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The cocktail party effect refers to the phenomenon that people can focus on

a single sound source in a noisy environment with multiple speakers talking at the

same time. This effect reflects the human brain’s ability of selective auditory atten-

tion, whose decoding from non-invasive electroencephalogram (EEG) or magnetoen-

cephalography (MEG) has recently been a topic of active research. The mapping

between auditory stimuli and their neural responses can be measured by the audi-

tory temporal response functions (TRF). It has been shown that the TRF estimates

derived with the envelopes of speech streams and auditory neural responses can be

used to make predictions that discriminate between attended and unattended speak-

ers. l1 regularized least squares estimation has been adopted in previous research for

the estimation of the linear TRF model. However, most real-world systems exhibit

a degree of non-linearity. We thus have to use new models for complex, realistic

auditory environments. In this thesis, we proposed to estimate TRFs with the deep

Kalman filter model, for the cases where the observations are a noisy, non-linear



function of the latent states. The deep Kalman filter (DKF) algorithm is devel-

oped by referring to the techniques in variational inference. Replacing all the linear

transformations in the classic Kalman filter model with non-linear transformations

makes the posterior distribution intractable to compute due to the non-linearity.

Thus, a recognition network is introduced to approximate the intractable posterior

and optimize the variational lower bound of the objective function. We implemented

the deep Kalman filter model with a two-layer Bidirectional LSTM and a MLP. The

performance is first evaluated by applying our algorithm to simulated MEG data.

In addition, we also combined the new model for TRF estimation with a previously

proposed framework by replacing the dynamic encoding/decoding module in the

framework with a deep Kalman filter to conduct real-time tracking of selective au-

ditory attention. This performance is validated by applying the general framework

to simulated EEG data.
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Chapter 1: Introduction

1.1 Cocktail Party Effect

The cocktail party effect is a phenomenon that a person focuses his/her audi-

tory attention on a particular sound source and filters out all other stimuli, just like

people focusing on a single conversation on a noisy cocktail party [1]. This effect

was first defined and named the cocktail party problem by Colin Cherry in 1953,

who conducted the dichotic listening task. In Cherry’s attention experiments, the

participants had to separate two different messages they heard from a loudspeaker

in each ear. According to the cocktail party effect, people are able to segregate mul-

tiple stimuli into different streams, and subsequently decide which streams are most

pertinent to them. This ability to identify a specific source amid sounds emanating

from other sources, is actually an essential function of human brain. Because of the

importance of selective attention, the mechanisms underlying the real-time process

of target tracking have been a topic of interest for a long time, although most of the

underlying process are still unknown.

From a neuroscience perspective, the central auditory system has to percep-

tually segregate and group the acoustic input into sequences of distinct auditory

objects [2]. Although the target stream and interfering streams are processed in the
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same pathway within the left hemisphere, fMRI results show that target streams

are treated with more attention than competing streams [3]. As the acoustic signals

propagate through the auditory pathway, they are decomposed into spectrotempo-

ral features at different stages, and a rich representation of the complex auditory

environment reaches the auditory cortex. It has been hypothesized that the percep-

tion of an auditory object is the result of adaptive binding as well as discounting of

these features [4]. There are various hypotheses and models with regarding to the

neural underpinnings of perceptual organization in the central auditory system, es-

pecially the auditory cortex. For example, one of the popular hypotheses, known as

the “population-separation hypothesis”, states that sound elements segregate into

separate “streams” whenever they activate well-separated populations of auditory

neurons that are selective to frequency or any other sound attributes that have

been shown to support stream segregation [5]. Another influential hypothesis is

that streams are formed automatically or pre-attentively, in or below the primary

auditory cortex [5].

From a computational modeling perspective, researchers have tried to design

several different kinds of attention decoders, so as to reliably decode the atten-

tional focus of a listener in a multi-speaker environment using non-invasive neu-

roimaging techniques like electroencephalography (EEG) and magnetoencephalog-

raphy (MEG) [4]. The previous approaches have two major problems, while most

of them are able to reliably decode the attentional focus. Since these methods are

typically based on linear regression, which requires large datasets for training, the

application of those attention decoders to real world is limited. In addition, the
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decoding accuracy drops significantly when operating at temporal resolutions that

humans are able to switch attention from one speaker to another. Therefore, we aim

at using an alternative approach that overcomes the aforementioned limitations.

1.2 Temporal Response Function

Temporal Response Function (TRF) describes a mapping between some fea-

tures of a sensory stimulus and the auditory neural response. There are other

mapping functions between the stimuli and the neural response, such as the event

related potentials (ERPs). While ERPs require many repetitions of the same stim-

ulus to be computed, the TRFs can be computed using continuous stimuli such as

speech. Previous research has proved that if the TRF estimates are derived with

the envelopes of speech streams and auditory neural responses, the TRF-driven

predictions can be used to determine which speaker is attended in a multi-speaker

scenario. Therefore, we will focus on the estimation of TRF in order to keep track

of the selective auditory attention.

One important thing to notice is that the temporal response function can

be described as a sparse kernel. Therefore, we model the TRF over a Gaussian

dictionary with time-varying coefficients, where the coefficients are assumed to be

sparse [6].
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1.3 Kalman Filter

Kalman filter, one of the most influential algorithms for tracking time-varying

phenomena, estimates unknown states given observations over time. In classical

Kalman filters, the latent state evolution, the emission distribution, and the transi-

tion functions are all modelled as linear functions perturbed by Gaussian noise [7].

The classical Kalman filter has the following state space model given the observation

sequence x1, ..., xT :

zt = Gtzt−1 +Btut−1 + εt (action− transition)

xt = Ftzt + ηt (Observations) (1.1)

where εt ∼ N (0,Σt), ηt ∼ N (0,Σt) are zero-mean i.i.d. normal random variables,

with covariance matrices which may vary with t. As stated above, this classic

Kalman Filter model assumes linear latent space evolution, treats the control signal

ut as linear transformation of the latent state, and generates the observations linearly

from the latent state via the observation matrix [7].

However, the linear transition and emission distribution do not apply to the

complicated real world applications. Since the non-linearities make learning much

more challenging, the researchers proposed multiple modifications to the functional

form of Kalman filters to make it non-linear, including the Extended Kalman Filter,

the Unscented Kalman Filter, and the Deep Kalman Filter used in this thesis [7].

In the non-linear situation, the posterior distribution p(z1, ..., zT |x1, ..., xT , u1, ..., uT )
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becomes intractable to compute. Thus, the techniques in variational inference, an

approach to approximate Bayesian posterior inference, are adopted in deep kalman

filter model. The variational Bayes approximates a full posterior distribution with

a factorized set of distributions by maximizing a lower bound on the marginal like-

lihood of the variational objective function, which is equivalent to minimizing the

Kullback-Leibler divergence between the true posterior and a predefined factorized

distribution on the same variables [8]. The most important innovation in the deep

kalman filter model is to introduce a recognition network that could approximate

the intractable posterior [7].

1.4 General Framework

The general framework we used in this thesis is the same as what used in Real-

Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering

Approach [4], which contains three main modules, i.e., dynamic encoder/decoder

estimation, attention marker extraction, and the real-time state space estimator.

