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Graphs are widely used to model object relationships in real world applications such as

biology, neuroscience, and communication networks. Traditional graph analysis tools focus on

extracting key graph patterns to characterize graphs which are further used in the downstream

tasks such as prediction. Common graph characteristics include global and local graph measurements

such as clustering coefficient, global efficiency, characteristic path length, diameter and so on.

Many applications often involve high dimensional and large-scale graphs for which existing

methods, which rely on small numbers of graph characteristics, cannot be used to efficiently

perform graph tasks. A major research challenge is to learn graph representations that can be

used to efficiently perform graph tasks as required by a wide range of applications.

In this thesis, we have developed a number of novel methods to tackle the challenges

associated with processing or representing large-scale graphs. In the first part, we propose a

general graph coarsening framework that maps large graphs into smaller ones while preserving



important structural graph properties. Based on spectral graph theory, we define a novel distance

function that measures the differences between graph spectra of the original and coarse graphs.

We show that the proposed spectral distance sheds light on the structural differences in the graph

coarsening process. In addition, we propose graph coarsening algorithms that aim to minimize the

spectral distance, with provably strong bounds. Experiments show that the proposed algorithms

outperform previous graph coarsening methods in applications such as graph classification and

stochastic block recovery tasks.

In the second part, we propose a new graph neural network paradigm that improves the

expressiveness of the best known graph representations. Graph neural network (GNN) models

have recently been introduced to solve challenging graph-related problems. Most GNN models

follow the message-passing paradigm where node information is propagated through edges, and

graph representations are formed by the aggregation of node representations. Despite their

successes, message-passing GNN models are limited in terms of their expressive power, which

fail to capture basic characteristic properties of graphs. In our work, we represent graphs as

the composition of sequence representations. Through the design of sequence sampling and

modeling techniques, the proposed graph representations achieve provably powerful expressiveness

while maintaining permutation invariance. Empirical results show that the proposed model

achieves superior results in real-world graph classification tasks.

In the third part, we develop a fast implementation of spectral clustering methods on CPU-

GPU platforms. Spectral clustering is one of the most popular graph clustering algorithms

which achieved state-of-the art performance in a wide range of applications. However, existing

implementations in commonly used software platforms such as Matlab and Python do not scale



well for many of the emerging Big Data applications. We present a fast implementation of the

spectral clustering algorithm on a CPU-GPU heterogeneous platform. Our implementation takes

advantage of the computational power of the multi-core CPU and the massive multithreading

capabilities of GPUs. We show that the new implementation achieved significantly accelerated

computation speeds compared with previous implementations on a wide range of tasks.

In the fourth part, we study structural brain networks derived from Diffusion Tensor Imaging

(DTI) data. The processing of DTI data coupled with the use of modern tractographic methods

reveal white matter fiber connectivity at a relatively high resolution; this allows us to model

the brain as a structural network which encodes pairwise connectivity strengths between brain

voxels. We have developed an iterative method to delineate the brain cortex into fine-grained

connectivity-based brain parcellations. This allows to map the initial large-scale brain network

into a relatively small weighted graph that preserves the essential structural connectivity information.

We show that graph representations based on the brain networks from new brain parcellations are

more powerful in discriminating between different populations groups, compared with existing

brain parcellations.
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Chapter 1: Introduction

1.1 Motivation

Graphs are widely used to model object relationships in real-world applications. There

have been extensive studies that propose the use of various graph features to help analyze and

understand the complex structures in graphs over a number of domains. Most of the proposed

graph features are based on the statistics of elementary graph structures such as paths, walks,

trees, and cuts, which are then used for subsequent machine learning tasks. However, the pre-

defined, hand-crafted graph features are not flexible enough to handle graph prediction tasks for

a wide range applications. The computations of many graph features do not scale well with

the graph size, which causes high computational costs especially for the analysis of large-scale

graphs. In this introduction, we describe the main problems addressed in this thesis.

Graph Coarsening. To analyze large size graphs, a common technique is to coarsen the

graph into a smaller graph that reduces the computational load while attempting to maintain the

important structural graph properties of the original graph. The coarsening process significantly

reduces the dimensionality of the original large graphs and accelerates subsequent graph processing

tasks. Graph statistics such as characteristic path length, global efficiency, clustering coefficient

can be efficiently computed on the coarsened graphs. Although various graph coarsening methods

have been proposed, there have been no overall consensus on the criteria for the graph coarsening,
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which directly determines the statistical effectiveness of subsequent network analysis.

Spectral Methods. Spectral methods are emerging as powerful tools in machine learning

and network science. Graph spectra are represented by the eigenvalues and eigenvectors of

matrices associated with the graph such as the adjacency and Laplacian matrices. The field

of spectral graph theory has established a number of interesting results linking the fundamental

relationship between graph structural properties and graph spectra. In particular related work

shows that the graph spectra contains rich information of important graph characteristics such as

connectivity, bipartiteness, the number of connected components, and diameter and average path

length [3]. We introduce a novel framework in this thesis that links tightly graph coarsening and

spectral graph theory.

Spectral Clustering Algorithm. There are a number of algorithms which include the

computation of the graph spectrum as one of the major computational components to solve

problems in a wide variety of applications. An example is the spectral clustering algorithm,

which is one of the most popular clustering algorithms aiming to find densely-connected clusters

within graphs. Note that graph spectral features, in addition to the common network statistics,

are used in graph representations, which can achieve good prediction capability.

A significant hurdle for using graph spectra in applications with large-scale graphs is

the computational cost to compute the whole set of eigenvalues and eigenvectors. Graphics

Processing Units (GPUs) are well-known in their parallel processing capabilities, which can

accelerate the computation of large-scale matrix computations. We provide in this thesis a

GPU accelerated implementation to accelerate the computation of the spectra, which significantly

outperforms previous implementations.

Graph Neural Networks. Deep learning models have achieved great successes in a wide
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range of applications including computer vision, natural language processing, audio processing,

and many others. Recently, deep learning models have been introduced to solve graph-related

tasks such as node classification and graph classification. A notable model is the graph neural

network (GNN) model which learns the node and graph representations to solve important graph

tasks. Most of GNN models follow a message-passing paradigm where node representations

are formed by iteratively aggregating information from neighboring nodes, followed by a graph

pooling function to generate graph representations [4, 5, 6, 7]. Despite the success of message

passing GNN models in many graph-related tasks, recent studies have shown that GNN models

have limited expressive power which fails to capture even simple graph characteristics. For

example, GNN graph representations cannot distinguish any pair of regular graphs. In this

thesis, we develop a new approach that achieves more powerful expressiveness while maintaining

permutation invariance.

Structural Brain Networks. An important investigation conducted in this thesis is the

study of large-scale brain networks derived from Diffusion Tensor Imaging (DTI) data. The

objective is to learn characteristic graph representations which can achieve high prediction performance

in applications involving for example brain disorders. Diffusion Magnetic Resonance Imaging

(MRI) exploits the anisotropic diffusion of water molecules in the brain to enable the estimation

of the brain’s anatomical fiber tracts at a relatively high resolution. Tractographic methods can be

used to generate whole-brain anatomical connectivity matrix where each matrix element provides

an estimate of the connectivity strength between the corresponding voxels. The resulting brain

connectivity graphs are quite large involving hundreds of thousands of nodes and billions of

edges. A common method to address this challenge is to build structural brain networks using

a predefined whole brain parcellations (defining Regions of Interest - ROIs), where the nodes of
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the network represent the brain regions and the edge weights capture the connectivity strengths

between the corresponding brain regions. Traditional methods use the existing anatomical brain

atlases such as Automated Anatomical Labelling (AAL) [8] to build structural brain networks,

which do not consider the underlying connectivity information. There is potential to develop

more effective brain parcellations using structural information derived from the DTI data.

1.2 Contributions of this Thesis

In this thesis, we make significant, original contributions to all the problems mentioned

above.

In the first part, we propose an effective graph coarsening method which coarsens large

graphs while provably preserving some important graph structural properties. Graph coarsening

is a common technique used to simplify complex graphs by reducing the number of nodes and

edges while trying to preserve some of the main structural properties of the original graph. A key

challenge is to determine what specific graph properties are to be preserved by coarse graphs. We

propose a new graph coarsening method that attempts to preserve the graph spectral properties.

We start by relating the spectrum of the original graph to the coarsened graph. Based on this

insight, we define a novel distance function that measures the differences between graph spectra

of the original and coarsened graphs. We show that the proposed spectral distance captures in a

significant way the structural differences during the graph coarsening process. We also propose

graph coarsening algorithms that aim to minimize the spectral distance. Experiments show that

the proposed algorithms can outperform previous graph coarsening methods in applications such

as graph classification and stochastic block recovery tasks.
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In the second part, we propose a new graph neural network paradigm that improves the

expressiveness of graph representations. We represent graphs as the weighted combination of

sequence representations. We show that, through the design of sequence sampling and modeling

techniques, the proposed graph representations achieve provably powerful expressiveness while

maintaining the permutation invariance property. Empirical result show that the proposed graph

representations achieve superior performance in real-world graph classification tasks.

The third part focuses on the acceleration of the spectral clustering methods leveraging on

the computational advantages of CPUs and GPUs. Spectral clustering is one of the most effective

graph clustering algorithms which are widely used in a number of applications. However, existing

implementations in commonly used software platforms such as Matlab and Python do not scale

well for many of the emerging Big Data applications. We present a fast implementation of the

spectral clustering algorithm on a CPU-GPU heterogeneous platform. Our implementation takes

advantage of the computational power of the multi-core CPU and the massive multithreading

capabilities of GPUs. We show that the new implementation achieved significantly accelerated

computation speed compared with previous implementations in a number of important applications.

The fourth part focuses on the study of structural brain networks with the objective to

determine graph representations based on DTI data. We develop an iterative method to delineate

the brain cortex into fine-grained connectivity-based brain parcellations. This allows the mapping

of the initial large-scale brain network into a relatively small weighted graph, which preserves

the essential structural connectivity information. We show that graph representation based on the

brain networks from the new brain parcellations is more powerful in discriminating between a

number of population groups.
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1.3 Outline of Thesis

The rest of the thesis is organized as follows. In Chapter 2, we give the background of

the research work conducted in this thesis. In Chapter 3, we propose a new graph coarsening

method which coarsens large graphs into smaller ones with preserved graph spectral properties.

In Chapter 4, we propose a new graph neural network model that improves the expressiveness of

graph representations. In Chapter 5, we present a fast implementation of spectral clustering for

large-scale graphs. In Chapter 6, we study the graph representations of structural brain network

while we conclude in Chapter 7 by discussing several potential directions for future research.
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Chapter 2: Background

2.1 Preliminaries

We denote the graph as G = (V ,W ,H), with V as the set of graph nodes with n = |V|,

W ∈ Rn×n as the (possibly weighted) adjacency matrix and H ∈ Rn×d as the matrix holding

the node features. We denote by vi ∈ V as the node indexed by i, w(i) ∈ Rn as the vector of all

possible edge weights associated with vi and d(i) =
∑n

j=1W (i, j) as the node degree.

In addition, we use hi as the node representation of node vi (corresponding to the ith row

of H) and hG as the graph-level representation.

2.2 Graph Coarsening

2.2.1 Overview

Graph coarsening is a common graph processing technique widely used in a number of

applications involving large scale graphs. Graph coarsening simplifies large graphs by reducing

the number of nodes and edges while trying to preserve some of the main properties of the original

graph. The goal is to accelerate graph processing while maintaining a similar performance on

graph processing tasks.

One of the key challenges is to define the coarsening criteria based on which the graph
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nodes and edges are reduced. The coarsening criteria directly determine the coarsening process

and the quality of the resulting coarsened graphs. Researchers have proposed a number of

different coarsening criteria, resulting in the optimization to preserve certain graph properties.

For example, Loukas et al. proposed to preserve the action of the graph Laplacian with respect to

an (eigen)-space of fixed dimension, arguing that this suffices to capture the global properties of

graph relevant to partitioning and spectral clustering [9]. Durfee et al. proposed to preserve the

all-pairs effective resistance [10] while Garg and Jaakkola defined a cost based on the theory of

optimal transport [11]. Saket et al. suggested a Minimum Description Length (MDL) principle

relevant to unweighted graphs [12]. Most of previous graph coarsening methods are specific to

particular applications; the question of how to define an application-independent graph coarsening

framework remains a challenge.

2.2.2 Graph Coarsening Methods

There are a number of graph coarsening methods which are designed to optimize for

different graph properties some of which are summarized below.

Heavy Edge Matching In this method, the graph nodes are collapsed based on the heaviest edge

(i.e., the edge with the largest weight) connecting them. The process is repeated iteratively until

a certain graph size is reached [13].

Algebraic Multigrid Coarsening This method is based on the concept of the multigrid method

used in numerical linear algebra. It involves constructing a hierarchy of coarser graphs from the

original graph using matrix operations, which makes it possible to solve linear systems efficiently

[14].
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Community Detection-based Coarsening The method first clusters graph nodes forming densely-

connected communities and merges graph nodes belonging to the same community into one

single node. The method is particularly useful to find community structures within graphs [15].

2.2.3 Applications

The following are examples of applications where graph coarsening methods have been

used.

Graph partitioning Graph coarsening are often used as a preprocessing step in graph partitioning,

which aims to divide a graph into smaller subgraphs while minimizing some cost function related

to the number of edges cut. The coarsened graph can be partitioned more efficiently, and the

resulting partition can then be projected back onto the original graph.

Community Detection Graph coarsening can be used to find communities or clusters within the

graph. By merging closely connected nodes, the coarser graph can help reveal the underlying

community structures more efficiently [16, 17].

Multigrid Methods Graph coarsening plays a central role in algebraic multigrid methods as well

as the related class of multilevel incomplete LU factorizations. The idea is to project the original

problem to an ”equivalent” problem on the coarse mesh and the solution is interpolated back

to the fine level grid [14]. Graph coarsening significantly accelerates the processing speed for

multigrid methods.

Machine Learning Graph-based machine learning methods, such as Graph Convolutional Networks

(GCN), have included graph coarsening as one of the core components in building the end-to-end

machine learning models for specific graph tasks. One benefit of graph coarsening is to reduce
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computational time and memory requirements for large graphs [7]. Moreover, graph coarsening

can often improve the convergence speed and performance for specific tasks [18].

2.3 Spectral Graph Theory

2.3.1 Overview

We introduce some basic concepts from spectral graph theory, which we believe offers a

more robust foundation to understand our work on graph coarsening. In essence, the spectral

graph theory explores the fundamental relationship between the structural properties of graphs

and the spectra of matrices associated with these graphs, typically either the adjacency matrix,

or the Laplacian matrix. There are many tutorials and several textbooks that have been written

about spectral graph theory. See for example [3].

In this thesis, we focus on the normalized Laplacian matrix whose eigenvalues are closely

related to a number of topological invariants of the graph. The normalized Laplacian of a graph

is defined using the following equation:

I −D−1W (2.1)

where W is the weight matrix of the graph and D is the diagonal matrix such that each diagonal

entry is defined by Di,i =
∑

j Wi,j .

for our purposes, the spectrum of the graph is defined as the sequence of the eigenvalues of

the normalized graph Laplacian ordered as follows: 0 = λ1 ≤ λ2 ≤ ... ≤ λn ≤ 2 .
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2.3.2 Relationship with Graph Structures

Extensive studies have shown that the spectra are closely related to the graph structures. For

example, the multiplicity of the eigenvalue 0 corresponds to the number of connected components

in the graph. The largest eigenvalue λn is equal to 2 if and only if the graph is bipartite [3].

Moreover, the second smallest eigenvalue λ2 is of special importance and has been shown to be

closely related to the convergence rate of random walks on the graph, ”chemical conductance,”

Cheeger’s constant, graph diameter, and graph quasi-randomness [3]. Other eigenvalues also play

an important role in capturing the graph structural properties, which has not been fully explored

yet.

2.3.3 Applications

While we focus in this thesis on the application of spectral graph theory on graph coarsening,

other major applications include:

• Spectral Clustering. Spectral clsutering is a widely-used technique that groups similar

data points by analyzing the eigenvectors of the graph’s Laplacian matrix [19].

• Image Segmentation. In computer vision, spectral graph theory can be applied to segment

images into meaningful regions, by representing the image as a graph and using eigenvectors

to identify boundaries between different regions [20, 21].

• Dimensionality Reduction. Spectral methods for dimensionality reduction are techniques

that use the spectral (eigenvalue) decomposition of matrices derived from the data in order

to transform the data into a lower-dimensional space. These methods are primarily based
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on constructing a similarity graph from the data, where each data point is represented as a

node and the edge weights represent the similarity between data points. From this graph, a

matrix representation is derived, often the graph Laplacian, but sometimes the adjacency or

degree matrix. The eigenvectors corresponding to the smallest eigenvalues of this matrix

are then used to represent the data in a lower-dimensional space. Notable examples are

Laplacian Eigenmaps, Locally Linear Embedding (LLE) and Isomap [22, 23, 24, 25].

2.4 Graph Neural Network

2.4.1 Overview

Graph neural network (GNN) models have emerged as a powerful tool to solve graph

related problems such as node classification, link prediction and graph classification [4, 5, 7, 26,

27, 28]. Most of GNN models follow a message-passing paradigm where node representations

are formed by iteratively aggregating information from neighboring nodes, followed by a graph

pooling function to generate graph representations [4, 5, 6, 7].

Starting with the initial node features H(0) = H , the message passing graph neural

network iteratively updates node representations by aggregating information from neighboring

nodes. The following functions characterize the graph convolutional process [4, 6, 9],

h(i)
v = Aggregate(i)(h(i−1)

v ,m(i)
v ),

m(i)
v = Msg(i)({h(i−1)

u : u ∈ N (v)})
(2.2)

where hi
u is the representation of node u at iteration i and Msg is the message function that

aggregates neighborhood information. The graph representation hG is obtained by applying the
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pooling function Pool on the corresponding node representations as,

hG = Readout(h(k)
v , v ∈ V) (2.3)

2.4.2 Permutation Invariance

Most GNN models need to satisfy the property of Permutation Invariance, that is, the

graph representations remain invariant under any permutations applied on the inputs. We denote

π = {v1, v2, ..., vn} as a node permutation and Gπ = (Vπ,Wπ,Hπ) is the graph where the node

indices, weight matrix and feature matrix are permutated over π. The permutation invariance is

expressed as follows,

GNN(H ,W ) = GNN(Hπ,Wπ),∀π ∈ Π. (2.4)

2.4.3 Examples of GNN Models

There are many variants of GNN models with different message, aggregation and readout

functions. Some of the notable examples are as follows,

Graph Convolutional Network (GCN). GCN is one of the most popular GNN models which

borrow the idea of Convolutional Neural Network (CNN) in the graph domain. The GCN model

leverages the graph convolutional function to aggregate information from neighboring nodes and

apply a pooling function to form graph representations from node representations. GCN models

achieve high performance on node and graph classification tasks[28, 29].

Graph Sample and Aggregation (GraphSAGE). GraphSAGE models extends the GCN framework
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by introducing a more flexible, scalable, and inductive learning approach. GraphSAGE learns

to generate embeddings for nodes by sampling and aggregating information from their local

neighborhood, which is particularly useful for learning on large graphs or graphs with unseen

nodes during training [30].

Graph Attention Network (GAT). GAT models introduce the attention mechanisms into GNNs,

which enables them to weigh the importance of neighboring nodes differently when aggregating

information. Through the attention mechanism, the message function can focus on the most

relevant neighbors and capture more complex graph structures. GAT models have been applied

to various tasks, including node classification, link prediction, and graph classification [31].

2.4.4 Expressiveness of GNN

The expressiveness of graph representation models is the ability to capture the intricate

structure of graph data and encode this information into node or graph representations. For GNN

models, the expressiveness is determined by the model architecture and the specific aggregation,

messaging and readout functions. The number of message propagation steps can have a significant

influence on the expressiveness[9, 32]. GNN models with a large number of propagation steps

can capture long range of dependencies and interactions [33, 34, 35].

Test of Isomorphism. The expressiveness of GNN models is often evaluated on the ability

to distinguish non-isomorphic graphs. Isomorphic graphs are pairs of graphs with the same

structure but but may differ in the labels of their vertices and edges up to node permutations.

Two graphs G1 = (V1,W1,H1) and G2 = (V2,W2,H2) are said to be isomorphic when there

exist a permutation π such that the edges and node features are identical after applying the node
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permutations W1,π = W2 and H1,π = H2. The ability to distinguish isomorphic graphs is an

important component in understanding the expressiveness of graph representation models.

Weisfeiler-Lehman Tests of Isomorphism. One of the most powerful and widely used tests of

graph isomorphism is the Weisfeiler-Lehman Test of Isomorphism (WL) [36, 37]. The WL test

is an refinement-based method that iteratively updates the node labels with local neighborhood

until the stopping conditions are reached. The 1-dimensional WL test (1-WL) updates the node

labels based on the immediate neighbors during the labeling process. The detailed steps of 1-WL

are as follows,

• Initialization: Assign an initial label to each node in each graph.

• Iterative Labelling: For each iteration, a new label is computed for each node based on its

current label and the multiset of labels of its neighbors.

• Stopping Condition: the process continues until no new labels are generated or until a

pre-determined number of iterations are reached.

• Decision: After the last iteration, nodes of the two graphs are sorted according to their final

labels. The two graphs are considered isomorphic if and only if the sequence of node labels

are the same for both graphs.

