,297.9 0.000 

Addison Road -17,647.8 0.000 Addison Road -42,744.7 0.000 

Anacostia -1,461.9 0.369 Anacostia -14,566.6 0.000 

Archives-Navy Memorial -55,234.4 0.000 Archives-Navy Memorial 62,279.3 0.000 

Arlington Cemetery -60,504.7 0.000 Arlington Cemetery -44,095.2 0.000 

Ballston 32,059.8 0.000 Ballston 18,116.6 0.000 

Benning Road -28,855.1 0.000 Benning Road -44,943.5 0.000 

Bethesda 5,637.2 0.000 Bethesda 13,776.9 0.000 
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Braddock Road -7,646.4 0.000 Braddock Road -35,515.4 0.000 

Branch Avenue 36,654.3 0.000 Branch Avenue -41,140.0 0.000 

Brookland -17,827.1 0.000 Brookland -14,015.5 0.000 

Capitol Heights -35,857.5 0.000 Capitol Heights -45,423.3 0.000 

Capitol South -45,141.0 0.000 Capitol South 41,916.1 0.000 

Cheverly -40,785.3 0.000 Cheverly -45,407.2 0.000 

Clarendon -23,389.9 0.000 Clarendon -34,712.1 0.000 

Cleveland Park -15,243.1 0.000 Cleveland Park -44,573.8 0.000 

College Park-U of MD -20,363.4 0.000 College Park-U of MD -32,295.2 0.000 

Columbia Heights 25,169.8 0.000 Columbia Heights -9,012.2 0.000 

Congress Heights -33,082.2 0.000 Congress Heights -44,059.5 0.000 

Court House 7,442.1 0.000 Court House -15,073.8 0.000 

Crystal City 22,777.7 0.000 Crystal City 44,112.1 0.000 

Deanwood -42,800.6 0.000 Deanwood -44,311.9 0.000 

Dunn Loring -2,792.0 0.035 Dunn Loring -33,391.0 0.000 

Dupont Circle 20,519.0 0.000 Dupont Circle 91,639.5 0.000 

East Falls Church -7,664.0 0.000 East Falls Church -42,884.1 0.000 

Eastern Market -17,911.3 0.000 Eastern Market -21,195.7 0.000 

Eisenhower Avenue -43,681.3 0.000 Eisenhower Avenue -40,229.2 0.000 

Farragut North -37,728.9 0.000 Farragut North 252,908.0 0.000 

Farragut West -34,051.9 0.000 Farragut West 251,839.7 0.000 

Federal Center SW -53,807.6 0.000 Federal Center SW 32,007.6 0.000 

Federal Triangle -59,009.1 0.000 Federal Triangle 75,252.6 0.000 

Foggy Bottom -10,712.1 0.000 Foggy Bottom 157,149.8 0.000 

Forest Glen -27,500.5 0.000 Forest Glen -45,114.6 0.000 

Fort Totten 16,114.3 0.000 Fort Totten -30,031.1 0.000 

Franconia-Springfield 57,178.5 0.000 Franconia-Springfield -35,861.7 0.000 

Friendship Heights 5,670.1 0.000 Friendship Heights -8,808.5 0.000 

Gallery Place-Chinatown -26,758.9 0.000 Gallery Place-Chinatown 154,546.5 0.000 

Georgia Avenue-Petworth -8,693.4 0.000 Georgia Avenue-Petworth -34,001.2 0.000 

Glenmont 26,615.7 0.000 Glenmont -43,801.1 0.000 

Greenbelt 22,924.4 0.000 Greenbelt -37,156.7 0.000 
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Greensboro -53,103.0 0.000 Greensboro -38,165.8 0.000 

