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Verifying that systems behave as expected is a cornerstone of computing. In

formal verification approaches, engineers capture their intentions, or specifications,

mathematically, often using logic. The verification task is then to confirm that the

system satisfies its specifications. In a formal setting this endeavor typically involves

the construction of mathematical proofs, which are either constructed automatically,

as in the case of so-called model-checking techniques, or by humans with machine

assistance, as in the case of theorem-proving-based methodologies.

In practice, formal verification faces a number of obstacles. One involves

the construction of formal specifications in the first place. Another is the lack of

availability of analyzable system artifacts (source code, executables) about which

proofs can be constructed. In this dissertation we propose techniques for inferring

formal specifications, in the form of Linear Temporal Logic formulas, from system

executions, and models when these are available, as a means of addressing these



concerns.

We first illustrate how guided generation of test cases (i.e. guided exploration

of the system’s input/output space) can be leveraged to develop and then refine

the hypothesis set of invariants that a system satisfies. This approach was success-

ful in revealing a system property required in code specification of an automotive

application provided to us but missing in the implementation. An unexpected (un-

documented) specification was also discovered through our analysis. The approach

has since been applied by other researchers to several other automotive applications.

Second, we develop techniques to mine properties from models of systems

and/or their executions. In some cases compact, finite state representations of a

system is available. In this scenario we employ a novel automaton-based approach

to mine properties matching a user-specified template. In other cases such white-box

knowledge is not available and we must work over executions of the system rather

than the system itself. In this scenario we apply a novel variant of Linear Temporal

Logic (LTL) using finite-sequence semantics to again mine properties based on a

specified template.

Lastly, we consider situations where standard formal properties are insufficient

due to uncertainty or being overly simplified. Oftentimes properties that are not

satisfied 100% of the time can be very interesting during a system inspection or

system redesign. For example, natural noise manifesting in data streams from sys-

tem executions such as missing evidence and changing system behavior could lead



to significant properties being overlooked if a strict “exactitude” were enforced. We

explore the notion of “incomplete” properties which we term partial invariants by

formulating a new “Noisy Linear Temporal Logic” which is an extension of standard

LTL. We consider several representations of such noise and show decidability of the

language emptiness problem for some of the variants.
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Chapter 1: Introduction

1.1 Motivation

Systems are pervasive in our world. From a web server handling user requests to a

business process which helps to coordinate a company’s operations to people forming

lines in bakeries, systems are present in our society, but to different extents. Each

distinct scenario falls along a continuum indicating how explicitly defined a system

is. A web server has code which dictates how it behaves. A business process may

be clearly (or not so clearly) documented for employees to read and be expected to

follow. People waiting in line at a bakery understand the notion of a queue, but

oftentimes no one is standing directing the flow of customers. As the number of

systems employed grows, so too do the possible ways in which they can affect us

and other systems. Being able to reason about a system and its behavior allows us

to better explain events that we observe as well as better predict future events.

Characterizing system properties in a formal sense provides a solid grounding

for reasoning over the systems. Formal reasoning allows us to abstractly represent

properties that are relevant to a system, and through such an abstraction gain the

1



ability to perform more costly analysis which might have been inadmissible at a more

technical level of representation, albeit usually at the cost of a loss of precision.

Such a formalism also allows for comparison between systems that may at first

seem disparate, and may provide a greater understanding about how systems can

and do interact with one another. In the case of a piece of software where multiple

programming languages are used for different subtasks and interface with each other,

a common formal language for expressing properties of the each of the components

can allow for easier reasoning about the composed system as a whole.

Increasing demands on performance, efficiency, and correctness have led to

the creation of systems intended to satisfy these demands. Consequently, this has

led to a demand for the analysis and evaluation of these new systems. To aid in

this process, system designers will often incorporate logging functionality generated

during a system’s execution. It has become almost second nature to do this, as

Odo from Star Trek: Deep Space Nine puts it: “...Humans have a compulsion to

keep records and lists and files – so many, in fact, that they have to invent new

ways to store them microscopically, otherwise their records would overrun all known

civilization.” In no small part due to the abundance of system logs, data sources

that contain a temporal component have become ubiquitous in today’s landscape.

As a result, techniques providing formal analysis of data which have a temporal

aspect have become a much sought after commodity.

Temporal data is readily available across a broad number of domains and

2



disciplines. Satellites sending transmissions back and forth from ground stations,

UNIX system log files such as /var/log/secure, processes such as Business Ac-

tivity Monitoring, gene expression data, and stock market tickers are only a small

representation of temporal data generated from systems. Again, the comprehension

of these systems can vary drastically. Some can be very well understood; for example

the UNIX system logging source code may be readily available for analysis. Others

may have an overarching set of rules that govern the system, such as a specification

for satellite communication, or a business process model document, or a set of dif-

ferential equations guiding the cellular electrophysiology of a heart cell. Others may

not be well understood at all, such as a uncharacterized metabolic pathway under-

lying gene expression data or the behavior of the stock market. In some of these

cases we have systems that are transparent and known to us (white-box knowledge)

and in other cases the systems are more opaque (black-box ). Despite such diversity

of systems, we can still aim to have a common language for reasoning.

Not surprisingly, systems and data acquisition are not without their own trou-

bles; imperfection can easily enter into the equation when the real world is involved.

Cyber-physical systems, systems operating at the interface of physical systems and

software components, are becoming increasingly abundant and present a number of

challenges for analysis. Satellite transmissions could not being received, errors could

be present when reporting events to a business process monitor, and inherently noisy

sampling such as for gene expression data are known to muddle the truthfulness of

3



the data. Consequently, any technique designed for working over such data streams

should be able to account for this noise in order to provide meaningful or otherwise

useful results.

In this document we propose a framework leveraging both model checking

and machine learning techniques in order to learn and reason about formal tem-

poral properties over data streams (e.g. a system’s executions). We believe that

by first reasoning over such data streams, we can infer information about the un-

derlying system itself. We begin by showing preliminary work where we perform

requirements extraction using a model-based approach from test cases with some

white-box knowledge of the system’s model. We then explore a scenario where we

have white-box knowledge of a system’s model and demonstrate how to mine tem-

poral logic formulas satisfied by the model using a novel form of query checking. We

then turn to consider a formulation of Linear Temporal Logic using finite seman-

tics, which we envision to be well suited for characterizing real-world observations

of black-box systems. Finally, we turn to consider issues of uncertainty in a system

model and data streams collected from it. We explore the notion of partial invari-

ants of a system which we formalize and generalize as a novel temporal logic which

we term noisy LTL.

4



1.2 Description of Problems Addressed

We provide here a high-level discussion of the research problems addressed along

with a summary of proposed solutions, arranged by chapter presenting novel research

(Chapters 4 through 8). This is intended to offer an overview of the subsequent

material explored herein and to provide some justification for the importance of this

document.

1.2.1 Chapter 4 — Model-Based Invariant Extraction from Test Cases

Model-based design of systems has become increasingly prevalent in a number of

fields. Such an approach to system design can allow for a natural transition from

more informal requirements such as natural language documents or use cases exam-

ples. Such a transition, however, can be fraught with inconsistencies as the design

process progresses between different representations. Furthermore, design models

can be complex and direct analysis is expensive.

We present an automatic method of ascertaining properties of a design model

from its test cases (input/output pairs produced during model simulation). These

properties, putative invariants to the system itself, offer a fast and inexpensive way

to summarize design model behavior which is observed from generated test cases.

Using methods which guide test case generation we can produce a suite of test cases

which aim to represent the full behavior of the model under study.

5



1.2.2 Chapter 5 — LTL Query Checking

For a given modelM and LTL formula φ, LTL model checking performs the verifi-

cation task of determining whether or notM satisfies φ. One can relax the formula

φ to a formula template φ[var] (a query), allowing a subformula var of φ to be

unspecified. The LTL query checking is the discovery problem to determine a set

of solutions to var such that when var is substituted for solution c, the resulting

formula φ[c] is satisfied by M. This problem can aid in the comprehension and

reasoning of M, allowing a user to determine specifics of a property when only an

abstracted template query is known.

We present a solution to the LTL query checking problem by adapting the

traditional automaton-based LTL model checking algorithm to support LTL queries

rather than the usual LTL formula. We provide analysis and empirical results for

several sample models.

1.2.3 Chapter 6 — Finite LTL

Many real-world systems generate data streams that have a finite length. Conse-

quently, the infinite semantics of traditional temporal logics such as Linear Temporal

Logic (LTL) do not naturally align, and as a result direct application of such logical

schemes can be problematic when attempting to perform traditional formal meth-

ods tasks such as model checking. A number of different approaches have been
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considered in order to bridge this disconnect.

We present a finite-semantic temporal logic inspired by LTL, which we call

Finite LTL, which naturally accepts sequences of finite length, thereby obviating

the need for a translation from finite-sequence data to infinite-sequence formalisms.

A number of results are proven for this logic. We also provide a construction for

a finite automaton representing Finite LTL formulas, analogous to the well-studied

Büchi automaton tableau constructions from traditional LTL, which enables tasks

such as model checking using minor adaptations from the traditional schemes.

1.2.4 Chapter 7 — Finite LTL Query Checking

In many cases white-box knowledge of a model under study is not known, but we are

able to execute the model to gather execution data. As only black-box knowledge is

assumed, reasoning about a system’s inner workings (to whatever extent possible)

can be placed at a premium.

Combining and extending the results from the previous two chapters, this

chapter investigates the problem of query checking for Finite LTL over finite length

data streams. Rather than being provided a model M on which to perform model

checking as done in Chapter 5, we assume the user is given a set of finite sequences

which the model exhibits. We convert these finite data streams into automaton

representations which can be used as a model of the data, and then perform query

checking by first adapting the tableau construction method from Chapter 6 to pro-
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duce query automaton from a Finite LTL query and then proceed with an adapted

version of traditional LTL model checking.

1.2.5 Chapter 8 — Formal Verification of Noisy Sequences

Many real-world data streams contain artifacts and abnormalities that perturb the

stream away from its predicted baseline behavior. Minor perturbations can often-

times substantially impact the validity of formal properties expressed over such data

streams. This lack of robustness in turn minimized the applicability of properties

expressed in formal logics such as LTL.

We present a new temporal logic intended to be robust to such perturbations.

This new logic, called Noisy LTL, is an extension of LTL which allows for devia-

tion from the traditional LTL properties by a parameterized degree. We consider

several methods to model the degree of deviation, and provide a number of theoret-

ical results relating Noisy LTL to traditional LTL. We also provide a construction

to produce a Büchi automaton from a Noisy LTL formula, yielding an immediate

solution to the Noisy LTL model checking problem.

1.3 Organization of Chapters

The remainder of this document is organized as follows. Chapter 2 provides a high

level discussion of work related to our research. Chapter 3 elaborates substantially

on the particular works discussed in Chapter 2 that is fundamental to our research.
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Chapter 4 presents work of ours [1] published in Runtime Verification 2010, which

discusses model-based invariant extraction from test cases. Chapter 5 discusses

a novel, automaton-theoretic approach to the problem of Linear Temporal Logic

(LTL) query checking. Chapter 6 defines a finite-semantic version of LTL as well

as shows a construction for a finite automaton representing Finite LTL formulas.

Chapter 7 discusses the query checking problem as presented for Finite LTL. Chapter

8 investigates how uncertainty can be incorporated into our framework, including

through the use of partial invariants as well as establishing a new temporal logic

supporting noise. Finally, Chapter 9 summarizes the contents of this proposal and

gives concluding remarks, including potential future research directions as a result

of this thesis work.
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Chapter 2: Related Work

We provide discussion for work related to the contents of this proposal. Several

topics contained here are foundational for the direction of our research; they are

indicated as such and explained in substantially longer detail in Chapter 3.

2.1 Formal Methods: Temporal Logic and Model Checking

Temporal logic refers to any number of systems or frameworks that involve reasoning

over a set of propositions with regards to time. Statements such as “he arrived

before I did” or “the pressure rises until the pipe breaks” or “she always answers the

phone” are all representable statements, and depending upon the specific language

of temporal logic used, can be expressed very succinctly or not at all. Our work is

built upon two specific flavors of temporal logic, Linear Temporal Logic (LTL) [2]

and Computational Tree Logic (CTL) [3]. For a more in-depth discussion regarding

temporal logic the reader is referred to Section 3.1.

Certain temporal logics (including LTL and CTL) are of special interest be-

cause they can serve as the basis for a specification in a verification task. That

is, given a model of a system, we can ask if the model satisfies some specification,
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which can be posed using a language based in temporal logic. Verifying specifica-

tions such as “the server is always up” or “the math always adds up” are possible

by performing this verification task, also referred to as model checking. Algorithms

exist for a number of well-studied temporal logics, some of which are substantially

more efficient than others. For more details on model checking, consult Section 3.2.

2.2 Model/Program Synthesis

The model synthesis problem is a problem related to model checking but with a

different intent. Rather than verifying the satisfaction of a (model, property) pair,

it is given a set of properties and attempts to find a succinct model satisfying

them. Formally, the model synthesis problem asks “Given a set of properties Φ,

what is the model or class of models that satisfy all of Φ?” Often times this is

expressed as program synthesis [4, 5] instead of model synthesis, and the goal is then

usually to build an executable piece of code to accomplish the supplied specification,

rather than to build an abstract mathematical model. Model synthesis usually

varies on along three axes of choices. Firstly, the form specifications take can vary

drastically, including written documentation, logical relations, and even programs

themselves that solve the same or related task but are inefficient. The search space of

valid solutions also is subject to variation (which usually leads to distinguish model

synthesis from program synthesis): automata are sometimes desirable, whereas in

other cases a functional program is found. Lastly, the search technique can range
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from a number of machine learning-inspired approaches to logical reasoning to an

exhaustive search.

2.3 Interval Algebra

Other systems of operators alternative to LTL or CTL exist to describe temporal

relationships between entities. In 1983, Allen [6] proposed what is now known as

“Allen’s interval algebra.” This algebra includes a formal system for representing

temporal relationships between pairs of time intervals. 13 distinct operators were

included to create an exhaustive and distinct set of relationships that were qualita-

tive in nature. Operators such as “a precedes b” (the end point of a occurs before

the start point of b) and “a finishes b” (the start point of a occurs after the start

point of b and the end points of a and b are equal) are some of the 13 operators

defined. The full set is given below:

12



b
a

precedes

b
a

meets

b
a

overlaps

b
a

finished by

b
a

contains

b
a

starts

b
a

equals

b
a

started by

b
a

during

b
a

finishes

b
a

overlapped by

b
a

met by

b
a

preceded by

These 13 operators describe interval positioning in the definitive case; i.e. the

case where the interval boundaries are known. In the indefinite case, relationships

can be expressed as a boolean disjunction of several of the definite operators. For

example, suppose interval a describes the time range when “John was present in the

room” and interval b describes the range where “Mary turned on the light switch.”

Then the statement “John was not in the room when Mary turned on the light

switch” has four possible distinct definite relationships that explain a’s positioning

relative to b. Either a precedes b, a is preceded by b, a meets b, or a is met by b.

For the indefinite case there are 213 = 8192 possible “general” relations formed by

considering each subset of definite relations.

In contrast to temporal logics such as LTL and CTL which abstract entities
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to time points, the Allen operators assume the entities are represented as intervals.

Rosu et al. [7] investigated the relationship between the Allen interval algebra and

LTL. They constructed an intermediate language termed “Allen linear temporal

logic” or ALTL, which has complexity and syntax matching that of Allen’s interval

algebra but model is similar to LTL. They further showed that ALTL can be effi-

ciently encoded into a fragment of LTL which then can be subject to verification

using the same algorithms that already exist for LTL.

The close-ended interval representation provided by the Allen operators is

sometimes undesirable, especially when reasoning with uncertainty. In 1992, Freksa

[8] proposed a semi-interval notation where one boundary of each interval is known,

and the other is not. Semi-interval comparisons are made only based upon the

known boundary. Because of this, a number of Allen relations collapse to others, for

example the Allen relations “a precedes b,” “a meets b,” “a overlaps b,” “a finished

by b,” and “a contains b” all map to a single Freksa relation “a older than b” when

the end points of a and b are not known. The Freksa relation set contains 10 distinct

operators compared to the 13 provided by Allen.

2.4 Association Rule Mining

Association rule mining is a technique for discovery of relationships between items

over large datasets (originally targeted for database scale). Initially proposed by

Agrawal et al. in 1993 [9], it seeks to uncover evidence of association rules between
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items. These rules take the form {a1, . . . , ak} =⇒ {b}, which indicate that if items

a1 through ak are present, then item b is likely to be present as well. The original

example considered was a basket analysis of consumer purchases at a grocery store.

Items were products found in each customer’s shopping cart, and association rules

revealed strong ties between groceries. For example, a customer who buys both

milk and eggs may also be highly expected to buy bread. The Apriori algorithm

was proposed to mine these patterns. It performs in a bottom-up breadth-first

manner, considering candidate sets of items of increasing size while verifying that

they satisfy criteria for showing a strong correlation from the data. A notion of

confidence of a rule is developed which corresponds to the representation that rule

has over the data set being mined. This confidence value is used to evaluate a

rule’s strength. Section 3.3 provides a more in-depth discussion about the Apriori

algorithm.

In 1995, Agrawal et al. [10] published a follow-up result which extended

their existing theory and algorithm to be applicable to so-called sequential patterns,

namely patterns of the form

{a1, . . . , ai} {b1, . . . , bj} {c1, . . . , ck} . . .

In contrast to the association rule structure listed above, this sequential pattern

occurs over multiple time instances; the implication structure of the rule implies a
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passage of time.1 An example of such a rule is “customers who typically rent ‘Star

Wars’, then ‘The Empire Strikes Back’, and then (finally) ‘Return of the Jedi’ .”

While the association rule work focuses on determining relationships between items

in a single purchase, sequential pattern mining seeks to identify relationships over

different transactions. Agrawal showed how mining such sequential patterns could

be performed using a modified version of the Apriori algorithm.

Following this initial work by Agrawal et al., others approaches have provided

various improvements algorithmic efficiency and supporting parallel execution. Han

et al. [11] proposed a technique they call the Frequent Pattern growth algorithm

(FP-growth algorithm) using a novel data structure they call a FP-tree. Advantages

over Apriori include the avoidance of generating all possible candidate itemsets

while exploring the space of possible solutions, reduced database scan time due to a

highly compressed novel data structure, and a natural possibility to parallelize the

algorithm over multiple databases for a substantial performance boost. The Eclat

family of algorithms initially proposed by Zaki et al. [12, 13] in 1997 take advantage

of the structure of the boolean lattice structure that itemsets compose. A clustering

is shown to be possible to generate small independent subspaces, which are of the

size that can individually computed in main memory rather than on disk.

In 2000, Webb [14] published a new algorithm for association rule learning

based on his earlier published OPUS search algorithm [15] from 1995. OPUS identi-

1In the literature, the standard notation is =⇒ but we use  here to disambiguate sequential
patterns from standard association rules which incorporate no notion of time.
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fies ahead of time portions of the search space that could be concluded to contain no

solutions to avoid work, which allows for early pruning of the overall search space.

2.5 Temporal Logic Queries

In 2000, Chan [16] developed a theory of “temporal logic queries.” In this setting, the

user provides a model and a CTL query, which is a standard CTL formula that has

exactly one placeholder indicated. This placeholder indicates an ambiguity which,

once grounded with a logical proposition, turns the CTL query into a valid CTL

formula. In particular, Chan defines the semantics of a CTL query to evaluate to

the strongest proposition that makes the grounded CTL formula hold for the model

given. For example, the CTL query A G? (here “?” is the placeholder) evaluates to

the strongest proposition p that makes A G p hold, namely the strongest invariant

of the model. Strength here corresponds to the relative propositions have on the

boolean lattice, for example the proposition a∨ b is weaker than both a and b which

both in turn are weaker than a∧ b. The solution to queries are naively computed by

performing standard model checking over all possible propositions (of which there

are exponentially many in the number of atomic propositions). Taking advantage

of ordered traversal of the proposition space, Chan presents a subclass of CTL

queries which can be solved in time linear to both the model size and the query

length. Gurfinkel et al. [17] later relaxed the requirement that there be only one

placeholder in the query, and presented an implementation of a temporal logic query
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checking solving this relaxed problem.

Chan’s work was subsequently extended to more expressive branching-time

logics via alternating-tree automaton constructions [18] and three-valued model

checking [19]; this last paper also describes several applications of the technique

in areas such as invariant inference and test generation. Other work has studied the

problem for classes of infinite-state systems [20].