Higher dimensional Weisfeiler-Lehman Isomorphism Tests (k-WL) consider the k-hop

neighbors in the color relabeling step, which results stronger capability to distinguish non-isomorphic

graphs. Cai et al. show that (k + 1)-WL has strictly stronger expressive power than k-WL, i.e.

there are non-isomorphic graphs which can be distinguished by (k + 1)-WL but not by k-WL

[38].

15



Recent studies have established key results on the relationship between the expressiveness

of GNN and the series of Weisfeiler-Lehman (WL) Tests of Isomorphism (WL). They showed

that the expressiveness of the most powerful message-passing GNN models does not exceed 1-

WL [1, 39]. As 1-WL cannot distinguish between certain graphs that are not isomorphic, such as

regular graphs, GNN models suffer from the limitation of expressiveness. How to design graph

representations with higher-order of expressiveness exceeding the WL tests remains a challenge.

2.4.5 Limitations

Despite the success GNN models have achieved over a number of applications, GNN

models suffer from limitations which affect their effectiveness. Some limitations are listed next.

• Scalability. The complexity of graph convolutions and the memory requirements can

grow significantly with the size of the graph and the number of iterations. This makes

it challenging to apply GNNs to real-world problems that involve large-scale graphs.

• Expressiveness. As mentioned previously, the expressiveness of GNN models is limited

by 1-WL, which cannot distinguish non-isomorphic graphs, such as pairs of regular graphs

[6].

• Over-smoothing. As the number of convolutional layers increase, the information incorporated

become indistinguishable, resulting in a loss of node-specific information and reduced

discriminative power [40].

A number of methods have been proposed to address the limitations which improve the

GNN expressiveness and its applicability to a wider range of problems. For example, approximate
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methods and graph sampling methods are introduced to solve the scalability problem [? ]. To

address the limitation of expressiveness, higher-order graph neural network models are proposed

with provably higher expressiveness than 1-WL [41, 42]. To tackle the over-smoothing problem,

various methods have been proposed to improve the effectiveness, such as DropEdge with the

idea of dropping edges in the input graph during training, which reduces the information flowing

between nodes thus preventing the over-smoothing [43].

2.5 Structural Brain Networks

2.5.1 Overview

Diffusion Magnetic Resonance Imaging (MRI) exploits the anisotropic diffusion of water

molecules in the brain to enable the estimation of the brain’s anatomical fiber tracts at a relatively

high resolution. In particular, tractographic methods can be used to generate whole-brain anatomical

connectivity matrix where each element provides an estimate of the connectivity strength between

the corresponding voxels. Structural brain networks are built using the connectivity information

and a predefined brain parcellation, where the nodes of the network represent the brain regions

and the edge weights capture the connectivity strengths between the corresponding brain regions.
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Table 2.1: Demographics of NKI Sample

Age Group 4-9 10-19 20-29 30-39 40-49 50-59 60-69 70-85 Total

Female 4 18 19 8 5 6 9 10 79

Male 5 16 24 9 26 8 5 4 97

Total 9 34 43 17 31 14 14 14 176

2.5.2 Diffusion Tensor Imaging Processing

2.5.2.1 Data Collection

The diffusion MRI dataset used in this research is taken from the publicly available Nathan

Kline Institute (NKI)/ Rockland dataset1, which consists of data for individuals whose ages range

from 4 to 85. The diffusion MRI was performed using a SIEMENS MAGNETOM TrioTim syngo

MR B15 system. The high-angular resolution diffusion imaging protocol was used to assess white

matter integrity as measured by fractional anisotropy. Diffusion tensor data were collected using

a single- shot, echo-planar, single refocusing spin-echo, T2-weighted sequence with a spatial

resolution of 2.0×2.0×2.0mm. The sequence parameters were:

TE/TR=91/10000ms, FOV=256mm, axial slice orientation with 58 slices, 64 isotropically distributed

diffusion weighted directions, two diffusion weighting values (b=0 and 1000s/mm2) and six b=0

images. These parameters were calculated using an optimization technique that maximizes the

contrast to noise ratio for FA measurements. For each subject, the image data consists of 76

volumes of 3D images of dimensions 128×128×53, each voxel representing 2.0mm×2.0mm×2.0mm

brain volume.
1http://fcon 1000.projects.nitrc.org/indi/pro/nki.html
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Figure 2.1: Left: Seed region which is JHU white matter atlas. Middle: target region which
is the AAL mask. Right: the result of probabilistic tractography which models the distribution
of neuron fiber bundles where the intensity of each voxel represents the number of streamlines
passing through that voxel. All figures are imaged in the axial plane

2.5.2.2 Nonlinear Registration

The diffusion images of all subjects are registered to Montreal Neurological Institute (MNI)

standard space using the nonlinear registration package FNIRT in FSL software [44]. The

nonlinear registration process generates the warping coefficients that balance the similarity between

the diffusion image and the standard MNI152 image, and the smoothness of the warping coefficients.

2.5.2.3 Probabilistic Tractographical Methods

After a set of standard preprocessing steps, probabilistic tractography is used to model cross

fiber distributions for each voxel through the BEDPOSTX package in FSL [45]. Probabilistic

tractography is processed through the diffusion toolbox in FSL [46]. The standard white matter

atlas is specified as a seed region. The brain atlas AAL mask is specified as the target region,

which covers the whole brain cortex region. We generate 50 streamlines from every voxel in the

seed region. These streamlines are propagated following the cross fiber distribution computed

during a preprocessing step. Curvature threshold is enforced to eliminate unqualified streamlines.
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The distance correction option is set to correct for the fact that the distribution drops as the travel

distance increases. The tractography output is a structural connectivity network modeled as a

weighted graph where each node is a voxel in the target region space and each edge weight

corresponds to the relative connectivity strength in terms of the number of streamlines connecting

the corresponding pair of voxels. Using this connectivity information and a set of predefined

regions of interests (ROIs) or whole brain parcellations, structural brain networks can be built

and analyzed. Figure 2.1 shows the seed and target regions as well as the tractography result of a

subject.

2.5.3 Brain Parcellation Scheme

The brain parcellation scheme takes as input the probabilistic tractography results represented

as a large connectivity matrix, which is a large sparse matrix with millions of nodes and billions

of edges.

The k-region brain parcellation is brain segmentations that partition the brain’s grey matter

into k spatially contiguous regions, such that the connectivity profiles of the voxels in each region

are as similar as possible. The parcellations are expected to be consistent among members of a

structurally homogeneous population sample. Notable brain parcellations include the following,

• Brodmann’s Areas. Proposed by Korbinian Brodmann in 1909, Brodmann’s areas divide

the brain based on cytoarchitectonic properties, or the distribution and arrangement of

neurons in the cortex [47].

• Automated Anatomical Labeling (AAL). The AAL atlas is a widely used atlas introduced

by Tzourio-Mazoyer et al. in 2002. It divides the brain based on anatomical landmarks into
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116 regions (90 cortical and subcortical, and 26 cerebellar) [8]. It is commonly used for

voxel-based morphometry and functional fMRI studies[48, 49].

• Harvard-Oxford Atlas. The Harvard-Oxford Atlas is a probabilistic atlas that provides

a standard space for neuroimaging analyses. It’s based on the segmentation of structural

images of the brain from 48 subjects [50].

2.5.4 Construction of Structural Brain Networks

Given the brain parcellations and the connectivity information revealed by probabilistic

tractography, the structural brain network are built where the nodes represent the regions in the

parcellation and the edges reflect the connectivity strength between the corresponding regions.

The edge weights are defined as follows,

W (Ri, Rj) =
∑

va∈Ri,vb∈Rj

W (va, vb) (2.5)

where W (va, vb) represents the number of streamlines connecting the two voxels as generated by

the tractographic results.

2.5.5 Graph Theoretical Analysis

Graph theoretical analysis is applied on the structural brain networks to extract graph

patterns [51]. Many global and local graph-theoretic measurements have been introduced to

characterize structural brain networks [52, 53, 54]. The following are some of the mostly common

used graph measurements,

• Characteristic path length (CPL). The characteristic path length tries to capture the
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network integration and is computed as the average of the shortest paths between all pairs

of vertices.

CPL =
1

N(N − 1)

∑
i,j,i̸=j

d(i, j) (2.6)

where d(i, j) is the shortest path between node i and j.

• Global efficiency (Eglobal). The global efficiency of a graph is the average of the inverse

of the shortest paths between all pairs of vertices and hence tries to capture how well pairs

of nodes are connected. [55].

Eglobal =
1

N(N − 1)

∑
i,j,i̸=j

1

d(i, j)
(2.7)

• Clustering coefficient. The clustering coefficient tries to capture graph separation and is

defined as the average of the local clustering coefficient at each node.

C =
1

N

∑
Ci (2.8)

where the local clustering coefficient at node i is defined as

Ci =
2Γi

degi(degi − 1)
(2.9)

Γi is the number of triangles around node i,

Γi =
1

2

∑
j,h

ui,jui,huj,h (2.10)
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Note that degi > 0 in our case since isolated nodes are removed from the network.

• Sparsity ratio. The sparsity ratio is defined as the ratio of the number of edges over the

number of possible edges between nodes, that is,

Sparsity =

∑
i,j ui,j

k(k − 1)
(2.11)

A more detailed description of graph theoretic measures commonly used to analyze structural

brain networks can be found in [53]. These traditional graph-theoretical measurements summarize

the complex graph structures of structural brain networks [56]. However, when the graph size

increases, the graph measurements cannot fully capture the complex network patterns.
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Chapter 3: Graph Coarsening with Preserved Spectral Properties

3.1 Introduction

Graphs are widely used to represent object relationships in real-world applications. As

many applications involve large-scale graphs with complex structures, it is generally hard to

explore and analyze the key properties directly from large graphs. Hence graph coarsening

techniques have been commonly used to facilitate this process [57, 58].

Generally speaking, the aim of any graph reduction scheme is to reduce the number of

nodes and edges of a graph, while also ensuring that the “essential properties” of the original

graph are preserved. The question of what properties should be preserved remains inconclusive,

but there is significant evidence that they should relate to the spectrum of a graph operator, such

as the adjacency or normalized Laplacian matrices [59, 60]. A long list of theorems in spectral

graph theory shows that the combinatorial properties of a graph are aptly captured by its spectrum.

As such, graphs with similar spectra are generally regarded to share similar global and local

structure [61, 62]. Based on this realization, modern graph sparsification techniques [63, 64, 65]

have moved on from previously considered objectives, such as cut and shortest-path distance

preservation, and now aim to find sparse spectrally similar graphs.

In contrast to graph sparsification, there has been little progress towards attaining spectrum

preservation guarantees in coarsening. The foremost roadblock seems to lie in defining what
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spectral similarity should entail for graphs of different sizes. The original and coarse graphs

have different numbers of eigenvalues and eigenvectors, which prohibit a direct comparison. To

circumvent this issue, recent works have considered restricting the guarantees to a subset of the

spectrum [9, 66]. However, focusing only on a subset of eigenvalues and eigenvectors also means

that important information of the graph spectrum is ignored.

In this chapter, we start by reconsidering the fundamental spectral distance metric [64,

67, 68, 69], which compares two graphs by means of a norm of their eigenvalue differences.

This metric is seemingly inappropriate as it necessitates that two graphs have the same number of

eigenvalues. However, we find that in the context of coarsening, this difficulty can be circumvented

by substituting the coarse graph with its lifted counterpart: the latter contains the same information

as the former while also having the correct number of eigenvalues.

Our analysis shows that the proposed distance naturally captures the graph changes in

the graph coarsening process. In particular, when the graph coarsening merges nodes that have

similar connections to the rest of the graph, the spectral distance is provably small. By merging

similarly connected nodes, nodes and edges in coarse graphs are able to represent the connectivity

patterns of the original graphs, thus preserving structural and connectivity information.

Our contributions in this chapter are summarized as follows:

• We show how the spectral distance [64, 67, 68, 69], though originally restricted to graphs

of the same size, can be utilized to measure how similar a graph is with its coarsened

counterpart.

• We examine how the new spectral distance captures graph structural changes occurring

during the graph coarsening process.

25



• We present two coarsening algorithms that provably minimize the spectral distance.

• We experimentally show that the proposed methods outperform other graph coarsening

algorithms on two graph related tasks.

All the proofs can be found in the Appendix.

3.2 Related Work

Recent works have proposed to coarsen graphs by preserving the spectral properties of the

matrix representations of graphs [9, 10, 60, 66, 70]. For example, Loukas et al. proposed to

preserve the action of the graph Laplacian with respect to an (eigen)-space of fixed dimension,

arguing that this suffices to capture the global properties of graphs relevant to partitioning and

spectral clustering [9]. Durfee et al. proposed to preserve the all-pairs effective resistance [10].

Garg and Jaakkola defined a cost based on the theory of optimal transport [11]. Saket et al.

suggested a Minimum Description Length (MDL) principle relevant to unweighted graphs [12].

Most of these distance functions are specific to particular applications; the question of how to

define an application-independent graph coarsening framework remains a challenge.

There is a sizable literature dealing with the characterization of graphs in terms of their

spectral properties [64, 71, 72]. Previous work defined distance functions based on Laplacian

eigenvalues which measure differences between graphs [64, 67]. Spielman and Teng introduced

a notion of spectral similarity for two graphs in their graph sparsification framework [59, 65].

Recently, Tsitsulin et al. proposed an efficient graph feature extractor, based on Laplacian

spectrum, for comparisons of large graphs [71]. Dong uses spectral densities to visualize and

estimate meaningful information about graph structures [72]. Nevertheless, despite the popularity
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of spectral methods, the graph spectrum remains little explored in the context of graph coarsening.

3.3 Preliminaries

Let G = (V , E ,W ) be a graph, with V a set of N = |V| nodes, E a set of M = |E| edges,

and W ∈ RN×N the weighted adjacency matrix. We denote the node vi the node by w(i) ∈ RN

representing the vector of the weights of the edges incident on vi and by d(i) =
∑N

j=1W (i, j)

the node degree of vi. The graphs considered in this work are weighted, undirected, and possess

no isolated nodes (i.e. d(i) > 0 for all vi).

The combinatorial and normalized Laplacians of G are defined as

L = D −W and L = IN −D−1/2WD−1/2, (3.1)

respectively, where IN is the N × N identity matrix and D is the diagonal degree matrix with

D(i, i) = d(i).

3.3.1 Graph Coarsening

The coarse graph Gc = (Vc, Ec,Wc) with n = |Vc| is obtained from the original graph G

by first selecting a set of non-overlapping graph partitions P = {S1,S2, . . . ,Sn} ⊂ V , which

cover all the nodes in V . Each partition Sp corresponds to a “super-node” denoted by sp and the

“super-edge” connecting the super-nodes Wc(p, q) has weight equal to the accumulative edge
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Figure 3.1: Left: an example illustrating the graph coarsening process. The original graph is a
random graph sampled from the stochastic block model with 50-node and 10 predefined blocks.
The coarse graph is obtained from the predefined partitions. Right: Eigenvalues and eigenvectors
of normalized Laplacian matrices of original, coarse and lifted graphs. The eigenvalues of
coarsened graphs align with the eigenvalues of original graphs and the eigenvectors indicate the
block membership information.

weights between nodes in the corresponding graph partitions Sp and Sq:

Wc(p, q) = w(Sp,Sq) :=
∑

vi∈Sp,vj∈Sq

W (i, j) (3.2)
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Let P ∈ Rn×N be the matrix whose columns are partition indicator vectors:

P (p, i) =


1, if vi ∈ Sp

0, othewise.

It is then well known that the weight matrix Wc of the coarse graph Gc satisfies

Wc = PWP⊤.

The definition of the coarsened Laplacian matrices follows directly:

Lc = Dc −Wc and Lc = In −D−1/2
c WcD

−1/2
c .

Similarly to the adjacency matrix, the combinatorial Laplacian of the coarse graph can be obtained

by the formula Lc = PLP⊤. The same however doesn’t hold for the normalized Laplacian, as

in general PLP⊤ ̸= Lc.

3.3.2 Graph Lifting

We define Gl = (V , El,Wl) to be the graph lifted from the coarse graph Gc with respect

to a set of non-overlapping partitions P . In graph lifting, each node sp of the coarse graph is

lifted to |Sp| nodes and nodes in the lifted graph are connected by edges whose weight is equal

to the coarse edge weight normalized by the sizes of partitions. Specifically, for any vi ∈ Sp and
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vj ∈ Sq we have:

Wl(i, j) =
w(Sp,Sq)
|Sp||Sq|

=

∑
v′i∈Sp,v′j∈Sq

W (i′, j′)

|Sp||Sq|

=
Wc(p, q)

|Sp||Sq|
. (3.3)

When Sp = Sq = S , the weight Wl(i, j) can be seen to be equal to the weight of all edges in the

subgraph induced by S, after normalization by |S|2. It easily follows that if W (i, j) is the same

for every vi, vj ∈ S, then also Wl(i, j) = W (i, j), i.e., in-partition weights are exactly preserved

by successive coarsening and lifting in this case.

The above combinatorial definition can be expressed in an algebraic form in terms of the

the pseudo-inverse P+ of P , (i.e., PP+ = I), whose elements are:

P+(j, p) =


1

|Sp| if vj ∈ Sp

0 otherwise.

With this in place, the adjacency matrices of the lifted and coarse graphs are connected by the

following relations:

Wl = P+WcP
∓ and Wc = PWlP

⊤.

The following equation reveals that lifting preserves the connectivity up to a projection onto the

30



partitions:

Wl = P+WcP
∓ = P+PWP⊤P∓

= ΠWΠ⊤ = ΠWΠ, (3.4)

where Π = P+P is a projection matrix, with ΠΠ = P+PP+P = P+P = Π.

The lifted Laplacian matrices are given by

Ll = P+LcP
∓ and Ll = C⊤LcC, (3.5)

where C ∈ Rn×N is the normalized coarsening matrix whose entries are given by:

C(p, i) =


1√
|Sp|

if vi ∈ Sp

0 otherwise,

such that C⊤ = C+ and C⊤C = P∓P = Π. In this manner, we have

Lc = PLlP
⊤ and Lc = CLlC

⊤. (3.6)

For a more in-depth discussion of the mathematics of graph coarsening and graph lifting, we refer

the interested reader to [9].
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3.4 Spectral Distance

We start by briefly reviewing some basic facts about the spectrum associated with the

Laplacian matrix of a coarse graph. We then demonstrate how to exploit these properties in

order to render the classical spectral distance metric amenable to (coarse) graphs of different

sizes.

3.4.1 Properties of the Coarse Laplacian Spectrum

Denote the eigenvalues and eigenvectors of the normalized Laplacian matrices as λ and u,

respectively, with L = UΛU⊤ where the i-th column of U corresponds to ui and Λ = diag(λ).

The eigenvalues are ordered in non-decreasing order.

Property 3.4.1 (Interlacing. Section 5.3 in [73]). The normalized Laplacian eigenvalues of the

original and coarsened graphs satisfy

λ(i) ≤ λc(i) ≤ λ(i+N − n) for all i = 1, . . . , n.

Property 3.4.1 is a general interlacing inequality that captures pairwise difference between

the eigenvalues of the original and coarse graph Laplacians [3, 74]. Since it holds for any graph

and coarsening, the inequality will, in some cases, be loose.

Property 3.4.2 (Eigenvalue Preservation). The normalized Laplacian eigenvalues of the lifted

graph contain all eigenvalues of the coarse graph and additional eigenvalues 1 with (N − n)

multiplicity.
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Property 3.4.3 (Eigenvector Preservation). The eigenvectors of the coarse graph lifted by C,

i.e. ul = Cuc are the eigenvectors of Ll.

Proof. We start by noticing that the projection matrix Π acts as an identity matrix w.r.t. the lifted

normalized Laplacian Ll = ΠLlΠ, since Ll = C⊤LcC = C⊤CLlC
⊤C = ΠLlΠ. Now,

consider the following eigenvalue equation:

Lcuc = λcuc

CLlC
⊤uc = λcuc

C⊤CLlC
⊤uc = λcC

⊤uc

ΠLlΠC⊤uc = λcC
⊤uc

LlC
⊤uc = λcC

⊤uc

Note that in the fourth step, we used the relation C⊤ = C⊤CC⊤ = ΠC⊤, which holds

due to the properties of the Moore-Penrose pseudo-inverse. Thus, C⊤uc are eigenvectors of Ll

with the corresponding eigenvalues of the coarse graph.

To show there are N − n additional eigenvalues 1, one can observe that IN − L =

D
−1/2
l WlD

−1/2
l is a rank-n matrix because nodes within the same partition have exactly the

same edge weights. Hence IN −L contains N − 1 eigenvalue 0 and correspondingly L contains

eigenvalue 1 with N − n multiplicity.

Property 3.4.2 and 3.4.3 state that the action of lifting preserves most spectral properties of

the coarse graph. Thus, we may use the lifted graph as a proxy to define the distance function

[75]. Figure 3.1 shows an example illustrating the graph coarsening process as well as the effect
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on the graph spectrum.

3.4.2 Spectral Distance

In the following, we propose two notions of the spectral distance to quantify the difference

between original and coarse graphs. We first use the lifted graph as the “proxy” of the coarse

graph and define the full spectral distance:

Definition 3.4.4. The full spectral distance between graph G and Gc is defined as follows:

SDfull(G,Gc) = ∥λ− λl∥1 =
N∑
i=1

|λ(i)− λl(i)|,

where vectors λ and λl contain the eigenvalues of the original and lifted graphs.

