
ABSTRACT

Title of Dissertation: Advanced Language-based Techniques
for Correct, Secure Networked Systems

James Parker
Doctor of Philosophy, 2020

Dissertation Directed by: Professor Michael Hicks
Department of Computer Science

Developing correct and secure software is an important task that impacts many

areas including finance, transportation, health, and defense. In order to develop se-

cure programs, it is critical to understand the factors that influence the introduction

of vulnerable code. To investigate, we developed and ran the Build-it, Break-it, Fix-

it (BIBIFI) security-oriented programming contest as a quasi-controlled experiment.

BIBIFI aims to assess the ability to securely build software, not just break it. In

BIBIFI, teams build specified software with the goal of maximizing correctness,

performance, and security. The latter is tested when teams attempt to break other

teams’ submissions. Winners are chosen from among the best builders and the best

breakers. BIBIFI was designed to be open-ended—teams can use any language,

tool, process, etc. that they like. As such, contest outcomes shed light on fac-

tors that correlate with successfully building secure software and breaking insecure

software. We ran three contests involving a total of 156 teams and three differ-

ent programming problems. Quantitative analysis from these contests found that

the most efficient build-it submissions used C/C++, but submissions coded in a

statically-typed language were less likely to have a security flaw. Break-it teams

that were also successful build-it teams were significantly better at finding security

bugs.

The contest results showed that programmers make mistakes in both the de-

sign and implementation of their programs in ways that make it vulnerable. To

mitigate these issues, we advanced the state of the art in language-integrated tech-

niques for security enforcement, including formal methods. First we created LWeb,

a tool for enforcing label-based, information flow policies in database-using web ap-

plications. In a nutshell, LWeb marries the LIO Haskell IFC enforcement library with

the Yesod web programming framework. The implementation has two parts. First,

we extract the core of LIO into a monad transformer (LMonad) and then apply it

to Yesod’s core monad. Second, we extend Yesod’s table definition DSL and query

functionality to permit defining and enforcing label-based policies on tables and

enforcing them during query processing. LWeb’s policy language is expressive, per-

mitting dynamic per-table and per-row policies. We formalize the essence of LWeb

in the λLWeb calculus and mechanize the proof of noninterference in Liquid Haskell,

an extension of Haskell that adds refinement types to the language. This mecha-

nization constitutes the first metatheoretic proof carried out in Liquid Haskell. We

also used LWeb to build the web site hosting BIBIFI. The site involves 40 data tables

and sophisticated policies. Compared to manually checking security policies, LWeb

imposes a modest runtime overhead of between 2% to 21%. It reduces the trusted

code base from the whole application to just 1% of the application code, and 21%

of the code overall (when counting LWeb too).

Finally, we further advance the capabilities of Liquid Haskell by using it to

verify the correctness of distributed applications based on conflict-free replicated data

types (CRDTs). To do so, we add an extension to Liquid Haskell that facilitates

stating and semi-automatically proving properties of typeclasses. Our work allows

refinement types to be attached to typeclass method declarations, and ensures that

instance implementations respect these types. The engineering of this extension is

a modular interaction between GHC, the Glasgow Haskell Compiler, and Liquid

Haskell’s core proof infrastructure. To verify CRDTs, we define them as a typeclass

with refinement types that capture the mathematical properties CRDTs must satisfy,

prove that these properties are sufficient to ensure that replicas’ states converge

despite out-of-order delivery, implement (and prove correct) several instances of

our CRDT typeclass, and use them to build two realistic applications, a multi-user

calendar event planner and a collaborative text editor. In addition, we demonstrate

the utility of our typeclass extension by using Liquid Haskell to modularly verify

that 34 instances satisfy the laws of five standard typeclasses.

Advanced Language-based Techniques for
Correct, Secure Networked Systems

by

James Parker

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Michael Hicks, Chair/Advisor
Dr. Niki Vazou
Professor Michelle Mazurek
Professor David Mount
Professor Lawrence Washington

c© Copyright by
James Parker

2020

Acknowledgments

There are numerous people in my life who have helped make this dissertation

possible. First, I would like to thank my advisor, Michael Hicks who has been an

invaluable mentor and supporter of my research. In addition to everything he’s

taught me academically, he has served as a role model. It is obvious how much he

cares for his students, and he always aims to do what is best.

During her time as a postdoctoral researcher at the University of Maryland,

Niki Vazou exposed me to the wonderful world of Liquid Haskell. I believe it has

the potential to become a tool that is used to formally verify programs on a larger

scale outside of academia. With her guidance, we have taken some of the first steps

towards this goal. I have enjoyed working on many interesting problems with all

of my collaborators including Yiyun Liu, Andrew Ruef, Michelle Mazurek, Daniel

Votipka, Kelsey Fulton, Phúc Nguyễn, Piotr Mardziel, Dave Levin, Patrick Red-

mond, Lindsey Kuper, and Matthew Hou. I hope that we continue to work together

in the future.

Finally, I would not be here without the love and support of my family. My

parents built a strong foundation for me growing up. My brother and I foster a

competitive environment that drives us to constantly improve. My wife has stood

by my side and encouraged me throughout my journey through graduate school.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables vi

List of Figures vii

List of Abbreviations ix

Chapter 1:Introduction 1
1.1 Background on Liquid Haskell . 7

Chapter 2:Build It, Break It, Fix It: Contesting Secure Development 11
2.1 Introduction . 11

2.1.1 Acknowledgements . 14
2.2 Build-it, Break-it, Fix-it . 15

2.2.1 Competition phases . 16
2.2.2 Competition scoring . 18
2.2.3 Discussion . 23
2.2.4 Implementation . 26

2.3 Contest Problems . 29
2.3.1 Secure Log . 29
2.3.2 ATM . 33
2.3.3 Multiuser DB . 37

2.4 Build-it Submissions: Successes and Failures 42
2.4.1 Failure Stories . 43
2.4.2 Success Stories . 46

2.5 Quantitative Analysis . 47
2.5.1 Data collection . 48
2.5.2 Analysis approach . 49
2.5.3 Contestants . 50
2.5.4 Ship scores . 51
2.5.5 Resilience . 57
2.5.6 Presence of security bugs . 61
2.5.7 Breaking success . 65

iii

2.5.8 Model differences . 72
2.5.9 Summary . 73

2.6 Related work . 74
2.7 Conclusion . 78

Chapter 3:LWeb: Information Flow Security for Multi-tier Web Ap-
plications 80

3.1 Introduction . 80
3.1.1 Acknowledgements . 84

3.2 Overview . 84
3.2.1 Label-Based Information Flow Control with LIO 85
3.2.2 Yesod . 87
3.2.3 LWeb: Yesod with LIO . 89

3.3 Mechanizing Noninterference of LIO in Liquid Haskell 93
3.3.1 Security Lattice as a Type Class 93
3.3.2 λLIO : Syntax and Semantics 95
3.3.3 Noninterference . 99

3.4 Label-based Security for Database Operations 104
3.4.1 Database Definition . 104
3.4.2 Querying the Database . 106
3.4.3 Monadic Database Queries . 108
3.4.4 Noninterference . 113

3.5 Liquid Haskell for Metatheory . 115
3.5.1 Advantages . 116
3.5.2 Disadvantages . 118

3.6 Implementation . 119
3.6.1 Extensions . 119
3.6.2 Trusted Computing Base . 122

3.7 The BIBIFI Case Study . 123
3.7.1 BIBIFI Labels . 123
3.7.2 Users and Authentication . 124
3.7.3 Opening the Contest . 125
3.7.4 Teams and Declassification . 126
3.7.5 Breaks and Advanced Queries 128

3.8 Experimental Evaluation . 129
3.8.1 Trusted Computing Base of BIBIFI 129
3.8.2 Running Time Overhead . 129

3.9 Quantifying Information Flow . 131
3.10 Related Work . 135
3.11 Conclusion . 140

Chapter 4:Verifying Replicated Data Types with Typeclass Refine-
ments in Liquid Haskell 146

4.1 Introduction . 146
4.1.1 Acknowledgements . 151

iv

4.2 Typeclasses in Liquid Haskell . 152
4.2.1 Refinement Types for Typeclasses 152
4.2.2 Verifying Laws of Standard Typeclass Instances 157

4.3 Implementing Typeclass Refinements 158
4.3.1 GHC Typeclass Elaboration 161
4.3.2 Interaction with GHC . 163
4.3.3 Reasoning About Coherence 168

4.4 Case Study: Verified Replicated Data Types 172
4.4.1 Background: Conflict-free Replicated Data Types (CRDTs) . . 172
4.4.2 Verifying CRDTs with Typeclass Refinements 174
4.4.3 Proofs . 181
4.4.4 Verifying CRDT Semantics . 182
4.4.5 Applications . 184

4.5 Related Work . 187
4.5.1 Verification of Haskell’s Typeclass Laws 187
4.5.2 Type System Expressiveness vs. Coherence of Elaboration . . 189
4.5.3 Verifying Replicated Data Types 190

4.6 Conclusion . 193

Chapter 5:Conclusion 195
5.1 Future Work . 196

v

List of Tables

2.1 Example scoring results for a three-team contest with one optional
test and one performance test (M = 50). Bugs S1 and S2 are security
vulnerabilities; bug C is a correctness bug. 22

2.2 Contestants, by self-reported country. 51
2.3 Demographics of contestants from qualifying teams. Some partici-

pants declined to specify gender. 52
2.4 Factors and baselines for build-it models. 54
2.6 Break-it teams in each contest submitted bug reports, which were

judged by the automated oracle. Build-it teams then submitted fixes,
each of which could potentially address multiple bug reports. 57

2.7 Final logistic model measuring log-likelihood of the discovery of a
security bug in a team’s submission. Nagelkerke R2 = 0.619. 62

2.8 The number and percentage of teams that had different types of se-
curity bugs by language category. Percentages are relative to total
submissions in that language category, across all contests. Integrity,
confidentiality, and availability bugs were not distinguished for the
Multiuser DB problem during that contest. We group them in their
own column. 64

2.9 Factors and baselines for break-it models. 66
2.10 Final linear regression model of teams’ break-it scores, indicating how

many points each selected factor adds to the total score. R2 = 0.15. 67
2.11 Final linear regression modeling the count of security bugs found by

each team. Coefficients indicate how many security bugs each factor
adds to the count. R2 = 0.203. 70

3.1 Latency comparison between the Vanilla and LWeb implementations
of the BIBIFI application. The mean, standard deviation, and tail
latency in milliseconds over 1,000 trials are presented. In addition,
the response size in kilobytes and the overhead of LWeb are shown. . 130

4.1 Total lines of proofs for each typeclass instance and the average ver-
ification time in seconds. Each reported time covers the laws on its
row and those on the following rows up to the next reported time. . . 160

4.3 Total lines of proofs for each typeclass instance and the average ver-
ification time in seconds. Verifications times for lawCommut and
lawCompatCommut are combined. 183

vi

List of Figures

1.1 Haskell’s list head and append (++) functions augmented with re-
finement types to capture pre- and post-conditions; and lAssoc, a
statement and proof that append is associative. 8

2.1 Overview of BIBIFI’s implementation. 26
2.2 MITM replay attack. 35
2.3 Grammar for the Multiuser DB command language as BNF. Here, x

and y represent arbitrary variables; p and q represent arbitrary prin-
cipals; and s represents an arbitrary string. Commands submitted to
the server should match the non-terminal <prog>. 38

2.6 Final resilience scores, ordered by team, and plotted for each contest
problem. Build-it teams who did not bother to fix bugs generally had
lower scores. 60

2.8 Scores of break-it teams prior to the fix-it phase, broken down by
points from security and correctness bugs. The final score of the
break-it team (after fix-it phase) is noted as a dot. Note the different
ranges in the y-axes. In general, the Secure Log contest had the least
proportion of points coming from security breaks. 69

2.9 Count of security bugs found by each break-it team, organized by
contest and whether the team also participated in build-it. The heavy
vertical line in the box is the median, the boxes show the first and
third quartiles, and the whiskers extend to the most outlying data
within ±1.5× the interquartile range. Dots indicate further outliers. 71

3.1 Structure of LWeb. 85
3.2 The Label class . 85
3.3 Example LWeb database table definition. The green is Yesod syntax

and the blue is the LWeb policy. 88
3.4 Label type class extended with law* methods to define the lattice

laws as refinement types. 94
3.5 Syntax of λLIO . 96
3.6 Operational semantics of λLIO . 141
3.7 Simulation between eval and ε l . eval. 142
3.8 Definition of λLWeb database . 142
3.9 Extension of programs and terms with a database. 142
3.10 Evaluation of monadic database terms. 143

vii

3.11 Erasure of programs and databases. 144
3.12 BIBIFI labels. 144
3.13 Basic BIBIFI User table. 144
3.14 Table UserInfo contains additional BIBIFI user information. 144
3.15 Definition of Announcement, Team, and TeamMember tables and their

policies. 145
3.16 Definition of BreakSubmission table and its policy. 145
3.17 Throughput (req/s) of the Vanilla and LWeb versions of the BIBIFI

application. 145

4.1 Typeclasses with Refinement Types 152
4.2 Typeclass definitions for Functor, Applicative, and Monad and their

associated laws. 159
4.3 Changes to Liquid Haskell’s architecture. 165
4.4 Definition of the VRDT typeclass and its Max instance 175
4.5 Implementation of TwoPMap . 178
4.6 Data type for a calendar event that is made up of VRDTs. 180
4.7 Denotational semantics of Multiset. 184

viii

List of Abbreviations

AES Advanced Encryption Standard
AIC Akaike Information Criterion
API Application Programming Interface
ATM Automated Teller Machine

BIBIFI Build-it Break-it Fix-it

CRDT Conflict-free Replicated Data Types
CTF Capture the Flag
CVE Common Vulnerabilities and Exposures

DB Database
DSL Domain Specific Language

FRP Functional Reactive Programming

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

IFC Information Flow Control
IO Input Output

JSON JavaScript Object Notation

LH Liquid Haskell
LIO Labeled IO
LSP Language Server Protocol

MITM Man in the middle
MOOC Massive Open Online Courses

NSF National Science Foundation

PKI Public Key Infrastructure
PLE Proof by Logical Evaluation

SEC Strong Eventual Consistency
SMT Satisfiability Modulo Theories
SQL Structured Query Language

ix

SSL Secure Sockets Layer

TCB Trusted Computing Base

VRDT Verified Replicated Data Types

x

Chapter 1: Introduction

Having a reliable means to build secure software has been a goal since at least

the seminal work of Saltzer and Schroeder [1]. Unfortunately, software bugs and

vulnerabilities are still rampant decades later. According to MITRE’s common vul-

nerabilities and exposures (CVE) database [2], tens of thousands of vulnerabilities

are publicly disclosed annually. Insecure code has negative reprecussions in many

areas including finance, transportation, health, and defense. Failure to secure buggy

programs can lead to service downtime, hardware failure, and compromised sensi-

tive information. Such events have real world consequences, risking money, time,

and even life. In this dissertation, we investigate factors that influence secure devel-

opment practices and explore techniques for building correct and secure networked

systems.

Programming language-based techniques have the potential to improve the

quality of software. To investigate this potential, we ran the Build-it, Break-it,

Fix-it (BIBIFI) contest as a quasi-controlled experiment (Chapter 2). We aimed to

understand how programming language-based techniques and other factors influence

the introduction of incorrect, vulnerable code. BIBIFI’s objective is to assess the

ability to securely build software, not just break it.

1

There are three rounds in a BIBIFI contest. During the first round, called

Build-it, small development teams are given a problem specification with security

requirements, and the teams write software that satisfies the specification. The pro-

grams they submit are evaluated based on correctness, efficiency, and featurefulness.

In the second, Break-it, round, teams are given the source code of other contestants

and tasked with identifying bugs and vulnerabilities in the other teams’ build-it

code. Defects are demonstrated with test cases that are evaluated against the tar-

get implementation and an oracle implementation. Attacking teams gain break-it

points for successful breaks, while target teams lose build-it points for breaks against

their code. Build-it and break-it scores are independent, and top performers in each

category receive prizes. In the last, Fix-it, round, builders can fix the bugs sub-

mitted against them, allowing them to recover some of the redundantly lost points

when multiple breaker teams attacked the same bug.

BIBIFI’s structure and scoring system aim to encourage meaningful outcomes,

e.g., to ensure that top-scoring build-it teams really produce secure and efficient

software. For example, break-it teams may submit a limited number of bug reports

per build-it submission, and they will lose points during fix-it for test cases that

expose the same underlying defect or a defect also identified by other teams. As

such, they are encouraged to look for bugs broadly (in many submissions) and deeply

(to uncover hard-to-find bugs).

We held three contests with 156 participating teams and three different prob-

lem specifications. Quantitative analysis on data from the contests unveiled sta-

tistically significant effects. For build-it scores: Writing code in C/C++ increased

2

build-it scores initially, but also increased chances of a security bug being found

later; C/C++ programs were 11× more likely to have a reported security bug than

programs written in a statically type-safe language. Considering break-it scores:

Larger teams found more bugs during the break-it phase, and teams that also qual-

ified during the build-it phase found more security bugs than those that did not.

Other trends emerged, but did not reach significance. Build-it teams with more

developers tended to produce more secure implementations. More programming

experience was helpful for breakers.

Evidence from the BIBIFI competition shows that properties of programming

languages do impact the security of software. Supported by this result, we investi-

gated more advanced language-based techniques that improve software correctness

and security. Specifically, we used Liquid Haskell [3] to verify correctness and se-

curity properties about programs. Liquid Haskell is a relatively recent verification

tool that extends the Haskell [4, 5] programming language with refinement types.

There are many other language-based verifications tools like F? [6, 7], which also

uses refinement types, while Coq [8, 9], Isabelle [10], Idris [11], Agda [12, 13], and

Lean [14] are dependently-typed languages. Liquid Haskell is particular promising

in being applicable to the real world programs since it verifies Haskell code, which

is used both in research and industry. In addition, it provides proof automation for

the user by leveraging SMT solvers and implmenting a technique called proof by

logical evaluation (PLE). A contribution of the work in this dissertation is as the

first significant verification efforts in Liquid Haskell.

3

Language-based Information Flow Policy Enforcement with LWeb. We created LWeb,

a tool that protects the confidentiality and integrity of data in modern web appli-

cations (Chapter 3). Traditional ad hoc enforcement mechanisms such as (manual)

access control may fail to block illicit information flows between components, e.g.,

from database to server to client. LWeb guarantees that such flows cannot occur by

dynamically and automatically enforcing information flow control (IFC) [15] poli-

cies.

LWeb is an extension of an existing Haskell language framework called LIO [16].

LIO works by dynamically tracking a current label that represents the security label

of all values read during the current computation. Labels are lattice ordered (as is

typical [17]), with the degenerate case being a secret (high) label and public (low)

one. If data is ever written to a channel that is lower than the current label, LIO

halts execution which prevents leaks of sensitive information. LWeb extends LIO with

support for database transactions. Each table has a label that protects its length.

In addition, each row may have a more refined policy to protect its contents. The

label for a field in a row may be specified as a function of other fields in the same

row. This allows, for example, having a row specifying a user and some sensitive

user data; the former can act as a label to protect the latter.

We implemented LWeb as a Haskell library that integrates with the Yesod web

programming framework. LWeb dynamically tracks the current label in a monad

transformer called LMonad so that it can be layered on top of arbitrary monadic

computations. To integrate with Yesod, we apply LMonad on top of the monad

that handles HTTP requests and runs database transactions. Then we extended

4

Yesod’s database API to permit defining label-based information flow policies on

user-defined database schemas. Finally, we insert IFC checks into SQL queries to

ensure that information flow policies are enforced.

To guarantee that the IFC checks we perform for database transactions are

correct, we formalize LWeb in Liquid Haskell and prove that it enjoys noninterference.

This mechanization constitutes the largest-ever development in Liquid Haskell and

is the first Liquid Haskell application to prove a language metatheory.

To evaluate LWeb, we integrated LWeb into the BIBIFI contest infrastructure

as a case study. Porting the BIBIFI codebase to use LWeb reduced the trusted

computing base of the entire application to just 80 lines of its code (1%) plus the

LWeb codebase (for a total of 21%). LWeb imposes modest overhead on BIBIFI query

latencies—experiments show between 2% and 21%.

Verifying the Correctness of Replicated Data Types. We would like to verify that

the implementation of LWeb is correct, but doing so required further extensions to

Liquid Haskell. To help develop these, we turned our attention to a different veri-

fication effort. The final advanced language-based technique we developed verifies

the correctness of distributed applications based on replicated data types (RDTs)

(Chapter 4). Replication is ubiquitous in distributed systems to guard against ma-

chine failures and keep data physically close to clients who need it, but it introduces

the problem of keeping replicas consistent with one another in the face of network

partitions and unpredictable message latency. RDTs are data structures whose oper-

ations must satisfy certain mathematical properties that can be leveraged to ensure

5

strong convergence [18], meaning that replicas are guaranteed to have equivalent

state given that they have received and applied the same unordered set of update

operations. Specifically, operations on RDTs must be commutative in order to con-

verge.

It is natural to define RDTs using typeclasses [19], which are used extensively

throughout the Haskell ecosystem. A typeclass definition specifies a type construc-

tor and a collection of method declarations over that type. A typeclass instance

defines an implementation of that constructor and those methods. This allows mul-

tiple data types, or instances, to provide a uniform, modular interface similar to

traits in Rust or interfaces in Java. Unfortunately, Liquid Haskell cannot verify

properties of typeclasses.

To remedy this situation, we extended Liquid Haskell with support for type-

classes. Liquid Haskell now has the ability to state properties about typeclasses

using refinement types and prove that instances satisfy those properties.

With Liquid Haskell’s ability to reason about typeclasses, we define RDTs with

a typeclass called VRDT. Refinement types on VRDT encode the necessary properties of

RDTs including commutativity. We implement several primitive instances and prove

that they satisfy the VRDT properties. We also defined several larger VRDT instances

by modularly combining both the code and proofs of smaller ones. We state and

prove, in Liquid Haskell, the strong convergence property that VRDT instances enjoy.

Our VRDT instances are sufficiently expressive that with them we were able to build

a shared calendar event planner, and also a collaborative text editor, though the

latter relies on a VRDT we have not yet fully verified, but expect to. Because Liquid

6

Haskell is an extension of standard Haskell, our applications are real, running Haskell

applications, but now with mechanically verified RDT implementations.

In this dissertation, we investigate the thesis that programming language-based

techniques can be used to improve the correctness and security of programs. Results

from the BIBIFI competition provide evidence that software written in statically-

typed programming languages are less likely to have a security bug present. The

LWeb tool uses dynamic enforcement to prevent illicit information flows in database-

backed applications to preserve confidentiality and integrity. Furthermore, the mech-

anization of its meta-theory uncovered bugs in the original implementation, improv-

ing its reliability. To ensure that RDTs in distributed applications converge, we

implement several VRDT instances and prove that they satisfy their required commu-

tativity properties. To do so, we extend Liquid Haskell with the ability to augment

typeclasses with refinement types and verify that instances satisfy the refinement

types.

1.1 Background on Liquid Haskell

Liquid Haskell [3, 20] is an SMT-based refinement type checker for Haskell

programs. Liquid Haskell permits refinement type specifications on Haskell source

code. It converts the code into SMT queries to validate that the code satisfies the

specifications.

A refinement type augments a base type T with a predicate φ that restricts

the set of valid values [21, 22, 23]. In Liquid Haskell, a refinement type has the form

7

head :: {xs:[a] | length xs > 0} → a
head (h:_) = h

(++) :: xs:[a] → ys:[a] → { v:[a] | length v == length xs +
length ys }

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

lAssoc :: x:[a] → y:[a] → z:[a] → { x ++ (y ++ z) == (x ++ y) ++
z }

lAssoc [] _ _ = ()
lAssoc (_:x) y z = lAssoc x y z

Figure 1.1: Haskell’s list head and append (++) functions augmented with refine-
ment types to capture pre- and post-conditions; and lAssoc, a statement and proof
that append is associative.

{ x:T | φ }—the base type T is refined according to predicate φ, which may refer

to values of the base type via the variable x (if it appears free in φ). For example, a

refinement type for positive integers would be { x:int | x > 0 }, i.e., φ = x > 0.

In Figure 1.1, the function head uses this kind of refinement on the type of

its input list xs, stating the precondition that the list’s length be positive. This

refinement thus prevents calling head with a possibly empty list, thus precluding

the exception that could otherwise result.

Also in the figure we see code for Haskell’s standard list append operator,

(++), which uses a refinement to state a postcondition. The (standard) code states

that appending an empty list [] with a list ys yields ys (line 2), while appending

a non-empty list (with a head element x and a tail xs) with a list ys is the result

of cons’ing x to the front of xs appended to ys (line 3). The refinement type states

that the output list’s length is equal to the sum of the lengths of the input lists. The

8

refinement type predicate is able to refer to the function’s inputs via names xs and

ys, which annotate the parameters’ types. Liquid Haskell proves that postconditions

such the one on (++) hold by generating appropriate verification conditions from

the code and delegating to an SMT solver (in particular, Z3 [24]); we say more on

this below.

In the refinement types of head and (++), length refers to the Haskell length

function on lists. Such references to normal language terms are lifted into the

refinement logic through a process called refinement reflection [25]. Refinement

reflection uses the definitions of Haskell’s functions to generate singleton refinement

types that precisely describe the result of the function. To ensure soundness of type

checking, only provably terminating functions can be reflected.

Refinement reflection makes it possible to write and mechanically verify proofs

of independent, general properties, e.g., involving many functions and not just a

single one. These are called extrinsic properties, as they are written externally to

any particular function’s definition, as opposed to intrinsic properties like the ones

on head and (++). For example, lAssoc in Figure 1.1 is an extrinsic property (and

proof) that append is associative. The property is the type, which states that for

all lists x, y, z we have that x ++ (y ++ z) equals (x ++ y) ++ z. Note that the

postcondition of lAssoc is equivalent to { v:unit | x ++ (y ++ z) == (x ++

y) ++ z }—the v:unit part is dropped since there is no need to name the result,

which is not mentioned in the predicate.

Proofs of extrinsic properties are themselves Liquid Haskell definitions whose

type is the desired property. The proof in our example is the body of lAssoc ,

9

which expresses that the property holds by induction—the base case is for [] and

the recursive case is for (_:x) y z. In the base case, there is nothing specific the

programmer has to write other than (), the “return type” of the property. For the

recursive case, the inductive argument occurs by referring to the property on the

strictly smaller input x y z (rather than (_:x) y z). This proof follows a stan-

dard formula [26] in which the handwritten part shown here provides the structure,

and the proof details are filled in using a combination of PLE (Proof by Logical

Evaluation) [25, 27], which automates function unfolding, and SMT solving, which

automates reasoning over specific theories (e.g., equality and linear arithmetic).

Both strategies preserve decidable type checking. Such automation helps make it

possible to write substantial proofs in Liquid Haskell. Proofs can also be done by

hand, as needed/desired [26].

Liquid Haskell’s implementation is simplified by making use of GHC, the Glas-

gow Haskell Compiler [28], to partially evaluate programs. Liquid Haskell first parses

refinement types, which are written in the comments of normal Haskell code. Then

it passes the Haskell code to GHC, and receives back the code as Core, which is

GHC’s simplified intermediate language. Liquid Haskell lifts the Core output into

the refinement logic using refinement reflection. Finally, it converts the refinement

types and corresponding Core output into SMT-LIB2 queries [29] which can auto-

matically be verified by Z3. If any queries are invalid, Liquid Haskell reports an

error message to the user.

10

Chapter 2: Build It, Break It, Fix It: Contesting Secure Develop-

ment

2.1 Introduction

Security competitions [30, 31, 32, 33, 34] are popular events that allow cy-

bersecurity experts to demonstrate their abilities. These contests emphasize testing

skills related to breaking systems (e.g., exploiting vulnerabilities or misconfigura-

tions) and mitigating vulnerabilties (e.g., rapid patching or reconfiguration). They

do not test participants’ ability to build (i.e., design and implement) systems that

are secure. In traditional programming competitions [35, 36, 37], contestants im-

plement solutions to given problem specifications. Submissions are evaluated on

correctness and performance, but not typically security. This existing landscape of

security and programming competitions is unfortunate because at least as far back

as Saltzer and Schroeder [1], experts have argued that security must be treated as

a first-order design goal and cannot easily be added to an existing system. There is

no a priori reason to assume that skilled breakers produce quality code [38] or that

successful programmers build secure software.

Build-it, Break-it, Fix-it (BIBIFI) is a new security contest focused on

11

building secure systems. In BIBIFI, teams build specified software with the goal of

maximizing correctness, performance, and security. The latter is tested when teams

attempt to break other teams’ submissions. Winners are chosen from among the

best builders and the best breakers. BIBIFI was designed to be open-ended—teams

can use any language, tool, process, etc. that they like. As such, contest outcomes

shed light on factors that correlate with successfully building secure software and

breaking insecure software. Quantitative analysis from these contests found that

the most efficient build-it submissions used C/C++, but submissions coded in a

statically-typed language were less likely to have a security flaw. Break-it teams

that were also successful build-it teams were significantly better at finding security

bugs.

We held three BIBIFI contests during 2015 and 2016, involving three different

programming problems. For the first contest, participants built a secure, append-

only log of an art gallery’s security system. Movement between rooms of the art

gallery were recorded, allowing administrators to query the locations of staff and

guests. Attackers that do not know a required “authentication token” must be pre-

vented from reading or modifying the data contained in the log. In the second con-

test, contestants implemented a pair of secure, communicating programs that model

an ATM client communicating with a bank server. Man in the middle (MITM) at-

tackers must not be able to intercept personal information (e.g., bank account names

or balances) or corrupt account balances.1 The third contest required participants to

build a access-controlled, multiuser data server that protects the data of users. Users

1Such attacks are realistic in practice, as detailed in a 2018 analysis of actual ATMs [39].

12

are authenticated via password checking, and access control with delegation restricts

how data is read and modified. All contests drew participants from a MOOC (Mas-

sive Online Open Courseware) course on cybersecurity. MOOC participants had an

average of 10 years of programming experience and had just completed a four-course

sequence including courses on secure software and cryptography. The second and

third contests also involved graduate and undergraduate students with less experi-

ence and training. The first contest had 156 MOOC participants (comprising 68

teams). The second contest was composed of 122 MOOC participants (comprising

41 teams) and 23 student participants (comprising 7 teams). The last contest had 68

MOOC participants (comprising 25 teams) and 37 student participants (comprising

15 teams).

BIBIFI’s design aims to minimize the manual effort of running a contest, help-

ing it scale. During the first contest, one person was dedicated to running the contest

full-time, and two people served as judges part-time. There were over one hundred

participants in this contest, and they submitted over 20,000 test cases. Despite

this, effort by organizers was minimal. They only needed to make sure the infras-

tructure was running smoothly and judge whether a few hundred submitted fixes

addressed only a single conceptual defect. Other tasks were handled automatically

or by contestants themselves.

To understand what influenced success or failure, we manually inspected build-

it submissions and break-it test cases. Teams that performed well during build-it

usually used third-party libraries—e.g., SSL, NaCL, and BouncyCastle—for cryp-

tographic functionality. Team that produced vulnerable submissions made mis-

13

takes including failing to use cryptography, implementing cryptography incorrectly,

not using enough randomness, and not authenticating messages. Sucessful break-it

teams uncovered ingenuitous techniques for exploiting vulnerabilities. For instance,

some teams took advantage of side channels in their MITMs to uncover secret in-

formation.

This work makes two main contributions. First, it presents BIBIFI, a secure

programming contest that encourages building, not just breaking software. Sec-

ond, it offers details on three BIBIFI contests, including insights into successes and

failures of participants and a quantitative analysis on data from the contests. The

chapter is organized as follows. We present the design of BIBIFI in §2.2 and describe

specifics of the contests we ran in §2.3. We present success and failure stories of

contestants in §2.4 and a quantitative analysis of the data we collected in §2.5. We

review related work in §2.6 and conclude in §2.7. Information, data, and opportuni-

ties to participate are available at https://builditbreakit.org and the BIBIFI

codebase is at https://github.com/plum-umd/bibifi-code.

2.1.1 Acknowledgements

Most of the work presented in this chapter previously appeared in peer-reviewed

publications [40, 41, 42, 43] and has been a collaboration between Andrew Ruef,

Michael Hicks, Michelle Mazurek, Dave Levin, Daniel Votipka, Kelsey Fulton, Matthew

Hou, Piotr Mardziel, and Phúc Nguyễn. Andrew initially came up with the idea

for the contest, and Andrew, Mike, and I flushed out the design of the contest. I

14

https://builditbreakit.org
https://github.com/plum-umd/bibifi-code

implemented the majority of the contest infrastructure. Phúc helped rewrite the

latest version of the codebase to combine the Break-it and Fix-it rounds.

We thank Jandelyn Plane and Atif Memon who contributed to the initial de-

velopment of BIBIFI and its preliminary data analysis. Many people in the security

community, too numerous to list, contributed ideas and thoughts about BIBIFI dur-

ing its development—thank you! Manuel Benz, Martin Mory, Luke Valenta, Matt

Blaze, Philip Ritchey, Aymeric Fromherz, Lujo Bauer, and Bryan Parno ran the

contest at their universities and tested the infrastructure. Bobby Bhattacharjee

and anonymous reviewers provided helpful comments on drafts of this work. This

project was supported with gifts from Accenture, AT&T, Booz Allen Hamilton,

Galois, Leidos, Patriot Technologies, NCC Group, Trail of Bits, Synposis, ASTech

Consulting, Cigital, SuprTek, Cyberpoint, and Lockheed Martin; by a 2016 Google

Faculty Research Award; by grants from the NSF under awards EDU-1319147 and

CNS-1801545; by DARPA under contract FA8750-15-2-0104; and by the U.S. De-

partment of Commerce, National Institute for Standards and Technology, under

Cooperative Agreement 70NANB15H330.

2.2 Build-it, Break-it, Fix-it

This section describes the goals, design, and implementation of the BIBIFI

competition. At the highest level, our aim is to create an environment that closely

reflects real-world development goals and constraints, and to encourage build-it

teams to write the most secure code they can, and break-it teams to perform the

15

most thorough, creative analysis of others’ code they can. We achieve this through

a careful design of how the competition is run and how various acts are scored (or

penalized). We also aim to minimize the manual work required of the organizers—

to allow the contest to scale—by employing automation and proper participant

incentives.

2.2.1 Competition phases

We begin by describing the high-level mechanics of a BIBIFI competition.

BIBIFI may be administered online, rather than on-site, so teams may be geograph-

ically distributed. The contest comprises three phases, each of which last about two

weeks for the contests we describe in this work.

BIBIFI begins with the build-it phase. Registered contestants aim to im-

plement the target software system according to a published specification created

by the contest organizers. A suitable target is one that can be completed by good

programmers in a short time (just about two weeks, for the contests we ran), is

easily benchmarked for performance, and has an interesting attack surface. The

software should have specific security goals—e.g., protecting private information or

communications—which could be compromised by poor design and/or implementa-

tion. The software should also not be too similar to existing software to ensure that

contestants do the coding themselves (while still taking advantage of high-quality

libraries and frameworks to the extent possible). The software must build and run

on a standard Linux VM made available prior to the start of the contest. Teams

16

must develop using Git [44]; with each push, the contest infrastructure downloads

the submission, builds it, tests it (for correctness and performance), and updates the

scoreboard. §2.3 describes the three target problems we developed: (1) an append-

only log (aka, Secure Log), (2) a pair of communicating programs that simulate a

bank and ATM (aka, ATM), and (3) a multi-user data server with custom access

control policies (aka, Multiuser DB).

The next phase is the break-it phase. Break-it teams can download, build,

and inspect all qualifying build-it submissions, including source code; to qualify,

the submission must build properly, pass all correctness tests, and not be purposely

obfuscated (accusations of obfuscation are manually judged by the contest organiz-

ers). We randomize each break-it team’s view of the build-it teams’ submissions,

but organize them by meta-data, such as programming language used. (Randomiza-

tion aims to encourage equal scrutiny of submissions by discouraging break-it teams

from investigating projects in the same order.) When they think they have found

a defect, breakers submit a test case that exposes the defect and an explanation of

the issue. We impose an upper bound on the number of test cases a break-it team

can submit against a single build-it submission, to encourage teams to look at many

submissions. BIBIFI’s infrastructure automatically judges whether a submitted test

case truly reveals a defect. For example, for a correctness bug, it will run the test

against a reference implementation (“the oracle”) and the targeted submission, and

only if the test passes on the former but fails on the latter will it be accepted. Teams

can also earn points by reporting bugs in the oracle, i.e., where its behavior con-

tradicts the written specification; these reports are judged by the organizers. More

17

points are awarded to clear security problems, which may be demonstrated using

alternative test formats. The auto-judgment approaches we developed for the three

different contest problems are described in §2.3.

The final phase is the fix-it phase. Build-it teams are provided with the

bug reports and test cases implicating their submission. They may fix flaws these

test cases identify; if a single fix corrects more than one failing test case, the test

cases are “morally the same,” and thus points are only deducted for one of them.

The organizers determine, based on information provided by the build-it teams and

other assessment, whether a submitted fix is “atomic” in the sense that it corrects

only one conceptual flaw; if not, the fix is rejected.

Once the final phase concludes, prizes are awarded to the builders and breakers

with the best scores, as determined by the scoring system described next.

2.2.2 Competition scoring

BIBIFI’s scoring system aims to encourage the contest’s basic goals, which are

that the winners of the build-it phase truly produced the highest quality software,

and that the winners of the break-it phase performed the most thorough, effective

analysis of others’ code. The scoring rules, and the fact that scores are published

in real time while the contest takes place, create incentives for good behavior (and

disincentives for bad behavior).

18

2.2.2.1 Build-it scores

To reflect real-world development concerns, the winning build-it team would

ideally develop software that is correct, secure, featureful, and efficient. While

security is of primary interest to our contest, developers in practice must balance

other aspects of quality against security [45, 46], creating trade-offs that cannot be

ignored if we wish to motivate realistic developer decision-making.

As such, each build-it team’s score is the sum of the ship score2 and the

resilience score. The ship score is composed of points gained for correctness tests

and performance tests. Each mandatory correctness test is worth M points, for

some constant M , while each optional correctness test is worth M/2 points. Each

performance test has a numeric measure depending on the specific nature of the

programming project—e.g., latency, space consumed, files left unprocessed—where

lower measures are better. A test’s worth is M · (worst − v)/(worst − best), where

v is the measured result, best is the measure for the best-performing submission,

and worst is the worst performing. As such, each performance test’s value ranges

from 0 to M . As scores are published in real time, teams can see whether they are

scoring better than other participants. Their relative standing may motivate them

to improve their implementation to improve its score before the build-it phase ends.

The resilience score is determined after the break-it and fix-it phases, at which

point the set of unique defects against a submission is known. For each unique bug

found against a team’s submission we subtract P points from its resilience score;

2The name is meant to evoke a quality measure at the time software is shipped.

19

as such, the best possible resilience score is 0. For correctness bugs, we set P to

M/2; for crashes that violate memory safety we set P to M , and for exploits and

other security property failures we set P to 2M . (We discuss the rationale for these

choices below.) Once again, real-time scoring helps incentivize fixing, to get points

back.