In contrast to branching time, linear-time query checking has remained rela-

tively unstudied. Chokler et al. [21] consider several variants of LTL query checking

and prove complexity results for these problems; however, no implementation or

experimental results were reported.

2.6 Invariant Extraction/Detection

A program invariant is a property or condition that holds true for a certain point

or points in a program. Example conditions such as being in a range (a ≤ x ≤ b),

equality (x = y), and an array being in sorted order are all possible invariants. The

goal of invariant detection is to identify such program invariants either in an either

off-line (static) or online (dynamic) setting. Program invariants can serve to provide

an understanding of a program’s behavior, which in turn allows for a number of

useful applications including (but not limited to) improved documentation, directed

generation of test cases, asserting program validity, and automatic theorem proving.

Presented by Ernst in 2007, Daikon [22] is a system for dynamic invariant
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detection. It functions by running a given program, observing the values computed

by the program, and then reports properties that were not invalidated during the

monitored executions. One of the focuses of the work is to make the Daikon system

easily adaptable to new domains by providing functionality for adding new prop-

erties past the built-in invariant types as well as new data source types. It also

assesses uses statistical measures to assess if putative invariants being considering

dynamically are actually invariant over the program and not just overfit conclusions

from the learning process.

In 2015 Lemieux et al. [23] described an approach for mining specifications

over system trace logs. They present an implementation of their approach, Texada,

which takes as input a set of traces and a LTL template (which they call an LTL

property type) and return all grounded instances of the LTL template which are

supported by the traces. Notions of noise are also included as they also can return

grounded properties which are not supported by the entire set of traces. Although

not explicitly indicated by the authors, this project also fits under the work of

“template logic queries” as described above.

It is worth noting that the usage of “invariant” has become somewhat multi-

purpose across subfields of research; its meaning is somewhat contextually dictated.

While the uses can be seen as related to some extent, they do have nuanced dis-

tinctions. During the presentation of our own work later (notably Chapter 4), we

provide a specific meaning for the scope of our research.
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2.7 Process Mining

Research in the Business Process Management domain has worked to develop many

models of business activity, formal and otherwise. The field of process mining deals

in part with extracting knowledge from these models that can help improve, among

other things, workflow at a fast and agile pace. Process mining can take several

forms. In the discovery case, the model is not known a priori and the challenge

is to construct a representation or understanding of the model through the events

captured from outputs such as system logs or other events and observations. In the

conformance case, the model is instead known ahead of time and the goal is to ensure

or verify that the model does not deviate from the intended behavior. Here deviation

is measured by variation in output when compared to the formal model design itself.

This is effectively model verification as described in the formal methods literature,

and indeed one direction is to apply model checking to achieve conformance, as

done by Van der Aalst et al. [24]. They present work for performing verification

over XML-based event logs and a derivative of LTL as the property language to

verify.

2.8 Probabilistic Model Checking

PRISM is a probabilistic model checker developed by Kwiatkoska et al.[25]. It is

designed to perform verification tasks over models that exhibit probabilistic behav-
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ior such as Markov chains and continuous time Markov Chains, as well as pose

probabilistic queries over such models of the form Pr>0.95 (aU b). In this example

the model is verified if at least 95% of the executions satisfy the property aU b.

PRISM supports queries over pCTL and CSL [26, 27], temporal logics that are sim-

ilar to CTL. Queries about long-run, steady-state dynamics can be posed relative

to the underlying Markov chain/CTMC, such as “what is the long run probability

that the queue is more than 75% full?” While precise computation using results

from the markov chains literature is possible, PRISM has functionality to perform

simulation-based verification, namely they will execute the model a large number of

times and compute a probability for the query to be satisfied.

2.9 Semantic Anomaly Detection

Work done by Raz et al.[28] focus on identifying semantic anomalies over online data

feeds. Raz defines a semantic anomaly to be “unreasonable values of successfully

parsed data,” meaning that the system and software operate to push data through

in a properly formatted manner, but data values make little sense semantically. Raz

shows that by first mining from data feeds invariants relative to the data’s seman-

tics one can establish a semantic baseline, helping to identify semantic anomalies

from unseen data. Motivation for this work was in part to improve incomplete or

incorrect specifications for the data stream; Raz provides a process by which the

specifications can be updated based upon an adjusted expectation given observed

21



semantic deviation.

2.10 Finite LTL

This section reviews existing work on the use of finite versions of LTL.

There have been a number of different LTL constructions intended to bridge

the gap between finite-length real world data sequences and the automated reasoning

of LTL vis à vis infinite sequences in the formal-verification community. Some have

arisen originating with an intended application in mind (i.e. planning/robotics),

while others approach from a more foundational direction. As such, different works

have yielded several variants of so-called “finite LTL.” With varying semantics syn-

tactically similar logics, there are a number of nuances that are elicited when com-

paring these different works.

De Giacomo and Vardi [29] provide complexity analysis of their finite semantic

logic LTLf . They also devise a PDL-inspired logic into which LTLf can be trans-

lated in linear time. It was shown for both logics that determining satisfiability

of a formula is PSPACE-complete. De Giacomo et al. [30] focus on the interplay

between finite and infinite LTL. They are address some risks of directly transferring

approaches from the infinite to the finite case, and specifically formalize when a

finite trace is “insensitive to infiniteness,” where an infinite suffix is constructed to

pad a finite sequence. This property is shown to be provable using a standard LTL

reasoner.
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Li [31] presents a discussion of applying transition systems to satisfiability of

LTLf . They present a recursive construction for a normal form of an LTLf formula

φ. However, there does appear to be a minor issue in their normalization of the

Until and Release operators such that they are not logical duals (which historically

they are in standard LTL). Roşu [32] poses a sound and complete proof system for

his version of finite-trace temporal logic.

Fionda and Greco [33] investigate the complexity of satisfiability for restricted

fragments of LTL over finite semantics. They also provide an implementation of a

finite LTL reasoner which utilizes their complexity analysis to identify when sat-

isfiability for a specified formula is computable in polynomial time, and performs

the computation in the case; otherwise they convert the input formula to a SAT

representation and invoke a SAT solver. Notably, their maximal fragment does not

include the dual operator of Next or any binary operator with temporal modality

such as Until, and only permits negation to be applied to atomic propositions.

A recent paper by Li et al [34] addresses Mission-Time LTL (MLTL), an LTL

logic with time intervals supported for the Until and Release operators. They de-

velope a satisfiability checking tool for MLTL by first using a novel transformation

from MLTL to LTL/LTLf and then turning this resulting formula into SAT. The

authors also observe that there is a need for more solvers of these related languages.
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2.11 Robust Temporal Logics

Work has been done to support different types of uncertainty, one of note is charac-

terizing a system’s robustness, or the ability for a system’s characteristics to persist

despite some amount of perturbation.

Abbas et al. [35] developed an approach to falsify Metric Temporal Logic (an

extension of Linear Temporal Logic involving timing constraints) using a notion of

robustness as a guiding principle in a random walk through the input space to a

model.

More recently, Tabuada et al. introduced Robust Linear Temporal Logic [36] as

a temporal logic designed to provide support for expressing robustness in a system

through the use of applying a 5-valued logic semantics over LTL syntax. Here

robustness is indicated by a system only demonstrate small violations of specified

properties when a minor perturbation in the environment is observed.
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Chapter 3: Background

We provide elaborated background discussion for the relevant work that we build

from, presenting topics in a more technical light than they were portrayed in Chapter

2.

The reader interested in learning more about temporal logic, model checking,

and its complexity is advised to consult the survey by Schnoebelen [37], which

provides a more thorough account than the space we have afforded them here.

3.1 Temporal Logic

Temporal logic is an extension of propositional logic intended to represent properties

of propositions quantified over time. We can express properties such as “The system

is offline,” (basic propositional logic), as well as “The system will eventually be

offline,” and “the system will never be offline.” Historically, such a framework has

been useful in posing assertions of both safety where something bad never happens

(the system will never be offline) and liveness (the system will always come back

online).

Temporal logic has traditionally been applied on top of formal mathematical
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models of systems. Such models are usually Kripke structures, automata-like con-

structs which the semantics of different TL varieties are commonly defined over.

Once a particular temporal logic and a mathematical model are chosen, one can

pose a verification question such as “does the model satisfy the property?”

Two common temporal logics are Linear Temporal Logic (LTL) and Compu-

tational Tree Logic (CTL), whose syntax and semantics we provide here along with

the definition of a Kripke structure.

3.1.1 Kripke Structure

Definition 1 (Kripke Structure). A Kripke structure M over a set of atomic propo-

sitions AP is a 5-tuple M = 〈S,AP , R, l, si〉 where:

• S is a non-empty finite set of states,

• AP is the set of atomic propositions acting as labels,

• R ⊆ S × S is the transition relation which is left-total (for all states s ∈ S

there exists some x ∈ S such that 〈s, x〉 ∈ R),

• l : S → 2AP is the state-labeling function, and

• si ∈ S is the initial state.

We express M as the 4-tuple M = 〈S,R, l, si〉 when AP is clear from context.

A Kripke structure encodes the behavior of a system, with S representing

system states and the transition relation recording the possible execution steps when
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a system is in a given state: when the system is in state s it can evolve in one step to

state s′ iff (s, s′) ∈ R. The labeling function l indicates which atomic propositions

are true in any given state; if a ∈ l(s) then a is deemed true at state s, while

if a /∈ l(s) it is false. A path p = s0s1s2 . . . ∈ Sω is said to be generated by a

Kripke structure M = 〈S,AP , R, l, si〉 if there is a sequence of states starting at si

which then follows the transition relation. 1 Formally, p ∈ Sω is generated by M

if s0 = si, and ∀j ∈ N, (sj, sj+1) ∈ R. Because R is left-total, each state s is has

at least one transition leading from s to some other state, so any finite sequence

of states following valid transitions is the prefix of some infinite path generated

by M . The labeling function can be lifted to accept infinite sequences of states;

for state sequence p = s0s1 . . . ∈ Sω we define l(p) = l(s0)l(s1) . . . to be the word

corresponding to state sequence p. The language generated by M is the set of words

L(M) = {l(p) : K generates p}.

3.1.2 Linear Temporal Logic (LTL)

Initially proposed by Pnueli in 1977 [2], Linear Temporal Logic is a temporal logic

that describes properties over sequences. Intuitively, it focuses on properties that

describe long-run and future states of tracked properties over a system’s execution

path. Properties such as “it is eventually true that the system will halt” and “the

power is always on” are describable using LTL.

1In contrast to S∗ which is the set of all finite sequences of states from S, Sω refers to the set
of all infinite sequences.
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Definition 2 (LTL Syntax). For a set of atomic propositions AP, the set of LTL

formulas is defined by the following grammar, where a ∈ AP:

φ ::= a | ¬φ | φ ∨ φ | Xφ | φUφ

We call the operators ¬ and ∨ propositional and X and U modal. We use ΦAP to

refer to the set of all LTL formulas and ΓAP ( ΦAP for the set of all propositional

formulas, i.e. those containing no modal operators. We will write Φ and Γ instead

of ΦAP and ΓAP when AP is clear from context.

The first three syntax rules establish a propositional logic, and the remaining two,

termed the “next” (X) and “until” (U) operators are the extension with temporal

modality. The semantics of an LTL formula φ is defined with regards to infinite-

length sequences. Informally, for a particular sequence of sets of atomic propositions

drawn from some parent set AP , an LTL formula that is purely propositional satis-

fies the sequence if the first entry of the sequence evaluates to true over the formula.

The “next” temporal operator requires us to look one entry further down in the se-

quence to evaluate truth, while the “until” temporal operator requires one formula

to be true from the first entry to some later entry where a second formula is instead

true for one instance. We first formally define notation for infinite-length sequences,

and then give the semantics for LTL.

Definition 3 (Infinite Length Sequences). Let X be a set, with Xω the set of infinite
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sequences of elements of X. Also assume that π ∈ Xω has the form π = π0π1π2 . . ..

We define the following notation.

1. For i ∈ N, π[i] = πi.

2. For i ∈ N, π(i) is the suffix of π starting at i, taken to be π(i) = πiπi+1 . . ..

Note that π(0) = π and that any suffix of π is itself an infinite sequence taken

from Xω.

3. If x ∈ X and π ∈ Xω, then xπ ∈ Xω is the sequence such that (xπ)(0) = x

and (xπ)(1) = π.

The semantics of LTL is defined with respect to the satisfaction relation “|=”:

Definition 4 (LTL Semantics). For a set AP, let φ ∈ ΦAP be an LTL formula and

π ∈ (2AP)ω be an infinite-length sequence over the power set of AP. The satisfaction

relation |= is defined inductively on the structure of φ as follows:

• π |= a if a ∈ π[0]

• π |= ¬φ if π 6|= φ

• π |= φ1 ∨ φ2 if π |= φ1 or π |= φ2

• π |= Xφ if π (1) |= φ

• π |= φ1 Uφ2 if ∃i ∈ N : π(i) |= φ2 and ∀j ∈ N : (0 ≤ j < i) =⇒ π(j) |= φ1
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Figure 3.1: LTL formula φUψ

We write JφK for the set {π : π |= φ} and say that LTL formulas φ1 and φ2

are logically equivalent, with notation φ1 ≡ φ2, if Jφ1K = Jφ2K.

One can think of φ1 Uφ2 as the requirement that φ1 must persist until some

instance where φ2 is true. A sketch to provide further intuition is provided in Figure

3.1.

Having provided above a core syntax and semantics for LTL, we now take

note of several commonly derived operators that allow for concise (and usually very

meaningful) LTL formulations. Of note are the boolean conjunction and implication

(∧ and =⇒ ), as well as the derived temporal logic operators “release,” “eventually,”

“always,” and “weak until” (denoted R, F, G, and W). We will forgo giving the

boolean derivations here; they are the usual form. The definitions for the derived

temporal logic operators are given in the Table 3.1.

We can see from the definitions above that the “release” operator is defined

to be the logical dual of “until” while the “always” operator is the logical dual of

“eventually.” We can explicitly write the definitions in terms of set notation, which
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Operator Expression Derived Syntax

Release φ1 Rφ2 , ¬ (¬φ1 U¬φ2)

Eventually Fφ , ttUφ

Always Gφ , ¬F¬φ
Weak until φ1 W φ2 , φ2 R (φ1 ∨ φ2)

Table 3.1: Derived LTL Operators

also provides an intuition behind their naming scheme. We start with release:

φ1 Rφ2 , ¬ (¬φ1 U¬φ2)

= ¬ [∃i ∈ N : (π(i) |= ¬φ2) ∧ ∀j ∈ N : (0 ≤ j < i) =⇒ π(j) |= ¬φ1]

= ∀i ∈ N : (π(i) |= φ2) ∨ ∃j ∈ N : (0 ≤ j < i) ∨ π(j) |= φ1

From this representation, we can see that φ1 Rφ2 is satisfied if for every step

of the sequence, the step either satisfies φ2 outright or there is some earlier step

where φ2 was satisfied (the release requirement) and no other restriction is placed

upon that step. Note that from this definition it is clear that φ1 may never occur,

but in this case φ2 is required to always be true. Figure 3.2 illustrates these two

cases.
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Figure 3.2: LTL formula φRψ
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Figure 3.3: LTL formula Fφ

Eventually (F) has the following semantics:

Fφ , ttUφ

= ∃i ∈ N : π(i) |= φ ∧ ∀j ∈ N : (0 ≤ j < i) =⇒ π(j) |= tt

= ∃i ∈ N : π(i) |= φ

From this representation we clearly see that Fφ is true exactly when φ is

satisfied at some future instance. A sketch for eventually is provided in Figure 3.3.

Always (G) has the following semantics:

Gφ , ¬F¬φ

= ¬ (∃i ∈ N : φ(i) |= ¬φ)

= ∀i ∈ N : π(i) |= φ

From this representation we can see that Gφ is true exactly when φ is satisfied

at all present and future instances. We can also rewrite Gφ future in order to express
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G in terms of R:

Gφ = ∀i ∈ N : π(i) |= φ

= ∀i ∈ N : π(i) |= φ ∨ ∃j ∈ N : (0 ≤ j < i ∧ π(j) |= ff)

= ffRφ

Using this form, one can think of “always” as a release operation whose release

criterion is never met. A sketch for always is provided in Figure 3.4.

Lastly, weak until (W):

φ1 W φ2 , φ2 R (φ1 ∨ φ2)

= ∀i ∈ N : π(i) |= (φ1 ∨ φ2) ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ2

= ∀i ∈ N : π(i) |= φ1 ∨ π(i) |= φ2 ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ2

Using reasoning similar to what was done for φ1 Rφ2, we can see that for

φ1 W φ2 to be satisfied, for every step i in the sequence, either of the two conditions

φ1 or φ2 must be met, or there must exist some earlier index j such that the release
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condition φ2 is satisfied. This is similar to the standard until φ1 Uφ2, with the

noticeable exception that φ1 may continue to be held true forever in the case where

φ2 is never observed, and W would be satisfied (which is not permitted by U).

The connection to U can be made more explicit by considering the above semantics

when conjoined with Fφ2:

(φ1 W φ2) ∧ Fφ2 = (∀i ∈ N : π(i) |= φ1 ∨ π(i) |= φ2∨

∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ2)

∧ ∃i ∈ N : π(i) |= φ2

= φ1 Uφ2

With the “promise” of an eventual satisfaction of φ2, the third disjunct in

φ1 W φ2 is known to occur somewhere (the third disjunct is the same condition as

the added Fφ2), and the semantics reduce to φ1 Uφ2. We can see that the difference

between φ1 Uφ2 and φ1 W φ2 is exactly when the sequence is an infinite run of φ1

with no occurrence of φ2.

As a final note, the logical dual of X is itself:

¬X¬φ = ¬ (π(1) |= ¬φ)

= π(1) |= φ

= Xφ
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This observation will be useful later when discussing alternative temporal log-

ics, notably CTL in Section 3.1.4.

3.1.2.1 Example queries

We provide a few example queries posed in LTL to demonstrate the expressiveness:

• F terminate – The program will eventually end.

• raining U Thursday – It will rain until Thursday

• G server running – The server is always running.

• G (911 dialed =⇒ F police arrive) – Whenever 911 is dialed, the police will

eventually arrive.

• G (turn signal =⇒ (indicator blinks U turn is made)) – Whenever the turn

signal is activated, the light blinks until the turn is made.

3.1.3 A Branching Time temporal Logic (CTL*)

Computational Tree Logic [38] is a temporal logic that supports analysis of branch-

ing paths in a system’s execution. For ease of transition from LTL, we will first

discuss CTL*, a superset of both CTL and LTL. Whereas LTL allows one to assert

properties over an execution of a system (or a system who is linear in its behavior),

CTL* supports branching logic by means of the addition of path quantifiers. A path

quantifier provides the ability to reason over different branching executions from a
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particular state of a Kripke structure. It can assert that “some branches” (existen-

tial) satisfy a property. LTL has no notion of branching time, it assumes there is

one path that is followed. We provide the syntax and semantics for CTL*. CTL*

has two types of logic formulas, state formulas and path formulas. State formulas

are typically denoted using σ, while path formulas are represented using φ. A CTL*

state formula defined over an atomic proposition set AP has the following syntax:

σ ::= a ∈ AP

| ¬σ

| σ ∨ σ

| Eφ

The syntax for a corresponding path formula is:

φ ::= σ

| ¬φ

| φ ∨ φ

| Xφ

| φUφ

As seen for LTL, we have derived logical operators ∧ and =⇒ , as well as

derived path operators R, F G, and W, all defined in the same manner. Addi-
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tionally, we have a derived state operator A, defined to be the dual of E. The

semantics of both formula types are now given with respect to a Kripke structure

M = 〈S,AP , R, l, sI〉. We use the satisfaction relation |=M to denote this. State

formulas are satisfiable only by states in the Kripke structure, whereas path formu-

las are satisfiable by a sequence of states, i.e. a path. We denote states here as s

and paths as π. The semantics for a state formula is as follows:

• s |=M a ∈ AP if a ∈ l (s)

• s |=M ¬σ if s 6|= σ

• s |=M σ1 ∨ σ2 if s |=M σ1 or s |=M σ2

• s |=M Eφ if there exists some path π emanating from s such that π |=M φ

A state satisfies a simple atomic proposition a if a is contained in the set

returned from the labeling function from M as applied to s. The semantics for ¬

and ∨ are defined in the usual fashion. Eφ requires that some path π exists which

start at s and emanate following the Kripke structure’s state relation R, and for π

to satisfy φ. The semantics for a path formula is as follows:

• π |=M σ if π(0) |=M σ

• π |=M ¬φ if π 6|=M φ

• π |=M φ1 ∨ φ2 if π |=M φ1 or π |=M φ2
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• π |=M Xφ if π(1) |=M φ

• π |=M φ1 Uφ2 if ∃i ∈ N : π(i) |=M φ2 ∧ ∀j ∈ N : (j < i) =⇒ π(j) |=M φ1

Note that the semantics for ¬, ∨, X, and U are identical to those presented for

LTL in Section 3.1.2. All of the above semantics are given relative to states/paths

satisfying a CTL* property; to use the provided set of semantics when considering

“does M |= σ?” where σ is a CTL* state formula, we equate this to asking “does

sI |=M σ?” We do not allow the question “does M |= π?” for a path formula π; as

a path modality (A, E) must be supplied before any path operators have a context

to be expressed (we must know which paths we are quantifying over before we can

reason about them).