As the original and lifted graphs have the same number of nodes, we may directly use a

norm to measure the pairwise differences between eigenvalues.

On the flip side, the definition requires computing all eigenvalues of original graphs regardless

of the coarse graph size, which is computationally expensive, especially for large graphs. The

limitation motivates us to define the partial spectral distance by selecting part of the terms in the

full spectral distance definition.

Let k1 and k2 be defined as k1 = argmaxi{i : λc(i) < 1}, k2 = N − n + k1. We expand
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the full spectral distance into three terms as follows:

SDfull(G,Gc) =
N∑
i=1

|λ(i)− λl(i)|

=

k1∑
i=1

|λ(i)− λl(i)|+
k2∑

i=k1+1

|λ(i)− λl(i)|

+
N∑

i=k2+1

|λ(i)− λl(i)| (3.7)

=

k1∑
i=1

|λ(i)− λc(i)|+
k2∑

i=k1+1

|λ(i)− 1|

+
N∑

i=k2+1

|λ(i)− λc(i−N + n)| (3.8)

The last equation is from the Property 3.4.2 where λl contains eigenvalues of the coarse graph as

well as eigenvalue 1 with N − n multiplicity. Eigenvalue λl satisfies:

λl(i) =



λc(i) i ≤ k1

1 k1 + 1 ≤ i ≤ k2

λc(i−N + n) i > k2

With this in place, we define the partial spectral distance to be equal to the full spectral distance

minus the N − n terms for which λl = 1:

Definition 3.4.5. The partial spectral distance between graph G and Gc is defined as

SDpart(G,Gc) =
k∑

i=1

|λ(i)− λc(i)|+

n∑
i=k+1

|λc(i)− λ(i+N − n)|,
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where k = argmaxi{i : λc(i) < 1}.

For the partial spectral distance, we only need to compute n rather than N eigenvalues of

the normalized Laplacian of the original graph, which significantly reduces the computational

cost when n≪ N .

The full and partial spectral distances are related by,

SDfull(G,Gc) = SDpart(G,Gc) +
k2∑

i=k1+1

|λ(i)− 1|

The excluded terms
∑k2

i=k1+1 |λ(i)−1|measure the closeness of the original Laplacian eigenvalues

and eigenvalue 1. The two definitions are equivalent when the normalized Laplacian of the

original graph LN contains eigenvalue 1 with N − n multiplicity. The condition is equivalent

to asserting that the adjacency matrix W is singular with N − n algebraic multiplicity of the

eigenvalue 0 [76, 77]. We have observed empirically that, when coarsening nodes that have

similar connections, the adjacency matrix has eigenvalues close to 0. In such situations, the

terms of the full spectral distance that are excluded by the partial spectral distance are almost 0

and the partial distance closely approximates the full one.

Note that both definitions of spectral distance are proper distance metrics over the space

of graph Laplacian eigenvalues. However, the spectral distance is not able to distinguish graphs

with the same sets of Laplacian eigenvalues (referred to as cospectral graphs [61]). Thus, there

could exist multiple coarse graphs corresponding to the same spectral distance.
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3.4.3 Relation to Graph Coarsening

To illustrate the connections between spectral distance and graph coarsening, we first

consider the ideal case when merged nodes within the same partitions have the same normalized

edge weights:

Proposition 3.4.1. Let the graph Gc be obtained by coarsening G with respect to a set of partitions

P = {S1,S2, . . . ,Sn}. IfP is selected such that every node in a partition has the same normalized

edge weights,

w(i)

d(i)
=

w(j)

d(j)
for all vi, vj ∈ S and S ∈ P (3.9)

then

SDfull(G,Gc) = 0 and SDpart(G,Gc) = 0.

Therefore, the ideal graph coarsening attains a minimal (full and partial) spectral distance.

We next provide a more general result on how the spectral distance can capture the structural

changes in the graph coarsening framework. Consider the basic coarsening where the coarse

graph is formed by merging one pair of nodes (i.e. n = N − 1). In this setting, we prove the

following:

Proposition 3.4.2. Suppose the graph Gc is obtained from G by merging a pair of nodes v(a) and

v(b). If the normalized edge weights of merged nodes satisfy

∥∥∥∥w(a)

d(a)
− w(b)

d(b)

∥∥∥∥
1

≤ ϵ,
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then the spectral distance between the original and coarse graphs is bounded by

SDfull(G,Gc) ≤ Nϵ and SDpart(G,Gc) ≤ nϵ.

The above proposition states that the spectral distance is bounded by the discrepancy of

normalized edge weights of merged nodes. The bound implies that minimizing the nodes’ edge

weights within the same partitions results in bounded spectral perturbations.

3.5 Algorithms

We propose two graph coarsening algorithms to produce coarse graphs with minimal small

spectral distance. The first follows from Proposition 3.4.2 in that the coarse graphs are formed

by iteratively merging graph nodes with similar normalized edge weights. The second algorithm

is inspired by spectral clustering: we leverage on the combinations of normalized Laplacian

eigenvectors combined with k-means clustering to find the graph partitions and the corresponding

coarse graphs. Though different, both algorithms are shown to generate coarse graphs of bounded

spectral distance.

3.5.1 Multilevel Graph Coarsening

The Multilevel Graph Coarsening (MGC) algorithm iteratively merges pairs of nodes which

share similar connections. During each iteration, MGC searches for the pair of nodes with

the most similar normalized edge weights and merges them into super-nodes. To reduce the

38



Algorithm 1 Multilevel Graph Coarsening (MGC)

1: Input: Graph G = (V , E ,W ) and target size of the coarse graph n.
2: s← N
3: while s > n do
4: for vi ∈ Vs do
5: for vj ∈ Ni do
6: ds(i, j) =

∥∥∥w(i)
d(i)
− w(j)

d(j)

∥∥∥
1

7: end for
8: end for
9: imin, jmin = argmini,j ds(i, j)

10: s← s− 1
11: Merge nodes vimin and vjmin to form the coarse graph Gs.
12: end while
13: return Gn = (Vn, En,Wn)

computational cost, we constraint the candidate pairs of graph nodes to be within 2-hop distance.

We denote Ni as the set of nodes that are within 2-hops distance from node vi. The pseudo-code

of MGC is presented in Algorithm 1.

Analysis. The following corollary bounds the spectral distance of MGC algorithm:

Corollary 3.5.1. Suppose the graph Gc is coarsened from G by iteratively merging pairs of nodes

v(as) and v(bs) for s from N to n+ 1, if the normalized edge weights of merged nodes satisfy,

∥∥∥∥w(as)

d(as)
− w(bs)

d(bs)

∥∥∥∥
1

≤ ϵs,

then the spectral distance between the original and coarse graphs is bounded by

SDfull(G,Gc) ≤ N
n+1∑
s=N

ϵs, SDpart(G,Gc) ≤ n
n+1∑
s=N

ϵs

The bound is a direct corollary of Proposition 3.4.2.
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Time complexity. The time complexity of MGC is O(M(N + n)(N − n)), which is derived

as follows: For each iteration, the computational cost of the 1-norm in line 6 is O(s). Then

the time complexity of the while loop in line 3 is O(
∑N

s=n s · M) = O(M n+N
2

(N − n)) =

O(M(N + n)(N − n)). When n ≈ N , the complexity reduces to O(MN). On the other hand,

for n≪ N the complexity becomes O(MN2).

3.5.2 Spectral Graph Coarsening

The spectral graph coarsening (SGC) algorithm identifies the coarsening partitions by

attempting to minimize the k-means cost of rows of Laplacian eigenvectors. Different from

traditional spectral clustering, we select eigenvectors with the eigenvalues corresponding to the

head and tail eigenvalues as in the definition of partial spectral distance in Definition 3.4.5.

The procedure is described in Algorithm 2. Notice that, since k1 is unknown at the start, SGC

algorithm iterates over different possible combinations of eigenvectors and selects the coarsening

with minimum k-means cost.

Analysis. The following theorem relates the partial spectral distance with the k-means cost:

Theorem 3.5.2. Let the coarse graph Gc be obtained from Algorithm 2 with graph partition P∗,

suppose that the graph coarsening is consistent, i.e., Lc = CLC⊤, and let the k-means cost

satisfy F(U ,P∗) < 1. Then, the partial spectral distance is bounded by

SDpart(G,Gc) ≤
(n+ 2)F(U ,P∗) + 4

√
F(U ,P∗)

1−F(U ,P∗)
.

The theorem states that the spectral distance is bounded by the k-means clustering cost.
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Algorithm 2 Spectral Graph Coarsening (SGC)

1: Input: Graph G = (V , E ,W ), eigenvectors U of the normalized Laplacian L, target size n.
2: if λ(N) ≤ 1 then
3: Set k1 ← n ▷ Spectral Clustering
4: else
5: Set k1 ← argmink{k : λ(k) ≤ 1, k ≤ n,λ(N − n+ k + 1) > 1} ▷ Iterative Spectral

Coarsening
6: end if
7: k2 ← N − n+ k1.
8: while k1 ≤ n do
9: Uk1 ← [U(1 : k1);U(k2 + 1 : N)]

10: Apply k-means clustering algorithm on the rows of Uk1 to obtain graph partitions P∗
k1

that optimizes the following k-means cost:

F(Uk1 ,P∗
k1
) =

N∑
i=1

(
r(i)−

∑
j∈Si

r(j)

|Si|

)2

where r(i) is the ith row of Uk1 .
11: k1 ← k1 + 1, k2 = N − n+ k1
12: end while
13: return coarse graph Gc generated with respect to the partitions with minimum k-means

clustering cost as
P∗ = argmin

k1
F(Uk1 ,P∗

k1
)

Further, when the graph eigenvectors point to well-separated clusters and the k-means cost is

small, the spectral distance is smaller. The main assumption posed is that Lc = CLC⊤, which

may not hold for some graphs. For situations when this assumption is not met, the claim can

be readily reworked to hold for the combinatorial Laplacian matrix for which the relation Lc =

PLP⊤ always holds.

Time complexity. Excluding the one-time partial sparse eigenvalue decomposition that takes

roughly O(R(Mn+Nn2)) time using Lanczos iteration with R restarts and a graph of M edges

(we need the smallest and largest n eigenvalues and eigenvectors) [78], the time complexity

of SGC is O(KTNn2), where K refers to the number of times the while loop is executed with
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Table 3.1: Classification accuracy on coarse graphs that are five times smaller.

Datasets MUTAG ENZYMES NCI1 NCI109 PROTEINS PTC

EM 78.90 18.92 62.81 61.35 63.72 48.56
LV 79.01 24.68 63.59 60.49 62.72 50.24

METIS 77.62 24.79 59.74 61.64 63.70 49.34
SC 80.37 24.40 63.14 62.57 64.08 50.16

SGC 80.34 29.19 63.94 63.69 64.70 52.76
MGC 81.53 30.89 66.07 63.55 65.26 52.28

Original 86.58 37.32 66.39 64.93 66.60 53.72

K ≤ n and O(TNn2) is the complexity of the k-means clustering (whereas T bounds the number

of k-means iterations).

3.6 Experiments

We proceed to empirically evaluate the proposed graph coarsening algorithms on tasks

involving real-world and synthetic graphs. Our first experiment considers the classification of

coarsened graphs, whereas the second examines how well one may recover the block structure of

graphs sampled from the stochastic block model. We show that our graph coarsening algorithms,

which optimize the spectral distance, yield minimal classification accuracy degradation and can

recover the block structures with high accuracy. Codes for both experiments are publicly available1.

Baseline Algorithms We compare our methods with the following graph coarsening and partitioning

algorithms as,

• Edge Matching (EM). The coarse graphs are formed by maximum-weight matching with

the weight calculated as W (i, j)/max{d(i), d(j)} [79].

1https://github.com/yuj-umd/spectral-coarsening
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• Local Variation (LV). Local variation methods coarsen a graph in a manner that approximately

preserves a subset of its spectrum [9]. Here, we used the neighborhood-based variant and

aimed to preserve the first max(10, n) eigenvectors and eigenvalues. Alternative choices

for the preserved eigenspace may yield different results.

• METIS. This is a standard graph partitioning algorithm based on multi-level partitioning

schemes that are widely used various domains, such as finite element methods and VLSI

[13].

• Spectral Clustering (SC). Spectral clustering is a widely used graph clustering algorithm

that finds densely connected graph partitions determined from the eigenvectors of the graph

Laplacian [19]. For a review of recent results on the fast approximation of SC, see [78].

Note that to apply graph partitioning algorithms for coarsening purposes, we coarsen the graphs

with respect to the graph partitions following the standard coarsening process as in equation 3.2.

3.6.1 Graph Classification with Coarse Graphs

Graph classification is a well studied graph machine learning problem, with a variety of

applications to material design, drug discovery and computational neuroscience [6, 71, 80, 81].

However, some graph classifiers are not scalable for large graphs, such as those encountered in

social network analysis and computational neuroscience [81, 82]. Graph coarsening can reduce

the graph sizes in the datasets, which provides acceleration on the training and inference of graph

classification models. However, if the coarsening is not carefully done, it can also result in loss of

useful information and, thus, of classification accuracy. In the following, we quantify the effect of

different coarsening choices to graph classification. We utilize various graph coarsening methods
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Table 3.2: Recovery Accuracy of Block Structures from Random Graphs in Stochastic Block
Model

p, q Type EM LV METIS SC MGC SGC

0.2, 0.01
Associative 0.1819 0.3076 0.7792 0.7845 0.3664 0.7845

Disassortative 0.0956 0.1071 0.0815 0.0877 0.1093 0.0850
Mixed 0.1052 0.1944 0.2389 0.3335 0.6062 0.7107

0.5, 0.1
Associative 0.1015 0.1902 0.7820 0.7930 0.2868 0.7930

Disassortative 0.0854 0.1068 0.0602 0.0788 0.1474 0.7901
Mixed 0.0848 0.2241 0.2883 0.4074 0.7343 0.7699

0.8, 0.3
Associative 0.0823 0.1139 0.5596 0.6532 0.1172 0.6532

Disassortative 0.0836 0.0976 0.0776 0.1342 0.7784 0.7931
Mixed 0.0888 0.1503 0.2929 0.3909 0.5428 0.7209

to reduce the size of graphs in the datasets before passing them to the graph classifier. We then

evaluate the quality of graph coarsening based on the classification accuracy drop (as compared

to the same classifier on the original graphs).

Evaluation We coarsen the graph samples until n = N/5, i.e., until their number of nodes is

reduced by a factor of five. The classification performance are evaluated based on 10-fold cross

validation—in accordance to previous works [5, 6, 71].

Datasets. We use five standard graph classification datasets for graph classification evaluation [80,

83, 84]. Each dataset contains a set of variable-sized graphs stemming from a variety of applications.

The graph statistics can be found in Table A.1.

The graph classifier. We use the Network Laplacian Spectral Descriptor (NetLSD) combined

with a 1-NN classifier as the graph classification method [71]. NetLSD was shown as an efficient

graph feature extractor and achieve state-of-the art classification performance [71]. Note that

NetLSD extracts graph features that only depend on the graph structure and does not consider
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Table 3.3: Statistics of the graph benchmark datasets.

Datasets MUTAG ENZYMES NCI1 NCI109 PROTEINS PTC

Sample size 188 600 4110 4127 1108 344
Average |V | 17.93 32.63 29.87 29.68 39.06 14.29
Average |E| 19.79 62.14 32.3 32.13 72.70 14.69

# classes 2 6 2 2 2 2

node and edge features.

Results Table 3.1 shows the graph classification performance on coarse graphs. In all cases,

the proposed graph coarsening algorithms yield better classification accuracy than alternative

methods. Interestingly, for four out of the six datasets (NCI1, NCI109, PROTEINS, and PTC)

there is almost no degradation to the classification accuracy induced by coarsening, even if the

graphs in the coarse dataset are five times smaller—this, we believe, is an encouraging result.

3.6.2 Block Recovery in the Stochastic Block Model

In this experiment, we test whether coarsening algorithms can be used to recover the block

structures of random graphs sampled from stochastic block models.

The stochastic block model is a random graph model that is commonly used to evaluate

graph partitioning and clustering algorithms [85, 86]. The model is parameterized by a probability

matrix B ∈ [0, 1]n×n, with graph nodes in blocks i and j being connected with probability

B(i, j). Random graphs can be generated from the stochastic block model by sampling the

upper triangular entries W (i, j) in accordance with the edge probability. The lower triangular

entries are then set as W (j, i) = W (i, j).

We parameterize B with p and q as follows:
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• Assortative. The diagonal entries of B are p and the off-diagonal entries are q.

• Disassortative. The diagonal entries of B are q and the off-diagonal entries are p.

• Mixed. The entries of B are randomly assigned with p and q (each with probability 1/2).

Evaluation We evaluate the performance of graph coarsening algorithms by measuring the discrepancy

between the recovered graph partitions and the ground-truth blocks. We use the Normalized

Mutual Information (NMI) to measure the recovery error between any two graph partitions. The

definition of NMI can be found in the supplementary material.

For each stochastic block model setting, we set N = 200 and n = 10, with 20 nodes for

each partition. We repeat the experiment 10 times and report the average NMI metric achieved

by each method.

We compare our graph coarsening algorithms with the graph coarsening and partitioning

algorithms mentioned earlier. Table 3.2 reports the average NMI in three different stochastic

block model configurations. Our proposed methods outperform other methods in almost all

cases. In particular, our methods achieve high recovery accuracy for disassortative and mixed

settings, where traditional graph partitioning algorithms fail to recover accurately. The EM

and LV coarsening algorithms are not optimized for block recovery and thus exhibit far worse

performance on this task.

3.7 Conclusion

In this chapter, we propose a new framework for graph coarsening. We leverage the

spectral properties of normalized Laplacian matrices to define a new notion of graph distance

that quantifies the differences between original and coarse graphs. We argue that the proposed
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spectral distance naturally captures the structural changes in the graph coarsening process, and

we propose graph coarsening algorithms that guarantee that the coarse graphs exhibit a bounded

spectral distance. Experiments show that our proposed methods can outperform other graph

coarsening algorithms on graph classification and block recovery tasks.
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Chapter 4: Powerful Graph Neural Networks with Sequence Modeling

4.1 Introduction

Recently, graph neural network models (GNN) have emerged as a poweful tool to tackle

challenging graph-related problems such as graph classification, link predictions and node classification

[4, 5, 7, 26, 27, 28]. Most GNN models follow the message-passing paradigm where the nodes

information are propagated along edges to form new node representations [4]. The final graph

representations are the result of applying a pooling function over all the node representations.

Various message-passing GNN (MPNN) models have been proposed to address graph-

related problems [87, 88]. For example, Xu et al. proposed to use multi-set functions for node

aggregation and graph pooling [6, 89]. Gilmer et al. proposed a general message-passing scheme

utilizing Set2Set to obtain graph representations [4, 90]. Gao and Ji proposed a top-k graph

pooling function by downsampling the graph nodes [91].

Despite their recent success, MPNN models suffer from the fundamental limitation of

expressiveness. As pointed out by previous studies, the expressive power of standard MPNN does

not exceed the 1-dimensional Weisfeiler-Lehman (WL) Isomorphism Test [6, 39]. Therefore,

MPNN models cannot distinguish pairs of graphs that the 1-dimensional WL cannot distinguish.

For example, MPNN models cannot distinguish regular graphs of different structures. Note that

k-regular graphs are defined as graphs with all the node degrees are k but could have different
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structures. One example is shown in Figure 4.3).

More generally, Garg et al. recently show MPNN cannot capture certain graph properties,

which hampers the model effectiveness in a wide range of applications [9, 92, 93, 94].

To tackle the above problem, previous studies proposed to equip additional features to the

node representations to improve model expressiveness. For example, Sato et al. and Abboud et

al. proposed to assign random node identifiers to improve the expressiveness [2, 95]. However,

MPNN models with random node identifiers usually do not maintain the properties of equivariance

and invariance, which are key properties in the GNN model design. Bouritsas et al. used subgraph

counts as additional features [94]. The manual feature engineering requires domain-specific

knowledge to achieve the optimal performance for certain applications[94].

Recent work introduced permutation-sensitive functions to formulate powerful permutation-

invariant graph functions [30, 96, 97, 98]. For example, in the proposed GraphSAGE model,

Hamilton et al. used a Long Short-Term Memory (LSTM) aggregator on sampled sets of neighbors

to extract expressive representations [30]. Murphy et al. proposed Relational Pooling to build

powerful graph presentations with permutation-sensitive functions. However, there are limitations

of previous work: LSTM aggregators in GraphSAGE model randomly selects the node permutations

which does not satisfy the permutation invariance; Relational Pooling methods requires expensive

computation for all n! possible node permutations which makes it difficult to generalize to

applications with large-scale graphs.

In this work, we propose SeqGNN, a new graph neural network paradigm that improves

the expressiveness of GNN models. Leveraging on the rich expressiveness of sequence models,

SeqGNN represents graphs as the composition of sequence representations. With the design

of sequence modeling techniques, SeqGNN models can form expressive graph representations

49



(a) Graph

(b) Permutation

(c) Sequence

Figure 4.1: Relationships between graphs, node permutations and node sequences. The
node permutation is the ordering of the graph nodes and the node sequence contain the edge
information between the consecutive nodes.

while maintaining permutation invariance. In addition, SeqGNN can distinguish non-isomorphic

graphs which cannot be distinguished by MPNN. We further show that SeqGNN models achieve

competitive performance in the real-world graph classification tasks.