2.2.2.2 Break-it scores

Our primary goal with break-it teams is to encourage them to find as many

defects as possible in the submitted software, as this would give greater confidence in

our assessment that one build-it team’s software is of higher quality than another’s.

While we are particularly interested in obvious security defects, correctness defects

are also important, as they can have non-obvious security implications.

A break-it team’s score is the summed value of all defects they have found,

using the above P valuations. This score is shown in real time during the break-

it phase, incentivizing teams to improve their standing. After the fix-it phase,

this score is reduced. In particular, if a break-it team submitted multiple test

cases against a project that identify the same defect, the duplicates are discounted.

Moreover, each of the N break-it teams’ scores that identified the same defect are

adjusted to receive P/N points for that defect, splitting the P points among them.

Through a combination of requiring concrete test cases and scoring, BIBIFI

encourages break-it teams to follow the spirit of the competition. First, by requiring

them to provide test cases as evidence of a defect or vulnerability, we ensure they

20

are providing useful bug reports. By providing 4× more points for security-relevant

bugs than for correctness bugs, we nudge break-it teams to look for these sorts of

flaws and to not just focus on correctness issues. (But a different ratio might work

better; see below.) Because break-it teams are limited to a fixed number of test cases

per submission, they are discouraged from submitting many tests they suspect are

“morally the same;” as they could lose points for them during the fix-it phase they are

better off submitting tests demonstrating different bugs. Limiting per-submission

test cases also encourages examining many submissions. Finally, because points for

defects found by other teams are shared, break-it teams are encouraged to look for

hard-to-find bugs, rather than just low-hanging fruit.

Scoring example. Table 2.1 presents an example scoreboard for a three-team con-

test. For simplicity, there is only one optional test and one performance test. We

set M to be 50 points.

Consider the ship score. All teams receive 250 points for passing all correctness

tests. Team 2 receives 25 additional points for implementing the optional test. Team

1 receives 50 additional points for having the fastest performance test; team 2 gets

40 points for being relatively 20% slower; and team 3 receives no performance points

since their implementation is slowest. Now consider resilience score. This is a team’s

ship score minus points lost for each unique bug against its implementation. Each

team has one bug against it, where bugs S1 and S2 are security vulnerabilities (100

points), while bug C1 is a correctness bug (25 points). Finally, a team’s break score

is the number of points it receives for discovering bugs, split between teams that

21

Team
Correctness

Tests
Optional

Test
Performance Test

Runtime (s)
Ship
Score

Bugs
Against

Resilience
Score

Bugs
Reported

Break
Score

Team 1 Pass Fail 4 300 S1 200 S2 100
Team 2 Pass Pass 5 315 C1 290 S1 50
Team 3 Pass Fail 9 250 S2 150 S1, C1 75

Table 2.1: Example scoring results for a three-team contest with one optional test
and one performance test (M = 50). Bugs S1 and S2 are security vulnerabilities;
bug C is a correctness bug.

discover the same bug. Teams 2 and 3 split the 100 points for discovering exploit

S1 against team 1.

2.2.2.3 Discouraging collusion

BIBIFI contestants may form teams however they wish, and may participate

remotely. This encourages wider participation, but it also opens the possibility of

collusion between teams, as there cannot be a judge overseeing their communication

and coordination. There are three broad possibilities for collusion, each of which

BIBIFI’s scoring discourages.

First, two break-it teams could consider sharing bugs they find with one an-

other. By scaling the points each finder of a particular bug obtains, we remove

incentive for them to both submit the same bugs, as they would risk diluting how

many points they both obtain.

The second class of collusion is between a build-it team and a break-it team,

but neither have incentive to assist one another. The zero-sum nature of the scoring

between breakers and builders places them at odds with one another; revealing a

bug to a break-it team hurts the builder, and not reporting a bug hurts the breaker.

22

Finally, two build-it teams could collude, for instance by sharing code with one

another. It might be in their interests to do this in the event that the competition

offers prizes to two or more build-it teams, since collusion could obtain more than

one prize-position. We use judging and automated tools (and feedback from break-

it teams) to detect if two teams share the same code (and disqualify them), but

it is not clear how to detect whether two teams provided out-of-band feedback to

one another prior to submitting code (e.g., by holding their own informal “break-it”

and “fix-it” stages). We view this as a minor threat to validity; at the surface, such

assistance appears unfair, but it is not clear that it is contrary to the goals of the

contest, that is, to developing secure code.

2.2.3 Discussion

The contest’s design also aims to enable scalability by reducing work on contest

organizers. In our experience, BIBIFI’s design succeeds at what it sets out to achieve,

but has limitations.

Minimizing manual effort. Once the contest begins, manual effort by the organizers

is limited by design. All bug reports submitted during the break-it phase are auto-

matically judged by the oracle; organizers only need to vet any bug reports against

the oracle itself. Organizers may also need to judge accusations by breakers of code

obfuscation by builders. Finally, organizers must judge whether submitted fixes ad-

dress a single defect; this is the most time consuming task. It is necessary because

we cannot automatically determine whether multiple bug reports against one team

23

map to the same software defect; techniques for automatic testcase deduplication

are still a matter of research (see §2.6). As such, we incentivize build-it teams to

demonstrate overlap through fixes, which organizers manually confirm address only

a single defect, not several.

Previewing some of the results presented later, we can confirm that the design

works reasonably well. For example, as detailed in Table 2.6, 68 teams submitted

24,796 test cases for the Secure Log contest. The oracle auto-rejected 15,314 of

these, and build-it teams addressed 2,252 of those remaining with 375 fixes, a 6×

reduction. Most confirmations that a fix addresses a single bug took 1-2 minutes.

Only 30 of these fixes were rejected. No accusations of code obfuscation were made

by break-it teams, and few bug reports were submitted against the oracle. All told,

the Secure Log contest was successfully managed by one full-time person, with two

others helping with judging.

Limitations. While we believe BIBIFI’s structural and scoring incentives are prop-

erly designed, we should emphasize several limitations.

First, there is no guarantee that all implementation defects will be found.

Break-it teams may lack the time or skill to find problems in all submissions, and

not all submissions may receive equal scrutiny. Break-it teams may also act con-

trary to incentives and focus on easy-to-find and/or duplicated bugs, rather than

the harder and/or unique ones. In addition, certain vulnerabilities, like insufficient

randomness in key generation, may take more effort to exploit, so breakers may skip

such vulnerabilities. Finally, break-it teams may find defects that the BIBIFI infras-

24

tructure cannot automatically validate, meaning those defects will go unreported.

However, with a large enough pool of break-it teams, and sufficiently general defect

validations automation, we still anticipate good coverage both in breadth and depth.

Second, builders may fail to fix bugs in a manner that is in their best interests.

For example, in not wanting to have a fix rejected as addressing more than one

conceptual defect, teams may use several specific fixes when a more general fix

would have been allowed. Additionally, teams that are out of contention for prizes

may simply not participate in the fix-it phase.3 We observed these behaviors in

our contests. Both actions decrease a team’s resilience score (and correspondingly

increase breakers’ scores). For our most recent contest, we attempted to create an

incentive to fix bugs by offering prizes to participants that scale with their final

score, rather than offering prizes only to winners. Unfortunately, this change in

prize structure did not increase fix-it participation. We discuss fix-it behavior in

more depth in §2.5.5.

Finally, there are several design points in a problem’s definition and testing

code that may skew results. For example, too few correctness tests may leave too

many correctness bugs to be found during break-it, distracting break-it teams’ at-

tention from security issues. Too many correctness tests may leave too few bugs,

meaning teams are differentiated insufficiently by general bug-finding ability. Scor-

ing prioritizes security problems 4 to 1 over correctness problems, but it is hard to

say what ratio makes the most sense when trying to maximize real-world outcomes;

3Hiding scores during the contest might help mitigate this, but would harm incentives
during break-it to go after submissions with no bugs reported against them.

25

BIBIFI Infrastructure

Contest
Website

Surveys
Scoreboard

Break-it subs

Contest
Database

Build-it subs
Metadata

Git Listener Tester

Amazon EC2

Contest VM

Build
Test

Benchmark
Oracle

Build-it &
Break-it
Teams

Organizers

Git Repos

Participants

Figure 2.1: Overview of BIBIFI’s implementation.

both higher and lower ratios could be argued. How security bugs are classified will

also affect behavior; two of our contests had strong limits on the number of possible

security bugs per project, while the third’s definition was far more (in fact, too)

liberal, as discussed in §2.5.6. Finally, performance tests may fail to expose impor-

tant design tradeoffs (e.g., space vs. time), affecting the ways that teams approach

maximizing their ship scores. For the contests we report in this work, we are fairly

comfortable with these design points. In particular, our pilot contest [47] prioritized

security bugs 2 to 1 and had fewer interesting performance tests, and outcomes were

better when we increased the ratio.

2.2.4 Implementation

Figure 2.1 provides an overview of the BIBIFI implementation. It consists of

a web frontend, providing the interface to both participants and organizers, and a

backend for testing builds and breaks. Key goals of the infrastructure are security—

we do not want participants to succeed by hacking BIBIFI itself—and scalability.

26

Web frontend. Contestants sign up for the contest through our web application

frontend, and fill out a survey when doing so, to gather demographic data poten-

tially relevant to the contest outcome (e.g., programming experience and security

training). During the contest, the web application tests build-it submissions and

break-it bug reports, keeps the current scores updated, and provides a workbench

for the judges for considering whether or not a submitted fix covers one bug or not.

To secure the web application against unscrupulous participants, we imple-

mented it in ∼11500 lines of Haskell using the Yesod [48] web framework backed

by a PostgreSQL [49] database. Haskell’s strong type system defends against use-

after-free, buffer overrun, and other memory safety-based attacks. The use of Yesod

adds further automatic protection against various attacks like CSRF, XSS, and SQL

injection. As one further layer of defense, the web application incorporates the in-

formation flow control framework LWeb, which is derived from LIO [16], in order to

protect against inadvertent information leaks and privilege escalations. LWeb dy-

namically guarantees that users can only access their own information, as established

by a mechanized proof of correctness (in Liquid Haskell [50]).

Testing backend. The backend infrastructure is used for testing during the build-

it phase for correctness and performance, and during the break-it phase to assess

potential vulnerabilities. It consists of ∼5500 lines of Haskell code (and a little

Python).

To automate testing, we require contestants to specify a URL to a Git [44]

repository (hosted on either Gitlab, Github, or Bitbucket) and shared with a desig-

27

nated bibifi username, read-only. The backend “listens” to each contestant reposi-

tory for pushes, upon which it downloads and archives each commit. Testing is then

handled by a scheduler that spins up a (Docker or Amazon EC2) virtual machine

which builds and tests each submission. We require that teams’ code builds and

runs, without any network access, in an Ubuntu Linux VM that we share in advance.

Teams can request that we install additional open-source packages not present on

the VM. The use of VMs supports both scalability (Amazon EC2 instances are

dynamically provisioned) and security—using fresh VM instances prevents a team

from affecting the results of future tests, or of tests on other teams’ submissions.

All qualifying build-it submissions may be downloaded by break-it teams at the

start of the break-it phase. As break-it teams identify bugs, they prepare a (JSON-

based) file specifying the buggy submission along with a sequence of commands

with expected outputs that demonstrate the bug. Break-it teams commit and push

this file (to their Git repository). The backend uses the file to set up a test of the

implicated submission to see if it indeed is a bug.

The code that tests build and break submissions differs for each contest prob-

lem. To increase modularity, we have created a problem API so that testing code

run on the VM can easily be swapped out for different contest problems. Contest

organizers can create their own problems by conforming to this API. The infras-

tructure will set up the VM and provide submission information to the problem’s

testing software via JSON. The problem’s software runs the submission and out-

puts the result as JSON, which the infrastructure records and uses to update scores

accordingly. Details are available in the documentation of the contest repository.

28

2.3 Contest Problems

This section presents the three programming problems we have developed for

BIBIFI contests. These three problems were used during open competitions in 2015

and 2016, and in our own and others’ undergraduate security courses since then.

We discuss each problem and its specific notions of security defect, as well as how

breaks exploiting such defects are automatically judged.

2.3.1 Secure Log

The Secure Log problem was motivated as support for an art gallery security

system. Contestants write two programs. The first, logappend, appends events to

the log; these events indicate when employees and visitors enter and exit gallery

rooms. The second, logread, queries the log about past events. To qualify, submis-

sions must implement two basic queries (involving the current state of the gallery

and the movements of particular individuals), but they could implement two more

for extra points (involving time spent in the museum, and intersections among dif-

ferent individuals’ histories). An empty log is created by logappend with a given

authentication token, and later calls to logappend and logread on the same log

must use that token or the requests will be denied.

Here is a basic example of invocations to logappend. The first command

creates a log file called logfile because one does not yet exist, and protects it with

the authentication token secret. In addition, it records that Fred entered the art

gallery. Subsequent executions of logappend record the events of Jill entering the

29

gallery and both guests entering room 1.

$./ logappend -K secret -A -G Fred logfile
$./ logappend -K secret -A -G Jill logfile
$./ logappend -K secret -A -G Fred -R 1 logfile
$./ logappend -K secret -A -G Jill -R 1 logfile

Here is an example of logread, using the logfile just created. It queries who is in

the gallery and what rooms they are currently in.

$./ logread -K secret -S logfile
Fred
Jill
1: Fred ,Jill

The problem states that an attacker is allowed direct access to the logfile, and

yet integrity and privacy must be maintained. A canonical way of implementing the

log is therefore to treat the authentication token as a symmetric key for authenti-

cated encryption, e.g., using a combination of AES and HMAC. There are several

tempting shortcuts that we anticipated build-it teams would take (and that break-it

teams would exploit). For instance, one may be tempted to encrypt and sign indi-

vidual log records as opposed to the entire log, thereby making logappend faster.

But this could permit integrity breaks that duplicate or reorder log records. Teams

may also be tempted to implement their own encryption rather than use existing

libraries, or to simply sidestep encryption altogether. §2.4 reports several cases we

observed.

A submission’s performance is measured in terms of time to perform a partic-

ular sequence of operations, and space consumed by the resulting log. Correctness

(and crash) bug reports are defined as sequences of logread and/or logappend op-

erations with expected outputs (vetted by the oracle). Security is defined by privacy

30

and integrity : any attempt to learn something about the log’s contents, or to change

them, without the using logread and logappend and the proper token should be

disallowed. How violations of these properties are specified and tested is described

next.

Privacy breaks. When providing a build-it submission to the break-it teams, we

also included a set of log files that were generated using a sequence of invocations

of that submission’s logappend program. We generated different logs for different

build-it submissions, using a distinct command sequence and authentication token

for each. All logs were distributed to break-it teams without the authentication

token; some were distributed without revealing the sequence of commands (the

“transcript”) that generated them. For these, a break-it team could submit a test

case involving a call to logread (with the authentication token omitted) that queries

the file. The BIBIFI infrastructure would run the query on the specified file with

the authentication token, and if the output matched that specified by the breaker,

then a privacy violation is confirmed. For example, before the break-it round, the

infrastructure would run a bunch of randomly generated commands against a given

team’s implementation.

$./ logappend -K secret -A -G Fred logfile
$./ logappend -K secret -A -G Fred -R 816706605 logfile

Breakers are only given the logfile and not the secret token or the transcript of the

commands (for privacy breaks). A breaker would demonstrate a privacy violation

by submitting the following string, which matches the invocation of ./logread -K

31

secret -S logfile.

Fred
816706605: Fred

The system knows the breaker has successfully broken privacy since the breaker

is able to present confidential information without knowing the secret token. In

practice, the transcript of commands is significantly longer and a random secret is

used.

Integrity breaks. For about half of the generated log files we also provided the

transcript of the logappend operations used to generate the file. A team could

submit a test case specifying the name of the log file, the contents of a corrupted

version of that file, and a logread query over it (without the authentication token).

For both the specified log file and the corrupted one, the BIBIFI infrastructure

would run the query using the correct authentication token. An integrity violation

is detected if the query command produces a non-error answer for the corrupted log

that differs from the correct answer (which can be confirmed against the transcript

using the oracle).

This approach to determining privacy and integrity breaks has the benefit and

drawback that it does not reveal the source of the issue, only that there is (at least)

one, and that it is exploitable. As such, we only count up to one integrity break

and one privacy break against the score of each build-it submission, even if there

are multiple defects that could be exploited to produce privacy/integrity violations

(since we could not automatically tell them apart).

32

2.3.2 ATM

The ATM problem asks builders to construct two communicating programs:

atm acts as an ATM client, allowing customers to set up an account, and deposit

and withdraw money; bank is a server that tracks client bank balances and processes

their requests, received via TCP/IP. atm and bank should only permit a customer

with a correct card file to learn or modify the balance of their account, and only in

an appropriate way (e.g., they may not withdraw more money than they have). In

addition, atm and bank should only communicate if they can authenticate each other.

They can use an auth file for this purpose; it will be shared between the two via a

trusted channel unavailable to the attacker.4 Since the atm is communicating with

bank over the network, a “man in the middle” (MITM) could observe and modify

exchanged messages, or insert new messages. The MITM could try to compromise

security despite not having access to auth or card files. Such compromise scenarios

are realistic, even in 2018 [39].

Here is an example run of the bank and atm programs.

$./bank -s bank.auth &

This invocation starts the bank server, which creates the file bank.auth. This file

will be used by the atm client to authenticate the bank. The atm is started as follows:

$./atm -s bank.auth -c bob.card -a bob -n 1000.00
{" account ":"bob"," initial_balance ":1000}

The client initiates creation of a new account for user bob with an initial balance

4In a real deployment, this might be done by “burning” the auth file into the ATM’s
ROM prior to installing it.

33

of $1,000. It also creates a file bob.card that is used to authenticate bob (this is

basically Bob’s PIN) from here on. A receipt of the transaction from the server is

printed as JSON. The atm client can now use bob’s card to perform further actions

on his account. For example, this command withdraws $63.10 from bob’s account:

$./atm -s bank.auth -c bob.card -a bob -w 63.10
{" account ":"bob","withdraw ":63.1}

A canonical way of implementing the atm and bank programs would be to

use public key-based authenticated and encrypted communications. The auth file

is used as the bank’s public key to ensure that key negotiation initiated by the

atm is with the bank and not a MITM. When creating an account, the card file

should be a suitably large random number, so that the MITM is unable to feasibly

predict it. It is also necessary to protect against replay attacks by using nonces or

similar mechanisms. As with Secure Log, a wise approach would be use a library

like OpenSSL to implement these features. Both good and bad implementations are

discussed further in §2.4.

Build-it submissions’ performance is measured as the time to complete a series

of benchmarks involving various atm/bank interactions.5 Correctness (and crash)

bug reports are defined as sequences of atm commands where the targeted submis-

sion produces different outputs than the oracle (or crashes). Security defects are

specified as follows.

5The transcript of interactions is always serial, so there was no motivation to support
parallelism for higher throughput.

34

Command
Server

MITMATM Bank

1. Deposit request.
2. Initialize deposit.

3. Deposit message (encrypted).4. Relay deposit message.
5. Repeat deposit message.

Figure 2.2: MITM replay attack.

Integrity breaks. Integrity violations are demonstrated using a custom MITM pro-

gram that acts as a proxy: It listens on a specified IP address and TCP port, and

accepts a connection from the atm while connecting to the bank. We provided a

Python-based proxy as a starter MITM; it forwards communications between the

endpoints after establishing the connection. A breaker’s MITM would modify this

baseline behavior, observing and/or modifying messages sent between atm and bank,

and perhaps dropping messages or initiating its own.

To demonstrate an integrity violation, the MITM will send requests to a com-

mand server. It can tell the server to run inputs on the atm and it can ask for

the card file for any account whose creation it initiated. Eventually the MITM will

declare the test complete. At this point, the same set of atm commands is run

using the oracle’s atm and bank without the MITM. This means that any messages

that the MITM sends directly to the target submission’s atm or bank will not be

replayed/sent to the oracle. If the oracle and target both complete the command list

without error, but they differ on the outputs of one or more commands, or on the

balances of accounts at the bank whose card files were not revealed to the MITM

during the test, then there is evidence of an integrity violation.

35

As an example (based on a real attack we observed), consider a submission

that uses deterministic encryption without nonces in messages. The MITM could

direct the command server to deposit money from an account, and then replay the

message it observes. When run on the vulnerable submission, this would credit

the account twice. But when run on the oracle without the MITM, no message is

replayed, leading to differing final account balances. A correct submission would

reject the replayed message, which would invalidate the break. This example is

illustrated in Figure 2.2.

Privacy breaks. Privacy violations are also demonstrated using a MITM. In this

case, at the start of a test the command server will generate two random values,

amount and account name. If by the end of the test no errors have occurred and the

attacker can prove it knows the actual value of either secret (by sending a command

that specifies it), the break is considered successful. Before demonstrating knowledge

of the secret, the MITM can send commands to the and server with a symbolic

reference to amount and account name; the server will fill in the actual secrets

before forwarding these messages. The command server does not automatically

create a secret account or an account with a secret balance; it is up to the breaker

to do that (referencing the secrets symbolically when doing so).

As an example, suppose the target does not encrypt exchanged messages. Then

a privacy attack might be for the MITM to direct the command server to create an

account whose balance contains the secret amount. Then the MITM can observe an

unencrypted message sent from atm to bank; this message will contain the actual

36

amount filled in by the command server. The MITM can then send its guess to the

command server showing that it knows the amount.

As with the Secure Log problem, we cannot tell whether an integrity or privacy

test is exploiting the same underlying weakness in a submission, so we only accept

one violation of each category against each submission.

Timeouts and denial of service. One difficulty with our use of a breaker-provided

MITM is that we cannot reliably detect bugs in atm or bank implementations that

would result in infinite loops, missed messages, or corrupted messages. This is be-

cause such bugs can be simulated by the MITM by dropping or corrupting messages

it receives. Since the builders are free to implement any protocol they like, our auto-

testing infrastructure cannot tell if a protocol error or timeout is due to a bug in

the target or due to misbehavior of the MITM. As such, we conservatively disallow

any MITM test run that results in the target atm or bank hanging (timing out) or

returning with a protocol error (e.g., due to a corrupted packet). This means that

flaws in builder implementations might exist but evidence of those bugs might not

be realizable in our testing system.

2.3.3 Multiuser DB

The Multiuser DB problem requires builders to implement a server that main-

tains a multi-user key-value store, where users’ data is protected by customizable

access control policies. The data server accepts queries written in a text-based com-

mand language delivered over TCP/IP (we assume the communication channel is

37

<prog> ::= as principal p password s do \n <cmd> ***
<cmd> ::= exit \n | return <expr> \n | <prim_cmd> \n <cmd>
<expr> ::= <value> | [] | <fieldvals>
<fieldvals> ::= x = <value> | x = <value> , <fieldvals>
<value> ::= x | x . y | s
<prim_cmd> ::= create principal p s

| change password p s
| set x = <expr>
| append to x with <expr>
| local x = <expr>
| foreach y in x replacewith <expr>
| set delegation <tgt> q <right> -> p
| delete delegation <tgt> q <right> -> p
| default delegator = p

<tgt> ::= all | x
<right> ::= read | write | append | delegate

Figure 2.3: Grammar for the Multiuser DB command language as BNF. Here, x
and y represent arbitrary variables; p and q represent arbitrary principals; and s
represents an arbitrary string. Commands submitted to the server should match
the non-terminal <prog>.

trusted, for simplicity). Each program begins by indicating the querying user, au-

thenticated with a password. It then runs a sequence of commands to read and

write data stored by the server, where data values can be strings, lists, or records.

The full grammar of the command language is shown in Figure 2.3 where the start

symbol (corresponding to a client command) is <prog>. Accesses to data may be

denied if the authenticated user lacks the necessary permission. A user can delegate

permissions, like reading and writing variables, to other principals. If running the

command program results in a security violations or error then all of its effects will

be rolled back.

Here is an example run of the data server. To start, the server is launched and

listens on TCP port 1024.

$./ server 1024 &

38

Next, the client submits the following program.

as principal admin password "admin" do
create principal alice "alices_password"
set msg = "Hi Alice. Good luck!"
set delegation msg admin read -> alice
return "success"

The program starts by declaring it is running on behalf of principlal admin, whose

password is "admin". If authentication is successful, the program creates a new

principal alice, creates a new variable msg containing a string, and then delegates

read permission on the variable to Alice. The server sends back a transcript of the

successful commands to the client, in JSON format:

{" status ":" CREATE_PRINCIPAL "}
{" status ":"SET"}
{" status ":" SET_DELEGATION "}
{" status ":" RETURNING","output ":" success "}

Next, suppose Alice sends the following program, which simply logs in and reads

the msg variable:

as principal alice password "alices_password" do
return msg

The server response indicates the result:

{" status ":" RETURNING","output ":"Hi Alice. Good luck !"}

The data server is implemented by writing a parser to read the input command

programs. The server needs a store to keep the value of each variable as well as an

access control list that tracks the permissions for the variables. It also needs to keep

track of delegated permissions, which can form chains; e.g., Alice could delegate

39

read permission to all of her variables to Bob, who could then delegate permission

to read one of those variables to Charlie. If when executing the program a security

violation or other error occurs (e.g., reading a variable that doesn’t exist), the server

needs to roll back its state to what it was prior to processing the input program.

All responses back to the client are encoded as JSON.

Scoring. A data server’s performance is measured in elapsed runtime to process

sequences of programs. Correctness (and crash) violations are demonstrated by

providing a sequence of command programs where the data server’s output differs

from that of the oracle (or the implementation crashes). Security violations can be

to data privacy, integrity, or availability, by comparing the behavior of the target

against that of an oracle implementation.

Privacy breaks. A privacy violation occurs when the oracle would deny a request

to read a variable, but the target implementation allows it. Consider the following

example where a variable, secret, is created, but Bob is not allowed to read it.

as principal admin password "admin" do
create principal bob "bobs_password"
set secret = "Super secret"
return "success"

{" status ":" CREATE_PRINCIPAL "}
{" status ":"SET"}
{" status ":" RETURNING","output ":" success "}

Now Bob attempts to read the secret variable with the following query.

as principal bob password "bobs_password" do
return secret

40

Bob does not have permission to read secret, so the oracle returns {"status":"DENIED"}.

If the implementation returns the secret contents of {"status":"RETURNING",

"output":"Super secret"}, we know a confidentiality violation has occurred.

Integrity breaks. Integrity violations are demonstrated in a similar manner, but

occur when unprivileged users modify variables they don’t have permission to write

to. With the example above, the variable secret, is created, but Bob is not allowed

to write to it. Now Bob attempts to write to secret with the following query.

as principal bob password "bobs_password" do
set secret = "Bob ’s grade is an A!"
return "success"

Bob does not have write permission on secret, so the oracle returns {"status":"DENIED"}.

If the implementation returns the following, an integrity violation has been demon-

strated.

{" status ":"SET"}
{" status ":" RETURNING","output ":" success "}

Availability breaks. Unlike the ATM problem, we are able to assess availability vi-

olations for Multiuser DB (since we are not using a MITM). In this case, a security

violation is possible when the server implementation is unable to process legal com-

mand programs. This is demonstrated when the target incorrectly denies a program

by reporting an error, but the oracle successfully executes the program. Availability

security violations also happen when the server implementation fails to respond to

an input program within a fixed period of time.

41

Unlike the other two problems, the Multiuser DB problem does not place a

limit on the number of security breaks submitted. In addition, the overall bug

submission limit is reduced to 5, as opposed to 10 for the other two problems.

Recall that for Secure Log and ATM, a break constitutes direct evidence that a

vulnerability has been exploited, but not which vulnerability, if more than one is

present. As such, if a build-it team were to fix a vulnerability during the fix-it phase,

doing so would not shed light on which breaks derived from that vulnerability, vs.

others. The contest thus limits break-it teams to one break each for confidentiality

and integrity, per target team. (See §2.3.1 and §2.3.2.) For Multiuser DB, a security

vulnerability is associated with a test run, so a fix of that vulnerability will unify

all breaks that exploit that vulnerability, just as correctness fixes do. That means

we need not impose a limit on them. The consequences of this design are discussed

in §2.5.

2.4 Build-it Submissions: Successes and Failures

After running a BIBIFI contest, we have all of the code written by the build-it

teams, and the bug reports submitted by the break-it teams. Looking at these arti-

facts, we can get a sense of what build-it teams did right, and what they did wrong.

This section presents a sample of failure and success stories, while §2.5 presents a

broader statistical analysis that suggests overall trends. A previous paper [51] pro-

vides a more detailed review of the types of vulnerabilities based on an extensive,

in-depth qualitative analysis of submitted code.

42

2.4.1 Failure Stories

The failure modes for build-it submissions are distributed along a spectrum

ranging from “failed to provide any security at all” to “vulnerable to extremely subtle

timing attacks.” This is interesting because a similar dynamic is observed in the

software marketplace today.

Secure Log. Many implementations of the Secure Log problem failed to use encryp-

tion or authentication codes, presumably because the builders did not appreciate

the need for them. Exploiting these design flaws was trivial for break-it teams.

Sometimes log data was written as plain text, other times log data was serialized

using the Java object serialization protocol.

One break-it team discovered a privacy flaw which they could exploit with at

most fifty probes. The target submission truncated the authentication token (i.e.,

the key) so that it was vulnerable to a brute force attack.

Some failures were common across Secure Log implementations: if an imple-

mentation used encryption, it might not use authentication. If it used authentica-

tion, it would authenticate records stored in the file individually, not globally. The

implementations would also relate the ordering of entries in the file to the ordering

of events in time, allowing for an integrity attack that changes history by re-ordering

entries in the file.

There were five crashes due to memory errors, and they all occurred in C/C++

submissions. We examined two of the crashes and confirmed that they were ex-

43

ploitable. The first was a null pointer dereference, and the other was a buffer

overflow from the use of strcpy.

ATM. The ATM problem allows for interactive attacks (not possible for the log),

and the attacks became cleverer as implementations used cryptographic construc-

tions incorrectly. One implementation used cryptography, but implemented RC4

from scratch and did not add any randomness to the key or the cipher stream. An

attacker observed that the ciphertext of messages was distinguishable and largely

unchanged from transaction to transaction, and was able to flip bits in a message

to change the withdrawn amount.

Another implementation used encryption with authentication, but did not

use randomness; as such error messages were always distinguishable from success

messages. An attack was constructed against this implementation where the attack

leaked the bank balance by observing different withdrawal attempts, distinguishing

the successful from failed transactions, and performing a binary search to identify

the bank balance given a series of withdraw attempts.

Some failures were common across ATM problem implementations. Many

implementations kept the key fixed across the lifetime of the bank and atm pro-

grams and did not use a nonce in the messages. This allowed attackers to replay

messages freely between the bank and the atm, violating integrity via unauthorized

withdrawals. Several implementations used encryption, but without authentication.

(This sort of mistake has been observed in real-world ATMs, as has, amazingly, a

complete lack of encryption use [39].) These implementations used a library such

44

as OpenSSL, the Java cryptographic framework, or the Python pycrypto library to

have access to a symmetric cipher such as AES, but either did not use these libraries

at a level where authentication was provided in addition to encryption, or they did

not enable authentication.

Multiuser DB. The Multiuser DB problem asks participants to consider a complex

logical security problem. In this scenario, the specification was much more compli-

cated. All but one team developed a system of home-grown access control checks.

This led to a variety of failures when participants were unable to cover all possible

security edge cases.

In some instances, vulnerabilities were introduced because they did not prop-

erly implement the specification. Some participants hardcoded passwords making

them easily guessable by an attacker. Other participants did not include checks for

the delegation command to ensure that the principal had the right to delegate along

with the right they were trying to delegate.

Other participants failed to consider the security implications of their design

decisions when the specification did not provide explicit instructions. For example,

many of the participants did not check the delegation chain back to its root. There-

fore, once a principal received an access right, they maintained this right even if it

no longer belonged to the principal that delegated it to them.

There were two crashes targeting Multiuser DB implementations. Both were

against C/C++ submissions. We inspected one crash and determined it was caused

by code in the parser that dereferenced and executed an invalid (non-null) pointer.

45

Finally, other teams simply made errors when implementing the access control

logic. In some cases, these mistakes introduced faulty logic into the access control

checks. One team made a mistake in their control flow logic such that if a principal

had no delegated rights, the access control checks were skipped—because a lookup

error would have occurred. In other cases, these mistakes led to uncaught runtime

errors that allowed the attacker to kill the server, making it unavailable to other

users.

2.4.2 Success Stories

In contrast to the broken submissions, successful submissions followed under-

stood best practices. For example, submissions made heavy use of existing high-

level cryptographic libraries with few “knobs” that allow for incorrect usage [52].

Similarly, successful submissions limited the size and location of security-critical

code [53].

ATM and Secure Log. One implementation of the ATM problem, written in Python,

made use of the SSL PKI infrastructure. The implementation used generated SSL

private keys to establish a root of trust that authenticated the atm program to the

bank program. Both the atm and bank required that the connection be signed with

the certificate generated at runtime. Both the bank and the atm implemented their

communication protocol as plain text then wrapped in HTTPS. To find bugs in this

system, other contestants would need to break the security of OpenSSL.

Another implementation, written in Java, used the NaCl library. This library

46

intentionally provides a very high level API to “box” and “unbox” secret values,

freeing the user from dangerous choices. As above, to break this system, other

contestants would need to break NaCl first.

A Java-based implementation of the Secure Log problem used the BouncyCas-

tle library’s high-level API to construct a valid encrypt-then-MAC scheme over the

entire log file. BouncyCastle allowed them to easily authenticate the whole log file,

protecting them from integrity attacks that swapped the order of encrypted binary

data in the log.

Multiuser DB. The most successful solutions for the Multiuser DB problem were

localized access control logic checks to a single function with a general interface,

rather repeating checking code for each command that needed it. Doing so reduced

the likelihood of a mistake. One of the most successful teams used a fairly complex

graphical representation of access control rules, but by limiting the number of places

this graph was manipulated they could efficiently and correctly check access rights

without introducing vulnerabilities.

2.5 Quantitative Analysis

This section quantitatively analyzes data we gathered from our 2015 and 2016

contests.6 We consider participants’ performance in each contest phase, identifying

factors that contribute to high scores after the build-it round, resistance to breaking

by other teams, and strong performance as breakers.

6We also ran a contest during Fall’14 [47] but exclude its data due to differences in how
it was administered.

47

We find that on average, teams that program using statically-typed languages

are 11× less likely to have security bugs identified in their code compared to those

using C and C++. Success in breaking, and particularly in identifying security bugs

in other teams’ code, is correlated with having more team members, as well as with

participating successfully in the build-it phase (and therefore having given thought

to how to secure an implementation). The use of advanced techniques like fuzzing

and static analysis was dropped from the final model, indicating that their effect

was not statistically significant. We note that such tools tend to focus on bugs, like

memory errors and taint/code injection attacks, that were rare in our contests (per

Section 2.4). Overall, integrity bugs were far more common than privacy bugs or

crashes. The contests that used the ATM problem and the Multiuser DB problem

were associated with more security bugs than the Secure Log contest.

2.5.1 Data collection

For each team, we collected a variety of observed and self-reported data. When

signing up for the contest, teams reported standard demographics and features such

as coding experience and programming language familiarity. After the contest, each

team member optionally completed a survey about their performance. In addition,

we extracted information about lines of code written, number of commits, etc. from

teams’ Git repositories.

Participant data was anonymized and stored in a manner approved by our

institution’s human-subjects review board. Participants consented to have data

48

related to their activities collected, anonymized, stored, and analyzed. A few par-

ticipants did not consent to research involvement, so their personal data was not

used in the data analysis.

2.5.2 Analysis approach

To examine factors that correlated with success in building and breaking, we

apply regression analysis. Each regression model attempts to explain some outcome

variable using one or more measured factors. For most outcomes, such as partic-

ipants’ scores, we can use ordinary linear regression, which estimates how many

points a given factor contributes to (or takes away from) a team’s score. To analyze

binary outcomes, such as whether or not a security bug was found, we apply logistic

regression, which estimates how each factor impacts the likelihood of an outcome.

We consider many variables that could potentially impact teams’ results. To

avoid over-fitting, we select as potential factors those variables that we believe are

of most interest, within acceptable limits for power and effect size. As we will detail

later, we use the same factors as the analysis in our earlier conference paper [42],

plus one more, which identifies participation in the added contest (Multiuser DB).

The impact of the added data on the analysis, compared to the analysis in the earlier

paper, is considered in Section 2.5.8. We test models with all possible combinations

of our chosen potential factors and select the model with the minimum Akaike

Information Criterion (AIC) [54]. The final models are presented.

Each model is presented as a table with each factor as well as the p-value for

49

that factor. Significant p-values (< 0.05) are marked with an asterisk. Linear models

include the coefficient relative to the baseline factor and the 95% confidence interval.

Logistic models also include the exponential coefficient and the 95% confidence

interval for the exponential coefficient. The exponential coefficient indicates how

many times more likely the measured result occurs relative to the baseline factor.

We describe the results of each model below. This was not a completely con-

trolled experiment (e.g., we do not use random assignment), so our models demon-

strate correlation rather than causation. Our observed effects may involve con-

founds, and many factors used as independent variables in our data are correlated

with each other. This analysis also assumes that the factors we examine have linear

effect on participants’ scores (or on likelihood of binary outcomes); while this may

not be the case in reality, it is a common simplification for considering the effects

of many factors. We also note that some of the data we analyze is self-reported,

so may not be entirely precise (e.g., some participants exaggerating about which

programming languages they know); however, minor deviations, distributed across

the population, act like noise and have little impact on the regression outcomes.

2.5.3 Contestants

We consider three contests offered at different times:

Secure Log: We held one contest using the Secure Log problem (§2.3.1)

during May–June 2015 as the capstone to a Cybersecurity MOOC sequence.7 Be-

fore completing in the capstone, participants passed courses on software security,

7https://www.coursera.org/specializations/cyber-security

50

https://www.coursera.org/specializations/cyber-security

Contest USA India Russia Brazil Other

Spring 2015 30 7 12 12 120
Fall 2015 64 14 12 20 110
Fall 2016 44 13 4 12 103

Table 2.2: Contestants, by self-reported country.

cryptography, usable security, and hardware security.

ATM: During Oct.–Nov. 2015 we offered the ATM problem (§2.3.2) as two

contests simultaneously, one as a MOOC capstone, and the other open to U.S.-based

graduate and undergraduate students. We merged the contests after the build-it

phase, due to low participation in the open contest. MOOC and open participants

were ranked independently to determine grades and prizes.

Multiuser DB: In Sep.–Oct. 2016 we ran one constest offering the Multiuser

DB problem (§2.3.3) open to both MOOC capstone participants as well as graduate

and undergraduate students.

The U.S. was the most represented country in our contestant pool, but was

not the majority. There was also representation from developed countries with a

reputation both for high technology and hacking acumen. Details of the most pop-

ular countries of origin can be found in Table 2.2, and additional information about

contestant demographics is presented in Table 2.3. In total, 156 teams participated

in either the build-it or break-it phases, most of which participated in both.