3.1.3.1 Example queries

We provide a few example queries posed in CTL* to demonstrate the expressiveness:

• E X fail – Sometimes you are about to fail.

• E G (x =⇒ F y) – In some cases whenever x happens, y eventually follows.

• A F success – All paths lead to success.

3.1.4 Computational Tree Logic (CTL)

Computational Tree Logic, first proposed by Clarke and Emerson [3], was designed

specifically to support branching logic. Where the syntax for CTL* allowed one to
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have a series of path modalities (X, U, etc) in a row, CTL restricts formulas by

requiring that a path quantifier (E or A) is put in front of each modality. This

restriction also removes the need for two types of logical formulas; all formulas in

CTL are path formulas. The syntax for a CTL formula is defined as follows:

σ ::= a ∈ AP

| ¬σ

| σ ∨ σ

| E Xσ

| E (σUσ)

| E (σRσ)

As done for LTL in Section 3.1.2 and CTL* in Section 3.1.3, we have the normal

derived boolean operators ∧ and =⇒ , as well as the derived path modalities R,

F, G, and W. Note that explicit syntax for E (σRσ) (denoted E R) is required in

addition to E (σUσ) (denoted E U) because of the requirement that E immediately

precede the temporal modality. All derived operators from LTL and CTL* are

obtainable here as well, although now are constrained to occur in the modality-

follows-quantifier format. Table 3.2 summarizes these relations.

The semantics of the operators follow the same definition as presented in LTL

and CTL*. As all formulas are state formulas, the model checking question again
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Operator Expression Derived Syntax
A X A Xσ = ¬E X¬σ
A U A (σ1 Uσ2) = ¬E (¬σ1 R¬σ2)
A R A (σ1 Rσ2) = ¬E (¬σ1 U¬σ2)
E F E Fσ = E (ttUσ)
E G E Gσ = ¬A F¬σ
A F A Fσ = A (ttUσ)
A G A Gσ = ¬E F¬σ
E W E (σ1 W σ2) = E (σ2 R (σ1 ∨ σ2))
A W A (σ1 W σ2) = A (σ2 R (σ1 ∨ σ2))

Table 3.2: Derived CTL operators

becomes “does sI |=M σ?”

3.1.4.1 Example queries

We provide a few example queries posed in CTL to demonstrate the expressiveness:

• A G (shutdown =⇒ A G¬lights) – The lights are always off after a shut-

down.

• A G (sent =⇒ E F lost) – Any message sent could be lost.

• E G (spend =⇒ E F earn) – Sometimes you have to spend money to make

money.

3.2 Model Checking Algorithms

Having provided a definition for a model as well as syntax and semantics of sev-

eral common temporal logic languages, we turn to the question of model check-

ing. Namely, given an atomic proposition set AP with Kripke structure M =
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〈S,AP , R, l, sI〉 and logical formula φ, we ask “does M |= φ?” Recall that this

general form of the verification question must first be grounded for the particular

choice of temporal logic. In particular, for LTL “M |= φ” becomes “π |= φ,” where

π is an execution of M and φ is a path formula expressed in LTL. For CTL, the

model checking question becomes “sI |=M σ” where σ is a state formula expressed

in CTL and |=M is the satisfaction relation defined over M . We present here dis-

cussion about the theoretical complexity of performing model checking over LTL,

CTL*, and finally CTL, including a brief history of work seminal in the field. In the

case of LTL, which our work relies most heavily upon, we also provide a discussion

about one approach to performing LTL model checking.

3.2.1 LTL Model Checking

The original presentation of LTL from Pnueli in 1977 showed that LTL verification

was decidable [2]. In 1985, Sistla and Clarke showed that it is both in the complexity

class PSPACE and PSPACE-hard [39], implying that it is PSPACE-complete. This

was done via a reduction from model checking to satisfiability.

Lichtenstein and Pnueli [40] provided the first practical algorithm for LTL

historically, which had running time of 2O(|φ|)O (|M |). Work done by Vardi and

Wolper [41, 42] show an alternative algorithm using their work on Büchi automata

over modal logics gives the same running time. It is this algorithm that we will

highlight here.
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Definition 5 (Büchi automaton). A Büchi automaton is a 5-tuple B = 〈S,Σ, δ, si, F 〉,

where:

• S is a finite, non-empty set of states,

• Σ is a finite, non-empty set of alphabet symbols,

• δ ⊆ S × Σ× S is a labeled transition relation,

• si ∈ S is the initial state, and

• F ⊆ S is a set of accepting states.

First published by Büchi in 1960, a Büchi automaton is an automaton de-

signed for recognizing infinite sequences of symbols. For a Büchi automaton B =

〈S,Σ, δ, si, F 〉 and an infinite sequence w = a0a1 . . . ∈ Σω, a run of B on w is a se-

quence of states s0s1 . . . ∈ Sω such that s0 = si and ∀i ∈ N, 〈si, ai, si+1〉 ∈ δ. A run

of B on w corresponds to a “proper” execution of B starting at the initial state si and

moving from state to state by following the transition relation, taking a transition

only if the label of the transition matches the current position in the word w. Such a

run is accepting if ∀i ∈ N,∃j ≥ i : sj ∈ F . That is to say, a run is accepting if at any

point during a run we will, at some future state in the run, encounter a state that is

in the accepting set F . We say “B accepts w” if there is an accepting run of B on w.

The language of B is defined as L(B) = {w ∈ Σω : B has an accepting run on w}.

We pause here to formally define ω-regular languages.
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Definition 6 (ω-regular languages). An ω-language is a set of infinite-length se-

quence of symbols. An ω-regular language is an ω-language is defined inductively as

follows:

• Aω is ω-regular if A is a non-empty regular language not containing the empty

string.

• AB is ω-regular if A is a regular language and B is an ω-regular language.

• A ∪B is ω-regular if A and B are ω-regular.

We now present some results regarding Büchi. (1) Büchi automaton are known to

accept exactly the set of all ω-regular languages. As ω-regular languages are known

to be closed under complementation and intersection, so too are Büchi automata. In

particular, an algorithm for computing the intersection of two Büchi automata B1,

B2 exists which runs in O (|B1| · |B2|). (2) For a Büchi automata B, it is decidable

whether or not L (B) = ∅. The computation to determine if L (B) = ∅ is straight

forward; one need only compute the strongly connected components of the graph

formed by the states of B and the transition relation δ, and identify if the connected

component with the initial state si is able to reach any non-trivial connected com-

ponent containing an accepting state. Determining SCCs is the dominating step

of this approach. Using an algorithm such as Tarjan’s [43] for computing SCCs

leads to overall runtime of O (|B|). (3) Given a Kripke structure M , there is a

Büchi automaton BM such that the language L (BM) accepts those runs that ex-
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actly correspond to all possible executions of M . This can be accomplished directly

as follows: For Krikpke structure M = 〈S,AP , R, l, si〉, let BM =
〈
S, 2AP , δM , si, S

〉
be the corresponding Büchi automaton, where

δM = {(s, A, s′) : (s, s′) ∈ R and A = L(s)}

The sets of labels on each state in M is converted to an element of the power

set of the labels for BM , and transitions are labeled according to the label of the

outgoing state fromM . All states in BM are marked as accepting because all possible

executions from M are allowed. Also observe that |BM | = O(|M |). (4) For any LTL

formula φ, there exists some a Büchi automaton Bφ such that L (Bφ) = JφK. Note

that in general there is a one-to-many correspondence between LTL formulas and

equivalent Büchi automata. Several approaches exist for computing a satisfactoryBφ

[44, 45, 46, 47], one example (which our work builds from) is the tableau construction

[48]. The best techniques yield automata that are O(3|φ|), where |φ| is the size of

the formula, measured by the number of φ’s subformulas.

From these results, we have that M |= φ is equivalent to determining if

L (Bφ) ⊆ L (BM), which is itself equivalent to determining if L (BM)∩L (B¬φ) = ∅.

The algorithmic sketch for LTL model checking using this equivalence is: (1) Com-

puteBM fromM andB¬φ from φ. (2) Compute the Büchi automaton that represents

the joint language L (BM) ∩ L (B¬φ). (3) Determine if this automaton accepts any

input. (4) If not, then M |= φ, otherwise M 6|= φ. The overall runtime complexity of
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this approach is the aforementioned 2O(|φ|)O (|M |). The interested reader will note

that the dominating factor for computation is the construction of the joint Büchi

automaton from BM and B¬φ.

3.2.2 CTL* Model Checking

Emerson and Lei observed in 1987 [49] that the problem of CTL* model checking

was not too dissimilar from LTL model checking. In particular, they showed that

CTL* model checking could be reduced in polynomial time to LTL model checking,

which as a consequence of LTL model checking being PSPACE-complete implies

CTL* model checking is in PSPACE. A corollary to this result is a usable CTL*

model checking algorithm that is computable in time 2O(|φ|)O
(
|M |2

)
. Emerson and

Lei [49] as well as Kupferman et al. [50] observe that this algorithm actually does

extra work, in particular it need not invoke an LTL model checker for every state

of M (instead only one execution is required) so the running time is reduced by a

factor of |M | to become 2O(|φ|)O (|M |), which (somewhat surprisingly) is the same

running time as a known algorithm for LTL model checking and suggests that CTL*

model checking is no harder than LTL model checking. In particular, it also has

been shown to be PSPACE-complete [49, 51, 39].
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3.2.3 CTL Model Checking

CTL model checking is known to be P-complete [37]. It was shown first by Clarke

et al. [51] in 1986 and then later by Arnold et al. [52] in 1988 to be solvable in time

O (|M | · |φ|). Clarke used a dynamic programming algorithm to determine, for all

states q in M and all subformulas ψ of φ, if q |=M ψ. Arnold gives a result for the

more general case of modal µ-calculus (under which CTL, LTL, and CTL* are all

expressible) showing the same upper bound of complexity.

3.3 Association Rule Learning

As indicated in Chapter 2, association rule mining is a technique for the discovery

of relationships between items over large datasets of transactions. In his initial work

in the area, Agrawal focused on discovering relationships between elements in an

individual customer’s basket [9]. His follow-up work extended this to discovering

sequential patterns over multiple baskets, [10], thereby incorporating a temporal

aspect to the pattern. We provide discussion here about the theory behind these

rules including the statistical measures used to evaluate if a particular rule is “good”

in some formal sense.

We refer to the set of k transactions as the dataset D = {〈t0, I0〉 , . . . , 〈tk, Ik〉},

where each 〈ti, Ii〉 is an individual transaction dated with timestamp ti and itemset

Ii ⊆ I drawn from the global set of total possible items I. In the case of standard
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association rule mining we ignore the timestamp, in the case of sequential patterns

we make use of it. An association rule is expressed in the form X =⇒ y, for X ⊂ I

and i ∈ I, y /∈ X. A sequential pattern is expressed in the form

X0  X1  X2  . . . Xn for Xi ⊆ I

The rest of this section focuses on association rules in particular. Much of the

theory developed by Agrawal in his initial work is leveraged when performing the

computation for mining sequential patterns, the interested reader can consult [10]

if they are interested.

3.3.1 Apriori

The initial work by Agrawal established two criterion for evaluating “good” associ-

ation rules, which equate to association rules that he suspects are of interest to the

user. The first criterion he describes is a syntactic criterion, which imposes restric-

tions on what items drawn from I can belong to any itemset being considered. As

there are a total of 2|I| distinct itemsets overall, for every item that is prohibited

from being part of an association rule the total number of itemsets that must be

considers drops naively by a factor of 2.2 Similarly the number of itemsets under

consideration decreases when we require that a particular item or set of items be

2We say “naively” here because, as may be expected, practical algorithms usually do not need
to explore a large portion of this hypothesis space. There are some cases where we come close,
however.
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present in a rule. The second criterion imposes restrictions on the statistical signif-

icance of a rule as observed in a dataset D. The support of an itemset I ⊆ I over a

dataset D of transactions is defined to be the fraction of transactions T ∈ D such

that I ⊆ T.I. This corresponds to the fraction of customer transactions that give

evidence for an itemset being related. Agrawal used these criteria to derive a search

algorithm through the space of all itemsets which satisfied both types of restrictions.

The user would specify the syntactic constraint as well as a support threshold which

determined which itemsets were considered “large” (of interest/worth reporting).

The algorithm, called Apriori, performed a modified BFS through the space of all

itemsets, using all large itemsets of size 1 as seed locations. When considering a

specific large itemset, the algorithm would then consider all 1-augmentations possi-

ble to the itemset (all additions of exactly one item to the set) that would keep the

set large. This approach takes advantage of the fact that over the boolean lattice

of all itemsets, the support function is monotonic non-increasing (as more items are

added to an itemset, the support for that itemset can never increase). All maximal

large itemsets are then used to produce association rules. For a given itemset I of
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size k, k rules are generated of the form

(x2, x3, . . . , xk) =⇒ x1

(x1, x3, . . . , xk) =⇒ x2

. . .

(x1, x2, . . . , xk−1) =⇒ xk

3.3.2 Alternative Statistics for Association Rules

Note that the support of a rule is equal to the support of the itemset formed by

taking the union of the antecedants and the consequent of the rule. Following this

work, other metrics other have been invented to help evaluate the quality of a rule

and serve as inspiration for inventing alternative algorithms for rule discovery. The

confidence of a rule X =⇒ y is defined to be support(X∪{y})
support(X)

. This can be thought of

as the conditional probability of having item y in the basket if we know the basket

already contains all items from X, namely Pr (y|X). The lift of a rule X =⇒ y

is defined to be support(X∪{y})
support(X)support({y}) . This corresponds to the “surprise” of seeing X

and y jointly, as compared to if they were independently occurring. Finally, the

conviction of a rule X =⇒ y is defined to be 1−support({y})
1−confidence(X =⇒ y)

. Using intuition

from the above functions, this could be rewritten as Pr(¬y)
Pr(¬y|X)

, namely the ratio of

y not occurring in a basket when compared to y not being in the basket given all

items from X are present. As with support, it is desirable for all of these functions
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to have larger values, and as such an algorithm making use of them could define a

lower threshold to determine if a rule is “interesting” or not.3

3.3.3 Limitations of Apriori, Alternative Algorithms

One of the largest criticisms of Apriori is that despite its attempt to curtail excess

search time in the itemset space, its inherent search technique requires enumerating a

large number of itemsets to reach its final solution. In particular, for any maximally

large item set X, the algorithm will first enumerate all 2|X| − 1 subsets of X. This

approach, termed candidate generation, is clearly more and more undesirable as I

grows in size. Efforts have been made to improve efficiency of candidate generation

either by pruning more of the search space [12, 11, 14], and to avoid candidate

generation altogether [53].

3Many formulations of an association rule since Agrawal’s original 1993 work (including his 1995
follow-up) relaxes the constraint that the consequent of an association rule be a single item. Many
of these statistical functions were originally defined with the generalized notion of an association
rule. We use the original restricted version of a rule in our definition for these functions for
consistency; the definitions can easily be adjusted for the general case.
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Chapter 4: Model-Based Invariant Extraction from Test Cases

4.1 Introduction

Software development, maintenance and evolution activities are frequently compli-

cated by the lack of accurate and up-to-date requirements specifications. In addition

to providing developers with guidance on their design and implementation decisions,

good requirements documentation can also give an overview of system purpose and

functionality. Such an overview, if accurate, gives maintainers and future develop-

ment teams a clear snapshot of expected system behavior and can be used to guide

and assess system-modification decisions necessitated by bug fixes and upgrades.

Implementations can deviate from their requirements specifications for a num-

ber of reasons. Miscommunication among the requirements, design and development

teams is one; churn in the requirements is another. So-called implicit requirements

can also arise during development, especially with experienced programmers famil-

iar with the problem domain; such programmers may rely on their intuitions about

what ought to be required rather than what is actually in the requirements docu-

mentation. Regardless of the source, such deviations confound development, main-
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tenance and evolution efforts, especially when teams are geographically distributed

and possess differing levels of experience about the system domain.

In this chapter, we propose and assess a methodology, based on machine learn-

ing, for automatically extracting requirements from executable software artifacts.

The motivation of the work is to make requirements documents more accurate

and complete. Our approach is intended for use with software following a read-

execute-write behavioral model: input variables are assigned values, computations

performed, and values written to output variables. The method first uses an auto-

mated test-generator, which based on the structure of the model and pre-determined

coverage criteria, generates inputs on which the model then executes and produces

outputs with each pair of input-output vectors defining a test. Machine learning

tools are then applied to the set of tests to infer relationships among the input and

output variables that remain constant over the entire test set (invariants). In a

subsequent validation step, an automated validation tool is used to check which of

the proposed invariants are indeed invariant; invariants passing this step are then

proposed as requirements.

The rest of the chapter is structured as follows. Section 4.2 gives background

on data mining, invariant inference, and the artifacts and verification technique used

to conduct the studies in this chapter. Section 4.3 then outlines our approach in

more detail, while Sections 4.4 and 4.5 present the results of a pilot study involving

a production automotive application. Section 4.6 discusses related work, and the
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final section contains our conclusions and ending discussion.

4.2 Background

Our work is inspired by Raz et al. [28, 54], which used data-mining tools to deduce

invariants from the execution traces of running systems for the purposes of anomaly

detection. Our motivation differs in that our work is aimed at reconstructing require-

ments from program test data arising in the context of model-based development of

automotive systems. In this section we review the results of Raz et al. and also de-

scribe the model-based development environment for automotive software in which

the results of our work are assessed. An approach for verifying automotive software

models, Instrumentation-Based Verification [55], is also briefly described.

4.2.1 Invariant Inference from Executions

Invariants are commonly employed in program verification and express a relation

between variables that holds for all executions of a piece of code. For example the

invariant (x > y) means that the value of variable x is always greater than the

value of variable y. Invariants have a long history in software specification and

development, as they define relationships that must hold among program variables

even as these variables change values.

The work of Raz et al. was motivated by the desire to study the emergent

behavior of systems when access to software and other development artifacts for the
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systems was impossible. The technical approach taken was to observe input / output

sequences at the system interface and to use data-mining tools to infer invariants

on the input and output variables. Several such tools are capable of discovering

so-called association rules from time-series data given to them; these rules take the

form of implications involving variables in the data that appear to hold throughout

the data set. For example, in a data set recording values at different time instants

for two variables, speed and active, which reflect the vehicle speed and the status

(active or not) of a vehicle cruise control, one possible association rule that could

be inferred is the following.

’speed < 30.0’ -> ’active = false’

In other words, the data set might support the conclusion that whenever the speed

is below 30.0, the cruise control is inactive.

In the case of Raz et al., inferred association rules are viewed as invariants

that, if true, yield insight into system behavior. Because the invariants deduced by

these tools are only based on a subset of system executions, they may in fact not be

invariants when considering the entire system. In Raz et al. this issue was addressed

by presenting inferred invariants in a template form to an expert, who would use his

/ her understanding of the system to decide whether these candidate invariants were

actual invariants on system behavior or had merely been flagged as invariants by the

automated tools based on the characteristics of the analyzed traces. If accepted, this

invariant would be then used to build up a model of program execution and then
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when anomalous behavior was observed, it would be flagged either as an error or used

to update the set of invariants and consequently the model of proper operation [28].

In this chapter, we interpret requirements to be invariants that hold true on all

possible runs of the software system. Such requirements can constitute a document

of formal properties for the model under inspection (containing properties such as

the relationship between inputs, for example), which can serve as the basis for a

comparison between the model’s observed behavior and its intended behavior. This

may reveal inadequacies in the design, or perhaps uncover hidden invariants that

were not intended to be present.

Unlike [28], whose primary goal was anomaly detection, our primary aim is to

efficiently identify a complete set of invariants that are true requirements with min-

imal and targeted effort for the expert. This includes deducing previously unknown

implicit requirements, eliminating candidate invariants that are not requirements,

and demonstrating that our procedure is robust in that multiple execution runs

will produce nearly-identical results, thus avoiding potential challenges of resolving

different mined invariant sets to reach some sense of a consensus.