4.2 Related Work

Message Passing GNN Message-Passing GNN models have been the primary paradigms of

GNN models. Previous work proposed various convolutional and pooling functions that achieve

excellent performance in a variety of domains [6, 28, 29, 30, 39, 99, 100]. For example, Xu et al.

proposed to use multi-set functions for graph aggregation and pooling [6]. Gilmer et al. proposed

a general message-passing scheme utilizing Set2Set to obtain graph representations [4, 90].

Expressive Power of GNN Xu et al. and Morris et al. first pointed that MPNN cannot exceed

the expressive power of 1-WL isomorphism tests. Abboud et al. and Sato et al showed that

associating graph nodes with extra node features, which can be as simple as random initialization,

can improve the expressive power [2, 101]. Loukas et al. theoretically proved that when the
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Sequence 
Modeling

p1
p2

… 
pK

Pooling

Graph
Representation !!Input graph G: 

":adjacent matrix
$: node features

Figure 4.2: The overall framework of the SeqGNN model. (1) The first step is to represent
graphs as the set of node sequences. The node sequence consists of the permutation of graph
nodes and their associated edge information between consecutive nodes. The node sequences
and the associated weights are determined by the sequence sampling methods and the specific
graph structures. (2) The second step is learn the sequence representations which are further
combined to form the graph representations.

nodes are equipped with the unique node identifiers, GNN models can approximate any Turing

computable functions over connected attributed graphs [32]. Maron et al. proposed high-order

graph networks that are more powerful GNN but suffer from high computational complexity[41,

42].

Sequence Modeling Sequence modeling is a type of machine learning task that involves predicting

or understanding a sequence of data points. Sequence data consist of data points where each

element in the sequence has a particular position, and the arrangement of these elements carries

significant information. Sequence modeling methods have been extensively studied in the field

of natural language processing and temporal data analysis [102, 103]. Recurrent Neural Network

(RNN) and its variants are able to encode variable-sized sequence inputs to fixed-sized representations

[102, 103]. Recently, attention-based models such as transformers have been effectively applied

to a wide range of domains[100, 104].
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4.3 Preliminaries

4.3.1 Notations

Graph A graph is represented as G = (V ,W ,H), with V as the set of graph nodes with n = |V|,

W ∈ Rn×n as the adjacent matrix and H ∈ Rn×d as the node representations. We denote by

vi ∈ V as the node indexed at i andNs(vi) as the set of neighbors of vi within s hops (We denote

N (vi) = N1(vi). We use hi as the node representation of node vi and hG as the graph-level

representation.

Permutation We denote a permutation over integers from 1 to n as a list of node indices π =

{v1, v2, ..., vn}. The corresponding permutation matrix is denoted as Pπ. We use Π to denote

the set of all possible permutations with |Π| = n!. π−1 is denoted as the inverse permutation

of π. A graph permutated with π is denoted as Gπ = (Vπ,Wπ,Hπ) where the node indices,

weight matrix and feature matrix are permutated over π denoted as Vπ, Wπ = PπWP T
π and

Hπ = PπH .

Sequence We denote a sequence as x = {x1, x2, ..., xn}where the elements are constructed from

the graph G and the node permutation π. The elements xi contains the node information of vi as

well as other structural information such as the edge information between vi and vi+1. We use

X ∈ Rn×D to denote the sequence where Xi,: contains the element at position i.

The relationships of the graph, permutation and sequence is captured in Figure 4.1. We use

a function SeqDec : (G,π)→ Rn×D to denote the relationship as

Xπ = SeqDec(G,π) (4.1)
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(a) Graphs (b) MPNN Decomposition: Rooted subtree (c) SeqGNN Decomposition: Sequence

Sequence difference

Figure 4.3: Example: (a) Regular graphs that cannot be distinguished by MPNN and 1-WL; (b)
With k layers of message passing, node representations of MPNN models contain information
from nodes that are k hops away. The information flow to compute the node representations can
be represented as the rooted subtrees where root node absorb the information flowed from the
leaf nodes, as shown in the figure [1, 2]; Due to the anonymity of graph nodes, the subtrees are
indistinguishable for regular graphs. (c) SeqGNN formulates the graph as the composition of
sequence representations with node permutation and edge information. Despite the anonymity
of graph nodes, the sequences can still distinguish two graphs because of differences in the edge
patterns.

4.3.2 Graph and Sequence Models

Graph Neural Network

GNN models compute the graph representations from the node features H and graph

structures W , denoted as GNN : (Rn×d,Rn×n) → Rd. In particular, MPNN, one of the most

popular GNN models, iteratively updates node representations by aggregating information from

neighboring nodes and the graph representation is obtained by applying the pooling function on

the corresponding node representations [4, 6, 9],

MPNN(H ,W ) = Pool(hv, v ∈ V) (4.2)
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where hi
u is the representation of node u at iteration i and Msg is the message function that

aggregates neighborhood information.

h(i)
v = Aggregate(i)(h(i−1)

v ,m(i)
v ),

m(i)
v = Msg(i)({h(i−1)

u : u ∈ N (v)})
(4.3)

Sequence Model We define a sequence model as Seq : Rn×D → Rd that takes a variable-length

sequence input and output a fixed-length representation. In this work, we use Long Short-Term

Memory (LSTM) as the main sequence function [96, 103].

Permutation Invariance Permutation invariance is one of the key properties of GNN models,

that is, the graph representations remain invariant under any permutation applied on the nodes.

GNN(H ,W ) = GNN(Hπ,Wπ),∀π ∈ Π. (4.4)

Note that sequence models do not necessarily follow the permutation invariance property.

4.4 Designing Graph Neural Networks with Sequence Modeling

4.4.1 Overview

The core design of SeqGNN models is to represent the graph as the compositions of

sequence representations as

SeqGNN(H ,W ) = ρ

(∑
π∈Π

pθ(π|H ,W ) · Seq(Xπ)

)
(4.5)
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where pθ(π|H ,W ) is the weight associated with parameters θ and ρ is a non-linear function

such as MLP. In this work, we normalize the total weights to 1 so that the graph representation

is the nonlinear function applied to the expectation of the sequence function results as

SeqGNN(H ,W ) = ρ (Eπ∼pθ
Seq(Xπ)) (4.6)

In the next, we present the key components that form the SeqGNN model. The overall

framework is illustrated in Figure 4.2.

4.4.2 Express Graphs as Combinations of Sequences

One of the main components is to decompose the graph into a set of sequences Xπ and the

associated weights pθ(π|H ,W ). The goal is to design the decomposition such that the resulting

sequences and weights can maximally preserve the original graph information while maintaining

the property of permutation invariance.

We start with the following proposition on the conditions of permutation invariance

Proposition 4.4.1 (Permutation Invariance). SeqGNN(H ,W ) is permutation invariant if the

sequence weights satisfies

pθ(ππ
′|Hπ,Wπ) = pθ(π

′|H ,W ),∀π,π′ ∈ Π. (4.7)

Proof. The permutation-invariant pooling function on the permutated graph inputs Gπ can be
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expressed as,

SeqGNN(Hπ,Wπ)

= ρ

(∑
π′′∈Π

pθ(π
′′|Hπ,Wπ)Seq(Xππ′′)

)

= ρ

(∑
π′∈Π

pθ(π
−1π′|Hπ,Wπ)Seq(Xπ′)

)

( Let π′ = ππ′′, then π′′ = π−1π′)

= ρ

(∑
π′∈Π

pθ(π
′|H ,W )Seq(Xπ′)

)

(by the assumption)

= SeqGNN(H ,W )

The proposition only requires the conditions on the weights of sequence without any assumptions

of the sequence function. Guided by the proposition, we design the following sequence modeling

method.

4.4.3 Sequence Modeling

Sequences of graph nodes and the associated edges are generally considered as the non-

repeating node paths sampled from the graph. Random-walk based traversal algorithms have

been proposed to sample node neighbors to learn effective node representations [105, 106, 107].

A major challenge is to design the sequence weights such that SeqGNN remains permutation

invariant to random permutations. One trivial solution is to asssign equal probability to every

possible sequence, which is the Relational Pooling (RP-GNN) formulation proposed by Murphy
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Table 4.1: Comparison between MPNN and SeqGNN

Model MPNN SeqGNN

Basic component Subtree Sequence
Weight of components Equal Unequal

# of Components n # of samples
Permutation Invariance yes yes

Can distinguish regular graphs? no yes
Complexity O(nk) O(# of samples)

et al. [97, 98],

RP-GNN(H ,W ) = ρ

(
1

n!

∑
π∈Π

Seq(Xπ)

)
(4.8)

However, the naive formulation requires iterating over all possible node permutations. Next, we

will present the sequence modeling method that efficiently builds the permutation-invariant GNN

models leveraging node information and specific graph structures.

We provide a general sequence model that generates a wide range of sequences as well as

the associated weights satisfying Proposition 4.4.1.

The sequence path starts with equal probability over all possible nodes, the next node is

selected from the unvisited neighbors with probability 1 − ϵ and other unconnected nodes with

probability ϵ.

p(vi+1|vi) =


(1− ϵ)/|N (vi)| if N (vi) > 0

ϵ/(n− i) otherwise

(4.9)

When ϵ is small, the sequence models can be approximated by the algorithm given in

Algorithm 3.
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Algorithm 3 Sequence Modeling from Graphs

Input: G = (V ,W ,H)
Output: sequence x = {x1, x2, ..., xn} and the associated weight p

v1 ∼ Uniform(1, n), unvisited list = [1, 2, ..., n]
p = 1/n
Remove v1 from unvisited list
for i = 2, ..., n do

Remove visited elements from N (vi−1)
if N (vi−1) is not null then

vi ∼ Uniform(N (vi−1)),
p = p · 1/|N (vi−1)|

else
vi ∼ Uniform(unvisited list)
p = p · 1/|unvisited list|

end if
Remove vi from unvisited list

end for
Generate x = SeqDec(G,π)
Return x and p

4.4.4 Expressive Power of SeqGNN

As shown in Figure 4.3, SeqGNN models have the expressive power to distinguish pairs

of regular graphs which MPNN cannot distinguish. We assume the the sequence function is

injective, then we have the following results,

Proposition 4.4.2. Suppose two graphs G1 and G2 can be distinguished by MPNN, there exist a

SeqGNN model that can distinguish the graphs.

Proof. As pointed in Xu et al.’s work, graph representations from MPNN models are formed

as the composition of subtrees. Supposing the multiset of subtree of G1 and G2 are S1 and S2

respectively, then at least two subtrees are different in S1 and S2.

Since the subtrees are of the same heights (the number of graph convolutional layers), we

have the following situations,
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• At least one of the nodes are different at the certain level

• Edge information is different

• Different number of nodes at the certain level

All situations will lead to different sequences or (and) different weights based on Algorithm

1. As we assume the sequence function and pooling functions are injective, there exist a SeqGNN

models can distinguis the two different sequence multiset (and the associated weights).

The proposition formally states that SeqGNN models are at least as powerful as MPNN

models. Combined with the case for regular graphs, we conclude that SeqGNN models are more

powerful than MPNN models.

4.4.5 Complexity

The complexity of SeqGNN depends on the specific graph structures and the sequence

modeling methods. For certain structures such as ring graphs or line graphs, the number of

possible sequences is O(n) while for other graphs such as complete graphs, the number of

possible sequences could be O(n!).

In the following, we present several practical techniques to improve the empirical performance

in real-world applications.

4.4.6 Practical Techniques

4.4.6.1 Sequence Sampling

In practice, it is often infeasible to enumerate all possible sequences for graphs. Therefore,

we propose to use the sequence sampling to approximate SeqGNN formulation. Suppose the
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Graph Coarsening

Figure 4.4: Graph coarsening techniques to reduce the complexity
.

number of samples is K and each permutation sample is πi following Algorithm 3, then we

rewrite the SeqGNN formulation as

SeqGNN′(H ,W ) = ρ (Eπ∼pθ
Seq(Xπ))

= ρ

(
1

K

K∑
i=1

Seq(Xπi
)

)

≈ 1

K
·

K∑
i=1

ρ (Seq(Xπi
))

(4.10)

Then we use the averaged sample output to approximate the SeqGNN representations.
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4.4.6.2 Combine Message Passing and SeqGNN

SeqGNN models presented here can work directly on the raw graph information to form

graph-level representations. In practice, the combination of message-passing and SeqGNN can

result in improved empirical results. As we will show later, SeqGNN with message passing layers

can outperform regular MPNN models with traditional pooling functions.

4.4.6.3 Graph Coarsening

Graph coarsening is one of the most commonly used techniques to reduce the graph size

while preserving the key properties of graphs. To reduce the complexity, one approach is to

encode certain graph substructures into units so that the sequences include the substructures as a

whole structure. An example is illustrated in Figure 4.4.

4.4.6.4 Automorphism

The graph automorphisms are node permutations that preserves the graph structures, i.e. the

isomorphisms from a graph to itself. The graph automorphisms capture the internal symmetries

within graphs. Thus the sequence and the probability associated with the sequence starting with

node i will be the same as j when node i and j are mapped in the graph automorphism. Thus the

graph automorphic structures can significantly reduce the repeated weight assignment to similar

sequences.
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Table 4.2: Results (measured by accuracy: %) on TUDataset.

Model PROTEINS NCI1 IMDB-B IMDB-M COLLAB

GIN [1] 76.2 ± 2.8 82.7 ± 1.7 75.1 ± 5.1 52.3 ± 2.8 80.2 ± 1.9
DGCNN [108] 75.5 ± 0.9 74.4 ± 0.5 70.0 ± 0.9 47.8 ± 0.9 73.8 ± 0.5
IGN [109] 76.6 ± 5.5 74.3 ± 2.7 72.0 ± 5.5 48.7 ± 3.4 78.4 ± 2.5
PPGN [41] 77.2 ± 4.7 83.2 ± 1.1 73.0 ± 5.8 50.5 ± 3.6 80.7 ± 1.7
CLIP [110] 77.1 ± 4.4 N/A 76.0 ± 2.7 52.5 ± 3.0 N/A
SIN [111] 76.5 ± 3.4 82.8 ± 2.2 75.6 ± 3.2 52.5 ± 3.0 N/A
CIN [112] 77.0 ± 4.3 83.6 ± 1.4 75.6 ± 3.7 52.7 ± 3.1 N/A

SeqGNN (Ours) 77.8 ± 2.6 83.7 ± 1.1 75.3 ± 3.4 52.8 ± 2.9 80.6 ± 1.2

4.4.7 Training and Inference

We consider the graph classification problem: given a set of graph samples

D = {(G1,y1), (G2,y2), ..., (GN ,yN)} where yi ∈ Y is the label of graph Gi. The objective is to

minimize the empirical loss as,

min
θ
L(D;θ) = 1

N

N∑
i=1

L(yi,SeqGNN(Hi,Wi))

=
1

N

N∑
i=1

L(yi, ρ(Eπ[Seq(Xi,π)]))

(4.11)

where θ denotes the set of parameters in the GNN model and L is the loss function such as the

cross entropy loss.

Training The objective is a standard stochastic optimization with learnable parameters θ and

random variable π. We use the stochastic gradient descent to find the optimal parameters θ∗

[97, 113, 114]. At step t, we uniformly sample a mini-batch of example graphs as

B = {(G ′(1),y′
(1)), (G ′(2),y′

(2)), ..., (G ′(b),y′
(b))} from the training set and the gradient is computed
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as

gt =
1

b

b∑
i=1

∇θL(y
′
i,SeqGNN(G ′i))

=
1

b

b∑
i=1

∇θL(yi, ρ(Seq(Xi,πi
)))

(4.12)

where πi is the random permutation sampled following Algorithm 3.

We update the parameters by the following,

θt = θt−1 − ηtgt

where ηt ∈ (0, 1) is the learning rate at step t with limt→∞ ηt = 0,
∑

ηt = ∞ and
∑

η2t < ∞.

Note that the algorithm is a standard stochastic optimization algorithms used in training neural

networks.

The above stochastic gradient descent essentially optimizes the following modified objective

with expectation outside the function L and ρ as in [97],

min
θ
L̃(D;θ) = 1

N

N∑
i=1

Eπ[L(yi, ρ(Seq(Xi,π)))] (4.13)

When the loss function L is convex and ρ is the identity function, the modified objective function

is an upper bound of the original loss function following Jensen’s inequality [97]. We denote θ∗

as the optimal parameters of the optimization problem 4.13. Similar to the analysis of stochastic

gradient descent, the parameters θt converges to θ∗ with probability 1 under mild conditions

[97, 115].
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Inference Assuming θ∗ are the optimal parameters, the output ŷ is estimated as the average of

the predicted sample outputs as,

ŷ =
1

n′

n′∑
i=1

SeqGNN(H ,W ) =
1

n′

n′∑
i=1

ρ (Seq(Xπi
)) (4.14)

where n′ is the number of inference samples with πi as the random permutation sampled from

Algorithm 3.

4.5 Experiments

In the experiments, we evaluate the SeqGNN model on real-world benchmark datasets. All

datasets have been commonly used to evaluate the effectiveness of GNN models [6, 39, 96]. The

codes are publicly available 1.

4.5.1 Datasets

The datasets contain 5 real-world benchmarks from TUDataset. PROTEINS and NCI1

are bioinformatics datasets; IMDB-BINARY, IMDB-MULTI, and COLLAB are social network

datasets. We follow the standard steps to preprocess the datasets. Specifically, the node features

of bioinformatics graphs are categorical node labels, and the node features of social networks are

node degrees. More details about the datasets can be found in the supplementary material.

1
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4.5.2 Baseline models

We compare SeqGNN models with the following state-of the art graph learning models:

Graph Isomorphism Network (GIN)[6], Deep Graph Convolutional Neural Network (DGCNN)

[108], Provably Powerful Graph Network (PPGN) [41],Principal Neighbourhood Aggregation

(PNA) [116],Colored Local Iterative Procedure (CLIP) [110],Simplicial Isomorphism Network

(SIN) [111], and Cell Isomorphism Network (CIN) [112].

4.5.3 Model Configuration

We use 10-fold cross validation and report the average classification accuracy and standard

deviation. For SeqGNN models, we use LSTM as the main sequence function. We select the

number of sequence samples as 10. The hyper-parameters are chosen by our model selection

procedure as follows. For all datasets, 3 or 5 GNN layers (including the input layer) are applied,

and the LSTMs are used as the sequence functions. Batch normalization [117] is applied to every

hidden layer. All models are initialized using Glorot initialization [118] and trained using the

Adam SGD optimizer [119] with an initial learning rate of 0.001. The learning rate is decayed

by a factor of 0.5 every 50 epochs. The training is stopped when the number of epochs reaches

the maximum value of 400.

4.5.4 Main Results

Table 4.2 show the experiment results for the graph classification and regression tasks. For

all datasets, SeqGNN models achieve comparable or superior performance. Empirical results

indicate that the SeqGNN models effectively capture the key graph properties that are useful for
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Figure 4.5: Classification accuracy under different number of convolutional layers.

classification tasks.

4.5.5 Analysis of Expressive Power

In the experiment, we empirically compare the model performance under the same number

of convolutional layers. Note that GIN models are proved to be the most expressive models under

the message passing framework [1].

Figure 4.5 shows the plots of classification accuracy under the number of layers 1 and

2 for the NCI1 dataset. For both models, the classification accuracy improves as the number

of the convolutional layer increases. However, under each setting, SeqGNN models constantly

outperform GIN. In particular for k = 1, the MPNN models cannot learn much meaningful

information due to its limited expressive power while SeqGNN models can still achieve 75%

classification accuracy. The experiment validate the results in Proposition 4.4.2 that the SeqGNN

models can represent and learn more complex graph functions even with small number of convolutional

layers.
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4.6 Conclusion

In this chapter, we propose a novel graph neural network paradigm SeqGNN that provably

improves the expressiveness of GNN models. By formulating the graph representation as the

compositions of sequence representations, SeqGNN models can distinguish graphs that MPNN

cannot distinguish. Through the design of sequence modeling methods, SeqGNN achieves strong

expressive power while maintaining the permutation invariance properties. Empirical results

show that SeqGNN models achieve competitive performance on graph classification benchmarks.

We further show that combining message passing and SeqGNN achieves better performance

compared with traditional MPNN models.
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Chapter 5: Fast Spectral Clustering in GPU-CPU platforms

5.1 Introduction

Spectral clustering algorithm has recently gained popularity in handling many graph clustering

tasks such as those reported in [120, 121, 122]. Compared to traditional clustering algorithms,

such as k-means clustering and hierarchical clustering, spectral clustering has a very well formulated

mathematical framework and is able to discover non-convex regions which may not be detected

by other clustering algorithms. Moreover, spectral clustering can be conveniently implemented

by linear algebra operations using popular scientific software environments such as Matlab and

Python. Most of the available software implementations are built upon CPU-optimized Basic

Linear Algebra Subprograms (BLAS), usually accelerated using multi-thread programming. However,

such implementations scale poorly as the problem size or the number of clusters grow very large.

Recent results show that GPU accelerated BLAS significantly outperforms multi-threaded BLAS

libraries such as the Intel MKL package, LAPACK and Goto BLAS [123, 124]. Moreover, hybrid

computing environments, which collaboratively combine the computational advantages of GPUs

and CPUs, further boost the overall performance and are able to achieve very high performance on

problems whose sizes grow up to the capacity of CPU memory [125, 126, 127, 128, 129, 130].

In this chapter, we present a hybrid implementation of the spectral clustering algorithm which

significantly outperforms the known implementations, most of which are purely based on multi-
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core CPUs.