The dynamic encoder/decoder estimation module is used to estimate dynamic en-

coding/decoding models that could be fitted to the neural data in real-time. In this

part, we utilizes the deep kalman filter model, which fit a generative model to a se-

quence of observations and actions. In this model, we suppose that the observations

are a noisy, non-linear function of the latent state which evolves over time. We also

assume that we can observe the actions that may affect the latent state in a possi-

bly non-linear manner [7]. The attention marker extraction module, as we can see
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from its name, is employed to extract attention marker features that are functions

of the M/EEG recordings, the estimated encoding/decoding coefficients, and the

auditory stimuli. We have to choose the attention marker features that could help

us separate the contributions of attended and unattended speakers in the neural

response. Those extracted attention marker features would be passed into the last

module, namely, the real-time state space estimator. Based on Bayesian fixed-lag

smoothing, the state-space estimator operates with controllable delay and translates

the attention marker features into probabilistic, robust, and dynamic measures that

could be used in real-time application.

Although the general framework are the same, the difference between this work

and the one from Miran et.al [4] is that we employ the deep Kalman filter, a prob-

abilistic generative non-linear model, instead of the linear encoding and decoding

models used in previous paper for the first module. Miran et.al [4] utilizes the for-

getting factor mechanism of the Recursive Least Squares (RLS) algorithm together

with the l1 regularization penalty from Lasso to capture the dynamics in the data

while preventing overfitting, and the real-time inference is then efficiently carried out

using a Forward-Backward Splitting (FBS) procedure.[4] RLS is an adaptive filter

algorithm that recursively finds the coefficients that minimize a weighted linear least

squares cost function relating to the input signals. The final encoding/decoding co-

efficients in encoding context, also known as Temporal Response Function (TRF)s,

are estimated dynamically using the RLS algorithm with the neural response and

envelopes of speech as inputs. However, as a special case of the classic Kalman Fil-

ter model, the RLS algorithm is not optimal in complicated real world applications.
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Therefore, in this thesis, we produce the time-varying estimates of TRFs using the

deep Kalman filter model, which employing deep neural networks as building blocks.

With the deep neural networks, the Kalman filter model can account for complex

transition dynamics and emission distributions, which can be used to model the real

world problem.
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Chapter 2: Deep Kalman Filter

2.1 Overview

As stated in previous chapter, in classical Kalman filter models, the latent

state is assumed to evolve linearly and the relationship between the latent space,

observed space and actions are expressed in the form of a linear dynamical sys-

tem. For real world applications, we have to replace linear transformations with

non-linear transformations, which largely increases the complexity of the problem

as the posterior distribution p(z1, ..., zT |x1, ..., xT , u1, ..., uT ) becomes intractable to

compute. In order to approximate this intractable posterior, we referred to the

variational encoder [9][10] to optimize a variational lower bound on the marginal

likelihood of the variational objective function [7].

In section 2.2, we will give a overlook of the whole deep Kalman filter model,

including the model setup and related equations. Then in section 2.3, we will demon-

strate the learning process, i.e., the optimization of the lower bound of the marginal

log-liklihood, using the stochastic backpropagation. In this section, we will first

derive the general equations and algorithm, then illustrate the detailed example of

variational autoencoder, with the specific technique used, i.e., the reparameteriza-

tion trick.
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2.2 Deep Kalman Filter Model

In this case, we assume the observation sequence ~x = (x1, ..., xT ) is a non-

linear function of the corresponding latent state ~z = (z1, ..., zT ), where the latent

state itself evolves over time. Also define the actions to be ~u = (u1, ..., uT ). Here,

xt ∈ Rd, ut ∈ Rc, zt ∈ Rs. Then the generative model is:

z1 ∼ N (µ0; Σ0)

zt ∼ N (Gα(zt−1, ut−1,∆t);Sβ(zt−1, ut−1,∆t))

xt ∼ Π(Fκ(zt)) (2.1)

That is to say, we assume that the latent state zt has a Gaussian distribution, whose

mean and variance are nonlinear functions of the previous latent state zt−1, the

previous actions ut−1, and the time difference ∆t. The observations xt is correlated

to the latent state zt since its distribution depends on the distribution Π, whose

parameters are a function of the corresponding latent state zt. In addition, we set

µ0 = 0,Σ0 = Id, so the parameters of this generative model are θ = {α, β, κ}. [7]

Since the functions Gα, Sβ, Fκ could be of any form, the Equation 2.1 actually

includes a large family of latent space models. In other words, we could train

various kinds of Kalman filters using this general equation, as long as we modify

the functional forms of Gα, Sβ, Fκ. Moreover, Sβ should be a diagonal covariance

matrix, and we have to make sure it is positive definite by log-parameterization. To

better understand this generative model, we can take a look at the classic Kalman
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filter model. Compared to Equation 1.1, it’s easy to see that Gα(zt−1, ut−1,∆t) =

Gtzt−1, Sβ(zt−1, ut−1,∆t) = Btut−1, Fκ(zt) = Ftzt in the case of classic Kalman filter.

In more complicated situation, i.e., when Gα, Sβ, Fκ are nonlinear, all these function

are parameterized by deep neural networks which will be explained in detail later.

Figure 2.1 shows the learning process for the deep Kalman filter. The solid

lines here denote the generative model p0(z)pθ(x|z), the dashed lines denote the

variational approximation qφ(z|x) to the intractable posterior p(z|x). qφ(~z|~x, ~u) is

the parametric approximation to pθ(~x|~z, ~u).

Figure 2.1: Deep Kalman Filter structure (figure from [1])

2.3 Stochastic Backpropagation

Given the generative equation stated in previous section, the core problem is

to compute the intractable posterior inference, i.e., p(z1, ..., zT |x1, ..., xT , u1, ..., uT ),

where we employ the variational inference technique. The variational Bayes ap-

proximates the posterior distribution by attempting to optimize a variational lower

bound on the marginal log-liklihood of the observation ~x, which is completed by a
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recognition neural network.

Let p(x, z) = p0(z)pθ(x|z), where p0(z) is the prior on z, and pθ(x|z) is a

generative model parameterized by θ. This equation is a generative model for the

observations x, whose posterior distribution pθ(x|z) is typically intractable. There-

fore, according to the variational inference techniques, we have to introduce a new

distribution qφ(z|x) to approximate the actual posterior distribution. We can derive

the lower bound on the marginal likelihood as following (using Jensen’s inequality):

log pθ(x) = log

∫
z

qφ(z|x)

qφ(z|x)
pθ(x|z)p0(z)dz

≥
∫
z

qφ(z|x)log
pθ(x|z)p0(z)

qφ(z|x)
)dz

= Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)‖p0(z))

= L(x; (θ, φ)) (2.2)

In the implementation, qφ(z|x) will be parameterized by a neural network so that φ

is the parameter of this network. Equation 2.2 is difficult to calculate directly due

to two reasons. First, the expectation term Eqφ(z|x)[log pθ(x|z)] is unknown in most

situation. Second, there is an indirectly dependency on the parameter of the neural

network φ. The way to solve this problem is the stochastic backpropagation [9].

If we assume the latent state to be a K-dimensional Gaussian distribution,

i.e., qφ ∼ N (µφ(ξ),Σφ(ξ)), the required gradients of the expectation term can be
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computed using the Gaussian gradient identities:

∇µiEN (µ,Σ)[f(ξ)] = EN (µ,Σ)[∇ξif(ξ)]

∇ΣijEN (µ,Σ)[f(ξ)] =
1

2
EN (µ,Σ)[∇2

ξi,ξj
f(ξ)]

To be more specific, the above identity is derived as following:

∇φEq[f(θ)] = ∇φ

∫
θ

f(θ)q(θ|φ)dθ

=

∫
θ

f(θ)∇φq(θ|φ)dθ =

∫
θ

f(θ)q(θ|φ)∇φlog q(θ|φ)dθ

= Eq[f(θ)∇φlog q(θ|φ)]

Then employing Monte Carlo integration, we can further compute:

∇φEqφ(ξ)[f(ξ)] ≈ 1

L

L∑
l=1

f(ξ(l))∇qφ(ξ(l))log qφ(ξ(l))

where L is the number of samples used to approximate the expectation. Similarly,

the second term (KL divergence) in Equation 2.2 can be estimated in the same way

since the KL divergence is also an expectation.