Grosvenor 16,502.1 0.000 Grosvenor -41,683.5 0.000 

Huntington 63,804.9 0.000 Huntington -40,141.5 0.000 

Judiciary Square -52,753.1 0.000 Judiciary Square 78,926.4 0.000 

L'Enfant Plaza -4,641.8 0.004 L'Enfant Plaza 204,653.1 0.000 

Landover -30,767.9 0.000 Landover -45,206.6 0.000 

Largo Town Center 6,315.7 0.000 Largo Town Center -40,734.4 0.000 

McLean -45,076.6 0.000 McLean -37,625.9 0.000 

McPherson Square -29,817.8 0.000 McPherson Square 159,432.8 0.000 

Medical Center -41,904.8 0.000 Medical Center 24,228.7 0.000 

Metro Center -28,687.5 0.000 Metro Center 238,956.0 0.000 

Minnesota Avenue -37,252.5 0.000 Minnesota Avenue -36,615.9 0.000 

Morgan Blvd. -34,191.1 0.000 Morgan Blvd. -44,787.1 0.000 

Mt. Vernon Square-UDC -39,045.6 0.000 Mt. Vernon Square-UDC -17,533.9 0.000 

Navy Yard -42,299.0 0.000 Navy Yard 29,667.1 0.000 

Naylor Road -24,885.1 0.000 Naylor Road -43,755.9 0.000 

New Carrollton 64,817.0 0.000 New Carrollton -29,653.3 0.000 

New York Ave -22,808.7 0.000 New York Ave 20,586.7 0.000 

Pentagon 68,256.8 0.000 Pentagon 87,273.7 0.000 

Pentagon City 54,469.9 0.000 Pentagon City -11,547.9 0.000 

Potomac Avenue -21,826.9 0.000 Potomac Avenue -36,686.3 0.000 

Prince George's Plaza -15,020.3 0.000 Prince George's Plaza -36,634.2 0.000 

Reagan Washington National Airport -44,634.4 0.000 Reagan Washington National Airport -13,085.8 0.000 

Rhode Island Avenue -11,922.3 0.000 Rhode Island Avenue -31,450.2 0.000 

Rockville -13,382.8 0.000 Rockville -32,188.1 0.000 

Rosslyn 29,342.8 0.000 Rosslyn 72,504.4 0.000 

Shady Grove 129,093.1 0.000 Shady Grove -31,929.8 0.000 

Shaw-Howard University -32,414.8 0.000 Shaw-Howard University -28,493.2 0.000 

Silver Spring 61,896.8 0.000 Silver Spring -2,570.4 0.072 

Smithsonian -56,658.2 0.000 Smithsonian 63,234.9 0.000 

Southern Avenue 12,161.8 0.000 Southern Avenue -41,448.2 0.000 

Spring Hill -48,803.0 0.000 Spring Hill -38,349.4 0.000 
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Stadium-Armory -39,382.5 0.000 Stadium-Armory -33,127.4 0.000 

Suitland 9,635.0 0.000 Suitland -29,635.8 0.000 

Takoma 5,715.6 0.000 Takoma -37,369.2 0.000 

Tenleytown-AU -23,217.5 0.000 Tenleytown-AU -9,672.2 0.000 

Twinbrook -14,053.7 0.000 Twinbrook -33,066.6 0.000 

Tysons Corner -48,221.1 0.000 Tysons Corner -29,166.9 0.000 

U Street-Cardozo -20,070.3 0.000 U Street-Cardozo -26,674.9 0.000 

Union Station 136,184.9 0.000 Union Station 179,529.3 0.000 

Van Dorn Street -14,402.0 0.000 Van Dorn Street -42,465.3 0.000 

Van Ness-UDC -6,038.6 0.000 Van Ness-UDC -26,353.5 0.000 

Vienna 127,068.3 0.000 Vienna -34,522.8 0.000 

Virginia Square-GMU -24,125.6 0.000 Virginia Square-GMU -33,730.8 0.000 

Waterfront -36,507.3 0.000 Waterfront -24,901.9 0.000 

West Falls Church 57,760.1 0.000 West Falls Church -23,579.8 0.000 

West Hyattsville -16,503.4 0.000 West Hyattsville -43,752.5 0.000 

Wheaton -16,278.8 0.000 Wheaton -41,224.2 0.000 

White Flint -27,720.6 0.000 White Flint -26,269.3 0.000 

Wiehle 39,215.2 0.000 Wiehle -27,944.8 0.000 

Woodley Park-Zoo -6,184.1 0.000 Woodley Park-Zoo -32,895.1 0.000 
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Table 47 Results of SSD with mentrypm and mexitpm as the Dependent Variables 