There have been reported efforts on parallelizing the spectral clustering algorithm. Zheng et

al. [131] presented both CUDA and OpenMP implementations of spectral clustering. However,

the implementation was targeted for a much smaller data size than the work in this chapter,

and moreover, their implementation achieve a relatively limited speedup. Matam et al. [132]

implemented a special case of spectral clustering, namely the spectral bisection algorithm, which

was shown to achieve high speed-ups compared to Matlab and Intel MKL implementations. Chen

et al. [133, 134] implemented the spectral clustering algorithm on a distributed environment using

Message Passing Interface (MPI), which is targeted for problems whose sizes that could not fit

in the memory of a single machine. Tsironis and Sozio [135] proposed an implementation of

spectral clustering based on MapReduce. Both implementations were targeted for clusters, and

involve frequent data communications which will clearly constrain the overall performance.

In this chapter, we present a hybrid implementation of spectral clustering on a CPU-GPU

heterogeneous platform which significantly outperforms all the best implementations we are

aware of, which are based on existing parallel platforms. We highlight the main contributions

as follows:

• Our algorithm is the first work to comprehensively explore the hybrid implementation of

spectral clustering algorithm on CPU-GPU platforms.

• Our implementation makes use of sparse representation of the corresponding graphs and

can handle extremely large input sizes and generate a large number of clusters.

• The hybrid implementation is highly efficient and is shown to make a very good use of

available resources.

• Our experimental results show superior performance relative to the common scientific
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software implementations

The rest of the chapter is organized as follows. Section II gives an overview of the spectral

clustering algorithm, while describing the important steps in some detail. Section III describes

the operating environment and the necessary software dependencies. Section IV provides a

description of our parallel implementation, while Section V evaluates the performance of our

algorithm with a comparison with Matlab and Python implementations on both synthetic and

real-world datasets. The codes are available on https://github.com/yuj-umd/fastsc.

5.2 Overview of Spectral Clustering Algorithm

Spectral clustering was first introduced in 1973 to study the graph partition problem [136].

Later, the algorithm was extended in [20, 137], and generalized to a wide range of applications,

such as computational biology [138, 139], medical image analysis [121, 122], social networks

[140, 141] and information retrieval [142, 143]. A standard procedure of the spectral clustering

algorithm to compute k clusters is described next [19],

• Step 1: Given a set of data points x1, x2, ..., xn ∈ Rd and some similarity measure s(xi, xj),

construct a sparse similarity matrix W that captures the significant similarities between the

pairs of points.

• Step 2: Compute the normalized graph Laplacian matrix as Ln = D−1L where L is the

unnormalized graph Laplacian matrix defined as L = D−W and D is the diagonal matrix

with each element Di,i =
∑n

j=1Wi,j .

• Step 3: Compute the k eigenvectors of the normalized graph Laplacian matrix Ln corresponding

to the smallest k nonzero eigenvalues.
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• Step 4: Apply the k-means clustering algorithm on the rows of the matrix whose columns

are the k eigenvectors to obtain the final clusters.

Given the similarity graph defined by the similarity matrix W , the basic idea behind spectral

clustering is to partition the graph into k partitions such that some measure of the cut between

the partitions is minimized. The traditional graph cut is defined as follows:

Cut(A1, A2, ..., Ak) =
1

2

k∑
i=1

W (Ai, Āi); (5.1)

W (A, Ā) :=
∑

i∈A,j∈Ā

wij (5.2)

To ensure that the each partition represents a meaningful cluster of reasonable size, two

alternative cut measures are often used, namely RatioCut and normalized cut Ncut. Note that

we use below |Ai| as the number of nodes in A and vol(A) as the sum of the degrees of all the

nodes in A.

RatioCut(A1, A2, Ak) =
1

2

k∑
i=1

W (Ai, Āi)

|Ai|
; (5.3)

Ncut(A1, A2, Ak) =
1

2

k∑
i=1

W (Ai, Āi)

vol(Ai)
; (5.4)

In our implementation, we focus on the problem of minimizing the Ncut which has an equivalent

algebraic formulation as defined next.

min
H

trace(H ′LH) subject to H ′DH = I (5.5)
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That is, we need to determine a matrix H ∈ Rn×k whose columns are indicator vectors,

which minimizes the objective function introduced above.

Since this problem is NP-hard, we relax the discrete constraints on H are removed, thereby

allowing H to be any matrix in Rn×k. Note that there is no theoretical guarantee on the quality of

the solution of the relaxed problem compared to the exact solution of the discrete version. It turns

out that the relaxed problem is a well-known trace minimization problem, which can be exactly

solved by taking H as the eigenvectors with the smallest k eigenvalues of the matrix Ln = D−1L

or equivalently the k generalized eigenvectors corresponding to the smallest k eigenvalues of

Lx = λDx. The k-means clustering is then applied on the rows of H to obtain the desired

clustering.

The algorithm described above begins with a set of d-dimensional data points and builds

the similarity graph explicitly from the pair-wise similarity metric. The similarity graph is

usually stored in a sparse matrix representation, which often reduces the memory requirement

and computational cost to linear instead of quadratic. For the general graph clustering whose

input is specified as a graph, our spectral clustering algorithm starts directly in Step 2. Otherwise,

we build our sparse graph representation from the given set of data points.

5.3 Environment Setup

5.3.1 The Heterogeneous System

The CPU-GPU heterogeneous system used in our implementation is specified in Table 5.1.

The CPU and the GPU communicate through the PCIe bus whose theoretical peak bandwidth

is 8 GB/s. The cost of data communication can be quite significant for large-scale problems. To
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Table 5.1: CPU and GPU specifics

CPU Model Intel Xeon E5-2690

CPU Cores 8

DRAM Size 128GB

GPU Model Tesla K20c

Device Memory Size 5GB GDDR5

SMs and SPs 13 and 192

Compute Capability 3.5

CUDA SDK 7.5

PCIe Bus PCIe x16 Gen2

achieve the best overall performance, our implementation leverages the GPU to compute the

most computationally expensive part while minimizing the data transfer between the host and the

device.

5.3.2 CUDA Platform

CUDA is a general-purpose multithreaded programming model that leverages the large

number of GPU cores to solve complex data parallel problems. The CUDA programming model

assumes a heterogeneous system with a host CPU and several GPUs as co-processors. Each GPU

has an array of Streaming Multiprocessors (SM), each of which has a number of Streaming

Processors (SP) that execute instructions concurrently. The parallel computation on GPU is

invoked by calling customized kernel functions using thousands of threads. The kernel function

is executed by blocks of threads independently. Each block of threads can be scheduled on any

Streaming Multiprocessors (SP) as shown in Figure 5.1. The kernel function takes as parameters

the number of blocks and the number of threads within a block.
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In addition, NVIDIA provides efficient BLAS libraries for both sparse1 and dense2 matrix

computations. Our implementation relies on the Thrust library, which resembles the C++ Standard

Template Library (STL) that provides efficient operations such as sort, transform, which greatly

improves productivity.

5.3.3 ARPACK Software

ARPACK is a software package designed to solve large-scale eigenvalue problems [144].

ARPACK is reliable and achieves high accuracy, and is widely used in modern scientific software

environments. It contains highly optimized Fortran subroutines that are able to solve symmetric,

non-symmetric and generalized eigenproblems. ARPACK is based on the Implicitly Restarted

Arnoldi Method (IRAM) with non-trivial numerical optimization techniques [145, 146]. In our

implementation, we adopt ARPACK++ 3 that provides C++ interfaces to the original ARPACK

Fortran packages and utilizes efficient matrix solver libraries such as LAPACK, SuperLU. The

eigenvalue problem is efficiently solved by collaboratively combining the interfaces of ARPACK++

and cuSPARSE library.

5.3.4 OpenBLAS

OpenBLAS4 is an open-source CPU-based BLAS library utilized by ARPACK++. It supports

multi-threaded acceleration through pthread programming or OpenMP by specifying corresponding

environment variables. OpenBLAS is a highly optimized BLAS library developed based on

1http://docs.nvidia.com/cuda/cusparse/
2http://docs.nvidia.com/cuda/cublas/
3http://reuter.mit.edu/software/arpackpatch/
4http://www.openblas.net/
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Figure 5.1: CUDA Program Model

GotoBLAS2, which has been shown to surpass other CPU-based BLAS libraries [123].

5.4 Implementation

5.4.1 Data Preprocessing

Given the d-dimensional data points, the preprocessing step constructs the similarity matrix

from the data points. The clustering problem is reformulated as a graph clustering where the

graph is represented by the similarity matrix.

As mentioned before, the similarity matrix is usually constructed to be sparse, which

reduces the memory requirement and enables high computational efficiency. The sparsity patterns

of the similarity matrices are highly dependent on the specific application. The following are
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several common ways to construct a sparse similarity matrix [19].

• λ-threshold graph: The similarity graph is constructed where data points are connected if

their similarity measure is above the threshold λ.

• ε-distance graph: The similarity matrix is construct by only connecting data points that are

within a spatial distance ε.

• k-nearest-neighbor graph: The similarity graph is constructed where two data points xi and

xj are connected only if either xi is among the k most similar data points of xj , or xj is

among the k most similar data points of xi. Note that the parameter k is unrelated to the

number k of clusters used in the next section.

The notion of the similarity measure between data points also varies depending on the

application. Typical measures are the following.

• Cosine Similarity Measure

CosineDist(xi, xj) =
⟨xi, xj⟩
∥xi∥2∥xj∥2

(5.6)

• Cross Correlation

CrossCorr(xi, xj) =
⟨xi − x̄i, xj − x̄j⟩
∥xi − x̄i∥2∥xj − x̄j∥2

(5.7)

• Exponential decay function

ExpDecay(xi, xj) = e
∥xi−xj∥2

2σ2 (5.8)

Although the sparse patterns and similarity measures are different depending on the application,

the general construction of the similarity matrix can be accelerated under the CUDA programming
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Algorithm 4 Construction of Sparse Similarity Matrix
1: Transfer the input data X and edge lists E from CPU to GPU.
2: Initialize n-length vectors Xaverage and Xnorm on GPU.
3: Initialize nnz-length vector val on GPU.
4: Execute kernel function compute average where each thread i computes Xaverage(i) =

1
d

∑d
j=1 Xij

5: Execute kernel function update data where each thread i updates one row of data Xij =

Xij −Xaverage(i) and compute Xnorm(i) =
√∑d

j=1X
2
ij

6: Execute kernel function compute similarity where each thread i computes the
similarity between the ith pair of data points in E.

7: The edge list and the vector val form the sparse graph represented in the Coordinate Format
(COO) format.

model regardless of the preprocessing used. Here we provide a parallel implementation for a

specific sparsity pattern and similarity measure.

We consider the input data as a matrix X ∈ Rn×d where n is the number of data points

and d is the dimension of each data point. The goal is to construct a sparse matrix representation

of the similarity graph using the ε-distance graph structure and cross correlation as the similarity

measure. We assume the neighborhood information is given by a list E ∈ Rnnz×2, which contains

all pairs of indices of data points that are within ε-distance. The number nnz of such pairs is

the number of edges in the graph. The procedure for constructing the sparse similarity matrix

represented in Coordinate Format (COO) format is described in Algorithm 4.

The above procedure is highly data parallel and easy to implement under the CUDA programming

model. In general, there are two sparse matrix representations that we use in our work.

• Coordinate Format (COO): this format is the simplest sparse matrix representation. Essentially,

COO uses tuples (i, j, wij) to represent all the non-zero entries. This can be done through

three separate nnz-length arrays that respectively store the row indices, column indices,

and the corresponding non-zero matrix values.
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• Compressed Sparse Row Format (CSR): this consists of three arrays, one containing the

non-zero values, the second containing the column indices of the corresponding non-zero

values, and the third contains the prefix sums of the number of nonzero entries of the rows.

Other sparse formats such as Compressed Sparse Column Format (CSC), Block Compressed

Sparse Row Format (BSR) are also supported in our implementation.

5.4.2 Parallel Eigensolvers

Given the similarity graph W represented in some sparse format and the desired number

of clusters k, this step computes the k eigenvectors corresponding to the smallest k eigenvalues

of normalized Laplacian Ln = I − D−1W where W is the sparse matrix and D is the diagonal

matrix with each element Di,i =
∑n

j=1Wi,j . We assume that Di,i are all positive, otherwise the

isolated nodes can be removed from the graph. The eigenvectors corresponding to the smallest k

eigenvalues of the normalized Laplacian are exactly the eigenvectors corresponding to the largest

k eigenvalues of D−1W . Since computing the largest eigenvalues results in better numerical

stability and convergent behavior, we focus our attention on computing the eigenvectors corresponding

to the largest k eigenvalues of D−1W .

The sparse matrix multiplication D−1W can easily be computed as follows:



d−1
11

d−1
22

...

d−1
nn


×



W1j

W2j

...

Wnj


=



d−1
11 W1j

d−1
22 W2j

...

d−1
nnWnj


(5.9)

78



Algorithm 2 Parallel Computation of D−1W
1. Initialize a n-length vector x with 1.0 for all elements.
2. Compute the vector y = Wx where each element yi = dii by calling cusparseDcsrmv in
cuSPARSE library
3. Execute the kernel function ScaleElements where each thread i processes one item in COO format
< r, c, val > and scales the element value by the inverse of yi.
4. Compress the row indices through the cuSPARSE interface cusparseXcoo2csr.
5. The compressed row indices, the column indices and the updated element value form
the CSR representation of D−1W

The corresponding computation is data parallel and has complexity O(nnz). We assume

that the sparse similarity matrix initially resides in the device memory, represented in COO

format. The parallel computation is described in Algorithm 2. Note that the D−1W will be

transformed to the CSR format to perform the sparse matrix-vector multiplication at the next

step.

An important feature of the ARPACK software is the reverse communication interfaces,

which facilitate the process of solving large-scale eigenvalue problems. The reverse communication

interfaces are CPU-based interfaces that encapsulate implicitly restarted Arnoldi/Lanczos method,

which is an iterative method to obtain the required eigenvalues and corresponding eigenvectors.

For each iteration, the interface provides a n-length vector used as input and the output of sparse

matrix-vector multiplication is provided back to the interface. ARPACK interfaces combine the

optimized Fortran routines and CPU-based BLAS library OpenBLAS, which is one of the most

efficient CPU-based BLAS library. ARPACK provides the flexibility in choosing any matrix

representation format and the function to obtain the results of matrix-vector multiplication. In our

implementation, the matrix-vector multiplication is performed on the GPU. For each iteration, the

input vector is transferred from the CPU to the GPU and the output vector is transfered back to

the interface. The detailed implementation is shown in Algorithm 5.
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Algorithm 5 Parallel Eigensolver
1: Initialize the object Prob with random parameters.
2: while !Prob.converge() do
3: Prob.TakeStep().
4: Transfer the data located at Prob.GetVector() from host to device.
5: Call cusparseDcsrmv to perform matrix-vector multiplication on device.
6: Transfer the result from device to host and put it at the location addressed by
Prob.PutVector().

7: end while
8: Compute the eigenvectors by Prob.FindEigenvectors().

The object Prob is initialized as the eigenvalue problem for the symmetric real matrix with

the k largest-magnitude eigenvalues. TakeStep() is an interface that performs the necessary

matrix operations based on the multi-threaded OpenBLAS library. For each iteration, the multiplication

of sparse matrix and dense vector is computed on the GPU where 1) the sparse matrix is D−1W

reside on GPU; 2) the input vector, whose location is indicated by Prob.GetVector(),

is transferred from CPU to GPU; 3) the result is transfered back from GPU to CPU to the

position Prob.PutVector(). After the object Prob reaches convergence, the eigenvectors

are computed by Prob.FindEigenvectors().

The complexity of Algorithm 3. largely depends on the interfaces TakeStep() and

FindEigenvectors(). Both routines depend on the number m of Arnoldi/Lanczos vectors,

which is usually set as m = max(n, 2k). TakeStep() involves the eigenvalue decomposition

and iteratively QR factorization of m×m matrix, as well as a few dense matrix-vector multiplication.

Therefore the complexity for TakeStep() is at least (O(m3)+O(nm)×O(m−k)). Moreover,

the general complexity for sparse matrix-vector multiplication is O(nnz · m). The number of

iteration # depends on the initial vector and properties of the matrix. The complexity FindEigenvectors()
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is O(nmk). Hence the overall complexity is,

(O(m3) +O(nm2) +O(nnz ·m))×#+O(nmk) (5.10)

As far as we know, the procedures described in Algorithm 3 are currently the most efficient

and convenient way to solve general eigenvalue problems for large-scale matrices. We leverage

the existing software ARPACK on CPU to perform the complex eigensolver procedures and the

GPU to perform the expensive matrix computations. Results in Section V. will show that the

data communication overhead is negligible compared to the overall computational cost and the

overall implementation is very efficient compared to other software that relies on CPU-based

sparse matrix-vector multiplication.

5.4.3 Parallel k-means clustering

The k-means clustering algorithm is an iterative algorithm to partition the input data points

into k clusters whose objective function is to minimize the sum of squared distances between

each point and its representative. In spectral clustering, the k-means algorithm is used to cluster

the rows of the matrix consisting of the eigenvectors. Each such row can in fact be viewed

as a reduced dimension representation of the original data point. There are several GPU-based

implementations of the k-means clustering such as [147, 148]. However, none of these implementations

seem to be efficient for large-scale problems, especially when k is very large. Our implementation

is a revised version from an open-source project 5 which efficiently utilizes the Thrust and

CUBLAS libraries and achieve significant speedups.

5https://github.com/bryancatanzaro/kmeans
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Algorithm 6 Parallel K-means Algorithm

1: Transfer the data V ∈ Rn×d from the CPU to the GPU.
2: Randomly select k points as the centroids of the k clusters stored in C ∈ Rk×d

3: while the centroids change do
4: Compute the pairwise distances S ∈ Rn×k between data points and the centroids.
5: Update the new label of each data point.
6: Compute the new centroids of the clusters.
7: end while
8: Transfer the labeling result from GPU to CPU.

Algorithm 7 Parallel k-means++ Initialization
1: Pick the initial data point uniformly at random from 1 to n.
2: Initialize the n-length vector Dist where each element is the shortest distance between the

data point vi and the current centroids.
3: for i = 2 to k do
4: Compute the n-length vector P such that Pj =

Dist2j∑n
l=1 Dist2l

5: Choose the ith centroid as the data point x with probability Px

6: Compute the vector newDist such that each ith element as the distance between the data
point vi

7: and the new centroid
8: Update Dist Distj = minimum(Distj, newDistj)
9: end for

We assume that the low-dimensional representation V ∈ Rn×k initially resides in the CPU

memory where n is the number of data points and k is the desired number of clusters. The

implementation is described in Algorithm 6.

Step 2 is the most common way to initialize the centroids. However, we use a more

effective initialization strategy, referred to as the k-means++ initialization, which has been shown

to converge faster and achieve better results than the traditional k-means algorithm [149]. This

initialization is simple to implement in parallel using basic routines in CUDA Thrust library, as

described in Algorithm 7,

Step 3 in Algorithm 6 is the main loop that iteratively updates the labels of the data points

and the corresponding centers of the clusters until convergence (or the maximum number of
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iterations is reached). Given the data points V ∈ Rn×d and centroids C ∈ Rk×d, the pair-wise

distance matrix S ∈ Rn×k is computed as follows.

Sij =
d∑

l=1

(Vil − Cjl)
2 (5.11)

After expanding the right hand side, the distance matrix S can be expressed as

Sij =
d∑

l=1

(Vil)
2 +

d∑
l=1

(Cjl)
2 − 2

d∑
l=1

VilCjl (5.12)

Hence, we compute two additional vectors Vnorm ∈ Rn×1 and Cnorm ∈ Rn×1,

Vnorm(i) =
d∑

l=1

(Vil)
2, (5.13)

Cnorm(j) =
d∑

l=1

(Cjl)
2 (5.14)

The matrix S can be initialized as the sum of the corresponding elements in Vnorm and

Cnorm

Sij = Vnorm(i) + Cnorm(j) (5.15)

The pair-wise distance matrix S is then computed by level-3 BLAS function provided in

the cuBLAS library.

S = S − 2V CT (5.16)

For each data point, the new label is updated by as the index of centroid which has the
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Figure 5.2: Parallel Implementation of Spectral Clustering

minimum distance to the data point. Meanwhile, a global variable is maintained to record the

number of label changes during the update.

The new centroids are updated as the mean value of all the data points sharing the same

label. To identify the points in each cluster, we sort the data points according to their new labels.

Each GPU thread will then independently work on a consecutive portion of the sorted data points

where most of these points share the same label.

The entire workflow of our implementation is summarized in Figure 5.2.
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5.5 Evaluation

5.5.1 Datasets

We evaluate our parallel implementation on several real-world and synthetic datasets. The

Diffusion Tensor Imaging (DTI) dataset is given as a set of data points, each of which is

characterized by a 90-dimensional array. The other datasets are specified by an undirected graph

data where the edges are given by an edge list. The problem sizes and the numbers of clusters

generated are shown in Table 5.2. A brief description of each dataset is given next.

• DTI: The Diffusion Tensor Imaging(DTI) dataset is the brain image data of a subject

chosen from a publicly accessible medical dataset provided by Nathan Kline Institute

(NKI). The dataset captures the diffusion of the water molecules in the brain tissues, which

can be used to deduce information about the fiber connectivity in the human brain. After

preprocessing steps [121], the input data consists of 142K data points, each of which

represents a 2mm×2mm×2mm brain voxel. The entire data points constitute the brain

volume. Each data point is characterized by a 90-dimensional array representing the

connectivity strength of the voxel to 90 brain regions (representing a segmentation of the

grey matter). The task is to cluster the voxels that share similar connectivity profiles. To

facilitate the construction of the similarity matrix, an edge list is provided which contains

all pair of voxels that are within 4 millimeter distance.