However, the lower bound in Equation 2.2 only works for simple transition

models and has a high variance when estimating the gradient of the KL term.

Therefore, we have to extend the original equation and factorize the KL term in a
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new way to achieve more stable gradients.

log pθ(~x|~u) ≥
∫
~z

qφ(~z|~x, ~u)log
pθ(~x|~z, ~u)p0(~z|~u)

qφ(~z|~x, ~u)
)d~z

= Eqφ(~z|~x,~u)[log pθ(~x|~z, ~u)]−KL(qφ(~z|~x, ~u)‖p0(~z|~u))

=
T∑
t=1

Ezt∼qφ(zt|~x,~u)[log pθ(xt|zt, ut−1)]−KL(qφ(~z|~x, ~u)‖p0(~z|~u))

= L(x; (θ, φ)) (2.3)

The new factorization of the KL term is:

KL(qφ(~z|~x, ~u)‖p0(~z)) =

∫
z1

...

∫
zT

qφ(z1|~x, ~u)....qφ(zT |zT−1~x, ~u)

∗ log
p0(z1, ..., zT )

qφ(z1|~x, ~u)....qφ(zT |zT−1~x, ~u)
d~z

= KL(qφ(z1|~x, ~u)‖p0(z1))

+
T∑
t=2

Ezt∼qφ(zt|~x,~u)[KL(qφ(zt|zt−1, ~x, ~u)‖p0(zt|zt−1, ut−1))]

Substitute this new factorization in the Equation 2.3, we can get the lower bound

as following:

log pθ(~x|~u) ≥ L(x; (θ, φ))

=
T∑
t=1

Eqφ(zt|~x,~u)[log pθ(xt|zt)]−KL(qφ(z1|~x, ~u)‖p0(z1))

−
T∑
t=2

Eqφ(zt−1|~x,~u)[KL(qφ(zt|zt−1, ~x, ~u)‖p0(zt|zt−1, ut−1))] (2.4)
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Then we can still use the Monte Carlo estimation to evaluate the marginal liklihood:

p(~x) ≈ 1

S

S∑
s=1

[
p(~x|~z(s))p(~z(s))

q(~z(s)|~x)
], ~z(s) ∼ q(~z|~x)

log p(~x) ≈ log
1

S

S∑
s=1

exp(log[
p(~x|~z(s))p(~z(s))

q(~z(s)|~x)
]) (2.5)

2.3.1 KL divergence computation

Suppose we have two multivariate Gaussians q ∼ N (µq,Σq), p ∼ N (µp,Σp).

The KL divergence between them can be written as:

KL(q‖p) =
1

2
(log
|Σp|
|Σq|
−D + Tr(Σ−1

p Σq) + (µp − µq)TΣ−1
p (µp − µq))

The output of variational model provides us µq,Σq, where µp,Σp depends on the

generative model with µp1 = 0,Σp1 = 1, µpt = Gt−1,Σp1 = ∆~σ.

If t = 1, then

log
|Σp1|
|Σq1|

= −log|Σq1|

Tr(Σ−1
p1 Σq1) = Tr(Σq1)

(µp1 − µq1)TΣ−1
p1 (µp1 − µq1) = ‖µq1‖2
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If t > 1, then

log
|Σpt|
|Σqt|

= log|Σpt| − log|Σqt|

= Dlog(∆) + log|~σ| − log|Σqt|

Tr(Σ−1
pt Σqt) =

1

∆
Tr(diag(~σ)−1Σqt)

(µpt − µqt)TΣ−1
pt (µpt − µqt) = ∆(Gt−1 − µqt)Tdiag(~σ)−1(Gt−1 − µqt)

Therefore, we can rewrite the KL divergence as:

KL(q(z1, ..., zT )‖p(z1, ..., zT )) =
1

2
((T − 1)Dlog(∆)log|~σ| −

T∑
t=1

log|Σqt|+ Tr(Σq1)

+ ∆
T∑
t=2

Ezt−1 [(Gt−1 − µqt)Tdiag(~σ)−1(Gt−1 − µqt)]

+
1

∆

T∑
t=2

Tr(diag(~σ)−1Σqt) + ‖µq1‖2) (2.6)

With Equation 2.5, we can take gradients with respect to µqt,Σqt, and G(zt−1, ut−1).

Since the KL divergence could be evaluated analytically, the resulting objective

function has stable analytic gradients [11].

2.3.2 Learning with Gradient Descent

The Equation 2.4 is differentiable with respect to (θ, φ). If we fixed the gener-

ative model parameter θ, we can perform stochastic gradient ascent of the objective

function in φ. We just perform the stochastic gradient ascent in both θ and φ. To

update parameter θ, we can use backpropagation, while we can use stochastic back-
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propagation to estimate the gradient ∇φqφ(zt). Thus, the overall learning algorithm

will be [11]:

Algorithm 1 Learning a Deep Kalman Filter model with Stochastic Gradient De-
scent. Monte-Carlo estimates are used over K samples from the recognition network
during learning to evaluate expectations in the bound and gradients.

1: Input: Observations sequence: ~x
2: Inference Model: qφ(~z|~x)
3: Generative Model: pθ(~x|~z), pθ(~z)
4: while not converged do
5: ~x← sample MiniBatch
6: Sample ~̂z ∼ qφ(~z|~x)

7: Estimate pθ(~x|~̂z)
8: Compute KL divergence between posterior and prior
9: Evaluate L(x(i); (θ,φ))

10: Estimate ∇θL,∇φL
11: Update θ,φ using ADAM

12: end while

2.3.3 ADAM

ADAM is an algorithm for first-order gradient-based optimization of stochas-

tic objective functions, based on adaptive estimates of lower-order moments [12].

Designed specifically for training deep neural networks, this method computes in-

dividual adaptive learning rates for different parameters from estimates of first and

second moments of the gradients.

Suppose we want to optimize the expectation of the objective function f(θ)

that is differentiable with respect to the parameters θ. The algorithm updates

exponential moving averages of the gradient (mt) and the squared gradient (vt)

where the hyper-parameters β1, β2 ∈ [0, 1) control the exponential decay rates of

these movingv averages. The moving averages themselves are estimates of the first
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moment (the mean) and the second raw moment (the uncentered variance) of the

gradient. The general process of ADAM optimization is shown below: [12]

Algorithm 2 ADAM Optimization: α is the step size, β1, β2 ∈ (0, 1] are exponential
decay rates for the moment estimates, and f(θ) is the stochastic objective function
with parameters θ

1: Initialization t← 0
2: m0 ← 0
3: v0 ← 0
4: while θt not converged do
5: t← t+ 1
6: gt ← ∇θft(θt−1).
7: mt ← β1 ·mt−1 + (1− β1) · gt
8: vt ← β2 · vt−1 + (1− β2) · g2

t

9: m̂t ← mt/(1− βt1)
10: v̂t ← vt/(1− βt2)
11: θt ← θt−1 − α · m̂t/(

√
v̂t + ε)

12: end while
13: return θt

2.4 Variational Autoencoder

The deep Kalman filter model is a general model that can be fitted into various

scenarios with different functional forms of Gα, Sβ, Fκ. In this section, we will illus-

trate how to use a neural network to approximate the probabilistic encoder qφ(z|x),

so as to estimate the posterior of the generative model pθ(x|z), and optimize the

parameters φ and θ jointly. Figure 2.2 below gives a general idea of the learning

process for the variational autoencoder.
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Figure 2.2: Variational Autoencoder (figure from [7])

2.4.1 Reparameterization trick

Before we demonstrate the example of variational autoencoder, we have to

first introduce an essential trick for parametrization, i.e., the reparameterization

trick, which makes the non-differentiable network trainable by moving the non-

differentiable operations out of the network.