4.2.2 Automotive Model-Based Development

The work in this chapter grew out of a project devoted to improving the efficiency

of software development processes for automotive applications. The pilot study

in particular involves an external-lighting control feature in a Bosch production
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application. As automotive software is increasingly developed using model-based

development, the software-artifact analyzed in later takes the form of a model in the

MATLAB R© / Simulink R© / Stateflow R©1 modeling notation. This section discusses

some of the uses of such models in the automotive industry.

Modern automobiles contain significant amounts of software. One estimate put

the average amount of source code in high-end models at 100 million lines of code,

with the amount growing by an order of magnitude on average every decade [56].

At the same time, the business importance of software is growing, with new (and

profitable) vehicle features increasingly relying on software for their functionality.

For these reasons, automotive companies, and their suppliers such as Bosch,

have strong incentives to improve the efficiency of their software development pro-

cesses. At the same time, safety, warranty, recall and liability concerns also require

that this software be of high quality and dependability.

Figure 4.1: Sample Simulink model.

1MATLAB R©, Simulink R© and Stateflow R© are trademarks of The MathWorks, Inc.
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One approach that is garnering rapidly growing acceptance in the industry

is model-based development (MBD). In MBD traditional specification and design

documents are supplemented with executable models in notations such as MATLAB

/ Simulink / Stateflow or ASCET R©2 that precisely define the expected behavior of

eventual software and system implementations. These models are often developed

upstream of the software-development teams by controls engineers, and the notations

are often based on block-diagram notations favored by members of the controls

community.

Figure 4.1 gives an example Simulink model. From a program-ming-language

perspective, Simulink (and its Statecharts-like sub-language, Stateflow) may be seen

as a synchronous dataflow language. At time instances determined by the so-called

sampling rate of the system, inputs (ovals with no incoming edges) are read, and

values transmitted to blocks. Each block computes a function on its inputs when all

have arrived and outputs the results. Model outputs (ovals with no outgoing edges)

store the final results of this staged computation. In keeping with the synchrony as-

sumption, it is assumed that the calculation of these model outputs is instantaneous

with the arrival of inputs.

Because Simulink and related models are executable, they may be simulated

and debugged, and they may also be used as test oracles for downstream software

development. They are also increasingly used to drive the automatic generation

of source code; so-called autocoding tools such as TargetLink from dSPACE and

2ASCET R© is a trademark of the ETAS Group.
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Embedded Coder from The MathWorks produce ready-to-deploy code in many in-

stances directly from models. As the gap between design models and implementation

narrows, design models also become increasingly attractive as test oracles.

4.2.3 Instrumentation-Based Verification

Because of the centrality of models in model-based development processes, it is im-

portant that they behave correctly, i.e. in accordance with functional requirements

specified for them. Several model-checking tools, including commercial ones such as

The MathWorks’ DesignVerifier, have been developed for this purpose. Such tools

take models to be verified (we call these design models in what follows, because

they are often the outputs of design processes) and requirements specifications, typ-

ically in a temporal logic, and attempt to prove automatically that model behavior

conforms to the requirements.

A related approach, called Instrumentation-Based Verification (IBV) [55], ad-

vocates the formalization of requirements instead as so-called monitor models in

the same modeling notation used for the other models in the MBD process. Each

discrete requirement has its own monitor model, whose purpose is to monitor the

data flowing through the design model and determine if the associated requirement

is being violated or not via a boolean-valued output. (For example, the Simulink

model in Fig. 4.1 is the monitor model associated with the association rule given

in Section 4.2.1.) The design model is then instrumented with the monitor models,
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and structural-coverage testing performed to determine if any monitor models can

report an error. The advantages of IBV are that a separate notation for formalizing

requirements need not be learned; that monitor models can be executed and de-

bugged; that the monitor models (and the requirements they express) are likely to

be updated with the design models, and that testing-based approaches scale better

than model checkers. The disadvantage is that IBV cannot produce the iron-clad

guarantees of correctness that model checkers can when the latter do indeed termi-

nate. Commercial tools like Reactis R©3 provide support for IBV by supporting the

instrumentation process and automating the generation of test suites that maximize

coverage of models.

4.2.4 Reactis

The experimental work described later in this chapter makes heavy use of the afore-

mentioned Reactis tool, so this section gives more detail about it.

Reactis is a model-based testing tool. Given an open-loop model (i.e. one with

unconnected inputs and outputs) in the MathWorks’ Simulink / Stateflow notation,

Reactis generates test cases in the form of sequences of input vectors for the model.

The goal of the generated tests is to provide full coverage of the model according

to different model-based adaptations of structural coverage criteria. In general, for

reasons of undecidability, full coverage cannot be guaranteed; Reactis thus uses

3Reactis R© is a registered trademark of Reactive Systems, Inc. (RSI). In the interest of full
disclosure, one of the authors is a co-founder of this company.
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different heuristics in to try to maximize the coverage of the test cases it creates.

The tool also evaluates the model while it is constructing the test suites and stores

the model-generated output vectors in the test cases.

Reactis additionally provides support for the Instrumen-tation-Based Verifi-

cation (IBV) technique mentioned in the previous subsection. To use this feature of

Reactis, a user first creates a Simulink library containing the monitor models for the

requirements of interest. S/he then uses features in Reactis to instrument the model

to be verified with the monitor models. The Reactis test generator subsequently is

used to generate test cases that cover the instrumented model, including the con-

structs contained in the monitor models. While the tests are being constructed

Reactis also evaluates the monitor model outputs, and if any reports “false” then

the resulting test is evidence that a requirement is violated. The structural cov-

erage criteria guarantee that the test generator will attempt to generate tests that

cause outputs of “false” from the monitor models because covering boolean variables

entails ensuring the variable contains each value at some point in some test.

The Reactis test-generation algorithm employs a three-phase approach. In

the first phase, which is optional, pre-existing test cases may be loaded for inclusion

in the test suite being constructed. In the second phase, a collection of random

test cases is generated using Monte Carlo simulation in order to create an initial

collection of tests. User-provided parameters govern how many random tests are

added to the test suite. The third phase uses a collection of heuristics to extend
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and modify tests already in the test suite in order to cover uncovered parts of the

models logic. The core of the technique is covered by US Patent #7,644,398.

It is important to note that Reactis test suites include randomly generated

test cases that are subsequently refined. For this reason, different executions of the

tool, even on the same model, will in general yield very different test suites.

4.3 Extracting Requirements

We propose an approach to inferring requirements from executable software artifacts

and to provide a preliminary evaluation for this approach. The specific setting in

which we study this question is model-based development for automotive systems;

in particular, our interest is in taking Simulink models and producing requirements

from these models, so that they may be compared with existing requirements spec-

ifications so that gaps and inconsistencies in the latter may be identified.

Convert
Invariants to

Monitor Models

Generate
Test Cases

Infer
Invariants

Instrument Design
Model with

Monitor Models

Valid
Requirements

Design
Model

terminate

Figure 4.2: Overview of requirements-extraction process.
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The steps in our methodology are illustrated in Figure 4.2. As is the case

with Raz et al. [28], our approach relies on the use of data mining tools to propose

invariants from test data generated from simulated execution runs of the model.

However, our approach differs in several key aspects.

• As our interest is in requirements generation, we wish to use structurally

thorough test suites as a basis for data mining, where Raz et al. does not.

Because we also have access to the entire model, we can use coverage criteria

as a basis for determining how complete the test data is.

• We use Instrumentation-Based Verification (IBV) to automate the assessment

of the candidate invariants that are produced, rather than relying on human

experts to make this determination.

Because we use coverage testing to generate the tests, we hypothesize that the

invariants that are proposed are more likely to be actual requirements. Because we

automate the invariant-assessment task, we also expect that the task of generating

and assessing invariants will be less labor-intensive. These points are investigated

in more depth in the next section. Our requirements-extraction strategy involves

the following large steps; a more detailed division is given in Section 4.4.2.

Step 1: Generate Test Cases. Test data is generated from design models

by running a sequence of generated inputs on the design models using automated,

coverage-based test-generation tools (in our case, Reactis).
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An invariant for a test suite expresses a constraint that holds for all inputs

and outputs of that test suite. If the test suites only execute a certain part of the

system or the model, the invariants that are inferred from these test cases might

only hold true for just that part but not for others.

We have addressed this issue by using notions of structural coverage for auto-

matic test generation. The heuristics that our tool for automated test generation

uses are based on covering as much of the model’s structure as possible, using met-

rics adapted to the model setting from traditional source-code coverage frameworks.

In other words, our test suites are chosen so that every block is executed at least

once and every condition and decision evaluated to true and false each at least once.

Step 2: Invariant Inference. Given the test suites obtained in step 1,

invariants are discovered using association rule mining. This putative rule set con-

stitutes the set of association rules that are currently suspected to be invariants of

the model under inspection. Under some circumstances a rule may be found that is

subsumed by another rule, in these cases we omit reporting the more specific one.

Invariant inference algorithms can be adjusted through a number of parame-

ters/restrictions, which result in different invariant sets being reported. We require

here that all invariants reported have a strength value equal to 1.0, the maximum

value a strength score can take [57]. This equivalently means that any invariants re-

ported have no counter examples in the observed data, namely it is a true invariant

for the particular set of test cases for which the inference process is performed over.
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Other metrics also exist for scoring association rules, such metrics include

confidence, support and lift [57]. Many of these are a function of the association

rule’s abundance in the observed data; this is a trait that we wish to avoid because

we do not wish to bias our results by reporting only the more common invariants.

Step 3: Validating Invariants. Model-coverage metrics merely assure that

critical elements (blocks, conditions, decisions, etc.) have been executed at least once

in a test-suite. They of course cannot enforce full coverage of all possible behavior

(i.e. path coverage). This is why the inferred invariants cannot be assumed to be

true requirements, and must be further validated in order to be reported as such.

In Raz et al.’s approach, this validation was carried out by a human agent

who, based on his domain knowledge, made a decision as to whether the invariants

were actually requirements or not. We automate this validation step by converting

each candidate requirement into a monitor model and use IBV to determine if the

proposed invariant can be invalidated. This is done by instrumenting the design

model with the constructed monitor models, and running a technique supporting

IBV (again, in our case, Reactis implements such a technique) to check if the design

model satisfies the monitor model (i.e. is it possible for the monitor model to output

false while executing the design model). While performing this verification, the

validation tool will generate a new test-suite that will be driven by two heuristics:

1) provide maximum model coverage, and 2) attempt to violate the monitor model.

As a result of the second heuristic, the test suite that will now be generated will be
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different from the original test suite that was used to infer the invariant captured

by the monitor model.

This instrumentation is done in some sense parallel to the execution of the

original model; for a given execution the values on the input ports are effectively

copied and fed into each monitor model. This prevents the introduced, instrumented

code to otherwise affect the base design model’s standard execution path.

If the monitor model is not satisfied, then the putative invariant that it rep-

resents does not hold true for all traces and is thus discarded. If the monitor model

is satisfied, then we can say, with a high level of confidence, that a valid invariant

has been inferred from the design model and can be seen as a requirement.

The validation step taken also allows one to easily validate any existing invari-

ants that are presented initially along with the design model; one can convert these

initial invariants into monitor models to perform immediate validation using the

same framework as described above. The confidence level of these initial invariants

does not affect the strategy here; in either case one can immediately use the initial

invariants as monitor models. If they are high confidence, then they should not be

refuted by any test cases generated.

As indicated in Figure 4.2, our technique can be iterated. By the nature of

IBV, the extra step of validating the invariants involves instrumenting the original

design model with monitor model representations of the invariants themselves. The

result of this instrumentation is a well-defined design model which has at its core
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the original design model whose behavior has not been altered due to the manner in

which the instrumentation takes place. Thus, we can repeat steps 1-3 on this new,

instrumented model and obtain a different set of invariants. One would suspect

that this set is in some ways similar to the set obtained in the first iteration, our

empirical results shown in Section 4.5 shows that this intuition is accurate in the

cases we consider.

4.4 Experimental Configuration

We evaluate the requirements extraction process in the previous section using an

automotive application pilot study. This section details the experimental set-up

used, including the application and tool chain used to implement the steps of the

procedure, the specific questions studied, and the analysis framework for assessing

the results. The section following then reports the results themselves.

4.4.1 Test Application

The model used to evaluate our framework is a Simulink diagram encoding the

design of an automotive software function. The design of the model was taken from

existing C source code developed by Bosch. The model consists of approximately

75 blocks and has two inputs and two outputs. Existing documentation was present

that described, among other things, a state machine conceptualization of the C

code. The challenge of requirements extraction corresponds to inferring valid edges
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between the set of states on this machine. Over this state machine, which is known

to contain 9 states, there are a total of 42 known transitions, which we refer to as

the total number of invariants that can be discovered. We refer to this automotive

model as D in the following sections.

4.4.2 Tool Chain

The specific tasks that need to be performed in order to implement our require-

ments-extraction approach include: (1) generation of full-coverage test suites from

D; (2) production of proposed invariants from test data; (3) creation of monitor

models from invariants; (4) instrumentation of D with monitor models; (5) genera-

tion of coverage test-suites from instrumented D.

As indicated in Section 4.2, the Reactis tool generates high-coverage test suites

from Simulink models and also supports the instrumentation of models with monitor

models and subsequent validation testing. Thus, this tool was used for tasks 1 and

5.

To generate invariants (task 2), we used the Magnum Opus data-mining tool [14],

mainly based on its relative ease of use and its ability to generate so-called associ-

ation rules (i.e. invariants in the form of implications) efficiently. Magnum Opus is

capable of inferring invariants whose individual terms are exactly assignments (=)

to properties, not ranges (< or >). This is sufficient for our task, as the inputs and

outputs for the models studied have nominal domains, i.e. they are not ordered in
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any particular manner, and thus range assertions make little sense. Specifically, we

discover rules of the form

∧
a = ai −→

∧
b = bi,

namely where the premise and consequent are both conjunctions of terms which are

ground-out variables. Magnum Opus may seem restrictive in some cases, especially

when variables with ordinal domains become involved. For our model under test,

all the variables under consideration are nominal - ranges in our model have no

semantic meaning to them and thus any invariant involving one can be expressed

equivalently as a set of invariants containing only equality without the loss of any

semantic meaning. Because we have existing ground truth data regarding D in

the form of a state machine, we rewrite all invariants discovered to contain state

information on both the premise and the consequent of rule. When considering

invariants of this form, there is a one-to-one correspondence with state transitions

on the state machine. This allows us to easily check what rules are recovered and

what are not. For example, a rule such as ’button=pressed’ -> ’new state=2’

would be expanded to the set of rules

’state=1’ & ’button=pressed’ -> ’new state=2’

’state=2’ & ’button=pressed’ -> ’new state=2’

’state=3’ & ’button=pressed’ -> ’new state=2’

if the state variable state had three possible values, 1, 2, and 3.
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To streamline the process, we also wrote scripts that: translate Reactis-

generated test data into the Magnum Opus format; automatically translate Magnum

Opus association rules into monitor models; and automatically create the file Reactis

uses to wire the resulting monitor models into the design model D (tasks 3 and 4).

The result is a fully automated system that requires no intermediate involvement

by a human.

To use the resulting tool-chain, a user first runs Reactis on D to create a test

suite (set of sequences of input/output vectors). The suite is then automatically

translated into Magnum Opus format, and that tool then run infer invariants. An-

other conversion transforms these invariants into monitor models, along with the

proper information for wiring monitor-model inputs into D. Finally, the user runs

Reactis a second time on the instrumented D (D + monitor models); Reactis creates

a second test suite that attempts to cover the instrumented model (and also tries to

invalidate the monitor models), reporting when it terminates which monitor models

were found to be violated in the second round of testing. Violated monitor models

correspond to invariants that are in fact not valid invariants and thus should not be

considered requirements.

Note that, as discussed in Section 4.3, this process can be iterated. Further-

more, because the test suite created during the validation phase of the monitor

models is constructed using the same heuristics as that of the standard test suites,

it can be used as the basis for a second round of invariant inference and by being
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combined with the first round’s data. Because the second batch of tests includes

any counterexamples that where constructed to invalidate some of the invariants

generated from the first batch of tests, the already-violated invariants will not reap-

pear in subsequent iterations of this procedure due to our criterion that proposed

invariants must satisfy all test data known at the time.

4.4.3 Structural vs. Random Testing

One hypothesis we wish to test in our experiments is that using full-coverage tests

as a basis for invariant inference yields better invariants than tests that do not have

coverage guarantees (such as those used by Raz et al.). We quantify the notion of

“better” in two dimensions: how accurate are the invariants (i.e. what proportion

of a set of proposed invariants are found to be valid in the validation-testing phase),

and how complete are they (what proportion of the total set of invariants, which are

known from the requirements documentation, are generated).

To conduct this assessment empirically, we first produce a test suite guar-

anteeing maximal coverage. The resulting test suite is then mined for invariants.

Finally, we validate these proposed invariants by encoding them as monitor models

and generating new test cases with these asserted monitor models present on top of

the original design model. This experimental configuration, which we call Efull, is

performed five times in isolation to each other, to increase statistical confidence in

the results.

71



As a baseline comparison, we then generate a suite of test cases randomly

with no structural constraints imposed. In the exact same way as Efull, this test

suite is then mined for invariants which are then converted into monitor models

and validated using Reactis. We refer to this configuration as Epartial, indicating

that full coverage is not guaranteed for the design model. As before for Efull, five

separate experiments of configuration Epartial are performed.

We hypothesize that because coverage is complete for Efull runs and incom-

plete for those generated by Epartial runs, one expects less of the state space of the

design model to be covered, and thus that Efull runs will generate more accurate

and more complete invariant sets than those generated by random testing. This can

be measured by inspecting the total number of valid invariants that each process

produces, which will be described in Section 4.5. Along with this total, the number

of invalid invariants can also be considered. Because we cover more variation of the

state space in our test cases, we expect fewer spurious invariants to be inferred by

Efull than by Epartial during the entire process.

However, the number of invalid invariants is not as essential for someone in-

vestigating the overall performance of our system, as putative invariants that are

invalid will be detected automatically by our framework during the subsequent val-

idation stage. The fraction of known requirements that are generated is a better

measurement in this respect. In this pilot study, we have access to these known

requirements. However, if we did not, we could measure the reproducibility of the
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output, i.e. the final set of proposed invariants. Put another way, any run should

be fairly similar to any other run within the same configuration. Intuitively, this is

not an expected property of the Epartial experiments, but it is desirable for Efull.

To assess how similar any particular invariant set is to another, we use set a set-

similarity statistic, specifically the Jaccard coefficient [58]. Often used in clustering

and other applications where similarity scores are needed [59], this metric is a mea-

surement of the overlap of two sets, with a score of 0 (lowest) signifying no overlap,

and a score of 1 (highest) signifying set equivalence. We compute these similarity

scores between all pairs of runs within each configuration. We expect to observe a

higher similarity between pairs of individual Efull experiments than the similarity

between pairs of individual Epartial experiments. If each individual run does produce

a roughly complete set of invariants, then the Jaccard similarities should approach

1.

4.4.4 Invariant Refinement through Iteration

The second hypothesis we wish to test is that iterating our procedure produces more

accurate and complete sets of invariants. To assess this, following the validation

phase of each of the previous experiments, we perform the entire process again,

accumulating the test cases produced in the first iteration. For Efull, we use as

a new test suite the suite generated during the previous validation step together

with the original test suite used for invariant-generation. For Epartial, we generate
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another suite of randomly selected test cases, as we wish to maintain the property

that Epartial test suites have no structural guidance. We shall notationally refer to

the configuration and results of the Efull experiments after only one iteration as

E
(1)
full (which corresponds to exactly the configuration discussed in Section 4.4.3),

and results of these experiments extending over two iterations to be E
(2)
full. A similar

scheme applies to Epartial, where we refer to E
(1)
partial and E

(2)
partial. It should be noted

that although the validation phases for E
(2)
partial involves generating test suites guided

by coverage criterion, we discard this when producing new data for the second

iteration, as we wish to preserve the “coverage-blindness” of the Epartial test suites.

As before, each run using one of the second iteration configurations are re-

peated five times. For further analysis, we again report the number of valid in-

variants mined, as well as the pairwise Jaccard similarity measurements between

experimental runs in belonging to the same configuration. We expect that the num-

ber of valid invariants to increase from results in E
(1)
full to E

(2)
full. This is expected due

to the increase in the amount of testing, in particular because the newly introduced

test cases for the second iteration can potentially include counterexamples and other

new portions of the state space that were not well represented in the first iteration.