2.5.4 Ship scores

We first consider factors correlating with a team’s ship score, which assesses

their submission’s quality before it is attacked by the other teams (§2.2.1). This data

51

Contest Spring 15 Fall 15 Fall 16

Problem Secure Log ATM Multiuser DB
Contestants 156 145 105
% Male 91 % 91 % 84 %
% Female 5 % 8 % 4 %
Age (mean/min/max) 34.8/20/61 32.2/17/69 29.9/18/55
% with CS degrees 35 % 35 % 39 %
Years programming 9.6/0/30 9.4/0/37 9.0/0/36
Build-it teams 61 40 29
Build-it team size 2.2/1/5 3.1/1/6 2.5/1/8
Break-it teams (that
also built)

65 (58) 43 (35) 33 (22)

Break-it team size 2.4/1/5 3.1/1/6 2.6/1/8
PLs known per team 6.8/1/22 9.1/1/20 7.8/1/17
% MOOC 100 % 84 % 65 %

Table 2.3: Demographics of contestants from qualifying teams. Some participants
declined to specify gender.

Figure 2.4: The number of build-it submissions in each contest, organized by primary
programming language used. The languages are grouped by category.

set contains all 130 teams from the Secure Log, ATM, and Multiuser DB contests

that qualified after the build-it phase. The contests have nearly the same number

of correctness and performance tests, but different numbers of participants. We set

the constant multiplierM to be 50 for the contests, which effectively normalizes the

scores (see Section 2.2.2).

52

Model setup. To ensure enough statistical power to find meaningful relationships,

our modeling was designed for a prospective effect size roughly equivalent to Cohen’s

medium effect heuristic, f 2 = 0.15 [55]. An effect of this size corresponds to a

coefficient of determination R2 = 0.13, suggesting we could find an effect if our

model can explain at least 13% of the variance in the outcome variable. We report

the observed coefficient of determination for the final model with the regression

results below.

As mentioned above, we reuse the factors chosen for the analysis in our earlier

paper [42]. Their number was guided by a power analysis of the contest data we

had at the time, which involved the N = 101 build-it teams that participated in

Secure Log and ATM. With an assumed power of 0.75, the power analysis suggested

we limit the covariate factors used in our model to nine degrees of freedom, which

yields a prospective f 2 = 0.154. With the addition of Multiuser DB data, we add

one more factor, which is choice of Multiuser DB as an option for which contest the

submission belongs to. This adds a 10th degree of freedom, as well as 29 additional

teams for a total N = 130. At 0.75 power, this yields a prospective f 2 = 0.122,

which is better than in the earlier paper’s analysis.

We selected the factors listed in Table 2.4. Knowledge of C is included as

a proxy for comfort with low-level implementation details, a skill often viewed as

a prerequisite for successful secure building or breaking. # Languages known is

how many unique programming languages team members collectively claim to know

(see the second to last row of Table 2.3). For example, on a two-member team

where member A claims to know C++, Java, and Perl and member B claims to

53

Factor Description Baseline

Contest Secure Log, ATM, or Multiuser DB contest. Secure Log
Team members A team’s size. —
Knowledge of C The fraction of team members who know C or

C++.
—

Languages known Number of programming languages team mem-
bers know.

—

Coding experience Average years of programming experience. —
Language category C/C++, statically-typed, or dynamically-typed

language.
C/C++

Lines of code Lines of code count for the team’s final submis-
sion.

—

MOOC If the team was participating in the MOOC cap-
stone.

non-MOOC

Table 2.4: Factors and baselines for build-it models.

know Java, Perl, Python, and Ruby, the language count would be 5. Language

category is the “primary" language category we manually identified in each team’s

submission. Languages were categorized as either C/C++, statically-typed (e.g.,

Java, Go, but not C/C++), or dynamically-typed (e.g., Perl, Python). Precise

category allocations, and total submissions for each language, segregated by contest,

are given in Figure 2.4.

Results. The final model (Table 2.5) with R2 = 0.232 captures almost 1
4
of the

variance. We find this number encouraging given how relatively uncontrolled the

environment is and how many contributing, but unmeasured, factors there could be.

Our regression results indicate that ship score is strongly correlated with language

choice. Teams that programmed in C or C++ performed on average 133 and 112

points better than those who programmed in dynamically typed or statically typed

languages, respectively. Figure 2.5 illustrates that while teams in many language

54

categories performed well in this phase, only teams that did not use C or C++

scored poorly.

The high scores for C/C++ teams could be due to better scores on performance

tests and/or due to implementing optional features. We confirmed the main cause is

the former. Every C/C++ team for the Secure Log contest implemented all optional

features, while six teams in the other categories implemented only six of ten and

one team implemented none; the ATM contest offered no optional features; for the

Multiuser DB contest, four C/C++ teams implemented all optional features while

one C/C++ team implemented five of nine. We artificially increased the scores of

all teams as if they had implemented all optional features and reran the regression

model. In the resulting model, the difference in coefficients between C/C++ and

the other language categories dropped only slightly. This indicates that the majority

of improvement in C/C++ ship score comes from performance.

The number of languages known by a team is not quite statistically significant,

but the confidence interval in the model suggests that each programming language

known increases ship scores by between 0 and 12 points. Intuitively, this makes sense

since contestants that know more languages have more programming experience and

have been exposed to different paradigms.

Lines of code is also not statistically significant, but the model hints that each

additional line of code in a team’s submission is associated with a minor drop in

ship score. Based on our qualitative observations (see §2.4), we hypothesize this may

relate to more reuse of code from libraries, which frequently are not counted in a

team’s LOC (most libraries were installed directly on the VM, not in the submission

55

Figure 2.5: Each team’s ship score, compared to the lines of code in its implemen-
tation and organized by language category and contest. Using C/C++ correlates
with a higher ship score.

itself). We also found that, as further noted above, submissions that used libraries

with more sophisticated, lower-level interfaces tended to have more code and more

mistakes; i.e., more steps took place in the application (more code) but some steps

were missed or carried out incorrectly (less secure/correct). Figure 2.5 shows that

LOC is (as expected) associated with the category of language being used. While

LOC varied widely within each language type, dynamic submissions were generally

shortest, followed by static submissions and then those written in C/C++ (which

has the largest minimum size).8

8Our earlier model for the Secure Log and ATM contests found that lines of code was
actually statistically significant. We discuss this further in §2.5.8.

56

Factor Coef. CI p-value

Secure Log — — —
ATM -47.708 [-110.34, 14.92] 0.138
Multiuser DB -163.901 [-234.2, -93.6] <0.001*

C/C++ — — —
Statically typed -112.912 [-192.07, -33.75] 0.006*
Dynamically typed -133.057 [-215.26, -50.86] 0.002*

Languages known 6.272 [-0.06, 12.6] 0.054

Lines of code -0.023 [-0.05, 0.01] 0.118

Table 2.5: Final linear regression model of teams’ ship scores, indicating how many
points each selected factor adds to the total score. R2 = 0.232.

Secure Log ATM Multiuser DB

Bug reports submitted 24,796 3,701 3,749
Bug reports accepted 9,482 2,482 2,046
Fixes submitted 375 166 320
Bug reports addressed by fixes 2,252 966 926

Table 2.6: Break-it teams in each contest submitted bug reports, which were judged
by the automated oracle. Build-it teams then submitted fixes, each of which could
potentially address multiple bug reports.

2.5.5 Resilience

Now we turn to measures of a build-it submission’s quality, starting with

resilience. Resilience is a non-positive score that derives from break-it teams’ bug

reports, which are accompanied by test cases that prove the presence of defects.

The overall build-it score is the sum of ship score, just discussed, and resilience.

Builders may increase the resilience component during the fix-it phase, as fixes

prevent double-counting bug reports that identify the same defect (see §2.2.1).

Unfortunately, upon studying the data we found that a large percentage of

57

build-it teams opted not to fix any bugs reported against their code, forgoing the

scoring advantage of doing so. We can see this in Figure 2.6, which graphs the

resilience scores (Y-axis) of all teams, ordered by score, for the three contests. The

circles in the plot indicate teams that fixed at least one bug, whereas the triangles

indicate teams that fixed no bugs. We can see that, overwhelmingly, the teams with

the lower resilience scores did not fix any bugs. Table 2.6 digs a little further into

the situation. It shows that of the bug reports deemed acceptable by the oracle

(the second row), submitted fixes (row 3) addressed only 23% of those from the

Secure Log contest, 38% of those from the ATM contest, and 45% of those from the

Multiuser DB contest (row 4 divided by row 2). It turns out that when counting

only “active" fixers who fixed at least one bug, these averages were 56.9%, 72.5%,

and 64.6% respectively.

Incentivizing fixing. This situation is disappointing, as we cannot treat resilience

score as a good measure of code quality (when added to ship score). After the first

two contests, we hypothesized that participants were not sufficiently incentivized

to fix bugs, for two reasons. First, teams that were sufficiently far from the lead

may have chosen to fix no bugs because winning was unlikely. Second, for MOOC

students, once a minimum score is achieved they were assured to pass; it may be

that fixing (many) bugs was unnecessary for attaining this minimum score.

We attempted to more strongly incentivize all teams to fix (duplicated) bugs

by modifying the prize structure for the Multiuser DB contest. Instead of only giving

away prizes to top teams, non-MOOC participants could still win monetary prizes

58

if they scored outside of third place. Placements were split into different brackets,

and one team from each bracket was randomly selected to receive a prize. Prizes

increased based on bracket position (ex, the fourth and fifth place bracket winner

received $500, while the sixth and seventh place bracket winner received $375).

Our hope was that builders would submit fixes to bump themselves into a higher

bracket which would have a larger payout. Unfortunately, it does not appear that fix

participation increased for non-MOOC participants for the Multiuser DB contest.

To confirm this, we ran a linear regression model, but according to the model,

incentive structure was not a factor in fix participation. The model did confirm

that teams with a higher score at the end of break-it fixed a greater percentage of

the bugs against them.

Additionally, we randomly sampled 60% of Multiuser DB teams to identify the

types of vulnerabilities they chose to fix. We manually analyzed each break to deter-

mine the underlying vulnerability to determine whether the expected fix difficulty

impacted team decisions. We did not observe any clear trend in the vulnerabilities

teams chose to fix, with all vulnerability types both fixed by some teams and not

fixed by others. Instead, we found teams most often made a binary decision, choos-

ing to fix all (38%) or none (38%) of their vulnerabilities. The remaining teams

only slightly strayed from a binary choice by either fixing all but one vulnerability

(16%) or only one vulnerability (8%).

Wi et al. [56] developed Git-based CTF which is another contest that is in-

spired by BIBIFI. A key feature of this contest is that contestants periodically lose

points for breaks that remain unfixed. This creates an incentive for participants

59

Figure 2.6: Final resilience scores, ordered by team, and plotted for each contest
problem. Build-it teams who did not bother to fix bugs generally had lower scores.

to fix bugs as quickly as possible and makes a more real-time environment for the

contest. We have incorporated this idea into BIBIFI by combining the break-it and

fix-it rounds. As soon as a breaker team submits a bug, they receive points and the

target builder team loses points. After a period of time (24 hours by default), the

amount of points gained and lost increases linearly over time. Once builders submit

a bug fix, they stop losing points for the breaks fixed by the fix submission. We

include the 24 hour grace period so that builer teams do not need to be available at

all times of day. If multiple breaker teams submitted the same bug, their points are

split up when the fix is submitted and prorated for how long their break was active.

In future contests, we plan to use this updated format and hope it will increase fix

participation.

60

2.5.6 Presence of security bugs

While resilience score is not sufficiently meaningful, a useful alternative is

the likelihood that a build-it submission contains a security-relevant bug; by this

we mean any submission against which at least one crash, privacy, integrity, or

availability defect is demonstrated. In this model we used logistic regression over

the same set of factors as the ship model.

Table 2.7 lists the results of this logistic regression; the coefficients repre-

sent the change in log likelihood associated with each factor. Negative coefficients

indicate lower likelihood of finding a security bug. For categorical factors, the ex-

ponential of the coefficient (exp(coef)) indicates how strongly that factor being true

affects the likelihood relative to the baseline category.9 For numeric factors, the

exponential indicates how the likelihood changes with each unit change in that fac-

tor. R2 as traditionally understood does not make sense for a logistic regression.

There are multiple approximations proposed in the literature, each of which have

various pros and cons. We present Nagelkerke (R2 = 0.619) which suggests the

model explains an estimated 61% of variance [57].

ATM implementations were far more likely than Secure Log implementations

to have a discovered security bug.10 We hypothesize this is due to the increased

security design space in the ATM problem as compared to the Secure Log problem.

9In cases (such as the ATM contest) where the rate of security bug discovery is close
to 100%, the change in log likelihood starts to approach infinity, somewhat distorting this
coefficient upwards.

10This coefficient (corresponding to 103×) is somewhat exaggerated (see prior footnote),
but the difference between contests is large and significant.

61

Factor Coef. Exp(coef) Exp CI p-value

Secure Log — — — —
ATM 4.639 103.415 [18, 594.11] <0.001*
Multiuser DB 3.462 31.892 [7.06, 144.07] <0.001*

C/C++ — — — —
Statically typed -2.422 0.089 [0.02, 0.51] 0.006*
Dynamically typed -0.99 0.372 [0.07, 2.12] 0.266

Team members -0.35 0.705 [0.5, 1] 0.051

Knowledge of C -1.44 0.237 [0.05, 1.09] 0.064

Lines of code 0.001 1.001 [1, 1] 0.090

Table 2.7: Final logistic model measuring log-likelihood of the discovery of a security
bug in a team’s submission. Nagelkerke R2 = 0.619.

Although it is easier to demonstrate a security error in the Secure Log problem,

the ATM problem allows for a much more powerful adversary (the MITM) that can

interact with the implementation; breakers often took advantage of this capability,

as discussed in §2.4.

Multiuser DB implementations were 31× as likely as Secure Log implemen-

tations to have a discovered security bug. We hypothesize this is due to increased

difficulty in implementing a custom access control system. There are limited libraries

available that directly provide the required functionality, so contestants needed to

implement access control manually, leaving more room for error. For the Secure

Log problem, builders could utilize cryptographic libraries to secure their applica-

tions. In addition, it was potentially easier for breakers to discover attacks with

the Multiuser DB problem since they could reuse break tests against multiple build

submissions.11

11One caveat here is that a quirk of the problem definition permitted breakers to escalate
correctness bugs into security problems by causing the state of Multiuser DB submissions

62

The model also shows that C/C++ implementations were more likely to con-

tain an identified security bug than either static- or dynamic-language implemen-

tations. For static languages, this effect is significant and indicates that—assuming

all other features are the same—a C/C++ program was about 11× (that is, 1/0.089

given in Table 2.7 12) more likely to contain an identified bug. This effect is clear

in Figure 2.7, which plots the fraction of implementations that contain a security

bug, broken down by language type and contest problem. Of the 21 C/C++ sub-

missions (see Figure 2.4), 17 of them had a security bug: 5/9 for the Secure Log

contest, 7/7 for the ATM contest, and 5/5 for the Multiuser DB contest. All five

of the buggy implementations from the Secure Log contest had a crash defect, and

crashes were the only security-related problem for three of them; none of the ATM

implementations had crash defects; two of the Multiuser DB C/C++ submissions

had crash defects. All crash defects were due to violation of memory safety. More

details about the crashes are presented in §2.4.1. Table 2.8 breaks down the number

and percentage of teams that had different categories of security bugs.

The model shows four factors that played a role in the outcome, but not in a

statistically significant way: using a dynamically typed language, lines of code of an

implementation, developer knowledge of C, and number of team members. We see

to become out of sync with the oracle implementation, and behave in a way that seemed
to violate availability. We only realized after the contest was over that these should have
been classified as correctness bugs. For the data analysis, we retroactively reclassified these
bugs as correctness problems. Had they been classified properly during the contest, break-
it team behavior might have changed, i.e., to spend more time hunting proper security
defects.

12Here we use the inverse of the exponential coefficient for Statically Typed because
we are describing the relationship between variables in the opposite direction than as
presented in the table, i.e., the baseline C/C++ in comparison to Statically Typed as
opposed to Statically Typed in comparison to baseline C/C++.

63

Figure 2.7: The fraction of teams in whose submission a security bug was found, by
contest and language category.

Language
Category

Integrity Confidentiality
Integrity, Confidentiality,

or Availability (Multiuser DB)
Crash

C/C++ 9 / 43% 4 / 19% 5 / 24% 7 / 33%
Dynamic 27 / 45% 17 / 28% 11 / 18% 0 / 0%
Static 15 / 31% 10 / 20% 10 / 20% 0 / 0%

Table 2.8: The number and percentage of teams that had different types of security
bugs by language category. Percentages are relative to total submissions in that
language category, across all contests. Integrity, confidentiality, and availability
bugs were not distinguished for the Multiuser DB problem during that contest. We
group them in their own column.

the effect of the first in Figure 2.7. We note that the number of team members is

just outside the threshold of being significant. This suggests that an implementation

is 1.4× (1/0.705) less likely to have a security bug present for each team member.

Finally, we note that MOOC participation was not included in our final model,

indicating that (this kind of) security education did not have a significant effect in

the outcome. Prior research [58] similarly did not find a significant effect of educa-

tion in secure programming contexts. Our previous work investigating differences

between experts (hackers) and non-experts (software testers) suggests improvements

in vulnerability finding skill are driven by direct experiences with a variety of vulner-

64

abilities (e.g., discovering them, or being shown specific examples) [59]. Therefore,

we hypothesize the hands-on experience of BIBIFI may support secure development

improvement in ways that MOOC lectures, without direct experience, do not.

2.5.7 Breaking success

Now we turn our attention to break-it team performance, i.e., how effective

teams were at finding defects in build-it teams’ submissions. First, we consider how

and why teams performed as indicated by their (normalized) break-it score prior

to the fix-it phase. We do this to measure a team’s raw output, ignoring whether

other teams found the same bug (which we cannot assess with confidence due to

the lack of fix-it phase participation per §2.5.5). This data set includes 141 teams

that participated in the break-it phase for the Secure Log, ATM, and Multiuser DB

contests. We also model which factors contributed to security bug count, or how

many total security bugs a break-it team found. Doing this disregards a break-it

team’s effort at finding correctness bugs.

We model both break-it score and security bug count using several of the same

potential factors as discussed previously, but applied to the breaking team rather

than the building team. In particular, we include the Contest they participated

in, whether they were MOOC participants, the number of break-it Team members,

average team-member Coding experience, average team-member Knowledge of C,

and unique Languages known by the break-it team members. We also add two

new potential factors. 1) Whether the breaking team also qualified as a Build

65

Factor Description Baseline

Contest Secure Log, ATM, or Multiuser DB contest. Secure Log
Team members A team’s size. —
Knowledge of C The fraction of team members who know C or

C++.
—

Languages known Number of programming languages team mem-
bers know.

—

Coding experience Average years of programming experience. —
MOOC If the team was participating in the MOOC cap-

stone.
non-MOOC

Build participant If the breaking team qualified as a build partic-
ipant.

non-builder

Advanced techniques If the breaking team used software analysis or
fuzzing.

Not advanced

Table 2.9: Factors and baselines for break-it models.

participant. 2) Whether the breaking team reported using Advanced techniques like

software analysis or fuzzing to aid in bug finding. Teams that only used manual

inspection and testing are not categorized as advanced. 34 break-it teams (24%)

reported using advanced techniques. These factors are summarized in Table 2.9.

When carrying out the power analysis for these two models, we aimed for

a medium effect size by Cohen’s heuristic [55]. Assuming a power of 0.75, our

conference paper considered a population of N = 108 for the Secure Log and ATM

contests; with the eight degrees of freedom it yields a prospective effect size f 2 =

0.136. Including the Multiuser DB contest increases the degrees of freedom to

nine and raises the population to N = 141. This yields a prospective effect size

f 2 = 0.107, which (again) is an improvement over the initial analysis.

Break score. The model considering break-it score is given in Table 2.10. It has

a coefficient of determination R2 = 0.15 which is adequate. The model shows that

66

Factor Coef. CI p-value

Secure Log — — —
ATM -2401.047 [-3781.59, -1020.5] <0.001*
Multiuser DB -61.25 [-1581.61, 1459.11] 0.937

Team members 386.975 [45.48, 728.47] 0.028*

Coding experience 87.591 [-1.73, 176.91] 0.057

Build participant 1260.199 [-315.62, 2836.02] 0.119

Knowledge of C -1358.488 [-3151.99, 435.02] 0.14

Table 2.10: Final linear regression model of teams’ break-it scores, indicating how
many points each selected factor adds to the total score. R2 = 0.15.

teams with more members performed better, with an average of 387 additional

points per team member. Auditing code for errors is an easily parallelized task, so

teams with more members could divide their effort and achieve better coverage.

The model also indicates that Secure Log teams performed significantly bet-

ter than ATM teams, and Multiuser DB teams performed similarly to ATM teams.

Figure 2.8 illustrates that correctness bugs, despite being worth fewer points than

security bugs, dominate overall break-it scores for the Secure Log contest. In the

ATM contest, the scores are more evenly distributed between correctness and se-

curity bugs. This outcome is not surprising to us, as it was somewhat by design.

The Secure Log problem defines a rich command-line interface with many opportu-

nities for subtle correctness errors that break-it teams can target. It also allowed a

break-it team to submit up to 10 correctness bugs per build-it submission. To nudge

teams toward finding more security-relevant bugs, we reduced the submission limit

from 10 to 5, and designed the ATM and Multiuser DB interface to be far simpler.

For the Multiuser DB contest, an even greater portion of break-it scores come from

67

security bugs. This again was by design as we increased the security bug limit.

Instead of submitting a maximum of two security bugs against a specific build-it

team, breakers could submit up to five security (or correctness) bugs against a given

team.

Interestingly, making use of advanced analysis techniques did not factor into

the final model; i.e., such techniques did not provide a meaningful advantage in

our context. This makes sense when we consider that such techniques tend to

find generic errors such as crashes, bounds violations, or null pointer dereferences.

Security violations for our problems are more often semantic, e.g., involving incorrect

design or improper use of cryptography. Many correctness bugs were non-generic

too, e.g., involving incorrect argument processing or mishandling of inconsistent or

incorrect inputs.

Being a build participant and having more coding experience is identified as

a positive factor in the break-it score, according to the model, but neither is statis-

tically significant (though they are close to the threshold). Interestingly, knowledge

of C is identified as a strongly negative factor in break-it score (though again, not

statistically significant). Looking closely at the results, we find that lack of C knowl-

edge is extremely uncommon, but that the handful of teams in this category did

unusually well. However, there are too few of them for the result to be significant.

Again, we note MOOC participation was not included in our final model,

suggesting this security education had at most a limited effect on breaking success.

68

(a) Secure Log

(b) ATM

(c) Multiuser DB

Figure 2.8: Scores of break-it teams prior to the fix-it phase, broken down by points
from security and correctness bugs. The final score of the break-it team (after fix-it
phase) is noted as a dot. Note the different ranges in the y-axes. In general, the
Secure Log contest had the least proportion of points coming from security breaks.

69

Factor Coef. CI p-value

Secure Log — — —
Multiuser DB 9.617 [5.84, 13.39] <0.001*
ATM 3.736 [0.3, 7.18] 0.035*

Team members 1.196 [0.35, 2.04] 0.006*

Build participant 4.026 [0.13, 7.92] 0.045*

Table 2.11: Final linear regression modeling the count of security bugs found by
each team. Coefficients indicate how many security bugs each factor adds to the
count. R2 = 0.203.

Security bugs found. We next consider breaking success as measured by the count

of security bugs a breaking team found. This model (Table 2.11) explains 20% of

variance (R2 = 0.203). The model again shows that team size is important, with

an average of one extra security bug found for each additional team member. Being

a qualified builder also significantly helps one’s score; this makes intuitive sense,

as one would expect to gain a great deal of insight into how a system could fail

after successfully building a similar system. Figure 2.9 shows the distribution of

the number of security bugs found, per contest, for break-it teams that were and

were not qualified build-it teams. Note that all but eight of the 141 break-it teams

made some attempt, as defined by having made a commit, to participate during

the build-it phase—most of these (115) qualified, but 18 did not. If the reason was

that these teams were less capable programmers, that may imply that programming

ability generally has some correlation with break-it success.

On average, four more security bugs were found by ATM teams than Secure

Log teams. This contrasts with the finding that Secure Log teams had higher over-

all break-it scores, but corresponds to the finding that more ATM submissions had

70

Figure 2.9: Count of security bugs found by each break-it team, organized by contest
and whether the team also participated in build-it. The heavy vertical line in the
box is the median, the boxes show the first and third quartiles, and the whiskers
extend to the most outlying data within±1.5× the interquartile range. Dots indicate
further outliers.

security bugs found against them. As discussed above, this is because correctness

bugs dominated the Secure Log contest but were not as dominant in the ATM con-

test. Once again, the reasons may have been the smaller budget on per-submission

correctness bugs for the ATM contest, and the greater potential attack surface in

the ATM problem.

Multiuser DB teams found ten more security bugs on average than Secure Log

teams. One possible reason is that the Multiuser DB contest permitted teams to

submit up to five security bug reports per target, rather than just two. Another is

that with Multiuser DB it was easier for breakers to reuse break tests to see when

multiple targets were susceptible to the same bug.

71

2.5.8 Model differences

In the conference version of this work [42], we presented previous versions of

these models with only data from the Secure Log and ATM contests. The updated

models with Multiuser DB data are very similar to the original models, but there

are some differences. We describe the differences to each model in this subsection.

Ship scores. In the original ship score model, students of the MOOC capstone

performed 119 points better than non-MOOC teams. This correlation goes away

when the Multiuser DB data is included. We hypothesize that this is due to prior

coursework. MOOC students took three prior security courses that cover cryptog-

raphy which is directly relevant to the Secure Log and ATM problem, but not the

Multiuser DB problem.

Lines of code is not statistically significant in the updated model, but it was

significant in the original model. Each additional line of code corresponded with

a drop of 0.03 points in ship score. Code size may not have improved ship scores

for the Multiuser DB contest due to the nature of the problem. Teams needed to

implement custom access control policies and there are fewer libraries available that

implement this functionality.

Presence of security bugs. In the original presence-of-security-bugs model, lines of

code was a significant factor. Each additional line of code slightly increased the

likelihood of a security bug being present (1.001×). Lines of code is not in the

latest model, which is similar to the change in the ship score model (§2.5.4). We

72

hypothesize this change occured for the same reasons.

Break score. The break score model basically remained the same between versions.

The only difference is the coefficients slightly changed with the addition of the

Multiuser DB contest.

Security bugs found. The linear regression model for the number of security bugs

found essentially remained unchanged. The only material change was the addition

of the factor that found that Multiuser DB breakers found more security bugs than

Secure Log problem breakers.

2.5.9 Summary

The results of our quantitative analysis provide insights into how different fac-

tors correlate with success in building and breaking software. Programs written in

C and C++ received higher ship scores due to better performance. C/C++ submis-

sions were also 11× more likely to have a reported security flaw than submissions

written in statically typed languages.

Break-it teams with more team members found more security bugs and re-

ceived more break-it points. Searching for vulnerabilities is easily parallelizable, so

teams with more members could split the workload and audit more code. Success-

ful build participants found more security bugs. This is intuitive as successfully

building a program gives insights into the mistakes other similar programs might

make.

73

2.6 Related work

BIBIFI bears similarity to existing programming and security contests but is

unique in its focus on building secure systems. BIBIFI also is related to studies of

code and secure development, but differs in its open-ended contest format.

Contests. Cybersecurity contests typically focus on vulnerability discovery and ex-

ploitation, and sometimes involve system administration for defense. One popular

style of contest, dubbed capture the flag (CTF), is exemplified by a contest held at

DEFCON [60]. Here, teams run an identical system that has buggy components.

The goal is to find and exploit the bugs in other competitors’ systems while mit-

igating the bugs in your own. Compromising a system enables a team to acquire

the system’s key and thus “capture the flag.” In addition to DEFCON CTF, there

are other CTFs such as iCTF [61, 62, 63], S3 [64], KotH [65] and PicoCTF [66].

The use of this style of contest in an educational setting has been explored in prior

work [67, 68, 69]. The Collegiate Cyber Defense Challenge [31, 70, 71] and the

Maryland Cyber Challenge & Competition [30] have contestants defend a system,

so their responsibilities end at the identification and mitigation of vulnerabilities.

These contests focus on bugs in systems as a key factor of play, but neglect software

development.

Since BIBIFI’s inception, additional contests have been developed in its style.

Make it and Break it [72] is an evaluation of the Build-it, Break-it, Fix-it type of

contest. Two teams were tasked with building a secure internet of things (IoT) smart

74

home with functionality including remote control of locks, speakers, and lighting.

Teams then broke each other’s implementations and found vulnerabilities like SQL

injection and unauthorized control of locks. The contest organizers found this style

of contest was beneficial in the development of cybersecurity skills and plan to run

additional contests in the future. Git-based CTF [56] is similar to BIBIFI in that

students were asked to implement a program according to a given specification. It

differs in the fact that the CTF was fully run on Github and contestants used issue-

tracking to submit breaks. In addition, builders were encouraged to fix breaks as

soon as breaks were submitted since they periodically lost points for unfixed breaks.

This seems to have been an effective motivation for convincing builders to fix their

mistakes. We have integrated this idea into BIBIFI’s infrastructure and plan to use

it for future contests.

Programming contests challenge students to build clever, efficient software,

usually with constraints and while under (extreme) time pressure. The ACM pro-

gramming contest [36] asks teams to write several programs in C/C++ or Java

during a 5-hour time period. Google Code Jam [73] sets tasks that must be solved

in minutes, which are then graded according to development speed (and implicitly,

correctness). Topcoder [35] runs several contests; the Algorithm competitions are

small projects that take a few hours to a week, whereas Design and Development

competitions are for larger projects that must meet a broader specification. Code is

judged for correctness (by passing tests), performance, and sometimes subjectively

in terms of code quality or practicality of design. All of these resemble the build-

it phase of BIBIFI but typically consider smaller tasks; they do not consider the

75

security of the produced code.

Secure Development Practices and Advice. There is a growing literature of rec-

ommended practices for secure development. The BSIMM (“building security in”

maturity model) [74] collects information from companies and places it within a

taxonomy. Microsoft’s Security Development Lifecycle (SDL) [75] describes pos-

sible strategies for incorporating security concerns into the development process.

Several authors make recommendations about development lifecycle and coding

practices [76, 77, 78, 79, 80, 81]. Acar et al. collect and categorize 19 such re-

sources [82].

Studies of secure software development. Researchers have considered how to in-

clude security in the development process. Work by Finifter and Wagner [83] and

Prechelt [84] relates to both our build-it and break-it phases: they asked different

teams to develop the same web application using different frameworks, and then sub-

jected each implementation to automated (black box) testing and manual review.

They found that both forms of review were effective in different ways, and that

framework support for mitigating certain vulnerabilities improved overall security.

Other studies focused on the effectiveness of vulnerability discovery techniques, e.g.,

as might be used during our break-it phase. Edmundson et al. [85] considered man-

ual code review; Scandariato et al. [86] compared different vulnerability detection

tools; other studies looked at software properties that might co-occur with security

problems [87, 88, 89]. BIBIFI differs from all of these in its open-ended, contest

76

format: Participants can employ any technique they like, and with a large enough

population and/or measurable impact, the effectiveness of a given technique will be

evident in final outcomes.

Other researchers have examined what factors influence the development of se-

curity errors. Common findings include developers who do not understand the threat

model, security APIs with confusing options and poorly chosen defaults, and “tem-

porary" test configurations that were not corrected prior to deployment [90, 91, 92].

Interview studies with developers suggest that security is often perceived as some-

one else’s responsibility, not useful for career advancement, and not part of the

“standard” developer mindset [93, 94]. Anecdotal recommendations resulting from

these interviews include mandating and rewarding secure coding practices, ensuring

that secure tools and APIs are more attractive than less secure ones, enable “se-

curity champions” with broadly defined roles, and favoring ongoing dialogue over

checklists [95, 96, 97]. Developer Observatory [98, 99, 100] is an online platform

that enables large-scale controlled security experiments by asking software devel-

opers to complete a security relevant programming tasks in the browser. Using

this platform, Acar et al. studied how developer experience and API design for

cryptographic libraries impact software security. Oliveira et al. [101] performed an

experiment on security blindspots, which they define as a misconception, misunder-

standing, or oversight by the developer in the use of an API. Their results indicate

that API blindspots reduce a developer’s ability to identity security concerns, I/O

functionality is likely to cause blindspots, and experience does not influence a de-

veloper’s ability to identify blindspots. Thompson [102] analyzed thousands of open

77

source repositories and found that code review of pull requests reduced the number

of reported security bugs.

Crash de-duplication. For accurate scoring, BIBIFI identifies duplicate bug reports

by unifying the ones addressed by the same (atomic) fix. But this approach is man-

ual, and relies on imperfect incentives. Other works have attempted to automatically

de-duplicate bug reports, notably those involving crashes. Stack hashing [103] and

AFL [104] coverage profiles offer potential solutions, however Klees et al. [105] show

that fuzzers are poor at identifying which underlying bugs cause crashing inputs.

Semantic crash bucketing [106] and symbolic analysis [107] show better results at

mapping crashing inputs to unique bugs by taking into account semantic information

of the program. The former supports BIBIFI’s view that program fixes correspond

to unique bugs.

2.7 Conclusion

This work has presented Build-it, Break-it, Fix-it (BIBIFI), a new security

contest that brings together features from typical security contests, which focus

on vulnerability detection and mitigation but not secure development, and pro-

gramming contests, which focus on development but not security. During the first

phase of the contest, teams construct software they intend to be correct, efficient,

and secure. During the second phase, break-it teams report security vulnerabilities

and other defects in submitted software. In the final, fix-it, phase, builders fix re-

ported bugs and thereby identify redundant defect reports. Final scores, following

78

an incentives-conscious scoring system, reward the best builders and breakers.

During 2015 and 2016, we ran three contests involving a total of 156 teams and

three different programming problems. Quantitative analysis from these contests

found that the best performing build-it submissions used C/C++, but submissions

coded in a statically-typed language were less likely to have a security flaw. Break-it

teams that were also successful build-it teams were significantly better at finding

security bugs. Break-it teams with more members were more successful at breaking

since auditing code is a task that is easily subdivided.

The BIBIFI contest administration code is available at https://github.com/

plum-umd/bibifi-code; data from our contests is available in limited form, upon

request. More information, data, and opportunities to participate are available at

https://builditbreakit.org.

79

https://github.com/plum-umd/bibifi-code
https://github.com/plum-umd/bibifi-code
https://builditbreakit.org

Chapter 3: LWeb: Information Flow Security for Multi-tier Web Ap-

plications

3.1 Introduction

Modern web applications must protect the confidentiality and integrity of

their data. As seen in the outcomes of BIBIFI, ad hoc enforcement of security

can lead to missing important design and implementation components, while au-

tomated enforcement through the use of safe programming languages can result

in better security. Similarly, employing access control and/or manual enforcement

mechanisms may fail to block illicit information flows between components, e.g.,

from database to server to client. Information flow control (IFC) [15] policies can

govern such flows, but enforcing them poses practical problems. Static enforce-

ment (e.g., by typing [108, 109, 110, 111, 112] or static analysis [113, 114, 115]) can

produce too many false alarms, which hamper adoption [116]. Dynamic enforce-

ment [117, 118, 119, 120, 121] is more precise but can impose high overheads.

A promising solution to these problems is embodied in the LIO system [16] for

Haskell. LIO is a drop-in replacement for the Haskell IO monad, extending IO with

an internal current label and clearance label. Such labels are lattice ordered (as is

80

typical [17]), with the degenerate case being a secret (high) label and public (low)

one. LIO’s current label constitutes the least upper bound of the security labels of

all values read during the current computation. Effectful operations such as read-

ing/writing from stable storage, or communicating with other processes, are checked

against the current label. If the operation’s security label (e.g., that on a channel

being written to) is lower than the current label, then the operation is rejected as

potentially insecure. The clearance serves as an upper bound that the current label

may never cross, even prior to performing any I/O, so as to reduce the chance of side

channels. Haskell’s clear, type-enforced separation of pure computation from effects

makes LIO easy to implement soundly and efficiently, compared to other dynamic

enforcement mechanisms.

This chapter presents LWeb, an extension to LIO that aims to bring its benefits

to Haskell-based web applications. We present the three main contributions of our

work.

First, we present an extension to a core LIO formalism with support for

database transactions. Each table has a label that protects its length. In our

implementation we use DC labels [122], which have both confidentiality and in-

tegrity components. The confidentiality component of the table label controls who

can query it (as the result may reveal something about the table’s length), and the

integrity component controls who can add or delete rows (since both may change

the length). In addition, each row may have a more refined policy to protect its

contents. The label for a field in a row may be specified as a function of other fields

in the same row (those fields are protected by a specific, global label). This allows,

81

for example, having a row specifying a user and some sensitive user data; the former

can act as a label to protect the latter.

We mechanized our formalism in Liquid Haskell [3] and proved that it en-

joys noninterference. Our development proceeds in two steps: a core LIO formalism

called λLIO (§ 3.3), and an extension to it, called λLWeb , that adds database op-

erations (§ 3.4). The mechanization process was fruitful: it revealed two bugs in

our original rules that constituted real leaks. Moreover, this mechanization consti-

tutes the largest-ever development in Liquid Haskell and is the first Liquid Haskell

application to prove a language metatheory (§ 3.5).

As our next contribution, we describe a full implementation of LWeb in Haskell

as an extension to the Yesod web programming framework (§ 3.2 and § 3.6). Our

implementation was carried out in two steps. First, we extracted the core label

tracking functionality of LIO into a monad transformer called LMonad so that it

can be layered on monads other than IO. For LWeb, we layered it on top of the

Handler monad provided by the Yesod. This monad encapsulates mechanisms for

client/server HTTP communications and database transactions, so layering LMonad

on top of Handler provides the basic functionality to enforce security. Then we

extended Yesod’s database API to permit defining label-based information flow

policies, generalizing the approach from our formalism whereby each row may have

many fields, each of which may be protected by other fields in the same row. We

support simple key/value lookups and more general SQL queries, extending the

Esqueleto framework [123]. We use Template Haskell [124] to insert checks that

properly enforce policies in our extension.

82

Finally, we describe our experience using LWeb to build the web site hosting

the BIBIFI contest, described in Chapter 2 (§ 3.7). The contest site has a variety

of roles (participants, teams, judges, admins) and policies that govern their various

privileges. When we first deployed the contest, it lacked LWeb support, and we

found it had authorization bugs. Retrofitting it with LWeb was straightforward and

eliminated those problems, reducing the trusted computing base from the entire

application to just 80 lines of its code (1%) plus the LWeb codebase (for a total of

21%). LWeb imposes modest overhead on BIBIFI query latencies—experiments show

between 2% and 21% (§ 3.8).

LWeb prevents the leakage of information as it flows through programs, but

programs do release some information in practice. We investigate quantifying infor-

mation flow (QIF) techniques that safely declassify information according to user-

defined policies (§ 3.9). By modeling abstract domains in Liquid Haskell, we soundly

and completely quantify how much information query functions release.