Suppose we want to estimate some conditional distribution z ∼ qφ(z|x). We

can express the random variable z as a deterministic variable z = gφ(ε,x), where ε is

an auxiliary variable with independent marginal p(ε), and gφ() is some vector-valued

function parameterized by φ. Depending on the types of distribution of qφ(z|x), we

can choose different transformation gφ and auxiliary variable ε ∼ p(ε). For example,

if the qφ(z|x) has tractable inverse CDF, such as exponential Cauchy, Logistic, and

Reciprocal distribution, we can choose gφ(ε, x) to be the inverse CDF of qφ(z|x),

and let ε ∼ U(0, I). If the distribution of qφ(z|x) belongs to ’location-scale’ family,

such as Laplace, Elliptical, Uniform, Triangular and Gaussian distributions, we can

choose the standard distribution (with location = 0, scale = 1) as the auxiliary

variable ε, and gφ =location + scale∗ε. To be more specific, suppose z ∼ p(z|x) =

N (µ, σ2). The reparameterization for this case is z = µ + σε, where the auxiliary

18



variable ε ∼ N (0, 1). Then we can write the expectation of the objective function

as:

EN (z;µ,σ2)[f(z)] = EN (ε;0,1)[f(µ+ σε)]

≈ 1

L

L∑
l=1

f(µ+ σε(l)), ε(l) ∼ N (0, 1)

In addition, if the distribution of qφ(z|x) is the composition of multiple distributions,

such as Log-Normal, Gamma and Chi-Squared distributions, we can always express

random variables as different transformations of auxiliary variables [12].

2.4.2 Variational Autoencoder Derivation

For variational autoencoder, we assume that the prior distribution latent vari-

ables is a multivariate Gaussian, i.e., pθ(z) ∼ N (z,0, I). Another essential assump-

tion here is that the posterior distribution pθ(x|z) is also a multivariate Gaussian.

To overcome the intractability of the posterior, we will use a MLP (detailed descrip-

tion later in this section) to computer the distribution parameters from z. As we

assume the pθ(x|z) to be a multivariate Gaussian with diagonal convariance, we

can write the variational model as following:

log qφ(z|x(i)) = log N (z;µ(i),σ2(i)I)

The mean µ(i) and standard deviation σ2(i)I here are the outputs of the encoding

MLP.
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At data point x(i), we have to estimate the posterior by the recognition net-

work, i.e., z(i,l) ∼ qφ(z|x). Applying the reparameterization trick described above,

we can write the following

z(i,l) = gφ(ε(l),x(i)) = µ(i) + Σ(i)ε(l)

where ε(l) ∼ N (0, I) is also normally distributed. The differentiable transformation

gφ() here is z = µ + Σε, while the auxiliary variable ε has independent marginal

p(ε) ∼ N (0, I). Then we don’t care anymore with the sampling process during back-

propagation, as it is now outside of the network, i.e. doesn’t depend on anything in

the net, hence the gradient will not flow through it. Then we can further derive:

−KL(qφ(z|x)|pθ(z)) =

∫
qφ(z|x)log(

pθ(z)

qφ(z|x)
)dz

=

∫
qφ(z|x)[log(pθ(z))− log(qφ(z|x))]dz∫

qφ(z|x)log(pθ(z))dz =

∫
N (z;µ,Σ)log(N (z; 0, I))dz

= −J
2
log(2π)− 1

2

J∑
j=1

(µ2
j + σ2

j )∫
qφ(z|x)log(qφ(z|x))dz =

∫
N (z;µ,Σ)log(N (z;µ,Σ))dz

= −J
2
log(2π)− 1

2

J∑
j=1

(1 + log(σ2
j ))

−KL(qφ(z|x)|pθ(z)) = −J
2
log(2π)− 1

2

J∑
j=1

(µ2
j + σ2

j )

− [−J
2
log(2π)− 1

2

J∑
j=1

(1 + log(σ2
j ))]
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−KL(qφ(z|x)|pθ(z)) =
1

2

J∑
j=1

(1 + log(σ2
j )− µ2

j − σ2
j )

L(θ,φ;x(i)) ≈ 1

2

J∑
j=1

(1 + log((σ
(i)
j )2)− (µ

(i)
j )2)− (σ

(i)
j )2)) +

1

L

L∑
l=1

log pθ(x
(i)|z(i,l))

Then we will use a MLP as the decoder to estimate the term log pθ(x
(i)|z(i,l)).

2.4.3 Multi-layer Perceptron

Two MLPs are used in variational autoencoder, one for the encoding and one

for decoding. The left part in Figure 2.3 is the encoder MLP, which maps the input

Figure 2.3: VAE structure from network perspective

~x to two parameters µ,σ. Then the middle part is where we sample ẑ ∼ qφ(~z|~x)

using reparameterization trick. The right part is the decoder MLP, which maps ẑ

to output x̂, denoted as pθ(~x|ẑ).

Since we choose the encoder and the decoder to be a multivariate Gaussian
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with diagonal covariance, the MLP will have following structure:

log p(x|z) = log N (x;µ,ΣI)

µ = W1h+ b1

log Σ = W2h+ b2

h = tanh(W3z + b3)

When this MLP structure is used as decoder, {W1,W2,W3} are the weights and

{b1, b2, b3} are the biases of the MLP, while all these parameters are part of param-

eters θ. When used as encoder, we have to swap z,x, and {W1,W2,W3, b1, b2, b3}

are part of parameters φ.

2.5 Long-Short Term Memory Recurrent Neural Network

Since the distribution of qφ(z|x) is unknown and we cannot assume it to be

Gaussian, we only used the MLP as decoder in our real implementation. Instead of

the encoder MLP, we employ a two-layer bi-directional Long-Short Term Memory

Recurrent Neural Network (LSTM) as the sequential variational model.

Recurrent neural network (RNN), the network architecture that use its internal

state (memory) to process variable length sequences of inputs, is widely used to

process sequences related tasks, such as speech recognition [13], machine translation

[14], image captioning [15], and video classification [16]. Theoretically, vanilla RNNs

are capable of learning arbitrary long-term dependencies in the input sequences. We
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can process a sequence of vectors x by applying a recurrence formula at every time

step: ht = fW (ht−1, xt). All recurrent neural networks have the form of a chain of

repeating modules of neural network. The repeating modules in classic RNNs could

be very simple, such as a single hyperbolic tangent layer. Then we can write:

ht = tanh(Whhht−1 +Wxhxt) = tanh(W

ht−1

xt

)

yt = Whyht

However, in practice, the classic RNN suffers from computational challenges. When

trying to train a vanilla RNN with backpropagation, the gradients may either vanish,

i.e, ∇ → 0, or explode, i.e., ∇ → ∞. In order to solve the vanishing gradient

problem, a modified RNN architecture has been proposed, i.e., Long-Short Term

Memory (LSTM), although it still suffers from the exploding gradient problem.