For this reason, the number of valid invariants detected by E
(2)
partial is also expected

to exceed the number found by E
(1)
partial, but again because no structural guidance is

given, the likelihood of counter examples and other unexplored portions of the state

machine being encountered is lower, so the increase should not be as significant.
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4.5 Experimental Results

This section presents the results of our empirical study on D. Table 4.1 shows the

results of running E
(1)
full and E

(2)
full experiments, while Table 4.2 shows the results of

experiments using E
(1)
partial and E

(2)
partial configurations.

E
(1)
full E

(2)
full

Run # Putative Invalid Net Acc. Comp. Putative Invalid Net Acc. Comp.
1 26 8 18 0.69 0.43 40 1 39 0.97 0.93
2 34 6 28 0.82 0.67 40 2 38 0.95 0.90
3 30 9 21 0.70 0.50 38 1 37 0.97 0.88
4 33 7 26 0.79 0.62 42 1 41 0.98 0.98
5 34 7 27 0.79 0.64 38 0 38 1.00 0.90

Avg 31.4 7.4 24.0 0.76 0.57 39.6 1.0 38.6 0.97 0.92

Table 4.1: Results from E
(1)
full and E

(2)
full. The “Putative” columns reports the total

number of potential invariants mined directly after the inference phase, but before
validation. “Invalid” reports the number of invariants that were then found to be
spurious from the validation phase. “Net” reports the number of remaining, vali-
dated invariants. “Acc.” is the accuracy ratio, i.e. the ratio of “Net” to “Putative”.
“Comp.” is the completeness ratio, i.e. the ratio of “Net” to the total number of
42 invariants contained in the original state-machine specification. The average of
each column is reported in the last row.

E
(1)
partial E

(2)
partial

Run # Putative Invalid Net Acc. Comp. Putative Invalid Net Acc. Comp.
1 19 11 8 0.42 0.19 29 13 16 0.55 0.38
2 22 11 11 0.50 0.26 27 10 17 0.63 0.40
3 26 12 14 0.54 0.33 34 9 25 0.74 0.60
4 26 13 13 0.50 0.31 32 15 17 0.53 0.40
5 25 6 19 0.76 0.45 35 3 32 0.91 0.76

Avg 23.6 10.6 13.0 0.54 0.31 31.4 10.0 21.4 0.67 0.51

Table 4.2: Results from E
(1)
partial and E

(2)
partial. The meaning of each column is the

same as in Table 4.1.

The data in the tables supports both hypotheses made in Sections 4.4.3 and 4.4.4.

In particular, in the first iteration of the structural-coverage method, the accuracy
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ratios (ratio of proposed invariants that the validation step determines are indeed

invariant) are in the range 0.69 − 0.82, with an average over the 5 runs of 0.76;

the corresponding figures for the first iteration of the randomly generated method

are 0.42 − 0.76, with an average of 0.54. In other words, about 3
4

of the invariants

inferred from full-coverage test data are valid in the first iteration, on average, while

only just over 1
2

are using randomly generated data. The differences in completeness

(ratio of net invariants to total number of known invariants, based on requirements

documentation) is also pronounced, with coverage test-data yielding numbers in the

range 0.43− 0.67 for an average of 0.57 and random test data producing results in

the range 0.19− 0.45 with an average of 0.31. That is, structural-coverage test data

in the first iteration yields about half of the known invariants, on average, while

random test data yields less than one-third.

These differences persist and are accentuated when the results of the second

iteration are considered. In the structural-coverage case (Table 4.1) the accuracy

and completeness ratios rise to 0.97 and 0.92, respectively, while in the random case

the corresponding figures are 0.67 and 0.51. In other words, structural-coverage

test data yields a negligible number of incorrect invariants and infers 92% of the

total possible invariants, while one-third of the invariants produced from random

test data are determined to be invalid in the second iteration and just over one-half

of known invariants are discovered.

The data in these tables also supports the second hypothesis: that iteration

76



of the process yields more accurate and more complete sets of invariants. In the

structural-coverage case, the average accuracy ratio increases from 0.76 to 0.97, and

the average completeness ratio rises from 0.57 to 0.92. The corresponding figures

for the random-test case show a similar (but less substantial) improvement: from

0.54 to 0.67 (accuracy), and from 0.31 to 0.51 (completeness).

Table 4.3 and Table 4.4 present the Jaccard pairwise similarities between in-

dividual runs of the same type. The average Jaccard similarity for E
(1)
partial is 0.51,

and it increases to 0.58 when a second iteration is added in E
(2)
partial. However, the

structurally-guided coverage testing shows better results. The average for E
(1)
full is

0.65, which increases to 0.87 when adding a second iteration. These findings, cou-

pled with the completeness-ratio results from Table 4.1 and Table 4.2, support our

hypothesis, showing that randomly guided test cases lead to both fewer invariants

being detected, as well as high variation in the set of those that are detected, when

compared to test cases generated using some coverage criterion as a guide. This

gives credence to utilizing an iterative, structurally-guided approach when inferring

invariants.

Regarding the effort needed to conduct these experiments, space limitations

prevent us from reporting fully. However, it should be noted that no run of Reactis

or Magnum Opus ever required more than 3.5 minutes to complete, and that the

computing platforms used were commercial laptops. The data suggest obvious time

savings for validating invariants over manual inspection by an expert user.
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E
(1)
full 1 2 3 4 5

1 1 0.53 0.86 0.52 0.67
2 1 0.63 0.64 0.72
3 1 0.62 0.71
4 1 0.61
5 1

E
(2)
full 1 2 3 4 5

1 1 0.88 0.85 0.90 0.83
2 1 0.92 0.88 0.81
3 1 0.86 0.83
4 1 0.88
5 1

Min Avg Max

E
(1)
full 0.52 0.65 0.87

E
(2)
full 0.81 0.87 0.92

Table 4.3: Jaccard similarity scores for E
(1)
full and E

(2)
full. The minimum, average,

and maximum values are also given for E
(1)
full and E

(2)
full for summarization.

E
(1)
partial 1 2 3 4 5

1 1 0.46 0.47 0.62 0.35
2 1 0.47 0.60 0.58
3 1 0.59 0.43
4 1 0.52
5 1

E
(2)
partial 1 2 3 4 5

1 1 0.74 0.52 0.74 0.50
2 1 0.45 0.70 0.48
3 1 0.56 0.63
4 1 0.48
5 1

Min Avg Max

E
(1)
partial 0.35 0.51 0.62

E
(2)
partial 0.45 0.58 0.74

Table 4.4: Jaccard similarity scores for E
(1)
partial and E

(2)
partial, with accompanying

summarized statistics.

State machine visualizations are shown in Figure 4.3 for representative invari-

ant sets of each of the four configurations, E
(1)
full, E

(2)
full, E

(1)
partial, and E

(2)
partial.

4.6 Related Work

In specification mining [60, 61, 62, 63, 64, 65, 66], the interaction behavior of run-

ning programs is extracted [67] by machine learning algorithms [68] wherein a state

machine, that is supposed to represent a model of the program’s specification, is con-
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(a) E
(1)
full - sample run (b) E

(2)
full - sample run

(c) E
(1)
partial - sample run (d) E

(2)
partial - sample run

Figure 4.3: State machine visualization of representative invariant sets for each of
the 4 configurations. The specific invariant set chosen for each configuration here
has the median number of net invariants discovered, as reported in Table 4.1. Edge
labels, which would correspond to specific requirements of inputs, are omitted for
clarity.

structed and which can subsequently be analyzed using a variety of static techniques

[69]. Our approach, in contrast, concentrates on deriving individual requirements

rather than constructing a total specification of the system, though we also provide

the facility to visualize the full specification from the requirements. In addition,

our approach is distinguished by its provisions of guarantees regarding coverage of

behavior. With respect to invariant detection, we use Magnum Opus for its easy

setup and its support for association rules but there are several other tools which

can mine rules from dynamic systems.
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The Weka project[70] is a toolkit that is capable of performing data mining-

related tasks, including the Apriori algorithm [9], one of the earliest algorithms

used for association rule mining. The particular types of association rules mined are

similar to Magnum Opus in the sense that they do not support invariants involving

ranges.

The Daikon system proposed by Ernst et al. [22] performs dynamic detection

of “likely invariants.” It focus primarily on programs written in C, C++, Java, and

Perl. An early step of Daikon’s system uses code instrumenters to obtain trace data

which is passed into its inference algorithm. This trace data does not guarantee

good coverage over the program under inspection; Ernst et al. note that multiple

runs may be required by the program under inspection and combined. In general,

Daikon does not support a mechanism for generating such a set of high-coverage

runs itself, this is left to the user to determine. The invariants proposed by Daikon

are checked for redundancy, but it is difficult to validate invariant correctness for

test cases other than those given by the presented trace data. Through the use of

Reactis, our framework only will produce test cases with a specified coverage level

(able to be set by the user). Furthermore, by converting the existing invariants

into monitor models and validating in an iterative process, we are able to provide

stronger assurances in the correctness of our final invariant set.

Hangal et al.’s IODINE framework [71] dynamically mines low-level invariants

on hardware designs. Rather than employ a machine learning approach, they uti-
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lize a series of analyzers that monitor signals in the hardware design and reports

observations that are of interest, such as equality between signals, mutual exclusion

between signals, etc. These analyzers report what are termed invariants. In con-

trast to our work, the invariant types that are discoverable are determined by the

analyzers selected or considered to be used, which can be difficult to identify if one

is searching for invariants that are either unknown or otherwise not considered. In

our case, test cases are generated through the same general framework regardless

(using structural coverage), and the data mining tool employed is the determining

factor of what types of invariants are discovered.

Mesbah et al. [72] proposed a method of automatic testing of the user interfaces

of AJAX-based applications. Their approach reveals invariants in the DOM-tree of

an AJAX application as well as constructs a state machine of the application, over

which other invariants (which they equate to requirements) are identified. The

notion of differing states in their context corresponds to the various paths of action

events that can be taken through user interactions such as button clicks. Their

work focuses on using these invariants to detecting faults for testing purposes, rather

than attempting to construct a well-covered set of invariants which corresponds to

a largely complete view of the state machine, as our work does.

Cheng et al. [73] use data mining techniques to extract putative invariants over

a program’s dynamic execution, and augment an existing bounded model checker

that uses SAT formulations of the code statically. This approach is shown to speed
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up software verification when compared to performing bounded model checking with-

out the invariants obtained from the data mining. The main focus of Cheng et al. is

to accelerate the software verification process by adding invariants found during pro-

gram execution. Our work is driven to infer a largely complete set of such invariants

that could characterize the model itself over the variety of dynamic executions that

could possibly occur.

4.7 Conclusion

This chapter has presented a framework for requirements reconstruction from exe-

cutable software artifacts. The kinds of systems it targets follow a read-compute-

write behavior model, with inputs being read, computations conducted, and results

written. Control software, such as that found in embedded applications, represents

a class of applications that fall into this classification, as do others. The method

relies on the application of machine-learning / data-mining techniques to test data,

in the form of sequences of input-output vectors that structurally cover the artifact,

obtained for the software to derive proposed requirements in the form of invariants

expressing relationships between inputs and outputs. The method then uses an au-

tomated validation step to identify spurious invariants. The method was piloted on

an automotive lighting-control application in which the artifact in question was a

Simulink model. The experimental data suggest that using full-coverage test data

yields better invariant / requirement sets than random test data, and that itera-
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tively applying the approach further improves these invariants. In particular, using

a single iteration with random samples showed only a 31% recovery of all known in-

variants, whereas this number is increased to 57% with the application of structural

coverage, and further increased to 92% when a second iteration is performed.

The findings of this chapter was presented at Runtime Verification in 2010 [1].
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Chapter 5: LTL Query Checking

5.1 Introduction

Temporal logics [74] are widely used to specify desired properties of system behavior.

Such logics permit the description of how systems should execute over time; tools

such as model checkers [75, 76] can then be used automatically to determine whether

or not certain types of system possess given temporal properties.

The practical utility of model checking and other temporal-logic-based veri-

fication technologies relies on the ability of users to define correctly the properties

they are interested in. To assist users in this regard, researchers have looked into var-

ious forms of automated temporal-property reconstruction [77, 78, 79, 80] as a means

of helping users to devise temporal specifications from given system specifications.

Users may then use these as specifications for the system (useful when systems sub-

sequently have new functionality added, as the new system can be checked against

the old specification to ensure backward compatibility); they may also review them

as a means of gaining insight into the behavior of a system that may not have

been formally specified or verified. One of the most influential lines of work in this
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area is so-called temporal logic query checking by William Chan [16], which aims

to solve the following general problem: given a system, and a temporal formula

with a missing (propositional) subformula, “solve” for the missing subformula. As

originally formulated by Chan, the temporal logic in question was a subset of the

branching-time temporal logic CTL [81], for which he gave efficient algorithms for

computing most-precise missing formulas. Others have considered different vari-

ants of this problem, by considering multiple missing subformulas, for instance, or

different logics [18, 21, 19].

In this chapter we consider the problem of query checking for Linear Tempo-

ral Logic (LTL) [81]. LTL differs from branching-time logics in that one specifies

properties of executions, rather than states in a system, and it is often viewed as

an easier formalism to master for this reason. It is also the basis for specification

languages, such as FORSPEC [82], used in digital hardware design. We show how

to adapt automaton-based model-checking techniques in order to yield a solution to

the query-checking problem that, while computationally complex in the worst case,

exploits structure in the space of possible query solutions to yield better perfor-

mance. We first develop some needed mathematical preliminaries and then present

our technique and report on empirical results from our existing implementation.
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5.2 Büchi Propositional Automaton

For the remainder of this chapter we will employ an alternative formulation of

Büchi automata than that presented in Chapter 3. Let B be a Büchi automaton

whose alphabet is the power set of some other set, i.e. B =
〈
S, 2AP , δ, si, F

〉
.

Then, transitions in B are labeled by subsets of AP , which can be represented as

a propositional formula over AP . Such a formula would correspond to exactly one

line in a truth table containing possible valuations of the atomic propositions in AP .

For a propositional formula γ ∈ ΓAP , the interpretation of the transition s
γ−→ s′ is

that s
A−→ s′ for every A ⊆ AP satisfying γ.

Definition 7 (Satisfying propositional formulas with AP). For atomic proposition

set AP, define A |= γ for A ⊆ AP and γ ∈ ΓAP inductively as follows:

• A |= a iff a ∈ A

• A |= ¬γ iff A 6|= γ

• A |= γ1 ∨ γ2 iff A |= γ1 or A |= γ2

We write JγK for {A ⊆ AP : A |= γ}.

Note that A |= γ if and only if π |= γ for all π such that π[0] = A. A set A ⊆ AP

can be expressed as a propositional formula over AP with the formula (
∧
a∈A a) ∧

(
∧
a6∈A ¬a). Note that JAK = {A} in this case.
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Definition 8 (Büchi propositional automaton). Given AP, a Büchi propositional

automaton is a 4-tuple 〈S, δ, sI , F 〉, where:

• S is a finite non-empty set of states, with sI ∈ S and F ⊆ S.

• δ ⊆ (S × Γ× S) is the transition relation.

Based on our interpretation of subsets of AP as propositions it is easy to see that

every Büchi automaton is also a Büchi propositional automaton. An arbitrary Büchi

propositional automaton B = 〈S, δ, sI , F 〉 may also be translated into a traditional

Büchi automaton B′ =
〈
S, 2AP , δ′, sI , F

〉
by defining

δ′ = {(s, A, s′) | ∃γ. (s, γ, s′) ∈ δ ∧ A ∈ JγK}

We define L(B) , L(B′). The traditional tableau-based constructions for convert-

ing LTL formulas into Büchi automata may easily be adapted to generate Büchi

propositional automata with the property that for every pair of automaton states

q, q′ there is exactly one γ such that (q, γ, q′) ∈ δ.

Finally, we give a construction for Büchi propositional automaton B12 with

L(B12) = L(B1) ∩ L(B2) for the special case of Büchi propositional automata B1

and B2, with every state in B1 accepting.

Theorem 1. Let B1 = (S1, δ1, s1, S1) and B2 = (S2, δ2, s2, F2) be Büchi propositional

87



automata. Then L(B12) = L(B1) ∩ L(B2), where

B12 = (S1 × S2, δ12, (s1, s2) , S1 × F2)

and ((s1, s2) , γ1 ∧ γ2, (s′1, s′2)) ∈ δ12 iff (s1, γ1, s
′
1) ∈ δ1 and (s2, γ2, s

′
2) ∈ δ2.

5.3 The LTL Query Checking Problem

In LTL query checking we are interested in Kripke structures and LTL formula

queries, which are formulas containing a missing propositional subformula. The

goal in LTL query checking is to construct solutions for the missing subformula.

This section defines the problem precisely and proves results that will be used later

in our algorithmic solution.

LTL queries correspond to LTL formulas with a missing propositional subfor-

mula, which we denote var. It should be noted that var stands for an unknown

proposition over A; it is not a propositional variable. The syntax of queries is as

follows.

φ := var | a ∈ AP | ¬φ | φ ∨ φ | Xφ | φUφ

In this chapter we only consider the case of a single propositional unknown, although

the definitions can naturally be extended to multiple such unknowns. We often write

φ[var] for LTL query with unknown var, and φ[φ′] for the LTL formula obtained by

replacing all occurrences of var by LTL formula φ′. We also say that an occurrence
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of var within φ[var] is positive if it appears within an even number of instances of

¬, and negative otherwise. If all occurrences of var in φ[var] are positive we say

var is positive in φ[var]; if all are negative we say var is negative in φ[var]; if there

are both positive and negative occurrences of var in φ[var] then var is mixed in

φ[var].

The query-checking problem may now be formulated as follows.

Given: Finite-state Kripke structure K, LTL query φ[var]

Compute: All γ ∈ Γ (i.e. all propositional formulas over A) with K |= φ[γ].

If γ is such that K |= φ[γ], then we call γ a solution for K and φ[var], and in this

case we say that φ[var] is solvable for K. Computing all solutions for query checking

problem K and φ[var] cannot be done explicitly, since the number of propositional

formulas is infinite. However, if we define γ1 ≡ γ2 to hold if Jγ1K = Jγ2K, then it

is clear that there are only finitely many distinct equivalence classes for Γ (exactly

22|AP|
in fact). We also say that γ1 is at least as strong (weak) as γ2 if Jγ1K ⊆ Jγ2K

(Jγ2K ⊆ Jγ1K). We now have the following.

Theorem 2. Let K be a finite-state Kripke structure and φ[var] an LTL query.

1. If var is positive in φ[var] then there is a finite set (modulo ≡) of strongest

solutions for φ[γ].

2. If var is negative in φ[var] then there is a finite set (modulo ≡) of weakest

solutions to φ[γ].
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In some cases these sets of maximal solutions contain a single solution.

Definition 9. Let φ[var] be an LTL query. Then φ[var] is:

• conjunctively covariant iff for all γ1, γ2, φ[γ1 ∧ γ2] ≡ φ[γ1] ∧ φ[γ2]; and

• conjunctively contravariant iff for all γ1, γ2, φ[γ1 ∨ γ2] ≡ φ[γ1] ∧ φ[γ2].

Theorem 3. Let K be a finite-state Kripke structure, and let φ[var] be solvable for

K. Then the following hold.

1. If var is positive in φ[var] and φ[var] is conjunctively covariant, then there

is a unique strongest solution (modulo ≡) for φ[var].

2. If var is negative in φ[var] and φ[var] is conjunctively contravariant, then

there is a unique weakest solution (modulo ≡) for φ[var].

As examples, note that G var is conjunctively covariant and solvable for every K,

and that var is positive; it is guaranteed to have a unique strongest solution for

any K. So does G F var. On the other hand, G(var =⇒ Fφ′) is conjunctively

contravariant and solvable for every K, and var appears negatively. Thus, every K

has a unique weakest solution for this query.

5.4 Automaton-Based LTL Query Checking

In this section we show how LTL query checking can be formulated as a problem on

Büchi propositional automata whose propositional labels may contain instances of
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var. In this chapter we only consider LTL queries in which var is either negative or

positive; the mixed case will not be dealt with. The approach is based on LTL model

checking in that we generate Büchi propositional automata from both a Kripke

structure and the negation of an LTL query and compose them; we then search for

solutions to var that make the language of the composition automaton empty. To

formalize these notions, we introduce the following definitions.

5.4.1 Propositional Queries

Definition 10 (Propositional query). Let var be an unknown proposition. Then

propositional queries are generated by the following grammar.

γ ::= var | a ∈ AP | ¬γ | γ ∨ γ

We write γ[var] for a generic instance of a propositional template, and Γ[var] for

the set of all propositional templates involving var.