LWeb is not the first framework to use IFC to enforce database security in web

applications. Examples of prior efforts include SIF/Swift [110, 112], Jacqueline [120],

Hails [125, 126], SELinks [127], SeLINQ [111], UrFlow [128], and IFDB [129]. LWeb

distinguishes itself by providing end-to-end IFC security (between/across server and

database), backed by a formal proof (mechanized in Liquid Haskell), for a ma-

ture, full-featured web framework (Yesod) while supporting expressive policies (e.g.,

where one field can serve as the label of another) and efficient queries (a large subset

of SQL). The IFC checks needed during query processing were tricky to get right—

our formalization effort uncovered bugs in our original implementation by which

83

information could leak owing to the checks themselves. § 3.10 discusses related

work in detail.

The code for LWeb and its mechanized proof are freely available at https://

github.com/jprider63/lmonad, https://github.com/jprider63/lmonad-yesod,

and https://github.com/plum-umd/lmonad-meta.

3.1.1 Acknowledgements

The work in this chapter previously appeared in Parker et al. [130] and was

partly developed for my master’s thesis [131]. It was a collaboration with Niki Vazou

and Michael Hicks. We all contributed to the meta-theory; Niki and I developed

the mechanization; I implemented the Haskell library that dynamically enforced

non-interference and applied it to the BIBIFI contest site.

We would like to thank Alejandro Russo and anonymous reviewers for help-

ful comments on a draft of this work. This work was supported in part by the

National Science Foundation under grant CNS-1801545 and by DARPA under con-

tract FA8750-16-C-0022.

3.2 Overview

The architecture of LWeb is shown in fig. 3.1. Database queries/updates pre-

cipitated by user interactions are processed by the LMonad component, which consti-

tutes the core of LIO and confirms that label-based security policies are not violated.

Then, the queries/updates are handled via Yesod, where the results continue to be

84

https://github.com/jprider63/lmonad
https://github.com/jprider63/lmonad
https://github.com/jprider63/lmonad-yesod
https://github.com/plum-umd/lmonad-meta

Programmer

LWeb

LMonad

Yesod

DB

DB Query

Label Check

DB Access

Figure 3.1: Structure of LWeb.

class Eq a ⇒ Label a where
⊥ :: a
(t) :: a → a → a
(u) :: a → a → a
(v) :: a → a → Bool

Figure 3.2: The Label class

subject to policy enforcement by LMonad.

3.2.1 Label-Based Information Flow Control with LIO

We start by presenting LIO [16] and how it is used to enforce noninterference

for label-based information flow policies.

Labels and noninterference. As a trivial security label, consider a datatype with

constructors Secret and Public . Protected data is assigned a label, and an IFC

system ensures that Secret-labeled data can only be learned by those with Secret-

label privilege or greater. The label system can be generalized to any lattice [17]

85

where IFC is checked using the lattice’s partial order relation v. Such a system

enjoys noninterference [132] if an adversary with privileges at label l1 can learn

nothing about data labeled with l2 where l2 6v l1.

In fig. 3.2 we define the label interface as the type class Label that defines

the bottom (least protected) label, least upper bound (join, t) of two labels, the

greatest lower bound (meet, u), and whether one label can flow to (v) another,

defining a partial ordering. Instantiating this type class for Public and Secret

would set Public as the bottom label and Public @ Secret (with join and meet

operations to match).

The LIO monad. LIO enforces IFC on labeled data using dynamic checks. The

type LIO l a denotes a monadic computation that returns a value of type a at label

l. LIO provides two methods to label and unlabel data.

label :: (Label l) ⇒ l → a → LIO l (Labeled l a)
unlabel :: (Label l) ⇒ Labeled l a → LIO l a

The method label l v takes as input a label and some data and returns a Labeled

value, i.e., the data v marked with the label l. The method unlabel v takes as

input a labeled value and returns just its data. The LIO monad maintains an ambient

label—the current label lc—that represents the label of the current computation.

As such, labelling and unlabelling a value affects lc. In particular, unlabel v

updates lc by joining it to v’s label, while label l v is only permitted if lc v l,

i.e., the current label can flow to l. If this check fails, LIO raises an exception.

As an example, on the left, a computation with current label Public labels

86

data "a secret" as Secret , preserving the same current label, and then unla-

bels the data, thus raising the current label to Secret . On the right, a compu-

tation with current label Secret attempts to label data as Public , which fails,

since the computation is already tainted with (i.e., dependent on) secret data.

-- lc := Public

v ← label Secret "a secret"
-- ok: Public v Secret and lc := Public

x ← unlabel v
-- lc := Secret

-- lc := Secret

v ← label Public "public"
-- exception: Secret 6v Public

LIO also supports labeled mutable references, and a scoping mechanism for

temporarily (but safely) raising the current label until a computation completes,

and then restoring it. LIO also has what is called the clearance label that serves

as an upper bound for the current label, and thus can serve to identify potentially

unsafe computations sooner.

A normal Haskell program can run an LIO computation via runLIO , whose

type is as follows.

runLIO :: (Label l) ⇒ LIO l a → IO a

Evaluating runLIO m initializes the current label to ⊥ and computes m. The returned

result is an IO computation, since LIO allows IO interactions, e.g., with a file system.

If any security checks fail, runLIO throws an exception.

3.2.2 Yesod

Yesod [133] is mature framework for developing type-safe and high perfor-

mance web applications in Haskell. In a nutshell, LWeb adds LIO-style support to

87

Friends <⊥,Const Admin>
user1 Text <⊥,Const Admin>
user2 Text <⊥,Const Admin>
date Text <Field User1 u Field User2,Const Admin>

Figure 3.3: Example LWeb database table definition. The green is Yesod syntax and
the blue is the LWeb policy.

Yesod-based web applications, with a focus on supporting database security policies.

The green part of fig. 3.3 uses Yesod’s domain specific language (DSL) to

define the table Friends . The table has three Text1 fields corresponding to two

users (user1 and user2) and the date of their friendship. A primary key field with

type FriendsId is also automatically added. In § 3.2.3 we explain how the blue part

of the definition is used for policy enforcement.

Yesod uses Template Haskell [124] to generate, at compile time, a database

schema from such table definitions. These are the Haskell types that Yesod generates

for the Friends table.

data FriendsId = FriendsId Int
data Friends = Friends { friendsUser1 :: Text, friendsUser2 :: Text

, friendsDate :: Text }

Note that though each row has a key of type FriendsId , it is elided from the Friends

data record. Each generated key type is a member of the Key type family; in this

case Key Friends is a type alias for FriendsId .

Yesod provides an API to define and run queries. Here is a simplified version

of this API.

runDB :: YesodDB a → Handler a

1Text is an efficient Haskell string type.

88

get :: Key v → YesodDB (Maybe v)
insert :: v → YesodDB (Key v)
delete :: Key v → YesodDB ()
update :: Key v → [Update v] → YesodDB ()

The type alias YesodDB a denotes the monadic type of a computation that queries

(or updates) the database. The function runDB runs the query argument on the

database. Handler is Yesod’s underlying monad used to respond to HTTP requests.

The functions get, insert , delete , and update generate query computations. For

example, we can query the database for the date of a specific friendship using get.

getFriendshipDate :: FriendsId → Handler (Maybe Text)
getFriendshipDate friendId = do

r ← runDB (get friendId)
return (friendsDate <$> r)

Yesod also supports more sophisticated SQL-style queries via an interface

called Esqueleto [123]. Such queries may include inner and outer joins, conditionals,

and filtering.

3.2.3 LWeb: Yesod with LIO

LWeb extends Yesod with LIO-style IFC enforcement. The implementation

has two parts. As a first step, we generalize LIO to support an arbitrary underlying

monad by making it a monad transformer, applying it to Yesod’s core monad. Then

we extend Yesod operations to incorporate label-based policies that work with this

extended monad.

LMonad: LIO as a monad transformer. LMonad generalizes the underlying IO monad

of LIO to any monad m. In particular, LMonad is a monad transformer LMonadT l m

89

that adds the IFC operations to the underlying monad m, rather than making it

specific to the IO monad.

label :: (Label l, Monad m) ⇒ l → a → LMonadT l m (Labeled l a)
unlabel :: (Label l, Monad m) ⇒ Labeled l a → LMonadT l m a
runLMonad :: (Label l, Monad m) ⇒ LMonadT l m a → m a

LMonadT is implemented as a state monad transformer that tracks the current label.

Computations that run in the underlying m monad cannot be executed directly due

to Haskell’s type system. Instead, safe variants that enforce IFC must be written so

that they can be executed in LMonadT l m. Thus, the LIO monad is an instantiation

of the monad variable m with IO: LIO l = LMonadT l IO. For LWeb we instantiate

LMonadT with Yesod’s Handler monad.

type LHandler l a = LMonadT l Handler a

Doing this adds information flow checking to Yesod applications, but it still re-

mains to define policies to be checked. Thus we extend Yesod to permit defining

label-based policies on database schemas, and to enforce those policies during query

processing.

Label-annotated database schemas. LWeb labels are based on DC labels [122], which

have the form <l,r>, where the left protects the confidentiality and the right pro-

tects the integrity of the labeled value. Integrity lattices are dual to confidentiality

lattices. They track who can influence the construction of a value.

Database policies are written as label annotations p on table definitions, fol-

lowing this grammar:

90

p := <l, l>
l := Const c | Field f | Id | > | ⊥ | l u l | l t l

Here, c is the name of a data constructor and f is a field name. A database policy

consists of a single table label and one label for each field in the database. We

explain these by example.

The security labels of the Friends table are given by the blue part of fig. 3.3.

The first line’s label Friends <⊥,Const Admin> defines the table label, which pro-

tects the length of the table. This example states that anyone can learn the length

of the table (e.g., by querying it), but only the administrator can change the length

(i.e., by adding or removing entries). LWeb requires the table label to be constant,

i.e., it may not depend on run-time entries of the table. Allowing it to do so would

significantly complicate enforcing noninterference.

The last line date Text <Field User1 u Field User2,Const Admin> defines

that either of the users listed in the first two fields can read the date field but only

the administrator can write it. This label is dynamic, since the values of the user1

and user2 fields may differ from row to row. We call fields, like user1 and user2,

which are referenced in another field’s label annotation, dependency fields. When a

field’s label is not given explicitly, the label <⊥,>> is assumed. To simplify security

enforcement, LWeb requires the label of a dependency field to be constant and flow

into (be bounded by) the table label. For user1 and user2 this holds since their

labels match the table’s label.

The invariants about the table label and the dependency field labels are en-

forced by a compile-time check, when processing the table’s policy annotations.

91

Note that Labeled values may not be directly stored in the database as there is no

way to directly express such a type in a source program. Per fig. 3.3, field types like

Text, Bool, and Int are allowed, and their effective label is indicated by annotation,

rather than directly expressed in the type.2

Policy enforcement. LWeb enforces the table-declared policies by providing wrap-

pers around each Yesod database API function.

runDB :: Label l ⇒ LWebDB l a → LHandler l a
get :: Label l ⇒ Key v → LWebDB l (Maybe v)
insert :: Label l ⇒ v → LWebDB l (Key v)
delete :: Label l ⇒ Key v → LWebDB l ()
update :: Label l ⇒ Key v → [Update v] → LWebDB l ()

Now the queries are modified to return LWebDB computations that are evaluated

(using runDB) inside the LHandler monad. For each query operation, LWeb wraps

the underlying database query with information flow control checks that enforce the

defined policies. For instance, if x has type FriendsId , then r ← runDB $ get x

joins the current label with the label of the selected row, here user1 u user2.

LWeb also extends IFC checking to advanced SQL queries expressed in Es-

queleto [123]. As explained in § 4.3, LWeb uses a DSL syntax, as a lsql quasiquota-

tion, to wrap these queries with IFC checks. For example, the following query joins

the Friends table with a User table:

rs ← runDB [lsql|select ? from Friends inner join User on Friends.user1
== User.id|]

2The formalism encodes all of these invariants with refinement types in the database
definition.

92

3.3 Mechanizing Noninterference of LIO in Liquid Haskell

A contribution of this work is a formalization of LWeb’s extension to LIO to

support database security policies, along with a proof that this extension satisfies

(termination insensitive) noninterference. We mechanize our formalization in Liq-

uid Haskell (§ 1.1). Our mechanized formalization and proof of noninterference

constitutes the first significant metatheoretical mechanization carried out in Liquid

Haskell.

We present our mechanized LWeb formalism in two parts. In this section, we

present λLIO , a formalization and proof of noninterference for LIO. The next section

presents λLWeb , an extension of λLIO that supports database operations. Our Liquid

Haskell mechanization defines λLIO ’s syntax and operational semantics as Haskell

definitions, as a definitional interpreter. We present them the same way, rather

than reformatting them as mathematical inference rules. Metatheoretic properties

are expressed as refinement types, following Vazou et al. [134, 135], and proofs are

Haskell functions with these types (checked by the SMT solver). We assess our

experience using Liquid Haskell for metatheory in comparison to related approaches

in § 3.5.

3.3.1 Security Lattice as a Type Class

Figure 3.4 duplicates the Label class definition of Figure 3.2 but extends it

with several methods that use refinement types to express properties of lattices that

labels are expected to have.

93

class Label l where
(v) :: l → l → Bool
(u) :: l → l → l
(t) :: l → l → l
⊥ :: l

lawBot :: l:l → { ⊥ v l }
lawFlowReflexivity :: l:l → { l v l }
lawFlowAntisymmetry :: l1:l → l2:l → { (l1 v l2 ∧ l2 v l1) ⇒ l1 ==
l2 }
lawFlowTransitivity :: l1:l → l2:l → l3:l → { (l1 v l2 ∧ l2 v l3)
⇒ l1 v l3 }

lawMeet :: z:l → l1:l → l2:l → l:l
→ { z == l1 u l2 ⇒ z v l1 ∧ z v l2 ∧ (l v l1 ∧ l v l2 ⇒

l v z) }
lawJoin :: z:l → l1:l → l2:l → l:l

→ { z == l1 t l2 ⇒ l1 v z ∧ l2 v z ∧ (l1 v l ∧ l2 v l ⇒
z v l) }

Figure 3.4: Label type class extended with law* methods to define the lattice laws
as refinement types.

Partial order. The method (v) defines a partial order for each Label element.

That is, (v) is reflexive, antisymmetric, and transitive, as respectively encoded by

the refinement types of the methods lawFlowReflexivity , lawFlowAntisymmetry ,

and lawFlowTransitivity . For instance, lawFlowReflexivity is a method that

takes a label l to a Haskell unit (i.e., l → ()). This type is refined to encode the

reflexivity property l:l → {v:() | l v l } and further simplifies to ignore the

irrelevant v:() part as l:l → { l v l }. With that refinement, application of

lawFlowReflexivity to a concrete label l gives back a proof that l can flow to

itself (i.e., l v l). At an instance definition of the class Label, the reflexivity proof

needs to be explicitly provided.

94

Lattice. Similarly, we refine the lawMeet method to define the properties of the

(u) lattice operator. Namely, for all labels l1 and l2, we define z == l1 u l2 so

that (i) z can flow to l1 and l2 (z v l1 ∧ z v l2) and (ii) all labels that can flow

to l1 and l2, can also flow to z (forall l. l v l1 ∧ l v l2 ⇒ l v z). Dually,

we refine the lawJoin method to describe l1 t l2 as the minimum label that is

greater than l1 and l2.

Using the lattice laws. The lattice laws are class methods, which can be used for

each l that satisfies the Label class constraints. For example, we prove that for all

labels l1, l2, and l3, l1 t l2 cannot flow into l3 iff l1 and l2 cannot both flow

into l3.

joinIff :: Label l ⇒ l1:l → l2:l → l3:l → {l1 v l3 ∧ l2 v l3 ⇔ (l1
t l2) v l3}

joinIff l1 l2 l3 = lawJoin (l1 t l2) l1 l2 l3 ? lawFlowTransitivity l1
l2 l3

The theorem is expressed as a Haskell function that is given three labels and returns

a unit value refined with the desired property. The proof proceeds by calling the laws

of join and transitivity, combined with the proof combinator (?) that ignores its

second argument (i.e., defined as x ? _ = x) while passing the refinements of both

arguments to the SMT solver. The contrapositive step is automatically enforced by

refinement type checking, using the SMT solver.

3.3.2 λLIO : Syntax and Semantics

Now we present the syntax and operational semantics of λLIO .

95

data Program l = Pg { pLabel :: l, pTerm :: Term l } | PgHole

data Term l
-- pure terms

= TUnit | TInt Int | TLabel l | TLabeled l (Term l) | TLabelOf (Term l)
| TVar Var | TLam Var (Term l) | TApp (Term l) (Term l) | THole | ...
-- monadic terms

| TBind (Term l) (Term l) | TReturn (Term l) | TGetLabel | TLIO (Term
l)

| TTLabel (Term l) (Term l) | TUnlabel (Term l) | TException
| TToLabeled (Term l) (Term l)

Figure 3.5: Syntax of λLIO .

3.3.2.1 Syntax

Figure 3.5 defines a program as either an actual program (Pg) with a current

label pLabel under which the program’s term pTerm is evaluated, or as a hole

(PgHole). The hole is not a proper program; it is used for to define adversary

observability when proving noninterference (§ 3.3.3). We omit the clearance label in

the formalism as a simplification since its rules are straightforward (when the current

label changes, check that it flows into the clearance label). Terms are divided into

pure terms whose evaluation is independent of the current label and monadic terms,

which either manipulate or whose evaluation depends on the current label.

Pure terms. Pure terms include unit TUnit, integers TInt i for some Haskell in-

teger i, and the label value TLabel l, where l is some instance of the labeled class

of Figure 3.4. The labeled value TLabeled l t wraps the term t with the label l.

The term TLabelOf t returns the label of the term t, if t is a labeled term. Pure

terms include the standard lambda calculus terms for variables (TVar), application

96

(TApp) and abstraction (TLam). Finally, similar to programs, a hole term (THole)

is required for the meta-theory. It is straightforward to extend pure terms to more

interesting calculi. In our mechanization we extended pure terms with lattice label

operations, branches, lists, and inductive fixpoints; we omit them here for space

reasons.

Monadic terms. Monadic terms are evaluated under a state that captures the cur-

rent label. Bind (TBind) and return (TReturn) are the standard monadic operations,

that respectively propagate and return the current state. The current label is ac-

cessed with the TGetLabel term and the monadic term TLIO wraps monadic values,

i.e., computations that cannot be further evaluated. The term TTLabel lt t labels

the term t with the label term lt and dually the term TUnlabel t unlabels the

labeled term t. An exception (TException) is thrown if a policy is violated. Fi-

nally, the term TToLabeled tl t locally raises the current label to tl to evaluate

the monadic term t, dropping it again when the computation completes.

3.3.2.2 Semantics

Figure 3.6 summarizes the operational semantics of λLIO as three main func-

tions, (i) eval evaluates monadic terms taking into account the current label of

the program, (ii) evalTerm evaluates pure terms, and (iii) eval$*$ is the transitive

closure of eval.

97

Program evaluation. The bind of two terms t1 and t2 fully evaluates t1 into a

monadic value, using evaluation’s transitive closure eval$*$. The result is passed

to t2. The returned program uses the label of the evaluation of t1, which is safe since

evaluation only increases the current label. In the definition of evaluation, we use

Haskell’s guard syntax Pg lc’ (TLIO t1’) ← eval$*$ (Pg lc t1) to denote that

evaluation of bind only occurs when eval$*$ (Pg lc t1) returns a program whose

term is a monadic value TLIO. Using refinement types, we prove that assuming that

programs cannot diverge and are well-typed (i.e., t1 is a monadic term), eval$*$

(Pg lc t1) always returns a program with a monadic value, so evaluation of bind

always succeeds. Evaluation of the TReturn term simply returns a monadic value

and evaluation of TGetLabel returns the current label. Evaluation of TTLabel

(TLabel l) t returns the term t labeled with l, when the current label can flow

to l, otherwise it returns an exception. Dually, unlabeling TLabeled l t returns

the term t with the current label joined with l. The term ToLabeled (TLabel l)

t under current label lc fully evaluates the term t into a monadic value t’ with

returned label lc’. If both the current and returned labels can flow into l, then

evaluation returns the term t labeled with the returned label lc’, while the current

label remains the same. That is, evaluation of t can arbitrarily raise the label, since

its result is labeled under l. Otherwise, an exception is thrown. The rest of the

terms are pure, and their evaluation rules are given below. Finally, evaluation of a

hole is an identity.

98

Term evaluation. Evaluation of the term TLabelOf t returns the label of t, if t is

a labeled term; otherwise it propagates evaluation until t is evaluated to a labeled

term. Evaluation of application uses the standard call-by-name semantics. The

definition of substitution is standard and omitted. The rest of the pure terms are

either values or a variable, whose evaluation is defined to be the identity. We define

eval$*$ to be the transitive closure of eval. That is, eval$*$ repeats evaluation

until a monadic value is reached.

3.3.3 Noninterference

Now we prove noninterference for λLIO . Noninterference holds when the low

view of a program is preserved by its evaluation. This low view is characterized

by an erasure function, which removes program elements whose security label is

higher than the adversary’s label, replacing them with a “hole.” Two versions of

the program given possibly different secrets will start with the same low view, and

if the program is noninterfering, they will end with the same low view. We prove

nointerference of λLIO by employing a simulation lemma, in the style of Stefan et al.

[16], Li and Zdancewic [136], Russo et al. [137]. We use refinement types to express

this lemma and the property of noninterference, and rely on Liquid Haskell to certify

our proof.

99

3.3.3.1 Erasure

The functions ε and εTerm erase the sensitive data of programs and terms,

resp.

ε :: Label l ⇒ l → Program l → Program l
ε l (Pg lc t)
| lc v l = Pg lc (εTerm l t)
| otherwise = PgHole
ε _ PgHole = PgHole

εTerm :: Label l ⇒ l → Term l → Term
εTerm l (TLabeled l1 t)

| l1 v l = TLabeled l1 (εTerm l t)
| otherwise = TLabeled l1 THole

εTerm l (TTLabel (TLabel l1) t)
| l1 v l = TTLabel (TLabel l1) (εTerm l t)
| otherwise = TTLabel (TLabel l1) THole

...

The term erasure function εTerm l replaces terms labeled with a label l1

with a hole, if l1 cannot flow into the erasure label l. Similarly, term erasure

preemptively replaces the term t in TTLabel (TLabel l1) t with a hole when l1

cannot flow into the erasure label l, since evaluation will lead to a labeled term.

For the remaining terms, erasure is a homomorphism. Program erasure with label

l of a program with current label lc erases the term of the program, if lc can flow

into l; otherwise it returns a program hole hiding from the attacker all the program

configuration (i.e., both the term and the current label). Erasure of a program hole

is an identity.

100

3.3.3.2 Simulation

In Figure 3.7 we state that for every label l, eval and ε l . eval form a

simulation. That is, evaluation of a program p and evaluation of its erased version

ε l p cannot be distinguished after erasure. We prove this property by induction

on the input program term.

Termination. Simulation (and later, noninterference) is termination-insensitive: it

is defined only for executions that terminate, as indicated by the terminates pred-

icate. (λLIO includes untyped lambda calculus, so λLIO programs are not strongly

normalizing.) This is necessary because, for soundness, Liquid Haskell disallows

non-terminating functions, like eval, from being lifted into refinement types. To

lift eval in the logic we constrained it to only be called on terminating programs.

To do so, we defined two logical, uninterpreted functions.

measure terminates :: Program l → Bool
measure evalSteps :: Program l → Int

We use a refinement-type precondition to prescribe that eval is only called on

programs p that satisfy the terminates predicate, and prove termination of eval by

checking that the steps of evaluation (evalSteps p) are decreasing at each recursive

call.

eval :: Label l ⇒ p:{Program l | terminates p} → Program l / [
evalSteps p]

While the functions terminates and evalSteps cannot be defined as Haskell func-

tions, we can instead axiomatize properties that are true under the assumption of

101

termination. In particular,

• if a program terminates, so do its subprograms, and

• if a program terminates, its evaluation steps are strictly smaller than those of

its subprograms.

To express these properties, we define axioms involving these functions in refine-

ments for each source program construct. For instance, the following assumption

(encoded as a Haskell function) handles bind terms:

assume evalStepsBindAxiom :: lc:l → db:DB l → t1:Term l
→ t2:{Term l | terminates (Pg lc db (TBind t1 t2)) } →

{ (evalSteps (Pg lc db t1) < evalSteps (Pg lc db (TBind t1 t2)))
&& (0 <= evalSteps (Pg lc db t1))
&& (terminates (Pg lc db t1))} }

evalStepsBindAxiom _ _ _ _ = ()

Here, evalStepsBindAxiom encodes that if the program Pg lc db (TBind t1 t2)

terminates, then so does Pg lc db t1 with fewer evaluation steps. This assumption

is required to prove simulation in the inductive case of the TBind, since we need to

• apply the simulation lemma for the Pg lc db t1 program, thus we need to

know that it terminates; and

• prove that the induction is well founded, which we do by proving that the

evaluation step counts of each subprogram are a decreasing natural number.

3.3.3.3 Noninterference

The noninterference theorem states that if two terminating λLIO programs p1

and p2 are equal after erasure with label l, then their evaluation is also equal after

102

erasure with label l. As with simulation, noninterference is termination insensitive—

potentially diverging programs could violate noninterference.

We express the noninterference theorem as a refinement type.

nonInterference :: Label l ⇒ l:l
→ p1:{Program l | terminates p1 } → p2:{Program l | terminates p2 }
→ { ε l p1 == ε l p2 } → { ε l (eval p1) == ε l (eval p2) }

The proof proceeds by simple rewriting using the simulation property at each input

program and the low equivalence precondition.

nonInterference l p1 p2 lowEquivalent
= ε l (eval p1) ? simulation l p1
==. ε l (eval (ε l p1)) ? lowEquivalent
==. ε l (eval (ε l p2)) ? simulation l p2
==. ε l (eval p2)
∗ ∗ ∗ QED

The body of nonInterference starts from the left hand side of the equality and, us-

ing equational reasoning and invocation of the lowEquivalent and the simulation

theorem on the input programs p1 and p2, reaches the right hand side of the equal-

ity. As explained in 3.3.1 the proof combinator x ? p returns its first argument

and extends the SMT environment with the knowledge of the theorem p. The proof

combinator x ==. y = y equates its two arguments and returns the second argu-

ment to continue the equational steps. Finally, x $***$ QED = () casts its first

argument into unit, so that the equational proof returns a unit type.

103

3.4 Label-based Security for Database Operations

In this section we extend λLIO with support for databases with label-based

policies. We call the extended calculus λLWeb . In § 3.4.1, we define a database that

stores rows with three values: a key, a first field with a static label, and a second field

whose label is a function of the first field. This simplification of the full generality

of LWeb’s implementation (which permits any field to be a label) captures the key

idea that fields can serve as labels for other fields in the same row, and fields that

act as labels must be labeled as well. In § 3.4.2 we define operations to insert, select,

delete, and update the database. For each of these operations, in § 3.4.3 we define

a monadic term that respects the database policies. Finally in § 3.4.4 we define

erasure of the database and prove noninterference.

3.4.1 Database Definition

Figure 3.8 contains Haskell definitions used to express the semantics of database

operations in λLWeb . Rather than having concrete syntax (e.g., as in Figure 3.3) for

database definitions, in our formalization we assume that databases are defined

directly in the semantic model.

A database DB l maps names (Name) to tables (Table l). A table consists of a

policy (TPolicy l) and a list of rows ([Row l]). Each row contains three terms: the

key and two values. We limit values that can be stored in the database to basic terms

such as unit, integers, label values, etc. This restriction is expressed by predicate

isDBValue . Labeled terms are not permitted—labels of stored data are specified us-

104

ing the table policy. In § 3.4.4 we define erasure of the database to replace values with

holes, thus isDBValue should be true for holes too, but is false for any other term.

isDBValue :: Term l → Bool
isDBValue THole = True
isDBValue (TInt _) = True

isDBValue TUnit = True
isDBValue (TLabel _) = True
isDBValue _ = False

We define the refinement type alias DBTerm to be terms refined to satisfy the

isDBValue predicate and define rows to contain values of type DBTerm .

Table policy. The table policy TPolicy l defines the security policy for a table.

The field tpTableLabel is the label required to access the length of the table. The

field tpLabelField1 is the label required to access the first value stored in each row

of the table. This label is the same for each row and it is refined to flow into the

tpTableLabel . The field tpLabelField2 defines the label of the second value stored

in a row as a function of the first. Finally, the field tpFresh is used to provide a

unique term key for each row. The term key is an integer term that is increased at

each row insertion.

Helper functions. For each field of TPolicy , we define a function that given a table

accesses its respective policy field.

labelT t = tpTableLabel (tpolicy t)
labelF1 t = tpLabelField1 (tpolicy t)
labelF2 t v = tpLabelField2 (tpolicy t) v
freshKey t = tpFresh (tpolicy t)

We use the indexing function db!!n to lookup the table named n in the database.

(!!) :: DB l → Name → Maybe (Table l)

105

3.4.2 Querying the Database

Predicates. We use predicates to query database rows. In the LWeb implementation,

predicates are written in a domain-specific query language, called lsql, which the

LWeb compiler can analyze. Rather than formalizing that query language in λLWeb ,

we model predicates abstractly using the following datatype:

data Pred = Pred { pVal :: Bool , pArity :: { i:Int | 0 <= i <= 2 } }

Here, pVal represents the outcome of evaluating the predicate on an arbitrary

row, and pArity represents which of the row’s fields were examined during evalua-

tion. That is, a pArity value of 0, 1, or 2, denotes whether the predicate depends

on (i.e., computes over) none, the first, or both fields of a row, respectively.

Then, we define a logical uninterpreted function evalPredicate that evaluates

the predicate for some argument of type a:

measure evalPredicate :: Pred → a → Bool

We define a Haskell (executable) function evalPredicate and use an axiom to

connect it with the synonymous logical uninterpreted function [134]:

assume evalPredicate :: p:Pred → x:a → {v:Bool | v == evalPredicate p x}
evalPredicate p x = pVal p

This way, even though the Haskell function evalPredicate p x returns a constant

boolean ignoring its argument x, the Liquid Haskell model assumes that it behaves

as an uninterpreted function that does depend on the x argument (with dependencies

assumed by the pArity definition).

106

Primitive queries. It is straightforward to define primitive operators that manip-

ulate the database but do not perform IFC checks. We define operators to insert,

delete, select, and update databases.

(+=) :: db:DB l → n:Name → r:Row l → DB l
-- insert

(?=) :: db:DB l → n:Name → p:Pred → Term l
-- select

(-=) :: db:DB l → n:Name → p:Pred → DB l
-- delete

(:=) :: db:DB l → n:Name → p:Pred → v1:DBTerm l → v2:DBTerm l → DB
l -- update

Insert: db += n r inserts the row r in the n table in the database and increases n’s

unique field.

Select: db ?= n p selects all the rows of the n table that satisfy the predicate p as

a list of labeled terms.

Delete: db -= n p deletes all the rows of the n table that satisfy the predicate p.

Update: db := n p v1 v2 updates each row with key k of the n table that satisfies

the predicate p with Row k v1 v2.

Next we extend the monadic programs of § 3.3 with database operations to

define monadic query operators that enforce the table and field policies.

107

3.4.3 Monadic Database Queries

3.4.3.1 Syntax

Figure 3.9 defines λLWeb ’s syntax as an extension of λLIO . Programs are ex-

tended to carry the state of the database. Erasure of a program at an observation

level l leads to a PgHole that now carries a database erased at level l. Erasure is

defined in § 3.4.4; here we note that preserving the database at program erasure

is required since even though the result of the program is erased, its effects on the

database persist. For instance, when evaluating TBind t1 t2 the effects of t1 on

the database affect computing t2.

Terms are extended with monadic database queries. TInsert n (TLabeled

l1 v1) (TLabeled l2 v2) inserts into the table n database values v1 and v2 labeled

with l1 and l2, respectively. TSelect n p selects the rows of the table n that

satisfy the predicate p. TDelete n p deletes the rows of the table n that satisfy the

predicate p. Finally, TUpdate n p (TLabeled l1 v1) (TLabeled l2 v2) updates

the fields for each row of table n that satisfies the predicate p to be v1 and v2, where

the database values v1 and v2 are labeled with l1 and l2, respectively.

3.4.3.2 Semantics

Figure 3.10 defines the operational semantics for the monadic database queries

in λLWeb . Before we explain the evaluation rules, note that both insert and update

attempt to insert a labeled value TLabeled li vi in the database, thus vi should

108

be a value, and unlabeled, i.e., satisfy the isDBValue predicate.3 In the LWeb imple-

mentation we use Haskell’s type system to enforce this requirement. In λLWeb , we

capture this property in a predicate ς that constrains labeled values in insert and

update to be database values:

ς :: Program l → Bool
ς (Pg _ _ t) = ςTerm t

ςTerm :: Term l → Bool
ςTerm (TInsert _ (TLabeled _ v1) (TLabeled _ v2)) = isDBValue v1 &&

isDBValue v2
ςTerm (TUpdate _ _ (TLabeled _ v1) (TLabeled _ v2)) = isDBValue v1 &&

isDBValue v2
...

We specify that eval is only called on well-structured programs, i.e., those

that satisfy ς . For terms other than insert and update, well-structuredness is homo-

morphically defined. Restricting well-structuredness to permit only database values,

as opposed to terms that eventually evaluate to database values, was done to reduce

the number of cases for the proof, but does not remove any conceptual realism.

Insert. Insert attempts to insert a row with values v1 and v2, labeled with l1 and

l2 respectively, in the table n. To perform the insertion we check that

1. the table named n exists in the database, as table t.

2. l1 can flow into the label of the first field of t, since the value v1 labeled with

l1 will write to the first field of the table.

3. l2 can flow into the label of the second field of t, as potentially determined by

3We could allow inserting unlabeled terms, the label for which is just the current label.
Explicit labeling is strictly more general.

109

the first field v1 (i.e., per labelF2 t v1).

4. the current label l can flow to the label of the table, since insert changes the

length of the table.

If all these checks succeed, we compute a fresh key k = freshKey t, insert the row

Row k v1 v2 into the table n, and return the key. If any of the checks fail we return

an exception and leave the database unchanged.

Either way, we raise the current label l by joining it with l1. This is because

checking l2 v labelF2 t v1 requires examining v1, which has label l1. That this

check succeeds can be discerned by whether the key is returned; if the check fails

an exception is thrown, potentially leaking information about v1. This subtle point

was revealed by the formalization: Our original implementation failed to raise the

current label properly.

Select. Select only checks that the table n exists in the database, returning an

exception if it does not. If the table n is found as the table t, then we return the

term db ?= n p that contains a list of all rows of t that satisfy the predicate p,

leaving the database unchanged. The current label is raised to include the label

of the table labelT t since on a trivially true predicate, all the table is returned,

thus the size of the table can leak. We raise the current label with the label of the

predicate p on the table t that intuitively permits reading all the values of t that

the predicate p depends on. We define the function labelPred p t that computes

the label of the predicate p on the table t.

110

labelPred :: (Label l) ⇒ Pred → Table l → l
labelPred p (Table tp rs)
| pArity p == 2 = foldl (t) (labelF1 tp) [labelF2 tp v1 | Row _ v1 _ ←

rs]
| pArity p == 1 = labelF1 tp
| otherwise = ⊥

If the predicate p depends on both fields, then its predicate is the join of the label

of the first field and all the labels of the second fields. If p only depends on the first

field, then the label of the predicate p is the label of the first field. Otherwise, p

depends on no fields and its predicate is ⊥.

Note that the primitive selection operator db ?= n p returns labeled terms

protected by the labels returned by the labelF1 and labelF2 functions. Since

terms are labeled, select does not need to raise the current label to protect values

that the predicate p does not read.

Delete. Deletion checks that the table named n exists in the database as t and that

the current label joined with the label of the predicate p on the table t can flow into

the label of the table t, since delete changes the size of the table. If both checks

succeed, then database rows are properly deleted. The current label is raised with

the “read label” of the predicate p on the table t that intuitively gives permission to

read the label of the predicate p on the same table. The function labelRead p t

computes the read label of the predicate p on the table t to be the label required

to read labelPredRow p t, i.e., equal to the label of the first field, if the predicate

depends on the second field and bottom otherwise.

labelRead :: (Label l) ⇒ Pred → Table l → l
labelRead p t = if pArity p == 2 then labelF1 t else ⊥

111

Note that labelRead p t always flows into labelPred p t, thus the current label

is implicitly raised to this read label. When the runtime checks of delete fail we

return an exception and the database is not changed. If the table n was found in

the database, the current label is raised, even in the case of failure, since the label

of the predicate was read.

Update. Updating a table n with values v1 and v2 on a predicate p can be seen as a

select-delete-insert operation. But, since the length of the table is not changing, the

check that the current label can flow to the label of the table is omitted. Concretely,

update checks that

1. the table named n exists in the database, as table t,

2. l t l1 t labelPred p t can flow into the label of the first field of t, since the

value v1 labeled with l1 will write on the first field of the table and whether this

write is done or not depends on the label of the predicate p as a hole,

3. l t l2 t labelPred p t can flow into the label of the second field of t when

the first field is v1.

If these checks succeed, then unit is returned, the database it updated, and the

current label is raised to all the labels of values read during the check, i.e., l1 t

labelF1 t. If the checks fail then we return an exception and the database is not

updated.

In both cases, the current label is raised by joining with the table label, i.e.,

l’ = ... t labelT t. This is because the last check depends on whether the

112

table is empty or not, and its success can be discerned: if it succeeds, then unit

is returned. Interestingly, our original implementation failed to update the current

label in this manner. Doing so seemed intuitively unnecessary because an update

does not change the table length.

3.4.4 Noninterference

As in § 3.3 to prove noninterference we prove the simulation between eval

and ε l . eval for λLWeb programs. Figure 3.11 extends erasure to programs and

databases. Erasure of programs is similar to § 3.3 but now we also erase the database.

Erasure of a database recursively erases all tables. Erasure of a table removes all

of its rows if the label of the table cannot flow into the erasing label, thus hiding

the size of the table. Otherwise, it recursively erases each row. Erasure of a row

respects the dynamic labels stored in the containing table’s policy. Erasure of a

row replaces both fields with holes if the label of the first field cannot flow into the

erasing label, since the label of the second field is not visible. If the label of the

second field cannot flow into the erasing label, it replaces only the second field with

a hole. Otherwise, it erases both fields.

With this definition of erasure, we prove the simulation between eval and ε

l . eval, and with this, noninterference. The refinement properties in the database

definition of fig. 3.8 are critical in the proof, as explained below.

Well-structured programs. The simulation proof assumes that the input program is

well-structured, i.e., satisfies the predicate ς as defined in § 3.4.3.2, or equivalently

113

evaluation only inserts values that satisfy the isDBValue property. To relax this

assumption, an alternative approach could be to check this property at runtime,

just before insertion of the values. But, this would break simulation: TInsert n

(TLabeled l1 v1) t will fail if v1 is not a database value, but its erased version can

succeed if v1 is erased to a hole (when l1 cannot flow into the erase label). Thus,

the isDBValue property cannot be checked before insertion and should be assumed

by evaluation. In the implementation this safety check is enforced by Haskell’s type

system.