Instead of the simple structure of the repeating module in vanilla RNNs, the

repeating module of LSTM contains four interacting layers. A common LSTM unit

contains a cell and three regulators, i.e., an input gate, an output gate and a forget

gate. The LSTM can add or remove information to the cell state by three gates,

which are composed of a pointwise multiplication operation and an activation layer

(usually sigmoid layer). The cell is used to keep track of the long-term dependencies

between the elements in the input sequence. The input gate determines what new

information is going to flow into the cell, the forget gate determines what information

will remain in the cell, and the output gate determines what information in the cell
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will be used to compute the output. To decide what information is going to be

stored in the cell, we actually have two gates, the first one decides whether to write

to the cell using a sigmoid layer, while the second one controls the extent to which

a value remains in the cell using a hyperbolic tangent layer. We can denote the first

gate with sigmoid layer as the input gate i, and the second tanh layer as gate g. We

can also denote o to be the output gate, f to be the forget gate, and ct to be the

cell state at time step t. Then the LSTM can be written as:



i

f

o

g


=



σ

σ

σ

tanh


W

ht−1

xt



ct = f � ct−1 + i� g

ht = o� tanh(ct)

It is not surprising that the regular RNN has many limitations. Thus, a modi-

fied version of RNN, bidirectional recurrent neural network (BRNN), is proposed to

improve the performance. Both past and future input of a specific time frame can

be used to train the BRNN. The general idea is to split the split the state neurons of

a regular RNN into two parts, one for the positive time direction (forward) and one

for the negative time direction (backward) [17]. Similarly, bi-directional long-short

term memory (BiLSTM) RNN is an extension of regular LSTM RNN. Taking in all

available input information from both the past and the future, the BiLSTM network
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outperforms the unidirectional neural networks on sequence classification problem

[18]. Therefore, the bi-directional LSTM RNN is used as the inference model of the

deep Kalman filter in this thesis.
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Chapter 3: Real-time Tracking of Selective Auditory Attention

As mentioned in Chapter 1, the general framework of the real-time tracking

of selective auditory attention is composed of three modules, i.e., the Dynamic En-

coder/Decoder Estimation module, the Attention Marker module, and the Dynamic

State-Space Model module [4]. The first module estimates the model coefficients

that fit to the neural data in real time. The output of the encoding/decoding

models is passed into the second module, where the features are modulated by the

instantaneous attentional state. Then the features keep going to the last module to

achieve a dynamic estimation of the attentional state.

In this thesis, we mainly focus on using the deep Kalman filter to conduct

the TRF estimates. Thus, we will explain the dynamic encoding/decoding module

in detail as our goal is to implement this module with deep Kalman filter. This

section is organized as following: In section 3.1, we will employ the deep Kalman

filter algorithm to get the real time estimates of TRF. Then in section 3.2, we will

define two types of attention markers, and elaborate the dynamic state-space model

that outputs the estimates of the attenional states.
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3.1 Dynamic Encoding & Decoding Estimation

One of the ultimate goals of auditory neuroscience is to understand the map-

ping between the auditory stimuli and the corresponding neural response. The

neural encoding model can predict the neural response from the stimulus, while a

neural decoding model is used to express the stimulus as a function of the neural

response. This mapping can be measured by temporal response functions (TRFs).

Thus, the purpose of this module is to estimate TRFs given the auditory neural

response and the speech envelope of speakers. Previous research has shown that

the TRF is a sparse kernel, which regresses auditory MEG data with respect to the

envelopes of the speech streams. Therefore, the temporal response function can be

modeled over a shifted Gaussian kernel with time-varying coefficients, where the co-

efficients are assumed to be sparse [19]. If the coefficients are expected to be sparse

in a basis represented by the columns of a matrix G, such as the Haar or Gabor

bases, we can multiply the stimuli by the base G, compute the TRF estimates as

usual, then multiply estimates by the matrix G to get the final estimates.

In this case, the stimuli are represented by the speaker’s covariate matrix

composed of the speech envelopes, and the neural responses are recorded with

MEG/EEG channels. Let s
(1)
t , s

(2)
t to be the speech envelopes of speakers 1 and

2 at time t respectively, and ect denotes the neural response recorded at time t and

channel c. In addition, we divide the inputs into consecutive and non-overlapping

windows with same length W. The encoding and decoding coefficients are assumed

to be constant over each window due to the piece-wise constant dynamics.
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For the encoding model, the stimuli, modulated by the covariate matrix, at kth

window is Xk = [1W×1,X
(1)
k ,X

(2)
k ], where X

(i)
k = [s

(i)
(k−1)W+1, s

(i)
(k−1)W+2, ..., s

(i)
kW ]T ,

and s
(i)
t = [s

(i)
t , s

(i)
t−1, ..., s

(i)
t−Le ]

T , Le here is the total lag in the encoding model. The

vector yk = [E(k−1)W+1, E(k−1)W+2, ..., EkW ]T is defined as the neural response, where

Et is the linear combination of e1
t , e

2
t , ..., e

c
t with weights. The weights are used to

select a single channel, which makes the Et represent the dominant component of the

neural response. For the decoding model, we set yk = [s
(i)
(k−1)W+1, s

(i)
(k−1)W+2, ..., s

(i)
kW ]T .

The decoding covariate matricx at kth window isXk = [ε(k−1)W+1, ε(k−1)W+2, ..., εW ]T ,

where εt = [1, eTt , e
T
t+1, ..., e

T
t+Ld

]T , and et = [e
(1)
t , e2

t , ..., e
C
t ]T , Ld here is the total lag

in the decoding model, which affects the dependency between the future neural

responses and the current stimuli.

With all these notations, if we use a linear encoding/decoding model, we can

write the estimation problem as the following optimization problem:

θ̂k = arg minθ

k∑
j=1

λk−j‖yj −Xjθ‖2
2 + γ‖θ‖1, k = 1, ..., K (3.1)

At each window k, for k = 1, ..., K, θ̂k are updated based on the new measurements,

yk,Xk, and previous measurements through the forgetting factor λ ∈ (0, 1], while

γ is a regularization parameter and θ is the parameter vector. As we stated before,

since the TRF is sparse, we have to replace Xj in Equation 3.1 by XjG, and solve

for θ̂k, where the final estimates should also multiply the matrix G. In other words,

the final model coefficients should be Gθ̂k.

In previous research, the optimization problem in Equation 3.1 is solved using
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Forward-Backward Splitting (FBS) method, which computes the gradient descent

of the log-likelihood term, and then applies a soft-thresholding shrinkage operator.

However, the linear model is limited in real-world application. Thus, in this thesis,

we replace the regularized least squares (RLS) algorithm with the deep Kalman

filter model as explained in previous section.

3.2 Attention Markers & Dynamic State Space Model

The attention marker is essentially a mapping function, which associates the

encoding/decoding model coefficients and the covariate matrix to features. It is a

measure of how well a decoder can reconstruct its envelope. Since the temporal

response function is the encoding coefficients in the context of encoding model for

the first module, in this case, the inputs of the attention marker extraction module

would be the covariate matrix X
(i)
k for each sound source i, the estimated encoding

model coefficients, i.e., TRF estimates, θ̂
(i)
k , and the neural response yk recorded

from M/EEG channel at time window k, and the output of the second module would

be a positive real number denoted as m
(i)
k . In the specific case of this thesis, there

will be two outputs m
(1)
k ,m

(2)
k , for speaker 1 and 2 respectively, from the attention

markers. They will be further used in the dynamic state space model as measures

of the attentional state.