• FB: This dataset is a dataset collected by a Facebook application. It contains the graph

where each node represents an anonymous user and edges exist between users that share

similar political interests[150].
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Table 5.2: Datasets

Dataset Nodes Edges Clusters

DTI 142541 3992290 500

FB 4039 88234 10

DBLP 317080 1049866 500

Syn200 20000 773388 200

• DBLP: This dataset consists of a comprehensive co-authorship network in a computer

science bibliography. The nodes represent the authors. Authors are connected if they

coauthored at least one publication[150]. The dataset contains more than 5000 communities.

Here we set the number of clusters to 500 for experimental purposes.

• Syn200: The synthetic dataset is randomly generated by the stochastic block model [151].

The stochastic block model assumes that the data points are partitioned into r disjoint

subsets, C1, C2, ..., Cr. A symmetric r × r matrix P is provided to model the inter-

community edge probability. The synthetic sparse graph is randomly generated such that

two nodes are connected with probability p = 0.3 if they are within the same cluster and

q = 0.01 if they are in different clusters.

5.5.2 Environment and Software

The computing environment is a heterogeneous CPU-GPU platform with CPU and GPU

specifics shown in Table 5.1. The software and packages used are as follows,

• Matlab: Matlab is a high-level language that provides interactive programing environment,

which is widely used by scientists and engineers. The version of Matlab used for our

implementation is 2015a. The sparse matrix representation and operations are the built-
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in functions. The k-means clustering is the function in Statistical and Machine Learning

toolbox.

• Python: Python software packages, such as Numpy, Scipy and sklearn, are popular tools

to perform scientific computations. The version of Python binary for our implementation

is 2.7.11. The sparse representation and functions to solve the eigenvalue problems are

from Scipy package. The k-means clustering function is from sklearn.cluster module. The

module versions are Numpy-1.10.4, Scipy-0.16.1 and sklearn-0.17 respectively.

Linear algebra and numeric functions are by default multi-threaded in Matlab on multicore

and multiprocessor machines 6. In addition, the Python packages are built on highly optimized

CPU-based BLAS routines, some of which have been accelerated using multi-threaded programming.

5.5.3 Performance Analysis

We measure the running time of our spectral clustering algorithm on the three components

separately: 1) computation of the similarity matrix; 2) sparse matrix eigensolver; and 3) the

k-means clustering algorithm. For the CUDA implementation, we measure the time costs that

include both the computational time as well as the extra time for library initialization time

and data communication. Specifically, we evaluate the performance of each of the following

components:

• Computation of the similarity matrix:

– initialize CUDA libraries.

– transfer data and edge list from CPU to GPU.

– construct the similarity matrix.

6http://www.mathworks.com/discovery/matlab-multicore.html
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Table 5.3: Running Time of Spectral Clustering on DTI Dataset

Time/s CUDA Matlab Python

Compute Similarity Matrix 0.0331 221.249 220.880

Sparse Eigensolver 475.442 603.165 3281.973

K-means Clustering 5.407 1785.17 2154.7818

Figure 5.3: Time Costs of Spectral Clustering on DTI Dataset

• Sparse matrix eigensolver:

– data communication between CPU and GPU;

– computation of the eigenvectors;

– transfer of the eigenvectors from CPU to GPU.

• K-means clustering:

– perform the k-means clustering;

– tranfer the clustering result from GPU to CPU.

Figure 5.3. and Table 5.3. show the time costs of each step corresponding to the DTI

dataset.
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It is clear that our CUDA implementation significantly outperforms the currently fastest

known Matlab and Python implementations at each step. Since the computation of the similarity

matrix is highly parallel, the CUDA implementation achieves linear speedups by taking advantage

of the GPU with thousands of threads computing the cross correlation coefficients concurrently.

For the Matlab and Python implementations, the results are based on the serial implementation

which loops over the edge list and computes the correlation coefficient explicitly using the built-

in function. We also tested an alternative implementation which takes advantage of vectorization

techniques that recast the loop-based operation into matrix and vector operations. The optimized

Matlab and Python implementationd take 5.753s and 6.271s trespectively to compute the similarity

matrix.

Both Matlab and Python packages utilize the reverse communication interfaces of ARPACK

to compute the eigenvectors of large-scale symmetric matrix, and hence all of the three implementations

share similar procedures and interfaces. The basic difference is related to the function to compute

the sparse matrix-vector multiplication. Our CUDA implementation utilizes the GPU and the

cuSPARSE library to compute the multiplication while Matlab and Python utilize their built-in

routines. Since the GPU performs significantly better than the CPU on BLAS operations [124],

the CUDA implementation achieves better performance than Matlab and Python even with the

communication overhead. However, since the time complexity of implicitly restarted Lanczos

method is approximately O(m3 + nm2), the time spent on the reverse communication interfaces

scales relatively poorly, which may become the most computationally expensive part when k is

large.

As for the kmeans clustering algorithm, our CUDA implementation achieves more than

300x speedup over the Matlab and Python implementations. The running time of this step
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Table 5.4: Running Time of Spectral Clustering on FB Dataset

Time/s CUDA Matlab Python

Sparse Eigensolver 0.0216 0.1027 0.0851

K-means Clustering 0.007251 0.0205 0.0259

Figure 5.4: Time Costs of Spectral Clustering on FB Dataset

depends on the centroid initialization. The CUDA and Python implementations utilize the k-

means++ initialization, which leads to fewer number of iterations in general than Matlab. Moreover,

in the CUDA implementation, the process of transforming the computation of the pair-wise

distance matrix to the BLAS operations significantly accelerates the running time of the algorithm.

The performance results for the graph datasets (FB, Syn200, dblp) are shown in Table 5.4

through Table 5.6 and Figure 5.4 through Figure 5.6. Similar to the previous results, our CUDA

implementation achieves the best performance among the three implementations at each step.

However, the speedup ratio depends on the specific problem size.

The FB dataset contains a very small graph with 4039 nodes and involves very few clusters
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Table 5.5: Running Time of Spectral Clustering on Syn200 Dataset

Time/s CUDA Matlab Python

Sparse Eigensolver 4.1153 6.9531 18.915

K-means Clustering 0.02478 38.3728 2.4719

Figure 5.5: Time Costs of Spectral Clustering on Syn200 Dataset

k = 10. Because the number of clusters is small, the most expensive computation of sparse

eigensolver is the sparse matrix-vector multiplication. Therefore for this step,the CUDA implementation

achieves around 5x speedup over the other implementations. For the k-means clustering step, the

CUDA implementation shows only a minor speedup by a factor of around 4x.

The Syn200 dataset contains a medium-sized synthetic graph with 200 clusters. The CUDA

implementation achieves a slight improvement in computing the eigenvectors since the performance

is mainly constrained by the CPU-based routines. For the of k-means clustering step, the CUDA

implementation achieves over 100x speedup.

The dblp dataset contains a large-scale graph with 500 clusters. Both Matlab and Python
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Table 5.6: Running Time of Spectral Clustering on dblp Dataset

Time/s CUDA Matlab Python

Sparse Eigensolver 682.643 1885.2303 9338.31

K-means Clustering 1.79456 1012.92 719.686

Figure 5.6: Time Costs of Spectral Clustering on dblp Dataset

implementations perform poorly for such a problem size. Our CUDA implementation achieve

around 3x speedup in sparse eigensolver in spite of the fact that the performance is still constrained

by the CPU-based interfaces. In the k-means clustering step, the CUDA implementation achieves

over 400x speedup.

Table 5.7 shows a comparison between data communication time and computation time for

the CUDA implementation on each of our four datasets. The data communication time includes

1) input data transfered from CPU to GPU; 2) data communication between CPU and GPU

during the execution of the eigensolver stage; 3) output results that are transferred from GPU

to CPU. Given that the bandwidth remains constant during the execution of the algorithm, the
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Table 5.7: Comparison Between Data Communication Time and Computation Time

Time/s Communication Computation

DTI 2.248 475.213

FB 0.002131 0.02635

DBLP 2.731 680.31

Syn200 0.0741 3.8201

time complexity of data communication is O(n2 + m × # + nk) depending on the sparsity

ratio of the similarity matrix and the number of Arnoldi iterations # n; the time complexity of

computation is O(nd2 +O(nm2)×#+O(n2k)). Therefore we expect the data communication

time to be less than the computational time as in fact illustrated in the Table 5.7, especially for

large-scale problems.

In conclusion, our CUDA implementation always achieves better performance than Matlab

and Python implementations for each step. The speedup ratio largely depends on the specific

problem size. Our traget applications involve problems with a large number of clusters. Our

implementation achieves significant speedups for the steps of computing the similarity matrix and

the k-means clustering due to the massive computational power of GPU. Moreover, we always

achieve some speedups for the sparse eigensolver step by accelerating the computations involving

matrix-vector multiplications.

5.6 Conclusion

We presented a high performance implementation of the spectral clustering algorithm on

CPU-GPU platforms. Our implementation leverages the GPU to accelerate highly parallel computations

and Basic Linear Algebra Subprograms (BLAS) operations. We focused on the acceleration
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of the three major steps of the spectral clustering algorithm: 1) construction of the similarity

matrix; 2) computation of eigenvectors for large-scale similarity matrices; 3) k-means clustering

algorithm. We believe that we are the first to accelerate the large-scale eigenvector computation

by combining the interfaces of traditional CPU-based software packages ARPACK and GPU-

based CUDA library. Such a combination achieves good speedups compared to other CPU-based

software. We deploy a smart seeding strategy and utilize BLAS operations to implement the

fast k-means clustering algorithm. Our implementation is shown to achieve significant speedup

compared to Matlab and Python software packages, especially for large-scale problems.

94



Chapter 6: Connectivity-based Brain Parcellations

6.1 Introduction

Diffusion Magnetic Resonance Imaging (MRI) technology non-invasively reveals white

matter fiber structures and provide a model of the brain fiber tracts at a relatively high resolution.

This opens up new research opportunities to generate, explore and analyze complex brain networks

derived from Diffusion Tensor Imaging (DTI) based structural connectivity information [51, 152,

153]. Researchers have successfully applied graph theoretical analysis on specialized structural

networks to shed light on differences between different population groups and on brain disorders

such as dementia [154] and schizophrenia [155]. Brain network analysis requires a reasonably

accurate anatomical segmentation of the cerebral cortex, called parcellation, in which structurally

homogeneous regions constitute the nodes of the network. Traditional anatomical brain regions

may not incorporate connectivity information, and are typically identified by the distribution of

cell types [156], myelinated fibers [157], or neurotransmitter receptors [158]. Common widely-

used anatomical brain parcellations include Brodman’s areas [47], Automated Anatomical Labeling

(AAL) [8], and Jülich histological parcellations [48]. However, there are no generally accepted

anatomical parcellations and atlases of the whole brain that are based purely on the anatomic

brain connectivity information revealed by diffusion MRI data. Most of existing DTI-based

parcellation studies focus on particular parts of the cerebral cortex, such as the human inferior
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parietal cortex complex (IPCC) [159], the lateral parietal cortex [160], the temporoparietal junction

area (TPJ) [161], the dorsal frontal cortex [162], the ventral frontal cortex [163], cingulate and

orbitofrontal cortex [164], and Broca’s areas [165]. The parcellations generated specifically for

these regions have a small number of subregions but achieve high consistency among subjects

of a population sample. Connectivity-based parcellation of the whole brain is challenging due to

a number of factors that include: (i) the very large size of the connectivity matrix produced by

tractography of each subject’s DTI data; (ii) spatial constraints among the voxels of each region

that must be respected in addition to the connectivity information; (iii) enforcing consistency

for any structurally homogeneous population sample; and (iv) the lack of effective techniques to

evaluate, and validate good parcellations.

In this chapter, we propose a novel iterative method based on spectral clustering applied

to a sparse representation of the connectivity information which also incorporates the necessary

spatial constraints. Our goal is to generate reproducible whole-brain parcellations based purely

on DTI data, which are stable and subject-reproducible, achieve highly structurally homogeneous

regions, and are consistent among structurally similar population samples. Such parcellations can

be used as the basis for conducting graph-theoretic analysis on the resulting anatomic connectivity

networks. Our method uses probabilistic tractography to generate the connectivity matrix that

represents connectivity strength between any two gray voxels. A sparse representation of the

connectivity matrix is defined by a graph whose edges capture spatial connectivity within a small

spatial neighborhood and whose edge weights provide a similarity measure of the connectivity

profiles of the endpoints. We show that our method is effective in generating parcellations that

are highly consistent among subjects in the same population sample and that capture anatomic

connectivity patterns that can be used to distinguish between population samples with known
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structural differences. Moreover, the methods are computationally efficient and robust to various

random factors.

We note two particular works that are directly related to this chapter. The first, reported

by Craddock et al. [122], focuses on a data-driven approach for generating atlases based on

resting-state functional MRI. The main goal there is to parcellate the whole brain into coherent

regions of interests that are homogeneous in their resting-state functional connectivity (FC). They

develop independently a graph formulation that is similar to ours, and apply spectral clustering

in a straightforward way. The resulting atlas, while better than several of the standard anatomical

atlases in term of FC homogeneity, has similar characteristics to a random atlas. Moreover,

the input size is significantly smaller than the size of the problem we are dealing with here.

The second work reported in [166] addresses the same problem tackled in this chapter and

uses hierarchical clustering to generate a hierarchy of whole brain parcellations. Hierarchical

clustering techniques have serious limitations since they use a local greedy strategy, and each

successive refinement cannot modify the clustering determined in previous steps. In addition, the

evaluation methodology carried out there is limited to either known results for small regions such

as the inferior parietal cortex convexity or to other well-known cytoarchitectonic parcellations

that do not incorporate the connectivity information provided by DTI.

We summarize our main contributions in this chapter as follows:

• We develop efficient, scalable algorithms based on a sparse representation of the whole

brain connectivity matrix, which reduces the number of edges from around a half billion to

a few million while incorporating the necessary spatial constraints.

• For an arbitrary subject from a population sample and for any value k of the number of

regions, we show that our algorithm converges to a stable parcellation after a few iterations,
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Table 6.1: Subject Demographics

Subject Group Male Female Age 18-30 Age 31-50 Age 51-60 Total

Normal Controls 41 35 23 28 25 76

Schizophrenia 31 17 16 17 15 48

defined by k structurally homogeneous regions.

• Our parcellations of subjects within a population sample are consistent using any of a

number of similarity metrics between parcellations of different subjects.

• Our method captures structural patterns to allow us to distinguish effectively between

structurally different population groups such as Males vs Females, Normal Controls vs

Schizophrenia, and different age groups in Normal Controls.

The rest of the chapter is organized as follows. We start in the next section by describing

the data and tools used to generate the connectivity matrix of each subject. Our iterative method

is described in Section III, while the stability and reproducibility results at the individual subject

level or group level are covered in Section IV. Section V covers the discriminative power of the

resulting parcellations. We end with a brief discussion in Section VI.

6.2 Data and Preprocessing Steps

6.2.1 Data Acquisition

Imaging was performed at the University of Maryland Center for Brain Imaging Research

using a Siemens 3T TRIO MRI (Erlangen, Germany) system and 32 channel phase array head

coil. The high-angular resolution diffusion imaging protocol was used to assess white matter

integrity as measured by fractional anisotropy. Diffusion tensor data were collected using a

98



single- shot, echo-planar, single refocusing spin-echo, T2-weighted sequence with a spatial resolution

of 1.7×1.7×3.0mm. The sequence parameters were: TE/TR=87/8000ms, FOV=200mm, axial

slice orientation with 50 slices and no gaps, 64 isotropically distributed diffusion weighted directions,

two diffusion weighting values (b=0 and 700s/mm2) and six b=0 images. These parameters were

calculated using an optimization technique that maximizes the contrast to noise ratio for FA

measurements. The total scan time was approximately 9 minutes per subject. For each subject,

the image data consists of 70 volumes of 3D images of dimensions 128×128×53, each voxel

representing 1.718mm×1.718mm×3mm brain volume. We collected data from 76 normal (NC)

subjects and 48 schizophrenia (SZ) subjects. The subject demographics are shown in Table 6.1.

6.2.2 Nonlinear Registration

The diffusion images of all subjects are registered to Montreal Neurological Institute (MNI)

standard space using nonlinear registration package FNIRT in FSL [44]. The nonlinear registration

process generates the warping coefficients that balance the similarity between the diffusion image

and the standard MNI152 image, and the smoothness of the warping coefficients. The registration

process facilitates group atlas generation and comparison with other standard atlases.

6.2.3 Probabilistic tractography

The preprocessing step of probabilistic tractography is used to model cross fiber distributions

for each voxel through the BEDPOSTX package in FSL [45]. Probabilistic tractography is

processed through the diffusion toolbox in FSL [46]. The standard white matter atlas is specified

as a seed region. The AAL mask is specified as the target region, which is the whole brain
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Figure 6.1: 32 neighbors of voxel within sphere of radius r = 2. Note that each voxel represents
1.718mm×1.718mm×3mm brain volume. The figure shows the symbolic neighbors of voxels
rather than the actual volume size.

cortex region. We generate 50 streamlines from every voxel in a seed region. These streamlines

are propagated following the cross fiber distribution computed from the preprocessing step.

Curvature threshold is enforced to eliminate unqualified streamlines. The distance correction

option is set to correct for the fact that the distribution drops as travel distance increases. The

tractography output is a structural connectivity network modeled as a weighted graph where

each node is a voxel in the target region space and each edge weight corresponds to relative

connectivity strength in terms of the number of streamlines connecting the corresponding pair of

voxels.

6.3 Our Approach

Our main method takes as input a subject’s connectivity matrix. The number of voxels in

the AAL mask is 155, 794 and the connectivity matrix is a sparse matrix of size 155, 794 ×
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155, 794. Given a positive integer value k, our problem is to parcellate the cerebral cortex

into k spatially contiguous regions, such that each region possesses a high degree of structural

homogeneity. Moreover, these parcellations must be stable and reproducible, as well as, consistent

among members of a population sample with similar connectivity patterns. We first introduce our

notion of a connectivity profile followed by a description of our method.

6.3.1 Connectivity Profile

For each voxel, the connectivity profile is the signature that discriminates a voxel from the

rest of voxels based on connectivity. Parcellations are built by clustering voxels with similar

connectivity profiles together. In principle, we can take the row of the connectivity matrix

corresponding to a voxel as its connectivity profile, but that would be computationally expensive

to process even if we compress each row into a list that contains only connectivity values above a

certain threshold. In our approach, the connectivity profile of a voxel is computed as an array of

weights, where each element represents the cumulative connectivity strengths of the voxel to a set

of the regions determined initially by a predefined brain segmentation. Not only does the use of a

coarser version of the connectivity profile leads to much more efficient computations, but it also

helps to smooth out errors introduced by the tractography process through aggregation. More

importantly, we will show later that our method converges to the same parcellation regardless of

the initial segmentation used.

We explore several possibilities to initialize brain segmentations. An obvious choice is to

use the regions of interests (ROIs) defined by any of the well-known anatomical atlases such as

the 90 regions of the AAL-90 atlas. Note that the initial number of spatial regions is completely
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unrelated to the number k of parcellated regions and is used merely to initialize the connectivity

profile of each voxel. Another possibility is to use a brain segmentation generated using a

spatially constrained version of the k-means++ algorithm with randomized centers [149]. The

third possibility that we consider is to spatially segment the volume into almost equal-size sub-

cubes. The last two segmentation methods result in any specified number of contiguous regions.

We will show that our method results in consistent and similar parcellations regardless of which

connectivity profile we use.

6.3.2 Spatially Constrained Similarity Graph

A spatial-constraint similarity graph, considerably sparser than the weighted graph defined

by the connectivity matrix, is formed using spatial adjacency and the connectivity profiles as

follows. The voxels define the nodes of our graph. Two nodes are connected by an edge if and

only if the corresponding voxels lie within a sphere of radius r. In our implementation, we have

used r = 2 such that the number of neighbors of any node is at most 32 as shown in Fig. 6.1. Each

edge is weighted by the similarity between the connectivity profiles of its end points. We can use

any of several similarity metrics, including the correlation coefficient or the cosine function; our

tests show that the results are very similar regardless of the similarity measure used. We assume

from now on that we are using the correlation coefficient as our similarity measure between the

connectivity profiles of two voxels.
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Algorithm 8 Iterative Parcellation Method
1: Generate the connectivity matrix of a subject using probabilistic tractography.
2: Construct a spatial graph as a sparse representation of the 3-D brain.
3: Initialize a random spatially-coherent brain parcellation, to be used to define the connectivity

profile of each voxel.
4: while the similarity measurement not exceeds some threshold. do
5: Use the current brain parcellation to define the connectivity profiles of all the voxels

based on the connectivity matrix.
6: Apply spectral clustering algorithm to generate the brain parcellation of a predefined

level of granularity.
7: Measure the similarity between the new parcellation and the previous parcellation used

to define connectivity profiles.
8: end while
9: Return the parcellation result.