Database values. Simulation of the delete operation requires that values stored in

the database must have identity erasure, e.g., cannot be labeled terms. Thus, we

prove that all terms that satisfy isDBValue also have erasure identity. We do this

by stating the property as a refinement on term erasure itself.

εTerm :: Label l ⇒ l → i:Term l → {o:Term l | isDBValue i ⇒
isDBValue o }

In the delete proof, each time a database term is erased, the proof identity εTerm

l v == v is immediately available.

Note on refinements. The type DBTerm l is a type alias for Term l with the at-

tached refinement that the term is a database value. A DBTerm l does not carry an

actual proof that it is a database value. Instead, the refinement type that the term

satisfies the isDBValue property is statically verified during type checking. As a

consequence, comparison of two DBTerms does not require proof comparison. At the

same time, verification can use the isDBValue property. For instance, when opening

114

a row Row k v1 v2, we know that isDBValue v1 and by the type of term erasure,

we know that for each label l, εTerm l v1 == v1.

3.5 Liquid Haskell for Metatheory

Liquid Haskell was originally developed to support lightweight program verifi-

cation (e.g., out-of-bounds indexing). The formalization of LWeb in Liquid Haskell,

presented in § 3.3 and § 3.4, was made possible by recent extensions to support

general theorem proving [134]. Our proof of noninterference was a challenging test

of this new support, and constitutes the first advanced metatheoretical result mech-

anized in Liquid Haskell.4

The trusted computing base (TCB) of any Liquid Haskell proof relies on the

correct implementation of several parts. In particular, we trust that

1. the GHC compiler correctly desugars the Haskell code to the core language of

Liquid Haskell,

2. Liquid Haskell correctly generates the verification conditions for the core lan-

guage, and

3. the SMT solver correctly discharges the verification conditions.

We worked on the noninterference proof, on and off, for 10 months. The proof

consists of 5,447 lines of code and requires about 5 hours to be checked. For this

proof in particular, we (naturally) trust all of our semantic definitions, and also two

4https://github.com/plum-umd/lmonad-meta

115

https://github.com/plum-umd/lmonad-meta

explicit assumptions, notably the axiomatization of termination and modeling of

predicates. These were discussed respectively in § 3.3.3.2 and § 3.4.2.

Carrying out the proof had a clear benefit: As mentioned in § 3.4.3, we uncov-

ered two bugs in our implementation. In both cases, LWeb was examining sensitive

data when carrying out a security check, but failed to raise the current label with

the label of that data. Failure of the mechanized proof to go through exposed these

bugs.

The rest of this section summarizes what we view as the (current) advantages

and disadvantages of using Liquid Haskell as a theorem prover compared to other

alternatives (e.g., Coq and F-star [138]), expanding on a prior assessment [135].

3.5.1 Advantages

As a theorem proving environment, Liquid Haskell offers several advantages.

General purpose programming language. The Liquid Haskell-based formal develop-

ment is, in essence, a Haskell program. All formal definitions (presented in § 3.3

and § 3.4) and proof terms (e.g., illustrated in § 3.3.3) are Haskell code. Refine-

ment types define lemmas and theorems, referring to these definitions. In fact, some

formal definitions (e.g., the Label class definition) were taken directly from the im-

plementation. As the main developer of the proof, I am a Haskell programmer,

thus I did not need to learn a new programming language (e.g., Coq) to develop

the formal proof. During development we used Haskell’s existing development tools,

including the build system, test frameworks, and deployment support (e.g., Travis

116

integration).

SMT automation. Liquid Haskell, like Dafny [139] and F-star [138], uses an SMT

solver to automate parts of the proof, especially the ones that make use of boolean

reasoning, reducing the need for manual case splitting. For example, proving simula-

tion for row updates normally proceeds by case splitting on the relative can-flow-to

relation between four labels. The SMT automates the case splitting.

Semantic termination checking. To prove termination of a recursive function in

Liquid Haskell it suffices to declare a non negative integer value that is decreas-

ing at each recursive call. The LWeb proof was greatly simplified by the semantic

termination checker. In a previous Coq LIO proof [140], the evaluation relation ap-

parently requires an explicit fuel argument to count the number of evaluation steps,

since the evaluation function (the equivalent to that in fig. 3.6) does not necessarily

terminate. In our proof, termination of evaluation was axiomatized (per § 3.3.3.2),

which in practice meant that the evaluation steps were counted only in the logic

and not in the definition of the evaluation function.

Intrinsic and extrinsic verification. The Liquid Haskell proving style allows us

to conveniently switch between (manual) extrinsic and (SMT automated) intrinsic

verification. Most of the LWeb proof is extrinsic, i.e., functions are defined to state

and prove theorems about the model. In few cases, intrinsic specifications are used to

ease the proof. For instance, the refinement type specification of εTerm, as described

in 3.4.4, intrinsically specifies that erasure of isDBValue terms returns terms that

117

also satisfy the isDBValue predicate. This property is automatically proven by the

SMT without cluttering the executable portion of the definition with proof terms.

3.5.2 Disadvantages

On the other hand, Liquid Haskell has room to improve as a theorem proving

environment, especially compared to advanced theorem provers like Coq.

Unpredictable verification time. The first and main disadvantage is the unpre-

dictability of verification times, which owe to the invocation of an SMT solver.

One issue we ran across during the development of our proof is that internal trans-

formations performed by ghc can cause massive blowups. This is because Liquid

Haskell analyzes Haskell’s intermediate code (CoreSyn), not the original source. As

an example of the problem, using |x,y instead of the logical | x && y in function

guards leads to much slower verification times. While the two alternatives have

exactly the same semantics, the first case leads to exponential expansion of the

intermediate code.

Lack of tactics. Liquid Haskell currently provides no tactic support, which could

simplify proof scripts. For example, we often had to systematically invoke label laws

(fig. 3.4) in our proofs, whereas a proof tactic to do so automatically could greatly

simplify these cases.

General purpose programming language. Liquid Haskell, developed for light-weight

verification of Haskell programs, lacks various features in verification-specific sys-

118

tems, such as Coq. For example, Liquid Haskell provides only experimental support

for curried, higher-order functions, which means that one has to inline higher order

functions, like map, fold, and lookup . There is also no interactive proof environment

or (substantial) proof libraries.

In sum, our LWeb proof shows that Liquid Haskell can be used for sophisticated

theorem proving. We are optimistic that current disadvantages can be addressed in

future work. We have addressed some of the disadvantages already, as described in

Chapter 4.

3.6 Implementation

LWeb has been available online since 2016 and consists of 2,664 lines of Haskell

code.5 It depends on our base LMonad package that implements the LMonadT monad

transformer and consists of 345 lines of code.6 LWeb also imports Yesod, a well

established, external Haskell library for type-safe, web applications. This section

explains how the implementation extends the formalization, and then discusses the

trusted computing base.

3.6.1 Extensions

The LWeb implementation generalizes the formalization of Sections 3.3 and 3.4

in several ways.

5https://github.com/jprider63/lmonad-yesod
6https://github.com/jprider63/lmonad

119

https://github.com/jprider63/lmonad-yesod
https://github.com/jprider63/lmonad

Clearance label. The implementation supports a clearance label, described in § 3.2.1.

Intuitively, the clearance label limits how high the current label can be raised. If the

current label ever exceeds the clearance label, an exception is thrown. This label

is not needed to enforce noninterference, but serves as an optimization, cutting off

transactions whose current label rises to the point that they are doomed to fail.

Adding checks to handle the clearance was straightforward.

Full tables and expressive queries. As first illustrated in § 3.2.3, tables may have

more than two columns, and a column’s label can be determined by other various

fields in the same row. The labels of such dependency fields must be constant, i.e.,

not determined by another field, and flow into the table label (which also must be

constant). A consequence of this rule is that a field’s label cannot depend on itself.

Finally, values stored in tables instantiate Yesod’s PersistField type class. The

implementation uses only the predefined instances including Text, Bool, Int but

critically, does not define a PersistField for labeled values. LWeb enforces these

invariants at compile time via Haskell type checking and when preprocessing table

definitions. LWeb rewrites queries to add labels to queried results.

We have implemented database operations beyond those given in § 3.4, to be

more in line with typical database support. Some of these operations are simple

variations of the ones presented. For example, LWeb allows for variations of update

that only update specific fields (not whole rows). LWeb implements these basic

queries by wrapping Persistent [133], Yesod’s database library, with the derived

IFC checks. To support more advanced queries, LWeb defines an SQL-like domain-

120

specific language called lsql. lsql allows users to write expressive SQL queries that

include inner joins, outer joins, where clauses, orderings, limits, and offsets. Haskell

expressions can be included in queries using anti-quotation. At compile-time, LWeb

parses lsql queries using quasi-quotation and Template Haskell [124]. It rewrites

the queries to be run using Esqueleto [123], a Haskell library that supports advanced

database queries. As part of this rewriting, LWeb inserts IFC checks for queries based

on the user-defined database policies. We show several examples of lsql queries in

§ 3.7.

Optimizations. Sometimes a label against which to perform a check is derived from

data stored in every row. Retrieving every row is especially costly when the query

itself would retrieve only a fraction of them. Therefore, when possible we compute

an upper bound for such a label. In particular, if a field is fully constrained by a

query’s predicate, we use the field’s constrained value to compute any dependent

labels. When a field is not fully constrained, we conservatively set dependent labels

to >. Suppose we wish to query the Friends table from fig. 3.3, retrieving all

rows such that user1 == ’Alice’ and date < ’2000-01-01’ . The confidentiality

portion of user1’s label is ⊥, but that portion of date’s is computed from user1

u user2. Since user1 is always ’Alice’ we know the computed label is
⊔

l Alice

u l for all values user2 = l in the database. In this case, we can bound l as >,

and thus use label Alice, since it is equivalent to Alice u >. While this bound is

technically conservative, in practice we find it makes policy sense. In this example,

if the user2 field can truly vary arbitrarily then
⊔

l l will approach >.

121

Declassification. LWeb supports forms of declassification [141] for cases when the

IFC lattice ordering needs to be selectively relaxed. These should be used sparingly

(and are, in our BIBIFI case study), as they form part of the trusted computing

base, discussed below.

Row ordering. As a final point, we note that our formalization models a database as

a list of rows; insertion (via +=) simply appends to the list, regardless of the contents

of a row. As such, row ordering does not depend on the database’s contents and

thus reveals nothing about them (it is governed only by the table label). In the

implementation, advanced operations may specify an ordering. LWeb prevents leaks

in this situation by raising the current label with the label of fields used for sorting.

If a query does not specify an ordering, LWeb takes no specific steps. However,

ordering on rows is undefined in SQL, so a backend database could choose to order

them by their contents, and thus potentially leak information in a query’s results.

In our experience with PostgreSQL, default row ordering depends on when values

are written and is independent of the data in the table.

3.6.2 Trusted Computing Base

A key advantage of LWeb is that by largely shifting security checks from the

application into the LWeb IFC framework, we can shrink an application’s trusted

computing base (TCB). In particular, for an application that uses LWeb, the locus

of trust is on LWeb itself, which is made (more) trustworthy by our mechanized

noninterference proof. A few parts of the application must be trusted, nevertheless.

122

First, all of the policy specifications are trusted. The policy includes the

labels on the various tables and the labels on data read/written from I/O channels.

Specifying the latter requires writing some trusted code to interpret data going

in or out. For example, in a multi-user application like BIBIFI, code performing

authentication on a particular channel must be trusted (§ 3.7.2).

Second, any uses of declassification are trusted, as they constitute local modifi-

cations to policy. One kind of declassification can occur selectively on in-application

data [15]. We give an example in § 3.7.4. Another kind of declassification is to relax

some security checks during database updates. The update query imposes strong

runtime checks, e.g., that the label of the predicate should flow into the updated

fields as formalized in § 3.4. LWeb provides an unsound update alternative (called

updateDeclassifyTCB) that ignores this specific check.

3.7 The BIBIFI Case Study

As a real case study, we integrated LWeb into BIBIFI’s infrastructure (chap-

ter 2). The BIBIFI web application stores personal information of contestants and

has multiple principals. This makes it an ideal use case to demonstrate the effec-

tiveness of LWeb in enforcing complex confidentiality and integrity policies.

3.7.1 BIBIFI Labels

BIBIFI labels include all entities that operate in the system. The Principal

data type, defined in fig. 3.12, encodes all such entities, including the system itself,

123

the administrator, users, teams, and judges. Each of these entities is treated as a

security level. For instance a policy can encode that data written by a user with id

5, can get protected at the security level of this specific user, so that only he or she

can read this data. A more flexible policy encodes that the system administrator

can read data written by each user. To encode such policies, we use disjunction

category labels (DCLabel) [122] to create a security lattice out of our Principal s.

In fig. 3.12 we define BBFLabel as the DCLabel Principal data type that tracks the

security level of values as they flow throughout the web application and database.

3.7.2 Users and Authentication

Users’ personal information is stored in the BIBIFI database. Figure 3.14

shows the User table with the basics: a user’s account id, email address, and whether

they have administrator privileges. The label for the email field refers to Id in its

label: This is a shorthand for the key of the present table. The label says that a user

can read and write their emails, while the administrator can read every user’s email.

The label for the admin field declares that it may be written by the administrator

and read by anyone.

Additional private information is stored in the UserInfo table, shown in Fig-

ure 3.14, including a user’s school, age, and professional experience. The user field

of this table is a foreign key to the User table, as indicated by its type UserId

(see § 3.2.2). Each of the remaining fields is protected by this field, in part: users

can read and write their own information while administrators can read any users’

124

information.

The current label is set by the code trusted to perform authentication. If a

user is not logged in, the current label is set to <⊥,>>: the confidentiality label is the

upper bound on data read so far (i.e., none, so ⊥), and the integrity label is the level

of least trust (i.e., >) for writing data. After authenticating, most users will have the

label <⊥, PUser userId>, thus lowering the integrity part (thus increasing the level

of trust) to the user itself. Users who are also administrators will have current label

lowered further to <⊥, PUser userId u PAdmin>. This is shown in the following

code snippet. It determines the logged in user via requireAuth , and then adds

administrator privileges if the user has them (per userAdmin).

(Entity userId user) ← requireAuth
let userLabel = dcIntegritySingleton (PrincipalUser userId)
lowerLabelTCB $ if userAdmin user

then userLabel u dcIntegritySingleton PrincipalAdmin
else userLabel

The clearance is also set using trusted functions during authentication. For example,

for an adminstrator it would be <PUser userId t PAdmin,>>.

3.7.3 Opening the Contest

To start a contest, administrators write announcements that include informa-

tion like instructions and problem specifications. It is important that only adminis-

trators can post these announcements. Announcements are stored in the database,

and their (simplified) table definition is shown in fig. 3.15. The Announcement table

has two Text fields corresponding to an announcement’s title and content. Only

125

administrators can author announcements.

An earlier version BIBIFI relied on manual access control checks rather than

monadic LMonad enforcement of security. The old version had a security bug: it

failed to check that the current user was an administrator when posting a new

announcement. Here is a snippet of the old code.

postAddAnnouncementR :: Handler Html
postAddAnnouncementR = do

((res, widget), enctype) ← runFormPost postForm
case res of ...

FormSuccess (FormData title markdown) → do
runDB (insert (Announcement title markdown))
redirect AdminAnnouncementsR

This function parses POST data and inserts a new announcement. The user is

never authenticated, so anyone can post new announcements and potentially deface

the website. In the IFC version of the website, the database insertion fails for

unauthorized or unauthenticated users as the integrity part of the current label is

not sufficiently trusted (the label does not flow into PAdmin).

3.7.4 Teams and Declassification

To participate in a contest, a user must join a team. The teams and their

members are stored in the eponymous tables of fig. 3.15. Teams serve as another

principal in the BIBIFI system and BIBIFI defines a TCB function that appropri-

ately authenticates team members similarly to users (§ 3.7.2), authorizing a team

member to read and write data labeled with their team.

BIBIFI uses declassification (as discussed in 3.6.2) to allow team members

126

to send email messages to their team. The policy on the email field of the User

table states that only the user or an administrator can read the email address, so

BIBIFI cannot give a user’s email address to a teammate. Instead, the function

sendEmailToTeam below sends the email on the teammate’s behalf using declassifi-

cation.

sendEmailToTeam :: TeamId → Email → LHandler ()
sendEmailToTeam tId email = do

protectedEmails ← runDB [lsql| pselect User.email from User inner
join TeamMember on TeamMember.user == User.id where

TeamMember.team == #{tId} |]
mapM_ (\protectedEmail → do

address ← declassifyTCB protectedEmail
sendEmail address email

) protectedEmails

The function sendEmailToTeam ’s parameters are the team identifier and an email

return address. It queries the database for the (labeled) email addresses of the team’s

members, using lsql (see § 3.2.3 and § 3.6.1). The sendEmailToTeam function maps

over each address, declassifying it via declassifyTCB , so that the message can be

sent to the address. The declassifyTCB function takes a labeled value and extracts

its raw value, ignoring label restrictions. This is an unsafe operation that breaks

noninterference, so the programmer must be careful with its use. Here for example,

the function is careful not to reveal the email address to the sender but only use it

to send the email.

127

3.7.5 Breaks and Advanced Queries

During the second round of the BIBIFI contest, teams submit breaks, i.e., test

cases that attack another team’s submission. After a break is pushed to a registered

git repository, BIBIFI’s backend infrastructure uploads it to a virtual machine and

tests whether the attack succeeds. Results are stored in the BreakSubmission ta-

ble of fig. 3.16, which has fields for the attacking team, the target team, and the

(boolean) result of the attack. The integrity label for the result field is PSys since

only the backend system can grade an attack. The confidentiality label is PAdmin

u PTeam attackerId u PTeam targetId since administrators, the attacker team,

and the target team can see the result of an attack.

BIBIFI has an administration page that lists all break submissions next to

which team was attacked. This page’s contents are retrieved via the following inner

join.

runDB $ [lsql| select BreakSubmission.?, Team.name from BreakSubmission
inner join Team on BreakSubmission.target == Team.id where Team.
contest == #{contestId} order by BreakSubmission.id desc |]

This query performs a join over the BreakSubmission and Team tables, aligning rows

where the target team equals the team’s identifier. In addition, it filters rows to the

specified contest identifier and orders results by the break submission identifiers.

128

3.8 Experimental Evaluation

To evaluate LWeb we compare the BIBIFI implementation that uses LMonad

with our initial BIBIFI implementation that manually checked security policies via

access control. We call this initial version the vanilla implementation. Transitioning

from the vanilla to the LWeb implementation reduced the trusted computing base

(TCB) but imposed a modest runtime overhead.

3.8.1 Trusted Computing Base of BIBIFI

The implementation of the BIBIFI application is currently 11,529 lines of

Haskell code. 80 of these lines invoke trusted functions (for authentication or de-

classification, see § 3.6.2). LWeb’s library is 3,009 lines of trusted code. The vanilla

implementation is several years old, with 7,367 LOC; there is no IFC mechanism

so the whole codebase is trusted. Switching from the vanilla to the LWeb imple-

mentation only added 151 LOC. The size of the TCB is now 21% of the codebase;

considering only the code of the BIBIFI web application (and not LWeb too), 1% of

the code is trusted.

3.8.2 Running Time Overhead

We measured the query latency, i.e., the response time (in milliseconds) of

HTTP requests, for both the LWeb and the vanilla implementation. Measurements

were performed over localhost and we ran 100 requests to warm up. We present the

mean, standard deviation, and tail latency over 1,000 trials, as well as the response

129

Handler Verb Vanilla Latency LWeb Latency Size (kB) Overhead
Mean (ms) SD (ms) Tail (ms) Mean (ms) SD (ms) Tail (ms)

/announcements GET 4.646 1.215 16 5.529 1.367 20 18.639 19.01%
/announcement/update POST 9.810 2.600 54 11.395 3.054 52 0.706 16.16%
/profile GET 2.116 0.512 6 2.167 0.550 6 7.595 2.41%
/buildsubmissions GET 6.364 1.251 17 7.441 1.706 22 14.434 16.92%
/buildsubmission GET 28.633 2.772 52 30.570 3.477 75 9.231 6.76%
/breaksubmissions GET 41.758 7.826 81 49.218 11.679 90 60.044 17.86%
/breaksubmission GET 4.070 0.538 9 4.923 0.509 9 6.116 20.96%

Table 3.1: Latency comparison between the Vanilla and LWeb implementations of
the BIBIFI application. The mean, standard deviation, and tail latency in millisec-
onds over 1,000 trials are presented. In addition, the response size in kilobytes and
the overhead of LWeb are shown.

size (in kilobytes) and the overhead of LWeb over the vanilla implementation. Ta-

ble 3.1 summarizes this comparison. The server used for benchmarking runs Ubuntu

16.04 with two Intel(R) Xeon(R) E5-2630 2.60GHz CPUs and 64GB of RAM. Post-

greSQL 9.5.13 is run locally as the database backend. We used ApacheBench to

perform the measurements with a concurrency level of one. Here is a sample invo-

cation of ab:

ab -g profile_lweb.gp -n 1000 -T "application/x-www-form-urlencoded;
charset=UTF-8" -c 1 -C _SESSION=... http://127.0.0.1:4000/profile

Most of the requests are GET requests that display contest announcements, retrieve

a user’s profile with personal information, get the list of a team’s submissions,

and view the results of a specific submission. One POST request is measured that

updates the contents of an announcement. Cookies and CSRF tokens were explicitly

defined so that a user was logged into the site, and the user had sufficient permissions

for all of the pages.

To evaluate LWeb’s impact on the throughput of web applications, we conduct

similar measurements except we rerun ab with concurrency levels of 16 and 32. The

rest of the experimental setup matches that of the latency benchmark, including

130

number of requests, hardware, and handlers. Figure 3.17 shows the number of

requests per second for each version of the BIBIFI web application across the various

handlers.

Most of the handlers show modest overhead between the vanilla and LWeb

versions of the website. We measure LWeb’s overhead to range from 2% to 21%,

which comes from the IFC checks that LWeb makes for every database query and

the state monad transformer that tracks the current label and clearance label. In

practice, this overhead results in a few milliseconds of delay in response times. In

most situations, this is a reasonable price to pay in order the reduce the size of the

TCB and increase confidence that the web application properly enforces the user

defined security policies.

3.9 Quantifying Information Flow

IFC systems like LWeb prevent the leakage of information in programs, but

in practice programs do need to release some privileged information to users. To

safely release information, we would like to define policies that specify how much

information is allowed to be released. Quantifying information flow (QIF) is one

approach that allows us to define such policies.

QIF measures how much information a program leaks by modeling an adver-

sary’s belief as a distribution over secret variables [142]. Initially, the adversary

has a prior distribution that represents the probability of potential values for secret

variables. After running a program and observing the result, the adversary’s belief is

131

updated to a posterior distribution with new probabilities given the observed result.

With a prior and posterior distribution, one can quantify the amount of information

flow by observing the change in size of the belief distribution.

Existing tools like Prob [143] use abstract interpretation [144] to soundly ap-

proximate the posterior distribution of an adversary that observes the output of a

program. Prob uses abstract domains like intervals [145], octagons [146], and poly-

hedra [147] as a representation for belief distributions. These abstract domains are

conjunctions of linear constraints. Interval constraints have the form a <= X <= b

for program variables X and constants a and b. Octagon constraints have the form

± X ± Y <= c for program variables X and Y and constant c. Polyhedra constraints

have the form aX + bY <= c for variables X and Y and constants a, b, and c.

We statically quantify information flow in Liquid Haskell by encoding abstract

domains with Haskell types and by modeling an adversary’s belief distribution us-

ing refinement types. For example, we define intervals with the Haskell datatype

IntRange and a betweenInt function that determines whether an integer is a mem-

ber of the interval.

data IntRange = IntRange {
lower :: Int

, upper :: Int
}

betweenInt :: Int → IntRange → Bool
betweenInt x IntRange{..} = lower < x && x < upper

We build upon this to reason about more complicated types than just integers.

For example, we define a ship as record with a capacity and a location.

132

data Ship = Ship {
shipCapacity :: Int

, shipLoc :: Loc
}

data ShipRange = ShipRange {
shipCapacityD :: IntRange

, shipLocD :: LocRange
}

betweenShip :: Ship → ShipRange → Bool
betweenShip Ship{..} ShipRange{..} = betweenInt shipCapacity shipCapacityD

&& betweenLoc shipLoc shipLocD

In addition, we define ShipRange as the corresponding distribution type for Ship

that has intervals for each of the ship’s fields. Again, we need a betweenShip

function to determine whether a Ship falls in the ShipRange distribution.

With a representation for Ship distributions, we can reason about how queries

about Ships leak information. Consider the following query, written as a Haskell

function, that returns whether a ship is within 100 units of the coordinate (200,200)

by Manhattan distance.

nearby :: Ship → Bool
nearby (Ship _ z) = abs (x z - x l) + abs (y z - y l) <= 100

where
l = Loc 200 200

We define functions nearbySound and nearbyComplete that given a prior distri-

bution of a secret ship, return the posterior distribution of the adversary for all

responses to the nearby query.

{-@ nearbySound
:: secret : Ship
→ {prior : ShipRange | betweenShip secret prior}
→ response : Bool
→ {post : ShipRange | subsetShip post prior

&& (betweenShip secret post ⇒ response == nearby secret)}

133

@-}
nearbySound secret (ShipRange c (LocRange (IntRange xl xu) (IntRange yl yu

))) True = ShipRange c (LocRange (IntRange (max 149 xl) (min 251 xu))
(IntRange (max 149 yl) (min 251 yu)))

nearbySound secret (ShipRange c (LocRange (IntRange xl xu) (IntRange yl yu
))) False = ShipRange c (LocRange (IntRange xl (min xu 150)) (IntRange
yl (min 150 yu)))

{-@ nearbyComplete
:: secret : Ship
→ {prior : ShipRange | betweenShip secret prior}
→ response : Bool
→ {post : ShipRange | subsetShip post prior

&& (response == nearby secret ⇒ betweenShip secret post)}
@-}
nearbyComplete secret (ShipRange c (LocRange (IntRange xl xu) (IntRange yl

yu))) True = ShipRange c (LocRange (IntRange (max 99 xl) (min xu 301)
) (IntRange (max 99 yl) (min 301 yu)))

nearbyComplete secret (ShipRange c loc) False = ShipRange c loc

The refinement types on the functions require that the resulting posterior distribu-

tions are sound and complete, respectively. Soundness means that for all ships in

the posterior, the given response matches the result from the nearby query on the

ship. Completeness is the opposite. Liquid Haskell is able to automatically prove

soundness and completeness for these functions.

Non-linear Abstract Domains. Abstract domains are traditionally linear, so that

tools can automatically generate and prove properties about them. While Liquid

Haskell can automatically solve linear constraints, Liquid Haskell can also reason

about non-linear constraints with guidance from a developer. In particular, de-

velopers can use equational reasoning to write proofs to reason about non-linear

constraints. This enables more precise abstract domains, reducing the over- and

under-approximations of existing abstract domains.

134

For example, circle domains are encoded with constraints of the form (X-a)**2

+ (Y-b)**2 <= r**2 for program variables X and Y and constants a, b, and r. We

encode them with the CircleRange datatype to represent the position and radius

of the circle.

data CircleRange = CircleRange {
circleA :: Int

, circleB :: Int
, circleR :: {v:Int | v >= 0}
}

We mechanically verify the property that if a circle is a subset of another circle, all

points in the smaller circle are in the larger circle by using equational reasoning and

axiomatizing the law of cosines.

assume lawOfCosines :: a:Int → b:Int → {c:Int | isTriangle a b c}
→ { sqr c <= sqr a + sqr b + 2 * a * b

&& sqr c >= sqr a + sqr b - 2 * a * b }

subsetCircleLemma :: l : Loc → c1 : CircleRange
→ {c2 : CircleRange | subsetCircle c1 c2}
→ { betweenCircle l c1 ⇒ betweenCircle l c2}

3.10 Related Work

LWeb provides end-to-end information flow control (IFC) security for webapps.

Its design aims to provide highly expressive policies and queries in a way that does

not compromise security, and adds little overhead to transaction processing, in both

space and time. This section compares LWeb to prior work, arguing that it occupies

a unique, and favorable, spot in the design space.

135

Information flow control. LWeb is part of a long line of work on using lattice-

ordered, label-based IFC to enforce security policies in software [15, 17, 148]. En-

forcement can occur either statically at compile-time, e.g., as part of type check-

ing [108, 109, 149, 150] or a static analysis [113, 114, 115], or dynamically at

run-time, e.g., via source-to-source rewriting [117, 151] or library/run-time sup-

port [16, 118, 119]. Dynamic approaches often work by rewriting a program to

insert the needed checks and/or by relying on support from the hardware, operat-

ing system, or run-time. Closely related to IFC, taint tracking controls data flows

through the program, rather than overall influence (which includes effects on control

flow, i.e., implicit flows). Taint tracking can avoid the false positives of IFC, which

often overapproximates control channels, but will also miss security violations [116].

LWeb builds on the LIO framework [16], which is a dynamic approach to en-

forcing IFC that takes advantage of Haskell’s static types to help localize checks

to I/O boundaries. LIO’s current label and clearance label draw inspiration from

work on Mandatory Access Control (MAC) operating systems [148], including As-

bestos [152], HiStar [153], and Flume [154]. The baseline LIO approach has been

extended in several interesting ways [155, 156, 157, 158], including to other lan-

guages [159].

The proof of security in the original LIO (without use of a database) has been

partially mechanized in Coq [140], while the derivative MAC library [155] has been

mechanized in Agda [160]. The MAC mechanization considers concurrency, which

ours does not. Ours is the first mechanization to use an SMT-based verifier (Liquid

Haskell).

136

IFC for database-using web applications. Several prior works apply IFC to web

applications. FlowWatcher [161] enforces information flow policies within a web

proxy, which provides the benefit that applications need not be retrofitted, but

limits the granularity of policies it can enforce.

SeLINQ [111] is a static IFC system for F# programs that access a database

via language-integrated queries (LINQ). SIF [110] uses Jif [108] to enforce static IFC-

based protection for web servlets, while Swift [112] also allows client-side (Javascript)

code. Unlike LWeb, these systems permit only statically determined database poli-

cies, not ones with dynamic labels (e.g., stored in the database). The latter two

lack language support for database manipulation, though a back-end database can

be made accessible by wrapping it with a Jif signature (which we imagine would

require an SeLINQ-style static policy).

UrFlow [128] performs static analysis to prove that information flow policies

are properly enforced. These policies are expressed as SQL queries over protected

data and known information. Static analysis-based proofs about queries and flows

impose no run-time overhead. But static analysis can be overapproximate, rejecting

correct programs. Dynamic enforcement schemes do not have this issue, and LWeb’s

LIO-based approach imposes little run-time overhead.

SELinks [127] enforces security policies for web applications, including ones

resembling the field-dependent policies we have in LWeb. To improve performance,

security policy checks were offloaded to the database as stored procedures; LWeb

could benefit from a similar optimization. SELinks was originally based on a for-

malism called Fable [162] in which one could encode IFC policies, but this encoding

137

was too onerous for practical use, and not present in SELinks, which was limited

to access control policies. Qapla [163] also supports rich policies, but like SELinks

these focus on access control, and so may fail to plug leaks of protected data via

other server state.

Jacqueline [120] uses faceted information flow control [121] to implement policy-

agnostic security [164, 165] in web applications. Like LWeb, they have formalized

and proved a noninterference property (but not mechanized it). Unlike LWeb that

enforces IFC using the underlying LIO monad, Jacqueline at runtime explicitly keeps

track of the secret and public views of sensitive values. While expressive, this ap-

proach can be expensive in both space and time: results of computations on sensitive

values have up to 1.75× slower running times, and require more memory. Latencies

for Django and Jacqueline are around 160ms for typical requests to their benchmark

application.

The system most closely related to LWeb is Hails [125, 126], which aims to

enforce information flow-oriented policies in web applications. Hails is also based

on LIO, and is particularly interested in confining third-party extensions (written in

Safe Haskell [166]). In Hails, individual record fields can have policies determined by

other data in the database, as determined by a general Haskell function provided by

the programmer. Thus, Hails policies can encode LWeb policies, and more; e.g., data

in one table can be used to determine labels for data in another table. Evaluating

the policy function during query processing is potentially expensive. That said,

according to their benchmarks, the throughput of database writes of Hails is 2×

faster than Ruby Sinatra, comparable to Apache PHP, and 6× slow than Java

138

Jetty. They did not measure Hails’ overhead, e.g., by measuring the performance

difference with and without policy checks.

There are several important differences between LWeb and Hails. First, LWeb

builds on top of a mature, popular web framework (Yesod). Extracting LIO into

LMonad makes it easy for LWeb to evolve as Yesod evolves. As such, LWeb can benefit

from Yesod’s optimized code, bugfixes, etc. Second, LWeb’s lsql query language

is highly expressive, whereas (as far as we can tell) Hails uses a simpler query

language targeting MongoDB where predicates can only depend on the document

key. Third, there is no formal argument (and little informal argument) that Hails’

policy checks ensure a high-level security property. The ability to run arbitrary code

to determine policies seems potentially risky (e.g., if there are mutually interacting

policy functions), and there seems to be nothing like our database invariants that

are needed for noninterference. Our mechanized formalization proved important:

value-oriented policies (where one field’s label depends on another field) were tricky

to get right (per § 3.5).

Finally, IFDB [129] defines an approach to integrating information flow track-

ing in an application and a database. Like Hails and LWeb, the application tracks a

current “contamination level,” like LIO’s current label, that reflects data it has read.

In IFDB, one can specify per-row policies using secrecy and integrity labels, but not

policies per field. Labels are stored as separate, per-row metadata, implemented

by changing the back-end DBMS. Declassification is permitted within trusted code

blocks. Performance overhead for HTTP request latencies was similar to LWeb, at

about 24%. Compared to IFDB, LWeb does not require any PSQL/database mod-

139

ifications; can support per-field, updatable labels; and can treat existing fields as

labels, rather than requiring the establishment of a separate (often redundant) field

just for the label. IFDB also lacks a clear argument for security, and has no formal-

ization. Once again, we found such a formalization particularly useful for revealing

bugs.

3.11 Conclusion

We presented LWeb, a information-flow security enforcement mechanism for

Haskell web applications. LWeb combines Yesod with LMonad, a generalization of

the LIO library. LWeb performs label-based policy checks and protects database val-

ues with dynamic labels, which can depend on the values stored in the database. We

formalized LWeb (as λLWeb) and used Liquid Haskell to prove termination-insensitive

noninterference. Our proof uncovered two noninterference violations in the imple-

mentation. We used LWeb to build the web site of the Build it, Break it, Fix it

security-oriented programming contest, and found it could support rich policies and

queries. Compared to manually checking security policies, LWeb impose a modest

runtime overhead between 2% to 21% but reduces the trusted code base to 1% of

the application code, and 21% overall (when counting LWeb too). With this mini-

mal overhead cost, LWeb improves the security of database-backed applications by

enforcing confidentiality and integrity policies.

140

eval :: Label l ⇒ Program l → Program l
eval (Pg lc (TBind t1 t2))
| Pg lc’ (TLIO t1’) ← eval∗ (Pg lc t1) = Pg lc’ (TApp t2 t1’)

eval (Pg lc (TReturn t)) = Pg lc (TLIO t)

eval (Pg lc TGetLabel) = Pg lc (TReturn (TLabel lc))

eval (Pg lc (TTLabel (TLabel l) t))
| lc v l = Pg lc (TReturn (TLabeled l t))
| otherwise = Pg lc TException

eval (Pg lc (TUnlabel (TLabeled l t))) = Pg (l t lc) (TReturn t)

eval (Pg lc (TToLabeled (TLabel l) t))
| Pg lc’ (TLIO t’) ← eval∗ (Pg lc t)
, lc v l, lc’ v l = Pg lc (TReturn (TLabeled l t’))
| otherwise = Pg lc (TReturn (TLabeled l TException))

eval (Pg lc t) = Pg lc (evalTerm t)

eval PgHole = PgHole

evalTerm :: Label l ⇒ Term l → Term l
evalTerm (TLabelOf (TLabeled l _)) = TLabel l
evalTerm (TLabelOf t) = TLabelOf (evalTerm t)
evalTerm (TApp (TLam x t) tx) = subst (x,tx) t
evalTerm (TApp t tx) = TApp (evalTerm t) tx
evalTerm v = v

eval∗ :: Label l ⇒ Program l → Program l
eval∗ PgHole = PgHole
eval∗ (Pg lc (TLIO t)) = Pg lc (TLIO t)
eval∗ p = eval∗ (eval p)

subst :: Eq l ⇒ (Int, Term l)
→ Term l → Term l

subst = ...

Figure 3.6: Operational semantics of λLIO .

141

p p’

ε l p ε l p’

ε l

eval

ε l . eval

ε l

measure terminates :: Program l → Bool

simulation :: Label l ⇒ l:l
→ p:{Program l | terminates p }
→ { ε l (eval (ε l p)) = ε l (eval p)

}

Figure 3.7: Simulation between eval and ε l . eval.

type DB l = [(Name, Table l)]
type Name = String
data Table l = Table {tpolicy :: TPolicy l, tRows :: [Row l]}
data Row l = Row {rKey :: Term l, rVal1 :: DBTerm l, rVal2 :: DBTerm l}
type DBTerm l = {t:Term l | isDBValue t }
data TPolicy l = TPolicy { tpTableLabel :: l , tpFresh :: Int

, tpLabelField1 :: {l1:l | l1 v tpTableLabel}
, tpLabelField2 :: Term l → l }

Figure 3.8: Definition of λLWeb database

data Program l =
Pg { pLabel :: l, pDB :: DB l, pTerm :: Term l } | PgHole { pDB :: DB l }

data Term l = ...
| TInsert Name (Term l) (Term l) | TSelect Name Pred
| TDelete Name Pred | TUpdate Name Pred (Term l) (Term l)

Figure 3.9: Extension of programs and terms with a database.

142

eval :: Label l ⇒ i:{Program l | ς i && terminates i}
→ {o:Program l | ς o }

eval (Pg l db (TInsert n t1 t2)
| TLabeled l1 v1 ← t1, TLabeled l2 v2 ← t2, Just t ← db!!n
, l1 v labelF1 t, l2 v labelF2 t v1, l v labelT t
= let k = freshKey t in

Pg (l t l1) (db += n (Row k v1 v2)) (TReturn k)

eval (Pg l db (TInsert n t1 t2))
| TLabeled l1 v1 ← t1, TLabeled l2 v2 ← t2
= Pg (l t l1) db (TReturn TException)

eval (Pg l db (TDelete n p))
| Just t ← db!!n, l t labelPred p t v labelT t
= let l’ = l t labelRead p t in

Pg l’ (db -= n p) (TReturn TUnit)

eval (Pg l db (TDelete n p))
| Just t ← db!!n
= let l’ = l t labelRead p t in

Pg l’ db (TReturn TException)
| otherwise
= Pg l db (TReturn TException)

eval (Pg l db (TSelect n p))
| Just t ← db!!n
= let l’ = l t labelT t t labelPred p t in

Pg l’ db (TReturn (db ?= n p))

eval (Pg l db (TSelect n p))
= Pg l db (TReturn TException)

eval (Pg l db (TUpdate n p t1 t2)
| TLabeled l1 v1 ← t1, TLabeled l2 v2 ← t2, Just t ← db!!n
, l t l1 t labelPred p t v labelF1 t
, l t l2 t labelPred p t v labelF2 t v1
= let l’ = l t l1 t labelRead p t t labelT t in

Pg l’ (db := n p v1 v2) (TReturn TUnit)

eval (Pg l db (TUpdate n p t1 t2)
| TLabeled l1 v1 ← t1, TLabeled l2 v2 ← t2, Just t ← db!!n
= let l’ = l t l1 t labelRead p t t labelT t in

Pg l’ db (TReturn TException)
| otherwise
= Pg l db (TReturn TException)

Figure 3.10: Evaluation of monadic database terms.