mentrypm mexitpm  
Coef. P  Coef. P 

CaBi core -4,886.9 0.000 CaBi core 2,781.2 0.015 

CaBi non-core 2,458.4 0.000 CaBi non-core 1,336.4 0.018 

2011 541.6 0.342 2011 -221.7 0.663 

2012 -960.3 0.098 2012 -1,649.0 0.002 

2013 -2,071.2 0.000 2013 -2,699.7 0.000 

2014 -4,037.2 0.000 2014 -4,444.4 0.000 

2015 -5,881.7 0.000 2015 -6,825.9 0.000 

Feb -2,926.9 0.000 Feb -2,849.9 0.000 

Mar 5,217.7 0.000 Mar 5,177.8 0.000 

Apr 7,828.0 0.000 Apr 7,926.6 0.000 

May 5,036.5 0.000 May 5,377.8 0.000 

Jun 7,043.6 0.000 Jun 7,121.3 0.000 

Jul 7,940.5 0.000 Jul 7,844.7 0.000 

Aug 3,669.5 0.000 Aug 3,881.0 0.000 

Sep 1,344.2 0.035 Sep 1,458.3 0.011 

Oct 3,342.1 0.000 Oct 3,235.8 0.000 

Nov -2,594.3 0.000 Nov -2,267.5 0.000 

Dec -5,319.5 0.000 Dec -4,694.3 0.000 

King Street (base) 59,189.0 0.000 King Street (base) 68,797.2 0.000 

Addison Road -51,823.7 0.000 Addison Road -29,121.6 0.000 

Anacostia -19,426.2 0.000 Anacostia -10,822.3 0.000 

Archives-Navy Memorial 66,940.7 0.000 Archives-Navy Memorial -48,371.1 0.000 

Arlington Cemetery -47,414.4 0.000 Arlington Cemetery -61,164.2 0.000 

Ballston 19,937.6 0.000 Ballston 21,950.1 0.000 

Benning Road -51,232.4 0.000 Benning Road -43,166.5 0.000 

Bethesda 17,724.8 0.000 Bethesda 7,940.7 0.000 

Braddock Road -42,745.5 0.000 Braddock Road -20,161.5 0.000 

Branch Avenue -47,736.2 0.000 Branch Avenue 16,440.5 0.000 
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Brookland -14,589.2 0.000 Brookland -22,519.7 0.000 

Capitol Heights -54,208.6 0.000 Capitol Heights -47,419.5 0.000 

Capitol South 38,730.7 0.000 Capitol South -43,601.8 0.000 

Cheverly -56,019.3 0.000 Cheverly -51,607.6 0.000 

Clarendon -38,687.5 0.000 Clarendon -20,266.9 0.000 

Cleveland Park -46,089.2 0.000 Cleveland Park -26,214.8 0.000 

College Park-U of MD -34,183.1 0.000 College Park-U of MD -29,369.1 0.000 

Columbia Heights 9,471.3 0.000 Columbia Heights 28,876.3 0.000 

Congress Heights -51,131.9 0.000 Congress Heights -45,733.3 0.000 

Court House -17,079.9 0.000 Court House -7,560.5 0.000 

Crystal City 44,899.2 0.000 Crystal City 15,182.2 0.000 

Deanwood -53,761.9 0.000 Deanwood -53,304.3 0.000 

Dunn Loring -39,358.6 0.000 Dunn Loring -17,493.8 0.000 

Dupont Circle 111,480.3 0.000 Dupont Circle 64,426.8 0.000 

East Falls Church -46,618.8 0.000 East Falls Church -20,537.1 0.000 

Eastern Market -21,706.1 0.000 Eastern Market -17,315.3 0.000 

Eisenhower Avenue -48,697.6 0.000 Eisenhower Avenue -52,842.2 0.000 

Farragut North 261,316.2 0.000 Farragut North -10,594.1 0.000 

Farragut West 225,669.8 0.000 Farragut West -14,618.0 0.000 

Federal Center SW 23,364.6 0.000 Federal Center SW -60,062.1 0.000 

Federal Triangle 78,903.8 0.000 Federal Triangle -55,301.3 0.000 

Foggy Bottom 163,104.9 0.000 Foggy Bottom 30,663.8 0.000 

Forest Glen -53,780.9 0.000 Forest Glen -41,926.8 0.000 

Fort Totten -29,604.7 0.000 Fort Totten 540.3 0.719 

Franconia-Springfield -39,241.7 0.000 Franconia-Springfield 36,051.6 0.000 

Friendship Heights -1,780.5 0.288 Friendship Heights 8,935.5 0.000 

Gallery Place-Chinatown 194,572.3 0.000 Gallery Place-Chinatown 79,934.7 0.000 

Georgia Avenue-Petworth -33,213.2 0.000 Georgia Avenue-Petworth -26,713.5 0.000 

Glenmont -48,050.0 0.000 Glenmont 1,698.3 0.268 

Greenbelt -39,663.1 0.000 Greenbelt 6,374.9 0.000 

Greensboro -48,010.3 0.000 Greensboro -60,335.1 0.000 

Grosvenor -43,787.8 0.000 Grosvenor -6,006.2 0.000 
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Huntington -42,334.8 0.000 Huntington 35,328.0 0.000 