6.3.3 Minimum Graph-Cut Problem and Iterative Refinement

Our parcellation algorithm starts by partitioning our spatial similarity graph into several

subgraphs with the objective of minimizing the total weight of the edges connecting the subgraphs

subject to a constraint on the relative sizes of the subgraphs. More specifically, our objective

function is to minimize the normalized cut rather than just the cut, which is standard in the

literature (see for example [19, 137, 167]). This will more or less ensure that we won’t have

subgraphs with very few vertices. The subgraphs induce a spatial segmentation of the 3D image

data, which is then used to redefine the connectivity profile of each voxel, after which we iterate

until the generated parcellations are almost unchanged. Our algorithm results in a solution where

the voxels within the same region have similar connectivity profiles and voxels across different

regions are relatively dissimilar. The most efficient method to solve the graph cut problem during

each iteration is spectral clustering [19, 137, 167]. In particular, we use the normalized spectral

clustering method, which can be summarized as follows, where W ∈ Rn×n is the weight matrix

associated with the spatial similarity graph and k is the number of desired regions.
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• Compute the normalized Laplacian matrix L = D − W . D is the diagonal matrix with

each element Di,i =
∑n

j=1Wi,j .

• Compute the k eigenvectors of D−1/2LD−1/2 corresponding to the smallest k eigenvalues.

• Apply the k-means clustering algorithm on the rows of the eigenvectors to obtain the final

clusters.

To make the clustering result consistent against the random initializations in the k-means

step, we run the k-means++ algorithm [149] several times and choose the result with the minimum

within-cluster sum of point-to-centroid distances [168]. Note that each run of the k-means++

involves 155, 794 points (voxels) each of dimension k. Algorithm 8 provides a high-level description

of our method.

By applying the spectral clustering algorithm, we expect voxels within the same region

to possess successively higher degrees of similarity in terms of structural connectivity during

successive iterations. This iterative refinement approach converges to a stable parcellation as we

will later show. At that point, we will also introduce a quantitative stopping criterion to be used

to terminate the algorithm.

6.4 Reproducibility and Stability Analysis

This section presents the methodology used and the results achieved to illustrate the reproducibility

of our results both at the individual subject level and at the group level. We start by introducing

two well-known methods to quantitatively measure the similarity between two arbitrary clustering

solutions of a dataset.
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6.4.1 Parcellation Similarity Metrics

We use the following metrics to measure the similarity between any two parcellations with

the same level of granularity (that is, the same value of k). The cluster labels generated by our

method are essentially arbitrary in the sense that regions with the same labels in two different

parcellations are not necessarily spatially related. Moreover, as the level of granularity increases,

we may not be able to determine a reasonable one-to-one mapping between the regions. In this

chapter, we will use the following two metrics.

6.4.1.1 Normalized Mutual Information (NMI)

Mutual information has been used in information theory to measure the relationship between

any two probability distributions [169]. Essentially, it provides a measure of how similar the

joint distribution of two random variables is to the product of their marginal distributions. The

normalized mutual information (NMI) is an approximate discrete version commonly used to

measure the similarity between pairs of clusters of a dataset. It has a value between 0 and 1, with

the value 0 indicating the two clusterings are completely independent of each other, whereas the

value 1 indicates that they are identical. The NMI between two parcellations A and B is defined

as

NMI (A,B) =
MI (A,B)

(H (A) +H (B)) /2
(6.1)

The entropy for individual parcellations and the mutual information are approximated from

the marginal and joint distributions as follows. Ai is the set of voxels that are labeled as i in

105



parcellation A. Similarly, Bj is the set of voxels that are labeled as j in parcellation B.

H (A) = −
k∑

i=1

p (Ai) log p (Ai) (6.2)

H (B) = −
k∑

j=1

p (Bj) log p (Bj) (6.3)

MI (A,B) =
k∑

i=1

k∑
j=1

p (Ai, Bj) log

(
p (Ai, Bj)

p (Ai) p (Bj)

)
(6.4)

The marginal probability for any label is approximated as the fraction of the number of

voxels with that label over the total number of voxels. Similarly, the joint distribution p (Ai, Bj)

is computed as the fraction of the number of voxels with label i in parcellation A and with label j

in parcellation B over the total number of voxels. Here the total number of voxels is the number

of voxels in the AAL mask, which is the same for all parcellations.

p (Ai) =
size (Ai)∑k
i=1 size (Ai)

, p (Bj) =
size (Bj)∑k
j=1 size (Bi)

(6.5)

p (Ai, Bj) =
size (Ai ∩Bj)∑k

i=1 size (Ai)
(6.6)

As stated previously, if the parcellations are identical, except for label reordering, then the

mutual information and the entropy for each parcellation are equal, and hence the resulting NMI

is equal to 1. The higher the value of the NMI, the more similar the two parcellations are.

106



6.4.1.2 Dice’s Coefficient

Dice’s coefficient measures the similarity directly from the clustering matrix C ∈ Rn×n

defined by

Ci,j =


1, Li = Lj

0, Li ̸= Lj

(6.7)

where L is the vector that contains the label of every voxel. That is, the (i, j) entry of the

clustering matrix is equal to 1 if, and only if, voxels i and j belong to the same region. Given

the matrices corresponding to two parcellations, the Dice’s coefficient is computed as twice the

number of common nonzero entries normalized by the total number of nonzero entries in both

clustering matrices [170]. Dice’s coefficient is always between 0 and 1, and the larger it is, the

more similar the two parcellations are.

Both NMI and Dice’s coefficient capture the similarity between two parcellations of any

level of granularity. But for NMI, the joint distribution p (Ai, Bj) is in general greater than

the product of the marginal distributions p (Ai) p (Bj), which may cause NMI to overestimate

the similarity between the parcellations. We note that in general NMI is larger than the Dice’s

coefficient.

6.4.2 Stability and Reproducibility of Subject Parecellations

The main factors that affect the parcellations generated by our algorithm are the choice of

the brain segmentation that is used to define connectivity profiles and the random initialization
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of the k-means++ algorithm used in the last step of spectral clustering. The effect of random

initialization could be mitigated by running the k-means++ initialization [149] several times, as

stated before. Here we consider only the effect of the initial brain segmentation used to define

the connectivity profiles. Note that the connectivity profiles encapsulate the only information we

have from the DTI data for each subject since the rest of the information captured by the spatial

similarity graph does not involve anything related to the connectivity data.

The initial brain segmentation can be defined as any arbitrary spatial segmentation of the

brain mask. However it would be more intuitive to use initial segmentations with comparable

region sizes. Note that the number of regions in the initial segmentation is completely independent

of the desired number k of parcellated regions. The main result of this section is that, regardless of

the initial segmentation and for any value of k, our algorithm will converge to a stable parcellation

for each subject that captures the critical connectivity information embodied in the DTI data.

The following brain segmentations, shown in Fig. 6.2, are used to define initial connectivity

profiles that are used to generate 40-region parcellations.

6.4.2.1 Automated Anatomical Labeling (AAL)

The AAL atlas defines 90 anatomical regions with 45 volumes of interest in each hemisphere,

which were delineated following the courses of the main sulci of the brain. In fact, we have

used the AAL mask to define cerebral cortex to be parcellated. Here we use it as the initial

segmentation that defines the connectivity profiles of all voxels.
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Figure 6.2: Brain segmentations used to define connectivity profiles.
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6.4.2.2 Random Spatial Segmentation

We generate a random spatial segmentation with any level of granularity using the k-

means++ algorithm, based only on spatial coordinate. The purpose is to generate segmentations

that have regions that are spatially contiguous and compact. Random initialization of the k-

means++ using 90, 1000, and 2000 regions were generated.

6.4.2.3 Regular Grid Segmentation

A regular grid segmentation consists of a set of almost equal-sized cubes that cover the

whole brain. The cube size determines the granularity of the segmentation. We set the cube size

to 5 and therefore, this segmentation consists of 1,987 cubes that cover all brain voxels.

6.4.2.4 Synthetic Parcellations

The synthetic parcellations are generated from the similarity graph in which the weights

of all the edges are set to 1. A similar approach was reported in [122], which concludes that the

synthetic parcellations are almost as good as real parcellations in terms of FC cluster homogeneity.

We use the synthetic parcellation with the same number of regions to define the connectivity

profile and show that starting from the same synthetic parcellation, our iterative method will

incorporate the underlying connectivity information and converge to the subject’s characteristic

parcellations.

For each subject, we show that our algorithm will yield essentially the same parcellation

for all these initial segementations. The NMI and Dice’s coefficient are computed between all

pairs of parcellations generated from different brain segmentations after each iteration. Tables
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Abbreviations

AAL: Automatic Anatomical Labeling.
R#: Random brain segmentation with # number of regions.
Grid: Regular grid segmentaton with grid size 5× 5× 5.
S#: Synthetic parcellation generated from spatial-constrained similarity graph with all edges’ weights as 1.

Table 6.2: NMI Between Parcellations After 1st Iteration

Segmentation AAL R90 R1000 R2000 Grid S40

AAL 1.0000 0.8673 0.8791 0.8497 0.8734 0.8568

R90 - 1.0000 0.9009 0.8622 0.8849 0.8804

R1000 - - 1.0000 0.8774 0.9039 0.8657

R2000 - - - 1.0000 0.8855 0.8433

Grid - - - - 1.0000 0.8666

S40 - - - - - 1.0000

Table 6.3: NMI Between Parcellations After 2nd Iteration

Segmentation AAL R90 R1000 R2000 Grid S40

AAL 1.0000 0.9173 0.9085 0.9117 0.8999 0.8990

R90 - 1.0000 0.9042 0.9031 0.8880 0.8954

R1000 - - 1.0000 0.9018 0.8971 0.8908

R2000 - - - 1.0000 0.8840 0.8780

Grid - - - - 1.0000 0.8980

S40 - - - - - 1.0000

6.2 through 6.9 show the corresponding results.

The above tables show that similarity, in terms of NMI or Dice’s coefficients, between all

pairs of parcellations from different brain segmentations increase with the number of iteration.

After the 4th iteration, most of NMI values are

above 0.90 and most of Dice’s coefficients are above 0.80, which indicates very consistent

parcellations. The iterative method mitigates the random effect caused by the initial arbitrary
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Table 6.4: NMI Between Parcellations After 3rd Iteration

Segmentation AAL R90 R1000 R2000 Grid S40

AAL 1.0000 0.9194 0.8940 0.9412 0.8985 0.9035

R90 - 1.0000 0.9050 0.9266 0.9242 0.9266

R1000 - - 1.0000 0.9103 0.8899 0.8992

R2000 - - - 1.0000 0.9087 0.9064

Grid - - - - 1.0000 0.9101

S40 - - - - - 1.0000

Table 6.5: NMI Between Parcellations After 4th Iteration

Segmentation AAL R90 R1000 R2000 Grid S40

AAL 1.0000 0.9405 0.9052 0.9382 0.9004 0.9258

R90 - 1.0000 0.9181 0.9211 0.9141 0.9494

R1000 - - 1.0000 0.8949 0.8828 0.9148

R2000 - - - 1.0000 0.9225 0.9075

Grid - - - - 1.0000 0.9020

S40 - - - - - 1.0000

Table 6.6: Dice’s Coefficient Between Parcellations After 1st Iteration

Segmentation AAL R90 R1000 R2000 Grid S40

AAL 1.0000 0.7448 0.7709 0.7083 0.7666 0.7230

R90 - 1.0000 0.8374 0.7456 0.8046 0.7810

R1000 - - 1.0000 0.7778 0.8396 0.7553

R2000 - - - 1.0000 0.7874 0.7010

Grid - - - - 1.0000 0.7585

S40 - - - - - 1.0000

segmentations and leads to stable parcellations regardless of the initial definition of connectivity

profiles. Note that the k-means++ step of our algorithm introduces a small uncertainty, which

explains the few deviations in the tables above. However, it is clear that the parcellations generated
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Table 6.7: Dice’s Coefficient Between Parcellations After 2nd Iteration

Segmentation AAL R90 R1000 R2000 Grid S40

AAL 1.0000 0.8557 0.8378 0.8483 0.8142 0.8236

R90 - 1.0000 0.8203 0.8199 0.7852 0.8068

R1000 - - 1.0000 0.8205 0.8097 0.7936

R2000 - - - 1.0000 0.7737 0.7717

Grid - - - - 1.0000 0.8099

S40 - - - - - 1.0000

Table 6.8: Dice’s Coefficient Between Parcellations After 3rd Iteration

Segmentation AAL R90 R1000 R2000 Grid S40

AAL 1.0000 0.8543 0.8007 0.9021 0.8047 0.8197

R90 - 1.0000 0.8316 0.8759 0.8700 0.8787

R1000 - - 1.0000 0.8352 0.7932 0.8103

R2000 - - - 1.0000 0.8317 0.8341

Grid - - - - 1.0000 0.8378

S40 - - - - - 1.0000

Table 6.9: Dice’s Coefficient Between Parcellations After 4th Iteration

Segmentation AAL R90 R1000 R2000 Grid S40

AAL 1.0000 0.9070 0.8279 0.8936 0.8125 0.8786

R90 - 1.0000 0.8526 0.8547 0.8387 0.9247

R1000 - - 1.0000 0.7960 0.7653 0.8472

R2000 - - - 1.0000 0.8699 0.8290

Grid - - - - 1.0000 0.8171

S40 - - - - - 1.0000

at the end of third and fourth iterations are very close to each other. Fig. 6.3 illustrates the increase

of the average, over all the different intial segmentations, of NMI and Dice’s coefficient after each

iteration.
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Figure 6.3: Subject reproducibility after each iteration.

Table 6.10: NMI Between Parcellations in Consecutive Iteration Stages

Segmentation 1st / 2nd 2nd / 3rd 3rd / 4th

AAL 0.9131 0.9353 0.9539

R90 0.9125 0.9325 0.9631

R1000 0.9199 0.9292 0.9198

R2000 0.8873 0.9224 0.9314

Grid 0.9185 0.9380 0.9267

S40 0.9151 0.9341 0.9486

Table 6.10 and 6.11 show the similarity between parcellations in consecutive iteration

stages for a given initial segmentation. Taking into consideration the uncertainty introduced by

the k-means++ step of our algorithm, it is clear that successive iterations of the algorithm generate

more similar parcellations, for any of the initialization methods of the connectivity profiles.
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Table 6.11: Dice’s coefficient Between Parcellations in Consecutive Iteration Stages

Segmentation 1st / 2nd 2nd / 3rd 3rd / 4th

AAL 0.8448 0.8886 0.9179

R90 0.8402 0.8838 0.9475

R1000 0.8714 0.8787 0.8495

R2000 0.7997 0.8556 0.8697

Grid 0.8700 0.8960 0.8709

S40 0.8520 0.8813 0.9124

6.4.3 Group Consistency and Atlas Generation

Table 6.12 shows the average similarity between every pair of parcellations from subjects

in the NC group. As can be seen from entries in this table, the parcellations are reasonably

consistent within the NC group; similar results hold for the SZ group.

Table 6.13 shows the average similarity between a random parcellation and the parcellations

generated for the subjects in the NC group. As can be seen from the column of the Dice

coefficients, our generated parcellations are significantly different from random parcellations. As

mentioned before, the NMI coefficients tend to overestimate the similarity between the parcellations,

and hence the slightly higher numbers in the second column of Table 6.13, but still significantly

lower than the similarity of the generated parcellations between the subjects of the NC group

(Table 6.12).

Atlas generation: We employ the following atlas generation procedure to further validate

within-group consistency. In generating our parcellations, regions are labeled randomly; therefore,

regions with the same index are not necessarily spatially matched. The first step of atlas generation

is to align all parcellations to a reference parcellation that is randomly chosen from the group.
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Table 6.12: Average Similarity Between Parcellations of Different Subjects within the NC Group

Number of regions NMI Dice’s Coefficient

40 0.7734 0.5503

50 0.7786 0.5323

60 0.7939 0.5507

70 0.7988 0.5415

90 0.8040 0.5326

120 0.8151 0.5287

Table 6.13: Average Similarity Between Parcellations of Subjects within the NC Group and
Randomly Generated Parcellation

Number of regions NMI Dice’s Coefficient

40 0.6923 0.3994

50 0.6857 0.3679

60 0.7140 0.3871

70 0.7164 0.3771

90 0.7393 0.3995

120 0.7452 0.3720

We relabel each of the regions using the region index of the reference parcellation that shares the

largest overlapped area. For a group of N relabeled subjects, we generate an atlas as follows. For

each voxel, we associate a vector of length N consisting of the label index from each subject.

We set the voxel’s label to be the most frequent index in its vector, thereby generating an atlas as

shown in Fig. 4(a).

The confidence map is a gray-scale image, where the gray level of each voxel represents

the uncertainty of the labeling across all subjects, in terms of the proportion of the frequent index

in the N -length vector. The confidence map in Fig. 4(b) shows that for almost all voxels, except

possibly along the region boundaries, most subjects are consistently labeled as indicated by the
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Figure 6.4: Atlas and confidence map for the NC group. Note that for confidence map, the grey
scale represents the ratio of overlapped regions.

Table 6.14: P-value and T-statistic for Gender Study within the NC Group

Similarity comparison p-value t-statistic

Male vs Male-female 9.0286e-5 -3.9205

Female vs Male-female 1.4025e-8 5.6911

Male vs Female 3.3752e-20 -9.2766

atlas.

6.5 Discriminative Analysis

In this section, we show how our parcellations can be used to shed light on structural

differences between different experimental groups. We have selected cases that were known

to have significant differences in white matter integrity and structural networks. We include a

discussion of three significant different groups: Male vs Female, Age groups, and SZ vs NC. The

subject demographics in our data are shown in Table 6.1.

We adopt two strategies to discriminate among experimental groups. The first strategy

focuses on the heterogeneity of the parcellations within a group sample and is based on the pair-
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Table 6.15: P-value and T-statistic for Age Study within the NC Group

Similarity comparison p-value t-statistic

Group I vs Group I-II 0.5133 -0.6539

Group II vs Group I-II 0.5566 0.5880

Group I vs Group II 0.2009 -1.2798

Group II vs Group II-III 2.4175e-4 3.6800

Group III vs Group II-III 0.0028 -2.9921

Group II vs Group III 6.6455e-11 6.5814

Table 6.16: P-value and T-statistic for Schizophrenic Study

Similarity comparison p-value t-statistic

NC vs NC-SZ 2.9995e-89 20.2514

SZ vs NC-SZ 1.4025e-8 -10.4867

NC vs SZ 1.1636e-198 30.9687

wise similarities between all pairs of parcellations in a group. As shown in the previous section,

our parcellations are consistently labeled across subjects of a population sample except for some

boundary voxels. The boundary differences reflected by the pair-wise similarity may be used to

determine some features that are specific to particular subgroups. In particular, we will show that

the parcellations of the subjects in the SZ group have substantially more variability that those of

the NC group and that healthy males seem to exhibit more heterogeneity within their group than

healthy females do.

The other strategy is to analyze the structural connectivity network built from the parcellations

and tractography results, where the nodes correspond to the parcellation regions and the edge

weights correspond to the cumulative connectivity strength between voxels in the two regions;

this strategy is commonly used in the literature [171, 172]. Our iterative method generates

parcellations where voxels within the same region share similar connectivity profiles that are
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defined as the accumulated connectivity strength to every other region. Hence the parcellations

obtained are consistent with the structural connectivity network where the connectivity pattern

of each node summarizes the connectivity profile of the voxels in that region. The “connectome”

analysis shows more powerful discriminative ability of our parcellations than using existing

anatomical atlases.

6.5.1 Similarity-based Analysis

The analysis is based solely on pair-wise similarity between pairs of parcellations. We

start by analyzing the similarities relative to female and male subgroups of the NC sample using

parcellations with 90 regions and NMI as the similarity measure. Results corresponding to other

values of k or to the use of Dice’s coefficient as a similarity measure exhibit the same patterns.

A two-sample t-test was performed on the pair-wise similarity between parcellations within

the female subgroup, the male subgroup, and pair-wise similarity between parcellations from

different groups. The p-value and t-statistics are shown in Table 6.14.

Our results indicate that the similarity of parcellations of either healthy females or healthy

males is significantly different that the similarity between a female parcellation and a male

parcellation. More importantly, the last row of Table 6.14 indicates that the female parcellations

are much closer to each other that the male parcellations, which may indicate more structural

brain heterogeneity among the male subjects than among the female subjects.

In the age study, we divide the NC sample into three age groups, which are: Group I: Age

18-29, 23 subjects; Group II: Age 30-49, 28 subjects; Group III: Age 50-62, 25 subjects. The p-

value and t-statistics are shown in table 6.15. For parcellations in Group I and II, their similarities
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Figure 6.5: Parcellation with 5 regions.

did not show significant differences. But parcellation similarities within Group II have significant

differences than the similarity between parcellations in Group II and Group III. And parcellations

in Group III are more heterogeneous than those in Group I and Group II.

Perhaps more interesting is the similarity comparison of the parcellations of NC vs SZ

groups, illustrated in 6.16. These results clearly show that the parcellations within the SZ group

show much more heterogeneity than those for the NC group.

6.5.2 Connectome Analysis

There is much evidence supporting that schizophrenia is a disorder related to brain connectivity.

Our previous work analyzed the structural connectivity network based on individual parcellations

refined from the AAL atlas to discriminate schizophrenic and normal control groups with high

accuracy [173]. We apply the same strategy to discriminate among the two groups using the 5-

region parcellations generated from our iterative approach as shown in Fig. 6.5. The reason we
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choose a small number of regions is the high consistency across subjects, and because regions

can be trivially mapped spatially, one-to-one, between any pair of parcellations.