143

ε :: (Label l) ⇒ l → Program l → Program l
εDB :: (Label l) ⇒ l → DB l → DB l
εTable :: (Label l) ⇒ l → Table l → Table l
εRow :: (Label l) ⇒ l → TPolicy l → Row l → Row l

ε l (PgHole db)
= PgHole (εDB l db)

ε l (Pg lc db t)
| ¬ (lc v l)
= PgHole (εDB l db)
| otherwise
= Pg lc (εDB l db) (εTerm l t)

εDB l []
= []
εDB l ((n,t):db)
= (n,εTable l):εDB l db

εTable l (Table tp rs)
| ¬ (tpTableLabel tp v l) = Table tp []
εTable l (Table tp rs)
= Table tp (map (εRow l tp) rs)

εRow l tp (Row k v1 v2)
| ¬ (tpLabelField1 tp v l)
= Row k THole THole
| ¬ (tpLabelField2 tp v1 v l)
= Row k (εTerm l v1) THole
| otherwise
= Row k (εTerm l v1) (εTerm l v2)

Figure 3.11: Erasure of programs and databases.

data Principal
= PSys | PAdmin | PUser UserId
| PTeam TeamId | PJudge JudgeId

type BBFLabel = DCLabel Principal

Figure 3.12: BIBIFI labels.

User
account Text
email Text <Const Admin u Id, Id>
admin Bool <⊥, Const Admin>

Figure 3.13: Basic BIBIFI User table.

UserInfo
user UserId
school Text <Const Admin u Field user, Field user>
age Int <Const Admin u Field user, Field user>
experience Int <Const Admin u Field user, Field user>

Figure 3.14: Table UserInfo contains additional BIBIFI user information.

144

Announcement <⊥, Const Admin>
title Text <⊥ Const Admin>
content Text <⊥, Const Admin>

Team
name Text
contest ContestId

TeamMember
team TeamId
user UserId

Figure 3.15: Definition of Announcement, Team, and TeamMember tables and their
policies.

BreakSubmission
attacker TeamId <⊥, Const Sys>
target TeamId <⊥, Const Sys>
result Bool <Const Admin u Field attacker u Field target, Const Sys>

Figure 3.16: Definition of BreakSubmission table and its policy.

(a) Concurrency level of 16. (b) Concurrency level of 32.

Figure 3.17: Throughput (req/s) of the Vanilla and LWeb versions of the BIBIFI
application.

145

Chapter 4: Verifying Replicated Data Types with Typeclass Refine-

ments in Liquid Haskell

4.1 Introduction

Ideally, we would like to verify that the implementation of LWeb is correct

and satisfies noninterference. Unfortunately, Liquid Haskell lacked certain features

to make this possible. Once such feature was that Liquid Haskell could not ver-

ify properties of typeclasses [19]. To help develop this feature, we focused on the

verification of distributed applications based on replicated data types (RDTs).

Typeclasses are used extensively throughout the Haskell ecosystem. A type-

class definition specifies a type constructor and a collection of method declarations

over that type. A typeclass instance defines an implementation of that constructor

and those methods. For example, the Ord typeclass from Haskell’s standard library

declares that its instances a must have a method (<=) of type a → a → bool;

numbers, strings, booleans, and many other types are instances of Ord. The stan-

dard sort function can only sort lists of types that are Ord instances, since it needs

a comparison function; this requirement is expressed as a constraint on sort’s type,

Ord a ⇒ [a] → [a].

146

Typeclass refinements for Liquid Haskell. The primary contribution of this chapter

is an extension to Liquid Haskell that supports stating and proving properties of

typeclasses (§ 4.2). While it was previously possible in Liquid Haskell to prove

properties of individual instances of a typeclass, it was not possible to give refinement

types to a typeclass definition’s methods. As such, Liquid Haskell code and proofs

could not then modularly use those types when invoking methods from functions

whose arguments (like sort) have a typeclass constraint. Given the ubiquity of

typeclasses in Haskell code, the ability to do this is key to being able to verify

interesting properties of real-world Haskell applications.

Implementing typeclass refinements in Liquid Haskell was not straightforward.

Its implementation works by verifying properties not of Haskell source code, but

rather of Core expressions, which are the intermediate representation produced by

the Glasgow Haskell Compiler (GHC) [28], the de facto Haskell standard. Doing

so leverages functionality that GHC already provides (e.g., typechecking and elab-

oration) and allows Liquid Haskell to evolve semi-independently from GHC, since

Core’s definition is relatively stable. But there is a problem: typeclasses are not

Core expressions—during elaboration, GHC translates them to dictionaries, which

are basically records of functions. Code that defines a typeclass instance is translated

to create a dictionary, and code that expresses a typeclass constraint is translated to

use a dictionary; e.g., sort will be translated to be passed an Ord dictionary, from

which it invokes the (<=) method. To maintain the current separation between

Liquid Haskell and GHC, our implementation (§ 4.3) transliterates typeclass meth-

ods’ refinement types to checked invariants over dictionaries, so refinement types

147

on typeclasses are verified when dictionaries are created, and those types can be

used by client code. To do this modularly we had to expand the way Liquid Haskell

interacts with GHC.

While Liquid Haskell is not the first proof system with typeclass support—

Coq, Isabelle, Idris, F?, Agda, and Lean have typeclasses or something like them—

our approach represents an interesting point in the design space (see § 4.5.2). In

particular, our modular approach reuses Haskell’s typeclass resolution procedure,

which limits typeclass type parameters to normal Haskell types. But, Haskell’s

resolution is coherent by default (it always chooses the same typeclass instance for

a given type) [167] and this fact is very useful for some proofs. Our implementation

introduces a checked invariant during elaboration to express coherence, which is

sound even if coherent resolution is overridden by GHC pragma (in which case

proof of the invariant could fail at instance creation time). Other systems may

allow instance types to be more general, but the cost is a more involved resolution

procedure which may be neither coherent nor terminating, complicating its use in

programming and proofs.

Case study: Verifying standard typeclass laws. As a simple test of the utility of

typeclass refinements, we carried out a small case study: We used Liquid Haskell to

verify that instances of standard Haskell typeclasses satisfy the expected typeclass

laws (§ 4.2.2). Significant prior work has focused on this application specifically,

employing a variety of techniques, including random testing, term rewriting, con-

tract verification, and conversion to Coq (see § 4.5.1). Liquid Haskell typeclass

148

refinements offer a natural, general-purpose approach. In particular, laws can be

expressed as refinements to methods of a subclass of the target typeclass, and proofs

of them are carried out in a subclass of each implementation of that target typeclass.

This approach permits proofs of existing Haskell code without requiring that code

be directly modified or annotated. We demonstrate this for several standard type-

classes, including Semigroup , Monoid , Functor , Applicative , and Monad, proving

34 instantiations satisfy their laws, in all (§ 4.2.2). Mostly, we find that the proofs

are short (just a couple of lines), thanks to Liquid Haskell’s SMT automation, and

proof checking time is fast (typically a few seconds).

Case study: A platform for programming with verified replicated data types. With

the success of this case study, we set out to build a platform for programming

distributed applications based on replicated data types (RDTs) [18, 168, 169, 170,

171, 172, 173] (§ 4.4). Replication is ubiquitous in distributed systems to guard

against machine failures and keep data physically close to clients who need it, but

it introduces the problem of keeping replicas consistent with one another in the face

of network partitions and unpredictable message latency. RDTs are data structures

whose operations must satisfy certain mathematical properties that can be leveraged

to ensure strong convergence [18], meaning that replicas are guaranteed to have

equivalent state given that they have received and applied the same unordered set

of update operations.

Liquid Haskell typeclasses provide a natural, modular, and elegant way to

implement and verify RDTs. We define a typeclass VRDT with a refinement type that

149

captures the necessary properties, and we use Liquid Haskell to prove that those

properties hold for a several primitive instances. We also defined several larger VRDT

instances by modularly combining both the code and proofs of smaller ones. We state

and prove, in Liquid Haskell, the strong convergence property that VRDT instances

enjoy. Pleasantly, our approach generalizes and relaxes the typical assumption of

causal message delivery. Our VRDT instances are sufficiently expressive that with

them we were able to build a shared calendar event planner, and also a collaborative

text editor, though the latter relies on a VRDT we have not yet fully verified, but

expect to. Each application is implemented using a few hundred lines of Haskell

code (§ 4.4.5). Although there exists previous work on mechanized verification

of RDTs (§ 4.5.3), our work is, to our knowledge, the first to use a solver-aided

language (Liquid Haskell or otherwise) to implement verified RDTs. Because Liquid

Haskell is an extension of standard Haskell, our applications are real, running Haskell

applications, but now with mechanically verified RDT implementations.

Contributions. In summary, this work makes the following contributions:

• We present an extension to Liquid Haskell that supports stating and proving

refinements of typeclass methods’ types. The engineering of this extension

is an interesting interaction between GHC and Liquid Haskell’s core proof

infrastructure, and our design sheds light on the interplay between coherent

typeclass resolution and modular proofs (Sections 4.2 and 4.3).

• We use our extension to Liquid Haskell to modularly verify that 34 standard in-

stances satisfy the laws of five widely-used Haskell typeclasses, the Semigroup ,

150

Monoid , Functor , Applicative , and Monad typeclasses (Section 4.2.2).

• We further use our extension to Liquid Haskell to implement a platform for

distributed applications based on replicated data types. We define a typeclass

whose Liquid Haskell type captures the mathematical properties that must

be true of RDTs, prove in Liquid Haskell that strong convergence does indeed

hold if these properties are satisfied, and implement (and prove correct) several

instances of our refined typeclass. Using these instances we implement two

realistic applications: a shared calendar event planner and a (partially verified)

collaborative text editor (Section 4.4).

We are working with the Liquid Haskell maintainers to integrate our extension

into the main implementation, at which point it will be freely available.

4.1.1 Acknowledgements

This chapter presents work currently in submission to a peer-reviewed con-

ference. It is joint work between Yiyun Liu, Patrick Redmond, Lindsey Kuper,

Michael Hicks, and Niki Vazou. Yiyun implemented the typeclass extension to Liq-

uid Haskell while Niki and I provided mentorship. Patrick built the message delivery

system for the CRDT applications. I designed and implemented the verified CRDTs

and Yiyun helped with the mechanization of the related proofs.

151

class Semigroup a where
(<>) :: a → a → a

instance Semigroup [a]
where

(<>) = (++)

class Semigroup a ⇒ VSemigroup a where
lawAssociativity :: x:a → y:a → z:a →

{x <> (y <> z) == (x <> y) <> z}

instance Semigroup [a] ⇒ VSemigroup [a]
where

lawAssociativity = lAssoc

(a) Standard Semigroup type-
class and the list instance of it

(b) VSemigroup extends Semigroup with an associa-
tivity law, which its list instance satisfies via lAssoc

Figure 4.1: Typeclasses with Refinement Types

4.2 Typeclasses in Liquid Haskell

This section presents our extension to Liquid Haskell (§ 1.1), which permits

annotating a typeclass definition’s methods with refinement types, thus allowing

a typeclass’s clients to assume those richer types, while obligating a typeclass’s

instances to implement them (§ 4.2.1). As a demonstration of the effectiveness

of this approach, we verify that 34 instances of 5 standard typeclasses satisfy the

expected laws (§ 4.2.2).

4.2.1 Refinement Types for Typeclasses

We have extended Liquid Haskell to allow typeclass methods to be annotated

with refinement types. Doing so allows a developer to state properties that a type-

class’s methods should always satisfy. Clients of that typeclass can thus assume

those properties in their own proofs. Of course, implementors of the typeclass’s

instances must prove those properties hold for their instance.

152

Laws as Refinement Types. We illustrate the utility of our extension by showing

how standard typeclass laws can be encoded as refinement types. Laws are proper-

ties that clients of a typeclass generally assume, and that implementors of a typeclass

are supposed to ensure. Of course, without something like our extension, there is

no guarantee that they do so.

Figure 4.1(a) shows the Semigroup typeclass, which defines a type a that is

equipped with a single operator <>. One particular implementation of this typeclass

for lists ([a]) is also shown, where <> corresponds to the List append operator. A

key law of semigroups is that their operator is associative. Clients of Semigroup may

assume this law holds of any instance they are given; they may break if it does not.

Fortunately, as we proved in the previous subsection, List append is associative, so

the List instance of Semigroup satisfies the law. How can we show this?

We extend the syntax of typeclasses to allow for refinement types on method

declarations. Below is a version of Semigroup extended to capture the associativity

typeclass law as a refinement type.

class VSemigroup a where
(<>) :: a → a → a
lawAssociativity :: x:a → y:a → z:a → {x <> (y <> z) == (x <> y) <>
z}

VSemigroup matches the definition of Semigroup from Figure 4.1(a) but adds type-

class method lawAssociativity , which (extrinsically) defines the associativity prop-

erty. All VSemigroup instances are now required to define lawAssociativity and

provide an explicit associativity proof. The lower portion of Figure 4.1(b) imple-

ments the list instance of VSemigroup by extending Semigroup list instance and

153

providing the associativity proof lAssoc from ??.

Using the Laws, Modularly. By allowing refinement types on typeclass definitions,

we extend the modularity benefits of typeclasses from code to proofs. In particular,

clients of a refined typeclass can take advantage of its stated refinement types when

conducting their own proofs. For example, below we express and prove an extrinsic

property that extends associativity to four elements.

assoc2 :: VSemigroup a ⇒ x:a → y:a → z:a → w:a
→ { x <> (y <> (z <> w)) == ((x <> y) <> z) <> w }

assoc2 x y z w = lawAssociativity x y (z <> w)
‘const‘ lawAssociativity (x <> y) z w

The proof is a consequence of lawAssociativity , which is applied twice, combined

with Haskell’s constant function. The proof is carried out once, independent of any

VSemigroup instance, but the property holds for all of them.

The code of our VRDT case study (§ 4.4) is set up similarly. We define a

VRDT typeclass with operations on data that enjoy particular properties. Relying

on these properties, we can prove strongConvergence of all VRDTs; this property

essentially states that two replicas that start in the same state will end up in the

same state if they apply the same operations, in any order.

Refinements in Subclasses. For improved modularity, our extension allows type-

class method refinements to refer to superclass methods. For example, another way

to write VSemigroup is shown at the top of Figure 4.1(b), which literally extends

Semigroup with the added method. Defining properties in subclasses is particularly

useful when not wanting to modify typeclasses in other packages (including those

154

in normal, not Liquid, Haskell). It can also be useful when not wanting to neces-

sarily require implementations to prove all possible properties; different subsets of

properties of interest can be defined in different subclasses.

Haskell typeclasses can have multiple superclasses, which allows defining a

typeclass containing properties of data structures that implement multiple type-

classes. For example, consider the Monoid typeclass, which extends Semigroup to

also include the mempty identity element. Since a particular data structure (like a

list) can implement both typeclasses, we could define the verified typeclass VMonoid

that extends VSemigroup and Monoid with two laws.

class (VSemigroup a, Monoid a) ⇒ VMonoid a where
lawEmpty :: x:a → { x <> mempty == x && mempty <> x == x }
lawMconcat :: xs:[a] → { mconcat xs == foldr (<>) mempty xs }

That mempty is an identity for <> is encoded in the lawEmpty method; it refers to

(<>), which is defined in the VSemigroup parent typeclass. The law lawMconcat

guarantees that mconcat , defined by Monoid , is equivalent to folding over a non-

empty list with (<>).

We can also define verified components from other verified components, where

proofs of the former’s properties can depend on properties that hold of the latter.

For example, in our VRDT case study, we define a VRDT TwoPMap in terms of any

other VRDT; here is the beginning of the instance definition:

instance (Ord k, VRDT v) ⇒ VRDT (TwoPMap k v) where ...

The proofs of TwoPMap k v’s properties make use of the properties that hold for Ord

k and VRDT v.

155

Coherence. There is an interesting twist in our VMonoid example. As mentioned,

Monoid extends Semigroup ; as such, proofs of properties in VMonoid may wish to

assume that the VSemigroup instance resolved for VMonoid has the same parent

superclass as that of the resolved Monoid instance. Indeed, this assumption is critical

for these properties: we require that the <> operator in both Monoid and VSemigroup

to be literally the same function. Such an assumption is reasonable because Haskell’s

typeclass resolution procedure is coherent by default—there can always be only one

possible typeclass instance at a particular type. While coherence solves the the

“diamond problem” [174], it is possible for programmers to override coherence via

the INCOHERENT GHC pragma. In this case, we must take care that proofs of or

using refinements do not assume coherence holds. We say more in § 3.6 about

how our system internally reasons about coherence to ensure soundness and precise

reasoning.

Limitation: No Refined Instances. A limitation of our approach is that typeclass

instances cannot be defined for refined types, only for base types. For example, we

cannot have distinct semigroup instances for positive and negative numbers, i.e.,

instance VSemigroup { v:Int | 0 < v } and instance VSemigroup { v:Int

| v < 0 }. But this limitation confers the benefit that we can reuse GHC’s type-

class resolution procedure in our implementation, and proofs can take advantage of

the fact that resolution is coherent. We say more in § 4.3.3.

156

4.2.2 Verifying Laws of Standard Typeclass Instances

Before getting into the details of how we implemented typeclass refinements

(in the next section) we present a case study demonstrating that the pattern we

have shown for stating and verifying the laws of standard typeclass instances works

well.

In our case study, we considered five standard typeclasses: Semigroup , Monoid ,

Functor , Monad, and Applicative . Then we defined subclasses (VSemigroup , VMonoid ,

etc.) that contain the parent’s expected typeclass laws. We have shown the defi-

nitions of VMonoid and VSemigroup already; Functor , Monad, and Applicative are

shown in Figure 4.2 with their refined subclasses. We defined and verified instances

of the above typeclasses for the All, Any, Dual, Endo, Identity , List, Maybe,

Peano, Either , Const, State, Reader , and Succs datatypes. Because datatypes are

instances of multiple subclasses, we performed 34 instance-verifications in total.

This effort was quite manageable. Table 4.1 tabulates the results, indicating

the instance type in the first column, and the typeclasses it implements in the

second. For each implementation we tabulate the lines of proof required to verify

the stated laws. We also report the average (and standard deviation) of the time

(in seconds) it took Liquid Haskell to verify each module.1

For many of the proofs, Liquid Haskell is able to automatically verify the

typeclass properties using PLE (Proof by Logical Evaluation) [25, 27]. As such,

1All experiments of this work were carried out by the criterion Haskell package, which
repeatedly reruns benchmarks until the error is small enough [175]. Typically, criterion
ran up to 15 trials. The experiments were run on a machine with an Intel Xeon CPU with
64GB of RAM, running Ubuntu 16.04 with Z3 version 4.4.1.

157

most of the proofs are a couple of lines of code. In general, PLE reduces manual

effort but increases verification time, but for most modules the proofs are checked

within just a few seconds. There are some exceptions—the List, Reader , and Succs

Applicative instances are more involved, with the Succs module taking hundreds

of seconds to verify. Unlike the other proofs, which usually require no more than

two or three lemmas, the proof of the composition law of Succs involves applying

nine separate lemmas. The lemmas give more candidates for PLE to rewrite, but

most of the rewritings do not lead to the correct solution, and just slow things down.

In sum, this case study shows that typeclass refinements constitute a natural

and modular approach to stating typeclass laws and proving that they are satisfied

by their instances. § 4.4 presents further evidence, in the form of our VRDT case

study, of the utility of typeclass refinements.

4.3 Implementing Typeclass Refinements

Now we turn to the question of how we extended Liquid Haskell to implement

typeclass refinements.

Liquid Haskell statically verifies Haskell programs by analyzing Core expres-

sions. Core is a small, explicitly-typed variant of System F generated during compi-

lation by GHC, the Glasgow Haskell Compiler. Liquid Haskell can thus ignore many

of Haskell’s myriad source-level constructs, and focus on a smaller language. This

implementation approach is also useful for managing Liquid Haskell as an indepen-

dent codebase. Even as Haskell is actively modified with new or improved features,

158

class Functor f where
fmap :: (a → b) → f a → f b
(<$) :: a → f b → f a

class Functor m ⇒ VFunctor m where
lawFunctorId :: x:m a → {fmap id x = id x}
lawFunctorComposition :: f:(b → c) → g:(a → b) → x:m a

→ {fmap (f . g) x = (fmap f . fmap g) x}

class Functor f ⇒ Applicative f where
pure :: a → f a
(<*>) :: f (a → b) → f a → f b
liftA2 :: (a → b → c) → f a → f b → f c
(*>) :: f a → f b → f b
(<*) :: f a → f b → f a

class (VFunctor f, Applicative f) ⇒ VApplicative f where
lawApplicativeId :: v:f a → {pure id <*> v = v}
lawApplicativeComposition :: u:f (b → c) → v:f (a → b) → w:f a

→ {pure (.) <*> u <*> v <*> w = u <*> v
<*> w}

lawApplicativeHomomorphism :: g:(a → b) → x:a → {px:f a | px =
pure x}

→ {pure g <*> px = pure (g x)}
lawApplicativeInterchange :: u:f (a → b) → y:a

→ {u <*> pure y = pure ($ y) <*> u}

class Applicative m ⇒ Monad m where
(>>=) :: m a → (a → m b) → m b
(>>) :: m a → m b → m b
return :: forall a. a → m a

class (VApplicative m, Monad m) ⇒ VMonad m where
lawMonad1 :: x:a → f:(a → m b) → {f x = return x >>= f}
lawMonad2 :: m:m a → {m >>= return = m }
lawMonad3 :: m:m a → f:(a → m b) → g:(b → m c)

→ {h:(y:a → {v:m c | v = f y >>= g}) | True}
→ {(m >>= f) >>= g = m >>= h}

lawMonadReturn :: x:a → y:m a → {(y = pure x) ⇔ (y = return x)}

Figure 4.2: Typeclass definitions for Functor, Applicative, and Monad and their
associated laws.

159

Type Typeclass # Lines Verif. Time
Proof (Std. dev.)

All Semigroup 2 1.233 (0.086)
Monoid 2

Any Semigroup 2 1.211 (0.035)
Monoid 2

Dual Semigroup 2 2.023 (0.086)
Monoid 2

Endo Semigroup 2 1.198 (0.078)
Monoid 2

Identity Semigroup 2 1.560 (0.142)
Monoid 2
Functor 2 2.874 (0.009)
Applicative 4
Monad 4

List Semigroup 3 1.360 (0.118)
Monoid 3
Functor 4 7.801 (0.191)
Applicative 25
Monad 10

Maybe Semigroup 3 2.607 (0.179)
Monoid 3
Functor 3 4.504 (0.161)
Applicative 8
Monad 6

Peano Semigroup 3 1.291 (0.117)
Monoid 3

Either Functor 3 4.084 (0.244)
Applicative 8
Monad 6

Const Functor 2 0.921 (0.169)
State Functor 12 1.113 (0.156)
Reader Functor 11 2.184 (0.103)

Applicative 21
Succs Functor 2 341.730 (1.794)

Applicative 18

Table 4.1: Total lines of proofs for each typeclass instance and the average verifica-
tion time in seconds. Each reported time covers the laws on its row and those on
the following rows up to the next reported time.

160

Liquid Haskell needs no modification because those features are translated to Core.

The challenge with implementing typeclass refinements is that GHC removes

typeclasses entirely during the translation to Core; each typeclass is replaced with a

dictionary of its various operations. Thus, our extension to Liquid Haskell needs a

way to connect the refinements the programmer writes on typeclass methods with

the translated Core that comes back from GHC, and it needs to do so in a way

that is robust to (at least some) future changes in GHC’s elaboration. This section

explains how we do this by delegating as much work as possible to GHC. We also

explain how we model the fact that typeclass elaboration is coherent by default, to

simplify user proofs.

4.3.1 GHC Typeclass Elaboration

Haskell compilers, including GHC, translate typeclass definitions and instances

to datatypes known as dictionaries [176]. As an example, the Semigroup typeclass

definition from Figure 4.1(a) is translated to a dictionary as the following datatype,

Semigroup (simplified for clarity).

data Semigroup a = CSemigroup { (<>) :: a → a → a }

The datatype Semigroup a has a single constructor CSemigroup and one field for

the <> method. In general, one field is defined for each typeclass method.

Typeclass instances are translated into dictionary values. For example, the

list Semigroup instance from Figure 4.1(a) generates a Semigroup [a] dictionary,

which GHC names $fSemigroup [].

161

$fSemigroup[] :: Semigroup [a]
$fSemigroup[] = CSemigroup ($c<>[])
$c<>[] = (++)

The dictionary’s field is the list append method (++), which is assigned to the

generated variable $c<>[]. (Both the dictionary and field variables are prefixed

with $ to indicate they are internal variable names, and posfixed with [] to indicate

the list instance.)

Elaboration. The translated dictionaries are inserted after each method call via a

procedure known as elaboration. For example, the Haskell code x <> y that appends

two list variables x, y :: [a] is elaborated to (<>) \ $fSemigroup [] x y, where

now (<>) is the record selector of the Semigroup data type. Functions that explicitly

mention the Semigroup a constraint, as in f below, are elaborated to take an explicit

dictionary argument; f elaborates to fElab, on the right.

f :: Semigroup a ⇒ a → a → a fElab :: Semigroup a → a → a
→ a

f x y = x <> y fElab d x y = (<>) d x y

Subclass Encoding and Coherence. In Core, subclass dictionaries store references

to parent dictionaries as fields. For example, the dictionary of the VMonoid typeclass

from § 4.2.1 has four fields, two for the class methods and two for the superclass

dictionaries:

data VMonoid a = CVMonoid {
p1VMVSemigroup :: VSemigroup a

, p2VMMonoid :: Monoid a
, lawEmpty :: a → ()
, lawMconcat :: [a] → ()
}

162

Interestingly, Semigroup is a superclass of both Monoid and VSemigroup , which

leads to the “diamond problem.” When the user writes x <> y, it is unclear if

GHC’s elaboration will access (<>) via the Monoid or via the VSemigroup field.

That is, GHC can elaborate the coherence code below to either coherenceElab1

or coherenceElab2 .

coherence :: VMonoid a ⇒ a → a → a
coherence x y = x <> y

coherenceElab1, coherenceElab1 :: VMonoid a → a → a → a
coherenceElab1 d x y = (<>) (p1VSSemigroup (p1VMVSemigroup d)) x y
coherenceElab2 d x y = (<>) (p1MSemigroup (p2VMMonoid d)) x y

Here, p1VSSemigroup and p1MSemigroup access the semigroup dictionary from the

VSemigroup and Monoid , respectively. Such nondeterminism of elaboration could

lead to problems, as the runtime semantics of coherence could change with GHC’s

elaboration decision. Fortunately, by default GHC’s elaboration is coherent [167],

meaning that the dictionary for each typeclass instance at a given type is unique; as

such, we know that the Semigroup dictionary is the same irrespective of how it is ac-

cessed, i.e., (p1VSSemigroup . p1VMVSemigroup) = (p1MSemigroup . p2VMMonoid).

Such an equality may be needed in a proof, so our implementation reflects it (in a

safe manner) in the proof state, as discussed in § 4.3.3.

4.3.2 Interaction with GHC

Now we explain how we modified Liquid Haskell’s interaction with GHC so

that we can verify typeclass refinements.

163

Refinements are ported to Dictionaries. The core intuition of typeclass verification

is that refinements on typeclasses should be turned into refinements on the respec-

tive GHC-translated dictionaries. For example, the dictionary for the VSemigroup

refined typeclass of Figure 4.1(b) should be refined to carry the associativity proof

obligation (as a normal refinement):

data VSemigroup a = CSemigroup {
p1VSSemigroup :: Semigroup a

, lawAssociativity :: x:a → y:a → z:a → {x <> (y <> z) == (x <>
y) <> z}

}

(Here, the first field of the dictionary is a link to the parent typeclass.) But of course

we cannot literally do this because lawAssociativity is not well-formed Core. We

make it so by expanding Liquid Haskell’s interaction with GHC, using it to parse,

typecheck, and elaborate refinements.

Liquid Haskell’s Architecture. Figure 4.3 summarizes Liquid Haskell’s architecture

and interaction with GHC API before and after support for refined typeclasses.

The first step is similar in both architectures: send Haskell source to GHC,

which comes back as Core, and parse out refinement types appearing in comments.

Before typeclass support (i.e., Figure 4.3a), the Core expressions were used by Liq-

uid Haskell to strengthen the exact types for reflected functions, via refinement

reflection, and to generate the verification constraints that were finally checked by

an SMT. After typeclass support, the returned Core may include dictionary defini-

tions, elaborated implementations of those dictionaries, and elaborated clients that

use them, as explained in § 4.3.1. These dictionaries need to be connected to the

164

Liquid Haskell GHC

Refinement
Reflection

Parse,
Typecheck,
Elaborate

Parse

Constraint
Generation

GHC
Core

SMT
Queries

Refinements
(comments)

Haskell

Liquid Core
(elaborated)

Liquid Types

Liquid Types

Liquid Core

(a) Liquid Haskell’s original architec-
ture.

Liquid Haskell GHC

Parse,
Typecheck,
Elaborate

Parse

Constraint
Generation

GHC
Core

SMT
Queries

Refinements
(comments)

Haskell

Liquid Core
(elaborated)

Liquid Types

Liquid Types

Liquid Core

Typecheck,
Elaborate

Refine Dicts;
Embed

Refinement
Reflection

GHC
Core

Haskell
AST

Add Coherence
Constraints

Break Mut.
Recursion

GHC
Core

(b) Liquid Haskell’s architecture with typeclass
support.

Figure 4.3: Changes to Liquid Haskell’s architecture.

165

refinement types retrieved from typeclass methods.

To connect typeclass method refinements to elaborated dictionaries, Liquid

Haskell converts the parsed-out refinements into Haskell abstract syntax trees that

make explicit reference to the relevant typeclasses. This occurs in the Refine Dicts;

Embed step of the architecture diagram. As an example, for the VSemigroup

method’s refinement of lawAssociativity (Figure 4.1), the following Haskell source-

code AST expression is constructed:

(\x y z () → x <> (y <> z) = (x <> y) <> z) :: VSemigroup a ⇒
a → a → a → () → Bool

GHC typechecks and elaborates the expression in the context of the VSemigroup def-

inition it saw previously, and as such applies the appropriate dictionary arguments

to typeclass methods. It returns the following:

(\d x y z () → x ‘<> (p1VSemigroup d)‘ (y ‘<> (p1VSemigroup d)‘ z)
=

(x ‘<> (p1VSemigroup d)‘ y) ‘<> (p1VSemigroup d)‘ z)
:: VSemigroup a → a → a → a → () → Bool

Now the dictionary d is explicit in the elaborated Core expression. Liquid Haskell

converts this into a refinement expression using refinement reflection, and then com-

bines it with the Core code returned from GHC in the first step; for the example,

the constructor and selectors for VSemigroup in Figure 4.1 are the following:

data VSemigroup a = CVSemigroup {
p1VSSemigroup :: Semigroup a

, lawAssociativity :: x:a → y:a → z:a
→ {x ‘<> p1VSSemigroup‘ (y ‘<> p1VSSemigroup‘ z)

== (x ‘<> p1VSSemigroup‘ y) ‘<> p1VSSemigroup‘ z}
}

lawAssociativity :: d:VSemigroup a → x:a → y:a → z:a

166

→ {x ‘<> (p1VSemigroup d)‘ (y ‘<> (p1VSemigroup d)‘ z)
== (x ‘<> (p1VSemigroup d)‘ y) ‘<> (p1VSemigroup d)‘ z}

First, notice that lawAssociativity basically matches the elaborated Core ex-

pression returned by GHC, but it has been converted to match Liquid Haskell’s

refinement type syntax. Second, notice that the data constructor for VSemigroup

also makes use of the returned Core, but has applied one additional step of transfor-

mation so that it can refer to the superclass’ (i.e., Semigroup) operator. Now,

VSemigroup instances must satisfy the required properties since the dictionary

datatype has been refined.

Typeclass methods do not only appear in the refinements of typeclasses. Func-

tions with typeclass constraints may also contain typeclass methods in their refine-

ments. We also elaborate the refinement expressions of these functions so that the

appropriate dictionary arguments to typeclass methods are applied.

This whole process corresponds to the refine dicts; embed, typecheck, elaborate,

and refinement reflection steps in the diagram. The breaking mutual recursion step

inlines selector calls in the derived GHC dictionaries to break superficial mutual

recursion since Liquid Haskell requires explicit proof of termination. The adding

coherence constraints step is detailed in § 4.3.3.

Our implementation of all of this amounts to about 2000 lines of code, and is

part of a fork Liquid Haskell’s codebase which is up to date with the main trunk as

of May, 2020. Around 400 lines of code is used to define functions that communicate

with the GHC API. The top-level driver function that orchestrates GHC’s Typecheck;

Elaborate and Liquid Haskell’s Refine Dicts; Embed step takes another 700 lines of

167

code. This also includes the embedding functions from Liquid Haskell predicates

to the Haskell AST. The rest of the code roughly corresponds to the Refinement

Reflection step, where elaborated dictionaries are being converted into ordinary

refined data types which Liquid already knows how to process and verify.

Limitation: Incompatibility with SMT interpreted Operators. One limitation with

our implementation’s approach is that it is incompatible with the embedding of

SMT theories. Liquid Haskell embeds operations from Num, Ord and Eq into the

corresponding theories provided by the SMT solver. This allows Liquid Haskell to

efficiently discharge theory-related proofs using existing decision procedures. How-

ever, if we elaborate an expression that uses the + operation, then + would no longer

be treated a binary numerical operation, but rather as a data accessor that retrieves

a binary operation from a Num dictionary. Currently, we simply add a special case

which drops the dictionary if it corresponds to an instance of one of those three

classes. By pretending those classes do not exist, we are still able to utilize the full

power of the SMT solver, but we lose the ability to verify interesting instances, such

as the Num instance of the free algebraic graph as defined Mokhov [177]. It would

be interesting to explore how to get the best of both worlds: quickly discharging

theory-related proofs and accessing the concrete definitions, as needed.

4.3.3 Reasoning About Coherence

In § 4.3.1 we mentioned that GHC’s elaboration is, by default, coherent. Var-

ious proofs on typeclass methods rely on coherence of elaboration (i.e., only hold

168

when instances are globally unique). Here, we give an example of such a proof and

detail how coherence is automatically encoded and checked using refinement types.

lawMconcat for the VMonoid Dual Instance Requires Coherence. Given any binary

operation <>, we can always define a dual operation <+>:

x <+> y = y <> x

Therefore, if we have a Semigroup instance for some type a, we can also define a

Dual instance of a Semigroup . Indeed, we can define Semigroup s of Duals of any

type a once and for all:

newtype Dual a = Dual {getDual :: a}
instance Semigroup a ⇒ Semigroup (Dual a) where

Dual (v :: a) <> Dual (v’ :: a) = Dual (v’ <> v)

Now, whenever we define a Semigroup instance for some type, GHC will auto-

matically create its corresponding Dual instance. We do the same for Monoid ,

VSemigroup , and VMonoid .

instance Monoid a ⇒ Monoid (Dual a) where
mempty = Dual mempty
mconcat xs = foldr (<>) mempty xs

instance VSemigroup a ⇒ VSemigroup (Dual a) where
lawAssociative (Dual v) (Dual v’) (Dual v’’) = lawAssociative v’’

v’ v

instance VMonoid a ⇒ VMonoid (Dual a) where
lawEmpty (Dual v) = lawEmpty v
-- lawMconcat :: VMonoid a ⇒ xs:_ → {mconcat xs = foldr (<>)

mempty xs}

lawMconcat xs = () ‘const‘ mconcat xs

The proof of lawMconcat proceeds by a simple unfolding of the mconcat definition,

which is expressed as a call to that function (the full proof must be then cast to

169

unit via Haskell’s const ()).

This proof requires coherence to hold. To see why, consider the proofs for

the elaborated definitions. The elaborated equality mconcat xs = foldr (<>)

mempty xs is as follows, for the dictionary d :: VMonoid a.

mconcat xs

= by elaboration

mconcat ($fSemigroupDual (p2VMMonoid d)) xs

= by unfolding of mconcat

foldr ((<>) ($fSemigroupDual (p1SMonoid (p2VMMonoid d))))

(mempty ($fMonoidDual (p2VMMonoid d)))

= by coherence

foldr ((<>) ($fSemigroupDual (p1VSSemigroup (p1VMVSemigroup d))))

(mempty ($fMonoidDual (p2VMMonoid d)))

= by de-elaboration

foldr (<>) mempty xs

The proof requires a coherence step to equate the two different ways that

the semigroup operator <> is accessed. Concretely, the above equational proof only

holds when p1VSSemigroup (p1VMVSemigroup d) equals p1SMonoid (p2VMMonoid

d), for all d :: VMonoid a. This equality cannot be asserted by the programmer, as

dictionaries do not appear in the source.

170

Coherence as Dictionary Refinements. We represent the expected effect of coherent

resolution as a refinement type on the datatype dictionary definitions for typeclasses.

In particular, the equality of ancestor typeclasses is expressed as a refinement type

on the fields of parent typeclasses. For example, the Core representation of VMonoid

is as follows.

data VMonoid a = CVMonoid {
p1VMVSemigroup :: VSemigroup a

, p2VMMonoid :: { v:Monoid a | p1VSSemigroup p1VMVSemigroup =
p1MSemigroup v }

, ... -- as before

The added refinement on the second field states that the Semigroup from the

VSemigroup parent (i.e., p1VSSemigroup p1VMVSemigroup) must be equal to the

Semigroup from the Monoid parent (i.e., p1MSemigroup v). As a result, coherence

becomes a checked invariant for each VMonoid—Liquid Haskell assumes the property

for any VMonoid but checks it for instance declarations. This approach is sound even

when GHC’s elaboration is potentially incoherent due to use of the INCOHERENT lan-

guage pragma. Clients of dictionaries will still assume the invariant, but constructed

dictionaries (i.e., typeclass instances) will induce an error from Liquid Haskell if the

invariant cannot be proved.

Being able to take advantage of Haskell’s coherent typeclass resolution is the

silver lining of our limitation that refined types cannot be distinct typeclass in-

stances, as discussed at the of end of § 4.2.1. If we allowed different instances of a

class TC for both { v:int | v > 0 } and int, say, then we could not use Haskell’s

proved-coherent mechanism, and would have to develop our own and/or allow one

171

to be customized as part of proof search. There is no guarantee that the result

would be coherent. In other dependently typed systems with typeclasses, e.g., Coq,

the user has to explicitly encode and prove coherence requirements, case by case

(see § 4.5).