It is easy to see that propositional queries form a subset of LTL queries, and that

notions of γ[γ′], positive and negative occurrences of var, etc., carry over immedi-

ately. A shattering formula for query γ[var] is a propositional formula γ′ with the

property that Jγ[γ′]K = ∅; that is, γ′ “makes” γ[var] unsatisfiable. We call γ[var]

shatterable if it has a shattering formula. The following is a consequence of the fact

that the set of propositional formulas form a Boolean algebra.
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Theorem 4. Let γ[var] be shatterable.

1. If var is positive in γ[var] then there is a unique (modulo ≡) weakest shattering

formula for γ[var].

2. If var is negative in γ[var] then there is a unique strongest (modulo ≡) shat-

tering formula for γ[var].

Intuitively, if γ[var] is shatterable and var is positive, then γ[var] can be rewritten

as var∧γ′ for some propositional formula γ′ (i.e. γ′ contains no occurrences of var).

In this case the weakest shattering formula for γ[var] is ¬γ′. A dual argument holds

in the case that var is negative in γ[var].

5.4.2 Büchi Query Automata

Büchi query automata are propositional automata with propositional queries label-

ing transitions.

Definition 11 (Büchi query automaton). Let var be a propositional unknown. A

Büchi query automaton B[var] has form 〈S, δ, qI , F 〉, with finite state set S, initial

state si ∈ S, accepting states F ⊆ S, and transition relation δ ⊆ S × Γ[var]× S.

Intuitively, a Büchi query automaton is like an LTL query in that it contains a

propositional unknown, var, that can be used to change the language accepted

by the automaton. Specifically, if var is set to a condition γ′ that shatters the

edge label γ[var], then any query-automaton edge of form (s, γ[var], s′) is no longer
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Figure 5.1: Shattering edges in a Büchi query automaton. Proposition γ′ shatters
γ[var], and consequently the edge (q, γ[var], q′) is removed.

available for use in constructing runs of the automaton. Figure 5.1 illustrates this

phenomenon. Thus, by varying var we can affect the language accepted by the

query automaton.

Formally, if B[var] is a Büchi query automaton and γ ∈ Γ, then define B[γ] to

be the Büchi propositional automaton obtained by replacing all occurrences of var

by γ in any edge label within B[var]. We say that γ shatters B[var] if L(B[γ]) = ∅,

i.e. if γ renders the language of B[var] empty. Notions of positive and negative

occurrences of var in B[var], etc., carry over in the obvious manner.

We now note the following correspondence between LTL queries and Büchi

query automata.

Theorem 5. Let φ[var] be an LTL query. Then there exists a Büchi query automa-

ton Bφ[var] such that the following hold.

1. For all γ ∈ Γ, Jφ[γ]K = L(Bφ[γ]).

2. If var is positive in φ[var] then var is positive in Bφ[var].
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3. If var is negative in φ[var] then var is negative in Bφ[var].

The construction of Bφ[var] is a straightforward adaptation of the construction of

Büchi propositional automata from LTL formulas φ.

5.4.3 LTL Query Checking via Büchi Query Automata

We now explain our approach to LTL query checking. Given finite-state Kripke

structure K and LTL query φ[var], we perform the following.

1. Construct Büchi (propositional) automaton BK .

2. Construct Büchi query automaton B¬φ[var].

3. Construct the product query automaton, BK,¬φ[var].

4. Solve for shattering conditions for BK,¬φ[var].

Because of Theorem 5 we know the following. If φ[var] is conjunctively co-

variant and var is positive in φ[var], then var is negative in BK,¬φ[var], and the

strongest solution for var in φ[var] with respect to K coincides with the weakest

shattering condition for BK,¬φ[var]. The dual result holds in case var is negative

in φ[var]. Thus, solving for shattering conditions in BK,¬φ[var] yields appropriate

query solutions for K and φ[var].
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5.5 Implementing an LTL Query Checker

Based on the developments given earlier in the chapter, to develop a query checker

for finite-state Kripke structures and LTL queries φ[var] it suffices to construct the

product query automaton BK,¬φ[var] and then search for γ that shatter BK,¬φ[var].

In this section we highlight some of the algorithmic aspects of this strategy and

report on preliminary results of a prototype implementation.

At the outset, we can note that there is one immediate algorithmic solution:

enumerate γ and test to see if L(B[γ]) = ∅ by computing the strongly connected

components of B[γ] and seeing if the start state can reach a successful component

(i.e. one with an accepting state and at least one edge from the component back to

itself). As there are 22|AP|
semantically distinct such γ, this procedure terminates;

indeed, this is the basis of the approach outlined in [21]. The complexity of this

approach is prohibitive, however, as a sample implementation of ours has shown:

even Kripke structures with 10s of states and 10 atomic propositions failed to com-

plete successfully. This is to be expected, given that there are 2210 ≥ 1.75 × 10308

semantically distinct propositions in this case.

Instead, the approach outlined below pursues two different strategies to reduce

the computational effort associated with shattering. One involves exploiting the lat-

tice structure of 22AP
to reduce the number of propositions that must be considered;

the second combines this idea with a weakening of the problem to require the com-
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putation of a single shattering proposition, rather than all such propositions. The

next sections provide further details regarding our approach.

5.5.1 Construct Büchi Automaton BK

Given a Kripke structure K, constructing the corresponding Büchi automaton BK is

done using the traditional method as described above. There is no query component

to the model input, it should be noted.

5.5.2 Construct Büchi Query Automaton B¬φ[var]

The LTL3BA package performs translations from standard LTL formulas to Büchi

propositional automata. For a given query φ[var] we convert the formula into a

Büchi query automaton by treating var as a normal atomic proposition. By de-

fault, LTL3BA attempts to remove non-determinism from the output Büchi query

automaton, which can increase the number of edges in the automaton containing

var on their labels. We configure LTL3BA so that removal of non-determinism is

not required in order to avoid this extra overhead.

5.5.3 Construct Product Query Automaton BK,¬φ[var]

As mentioned before, there is a well-known product construction for composing two

Büchi automata into a single one accepting the intersection of the languages of

the component automata. We adapt this composition operation to automaton BK
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and query automaton B¬φ[var], yielding composite query automaton BK,¬φ[var],

as follows. States in B¬φ[var] are pairs of states from BK and B¬φ[var]. Tuple

((q1, q2) , A ∧ γ[var], (q′1, q
′
2)) is a transition in BK,¬φ[var] iff (q1, A, q

′
1) is a transition

in BK and (q2, γ[var], q′2) is a transition in B¬φ[var]. It should be noted that the

transition label in this case, A ∧ γ[var], has a special property: for any var, either

JA ∧ γ[var]K = {A}, or JA ∧ γ[var]K = ∅. This is a consequence of the fact that

our treatment of A as a proposition means that JAK = {A}. The initial state of

BK,¬φ[var] is the pair consisting of the start states of BK and B¬φ[var], respectively;

states are accepting in BK,¬φ[var] if and only if the state component coming from

B¬φ[var] is accepting.

5.5.4 Solve for Shattering Conditions of BK,¬φ[var]

Given BK,¬φ[γ], we now must find a proposition γ such that L(BK,¬φ[γ]) = ∅.

One approach [21] is to enumerate all possible γ and compute whether or not

L(BK,¬φ[γ]) = ∅ for each such γ. Because of the number of possible γ, this ap-

proach is infeasible for all but trivial AP .

Our approach instead focuses on determining when sets of edges in BK,¬φ[var]

can be shattered via a common proposition γ in such a way that L(BK,¬φ)[γ]) is

empty. Our procedure may be summarized as follows.

1. Pre-process BK,¬φ[var] to eliminate all strongly connected components that

have no outgoing edges from the component and that do not contain any

97



accepting states. Call the reduced query automaton B′[var].

2. Identify all unique edge labels S = {γ1[var], . . . , γn[var]} in B′[var].

3. Process Γ appropriately to determine how B′[var] can be shattered.

We now expand on the last step of the above procedure. In this work our interest is

only for LTL queries φ[var] in which var appears only positively or only negatively;

we do not consider queries in which var is mixed. Based on the construction of

BK,¬ var[var] it follows that var is either positive in all of the γi[var] or negative in

all of the γi[var]. In what follows we assume that var is positive; the negative case

is dual.

The first step in processing the γi[var] (var is positive) is to determine if

γi[var] is shatterable, and if so, to compute its weakest shattering condition γ′i.

Propositional queries γi[var] that are not shatterable are removed from future con-

sideration, as they cannot contribute to shattering B′[var]. In what follows we

assume that each γi[var] is shatterable, with weakest shattering condition γ′i.

The next step S is to search for subsets of S that, when all shattered, shatter

B′[var]. More specifically, suppose S ′ ⊆ S and γ′′ is such that γ′′ shatters each

γ′[var] ∈ S ′. In B′[γ′′] none of the edges labeled by elements of S ′ would be present;

if enough edges are eliminated, L(B[γ′′]) = ∅, and γ′′ would shatter B′[var]. In this

case we say that S ′ shatters B′[var]. This search procedure is facilitated by the

following observations.
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1. If S ′ shatters B′[var] and S ′ ⊆ S ′′, S ′′ also shatters B′[var].

2. If S ′ does not shatter B′[var] and S ′′ ⊆ S ′, S ′′ does not shatter B′[var].

These observations can be exploited to develop a modified breadth-first search (BFS)

strategy for finding all minimal subsets of S that shatterB′[var]. The BFS algorithm

maintains a work set, W ⊆ 2S, of subsets of S that need processing. Initially,

W = {∅}. The algorithm then repeatedly does the following. It selects a minimum-

sized S ′ ∈ W and checks if S ′ shatters B[var]. If it does, then it removes all supersets

of S ′ from W and adds S ′ to the set of minimal shattering subsets of S. If it does

not, then every superset of S ′ that contains one more element than S ′ is added to

W . The procedure terminates when W is empty. Note that the approach does not

add to W when S ′ is found to be a shattering set; the correctness of this approach

is based on the first observation above.

The BFS algorithm in the worst-case can still require examination of all subsets

of S, so we also consider a different algorithm whose goal is to compute a single min-

imal shattering subset of S. This approach, which we call GREEDY SET SEARCH

(GSS), first locates a (not necessarily minimal) shattering set using a depth-first

search strategy as follows. The procedure maintains a set R ⊆ S that is initially ∅.

It then repeatedly checks to see if R shatters B′[var]; if so, it terminates, otherwise,

it adds a new element from S into R. The observations above guarantee that the

above procedure will terminate after at most |S| iterations. The second stage of the

procedure then locates a minimal subset of the shattering set R returned by the
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first stage as follows. Each edge (except the last one added) is removed from R,

and the set without this edge is checked for shattering. If the newly modified set

R′, consisting of R with this single edge removed, shatters B′[var] then the edge is

permanently removed from R; otherwise, the edge is left in R. When this procedure

terminates the resulting value of R is guaranteed to be a minimal shattering subset

of S.

5.5.5 Implementation and Evaluation

We have developed prototype implementations of the BFS and GSS algorithms.

Kripke structures are read in as directed graph data containing node labels, and

LTL formulas are represented as simple strings. As stated previously, the LTL3BA

routine was used to generate Büchi query automata from LTL queries.

For a proof-of-concept assessment of the techniques we use a modified version

of NuSMV (extended from version 2.6.0) to extract the explicit Kripke structures

from a sample .smv model files included in the NuSMV distribution. For each choice

of model used, we considered property queries that were conceivably of interest

based upon grounded properties known to be true of the systems already. These

always took one of the following forms: G a, G F a or G (a→ F b). The models we

considered in our evaluation are the following.

• Counter[k] - An implementation of a k-bit counter.

• Semaphore[k] - An implementation of a semaphore access control scheme for
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Model M States Transitions |AP| shatterable edges shatterable labels
counter[3] 17 26 3 9 8
counter[4] 33 50 4 17 16
counter[5] 65 98 5 33 32
counter[10] 2049 3074 10 1025 1024

semaphore[2] 25 98 9 33 12
semaphore[3] 65 314 13 105 32
semaphore[4] 161 917 17 305 80
semaphore[5] 385 2498 21 833 192
semaphore[6] 897 6530 25 2177 448
semaphore[7] 2049 16514 29 5505 1024

production-cell 163 245 76 82 81

Figure 5.2: Statistics for composed Büchi product query automata for specified
model M taking φ = G(var).

k different processes.

• Production cell - A production cell control model, first presented as an SMV

model by Winter [83]. The original intent of this model concerned safety and

liveness specifications.

Figure 5.2 contains relevant data about sizes of these models, and about the

size of the Büchi query automata formed when composing the models with the

query automaton B¬G var. For our purposes, the following measures are relevant:

(1) number of states, (2) number of transitions, (3) number of atomic propositions

in the Kripke structure, (4) number of transition labels containing variable labels in

the composite automaton, and (5) number of unique transition labels.

Figure 5.3 contains performance data for both BFS and GSS. Algorithms were

implemented in Java, and experiments were conducted on a single machine with a 3.5

GHz processor containing 32 GB of memory. Individual experiments were allowed
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to run for up to 2 hours before being stopped and considered timed out. BFS yielded

minimal success, as most datasets timed out. The GSS approach to find a single

minimal shattering set proved much more effective.

5.6 Conclusion

In this chapter we have considered the problem of query checking for Linear Tem-

poral Logic (LTL). An LTL query checker takes a query, or LTL formula with a

missing propositional subformula, together with a Kripke structure and computes

a solution for the missing subformula. We have shown how this problem may be

solved using automata-theoretic techniques that rely on the use of Büchi automata

and the computation of so-called shattering conditions that make the languages of

these automata empty. An implementation and preliminary performance data are

also given.

The findings of this chapter was presented at AVoCS 2017 [84].
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Dataset Time (s) # Queries
counter[3] 0.2 257
counter[4] 7.2 65537
counter[5] timeout 232 (*)
counter[10] timeout 21024 (*)

semaphore[2] 1.3 4097
semaphore[3] timeout 232 (*)
semaphore[4] timeout 280 (*)
semaphore[5] timeout 2192 (*)
semaphore[6] timeout 2448 (*)
semaphore[7] timeout 21024 (*)

production-cell timeout 281 (*)

(a)

Dataset Time (s) # Queries
counter[3] 0.2 17
counter[4] 0.2 33
counter[5] 0.6 65
counter[10] 22.4 2049

semaphore[2] 0.2 25
semaphore[3] 0.4 65
semaphore[4] 1.4 161
semaphore[5] 6.9 385
semaphore[6] 44.1 897
semaphore[7] 296.9 2049

production-cell 1.3 163

(b)

Figure 5.3: Timing results for finding (a) all shattering sets via breadth first search,
and (b) one minimal shattering set via GREEDY SET SEARCH. The number of
total shattering queries that are made for each experiment are also reported. Query
counts marked with a (*) are estimates based on our understanding of the models.
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Chapter 6: Finite LTL

6.1 Introduction

Since its introduction into Computer Science by Amir Pnueli in a landmark pa-

per [85], propositional linear temporal logic, or LTL, has played a prominent role as

a specification formalism for discrete systems. LTL includes constructs for describ-

ing how a system’s state may change over time; this fact, coupled with its simplicity

and decidability properties for both model and satisfiability checking, have made

it an appealing framework for research into system verification and analysis. The

notation has also served as a springboard for the study of other temporal logics in

computing.

Traditional LTL formulas are interpreted with respect to infinite sequences of

states, where each state assigns a truth value to the atomic propositions appearing in

the formula. Such infinite sequences are intended to be viewed as runs of a system,

with each state representing a snapshot of the system as it executes. However,

applications of so-called finite variants of LTL have emerged as well; in finite LTL

finite, rather than infinite, state sequences are the models. Domains as varied as
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robotic path planning and automated run-time monitoring have used finite versions

of LTL to precisely specify the desired behavior of systems.

This chapter defines a construction for a specific finite variant of LTL, which

we call Finite LTL, that renders formulas into finite-state automata that accepts

the models, or “satisfying state sequences,” of the corresponding formula. Such

constructions have been given for traditional LTL (e.g. [86]) and have played a

pivotal role in practical techniques for both model checking (i.e. determining if

every execution of a system satisfies and LTL formula) and satisfiability checking

(i.e. determining of a given formula has any models). To the best of our knowl-

edge, no such construction has been given in the literature for Finite LTL; our goal

in providing such a construction in this chaper is to provide researchers with a

basis for automata-theoretic techniques for studying Finite LTL as well. The con-

struction exploits specific features of Finite LTL to simplify the traditional tableau

constructions found for classical LTL; in particular, the state construction relies on

semantics-preserving syntactic formula transformations, and the acceptance condi-

tion for the resulting automaton can be determined syntactically based purely on

the formulas associated with a state.

This fact, along with the other aforementioned work, motivates our work.

Across the surveyed literature, if any construction for an automaton representing

a finite semantic LTL formula was provided, the acceptance criterion was recur-

sively defined based on reachability from the initial state. In our case, we have also
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provided a purely syntactic method of determining state acceptance.

In this chapter, we have adopted a version of Finite LTL that is similar to that

as used in [30, 29]. Our choice is based firstly on a desire to appeal to the mature

and well-studied similarities this representation has to the case of standard (infinite)

LTL, and secondly to facilitate supplementing the logic to support the task of query

checking [16] for finite sets of finite data streams.

6.2 Finite LTL

This section introduces the specific syntax and semantics of Finite LTL. For refer-

ence, refer to Section 3.1.2 for the definition of standard LTL. In what follows, fix a

(nonempty) finite set AP of atomic propositions.

6.2.1 Syntax of Finite LTL

Definition 12 (Finite LTL Syntax). The set of Finite LTL formulas is defined by

the following grammar, where a ∈ AP.

φ ::= a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2

We call the operators ¬ and ∧ propositional and X and U modal. We use ΦAP

to refer to the set of all Finite LTL formulas and ΓAP ( ΦAP for the set of all

propositional formulas, i.e. those containing no modal operators. We often write Φ
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and Γ instead of ΦAP and ΓAP when AP is clear from context.

Finite LTL formulas may be constructed from atomic propositions using the

traditional propositional operators ¬ and ∧, as well as the modalities of “next” (X)

and “until” (U). We also use the following derived notations:

false = a ∧ ¬a

true = ¬false

φ1 ∨ φ2 = ¬((¬φ1) ∧ (¬φ2))

φ1 Rφ2 = ¬((¬φ1) U(¬φ1))

Xφ = ¬X(¬φ)

Fφ = true Uφ

Gφ = ¬F(¬φ)

The constants false and true, and the operators ∧ and ∨, and U and R, are duals

in the usual logical sense, with R sometimes referred to as the “release” operator.

We introduce X (“weak next”) as the dual for X. That this operator is needed is

due to the semantic interpretation of Finite LTL with respect to finite sequences,

which means that, in contrast to regular LTL, X is not its own dual. This point

is elaborated on later. Finally, the duals F and G capture the usual notions of

“eventually” and “always”, respectively.

6.2.2 Semantics of Finite LTL

The semantics of Finite LTL is formalized as relation π |= φ, where π ∈ (2AP)∗ is a

finite sequence whose elements are subsets of AP . Such a subset A ⊆ AP represents

a state σA ∈ AP → {0, 1}, or assignment of truth values to atomic propositions, in

the usual fashion: σA(a) = 1 if a ∈ A, and σA(a) = 0 if a 6∈ A. We first introduce

107



some notation on finite sequences.

Definition 13 (Finite-Sequence Terminology). Let X be a set, with X∗ the set of

finite sequences of elements of X. Also assume that π ∈ X∗ has form x0 . . . xi−1 for

some i ∈ N = {0, 1, . . .}. We define the following notations.

1. ε ∈ X∗ is the empty sequence.

2. |π| = i is the number of elements in π. Note that |ε| = 0.

3. For j ∈ N, πj = xj ∈ X, provided j < |π|, and is undefined otherwise.

4. For j ∈ N, the suffix, π(j), of π beginning at j is taken to be π(j) =

xj . . . xi−1 ∈ X∗, provided j ≤ |π|, and is undefined otherwise. Note that

π(0) = π and that π(|π|) = ε.

5. If x ∈ X and π ∈ X∗ then xπ ∈ X∗ is the sequence such that (xπ)0 = x and

(xπ)(1) = π.

Definition 14 (Finite LTL Semantics). Let φ be a Finite LTL formula, and let

π ∈ (2AP)∗. Then the satisfaction relations, π |= φ, for Finite LTL is defined

inductively on the structure of φ as follows.