From previous research findings, which states that a trained attended decoder

results in 10% more attention decoding accuracy than a trained unattended decoder

[20], we can assume that the attended speaker has more influence on the real-time
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auditory M/EEG response than the unattended speaker. The corresponding decoder

of the attended speaker will perform better than that of the unattended speaker in

the reconstruction of the speech envelope. In other words, the significant compo-

nents in the auditory neural response are provided by the attended speaker, while

the unattended speaker will result in small and random components. Utilizing this

property, we can extract features in two different ways, i.e., correlation-based atten-

tion marker, and l1 norm based attention marker. The correlation-based attention

marker can be derived as:

m
(i)
k = f(θ̂

(i)
k ,Xk,y

(i)
k ) := |corr(y

(i)
k ,Xkθ̂

(i)
k )|, for i = 1, 2, k = 1, ..., K

Therefore, the attention marker in this scenario is the correlation magnitude between

the speech envelope and its reconstruction by the corresponding decoder. Since l1

norm of the decoder is able to capture the significant components, it can also be

used for feature extraction. The l1 norm based attention marker can be calculated

as following:

m
(i)
k = ‖θ̂(i)

k ‖1, for i = 1, 2, k = 1, ..., K

l1 norm based attention marker provides smoother results than correlation based

attention marker does, but the correlation based attention marker is more reliable,

thus we will mainly focus on the results of the correlation based attention marker

in this thesis.

However, the real-time situation is much more comnplex with lots of uncer-
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tainty and stochastic fluctuations due to limited data and integration time. Even

though the attention markers are validated in batch mode analysis, we still have to

introduce a state-space model to correct all the uncertainty and fluctuations. To

be more specific, we assume a linear state-space model based on the attention. At

instance k, we define the binary random variable so that nk = 1 when speaker 1 is

attended and nk = 2 when speaker 2 is attended. Then we want to estimate the

probability of attention on speaker 1 pk := P (nk = 1),∀ 1 ≤ k ≤ KA, where KA is

window length [4].



pk = P (nk = 1) = 1− P (nk = 1) = 1
1+exp(−zk)

zk = c0zk−1 + wk

wk ∼ N (0, ηk)

ηk ∼ Γ−1(a0, b0)

(3.2)

Equation (3.2) describes the dynamic of the latent variable zk. We also need an

observation model to relate the observations m
(1)
k ,m

(2)
k with the state dynamics in

above equation.




m

(i)
k |nk = i ∼ Log Normal(ρ(a), µ(a))

m
(i)
k |nk 6= i ∼ Log Normal(ρ(u), µ(u))

, i = 1, 2

ρ(a) ∼ Γ(α
(a)
0 , β

(a)
0 ), µ(a)|ρ(a) ∼ N (µ

(a)
0 , ρ(a))

ρ(u) ∼ Γ(α
(u)
0 , β

(u)
0 ), µ(u)|ρ(u) ∼ N (µ

(u)
0 , ρ(u))

(3.3)
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Equation (3.4) states that we use two log-normal distribution with different param-

eters on m
(i)
k , depending on whether the corresponding speaker is attended. These

log-normal distribution are approximated by Gaussian density in the implementa-

tion.
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Chapter 4: Results & Discussion

We implemented the deep Kalman filter model in MATLAB with the neural

network structure described in section 4.1. This neural network is first applied to

an one dimensional random walk for validation. Then we apply it to a simulated

MEG dataset to derive TRF estimates. The TRF estimates are discussed in section

4.2. Finally, the deep Kalman filter is used in the general framework as a dynamic

encoding module on a simulated EEG dataset. The results are shown in section 4.3.

4.1 Neural Network Structure

The paper Deep Kalman Filters [7] compared four different choices of varia-

tional models with increasing complexity, i.e., parameterizing q(zt|xt) by an MLP

(denoted as qINDEP in Figure 4.1), parameterizing q(zt|xt−1, xt, xt+1) by an MLP

(denoted as qLR in Figure 4.1), parameterizing q(zt|x1, ..., xt) by an RNN (denoted

as qRNN in Figure 4.1), and parameterizing q(zt|x1, ..., xt) by a bi-directional RNN

(denoted as qBRNN in Figure 4.1). Based on their experimental results on the

healing MNIST dataset constructed by applying rotations to the hand-written dig-

its, the bi-directional RNN outperforms the other recognition models as we can see

from Figure 4.1. It is not surprising since the Bi-Directional RNN, similar to the
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Figure 4.1: Test log likelihood on four recognition models (figure from [7])

Forward-Backward algorithm, takes in the information from both the past and the

future at every time step to form the most effective approximation to the posterior

distribution of zt. Therefore, we chose the bi-directional RNN as the sequential

variational model for the deep Kalman filter. To be more specific, the inference

model is a two-layer Bi-directional Long-Short Term Memory (Bi-LSTM) Recur-

rent Neural Network to look at the input sequence in both forward and backward

directions, while Multi-layer Perceptrons (MLP) is chosen to implement the gener-

ative model. The overall structure is shown as in Figure 2.1 in previous chapter.

The observations xt will first pass through the two-layer BiLSTM RNN in order to

sample ẑt ∼ qφ(~z|~x, ~u), and the estimates of ẑt will get into the decoder MLP to

approximate x̂ ∼ pθ(~x|ẑ). In this case, ẑt is the TRF estimates we calculated in

previous section.

Figure 4.2 shows the detailed composition of layers for each network. For the

two-layer bi-directional LSTM RNN, the first BiLSTM layer with 200 hidden units

will process the sequence input by mapping it to 200 features and generating an

output sequence. Then a dropout layer with 0.2 probability is used to regularize the
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model and prevent over-fitting. Another BiLSTM layer with 200 hidden units first

maps its input into 200 features and then prepares the output for the fully connected

layer afterwards. The final output of the recognition model is achieved by passing

the previous output through a regression layer. The input of the decoder MLP

will go through 2-D transposed convolution layers that up-sample feature maps.

There are four 2-D transposed convolution layers in total, where each of them are

the transpose of convolution. There is also a hyperbolic tangent (tanh) activation

layer between each two transposed convolution layers. The first two 2-D transposed

convolution layers have 64 filters with size [10,10] and [3,3] respectively, the third

one has 32 filters with size [3,3], while the last one only has 1 filter with size [3,3]

to generate the prediction of the observation sequence.

The input to the BiLSTM RNN is the sequence of observations, with size [1

× number of samples], while the output of RNN is the estimates of TRF, with size

[number of estimates × number of samples]. Then this output goes into the MLP

to generate the predictions of the observations. Since the TRF is represented in a

Garbor basis due to its sparsity, we have to choose a proper distance between the

adjacent Gabor atoms in the lag domain. For example, if the window length of TRF

estimates is 250ms, and we want to make each atom shifted by 50ms. Then we will

have 5 atoms to cover this 250 ms window. Thus, the number of estimates for each

speaker will be 5 in this case.

We first apply the above neural network architecture with the one-dimensional

random walk with different number of steps to examine its functionality. We con-
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(a) BiLSTM RNN (b) decoder MLP

Figure 4.2: Network Architecture

struct the system as following:

xk = xk−1 + wk

yk = xk + vk

where yk is the observation sequence, and the xk is the states, i.e., TRF in this case.

As shown in Figure 4.3, the estimated results generally follow the trend of true TRF

xk, which proves the feasibility of the network above.