4.4 Case Study: Verified Replicated Data Types

This section presents our platform for programming distributed applications

based on Conflict-free Replicated Data Types (CRDTs) [18]. We define a Haskell

typeclass VRDT to represent CRDTs and use type refinements to state the mathe-

matical properties that CRDTs are expected to satisfy. We then prove in Liquid

Haskell that VRDT instances (which must satisfy these properties) are sure to enjoy

strong convergence. We have implemented a several primitive instances of the VRDT

typeclass as well a mechanism for building compound VRDTs based on smaller com-

ponents, where the necessary properties of the former automatically follow from the

latter. With this infrastructure, as well as libraries for message delivery and user in-

teraction we developed, we constructed two substantial applications, a shared event

planner and a collaborative text editor (though the latter relies on a VRDT we have

not fully verified, per § 4.4.3).

4.4.1 Background: Conflict-free Replicated Data Types (CRDTs)

A CRDT is a data structure with certain mathematical properties, designed

for use in a distributed system that replicates its state. These properties enable

172

proving that such a system enjoys the strong eventual consistency (SEC) property,

a key aspect of which is strong convergence (SC), which states that replicas of a

CRDT that have received and applied the same set of updates will always have the

same state, regardless of the order in which those updates are received and applied.

Shapiro et al. [18] describe two styles of CRDT specifications: state-based, in

which replicas apply updates locally and periodically broadcast their local state to

other replicas, which then merge the received state with their own, and operation-

based, in which every state-updating operation is broadcast and applied at each

replica. Shapiro et al. [18] prove that state-based and operation-based CRDTs are

equivalent in the sense that each can be implemented in terms of the other (although

practical implementation considerations may motivate the choice of one or the other

in a particular application). In this work, we focus our attention on the operation-

based style, which is suitable for implementing CRDTs such as ordered lists, which

are key for applications such as collaborative text editing.

The key to proving convergence of (operation-based) CRDTs is to require that,

under appropriate circumstances, the CRDT’s operations commute. A replica that

receives an operation from a client can update its own state and broadcast that op-

eration to the other replicas. Since the operations commute, they can be applied in

any order and produce the same final state, as required by SC. However, requiring

operations to commute under all circumstances is too restrictive. Therefore, Shapiro

et al. relax commutativity to exclude causally ordered operations. Such operations

tend to affect the same parts of the state, and are usually issued in a strict order. For

example, the operation of inserting a k→v pair in a map is causally ordered before

173

an operation that updates k’s mapped-to value. The assumption made by Shapiro

et al. is that the underlying communication mechanism will ensure causal delivery

to the CRDT, e.g., by employing vector clocks [178, 179] and buffering received

operations until all operations that causally precede them have been applied [180].

They also assume that any preconditions that must be satisfied to enable an op-

eration’s execution (e.g., that a key must be present in a map if its value is to be

updated) are ensured by causal delivery. Sometimes particular CRDTs make global

assumptions for correctness, e.g., that generated keys are unique.

4.4.2 Verifying CRDTs with Typeclass Refinements

We define a CRDT as the Liquid Haskell typeclass VRDT, shown in Figure 4.4.

Each VRDT has an associated Op type that specifies how the VRDT’s state is

updated. The apply method takes a VRDT state t runs the given operation Op t

on it, and returns the updated state.

Rather than formalize a general notion of causal delivery and additionally for-

malize any global correctness assumptions, we combine both together in a pair of

predicates, compat and compatS . The former should return True for non-causally

ordered operations (and perhaps others) that satisfy the global correctness assump-

tions. The latter will return True when the current state is compatible with the

given operation, according to the global correctness assumptions. For example, in

our TwoPMap key-value map implementation given below, we express the assumption

of unique keys by deeming two insertion operations incompatible if they offer the

174

class VRDT t where
type Op t
apply :: t → Op t → t
compat :: Op t → Op t → Bool
compatS :: t → Op t → Bool

lawCommut :: x:t → op1:Op t → op2:Op t
→ {(compat op1 op2 && compatS x op1 && compatS x op2)
⇒ (apply (apply x op1) op2 = apply (apply x op2) op1

&& compatS (apply x op1) op2)}

lawCompatCommut :: op1:Op t → op2:Op t
→ {compat op1 op2 = compat op2 op1}

data Max a = Max a

instance Ord a ⇒ VRDT (Max a) where
type Op (Max a) = Max a

apply (Max a) (Max b) | a > b = Max a
apply (Max a) (Max b) = Max b

compat op1 op2 = True
compatS max op = True

lawCommut max op1 op2 = ()
lawCompatCommut op1 op2 = ()

Figure 4.4: Definition of the VRDT typeclass and its Max instance

175

same key, and deeming an insertion incompatible with a state that already contains

the offered key. Our notion of compatibility is more flexible than a one-size-fits-all

notion of causality. For example, while inserting a key-value pair is causally ordered

with deleting that pair, these two operations can be deemed compatible (and are,

in our TwoPMap) by internally buffering the latter until the former is delivered. It

is up to the VRDT instance to decide, and reflect in its specifications of compat and

compatS , what to do itself, and what to expect of the delivery mechanism.

The required mathematical properties of a VRDT are specified extrinsically as

methods lawCommut and lawCompatCommut . The former’s type specifies the property

that operations compatible with each other and the current state must commute.

The latter’s type expresses that the operation-compatibility predicate compat must

also be commutative.

Primitive VRDTs. An example VRDT instance, Max, is given in Figure 4.4. It

contains a polymorphic value with a defined ordering (specified with an Ord instance)

and tracks the maximum value of that type. Its corresponding operation’s type Op is

itself. All pairs of operations are compatible, so compat and compatS always return

True. The apply function updates Max’s state by taking the greatest value of the

two arguments. Proofs of lawCommut and lawCompatCommut for Max are trivial and

Liquid Haskell proves them automatically.

In addition to Max we have implemented and mechanically verified four more

primitive VRDTs.

• Min v is the dual of Max v, and tracks the smallest value seen.

176

• Sum v is an implementation of Shapiro et al. [168]’s Counter. Ops are numbers

and the state is their sum.

• LWW t v is an implementation of Shapiro et al.’s Last Writer Wins Register.

When a node writes to a register, it attaches a (polymorphic) timestamp to

the value. A receiving node only updates its value if the timestamp is greater

than the current timestamp. LWW assumes that all timestamps are unique.

• MultiSet v maintains a collection of values, like a Set, but each member has

an associated count; a non-positive count indicates logical non-membership.

Ops include value insertion and removal, each with an associated count. Besides

using Liquid Haskell to prove Multiset is a proper VRDT, we also proved its

semantics simulates the semantics of mathematical multisets; details are in

§ 4.4.4.

We have also implemented Grishchenko’s causal trees [2010], which maintain an or-

dered sequence of values, but only partially verified their correctness. In a CausalTree ,

each value is assumed to have a unique identifier, and each value knows the iden-

tifier of the previous value. The relationship to the previous value creates a tree

data structure that can be traversed (in preorder) to recover a converging order-

ing. Causal trees, like other RDTs representing ordered sequences (e.g., Roh et al.

[169], Oster et al. [170], Preguica et al. [171], Weiss et al. [172]), are useful for im-

plementing collaborative text editing, but their behavior is considered especially

challenging to specify and verify [182, 183]. We are prevented from completing our

proof by a bug in Liquid Haskell (see § 4.4.3), but hope to rectify the problem soon.

177

data TwoPMap k v = TwoPMap {
twoPMap :: Map k v

, twoPMapTombstone :: Set k
, twoPMapPending :: Map k [Op v]
}

data TwoPMapOp k v =
TwoPMapInsert k v

| TwoPMapDelete k
| TwoPMapApply k (Op v)

instance (VRDT v, Ord k, Ord (Op v)) ⇒ VRDT (TwoPMap k v) where
type Op (TwoPMap k v) = TwoPMapOp k v

compat (TwoPMapInsert k v) (TwoPMapInsert k’ v’) | k == k’ = False
compat (TwoPMapApply k op) (TwoPMapApply k’ op’) | k == k’ = compat op

op’
compat _ _ = True

compatS (TwoPMap m t p) (TwoPMapInsert k v) = Map.lookup k m == Nothing
compatS (TwoPMap m t p) (TwoPMapApply k o) | Just v ← Map.lookup k m =

compatS v o
compatS _ _ = True

apply (TwoPMap m p t) (TwoPMapInsert k v) | Set.member k t = TwoPMap m p
t

apply (TwoPMap m p t) (TwoPMapInsert k v) =
-- Apply pending operations.

let (opsM, p’) = Map.updateLookupWithKey (const (const Nothing)) k p
in
let v’ = maybe v (foldr (\op v → apply v op) v) opsM in
let m’ = Map.insert k v’ m in
TwoPMap m’ p’ t

apply (TwoPMap m p t) (TwoPMapApply k op) | Set.member k t = TwoPMap m p
t

apply (TwoPMap m p t) (TwoPMapApply k op) =
let (updatedM, m’) = Map.updateLookupWithKey (_ v → Just (apply v op
)) k m in
-- Add to pending if ¬inserted.

let p’ = if isJust updatedM then p else insertPending k op p in
TwoPMap m’ p’ t

apply (TwoPMap m p t) (
TwoPMapDelete k) =
let m’ = Map.delete k m in
let p’ = Map.delete k p in
let t’ = Set.insert k t in
TwoPMap m’ p’ t’

lawCommut _ _ _ = ...
lawCompatCommut _ _ = ...

Figure 4.5: Implementation of TwoPMap

178

A Compound VRDT: Two-phase Map. We can also define VRDTs by reusing other

VRDTs. In doing so, proofs of a compound VRDT’s required properties can be

proved (in part) by using the properties of the VRDTs it is building on. As an

example compound VRDT, we have implemented a two-phase map, shown in Fig-

ure 4.5. TwoPMap implements a map from keys to values, where values are themselves

VRDTs. A TwoPMap ’s operations are given by the datatype TwoPMapOp . Operation

TwoPMapInsert k v inserts a k→v mapping; operation TwoPMapDelete k deletes a

key; and TwoPMapApply k (Op v) applies a VRDT operation Op on k’s value v. An

important restriction on a TwoPMap ’s operation is that a key can only be used once

in the map; even once a key is deleted it can never be re-added. This restriction

is expressed in the definition of compat and compatS , which also lifts the require-

ment that the value VRDT’s operations are compatible. A few additional cases are

omitted from the compatible predicates for brevity.

A two-phase map would naturally require causal delivery because a happens-

before relationship exists between inserting and updating (or inserting and deleting)

a value in the map. TwoPMap avoids the need for causal delivery (and thus does

not specify it via compat or compatS) by buffering pending operations on a given

key. The apply code for TwoPMapApply stores operations on the value of k in a

separate operations buffer if k does not yet exist in the map. The apply code for

TwoPMapInsert checks k’s operation buffer and applies any operations on the given

value before inserting it with the mapping. The apply code for TwoPMapDelete

clears k from the map and operations buffer, and adds it to the tombstone; future

attempted insertions of k will be ignored due to its presence there. In general

179

data Event = Event {
eventTitle :: LWW Timestamp Text

, eventDescription :: LWW Timestamp Text
, eventStartTime :: LWW Timestamp UTCTime
, eventRSVPs :: MultiSet Text
}

Figure 4.6: Data type for a calendar event that is made up of VRDTs.

we assume that, like TwoPMap , instances of VRDT do not require causal delivery.

Like TwoPMap , this requirement is easily satisfied by pushing a buffer of pending

operations into the data type itself.

Automatically Deriving Compound VRDTs. Generally speaking, we might like to

collect together several VRDTs to create an aggregate whose operations delegate to

the operations of the components. For example, the shared event planner we discuss

in § 4.4.5 represents a calendar event as a record with a title, description, time, and

guest RSVP tally. To implement such a record as a VRDT, we can represent the

first three fields as LWW registers and the last as a MultiSet , as shown in Figure 4.6.

However, just collecting separate VRDTs together is not enough to show that the

result is a VRDT: we need to define a corresponding Op data type and a VRDT

instance for Event. Fortunately, since the fields of Event are VRDT instances, it is

possible to derive the Event operation and VRDT instance automatically. We use

Template Haskell [184] to, at compile time, generate operations and VRDT instances

for data types that are composed of other VRDTs. Liquid Haskell can automatically

verify that the generated code satisfies the VRDT properties.

180

4.4.3 Proofs

We have proved, in Liquid Haskell, that Strong Convergence, the key safety

property required by Strong Eventual Consistency [18], holds for VRDT instances.

strongConvergence ::
(Eq (Op a), VRDT a) ⇒
s0:a → ops1:[Op a] → ops2:[Op a] →
{ (isPermutation ops1 ops2 && allCompatible ops1 &&

allCompatibleState s0 ops1)
⇒ (applyAll s0 ops1 = applyAll s0 ops2)}

The theorem states that if two lists of operations are permutations of one another,

then applying either one to the same input VRDT state will produce the same

output state, assuming the list contains mutually compatible operations, and that

all of these operations are compatible with the initial state. The proof is by induction

over the operation lists and makes use of lawCommut and lawCompatCommut laws of

VRDT. Importantly, the proof is independent of any particular VRDT instance, and

thus applies to all of them.

Table 4.3 summarizes the lines of proof and verification time for the VRDTs

we built. The development totals 2092 lines of code. These also include duplicate

definition of Haskell functions in a way amenable to verification. For example,

Data.Map was redefined to prove it satisfies the sortedness invariant, while common

list functions were redefined to be reflected, as required by extrinsic proofs. As

expected, Liquid Haskell’s PLE and SMT automation over intrinsic properties (e.g.,

sortedness invariant on Data.Map) aided proof generation. That said, there are still

some issues to iron out. For example, there are difficulties proving properties of code

181

that makes use of typeclasses that have SMT-interpreted theories in Liquid Haskell,

e.g., set theory used by the verified Data.Map. In fact, an existing limitation of

this combination is blocking the verification of the CausalTree instance that we

will resume once the Liquid Haskell limitation is addressed. The proof of TwoPMap

also ran very slowly; because of the large search space (9 case splits between the 3

operations), the verification took more than 90 minutes. The long verification time

can be attributed to PLE’s expansion and the discharging of verification conditions

by the SMT solver. The bloated verification conditions consume a significant amount

of memory space as well; when verifying the insert/apply case of TwoPMap , Liquid

Haskell exhausted the 16 GiB physical memory and consumed no less than 1 GiB

of the swap space.

In short, the verification effort was strenuous, which was expected as the first,

real-world case study of refined typeclasses. Nevertheless, this case study increases

our confidence that Liquid Haskell’s automation reduces proof effort and, since most

of the implementation limitations we faced are already addressed, refined typeclasses

in Liquid Haskell can actually be used to verify sophisticated properties of real-world

applications.

4.4.4 Verifying CRDT Semantics

Just because a data type satisfies the required VRDT typeclass laws does not

mean its implementation is correct. Fortunately, since the data type is defined in

Liquid Haskell, it is possible to verify that its implementation matches an ideal se-

182

VRDT Property # Lines Verif. Time
Proof (Std. dev.)

- strongConvergence 320 122.043 (2.415)

Max lawCommut 1 0.544 (0.050)
lawCompatCommut 1

Min lawCommut 1 0.565 (0.037)
lawCompatCommut 1

Sum lawCommut 1 0.473 (0.028)
lawCompatCommut 1

LWW lawCommut 1 0.835 (0.048)
lawCompatCommut 1

Multiset lawCommut 315 48.555 (0.943)
lawCompatCommut 1
simulation 72 45.705 (4.473)

TwoPMap lawCommut 1253 5666.866 (56.797)
lawCompatCommut 3

Table 4.3: Total lines of proofs for each typeclass instance and the average verifica-
tion time in seconds. Verifications times for lawCommut and lawCompatCommut are
combined.

mantics. To demonstrate this, we prove that the behavior of our Multiset VRDT

(introduced in § 4.4.2) simulates the mathematical (denotational) semantics of mul-

tisets.

Our implementation of Multiset maintains a positive map p and a neg-

ative map n; the former contains members with positive counts while the lat-

ter contains members with non-positive counts. The Ops are MultiSetOpAdd and

MultiSetOpRemove ; they shift a value between maps as its count crosses 0. We de-

fine the denotation of a MultiSet to be a function from an element of the Multiset

to the number of copies of that element. This is represented by the type alias

DMultiSet in Figure 4.7. The toDenotation function is a straightforward mapping

from a MultiSet to a DMultiSet that looks up the element in the positive and

183

type DMultiSet a = (a → Integer)

toDenotation :: Ord a ⇒ MultiSet a → DMultiSet a
toDenotation (MultiSet p n) t | Just v ← Map.lookup t p = v
toDenotation (MultiSet p n) t | Just v ← Map.lookup t n = v
toDenotation _ _ = 0

dApply :: Eq a ⇒ DMultiSet a → MultiSetOp a → DMultiSet a
dApply f (MultiSetOpAdd v c) t = if t == v then f t + c else f t
dApply f (MultiSetOpRemove v c) t = if t == v then f t - c else f t

simulation :: x:MultiSet a → op:{MultiSetOp a | enabled x op} → t:a
→ {toDenotation (apply x op) t == dApply (toDenotation x) op t}

Figure 4.7: Denotational semantics of Multiset.

negative Map’s of the MultiSet . dApply defines how to run a MultiSet operation

on a DMultiSet by adding the number of new copies to the existing count. The

DMultiSet denotation serves as a simple specification of how we expect Multiset

to operate. We prove that Multiset and DMultiSet have the same behavior: The

simulation theorem states that for all MultiSet ’s and enabled operations on that

MultiSet , looking up an element when you apply the operation on the MultiSet and

then convert it to its denotation returns the same result as when you first convert

it to a DMultiSet and run the operation on the denotation.

4.4.5 Applications

We built two realistic applications that are backed by VRDT instances: a shared

event planner and a collaborative text editor. We close out this section by briefly

describing these applications and some of the other infrastructure we built beyond

VRDTs to put them together.

184

Message delivery and UI components. Both of our applications build on Haskell

libraries we developed for message delivery and user interfaces. In particular, we

developed a message delivery client and server to broadcast un-ordered messages

from each client to all other clients. We also developed an application programming

interface (API) to the client which transparently handles network disconnections by

buffering and re-sending outgoing messages. Applications provide to the client API

a function to receive messages, and the client API produces a function with which

the application may send messages.

Our user interface library is based around functional reactive programming

(FRP), a programming paradigm that models values that change over time [185].

FRP values are either continuous, called behaviors, or discrete, called events. We

can treat replicated data types as FRP values whose state changes as a result of

actions by the local user or update messages from a remote replica. We use Reflex 2,

a Haskell FRP library, to integrate FRP applications with our message delivery

system. Any VRDT instance whose operations can be marshalled and sent over a

network, e.g., as JSON, can be used as the state of these distributed applications.

We provide the following library function, which internally calls the client API to

connect a FRP application client to the server.

connectToStore :: (VRDT a, Serialize (Op a), MonadIO m)
⇒ ServerSettings → a → Event (Op a) → m (Dynamic a)

connectToStore takes the settings of the server to connect to and an initial state. It

also receives an Event of Ops. Any time the FRP client performs an operation, the

2https://reflex-frp.org/

185

https://reflex-frp.org/

event fires and this function sends the operation to the server. Dynamic is a special

Reflex type that is both an event and a behavior. Whenever its value changes, an

event fires as well. Since connectToStore returns a Dynamic of the current state,

the FRP application automatically updates its interface whenever an operation is

received and applied to the VRDT state.

Event planner. Our shared event planner application allows multiple users to cre-

ate and manage calendar events and RSVP to event invitations. The planner’s state

(TwoPMap UniqueId Event) is a two-phase map where elements are the VRDT au-

tomatically derived from the Event type described in Figure 4.6. UniqueId is a

pair of ClientId and an integer that is always incremented locally by the client

application. It is used to ensure that the keys are unique as required by TwoPMap .

The event planner has a terminal interface that supports viewing the list of events,

creating events, updating events, and displaying event details. Since the applica-

tion’s state is a VRDT instance, updates are quickly displayed on all clients once they

receive the corresponding operations. In this application, 12 lines of code define the

types associated with the application’s state, and one line of code invokes Template

Haskell to generate the operation type for Event and its VRDT instance. The rest

of the 400 lines of code in the application implement the user interface. The small

amount of code necessary for managing replicated data highlights how VRDTs make

it easy to build a distributed application.

186

Collaborative text editor. Our collaborative text editor represents the state of the

text document being edited as a CausalTree . The majority of the code in the text

editor (278 lines, out of roughly 350) is the causalTreeInput function, which has

the following signature:

causalTreeInput :: Dynamic (CausalTree id Char)
→ Widget (Event (Op (CausalTree id Char)))

causalTreeInput creates a Reflex Widget that builds a text box in the terminal

interface that displays the contents of the CausalTree , handles scrolling, and pro-

cesses keystrokes by the user. It takes a Dynamic of the CausalTree as input so that

the view is updated when operations from the network are received. It returns an

Event of CausalTree operations that fires whenever keystrokes update the state of

the document.

4.5 Related Work

4.5.1 Verification of Haskell’s Typeclass Laws

Verification of inductive properties, including per-instance typeclass laws, is

possible in Haskell using dependently typed features [186, 187, 188, 189]. In work

closely related to ours, Scott and Newton [190] verify algebraic laws of typeclasses

using a singletons encoding of dependent types [191], and they employ generic pro-

gramming to greatly reduce the proof burden. Even though their generic boilerplate

technique is very effective for verifying typeclass instances, it is unclear how the en-

coding of typeclass laws interacts with the rest of the Haskell code that uses those

187

instances. In our approach, typeclass laws are expressed as refinement types and

smoothly co-exist with refinement type specifications of clients of typeclass meth-

ods. In fact, Scott and Newton initially attempted to use Liquid Haskell, but it was

impossible to do so at the time since Liquid Haskell did not yet support refinement

types for typeclasses.

Haskell researchers have developed various techniques outside of Haskell itself

to increase their confidence that typeclass laws actually hold. For example, Jeuring

et al. [192] and Claessen and Hughes [193] used QuickCheck, the property-based ran-

dom testing tool, to falsify typeclass laws. Zeno [194] and HERMIT [195] generate

typeclass law proofs by term rewriting while HALO [196] uses an axiomatic encoding

to verify Haskell contracts. HipSpec [197, 198] reduces typeclass laws to an external,

automated-over-induction theorem prover. hs-to-coq [199] converts Haskell type-

classes and instances to equivalent ones in Coq which can then be proved to satisfy

the respective laws.

Compared to these approaches, our technique has three main advantages.

First, our proofs are Haskell programs, highly automated by SMT and PLE; un-

like the other approaches, when proof automation fails, the user does not need

to debug the external solver. Second, our proofs co-exist and interact with non-

typeclass-specific Haskell code, so Haskell functions can use class laws to prove

further properties (as in the assoc2 example of § 4.2.1). Finally, our within-Haskell

verification approach gives the developer the ability to distinguish between verified

and original (i.e., non-verified) typeclasses (as in the Semigroup example of § 4.2.1)

and the flexibility to only use verified methods on critical code fragments, thus

188

saving verification time.

4.5.2 Type System Expressiveness vs. Coherence of Elaboration

Typeclasses, introduced by Haskell [200], have been adopted by PureScript [201]

and have inspired related abstractions in many programming languages, including

Scala’s implicits [202] and Rust’s traits [203]. These languages (like vanilla Haskell)

are not designed for proving rich logical properties, e.g., by making use of depen-

dent types. But such simpler type systems make it possible to implement coherent

typeclass resolution; for Haskell in particular, Bottu et al. [167] prove coherence

of GHC’s elaboration by showing global uniqueness of dictionary creations. Coher-

ence means that decisions made by typeclass elaboration cannot change the runtime

semantics of the program, making it easier to reason about.

Fully dependently-typed languages such as Coq [204], Isabelle [205], Agda [206],

Lean [14], and F? [207] permit proofs of rich logical properties, and also support type-

classes. However, to maximize expressiveness, their typeclass resolution procedures

can end up being divergent or incoherent. For example, in Coq’s typeclasses [204],

instantiation can diverge and is not guaranteed to be coherent since it is not always

possible to decide whether two instances overlap [208].

In our work, we attempt to strike a balance between these two extremes.

We use Liquid Haskell’s expressiveness to prove typeclass properties, while we use

GHC’s less expressive type system to perform resolution. This design reduces our

flexibility, as we cannot have distinct typeclasses for two refined types that have the

189

same base type. But, in turn, we gain two nice benefits. First, we reuse GHC’s

mature elaboration implementation. More importantly, using elaboration on the

coherent [167], less expressive type system of Haskell, we break the dilemma between

expressiveness of the type system and coherence of elaboration.

4.5.3 Verifying Replicated Data Types

No verification can take place without a specification, and precisely spec-

ifying the behavior of replicated data types is a significant challenge in itself.

Most work proposing new designs and implementations of replicated data struc-

tures (e.g., [18, 168, 169]) does not provide formal specifications. An exception is

Attiya et al.’s work [2016], which precisely specifies a replicated list object and gives

a (non-mechanized) proof that an implementation satisfies the specification.

Burckhardt et al. [209] proposed a comprehensive framework for formally speci-

fying and verifying the correctness of RDTs, using an approach inspired by axiomatic

specifications of weak shared-memory models. Although it is not obvious how to

automate Burckhardt et al.’s verification approach, the Quelea [210] programming

model uses the Burckhardt et al. specification framework as a contract language em-

bedded in Haskell that allows programmers to attach axiomatic contracts to RDT

operations; an SMT solver analyzes these contracts and determines the weakest con-

sistency level at which an operation can be executed while satisfying its contract.3

Gotsman et al. [211] develop an SMT-automatable proof rule that can establish

3Implementation-wise, in contrast to our approach which uses Liquid Haskell’s solver-
aided type system, Quelea is implemented in Haskell by directly querying the underlying
SMT solver through the Z3 Haskell bindings at compile time, via Template Haskell.

190

whether a particular choice of consistency guarantees for operations on RDTs is

enough to ensure preservation of a given application-level data integrity invariant.

This approach is implemented in Najafzadeh et al.’s CISE tool. Houshmand and

Lesani’s Hamsaz system [2019] improves on CISE by automatically synthesizing a

conflict relation that specifies which operations conflict with each other (whereas

this conflict relation has to be provided as input to CISE).

Unlike our approach, tools like Quelea, CISE, and Hamsaz do not, in and

of themselves, prove correctness properties of RDT implementations, e.g., strong

convergence of replicas. Rather, they determine whether or not it is safe to exe-

cute a given RDT operation under the assumption that that replicas satisfy a given

consistency policy (in the case of Quelea), or whether or not an application-level

invariant will be satisfied, given the consistency policies satisfied by individual op-

erations (in the case of CISE and Hamsaz). The goals of these lines of work are

therefore complementary to ours: we prove a property of RDT implementations

(strong convergence) that such tools could then leverage as an assumption to prove

application-level properties, e.g., that a replicated bank account never has a nega-

tive balance. Verification of these application-level properties is important because

CRDT correctness alone is not enough to ensure application correctness. (Of course,

it would also be possible to prove such application-level properties directly in Liquid

Haskell as well.)

Other works [183, 214, 215, 216] directly address proving the correctness of

RDT implementations. Zeller et al. [214] specify and prove SC and SEC for a

variety of state-based counter, register, and set CRDTs using the Isabelle/HOL

191

proof assistant. Nair et al. [215] present an automatic, SMT-based verification tool

for specifying state-based CRDTs and verifying application-level properties of them.

Neither Zeller et al. nor Nair et al. consider operation-based CRDTs, the focus of

this work.

Gomes et al. [183] also use Isabelle/HOL to prove SC and SEC; like us, they

focus on operation-based CRDTs. In addition to proving that RDT operations

commute for three operation-based CRDTs—Shapiro et al.’s counters and observed-

remove sets, and Roh et al.’s replicated growable arrays [2011]—Gomes et al. for-

malize in Isabelle/HOL a network model in which messages may be lost and replicas

may crash, and prove that SC and SEC hold (under any behavior of the network

model). Although it is possible to extract executable implementations from Isabelle

definitions, our semi-automated Liquid Haskell-based approach has the advantage

that the programmer can write, and use, mechanically verified RDT implementa-

tions without ever leaving Haskell. Gomes et al. bake causal delivery of updates

into their network model (following Shapiro et al. [18], who assume causal delivery

of updates in their proof of SEC for operation-baesd CRDTs); however, we observe

that causal delivery is neither necessary nor sufficient to guarantee strong conver-

gence [216].

Nagar and Jagannathan [216] address the question of automatically verifying

strong convergence of various operation-based CRDTs (sets, lists, graphs) under

different consistency policies provided by the underlying data store. They develop

an SMT-automatable proof rule to show that all pairs of operations either commute

or are guaranteed by the consistency policy to be applied in a given order. Given

192

a CRDT specification, their framework will determine which consistency policy is

required for that CRDT. Their CRDT specifications are written in an abstract

specification language designed to correspond to the first-order logic theories that

SMT solvers support, whereas our verified RDTs are running Haskell code, directly

usable in real applications.

4.6 Conclusion

We have presented an extension of Liquid Haskell to allow refinement types

on typeclasses. Clients of a typeclass may assume its methods’ refinement pred-

icates hold, while instances of the typeclass are obligated to prove that they do.

Implementing this extension was challenged by the fact that Liquid Haskell verifies

properties of Core, the intermediate representation of the Glasgow Haskell Com-

piler, but typeclasses are replaced with dictionaries (records of functions) during

translation to Core. Our implementation expands the interaction between Liquid

Haskell and GHC to carry over refinements to those dictionaries during verifica-

tion, and does so in a way that takes advantage of Haskell’s typeclass resolution

procedure being coherent. We have carried out two case studies to demonstrate

the utility of our extension. First, we have used typeclass refinements to encode

the algebraic laws for the Semigroup , Monoid , Functor , Applicative , and Monad

standard typeclasses, and verified these properties hold of many of their instances.

Second, we have used our extension to construct a platform for for distributed appli-

cations based on replicated data types. We define a typeclass whose Liquid Haskell

193

type captures the mathematical properties of RDTs needed to prove the property

of strong convergence; implement several instances of this typeclass; and use them

to build two substantial applications.

194

Chapter 5: Conclusion

This dissertation studied the factors that influence software development and

presented techniques for ensuring that software is correct and secure. Specifically,

we have proven the thesis of this dissertation that programming language-based tech-

niques can be used to improve the correctness and security of programs.

The BIBIFI competition served as a novel educational environment where

participants learned to build secure programs and identify vulnerabilities in code

written by other teams. As a quasi-controlled experiment, we ran quantitative

and qualitative analysis on the results of the contest. C/C++ build-it submissions

experienced better performance, while statically-typed language were less likely to

have a security bug.

We built LWeb to protect the confidentiality and integrity of data stored in

database-backed web applications. LWeb was implemented as a Haskell library that

integrates with the Yesod web programming framework. Users specify expressive,

label-based information flow control policies by annotating their database schema.

LWeb uses a dynamic enforcement mechanism that halts execution if there is a flow of

information that violates the user defined policy. The system imposed low runtime

overhead according to benchmarks on the BIBIFI codebase and required minimal

195

developer effort for adoption. To reason about its correctness, we formalized LWeb’s

metatheory with the λLWeb calculus and mechanically proved that it satisfies non-

interference using Liquid Haskell.

Typeclasses are ubiquitous in the Haskell ecosystem, however Liquid Haskell

was previously unable to reason about them. To remedy this situation, we extended

Liquid Haskell with typeclass support. Users can now define refinement types on

typeclasses and Liquid Haskell will ensure that their typeclass instances satisfy the

required refinements. We used this new functionality to formally define the laws

of existing typeclasses in the Haskell ecosystem and verify that their instances sat-

isfy the laws. In addition, we formalized the mathematical properties of replicated

data types, implemented several instances, and proved that the instance satisfy the

required RDT properties. We proved that all replicated data types satisfy strong

convergence and implemented two distributed applications using RDTs.

Ideally, the work in this dissertation is one step towards a future where software

deployed in the real world is secure and bug-free. Based on my experience, I strongly

believe that techniques used in this dissertation can eliminate classes of bugs and

lead to more reliable programs.

5.1 Future Work

I envision many potential avenues for future work on the topics presented in

this dissertation. Perhaps I may work on some of these ideas or others will take

up the mantle. There are still many research questions that can be answered by

196

continuing to run BIBIFI contests. Since contestants produce multiple implemen-

tations solving the same problem and offer information about their demographic

backgrounds, one could create a public dataset with this information. This would

serve as a valuable resource for other researchers in areas including software engi-

neering, programming languages, cybersecurity, and machine learning. For example,

there are numerous metrics on code that attempt to reason about the quality of that

code. A team’s performance in a public BIBIFI dataset would set a baseline for code

quality and allow one to measure the efficacy of different metrics. If researchers de-

velop bug and vulnerability detection tools using techniques like fuzzing and static

analysis, the tools can be evaluated by how they perform on the BIBIFI dataset.

BIBIFI could also be adopted to other domains. Formal method tools have the

potential to drastically improve the quality of software, however they typically re-

quire user expertise and suffer from poor usability. On POPLmark’s retrospective

panel [217], Benjamin Pierce suggested running BIBIFI where participants need to

use formal methods tools to verify properties, encouraging these tools to improve in

performance, accessibility, and usability.

There is room for future development on LWeb. One research idea is to verify a

shallow embedding of LWeb to prove that the actual library implementation satisfies

noninterference. Lack of typeclass support was one limitation that prevented this

verification. This motivated the work on typeclasses and RDTs, so typeclasses are

now supported in Liquid Haskell. Another limitation is that verifying a shallow

embedding requires mechanizing monadic, effectful code to reason about LWeb’s

monad transformer. Recent work on Interaction Trees [218] may be a helpful tool in

197

accomplishing this. Another potential improvement is to implement a static version

of LWeb, so that users receive the IFC guarantees without any runtime overhead.

With additional engineering effort, the work on VRDTs could be used to build

real distributed applications. Integration with public key infrastructure would allow

messages to be encrypted and authenticated, enabling federated or decentralized

applications.

Liquid Haskell is a promising verification tool, but there is still potential for

improvement. The proofs of this work took hours to run fully, which hinders usabil-

ity during proof development. Improving runtime performance of Liquid Haskell

and adding sound incremental verification could improve the developer’s experi-

ence. Creating an interactive proof environment that integrates with a language

server protocol (LSP) server would also aid the developer by showing what proof

goals remain.

198

Bibliography

[1] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[2] MITRE. Common vulnerabilities and exposures. https://cve.mitre.org/,
2020.

[3] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
L. Peyton Jones. Refinement Types for Haskell. In ICFP, 2014.

[4] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,
Joseph Fasel, María M Guzmán, Kevin Hammond, John Hughes, Thomas
Johnsson, et al. Report on the programming language haskell: a non-strict,
purely functional language version 1.2. ACM SigPlan notices, 27(5):1–164,
1992.

[5] Simon Peyton Jones. Haskell 98 language and libraries: the revised report.
Cambridge University Press, 2003.

[6] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, et al. Dependent types and multi-
monadic effects in f. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 256–
270, 2016.

[7] Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Martínez, Gordon
Plotkin, Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra
monads for free. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 515–529, 2017.

[8] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar
Munoz, Chetan Murthy, et al. The coq proof assistant reference manual:
Version 6.1. 1997.

[9] Benjamin C Pierce. Advanced topics in types and programming languages.
MIT press, 2005.

199

https://cve.mitre.org/

[10] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283. Springer Science &
Business Media, 2002.

[11] Edwin Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of functional programming, 23
(5):552, 2013.

[12] Ulf Norell. Dependently typed programming in agda. In International school
on advanced functional programming, pages 230–266. Springer, 2008.

[13] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda–a functional
language with dependent types. In International Conference on Theorem Prov-
ing in Higher Order Logics, pages 73–78. Springer, 2009.

[14] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and
Jakob von Raumer. The lean theorem prover (system description). In Inter-
national Conference on Automated Deduction, pages 378–388. Springer, 2015.

[15] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. Selected Areas in Communications, IEEE Journal on, 21(1), 2003.
ISSN 0733-8716.

[16] Deian Stefan, Alejandro Russo, John Mitchell, and David Mazieres. Flexi-
ble dynamic information flow control in haskell. In ACM SIGPLAN Haskell
Symposium, 2011.

[17] Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5), 1976. ISSN 0001-0782.

[18] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-
free replicated data types. In Xavier Défago, Franck Petit, and Vincent Villain,
editors, Stabilization, Safety, and Security of Distributed Systems, pages 386–
400, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-
24550-3.

[19] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 60–76, 1989.

[20] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’08, page 159–169, New York, NY, USA,
2008. Association for Computing Machinery. ISBN 9781595938602. doi: 10.
1145/1375581.1375602. URL https://doi.org/10.1145/1375581.1375602.

[21] John Rushby, Sam Owre, and Natarajan Shankar. Subtypes for specifications:
Predicate subtyping in pvs. IEEE Transactions on Software Engineering, 24
(9):709–720, 1998.

200

https://doi.org/10.1145/1375581.1375602

[22] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through
dependent types. In Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation, pages 249–257, 1998.

[23] Robert L Constable and Scott Fraser Smith. Partial objects in constructive
type theory. Technical report, Cornell University, 1987.

[24] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

[25] Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R.
Newton, Philip Wadler, and Ranjit Jhala. Refinement reflection: Complete
verification with smt. Proc. ACM Program. Lang., 2(POPL), December 2017.
doi: 10.1145/3158141. URL https://doi.org/10.1145/3158141.

[26] Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham
Hutton. Theorem proving for all: equational reasoning in liquid haskell (func-
tional pearl). In Nicolas Wu, editor, Proceedings of the 11th ACM SIGPLAN
International Symposium on Haskell, 2018.

[27] K Rustan M Leino and Clément Pit-Claudel. Trigger selection strategies to
stabilize program verifiers. In International Conference on Computer Aided
Verification, pages 361–381. Springer, 2016.

[28] GHC. GHC: The Glasgow Haskell compiler. https://www.haskell.org/

ghc/, 2020.

[29] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard:
Version 2.0. In Proceedings of the 8th international workshop on satisfiability
modulo theories (Edinburgh, England), volume 13, page 14, 2010.

[30] Federal Business Council. Maryland cyber challenge & competition. http:

//www.fbcinc.com/e/cybermdconference/competitorinfo.aspx, 2012.

[31] National Collegiate Cyber Defense Competition. http://www.nationalccdc.

org, 2019.

[32] DEF CON Communications. Capture the flag archive. https://www.defcon.

org/html/links/dc-ctf.html, 2018.

[33] Polytechnic Institute of New York University. Csaw - cybersecurity competi-
tion 2012. http://www.poly.edu/csaw2012/csaw-CTF, 2012.

[34] dragostech.com inc. Cansecwest applied security conference. http://

cansecwest.com, 2020.

[35] TOPCODER. Top coder competitions. http://apps.topcoder.com/wiki/

display/tc/Algorithm+Overview, 2020.