• π |= a iff |π| ≥ 1 and a ∈ π0

• π |= ¬φ iff π 6|= φ

• π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2
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• π |= Xφ iff |π| ≥ 1 and π(1) |= φ

• π |= φ1 Uφ2 iff ∃j : 0 ≤ j ≤ |π| : π(j) |= φ2 and ∀k : 0 ≤ k < j : π(k) |= φ1

We write JφK for the set {π | π |= φ}. We also say that φ1 and φ2 are logically

equivalent, notation φ1 ≡ φ2, if Jφ1K = Jφ2K.

Intuitively, π can be seen as an execution sequence of a system, with π0, if it exists,

taken to be the current state and πi for i > 0, if they exist, referring to states i time

steps in the future. In this interpretation ε can be seen as representing an execution

with no states in it. Then π |= φ holds if the sequence π satisfies φ. Formula

a ∈ AP can only be satisfied by non-empty π, as the presence or absence of a in

the first state π0 contained in π is used to determine whether a is true (a ∈ π0) or

not (a 6∈ π0). Negation and conjunction are defined as usual. The X operator is the

next operator; a sequence π satisfies X if it is non-empty (and thus has a notion

of “next”) and the suffix of π beginning after π0 satisfies φ. Finally, U captures a

notion of until : π satisfies φ1 Uφ2 when it has a suffix satisfying φ2 and every suffix

of π that strictly includes this suffix satisfies φ1.

6.2.3 Properties of Finite LTL

Despite the close similarity of Finite LTL and LTL, the former nevertheless possesses

certain semantic subtleties that we will address in this section. Many of these aspects

of the logic have to do with properties of ε, the empty sequence, as a potential model

of formulas. (Indeed, some other finite versions of LTL explicitly exclude non-empty
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sequences as possible models.) The inclusion of ε as a possible model for formulas

simplifies the tableau construction given later in this chapter, however; indeed, the

definition of the acceptance condition that we give demands it. Accordingly, this

section also shows how the possibly counter-intuitive features of Finite LTL can be

addressed with proper encodings.

X is not self-dual. In traditional LTL the X operator is self-dual. That is, for any

φ, Xφ and ¬X(¬φ) are logically equivalent. This fact simplifies the treatment of

notions such as positive normal form, since no new operator needs to be introduced

for the dual of X.

In Finite LTL X does not have this property. To see why, consider the formula

X true. If X were self-dual then we should have that X true ≡ ¬(X¬true), i.e. that

JX trueK = J¬X(¬true)K. However this fact does not hold. Consider JX trueK.

Based on the semantics of Finite LTL, π |= X true iff |π| ≥ 1 and π(0) |= true.

Since any sequence satisfies true, it therefore follows that

JX trueK = {π ∈ (2AP)∗ | |π| ≥ 1};

note that ε 6∈ JX trueK. Now consider J¬X¬trueK. From the semantics of Finite

LTL one can see that J¬trueK = ∅ = JX¬trueK. It then follows that

J¬X¬trueK = (2AP)∗,
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and thus ε ∈ J¬X¬trueK.

The existence of duals for logical operators is used extensively in the tableau

construction, so for this reason we have introduced X as the dual for X. Using the

semantics of X and ¬ it can be seen that π |= Xφ iff either |π| = 0 or π(1) |= φ.

Indeed, JXφK = JXφK∪{ε}; we sometimes refer to X as the weak next operator for

this reason.

Including / excluding ε. The discussion about X and X above leads to the following

lemma.

Lemma 1 (Empty-sequence Formula Satisfaction). Let π ∈ (2AP)∗.

1. π 6= ε iff π |= X true.

2. π = ε iff π |= X false.

Proof. Immediate from the semantics of X, X.

This lemma suggests a way for including / excluding ε as a model of formula.

Corollary 1. Let π ∈ (2AP)∗ and φ ∈ ΦAP . Then the following hold.

1. π |= φ ∧X true iff π |= φ and π 6= ε; and

2. π |= φ ∨X false iff π |= φ or π = ε.

Literals and ε. A literal is a formula that has form either a or ¬a for a ∈ AP .

A positive-normal-form result for a logic asserts that any formula can be converted

into an equivalent one in which all negations appear only as literals.
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The semantics of Finite LTL dictates that for π |= a to hold, where a ∈ AP ,

π must be non-empty. Specifically, the semantics requires that |π| ≥ 1 and a ∈ π0.

Based on the semantics of ¬, it therefore follows that π |= ¬a iff either |π| = 0 or

a 6∈ π0. It follows that ε |= ¬a for any a ∈ AP .

This may seem objectionable at first glance, since ¬a can be seen as asserting

that a is false “now” (i.e. in the current state), and ε has no current state. Given

the semantics of Finite LTL, however, the conclusion is unavoidable. However, using

Corollary 1 we can give a formula that captures what might be the desired meaning

of ¬a, namely, that a satisfying sequence must be non-empty. Consider (¬a)∧X true.

From the corollary, it follows that π |= (¬a)∧X true iff π is non-empty and a 6∈ π0.

The relationship between ε and literals also influences the semantics of formu-

las involving temporal operators. For example, consider F¬a for literal ¬a, which

intuitively asserts that a is eventually false. More formally, based on the definition of

F in terms of U and the semantics of U, it can be seen that π |= F¬a iff there exists

i such that 0 ≤ i ≤ |π| and π(i) |= ¬a. Since for any π, π(|π|) = ε, it therefore fol-

lows that π(|π|) |= ¬a for any π, and thus that every π satisfies π |= F¬a. This can

be seen as offending intuition. However, Corollary 1 again offers a helpful encoding.

Consider the formula F((¬a) ∧X true). It can be seen that π |= F((¬a) ∧X true)

iff there is an i such that 0 ≤ i < |π| and π(i) |= ¬a, meaning that there must exist

an i such that a 6∈ πi.

A similar observation highlights a subtlety in the formula G a when a ∈ AP .
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It can be seen that π |= G a iff for all i such that 0 ≤ i ≤ |π|, π(i) |= a. Since

π(|π|) = ε and ε 6|= a, it therefore follows that G a is unsatisfiable. This also

seems objectionable, although Corollary 1 again offers a workaround. Consider

G(a∨X false). In this case π(|π|) |= a∨X false, and for all i such that 0 ≤ i < |π|,

π(i) |= a iff a ∈ πi. This formula captures the intuition that for π to satisfy a, a

must be satisfied in every subset of AP in π.

Propositional Formulas. We close this section with a discussion about the seman-

tics of propositional formulas (i.e. those not involving any propositional operators)

in Finite LTL. Later in this chapter we rely extensively on traditional propositional

identities, including De Morgan’s Laws and distributivity, and the associated nor-

mal forms — positive normal form and disjunctive normal form in particular —

that they enable. In what follows we show that for the set ΓAP of propositional

formulas in Finite LTL, logical equivalence coincides with traditional propositional

equivalence. The only subtlety in establishing this fact has to do with the fact that

in Finite LTL, ε is allowed as a potential model.

We begin by recalling the traditional semantics of propositional formulas.

Definition 15 (Semantics for Finite LTL Propositional Subset). Given a (finite,

non-empty) set AP of atomic propositions, the propositional semantics of formulas

in ΓAP is given as a relation |=p ⊆ 2AP × ΓAP defined as follows.

1. A |=p a, where a ∈ AP, iff a ∈ A.
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2. A |=p ¬γ iff A 6|=p γ.

3. A |=p γ1 ∧ γ2 iff A |=p γ1 and A |=p γ2.

We write JγKp for {A ⊆ AP | A |=p γ} and γ1 ≡p γ2 when Jγ1Kp = Jγ2Kp.

In this section we show that for any γ1, γ2 ∈ ΓAP , γ1 ≡ γ2 iff γ1 ≡p γ2: in other words,

logical equivalence of propositional formulas in Finite LTL coincides exactly with

traditional propositional logical equivalence. In traditional LTL, this fact follows

immediately from the fact that for infinite sequence π, π |= γ iff π0 |=p γ. In the

setting of Finite LTL we have a similar result for non-empty π, but care must be

taken with ε.

Lemma 2 (Non-empty Sequence Propositional Satisfaction). Let π ∈ (2AP)∗ be

such that |π| > 0, and let γ ∈ ΓAP . Then π |= γ iff π0 |=p γ.

Proof. Follows by induction on the structure of γ.

The next lemma establishes a correspondence between ε satisfying propositional

Finite LTL formulas and the propositional semantics of such formulas.

Lemma 3 (Empty Sequence Propositional Satisfaction). Let γ ∈ ΓAP be a propo-

sitional formula. Then ε |= γ iff ∅ |=p γ.

Proof. The result follows by structural induction on γ. There are three cases to

consider

1. γ = a for some a ∈ AP . In this case ε 6|= a and ∅ 6|=p a, so the desired

bi-implication follows.
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2. γ = ¬γ′ for some γ′ ∈ ΓAP . In this case the induction hypothesis says that

ε |= γ′ iff ∅ |=p γ
′. The reasoning proceeds as follows.

ε |= γ iff ε |= ¬γ′ γ = ¬γ′

iff ε 6|= γ′ Semantics of Finite LTL

iff ∅ 6|=p γ
′ Induction hypothesis

iff ∅ |=p ¬γ′ Propositional semantics

iff ∅ |=p γ γ = ¬γ′

3. γ = γ1 ∧ γ2 for some γ1, γ2 ∈ ΓAP . In this case the induction hypothesis

guarantees the result for γ1 and γ2. We reason as follows.

ε |= γ iff ε |= γ1 ∧ γ2 γ = γ1 ∧ γ2

iff ε |= γ1 and ε |= γ2 Semantics of Finite LTL

iff ∅ |=p γ1 and ∅ |=p γ2 Induction hypothesis (twice)

iff ∅ |=p γ1 ∧ γ2 Propositional semantics

iff ∅ |=p γ γ = γ1 ∧ γ2

We can now state the main result of this section.

Theorem 6 (Propositional / Finite LTL Semantic Correspondence). Let γ1, γ2 ∈

ΓAP . Then γ1 ≡ γ2 iff γ1 ≡p γ2.
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Proof. We break the proof into two pieces.

1. Assume that γ1 ≡ γ2; we must show that γ1 ≡p γ2, i.e. that for any A ⊆

AP , A |=p γ1 iff A |=p γ2. We reason as follows.

A |=p γ1 iff π |= γ1 all π such that |π| > 0 and π0 = A Lemma 2

iff π |= γ2 all π such that |π| > 0 and π0 = A γ1 ≡ γ2

iff A |=p γ2 Lemma 2

2. Assume that γ1 ≡p γ2; we must show that γ1 ≡ γ2, i.e. that for any π ∈

(2AP)∗, π |= γ1 iff π |= γ2. So fix π ∈ (2AP)∗; we first consider the case when

|π| > 0.

π |= γ1 iff π0 |=p γ1 Lemma 2

iff π0 |=p γ2 γ1 ≡p γ2

iff π |= γ2 Lemma 2

We now consider the case when |π| = 0, meaning π = ε.

ε |= γ1 iff ∅ |=p γ1 Lemma 3

iff ∅ |=p γ2 γ1 ≡p γ2

iff ε |= γ2 Lemma 3
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Because of this lemma, propositional formulas in Finite LTL enjoy the usual proper-

ties of propositional logic. In particular, in a logic extended with ∨ formulas can be

converted into positive normal form, and disjunctive normal form, while preserving

their semantics, including their behavior with respect to ε.

6.3 Normal Forms for Finite LTL

The purpose of this chapter is to define a construction for converting formulas in

Finite LTL into non-deterministic finite automata (NFAs) with the property that

the language of the NFA for a formula consists exactly of the finite sequences that

satisfy the formula. Such automata have many uses: they provide a basis for model

checking against Finite LTL specifications and for checking satisfiability of Finite

LTL formulas. The approach is adapted from the well-known tableau construc-

tion [87] for LTL. Our presentation relies on showing how Finite LTL formulas may

be converted into logically equivalent formulas in a specific normal form; this normal

form will then be used in the construction given in the next section.

6.3.1 Extended Finite LTL and Positive Normal Form

Our construction works with Finite LTL formulas in positive normal norm (PNF),

in which negation is constrained to be applied to atomic propositions. The PNF

formulas in Finite LTL as given in Definition 12 are not as expressive as full Finite

LTL; there are formulas φ in Finite LTL such that φ 6≡ φ′ for any PNF φ′ in Finite
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LTL. However, if we extend Finite LTL by including duals of all operators in Finite

LTL, we can obtain a logic whose formulas are as expressive as those in Finite LTL.

Definition 16 (Extended Finite LTL Syntax). The set of Extended Finite LTL

formulas is given by the following grammar, where a ∈ AP.

φ ::= a | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | φ1 ∨ φ2 | Xφ | φ1 Rφ2

We use ΦAPe to refer to the set of all Extended Finite LTL formulas, and ΓAPe for

the set of propositional Extended Finite LTL formulas (i.e. formulas that do not

include any use of X,U,X or R).

Extended Finite LTL extends Finite LTL by including the duals of ∧, X and U,

namely, ∨, X and R, respectively. Note that ΦAP ( ΦAPe : every Finite LTL formula

is syntactically an Extended Finite LTL formula, but not vice versa.

The semantics of Extended Finite LTL is given as follows.

Definition 17 (Extended Finite LTL Semantics). Let φ be an Extended Finite LTL

formula, and let π ∈ (2AP)∗. Then the semantics of Extended Finite LTL is given

as a relation π |=e φ defined as follows.

• π |=e a iff |π| ≥ 1 and a ∈ π0.

• π |=e ¬φ iff π 6|=e φ.

• π |=e φ1 ∧ φ2 iff π |=e φ1 and π |=e φ2.
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• π |=e Xφ iff |π| ≥ 1 and π(1) |=e φ.

• π |=e φ1 Uφ2 iff ∃j : 0 ≤ j ≤ |π| : π(j) |=e φ2 and ∀k : 0 ≤ k < j : π(k) |=e φ1.

• π |=e φ1 ∨ φ2 iff either π |=e φ1 or π |=e φ2.

• π |=e Xφ iff either |π| = 0 or π(1) |=e φ.

• π |=e φ1 Rφ2 iff ∀j : 0 ≤ j ≤ |π| : π(j) |=e φ2 or ∃k : 0 ≤ k < j : π(k) |=e φ1.

We define JφKe = {π ∈ (2AP)∗ | π |=e φ} and φ1 ≡e φ2 iff Jφ1Ke = Jφ2Ke.

The next lemmas establish relationships between Finite LTL and Extended Finite

LTL. The first shows that the semantics of Extended Finite LTL, when restricted

to Finite LTL formulas, matches the semantics of Finite LTL.

Lemma 4 ((Extended) Finite LTL Semantic Correspondence). Let φ be a formula

in Finite LTL and π ∈ (2AP)∗. Then π |= φ iff π |=e φ.

Proof. Immediate.

The next result establishes duality properties between the new operators in Ex-

tended Finite LTL and the existing ones in Finite LTL.

Lemma 5 (Dualities in Extended Finite LTL). Let φ, φ1, φ2 be formulas in Extended

Finite LTL, and let π ∈ (2AP)∗. Then the following hold.

1. π |=e φ1 ∨ φ2 iff π |=e ¬((¬φ1) ∧ (¬φ2)).

2. π |=e Xφ iff π |=e ¬X¬φ.
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3. π |=e φ1 Rφ2 iff π |=e ¬((¬φ1) U(¬φ2)).

Proof. Follows from the definition of |=e.

The next lemma establishes that although Extended Finite LTL includes more op-

erators than Finite LTL, any Extended Finite LTL formula can be translated into

a logically equivalent Finite LTL formula. Thus, the two logics have the same ex-

pressive power.

Lemma 6 (Co-expressiveness for (Extended) Finite LTL). Let φ be an Extended

Finite LTL formula. Then there is a Finite LTL formula φ′ such that JφKe = Jφ′K.

Proof. Follows from Lemmas 4 and 5. The latter lemma in particular establishes

that each non-Finite LTL operator in φ (∨, X, R) can be replaced by appropriately

negated versions of its dual. Specifically, φ1∨φ2 can be replaced by ¬((¬φ1)∧(¬φ2)),

Xφ′ by ¬X¬φ, and φ1 Rφ2 by ¬((¬φ1) U(¬φ2)).

Although Extended Finite LTL does not enhance the expressive power of Finite LTL,

it does enjoy a property that Finite LTL does not: its formulas may be converted in

positive normal form. This fact will be useful in defining the tableau construction;

the relevant mathematical results are presented here.

Definition 18 (Positive Normal Form (PNF)). The set of positive normal form

(PNF) formulas of Extended Finite LTL is defined inductively as follows.

• If a ∈ AP then a and ¬a are in positive normal form.
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• If φ is in positive form then Xφ and Xφ are in positive normal form.

• If φ1 and φ2 are in positive normal normal then φ1 ∧ φ2, φ1 ∨ φ2, φ1 Uφ2 and

φ1 Rφ2 are in positive normal form.

We now have the following.

Lemma 7 (PNF and Extended Finite LTL). Let φ ∈ ΦAPe be an Extended Finite

LTL formula. Then there is a φ′ ∈ ΦAPe in PNF such that φ ≡e φ′.

Proof. Follows from the fact that ¬¬φ ≡e φ and the existence of dual operators in

Extended Finite LTL, which enable identities such as ¬(φ1 Uφ2) ≡e (¬φ1) R(¬φ2)

to be used to “drive negations” down to atomic propositions.

6.3.2 Automaton Normal Form

Propositional logic exhibits a number of logical equivalences that support the con-

version of arbitrary formulas into various normal forms that are then the basis

for algorithmic analysis, including satisfiability checking. Disjunctive Normal Form

(DNF) is one such well-known normal form. In this section we show how Extended

LTL formulas in PNF can be converted into a normal form related to DNF, which we

call Automaton Normal Form (ANF); ANF will be a key vehicle for the automaton

construction in the next section. We begin by reviewing the basics of DNF in the

setting of the propositional fragment of Extended LTL.

We first lift the definitions of ∨ and ∧ to finite sets of formulas as follows.
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Definition 19 (Conjunction / Disjunction for Sets of Formulas). Let P = {φ1, . . . , φn},

n ≥ 0 be a finite set of Extended LTL formulas. Then
∧
P and

∨
P are defined as

follows.

∧
P =


true if n = 0 (i.e. P = ∅ )

φ1 if n = 1 (i.e. P = {φ1})

φ1 ∧ (
∧
{φ2, . . . , φn}) if n ≥ 2

∨
P =


false if n = 0 (i.e. P = ∅ )

φ1 if n = 1 (i.e. P = {φ1})

φ1 ∨ (
∨
{φ2, . . . , φn}) if n ≥ 2

We now define disjunctive normal form as follows.

Definition 20 (Disjunctive Normal Form (DNF)).

1. A literal is a formula of form a or ¬a for some a ∈ AP.

2. A DNF clause is a formula C of form
∧
{`1, . . . , `n}, n ≥ 0, where each `i is

a literal.

3. A formula in ΓAPe is in disjunctive normal form (DNF) if it has form
∨
{C1, . . . Ck},

k ≥ 0, where each Ci is a DNF clause.

The following is a well-known result in propositional logic that, due to Theorem 6,

is also applicable to the propositional fragment of Extended Finite LTL.
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Theorem 7 (DNF Conversion for Extended Finite LTL). Let γ ∈ ΓAPe . Then there

is a DNF formula γ′ ∈ ΓAPe such that γ ≡e γ′.

Automaton normal form (ANF) can be seen as an extension of DNF in which each

clause is allowed to have a single subformula of form Xφ or Xφ, where φ is an

formula in full Extended Finite LTL. A clause in an ANF formula can be seen as

defining whether or not a sequence π satisfies the formula in terms of conditions

that must hold on the first element of the sequence, if there is one, (the literals in

the clause), and the rest of the sequence (the “next-state” formula in the clause).

This feature will be exploited in the automaton construction in the next section.

The formal definition of ANF is as follows.

Definition 21 (Automaton Normal Form (ANF)).

1. An ANF clause C has form (
∧
{`1, . . . `k})∧N(

∧
{φ1, . . . , φn}), where each `i

is a literal, N ∈ {X,X} and each φj ∈ ΦAPe is an arbitrary Extended Finite

LTL formula.

2. A formula in Extended Finite LTL is in automaton normal form (ANF) iff it

has form
∨
{C1, . . . , Ck}, k ≥ 0, where each Ci is an ANF clause.

We often represent clauses as (
∧
L)∧N(

∧
F), where L is a finite set of literals and

F a finite set of Extended LTL formulas. If C = (
∧
L) ∧N(

∧
F) we write

lits(C) = L

nf (C) = F
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for the set of literals and the set of “next formulas” following the next operator (X

or X) in C.