4.2 TRF Estimates with MEG

In this section, we use a dataset with simulated MEG data of the multiple

speakers situation, and compare the estimation results of four different models, i.e.,

recursive least square (RLS), linear Gaussian state-space model (classic Kalman

filter), LSTM with a linear generative model, and the deep Kalman filter model.
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(a) 50 time steps (b) 100 time steps

(c) 150 time steps (d) 200 time steps

Figure 4.3: Estimates of 1D random walk

The simulated data are taken from [21]. For this MEG dataset, we use a sampling

frequency of 100, the window length is 0.3 seconds, and we set the length for TRF

to be 0.25 seconds, i.e., 25 samples for TRF and 30 samples for a window. As we

explained in section 4.1, we want the distance between the adjacent Gabor atoms in

the lag domain to be 0.05 seconds, so we cover 0.25s with 5 Gabor atoms for each

speaker. Therefore, the total number of states for the TRF estimates is 10 (two

speakers together).
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4.2.1 Model Choice

For RLS algorithm, we map the one-dimensional observation xk at time k to a

10 dimensional representation bk, then normalize bk to produce the estimate of the

states. The whole process can be written as:

Ak = λAk−1 + C>k Ck

bk = λbk−1 + ykC
>
k

θk = (Ak + γI)−1bk

where Ck = [E1
k
>
G,E2

k
>
G], and Ei

k is the speech envelop of ith speaker, γ is l2

regularization parameter, which is chosen to be 1 in this case. The classic Kalman

filter algorithm will make the prediction as following:

xk = Fkxk−1 + uk, uk ∼ N (0, Qk)

yk = Ckxk + vk, vk ∼ N (0, Rk)

x̂k|k−1 = Fkx̂k−1

Pk|k−1 = FkPk−1F
T
k +Qk

x̂k = x̂k|k−1 + Pk|k−1c
T
k (Rk + CkPk|k−1C

T
k )−1(yk − Ckx̂k|k−1)

Pk = Pk|k−1 − Pk|k−1C
T
k CkPk|k−1(Rk + CkPk|k−1C

T
k )−1

The deep Kalman filter model we used for this simulated MEG dataset is the

network architecture shown in Figure 4.2, i.e., a two-layer BiLSTM RNN followed
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by a MLP as decoder. We also simplify the network by replacing the decoder MLP

with a linear generative model yk = ET
k Gθk + wk, where Ek is the vector of speech

envelopes at time k,G is the Gabor matrix, and θk is the multi-dimensional (number

of dimension depends on the number of Gabor atoms) states, so that Gθk is the TRF

estimates. In this way, we train a network that maps yk to θ̂k and then for sampling

from pθ, we just generate yk = E>k Gθ̂k + wk.

4.2.2 Estimation Results

For the deep Kalman filter model and the LSTM with linear generative model,

we initialize the LSTM network with the TRF estimates using RLS, and the es-

timates using classic Kalman filter, respectively. The TRF estimates with both

initialization looks similar, so we only put the results using the TRF estimates by

linear Gaussian state-space model as the initialization.

Figure 4.4 shows the results of TRF estimates using each of four models. Figure

4.4(a) is the TRF estimates made with RLS algorithm; (b) is the TRF estimates

achieved with deep Kalman fitler model using the network architecture in Figure 4.2;

(c) is the TRF estimates derived with two-layer BiLSTM RNN and linear generative

model; and (d) is the TRF estimates derived with linear Gaussian state space model

(classic Kalman filter).

From Figure 4.4, we can see that all these methods successfully reproduce the

desired encoding coefficients, as they generate the TRF estimates close to the true

TRF. The complete deep Kalman filter produces the TRF estimates less smoother
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(a) TRF estimates with RLS (b) TRF estimates with DKF

(c) TRF estimates with LSTM and linear
generative model

(d) TRF estimates with LKF

Figure 4.4: TRF estimates of MEG with various models

than the other three approaches. By interpreting smoothness as the Lipschitz con-

tinuity of the cost function and its gradient, a recent study proves that there is

an underlying relationship between the smoothness and the long-term information

retention, i.e., the larger the Lipschitz constant, the slower the decay of information

retention [22].

Figure 4.5 shows the mean squared error(MSE) between the true TRF and its

estimates using different methods across the time window. The left one is the MSE

of estimates initialized by RLS estimates, while the right one is the results initialzied

by classic Kalman filter estimates. From Figure 4.5(a), we can see that the linear
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(a) Initilizaed with TRF estimates by RLS (b) Initilizaed with TRF estimates by KF

Figure 4.5: MSE between true TRF and its estimates

Kalman filter has the smallest mean squared error among all four methods. The

LSTM with linear generative model has MSE almost the same as the method used

to calculate its initialization, i.e., RLS algorithm. The deep Kalman filter has the

highest MSE. Similarly, in Figure 4.5(b), The LSTM with linear generative model

again has MSE close to the approach that produces the initialization, i.e., linear

Gaussian state-space model. The complete deep Kalman filter still has the largest

mean-squared error among all four models.

4.3 General Framework Simulation

4.3.1 Experiment Setup

The following generative model is employed to simulated the EEG data in

dual-speaker situation:

et = w
(1)
t (s

(1)
t ∗ ht) + w

(2)
t (s

(2)
t ∗ ht) + µt + ut (4.1)
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where s
(1)
t , s

(2)
t are the speech envelopes of speakers 1 and 2 at time t respectively,

which are chosen from two 60s long speech segments from experiment with a sam-

pling rate fs = 200Hz. ht in the equation represents the TRF as the impulse response

of the neural process resulting in et, and the final impulse response is smoothed us-

ing a Gaussian kernel with a standard deviation of 10ms as shown in Figure 4.6. µ

is chosen to be 0.02 as a constant mean, and ut is a zero-mean i.i.d Gaussian noise.

w
(1)
t , w

(2)
t are weight functions that determine the relative effect of the two speeches

on the neural response. The attention will be on speaker 1 for the first half, and on

speaker 2 for the second half, i.e., the weight functions are chosen to favor speaker 1

in the (0 s, 30 s) interval and speaker 2 in the (30 s, 60 s) interval. We tested on three

different scenarios with decreasing separation between the attended and unattended

speeches in the neural response as shown in Figure 4.7. For the first case, the high

value is 1, the low value is 0.5, so this case represents the well-separated situation.

In case 2, the high value is 0.9, the low value is 0.6. The separation between the

attended and unattended speaker decreases, but still large enough to distinguish.

In case, the high value is 0.8, the low value is 0.7. The separation further decreases,

and this simulates the situation that the two speakers are almost mixed together.

Figure 4.8 shows the simulation of the auditory response of speaker 1, speaker

2, and mixed speakers respectively. For the decoder estimation, consecutive non-

overlapping windows of length 0.25s are used, which leads to K = 240 windows of

length W = 50 samples. The effective data length is 5s for decoder estimation. The

forward lags of the neural response have been limited to a 0.4s window, i.e., Ld = 80

samples.
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Figure 4.6: TRF as the Impulse response ht

Figure 4.7: Weight functions

Figure 4.8: auditory response
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4.3.2 Estimation Results

The TRF estimates in Figure 4.9 are trained with max epoch 10 for the BiL-

STM RNN, while the estimates in Figure 4.10 are trained with max epoch 100.

(a) Case 1: large separation distance (b) Case 2: medium separation distance

(c) Case 3: small separation distance

Figure 4.9: TRF estimates using Deep Kalman Filter with max epoch 10

If we trained the network with more epochs, i.e, 100 epochs in this case, the

TRF estimates are more clear and robust as shown in the above figures. Thus, all

the following discussions and results are based on the network trained with max

epoch 100.
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(a) Case 1: large separation distance (b) Case 2: medium separation distance

(c) Case 3: small separation distance

Figure 4.10: Decoder estimate using Deep Kalman Filter with max epoch 100

As stated in the experiment setup, the simulated attention is on speaker 1 for

the first 30 seconds, and on speaker 2 from 30s to 60s. According to our simula-

tion setup, there are supposed to be significant components near the 50ms, 100ms,

150ms lag. In case 1, where the influences of attended and unattended speakers in

the neural response are well separated, we can see that the significant components

are obvious in decoder estimate of speaker 1 for first 30 seconds, and become less

significant in last 30 seconds as the attention switches from speaker 1 to speaker

2. Similarly, after the attention switches to speaker 2, the significant components

of speaker 2 decoder estimates become larger and visible. Therefore, these sig-
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nificant components of decoder estimates are modulated by the attentional states,

where the effects of modulation decrease as the separation between the attended and

unattended speaker decreases. In case 2, one can still see the weakened influence

of the modulation around 30s where the attention is switched, while in case 3 the

modulation effect almost disappears.