201

https://doi.org/10.1145/3158141
https://www.haskell.org/ghc/
https://www.haskell.org/ghc/
http://www.fbcinc.com/e/cybermdconference/competitorinfo.aspx
http://www.fbcinc.com/e/cybermdconference/competitorinfo.aspx
http://www.nationalccdc.org
http://www.nationalccdc.org
https://www.defcon.org/html/links/dc-ctf.html
https://www.defcon.org/html/links/dc-ctf.html
http://www.poly.edu/csaw2012/csaw-CTF
http://cansecwest.com
http://cansecwest.com
http://apps.topcoder.com/wiki/display/tc/Algorithm+Overview
http://apps.topcoder.com/wiki/display/tc/Algorithm+Overview

[36] ICPC Foundation. ACM-ICPC International Collegiate Programming Con-
test. http://icpc.baylor.edu, 2018.

[37] ICFP Programming Contest. http://icfpcontest.org, 2019.

[38] Queena Kim. Want to learn cybersecurity? head to
def con. http://www.marketplace.org/2014/08/25/tech/

want-learn-cybersecurity-head-def-con, 2014.

[39] Positive Technologies. ATM logic attacks: scenarios, 2018.
https://www.ptsecurity.com/upload/corporate/ww-en/analytics/

ATM-Vulnerabilities-2018-eng.pdf, November 2018.

[40] James Parker, Michael Hicks, Andrew Ruef, Michelle L Mazurek, Dave Levin,
Daniel Votipka, Piotr Mardziel, and Kelsey R Fulton. Build it, break it, fix it:
Contesting secure development. ACM Transactions on Privacy and Security
(TOPS), 23(2):1–36, 2020.

[41] Daniel Votipka, Kelsey R Fulton, James Parker, Matthew Hou, Michelle L
Mazurek, and Michael Hicks. Understanding security mistakes developers
make: Qualitative analysis from build it, break it, fix it. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 2020.

[42] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L. Mazurek,
and Piotr Mardziel. Build it, break it, fix it: Contesting secure development.
In CCS, 2016. ISBN 978-1-4503-4139-4.

[43] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Atif Memon, Jande-
lyn Plane, and Piotr Mardziel. Build it break it: Measuring and comparing
development security. In 8th Workshop on Cyber Security Experimentation
and Test ({CSET} 15), 2015.

[44] Git. Git – distributed version control management system. http://git-scm.

com, 2020.

[45] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions
on Information and System Security (TISSEC), 13(1):4:1–4:40, 2009. ISSN
1094-9224.

[46] Úlfar Erlingsson. personal communication stating that CFI was not deployed
at Microsoft due to its overhead exceeding 10%, 2012.

[47] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Atif Memon, Jande-
lyn Plane, and Piotr Mardziel. Build it break it: Measuring and comparing
development security. In CSET, 2015.

[48] Michael Snoyman. Yesod web framework for haskell. http://www.yesodweb.

com, 2020.

202

http://icpc.baylor.edu
http://icfpcontest.org
http://www.marketplace.org/2014/08/25/tech/want-learn-cybersecurity-head-def-con
http://www.marketplace.org/2014/08/25/tech/want-learn-cybersecurity-head-def-con
https://www.ptsecurity.com/upload/corporate/ww-en/analytics/ATM-Vulnerabilities-2018-eng.pdf
https://www.ptsecurity.com/upload/corporate/ww-en/analytics/ATM-Vulnerabilities-2018-eng.pdf
http://git-scm.com
http://git-scm.com
http://www.yesodweb.com
http://www.yesodweb.com

[49] The PostgreSQL Global Development Group. PostgreSQL: The world’s most
advanced open source database. http://www.postgresql.org, 2020.

[50] James Parker, Niki Vazou, and Michael Hicks. Lweb: Information flow secu-
rity for multi-tier web applications. Proc. ACM Program. Lang., 3(POPL),
January 2019.

[51] Daniel Votipka, Kelsey R Fulton, James Parker, Matthew Hou, Michelle L
Mazurek, and Michael Hicks. Understanding security mistakes developers
make: Qualitative analysis from build it, break it, fix it. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 2020.

[52] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. The security impact of
a new cryptographic library. In International Conference on Cryptology and
Information Security in Latin America, pages 159–176. Springer, 2012.

[53] OWASP. Secure coding practices - quick reference guide, 2010. URL
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_

Guide_v2.pdf.

[54] Kenneth P Burnham, David R Anderson, and Kathryn P Huyvaert. AIC
model selection and multimodel inference in behavioral ecology: some back-
ground, observations, and comparisons. Behavioral Ecology and Sociobiology,
65(1):23–35, 2011.

[55] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence
Erlbaum Associates, 1988.

[56] SeongIl Wi, Jaeseung Choi, and Sang Kil Cha. Git-based CTF: A simple and
effective approach to organizing in-course attack-and-defense security compe-
tition. In ASE 18, 2018.

[57] N J D Nagelkerke. A note on a general definition of the coefficient of deter-
mination. Biometrika, 78(3):691–692, 09 1991.

[58] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Ake-
firad, Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A. DeLong, Justin
Cappos, and Yuriy Brun. API blindspots: Why experienced developers write
vulnerable code. In Proc. SOUPS, 2018.

[59] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek. Hackers vs.
testers: A comparison of software vulnerability discovery processes. In Proc.
IEEE S&P, 2018.

[60] DEF CON Communications. Def con hacking conference. http://www.

defcon.org, 2010.

203

http://www.postgresql.org
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
http://www.defcon.org
http://www.defcon.org

[61] Nicholas Childers, Bryce Boe, Lorenzo Cavallaro, Ludovico Cavedon, Marco
Cova, Manuel Egele, and Giovanni Vigna. Organizing large scale hacking
competitions. In DIMVA, 2010.

[62] Adam Doupé, Manuel Egele, Benjamin Caillat, Gianluca Stringhini, Gorkem
Yakin, Ali Zand, Ludovico Cavedon, and Giovanni Vigna. Hit ’em where it
hurts: A live security exercise on cyber situational awareness. In ACSAC,
2011.

[63] Erik Trickel, Francesco Disperati, Eric Gustafson, Faezeh Kalantari, Mike
Mabey, Naveen Tiwari, Yeganeh Safaei, Adam Doupé, and Giovanni Vigna.
Shell we play a game? ctf-as-a-service for security education. In ASE 17, 2017.

[64] Daniele Antonioli, Hamid Reza Ghaeini, Sridhar Adepu, Martin Ochoa, and
Nils Ole Tippenhauer. Gamifying ics security training and research: Design,
implementation, and results of s3. In CPS 2017, CPS ’17, 2017. ISBN 978-1-
4503-5394-6.

[65] Kevin Bock, George Hughey, and Dave Levin. King of the hill: A novel
cybersecurity competition for teaching penetration testing. In 2018 USENIX
Workshop on Advances in Security Education (ASE 18), 2018.

[66] Peter Chapman, Jonathan Burket, and David Brumley. PicoCTF: A game-
based computer security competition for high school students. In 2014
USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 14), 2014.

[67] Gregory Conti, Thomas Babbitt, and John Nelson. Hacking competitions and
their untapped potential for security education. Security & Privacy, 9(3):
56–59, 2011.

[68] Chris Eagle. Computer security competitions: Expanding educational out-
comes. Security & Privacy, 11(4), 2013.

[69] Lance J. Hoffman, Tim Rosenberg, and Ronald Dodge. Exploring a national
cybersecurity exercise for universities. Security & Privacy, 3(5):27–33, 2005.

[70] Art Conklin. Cyber defense competitions and information security education:
An active learning solution for a capstone course. In HICSS, 2006.

[71] Art Conklin. The use of a collegiate cyber defense competition in information
security education. In InfoSecCD, 2005.

[72] Muhammad Mudassar Yamin, Basel Katt, Espen Torseth, Vasileios Gkioulos,
and Stewart James Kowalski. Make it and break it: An iot smart home testbed
case study. In Proceedings of the 2Nd International Symposium on Computer
Science and Intelligent Control, ISCSIC ’18, 2018.

[73] Google. Google code jam. http://code.google.com/codejam, 2020.

204

http://code.google.com/codejam

[74] BSIMM. Building security in maturity model (bsimm). http://bsimm.com,
2020.

[75] Michael Howard and Steve Lipner. The Security Development Lifecycle. Mi-
crosoft Press, 2006.

[76] Gary McGraw. Software Security: Building Security In. Software Security
Series. Addison-Wesley, 2006.

[77] John Viega and Gary McGraw. Building Secure Software: How to Avoid
Security Problems the Right Way. Professional Computing Series. Addison-
Wesley, 2001.

[78] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft Press,
2003.

[79] Robert C. Seacord. Secure Coding in C and C++. Professional Computing
Series. Addison-Wesley, 2013.

[80] Brian Chess and Jacob West. Secure Programming with Static Analysis. Pro-
fessional Computing Series. Addison-Wesley, 2007.

[81] Paul E. Black, Lee Badger, Barbara Guttman, and Elizabeth Fong. Dra-
matically reducing software vulnerabilities: Report to the white house office
of science and technology policy. Technical Report Draft NISTIR 8151, Na-
tional Institute of Standards and Technology, 2016. http://csrc.nist.gov/

publications/drafts/nistir-8151/nistir8151_draft.pdf.

[82] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir,
Michelle L. Mazurek, and Sascha Fahl. Developers need support too: A survey
of security advice for software developers. In IEEE SecDev 2017.

[83] Matthew Finifter and David Wagner. Exploring the relationship betweenweb
application development tools and security. In USENIX Conference on Web
Application Development (WebApps), 2011.

[84] L. Prechelt. Plat_forms: A web development platform comparison by an
exploratory experiment searching for emergent platform properties. IEEE
Transactions on Software Engineering, 37(1):95–108, 2011.

[85] Anne Edmundson, Brian Holtkamp, Emanuel Rivera, Matthew Finifter,
Adrian Mettler, and David Wagner. An empirical study on the effectiveness
of security code review. In ESSOS 2013, 2013.

[86] Riccardo Scandariato, James Walden, and Wouter Joosen. Static analysis
versus penetration testing: A controlled experiment. In ISSRE 2013, 2013.

[87] James Walden, Jeff Stuckman, and Riccardo Scandariato. Predicting vulner-
able components: Software metrics vs text mining. In IEEE International
Symposium on Software Reliability Engineering, 2014.

205

http://bsimm.com
http://csrc.nist.gov/publications/drafts/nistir-8151/nistir8151_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8151/nistir8151_draft.pdf

[88] Joonseok Yang, Duksan Ryu, and Jongmoon Baik. Improving vulnerability
prediction accuracy with secure coding standard violation measures. In Inter-
national Conference on Big Data and Smart Computing (BigComp), 2016.

[89] Keith Harrison and Gregory White. An empirical study on the effectiveness
of common security measures. In Hawaii International Conference on System
Sciences (HICSS), 2010.

[90] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew
Smith. Rethinking SSL development in an appified world. In Proc. ACM CCS,
2013.

[91] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh,
and Vitaly Shmatikov. The most dangerous code in the world: validating SSL
certificates in non-browser software. In CCS ’12: Proceedings of the 2012
ACM conference on Computer and communications security. ACM, October
2012.

[92] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
An empirical study of cryptographic misuse in android applications. In CCS
2013, pages 73–84. ACM, 2013.

[93] J Xie, H R Lipford, and B Chu. Why do programmers make security er-
rors? In 2011 IEEE Symposium on Visual Languages and Human-Centric
Computing, 2011. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=6070393.

[94] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh, Justin
Cappos, and Yanyan Zhuang. It’s the psychology stupid: How heuristics
explain software vulnerabilities and how priming can illuminate developer’s
blind spots. In ACSAC, 2014.

[95] Glenn Wurster and P C van Oorschot. The developer is the enemy. In NSPW,
page 89, 2008.

[96] Charles Weir, Awais Rashid, and James Noble. I’d like to have an argument,
please: Using dialectic for effective app security. In 2nd European Workshop
on Usable Security (Euro USEC 2017). Internet Society, 2017.

[97] Ingolf Becker, Simon Parkin, and M. Angela Sasse. Finding security champions
in blends of security culture. In 2nd European Workshop on Usable Security
(Euro USEC 2017). Internet Society, 2017.

[98] Christian Stransky, Yasemin Acar, Duc Cuong Nguyen, Dominik Wermke,
Doowon Kim, Elissa M. Redmiles, Michael Backes, Simson Garfinkel,
Michelle L. Mazurek, and Sascha Fahl. Lessons learned from using an on-
line platform to conduct large-scale, online controlled security experiments
with software developers. In CSET 17, 2017.

206

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6070393
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6070393

[99] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky. Comparing the usability of cryptographic apis. In 2017 IEEE
Symposium on Security and Privacy (SP), 2017.

[100] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L. Mazurek,
and Sascha Fahl. Security developer studies with github users: Exploring a
convenience sample. In SOUPS 2017, 2017.

[101] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Ake-
firad, Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A. DeLong, Justin
Cappos, and Yuriy Brun. API blindspots: Why experienced developers write
vulnerable code. In Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018), 2018.

[102] Christopher Thompson and David Wagner. A large-scale study of modern
code review and security in open source projects. In PROMISE 17, 2017.

[103] David Molnar, Xue Cong Li, and David A. Wagner. Dynamic test genera-
tion to find integer bugs in x86 binary linux programs. In USENIX Security
Symposium, 2009.

[104] American Fuzzing Lop (AFL). http://lcamtuf.coredump.cx/afl/, 2018.

[105] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks.
Evaluating fuzz testing. In CCS ’18, 2018.

[106] Rijnard van Tonder, John Kotheimer, and Claire Le Goues. Semantic crash
bucketing. In IEEE International Conference on Automated Software Engi-
neering (ASE), 2018.

[107] Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, and Abhik Roychoudhury.
Bucketing failing tests via symbolic analysis. In International Conference on
Fundeamental Approaches to Software Engineering (FASE), 2017.

[108] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In
POPL, 1999. ISBN 1-58113-095-3.

[109] François Pottier and Vincent Simonet. Information flow inference for ml. ACM
Trans. Program. Lang. Syst., 25(1), 2003. ISSN 0164-0925.

[110] Stephen Chong, K. Vikram, and Andrew C. Myers. Sif: Enforcing confiden-
tiality and integrity in web applications. In USENIX Security Symposium,
2007. ISBN 111-333-5555-77-9.

[111] Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. Selinq: Tracking infor-
mation across application-database boundaries. In ICFP, 2014. ISBN 978-1-
4503-2873-9.

207

http://lcamtuf.coredump.cx/afl/

[112] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian
Zheng, and Xin Zheng. Secure web applications via automatic partitioning.
In SOSP, 2007. ISBN 978-1-59593-591-5.

[113] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive,
and object-sensitive information flow control based on program dependence
graphs. International Journal of Information Security, 8(6), 2009. ISSN 1615-
5262.

[114] Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. Exploring
and enforcing security guarantees via program dependence graphs. In PLDI,
2015.

[115] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In PLDI, 2014.

[116] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows:
Can’t live with ’em, can’t live without ’em. In R. Sekar and Arun K. Pu-
jari, editors, Proceedings of the International Conference on Information Sys-
tems Security (ICISS), volume 5352 of Lecture Notes in Computer Science,
pages 56–70. Springer, 2008. URL http://www.cs.umd.edu/~mwh/papers/

implicitflows.pdf.

[117] Andrey Chudnov and David A. Naumann. Inlined information flow monitoring
for javascript. In CCS, 2015. ISBN 978-1-4503-3832-5.

[118] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and
Emmett Witchel. Laminar: Practical fine-grained decentralized information
flow control. In PLDI, 2009. ISBN 978-1-60558-392-1.

[119] Eran Tromer and Roei Schuster. Droiddisintegrator: Intra-application infor-
mation flow control in android apps. In ASIA CCS, 2016. ISBN 978-1-4503-
4233-9.

[120] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cor-
mac Flanagan, and Stephen Chong. Precise, dynamic information flow for
database-backed applications. In PLDI, 2016.

[121] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic infor-
mation flow. In POPL, 2012. ISBN 978-1-4503-1083-3.

[122] Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Dis-
junction category labels. In NordSec, 2012. ISBN 978-3-642-29614-7.

[123] Esqueleto. Esqueleto: Type-safe edsl for sql queries on persistent back-
ends. https://github.com/bitemyapp/esqueleto/blob/master/docs/

blog_post_2012_08_06, 2018.

208

http://www.cs.umd.edu/~mwh/papers/implicitflows.pdf
http://www.cs.umd.edu/~mwh/papers/implicitflows.pdf
https://github.com/bitemyapp/esqueleto/blob/master/docs/blog_post_2012_08_06
https://github.com/bitemyapp/esqueleto/blob/master/docs/blog_post_2012_08_06

[124] Tim Sheard and Simon Peyton Jones. Template meta-programming for
haskell. In Haskell Workshop, 2002.

[125] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,
John C. Mitchell, and Alejandro Russo. Hails: Protecting data privacy in
untrusted web applications. In OSDI, 2012. ISBN 978-1-931971-96-6.

[126] Daniel Giffin, Amit Levy, Deian Stefan, David Terei, David Mazieres, John
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted
web applications. Journal of Computer Security, 25(4), 2017.

[127] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. Cross-tier, label-based
security enforcement for web applications. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data (SIGMOD), pages
269–282, 2009. URL http://www.cs.umd.edu/~mwh/papers/selinks.pdf.

[128] Adam Chlipala. Static checking of dynamically-varying security policies in
database-backed applications. In OSDI, 2010.

[129] David Schultz and Barbara Liskov. Ifdb: Decentralized information flow con-
trol for databases. In EuroSys, 2013. ISBN 978-1-4503-1994-2.

[130] James Parker, Niki Vazou, and Michael Hicks. Lweb: Information flow security
for multi-tier web applications. In Proceedings of the ACM Conference on
Principles of Programming Languages (POPL), 2019.

[131] James Parker. LMonad: Information flow control for haskell web applications.
Master’s thesis, Dept of Computer Science, the University of Maryland, 2014.

[132] Joseph A. Goguen and José Meseguer. Security policies and security models.
In S&P, 1982.

[133] Michael Snoyman. Yesod web framework for haskell.
http://www.yesodweb.com/, 2018.

[134] Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R.
Newton, Philip Wadler, and Ranjit Jhala. Refinement reflection: Complete
verification with SMT. PACMPL, 2(POPL), 2018.

[135] Niki Vazou, Leonidas Lampropoulos, and Jeff Polakow. A Tale of Two Provers:
Verifying Monoidal String Matching in Liquid Haskell and Coq. In Haskell
Symposium, 2017.

[136] Peng Li and Steve Zdancewic. Arrows for secure information flow. Theoretical
Computer Science, 411(19), 2010. ISSN 0304-3975.

[137] Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight
information-flow security in haskell. In Haskell Symposium, 2008.

209

http://www.cs.umd.edu/~mwh/papers/selinks.pdf

[138] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and San-
tiago Zanella-Béguelin. Dependent types and multi-monadic effects in F*. In
POPL, 2016.

[139] K. Rustan M. Leino. Dafny: An automatic program verifier for functional
correctness. In LPAR, 2010.

[140] Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Flex-
ible dynamic information flow control in the presence of exceptions. Journal
of Functional Programming, 27(E5), 2017.

[141] Andrei Sabelfeld and David Sands. Declassification: Dimensions and princi-
ples. Journal of Computer Security, 17(5), 2009. ISSN 0926-227X.

[142] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Quantify-
ing information flow with beliefs. J. Comput. Secur., 17(5):655–701, Octo-
ber 2009. ISSN 0926-227X. URL http://dl.acm.org/citation.cfm?id=

1662658.1662660.

[143] P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa. Dynamic enforcement
of knowledge-based security policies. In 2011 IEEE 24th Computer Security
Foundations Symposium, pages 114–128, June 2011. doi: 10.1109/CSF.2011.
15.

[144] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’77, pages 238–252, New York,
NY, USA, 1977. ACM. doi: 10.1145/512950.512973. URL http://doi.acm.

org/10.1145/512950.512973.

[145] Patrick Cousot and Radhia Cousot. Static determination of dynamic prop-
erties of programs. In Proceedings of the 2nd International Symposium on
Programming, Paris, France. Dunod, 1976.

[146] Antoine Miné. The octagon abstract domain. Higher-order and symbolic
computation, 19(1):31–100, 2006.

[147] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 84–96. ACM, 1978.

[148] D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: Mathe-
matical foundations. MITRE Technical Report 2547, 1, 1973.

210

http://dl.acm.org/citation.cfm?id=1662658.1662660
http://dl.acm.org/citation.cfm?id=1662658.1662660
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973

[149] Luísa Lourenço and Luís Caires. Dependent information flow types. In POPL,
2015. ISBN 978-1-4503-3300-9.

[150] Luísa Lourenço and Luís Caires. Information flow analysis for valued-indexed
data security compartments. In International Symposium on Trustworthy
Global Computing - Volume 8358, 2014. ISBN 978-3-319-05118-5.

[151] Daniel Hedin, Luciano Bello, and Andrei Sabelfeld. Information-flow security
for JavaScript and its APIs. Journal of Computer Security, 24(2), 2016.

[152] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.
Labels and event processes in the asbestos operating system. In SOSP, 2005.
ISBN 1-59593-079-5.

[153] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
Making information flow explicit in histar. In OSDI, 2006.

[154] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for
standard os abstractions. In SOSP, 2007. ISBN 978-1-59593-591-5.

[155] Alejandro Russo. Functional pearl: Two can keep a secret, if one of them uses
haskell. In ICFP, 2015. ISBN 978-1-4503-3669-7.

[156] Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. HLIO: Mixing static
and dynamic typing for information-flow control in Haskell. In ICFP, 2015.
ISBN 978-1-4503-3669-7.

[157] Lucas Waye, Pablo Buiras, Owen Arden, Alejandro Russo, and Stephen
Chong. Cryptographically secure information flow control on key-value stores.
In CCS, 2017. ISBN 978-1-4503-4946-8.

[158] Pablo Buiras, Joachim Breitner, and Alejandro Russo. Securing concurrent
lazy programs against information leakage. In CSF, 2017.

[159] Stefan Heule, Deian Stefan, Edward Z. Yang, John C. Mitchell, and Alejan-
dro Russo. Ifc inside: Retrofitting languages with dynamic information flow
control. In POST, 2015. ISBN 978-3-662-46665-0.

[160] Marco Vassena and Alejandro Russo. On formalizing information-flow control
libraries. In PLAS, 2016. ISBN 978-1-4503-4574-3.

[161] Divya Muthukumaran, Dan O’Keeffe, Christian Priebe, David Eyers, Brian
Shand, and Peter Pietzuch. Flowwatcher: Defending against data disclosure
vulnerabilities in web applications. In CCS, 2015. ISBN 978-1-4503-3832-5.

211

[162] Nikhil Swamy, Brian Corcoran, and Michael Hicks. Fable: A language for
enforcing user-defined security policies. In Proceedings of the IEEE Symposium
on Security and Privacy (Oakland), pages 369–383, 2008. URL http://www.

cs.umd.edu/~mwh/papers/fable.pdf.

[163] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter Dr-
uschel. Qapla: Policy compliance for database-backed systems. In USENIX
Security Symposium, 2017. ISBN 978-1-931971-40-9.

[164] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for au-
tomatically enforcing privacy policies. In POPL, 2012.

[165] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-
Lezama. Faceted execution of policy-agnostic programs. In PLAS, 2013.

[166] David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières. Safe
haskell. In Haskell Symposium, 2012.

[167] Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, and Tom Schrijvers. Co-
herence of type class resolution. Proc. ACM Program. Lang., 3(ICFP), July
2019.

[168] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A com-
prehensive study of convergent and commutative replicated data types. 2011.

[169] Hyun-Gul Roh, Myeongjae Jeon, Jinsoo Kim, and Joonwon Lee. Replicated
abstract data types: Building blocks for collaborative applications. J. Parallel
Distrib. Comput., 71(3):354–368, 2011. doi: 10.1016/j.jpdc.2010.12.006. URL
https://doi.org/10.1016/j.jpdc.2010.12.006.

[170] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data
consistency for p2p collaborative editing. In Proceedings of the 2006 20th
Anniversary Conference on Computer Supported Cooperative Work, CSCW
’06, page 259–268, New York, NY, USA, 2006. Association for Comput-
ing Machinery. ISBN 1595932496. doi: 10.1145/1180875.1180916. URL
https://doi.org/10.1145/1180875.1180916.

[171] Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. A
commutative replicated data type for cooperative editing. In Proceedings
of the 2009 29th IEEE International Conference on Distributed Comput-
ing Systems, ICDCS ’09, page 395–403, USA, 2009. IEEE Computer So-
ciety. ISBN 9780769536590. doi: 10.1109/ICDCS.2009.20. URL https:

//doi.org/10.1109/ICDCS.2009.20.

[172] Stephane Weiss, Pascal Urso, and Pascal Molli. Logoot: A scalable optimistic
replication algorithm for collaborative editing on p2p networks. In Proceedings
of the 2009 29th IEEE International Conference on Distributed Computing
Systems, ICDCS ’09, page 404–412, USA, 2009. IEEE Computer Society. ISBN

212

http://www.cs.umd.edu/~mwh/papers/fable.pdf
http://www.cs.umd.edu/~mwh/papers/fable.pdf
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1145/1180875.1180916
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1109/ICDCS.2009.20

9780769536590. doi: 10.1109/ICDCS.2009.75. URL https://doi.org/10.

1109/ICDCS.2009.75.

[173] M. Kleppmann and A. R. Beresford. A conflict-free replicated json datatype.
IEEE Transactions on Parallel and Distributed Systems, 28(10):2733–2746,
2017.

[174] Bjarne Stroustrup. Multiple inheritance for c++. Computing Systems, 2(4):
367–395, 1989.

[175] Bryan O’Sullivan. criterion: Robust, reliable performance measurement and
analysis. https://hackage.haskell.org/package/criterion, 2020.

[176] Martin Sulzmann, Manuel MT Chakravarty, Simon Peyton Jones, and Kevin
Donnelly. System f with type equality coercions. In Proceedings of the 2007
ACM SIGPLAN international workshop on Types in languages design and
implementation, pages 53–66, 2007.

[177] Andrey Mokhov. Algebraic graphs with class (functional pearl). In Proceedings
of the 10th ACM SIGPLAN International Symposium on Haskell, 2017.

[178] C. J. Fidge. Timestamps in message-passing systems that preserve the par-
tial ordering. Proceedings of the 11th Australian Computer Science Confer-
ence, 10(1):56–66, 1988. URL http://sky.scitech.qut.edu.au/~fidgec/

Publications/fidge88a.pdf.

[179] Friedemann Mattern. Virtual time and global states of distributed systems.
In Cosnard M. et al., editor, Proc. Workshop on Parallel and Distributed Al-
gorithms, pages 215–226, North-Holland / Elsevier, 1989. (Reprinted in: Z.
Yang, T.A. Marsland (Eds.), "Global States and Time in Distributed Sys-
tems", IEEE, 1994, pp. 123-133.).

[180] Ken Birman, André Schiper, and Pat Stephenson. Lightweight causal and
atomic group multicast. ACM Transactions on Computer Systems, 9:272–, 08
1991. doi: 10.1145/128738.128742.

[181] Victor Grishchenko. Deep hypertext with embedded revision control imple-
mented in regular expressions. In Proceedings of the 6th International Sympo-
sium on Wikis and Open Collaboration, WikiSym ’10, New York, NY, USA,
2010. Association for Computing Machinery. ISBN 9781450300568. doi: 10.
1145/1832772.1832777. URL https://doi.org/10.1145/1832772.1832777.

[182] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison,
Hongseok Yang, and Marek Zawirski. Specification and complexity of collabo-
rative text editing. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC ’16, pages 259–268, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-3964-3. doi: 10.1145/2933057.2933090. URL
http://doi.acm.org/10.1145/2933057.2933090.

213

https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1109/ICDCS.2009.75
https://hackage.haskell.org/package/criterion
http://sky.scitech.qut.edu.au/~fidgec/Publications/fidge88a.pdf
http://sky.scitech.qut.edu.au/~fidgec/Publications/fidge88a.pdf
https://doi.org/10.1145/1832772.1832777
http://doi.acm.org/10.1145/2933057.2933090

[183] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R.
Beresford. Verifying strong eventual consistency in distributed systems. Proc.
ACM Program. Lang., 1(OOPSLA), October 2017. doi: 10.1145/3133933.
URL https://doi.org/10.1145/3133933.

[184] Tim Sheard and Simon Peyton Jones. Template meta-programming for
haskell. SIGPLAN Not., 37(12):60–75, December 2002. ISSN 0362-1340. doi:
10.1145/636517.636528. URL https://doi.org/10.1145/636517.636528.

[185] Conal Elliott and Paul Hudak. Functional reactive animation. In Interna-
tional Conference on Functional Programming, 1997. URL http://conal.

net/papers/icfp97/.

[186] Richard A. Eisenberg. Dependent types in haskell: Theory and practice.
CoRR, abs/1610.07978, 2016. URL http://arxiv.org/abs/1610.07978.

[187] Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard A.
Eisenberg. A role for dependent types in haskell. Proc. ACM Program. Lang.,
3(ICFP), July 2019. doi: 10.1145/3341705. URL https://doi.org/10.1145/

3341705.

[188] Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira. Kind infer-
ence for datatypes. Proc. ACM Program. Lang., 4(POPL), December 2019.
doi: 10.1145/3371121. URL https://doi.org/10.1145/3371121.

[189] Conor McBride. Faking it simulating dependent types in haskell. Journal of
functional programming, 12(4-5):375–392, 2002.

[190] Ryan G. Scott and Ryan R. Newton. Generic and flexible defaults for verified,
law-abiding type-class instances. In Proceedings of the 12th ACM SIGPLAN
International Symposium on Haskell, Haskell 2019, page 15–29, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450368131.
doi: 10.1145/3331545.3342591. URL https://doi.org/10.1145/3331545.

3342591.

[191] Richard A. Eisenberg and Stephanie Weirich. Dependently typed program-
ming with singletons. SIGPLAN Not., 47(12):117–130, September 2012. ISSN
0362-1340. doi: 10.1145/2430532.2364522. URL https://doi.org/10.1145/

2430532.2364522.

[192] Johan Jeuring, Patrik Jansson, and Cláudio Amaral. Testing type class laws.
In Proceedings of the 2012 Haskell Symposium, pages 49–60, 2012.

[193] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random
testing of haskell programs. Acm sigplan notices, 46(4):53–64, 2011.

[194] William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. Zeno: An auto-
mated prover for properties of recursive data structures. In Cormac Flanagan

214

https://doi.org/10.1145/3133933
https://doi.org/10.1145/636517.636528
http://conal.net/papers/icfp97/
http://conal.net/papers/icfp97/
http://arxiv.org/abs/1610.07978
https://doi.org/10.1145/3341705
https://doi.org/10.1145/3341705
https://doi.org/10.1145/3371121
https://doi.org/10.1145/3331545.3342591
https://doi.org/10.1145/3331545.3342591
https://doi.org/10.1145/2430532.2364522
https://doi.org/10.1145/2430532.2364522

and Barbara König, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 407–421, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg. ISBN 978-3-642-28756-5.

[195] Andrew Farmer, Neil Sculthorpe, and Andy Gill. Reasoning with the hermit:
Tool support for equational reasoning on ghc core programs. SIGPLAN Not.,
50(12):23–34, August 2015. ISSN 0362-1340. doi: 10.1145/2887747.2804303.
URL https://doi.org/10.1145/2887747.2804303.

[196] Dimitrios Vytiniotis, Simon L. Peyton Jones, Koen Claessen, and Dan Rosén.
Halo: haskell to logic through denotational semantics. In POPL, 2013.

[197] Andreas Arvidsson, Moa Johansson, and Robin Touche. Proving type class
laws for haskell. In International Symposium on Trends in Functional Pro-
gramming, pages 61–74. Springer, 2016.

[198] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Hipspec:
Automating inductive proofs of program properties. In ATx/WInG at IJCAR,
pages 16–25, 2012.

[199] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and Stephanie
Weirich. Total haskell is reasonable coq. In Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP
2018, page 14–27, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450355865. doi: 10.1145/3167092. URL https://doi.

org/10.1145/3167092.

[200] Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report,
volume 13. 01 2003.

[201] Phil Freeman. PureScript by Example. 2017. URL https://doi.org/10.

1145/2887747.2804303.

[202] Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather
Miller, and Sandro Stucki. Simplicitly: Foundations and applications of im-
plicit function types. Proc. ACM Program. Lang., 2(POPL), December 2017.
doi: 10.1145/3158130. URL https://doi.org/10.1145/3158130.

[203] rust. The rust programming language. http://www.rust-lang.org/.

[204] Matthieu Sozeau and Nicolas Oury. First-class type classes. In Otmane Ait
Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in
Higher Order Logics, pages 278–293, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-71067-7.

[205] Florian Haftmann and Makarius Wenzel. Constructive type classes in isabelle.
In International Workshop on Types for Proofs and Programs, pages 160–174.
Springer, 2006.

215

https://doi.org/10.1145/2887747.2804303
https://doi.org/10.1145/3167092
https://doi.org/10.1145/3167092
https://doi.org/10.1145/2887747.2804303
https://doi.org/10.1145/2887747.2804303
https://doi.org/10.1145/3158130
http://www.rust-lang.org/

[206] Dominique Devriese and Frank Piessens. On the bright side of type classes:
instance arguments in agda. ACM SIGPLAN Notices, 46(9):143–155, 2011.

[207] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris
Hawblitzel, Cătălin Hriţcu, Monal Narasimhamurthy, Zoe Paraskevopoulou,
Clément Pit-Claudel, Jonathan Protzenko, et al. Meta-f*: Proof automation
with smt, tactics, and metaprograms. In European Symposium on Program-
ming, pages 30–59, 2019.

[208] Leonidas Lampropoulos and Benjamin C. Pierce. QuickChick: Property-Based
Testing in Coq. 2018.

[209] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski.
Replicated data types: Specification, verification, optimality. In Proceedings of
the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, page 271–284, New York, NY, USA, 2014. Associa-
tion for Computing Machinery. ISBN 9781450325448. doi: 10.1145/2535838.
2535848. URL https://doi.org/10.1145/2535838.2535848.

[210] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declara-
tive programming over eventually consistent data stores. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’15, page 413–424, New York, NY, USA, 2015. Associ-
ation for Computing Machinery. ISBN 9781450334686. doi: 10.1145/2737924.
2737981. URL https://doi.org/10.1145/2737924.2737981.

[211] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and
Marc Shapiro. ’cause i’m strong enough: Reasoning about consistency choices
in distributed systems. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16,
page 371–384, New York, NY, USA, 2016. Association for Computing Ma-
chinery. ISBN 9781450335492. doi: 10.1145/2837614.2837625. URL https:

//doi.org/10.1145/2837614.2837625.

[212] Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and
Marc Shapiro. The cise tool: Proving weakly-consistent applications correct.
In Proceedings of the 2nd Workshop on the Principles and Practice of Consis-
tency for Distributed Data, PaPoC ’16, New York, NY, USA, 2016. Associa-
tion for Computing Machinery. ISBN 9781450342964. doi: 10.1145/2911151.
2911160. URL https://doi.org/10.1145/2911151.2911160.

[213] Farzin Houshmand and Mohsen Lesani. Hamsaz: Replication coordination
analysis and synthesis. Proc. ACM Program. Lang., 3(POPL), January 2019.
doi: 10.1145/3290387. URL https://doi.org/10.1145/3290387.

[214] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specifica-

tion and verification of crdts. In Erika Ábrahám and Catuscia Palamidessi,

216

https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/3290387

editors, Formal Techniques for Distributed Objects, Components, and Systems,
pages 33–48, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-
3-662-43613-4.

[215] Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. Proving the safety of highly-
available distributed objects. In Peter Müller, editor, Programming Languages
and Systems, pages 544–571, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-44914-8.

[216] Kartik Nagar and Suresh Jagannathan. Automated parameterized verification
of crdts. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verifica-
tion, pages 459–477, Cham, 2019. Springer International Publishing. ISBN
978-3-030-25543-5.

[217] Peter Sewell Xavier Leroy Robby Findler Scott Owens Brigitte Pien-
tka Michael Hicks Talia Ringer, Benjamin C. Pierce. POPLmark
15 year retrospective panel. https://popl20.sigplan.org/track/

POPL-2020-poplmark-15-year-retrospective-panel#About, 2020.

[218] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha,
Benjamin C Pierce, and Steve Zdancewic. Interaction trees: representing re-
cursive and impure programs in coq. Proceedings of the ACM on Programming
Languages, 4(POPL):1–32, 2019.

217

https://popl20.sigplan.org/track/POPL-2020-poplmark-15-year-retrospective-panel#About
https://popl20.sigplan.org/track/POPL-2020-poplmark-15-year-retrospective-panel#About

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background on Liquid Haskell

	Build It, Break It, Fix It: Contesting Secure Development
	Introduction
	Acknowledgements

	Build-it, Break-it, Fix-it
	Competition phases
	Competition scoring
	Discussion
	Implementation

	Contest Problems
	Secure Log
	ATM
	Multiuser DB

	Build-it Submissions: Successes and Failures
	Failure Stories
	Success Stories

	Quantitative Analysis
	Data collection
	Analysis approach
	Contestants
	Ship scores
	Resilience
	Presence of security bugs
	Breaking success
	Model differences
	Summary

	Related work
	Conclusion

	LWeb: Information Flow Security for Multi-tier Web Applications
	Introduction
	Acknowledgements

	Overview
	Label-Based Information Flow Control with LIO
	Yesod
	LWeb: Yesod with LIO

	Mechanizing Noninterference of LIO in Liquid Haskell
	Security Lattice as a Type Class
	LIO: Syntax and Semantics
	Noninterference

	Label-based Security for Database Operations
	Database Definition
	Querying the Database
	Monadic Database Queries
	Noninterference

	Liquid Haskell for Metatheory
	Advantages
	Disadvantages

	Implementation
	Extensions
	Trusted Computing Base

	The BIBIFI Case Study
	BIBIFI Labels
	Users and Authentication
	Opening the Contest
	Teams and Declassification
	Breaks and Advanced Queries

	Experimental Evaluation
	Trusted Computing Base of BIBIFI
	Running Time Overhead

	Quantifying Information Flow
	Related Work
	Conclusion

	Verifying Replicated Data Types with Typeclass Refinements in Liquid Haskell
	Introduction
	Acknowledgements

	Typeclasses in Liquid Haskell
	Refinement Types for Typeclasses
	Verifying Laws of Standard Typeclass Instances

	Implementing Typeclass Refinements
	GHC Typeclass Elaboration
	Interaction with GHC
	Reasoning About Coherence

	Case Study: Verified Replicated Data Types
	Background: Conflict-free Replicated Data Types (CRDTs)
	Verifying CRDTs with Typeclass Refinements
	Proofs
	Verifying CRDT Semantics
	Applications

	Related Work
	Verification of Haskell's Typeclass Laws
	Type System Expressiveness vs. Coherence of Elaboration
	Verifying Replicated Data Types

	Conclusion

	Conclusion
	Future Work