Judiciary Square 66,371.5 0.000 Judiciary Square -54,090.2 0.000 

L'Enfant Plaza 212,256.5 0.000 L'Enfant Plaza -11,610.8 0.000 

Landover -55,366.8 0.000 Landover -42,702.8 0.000 

Largo Town Center -47,648.9 0.000 Largo Town Center -5,502.3 0.000 

McLean -47,115.3 0.000 McLean -54,154.0 0.000 

McPherson Square 143,681.5 0.000 McPherson Square -19,821.5 0.000 

Medical Center 10,905.2 0.000 Medical Center -52,196.6 0.000 

Metro Center 268,757.1 0.000 Metro Center 31,607.1 0.000 

Minnesota Avenue -44,123.9 0.000 Minnesota Avenue -44,348.3 0.000 

Morgan Blvd. -55,328.8 0.000 Morgan Blvd. -44,301.5 0.000 

Mt. Vernon Square-UDC -23,695.1 0.000 Mt. Vernon Square-UDC -43,620.4 0.000 

Navy Yard 25,748.0 0.000 Navy Yard -16,183.1 0.000 

Naylor Road -51,493.0 0.000 Naylor Road -36,247.5 0.000 

New Carrollton -35,932.8 0.000 New Carrollton 40,474.1 0.000 

New York Ave 21,631.2 0.000 New York Ave -34,185.9 0.000 

Pentagon 72,107.1 0.000 Pentagon 49,680.0 0.000 

Pentagon City 27,470.3 0.000 Pentagon City 80,555.9 0.000 

Potomac Avenue -41,827.9 0.000 Potomac Avenue -37,713.0 0.000 

Prince George's Plaza -36,261.3 0.000 Prince George's Plaza -21,081.6 0.000 

Reagan Washington National Airport -18,741.1 0.000 Reagan Washington National Airport -28,784.9 0.000 

Rhode Island Avenue -34,985.7 0.000 Rhode Island Avenue -20,202.8 0.000 

Rockville -38,477.6 0.000 Rockville -24,097.3 0.000 

Rosslyn 75,188.1 0.000 Rosslyn 16,863.2 0.000 

Shady Grove -29,657.7 0.000 Shady Grove 87,724.7 0.000 

Shaw-Howard University -28,744.5 0.000 Shaw-Howard University -39,533.9 0.000 

Silver Spring 5,129.3 0.002 Silver Spring 42,688.1 0.000 

Smithsonian 104,045.0 0.000 Smithsonian -41,643.8 0.000 

Southern Avenue -47,814.6 0.000 Southern Avenue -5,447.4 0.000 

Spring Hill -48,515.9 0.000 Spring Hill -56,357.2 0.000 

Stadium-Armory -39,868.3 0.000 Stadium-Armory -49,083.2 0.000 

Suitland -36,725.9 0.000 Suitland -7,538.0 0.000 
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Takoma -40,778.9 0.000 Takoma -9,350.9 0.000 

Tenleytown-AU -8,443.6 0.000 Tenleytown-AU -14,914.6 0.000 

Twinbrook -38,677.7 0.000 Twinbrook -27,854.0 0.000 

Tysons Corner -32,038.4 0.000 Tysons Corner -44,542.3 0.000 

U Street-Cardozo -24,161.7 0.000 U Street-Cardozo -12,659.5 0.000 

Union Station 204,890.3 0.000 Union Station 171,029.7 0.000 

Van Dorn Street -50,425.4 0.000 Van Dorn Street -27,539.0 0.000 

Van Ness-UDC -24,945.4 0.000 Van Ness-UDC -17,474.9 0.000 

Vienna -30,812.7 0.000 Vienna 91,888.9 0.000 

Virginia Square-GMU -39,760.2 0.000 Virginia Square-GMU -34,723.0 0.000 

Waterfront -28,102.7 0.000 Waterfront -41,477.9 0.000 

West Falls Church -29,733.7 0.000 West Falls Church 39,405.9 0.000 

West Hyattsville -47,687.1 0.000 West Hyattsville -32,317.5 0.000 

Wheaton -44,102.0 0.000 Wheaton -25,571.1 0.000 

White Flint -33,420.0 0.000 White Flint -38,520.7 0.000 

Wiehle -26,653.3 0.000 Wiehle 22,066.6 0.000 

Woodley Park-Zoo -20,481.8 0.000 Woodley Park-Zoo -10,519.8 0.000 
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