(a) Case 1: large separation distance (b) Case 2: medium separation distance

(c) Case 3: small separation distance

Figure 4.11: decoder estimates using RLS

Figure 4.11 is the estimation of the decoder with RLS algorithm. The decoder

estimates using RLS are almost the same as that using deep Kalman filter model.

In case 2, the RLS based decoder estimate of speaker 1 doesn’t have an obvious

change around 30s, where the speaker 1 estimate using deep Kalman filter reflects
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the attention switch. The estimate of speaker 2 using deep Kalman filter also out-

performs that using RLS a little bit around the significant components at 100ms

lag for first 30 seconds. In addition, the RLS based estimator is hard to distinguish

two speakers in case 3, while we can still see some pattern of attention switch using

deep Kalman filter. Therefore, we can say that the deep Kalman filter improves

the TRF estimates in vague cases when the separation between attended and unat-

tended speakers is not that large. This is very useful in the real world settings as

the sound sources may only have small separation.

Figure 4.12 displays the correlation-based attention marker output for both

speakers, and corresponding state space output of them. The first row in Figure

4.12 is the output of a correlation-based attention marker for speaker 1 and 2, which

is calculated as m
(i)
k = |corr(y(i)

k ,Xkθ̂k)
(i)|, where i = 1, 2 denotes the speaker,

k = 1, ..., K is the index of time window. The second row is the output of the

batch mode state-space estimator of the correlation-based attention marker, while

the third row shows the results of the real-time state-space estimator. As expected,

the correlation-based attention marker output of speaker 1 is higher than that of

the speaker 2 in (0s,30s) time interval, while the output of speaker 2 is higher in

(30s,60s) time window. In other words, the behaviour of correlation-based attention

marker can be used to represent the attentional state. However, the accuracy also

decreases as the separation decreases, which reflects the necessity of state-space

model. Comparing the second and third row in Figure 4.12, it is not surprising

to see that the batch mode state-space model gives more robust outputs than the

dynamic state space estimator. The batch-mode estimator has access to all the
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(a) Case 1: large separation distance (b) Case 2: medium separation distance

(c) Case 3: small separation distance

Figure 4.12: Correlation-based attention marker (DKF)

attention markers, while the real-time estimator only refers to a limited number of

attention markers. Therefore, the stochastic fluctuation affects the output of the

real-time state-space model more than that of the batch-mode estimator. However,

the general performance of two state-space models matches each other, except the

fluctuation’s influence on the real-time estimator. The classification accuracy also

decreases as the separation between two speakers decreases. Moreover, the real-time

estimator misclassifies more than the batch-mode state-space does.

Figure 4.13 shows the results of l1 norm based attention marker. In this case,

the attention marker is calculated as the l1 norm of the decoder, i.e., m
(i)
k = ‖θ̂(i)

k ‖1,

where i = 1, 2 is the speaker, and k = 1, .., K denotes the time window. The at-

tended TRF is supposed to exhibit significant and informative components of the
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neural response, while the unattended decoder coefficients is expected to be small

and randomly distributed since it shouldn’t contain much information. The first row

(a) Case 1: large separation distance (b) Case 2: medium separation distance

(c) Case 3: small separation distance

Figure 4.13: l1 norm-based attention marker (DKF)

in Figure 4.12 displays the l1 norm attention marker output, the second row is the

batch-mode state space model output, and the last row is the dynamic state-space

output. Same as the results of correlation based attention marker, the batch-mode

estimator produces more robust output than the real-time estimator does. In addi-

tion, the real-time estimator performs similar to the batch-mode estimator, despite

the stochastic fluctuations of the dynamic state-space model. Also the classifica-

tion accuracy decreases from case 1 to case 3, i.e., as the separation between the

attended and unattended speaker decreases. In general, the correlation based at-

tention marker and the l1 norm based attention marker have similar performance,
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but the estimates are smoother using the l1 norm based attention marker.

All these traits shown in the above results also appear in the results produced

by RLS algorithm as shown in Figure 4.14. The batch-mode state space output and

the real-time estimator output in all three cases, as well as the attention marker

output in the first case, are nearly the same using RLS and deep Kalman filter. The

attention marker output, as we discussed above, can be treated as a representative

of attention state, where the output would be higher when attended. With RLS

algorithm, two speakers have similar output in case 3, but the averaged output of

speaker 2 is higher in last 30 seconds if we use the deep Kalman filter.

(a) Case 1: large separation distance (b) Case 2: medium separation distance

(c) Case 3: small separation distance

Figure 4.14: Correlation-based attention marker (RLS)
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Chapter 5: Discussion

In this thesis, we first discussed the deep Kalman filter model with the key

technique it employed, i.e., a recognition network used as the variational inference

model. Then we gave an overview of the estimation of temporal response functions

and a general framework utilizing the TRF estimates in the real-time tracking of

the selective auditory attention [4].We proposed a new model that replaces the first

module in the general framework with the deep Kalman filter model. The replaced

module is used to estimate the TRFs, while the deep Kalman filter model in our

case is implemented with a two-layer bi-directional LSTM (BiLSTM) RNN and a

multi-layer perceptron with four convolution layers. The performance is validated

on both simulated MEG and EEG data, for the accuracy of TRFs estimates and

the overall classification, respectively.

In the simulated MEG case, the deep Kalman filter implemented in this work

has the highest mean-squared error (MSE), while the conventional Kalman filter

results in the lowest mean-squared error. The RLS algorithm leads to higher MSE

than the linear Kalman filter. The BiLSTM RNN with a linear generative model

will have a MSE curve close to the initialization of its BiLSTM network. Thus, if we

initialized the BiLSTM RNN with the estimation results of the classic Kalman filter,
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then this model will have the second lowest MSE that is almost the same as that of

the linear Kalman filter. Similarly, if we initialized the BiLSTM RNN with the esti-

mation results of the RLS algorithm, then this model will have a mean-squared error

curve almost the same as that of the RLS algoirthm. The only difference between

the deep Kalman filter and the Bi-LSTM RNN with linear generative mdoel is the

prediction step utilizing the TRF estimates. The lower mean-squared error may due

to the stability of the linear mapping. With linear prediction of the observation,

the Bi-LSTM RNN enhances the TRF estimation results compared to RLS if we

initialize the network with TRF estimates from linear Gaussian state-space model.

In the future, we have to further fine-tune the decoding part of the deep Kalman

filter for better estimation.

In the simulated EEG case, the general traits of the output are the same using

RLS algorithm and the deep Kalman filter. More explicitly, both models produce

outputs that are more robust in batch-mode estimator than in real-time estimator,

while the outputs of both estimators have the same trends. In addition, the effect of

attention switch decreases as the separation between the attended and unattended

speaker decreases. However, the modulation effect is clearer in deep Kalman filter

results than in RLS results when the speakers are not well-separated. This result

suggests that utilizing the deep Kalman filter in real-time tracking of the selective

auditory attention may lead to a better performance in the real-world scenarios.
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