We first relabel all parcellations based on a randomly selected subject. The connectomes

are built by defining nodes as regions in the parcellation and edge weights represent cumulative

connectivity strength between regions. Table 6.17 shows the p-value and t-statistcs of pair-wise

connectivity between the two groups.

A large portion of pair-wise connectivity shows significant differences between the two

groups. Moreover, most pair-wise connectivity strengths of NC subjects are greater than those of

SZ subjects, a fact that is consistent with the previous findings that SZ subjects have decreased

inter-hemispheric and intra-hemispheric connectivity [174]. We select the three pairs with the

most significant p-values and use their connectivity values as features to train a support vector

machine classifier. We test our classifier using a 10-fold cross-validation and are able to achieve

up to 75% accuracy, which is significantly better than our earlier result in [173].

We also carried out an additional test to confirm the discriminative capabilities of our

parcellations. Consider 40-region parcellations for the two population samples and the corresponding

structural connectivity networks. For each edge, we perform a two-sample t-test between the

sequence of connectivity strengths of the NC group and that of the SZ group. We find that many

of the edges result in p-values less than 0.00005 as shown in Fig. 6.6. Fig. 6.7 shows the

corresponding results when we use the AAL atlas and determine connectivity strengths on the

corresponding edges (pairs of regions). As shown by the binary maps, the proportion of entries in

the AAL-based network which have significant connectivity strength difference between healthy

controls and schizophrenic subjects is much smaller than that those obtained through the network

built from our 40-region parcellations.
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Table 6.17: P-value and T-statistic of Pair-wise Connectivity Between Normal Controls and
Schizophrenic Groups

Label 1 2 3 4 5

1 0.0137 0.0395 0.0038 0.0989 0.4954

2 0.0300 0.0279 0.0029 0.0514 0.0058

3 0.0029 0.0042 4.11e-4 3.04e-5 0.0019

4 0.0798 0.0579 3.14e-5 0.0775 0.1127

5 0.4928 0.0083 0.0028 0.1216 0.2377

Label 1 2 3 4 5

1 2.5019 2.0809 2.9479 1.6630 -0.6839

2 2.1963 2.2250 3.0391 1.9671 2.8055

3 3.0437 2.9197 3.6325 4.3330 3.1707

4 1.7666 1.9149 4.3244 1.7806 1.5976

5 -0.6879 2.6846 3.0493 1.5588 1.1865

Figure 6.6: Binary maps where entries in red color have p-values <0.05 and <0.00005
respectively in terms of connectivity strengths between the two population groups using our 40-
region parcellations.

It seems clear that our pacellations seem to effectively capture the inherent connectivity

information present in the DTI data and hence are more suitable for studying structural connectivity

than anatomical atlases.
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Figure 6.7: Binary map where entries in red color have p-values <0.05 and <0.00005 respectively
between connectivity strengths of the two population groups using the AAL atlas.

6.6 Conclusion

We herein propose a sparse representation of the connectivity information derived from

DTI data and a novel method that generates whole-brain parcellations for any number k of

regions. Our method is computationally efficient and is able to consistently generate stable

and reproducible parcellations that seem to capture inherent structural patterns present in the

data. The results are validated through the use of a number of methods, including subject

reproducibility, group consistency, and discriminative characteristics between different population

groups.
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Chapter 7: Concluding Remarks and Future Work

In the thesis, we have developed a number of methods to learn graph representations for

large-scale graphs. We first propose a general graph coarsening framework which coarsens

large graphs to smaller ones with preserved spectral properties. Based on the insights from the

spectral graph theory, we define a new distance function that capture the key graph information

loss in the graph coarsening process. We propose efficient algorithms to minimize the distance

during the coarsening process. Empirical results show that the coarse graphs can achieve similar

performance compared with using the original graphs in graph classification tasks.

Next we propose a new graph neural network model which can generate graph representations

capturing key graph characteristics. The new model represents graphs as the weighted composition

of sequence representations. Through the design of the weight and sequence functions, the graph

representations can achieve strong expressiveness while maintaining the permutation invariance

property. Experiments show that our proposed graph representation model achieves superior

performance in graph classification tasks.

To address the high computational cost of graph spectral methods, we provide an efficient

implementation of the spectral clustering on CPU-GPU heterogeneous platforms. Our implementation

significantly accelerates the computation of the spectral clustering subroutines leveraging on the

advantages of multi-core CPU and SIMD capabilities of GPUs. We show that the implementation
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achieves significantly acceleration compared with CPU implementations on large-scale graphs.

Lastly, we study the graph representations of structural brain network from the Diffusion

Tensor Imaging data for schizophrenic and demographic study. We develop efficient algorithms

to generate connectivity-based brain parcellations which significantly reduce the processing time

of the raw brain connectivity graphs. Moreover, the structural brain networks built from the new

brain parcellations have better discriminative power compared with existing brain parcellations

and atlases.

There are a number of additional research directions worth pursuing.

In Chapter 3, we described a general graph coarsening method based on the spectral graph

theory. We explore the relationship between the graph coarsening process and normalized graph

Laplacian and derive the graph coarsening method based on the insight. One potential research

direction is to extend the results to the combinatorial Laplacian, which will complement the study

presented in this work. Another line of extension is to apply the spectral coarsening methods to

applications involving large-scale graphs.

In Chapter 4, we described a general framework to represent graphs as weighted combinations

of sequence representations. The key part is to define the sequence representation model and

weight functions associated with the sequences. One example of the graph representation model

is presented in our work. There is potential to further improve the effectiveness with novel

combinations of sequence and weight functions.

In Chapter 5, we provided an implementation of the spectral clustering algorithm. The

proposed implementation consists two separate subroutines, i.e. eigenvalue computation and

k-means clustering, which can be independently used for other applications. Another research

direction is to support graphs with sizes that don’t fit in the GPU and CPU memory of a single
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machine where more advanced techniques such as Message Passing Interface (MPI) are needed

to cluster very large-scale graphs.

In Chapter 6, we described a brain parcellation method to build structural brain networks

from DTI data. Similar methods can be extended to other imaging modalities such as functional

MRI. In addition, there are opportunities to extend the method to other brain disorder and demographic

study.
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Appendix A: Supplementary Materials of Chapter 3

A.1 Proof of Proposition 3.4.1, 3.4.2

For the simplicity of the proof, we use the Lrw = I − D−1W to replace the original

normalized Laplacian L to compute the Laplacian eigenvalues. Note that Lrw has the same set

of eigenvalues as the original normalized Laplacian L and the relation of the eigenvalues and

eigenvectors satisfy,

Lrw = D−1/2LD1/2, urw = D−1/2u

A.1.1 Proof of Proposition 3.4.1

Proof. We show that under the assumption above, the eigenvalues of the original normalized

Laplacian contain the eigenvalues of coarse graph Gc plus eigenvalue 1 with N −n multiplicities.
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The random-walk Laplacian of the coarse graph satisfies,

Lrw
c = In −D−1

c Wc

= PINP
∓ − PDP∓PWP∓

= PINP
∓ − PD−1WP∓

= P (IN −D−1W )P∓

= PLrwP∓

The third equation holds because of the assumption in Equation (9). Then, the eigenvalue and

eigenvector of Lrw
c satisfy the following:

Lrw
c urw = λurw

c

PLrwP∓urw = λurw
c

P∓PLrwP∓urw = λP∓urw
c

LrwP∓urw = λP∓urw
c

that is, Lrw has the eigenvalue λ with the corresponding eigenvector P∓urw.

To see that the original graph contains N−n eigenvalue 1, we consider D−1W = IN−Lrw

which consists of rows of normalized edge weights with row i as w(i)
d(i)

. From the assumption in

Equation (9), we have identical rows for each partition Sr. Thus D−1W is at most rank-n, which

indicates Lrw contains N − n eigenvalue 1.

Thus, the original normalized Laplacian has the same eigenvalues as the lifted graph. Both
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definition of spectral distances are 0.

A.1.2 Proof of Proposition 3.4.2

Proof. The normalized Laplacian of the original graph can be viewed as a perturbation of the

normalized Laplacian of the lifted graph as

Lrw = Lrw
l +E,

where E is the perturbation matrix.

We expand the entries of Lrw as follows:

Lrw(i, j) = I(i, j)−W (i, j)

d(i)
.

As the coarse graph is coarsened from merging one pair of nodes, the edge weights of the lifted

graph Gl can be expressed as,

Wl(i, j) =



W (a,a)+W (a,b)+W (b,a)+W (b,b)
4

if i ∈ {a, b} and j ∈ {a, b}

W (a,j)+W (b,j)
2

if i ∈ {a, b} and j /∈ {a, b}

W (i,a)+W (i,b)
2

if i /∈ {a, b} and j ∈ {a, b}

W (i, j) otherwise.
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and the corresponding node degree dl is

dl(i) =


d(a)+d(b)

2
if i ∈ {a, b}

d(i) otherwise.

The above imply that Lrw
l can be expanded as follows:

Lrw
l = I(i, j)−Wl(i, j)

dl(i)
=



I(i, j)− W (a,a)+W (a,b)+W (b,a)+W (b,b)
2(d(a)+d(b))

if i ∈ {a, b} and j ∈ {a, b}

I(i, j)− W (a,j)+W (b,j)
d(a)+d(b)

if i ∈ {a, b} and j /∈ {a, b}

I(i, j)− W (i,a)+W (i,b)
2d(i)

if i /∈ {a, b} and j ∈ {a, b}

I(i, j)− W (i,j)
d(i)

otherwise

and the perturbation matrix E = Lrw −Lrw
l is given by

E(i, j) =



W (i,j)
d(i)

− W (a,a)+W (a,b)+W (b,a)+W (b,b)
2(d(a)+d(b))

if i ∈ {a, b} and j ∈ {a, b}

W (i,j)
d(i)

− W (a,j)+W (b,j)
d(a)+d(b)

if i ∈ {a, b} and j /∈ {a, b}

W (i,j)
d(i)

− W (i,a)+W (i,b)
2d(i)

if i /∈ {a, b} and j ∈ {a, b}

0 otherwise.

From [175], we have the following bound on the eigenvalue gap between λ(i) and λl(i):

|λ(i)− λl(i)| ≤ ∥E∥2
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Moreover, [176] proved that the spectral norm ∥E∥2 admits the simple upper bound:

∥E∥22 ≤ max
i,j

ricj = max
i

ri max
j

cj,

where ri =
∑

j |E(i, j)| and cj =
∑

i |E(i, j)|.

Let us focus on term ri.

Case 1: i /∈ {a, b},

ri = |
W (i, a)

d(i)
−W (i, a) +W (i, b)

2d(i)
|+ |W (i, a)

d(i)
−W (i, a) +W (i, b)

2d(i)
|

= |W (i, a)

d(i)
−W (i, b)

d(i)
| ≤

∥∥∥∥W (i, a)

d(i)
−W (i, b)

d(i)

∥∥∥∥
1

≤ ϵ

Case 2: i ∈ {a, b}, and suppose d(a) ≤ d(b) w.l.o.g.,

ri = |
W (i, a)

d(i)
−W (a, a) +W (a, b) +W (b, a) +W (b, b)

2(d(a) + d(b))
|+ |W (i, b)

d(i)
−W (a, a) +W (a, b) +W (b, a) +W (b, b)

2(d(a) + d(b))
|

+
∑

j /∈{a,b}

|W (i, j)

d(i)
−W (a, j) +W (b, j)

d(a) + d(b)
|

≤ |W (a, a)

d(a)
−W (b, a)

d(b)
|+ |W (a, b)

d(a)
−W (b, b)

d(b)
|+

∑
j /∈{a,b}

|W (a, j)

d(a)
−W (b, j)

d(b)
|

=

∥∥∥∥W (i, a)

d(i)
−W (i, b)

d(i)

∥∥∥∥
1

≤ ϵ (A.1)

We have maxi ri ≤ ϵ. Similarly, we can show that cj ≤ ϵ. The spectral norm of the

perturbation matrix E then is bounded by

∥E∥2 ≤
√
max

i
ri max

j
cj ≤ ϵ. (A.2)
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Combining the above, we have the bound of each term in the spectral distance as,

|λ(i)− λl(i)| ≤ ϵ (A.3)

The bounds of the full and partial spectral distance follow the Equation A.3 as they contain

N and n eigengap terms respectively.

A.2 Proof of Corollary 3.5.1

Proof. We denote the intermediate graphs at iteration s as G(s) with G(N) as the original graph

G and G(n) as the coarse graph Gc. From Proposition 4.2 and the spectral distance is a distance

metric over the Laplacian eigenvalues, we have the following,

SDfull(G,Gc) ≤
n+1∑
s=N

SDfull(G(s),G(s−1)) ≤ N
n+1∑
s=N

ϵs

and

SDpart(G,Gc) ≤
n+1∑
s=N

SDpart(G(s),G(s−1)) ≤ N

n+1∑
s=N

ϵs
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A.3 Proof of Theorem 3.5.2

Proof. We rewrite the objective of the k-means algorithm as the following,

F(U ,P) =
N∑
i=1

(
r(i)−

∑
j∈Si

r(j)

|Si|

)2

= ∥U −CC⊤U∥2F ,

where the matrix C ∈ Rn×N is the normalized coarsening matrix corresponding to the graph

partition P . With the notation Π = CC⊤ and Π⊥ = I −Π from Section 3.3.2, the k-means

objective is written as

F(U ,P) = ∥Π⊥U∥2F .

We express the partial spectral distance as in Definition 3.4.5

SDpart(G,Gc) =
k1∑
i=1

(λc(i)− λ(i)) +
N∑

j=k2+1

(λ(j)− λc(j + n−N)) (A.4)

where k1 = argmaxi{i : λc(i) < 1}, k2 = N − n+ k1.

Because of the interlacing property 3.4.1, we remove the absolute sign on the terms.

Correspondingly, we separate the k-means cost in two terms as,

F(U ,C) = ∥Uk1 −CC⊤Uk1∥2F + ∥U ′
k2
−CC⊤U ′

k2
∥2F = ∥Π⊥Uk1∥2F + ∥Π⊥U ′

k2
∥2F

where Uk1 and U ′
k2

denote the eigenvectors corresponding to the smallest k1 and largest n − k1

eigenvalues of the original graph. We also denote δk1 = ∥Π⊥Uk1∥2F and δ′k2 = ∥Π
⊥U ′

k2
∥2F .

We will prove the results of the two terms separately.
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For the first k1 eigenvalue gaps, we start by the following generalization of the Courant-

Fisher theorem: ∑
i≤k1

λc(i) = min
V ⊤V =Ik

tr(V ⊤LcV ).

We write L = S⊤S where S ∈ RM×N denotes the incidence matrix of the normalized Laplacian

L with the following form

S(v, e) =


1√
d(i)

, if v = i

− 1√
d(j)

, if v = j,

where e ∈ E with i and j as the connecting nodes. Then, the first k1 eigenvalues are

∑
i≤k1

λc(i) = min
V ⊤V =Ik

tr(V ⊤CS⊤SC⊤V ) = min
V ⊤V =Ik

∥SC⊤V ∥2F

Set Z = CUk1 , and suppose that Z⊤Z is invertible (this will be ensured in the following).

We select

V = Z(Z⊤Z)−1/2

for which we have

V ⊤V = (Z⊤Z)−1/2Z⊤Z(Z⊤Z)−1/2 = Ik1

as required.

We expand the sum of eigenvalues as follows:

∑
i≤k1

λi = min
V ⊤V =Ik1

∥SC⊤V ∥2F ≤ ∥SC⊤Z(Z⊤Z)−1/2∥2F ≤ ∥SC⊤CUk1∥2F ∥(Z⊤Z)−1/2∥22.
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and use the matrix Π = C⊤C and Π⊥ = I −Π defined in Section 3.3.2.

For the first term, we employ the triangle inequality.

∥SC⊤CUk1∥2F = ∥SΠUk1∥2F

= (∥S(I −Π⊥)Uk1∥F )2

≤ (∥SUk1∥F + ∥SΠ⊥Uk1∥F )2

≤ (∥SUk1∥F + ∥SΠ⊥∥2∥Π⊥Uk1∥F )2 (A.5)

The result for ∥SUk1∥F is

∥SUk1∥F =
√

tr(U⊤
k1
S⊤SUk1) =

√∑
i≤k1

λ(i).

On the other hand, the norm ∥SΠ⊥∥2 is bounded by

∥SΠ⊥∥2 =
√

λmax(Π⊥S⊥SΠ⊥) =
√

λmax(L) ≤
√
2

To analyze the second term, denote by σi the singular values of the k × k matrix U⊤
k1
ΠUk1 and

δk1 = F(Uk1 , C) = ∥Π⊥Uk1∥2F . The following inequality holds:

δk1 ≥ ∥Π⊥Uk1∥22 = ∥U⊤
k1
Π⊥Π⊥Uk1∥2 = ∥U⊤

k1
Π⊥Uk1∥2 = ∥U⊤

k1
(I−Π)Uk1∥2 = ∥Ik−U⊤

k1
ΠUk1∥2

The inequality is equivalent to asserting that the singular values of U⊤
k1
ΠUk1 are concentrated

around one, i.e.,

1− δk1 ≤ σi ≤ 1 + δk1 for all i ≤ k1.
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It follows that the smallest eigenvalue of the PSD matrix Z⊤Z is bounded by

λ1(Z
⊤Z) = min

∥x∥2=1
x⊤U⊤

k1
C⊤CUk1x

= min
x∈span(Uk1

), ∥x∥2=1
x⊤C⊤Cx

= min
x∈span(Uk1

), ∥x∥2=1
x⊤Πx

≥ 1− δk1

We deduce that the matrix is invertible when δk1 < 1 and C is full row-rank. In addition, we

have

∥(Z⊤Z)−1/2∥22 = ∥(Z⊤Z)−1∥2 ≤
1

1− δk1
.

Putting the bounds together, gives

∑
i≤k1

λc(i) ≤

(√∑
i≤k λ(i) +

√
2 δk1

)2
1− δk1

or equivalently

∑
i≤k

(λc(i)− λ(i)) ≤

(√∑
i≤k λ(i) +

√
2 δk1

)2
1− δk1

−
∑
i≤k1

λ(i) =
δk1(2 +

∑
i≤k λ(i)) +

√
8δk1

∑
i≤k1

λ(i)

1− δk1

To prove the result for the second term in equation A.4, we introduce the signless normalized

Laplacian L̃ = I + D−1/2WD−1/2 to obtain the results of the second term in Equation. A.5.

We follow the similar arguments using the signless normalized Laplacian. Note that the spectral
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properties of signless normalized Laplacian follow the relation:

λ̃(i) = 2− λ(N + 1− i) and Ũ(i) = U(N + 1− i)

Then, the eigengaps between largest eigenvalues abide to

N∑
j=k2+1

(λ(j)− λc(j + n−N)) =
n−k∑
j=1

λ(N + 1− j)− λc(n+ 1− j)

=
n−k∑
j=1

(λ̃c(j)− λ̃(j))

≤
δ′k2(
∑

j≤n−k1
2 + λ̃(j)) +

√
8δ′k2

∑
j≤n−k1

λ̃(j)

1− δ′k2
.

Combining the above, we obtain the following result:

SD(G,Gc) ≤
δk1(2 +

∑
i≤k λ(i)) +

√
8δk1

∑
i≤k1

λ(i)

1− δk1
+

δ′k2(
∑

j≤n−k1
2 + λ̃(j)) +

√
8δ′k2

∑
j≤n−k1

λ̃(j)

1− δ′k2

≤
(n+ 2)F(U ,C) + 4

√
F(U ,C)

1−F(U ,C)

In the last step, we use the following bounds:

δk1 ≤ F(U ,C), δ′k2 ≤ F(U ,C),

∑
i≤k1

λ(i) ≤ k1,
∑

j≤n−k1

λ̃(j) ≤ n− k1

√
k1 +

√
n− k1 ≤

√
2n.
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A.4 Additional Material for Experiments

A.4.1 Graph Classification Dataset

The statistics of the graph classification benchmarks are in Table A.1.

Table A.1: Statistics of the graph benchmark datasets.

Datasets MUTAG ENZYMES NCI1 NCI109 PROTEINS PTC

Sample size 188 600 4110 4127 1108 344
Average |V | 17.93 32.63 29.87 29.68 39.06 14.29
Average |E| 19.79 62.14 32.3 32.13 72.70 14.69

# classes 2 6 2 2 2 2

A.4.2 Definition of Normalized Mutual Information

We denote C1 and C2 are two where C(i) represents the set of nodes with label i. We define

the NMI as,

NMI(C1, C2) =
MI(C1, C2)

1
2
(H(C1) +H(C2))

where MI(C1, C2) is the mutual information defined as,

MI(C1, C2) =
n∑

i=1

n∑
j=1

p(C1(i) ∩ C2(j)) log

(
p (C1(i) ∩ C2(j))

p (C1(i)) p (C2(j))

)

H(C) is the entropy defined as,

H(C) = −
n∑

i=1

p(C(i)) log p(C(i))
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The probability p(C(i)) is approximated as the ratio of partition i as p(C(i)) = |C(i)|
N

.
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[160] Rogier B Mars, Saad Jbabdi, Jérôme Sallet, Jill X O’Reilly, Paula L Croxson, Etienne
Olivier, MaryAnn P Noonan, Caroline Bergmann, Anna S Mitchell, Mark G Baxter,
et al. Diffusion-weighted imaging tractography-based parcellation of the human parietal
cortex and comparison with human and macaque resting-state functional connectivity. The
Journal of Neuroscience, 31(11):4087–4100, 2011.
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