The next lemma establishes a key feature of formulas in ANF vis à vis the sequences

in (2AP)∗ that model it.

Lemma 8 (Sequence Satisfaction and ANF).

1. Let C be an ANF clause. Then for any π ∈ (2AP)∗ such that |π| > 0, π |=e C

iff π0 |=p

∧
lits(C) and π(1) |=e

∧
nf (C).

2. Let φ =
∨
iCi be in ANF. Then for every π ∈ (2AP)∗, π |=e φ iff π |=e Ci.

Proof. For Part 1, let π ∈ (2AP)∗ be such that |π| > 0. Also let L = lits(C) and

F = nf (C). We reason as follows.

π |=e C iff π |=e (
∧
L) ∧N(

∧
F) Definition 21

iff π |=e

∧
L and π |=e N(

∧
F) Semantics of ∧

iff π0 |=p

∧
L and π |=e N(

∧
F) Lemma 2,

∧
L ∈ ΓAPe

iff π0 |=p

∧
L and π(1) |=e

∧
F Semantics of N ∈ {X,X}

Part 2 follows immediately from the semantics of
∨

.

The import of this lemma derives especially from its first statement. This asserts

that determining if an ANF clause is satisfied by a non-empty sequence can be

broken down into a propositional determination about its initial state (π0) and the

literals in the clause, and a determination about the rest of the sequence (π(1)) and
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the “next formulas” of the clause. This observation is central to the construction of

automata from formulas that we give later.

In the rest of this section we will show that for any Extended Finite LTL

formula φ there is a logically equivalent one in ANF. We start by stating some

logical identities that will be used later.

Lemma 9 (Distributivity of X, X). Let φ1, φ2 ∈ ΦAPe .

1. (Xφ1) ∧ (Xφ2) ≡e X(φ1 ∧ φ2).

2. (Xφ1) ∧ (Xφ2) ≡e X(φ1 ∧ φ2).

3. (Xφ1) ∨ (Xφ2) ≡e X(φ1 ∨ φ2).

4. (Xφ1) ∨ (Xφ2) ≡e X(φ1 ∨ φ2).

Proof. Immediate from the semantics of Extended Finite LTL

The next lemma establishes that in a certain sense, X “dominates” X in the context

of conjunction.

Lemma 10 (X Dominates X). The following holds for any Extended Finite LTL

formulas φ1, φ2.

(Xφ1) ∧ (Xφ2) ≡e X(φ1 ∧ φ2)

Proof. Follows from the fact that if π |= (Xφ1) ∧ (Xφ2) then |π| > 0.

The final lemma is key to our ANF transformation result. It states that operators

U and R may be rewritten using operators ∧, ∨, X and X.
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Lemma 11 (Unrolling U and R). The following holds for any Extended Finite LTL

formulas φ1, φ2.

1. φ1 Uφ2 ≡e φ2 ∨ (φ1 ∧X(φ1 Uφ2)).

2. φ1 Rφ2 ≡e φ2 ∧ (φ1 ∨X(φ1 Rφ2)).

Proof. We prove Part 1 by showing that Jφ1 Uφ2Ke = Jφ2 ∧ (φ1 ∨X(φ1 Rφ2))Ke.
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Jφ1 Uφ2Ke

= {π | π |=e φ1 Uφ2} Def. of J−Ke

= {π | ∃j : 0 ≤ j ≤ |π| : π(j) |=e φ2 and ∀i : 0 ≤ i < j : π(i) |=e φ1} Semantics of U

= {π | π(0) |=e φ2}∪

{π | ∃j : 1 ≤ j ≤ |π| : π(j) |=e φ2 and ∀i : 0 ≤ i < j : π(i) |=e φ1} Set theory

= Jφ2Ke∪

{π | ∃j : 1 ≤ j ≤ |π| : π(j) |=e φ2 and ∀i : 0 ≤ i < j : π(i) |=e φ1} π(0) = π, def. of J−Ke

= Jφ2Ke ∪ ({π | π(0) |= φ1}∩

{π | ∃j : 1 ≤ j ≤ |π| : π(j) |=e φ2 and ∀i : 1 ≤ i < j : π(i) |=e φ1}) Set theory

= Jφ2Ke ∪ (Jφ1Ke∩

{π | ∃j : 1 ≤ j ≤ |π| : π(j) |=e φ2 and ∀i : 1 ≤ i < j : π(i) |=e φ1}) π(0) = π, def. of J−Ke

= Jφ2Ke ∪ (Jφ1Ke∩

{π | ∃j′ : 0 ≤ j′ ≤ |π| − 1: π(j′ + 1) |=e φ2 and ∀i′ : 0 ≤ i < j′ : π(i′ + 1) |=e φ1})

j = j′ + 1, i = i′ + 1

= Jφ2Ke ∪ (Jφ1Ke∩

{π | ∃j′ : 0 ≤ j′ ≤ |π(1)| : π(1)(j′) |=e φ2 and ∀i′ : 0 ≤ i < j′ : π(1)(i′) |=e φ1})

π(j′ + 1) = π(1)(j′), |π(1)| =

|π| − 1

= Jφ2Ke ∪ (Jφ1Ke ∩ {π | π(1) |=e φ1 Uφ2}) Semantics of U

= Jφ2Ke ∪ (Jφ1Ke ∩ {π | π |=e X(φ1 Uφ2)}) Semantics of X

= Jφ2Ke ∪ (Jφ1Ke ∩ JX(φ1 Uφ2)Ke Def. of J−Ke

= Jφ2 ∨ (φ1 ∧X(φ1 Uφ2))Ke Semantics of ∧,∨
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To prove Part 2, we can rely the duality of R and U and Part 1. Again, it suffices

to show that Jφ1 Rφ2K ≡e Jφ2 ∧ (φ1 ∨X(φ1 Rφ2))Ke. We reason as follows.

Jφ1 Rφ2K ≡e J¬((¬φ1) U(¬φ2))K Lemma 5(3)

≡e (2AP)∗ − J(¬φ1) U(¬φ2)Ke Semantics of ¬

≡e (2AP)∗ − J(¬φ2) ∨ ((¬φ1) ∧X((¬φ1) U(¬φ2)))Ke Part 1

≡e J¬((¬φ2) ∨ ((¬φ1) ∧X((¬φ1) U(¬φ2))))Ke Semantics of ¬

≡e Jφ2 ∧ (φ1 ∨ ¬X(¬φ1) U(¬φ2)))Ke Lemma 5(1)

≡e Jφ2 ∧ (φ1 ∨X¬((¬φ1) U(¬φ2)))Ke Lemma 5(2)

≡e Jφ2 ∧ (φ1 ∨X(φ1 Rφ2))Ke Lemma 5(3)

The remainder of this section will be devoted to proving the following theorem.

Theorem 8 (Conversion to ANF). Let φ be an Extended Finite LTL formula in

PNF. Then there exists a transformation anf such that anf (φ) is in ANF and the

following hold.

1. φ ≡e anf (φ).

2. Suppose anf (φ) =
∨
Ci. Then for each Ci and each φ′ ∈ nf (Ci), φ′ is a

subformula of φ.

This theorem states that any PNF Extended LTL formula φ can be converted into

ANF formula anf (φ), and in such away that each clause’s “next-state subformula”

128



consists of a conjunction of subformulas of φ. As any Extended LTL formula can be

converted into PNF, this ensures that any Extended LTL formula can be converted

into ANF.

To prove this theorem, we define several formula transformations that, when

applied in sequence, yield a formula in ANF with the desired properties. The first

transformation ensures that all occurrences of U and R are guarded in the resulting

formula, in the following sense.

Definition 22 (Guardedness). Let φ be an Extended Finite LTL formula.

1. Let φ′ be a subformula of φ. Then φ′ is guarded in φ iff for every occurrence

of φ′ in φ is within an occurrence of a subformula of φ of form Nφ′′, where

N ∈ {X,X}.

2. Formula φ is guarded iff every subformula of φ of form φ1 Uφ2 or φ1 Rφ2

appears guarded in φ.

As an example of the above definition, consider formula φ = (aU b) ∧ X(aU b).

This formula is not guarded, because the left-most occurrence of (aU b) does not

appear within an occurrence of a subformula of form Xφ′′. However, φ′ = (b ∨ (a ∧

X(aU b))) ∧X(aU b) is guarded, and indeed φ′ ≡e φ due to Lemma 11(1).

We now define a transformation gt on formulas; the intent of this transforma-

tion is that gt(φ) is guarded, and gt(φ) ≡e φ.
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Definition 23 (Guardedness Transformation). Extended Finite LTL formula trans-

formation gt is defined inductively as follows.

gt(φ) =



a if φ = a

¬(gt(φ′)) if φ = ¬φ′

gt(φ1) ∧ gt(φ2) if φ = φ1 ∧ φ2

gt(φ1) ∨ gt(φ2) if φ = φ1 ∨ φ2

φ if φ = Xφ′ or φ = Xφ′

gt(φ2) ∨ (gt(φ1) ∧Xφ) if φ = φ1 Uφ2

gt(φ2) ∧ (gt(φ1) ∨Xφ) if φ = φ1 Rφ2

We have the following.

Lemma 12 (Properties of gt). Let φ be an Extended Finite LTL formula. Then:

1. gt(φ) is guarded.

2. gt(φ) ≡e φ.

3. If φ is in PNF, then so is gt(φ).

4. Let Nφ′ be a subformula of gt(φ), where N ∈ {X,X}. Then φ′ is a subformula

of φ.

Proof. Immediate from the definition of gt and Lemma 11.

The next transformation we describe converts guarded Extended Finite LTL formu-

las into pseudo-ANF.
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Definition 24 (Pseudo ANF).

1. An ANF pseudo-literal has form a,¬a or Nφ, where N ∈ {X,X} and φ ∈

ΦAPe .

2. An ANF pseudo-clause C has form
∧
{α1, . . . , αn}, n ≥ 0, where each αi is

an ANF pseudo-literal.

3. A formula is in Pseudo-ANF if it has form
∨
{C1, . . . , Cn}, n ≥ 0, where each

Ci is an ANF pseudo-clause.

Note that every literal is also an ANF pseudo-literal. Moreover, an ANF pseudo-

clause differs from an ANF clause in that the former may have multiple (or no)

instances of pseudo-literals of form Nφ, while the latter is required to have exactly

one, of form N
∧
F . We have the following.

Lemma 13 (Conversion to Pseudo ANF). Let φ be a guarded Extended Finite LTL

formula in PNF. Then there exists a formula pa(φ) such that:

1. pa(φ) is in Pseudo ANF.

2. pa(φ) ≡e φ.

Proof. Transformation pa is a version of the classical DNF transformation for propo-

sitional formulas in which that ANF pseudo-literals are treated as literals.

The final transformation, an, converts formulas in pseudo-ANF into semantically

equivalent formulas in ANF.
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Definition 25 (Pseudo-ANF to ANF Conversion). The transformation an is defined

as follows:

1. Let C =
∧
P , where P = {α1, . . . , αn} is a set of ANF pseudo-literals and

n ≥ 0, be an ANF pseudo-clause. Also let L(P ) be the literals in P and

N(P ) = P−L(P ) = {N1φ1, . . . ,Niφi} for some 0 ≤ i ≤ n, each Ni ∈ {X,X},

be the non-literals in P . Then ct(C) is defined as follows.

ct(C) =


(
∧
L(P )) ∧X(

∧
{φ1, . . . , φi}) if Nj = X for some 1 ≤ j ≤

i

(
∧
L(P )) ∧X(

∧
{φ1, . . . , φi}) otherwise

2. Let φ =
∨
{C1, . . . , Cn}, n ≥ 0, be an Extended Finite LTL formula in Pseudo

ANF. Then transformation an(φ) =
∨
{ct(C1), . . . , ct(Cn)}.

The next lemma and its corollary establish that ct and an convert pseudo-ANF

clauses and formulas, respectively, into ANF clauses and formulas.

Lemma 14 (Conversion from Pseudo ANF to ANF Clauses). Let C be a pseudo-

ANF clause. Then ct(C) is an ANF clause, and C ≡e ct(C).

Proof. Follows from Lemmas 9 and 10.

Corollary 2 (Conversion from Pseudo ANF to ANF Formulas). Let φ be a pseudo-

ANF formula. Then an(φ) is in ANF, and φ ≡e an(φ).

Proof. Follows from Lemma 14.
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We now have the machinery necessary to prove Theorem 8.

Theorem 8. Let φ be an Extended Finite LTL formula in PNF. We must show how

to convert it into an ANF formula anf (φ) =
∨
Ci such that φ ≡e anf (φ), and such

that for each Ci and each φ′ ∈ nf (Ci), φ
′ is a subformula of φ.

We define anf (φ) = an(pa(gt(φ))); obviously anf (φ) is in ANF. We now reason

as follows.

φ ≡e gt(φ) Lemma 12; note gt(φ) is

PNF

≡e pa(gt(φ)) Lemma 13

≡e an(pa(gt(φ))) Corollary 2

≡e anf (φ) Definition of anf

Thus anf (φ) is in ANF, and anf (φ) ≡e φ.

For the second part, we note that in the construction of anf (φ) we first compute

gt(φ), which has the property that every subformula of form Nφ′′ is such that φ′′ is

a subformula of φ. The definition of pa guarantees that this property is preserved

in pa(gt(φ)). Finally, the definition of an ensures the desired result.

Example 1 (Conversion to ANF). We close this section with an example showing

how our conversion to ANF works. Consider φ = aU(bR c); we show how to
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compute an(pa(gt(φ))). Here is the result of gt(φ).

gt(φ) = gt(aU(bR c))

= gt(bR c) ∨ (gt(a) ∧Xφ)

= (gt(c) ∧ (gt(b) ∨X(bR c))) ∨ (a ∧Xφ)

= (c ∧ (b ∨X(bR c))) ∨ (a ∧Xφ)

Note that this formula is guarded. We now consider pa(gt(φ)).

pa(gt(φ)) = pa((c ∧ (b ∨X(bR c))) ∨ (a ∧Xφ))

= pa(((c ∧ b) ∨ (c ∧X(bR c))) ∨ (a ∧Xφ))

=
∨
{c ∧ b, c ∧X(bR c), a ∧Xφ}

Note that two of the three clauses in pa(gt(φ)) are already ANF clauses; the only

that is not is c ∧ b. This leads to the following.

anf (φ) = an(pa(gt(φ)))

= an(
∨
{c ∧ b, c ∧X(bR c), a ∧Xφ})

=
∨
{ct(c ∧ b), ct(c ∧X(bR c)), ct(a ∧Xφ)}

=
∨
{c ∧ b ∧X true, c ∧X(bR c), a ∧Xφ}

Note that this formula is in ANF. Also note that ct(c ∧ b) = c ∧ b ∧ X true due
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to the fact that in pseudo-ANF clause c ∧ b has no next-state pseudo-literals. The

definition of ct ensures that X
∧
∅ = X true is added to ensure that the result satisfies

the syntactic requirements of being an ANF clause.

6.4 A Tableau Construction for Finite LTL

In this section we show how Finite LTL formulas may be converted into finite-state

automata whose languages consist of exactly the sequences making the associated

formula true. Based on Lemma 7 we know that any Finite LTL formula can be

converted into an Extended Finite LTL formula in PNF, so in the sequel we show

how to build finite automata from Extended Finite LTL formulas in PNF. We begin

by recalling the definitions of non-deterministic finite-state automata.

Definition 26 (Non-deterministic Finite Automata (NFA)). 1. A non-deterministic

finite automaton (NFA) is a tuple (Q,Σ, qI , δ, F ), where:

• Q is a finite set of states;

• Σ is a finite non-empty set of alphabet symbols;

• qI ∈ Q is the start state;

• δ ⊆ Q× Σ×Q is the transition relation; and

• F ⊆ Q is the set of accepting states.

2. Let M = (Q,Σ, qI , δ, F ) be a NFA, let q ∈ Q, and let w ∈ Σ∗. Then q accepts

w in M iff one of the following hold.
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• w = ε and q ∈ F

• w = σw′ for some σ ∈ Σ, w′ ∈ Σ∗ and there exists (q, σ, q′) ∈ δ such that

q′ accepts w′ in M .

3. Let M = (Q,Σ, qI , δ, F ) be a NFA. Then L(M), the language of M , is

L(M) = {w ∈ Σ∗ | qI accepts w in M}.

We now state the theorem we will prove in the rest of this section.

Theorem 9 (NFAs from Extended LTL Formulas). Let φ ∈ ΦAPe be in PNF. Then

there is a NFA Mφ such that L(Mφ) = JφKe.

6.4.1 The Construction

In this section we describe our construction for building NFA Mφ from PNF Ex-

tended Finite LTL formula φ. We have been referring to this construction as a

tableau construction, and indeed it makes essential use of identities, such as those

in Lemmas 5– 11, that also underpin classical tableau constructions. However, be-

cause of our use of ANF we are able to avoid other aspects of tableau constructions,

such as the need for maximally consistent subsets as automaton states.

In what follows we use S(φ) to refer to the set of (not necessarily proper)

subformulas of φ. States in Mφ will be associated with subsets of S(φ), and defining

accepting states will require checking if ε |=e φ′ for arbitrary φ′ ∈ S(φ). The
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next lemma establishes that this latter check can be computed on the basis of the

syntactic structure of φ′.

Lemma 15 (Empty-sequence Check). Let φ ∈ ΦAPe be in PNF. Then ε |=e φ iff

one of the following hold.

1. φ = ¬a for some a ∈ AP

2. φ = φ1 ∧ φ2, ε |=e φ1, and ε |=e φ2

3. φ = φ1 Uφ2 and ε |=e φ2

4. φ = φ1 ∨ φ2 and either ε |=e φ1 or ε |=e φ2

5. φ = Xφ′

6. φ = φ1 Rφ2 and ε |=e φ2

Proof. Immediate from the definition of |=e.

We now define our construction for Mφ.

Definition 27 (NFA Mφ). Let φ ∈ ΦAPe be in PNF. Then we define NFA Mφ =

(Qφ,ΣAP , qI,φ, δφ, Fφ) as follows.

• Qφ = 2S(φ)

• ΣAP = 2AP

• qI,φ = {φ}
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• Let q, q′ ∈ Qφ (so q, q′ ⊆ S(φ)) and A ∈ ΣAP(so A ⊆ AP). Also let

anf (
∧
q) =

∨
{C1, . . . Cn} be the ANF conversion of

∧
q. Then (q, A, q′) ∈ δ

iff there exists Ci such that:

– A |=p

∧
lits(Ci); and

– q′ = nf (Ci).

• Fφ = {q ∈ Qφ | ε |=e

∧
q}

Theorem 9 states that the above construction is correct. In the rest of this section,

we will prove this claim. We first establish the following useful lemma.

Lemma 16 (Well-Formedness of Mφ). Let φ ∈ ΦAPe be in PNF, and let Mφ =

(Qφ,ΣAP , qI,φ, δφ, Fφ). Fix arbitrary q ∈ Q, and let

anf (
∧

q) =
∨

Ci,

Then for each Ci, nf (Ci) ∈ Qφ.

Proof. Follows from Lemma 12(4) and the fact that every subformula of every φ′ ∈

nf (Ci) of form Nφ′′, φ′1 Uφ′2 or φ′1 Rφ′2 is also a subformula of φ.

This lemma in effect says that every clause occurring in anf (
∧
q) (recall q is a set of

subformulas of φ) gives rise to transitions in Mφ, because the “next-state” formulas

in such a clause involve subformulas of φ.
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Theorem 9. We now prove Theorem 9 as follows. Let φ ∈ ΦAPe andMφ = (Qφ,ΣAP , qI,φ, δφ, Fφ).

We recall that ΣAP = 2AP , and thus (ΣAP)∗ = (2AP)∗. Thus, the words accepted

by Mφ come form the same set as the sequences to interpret Extended Finite LTL

formulas. To emphasize this connection, we use A ∈ ΣAP and π ∈ (ΣAP)∗ in the

following. We will in fact prove a stronger result: for every π ∈ (ΣAP)∗ and q ∈ Q,

q accepts π in Mφ iff π |=e

∧
q. The desired result then follows from the fact that

this statement holds in particular for the start state, qI,φ, that
∧
qI,φ = φ, and that

as a result, L(Mφ) = JφKe.

The proof proceeds by induction on π. For the base case, assume that π = ε

and fix q ∈ Q. We reason as follows.

q accepts ε in M iff q ∈ Fφ Definition of acceptance

iff ε |=e

∧
q Definition of Fφ

In the induction case, assume π = Aπ′ for some A ∈ ΣAP (so A ⊆ AP) and

π′ ∈ (ΣAP)∗. The induction hypothesis states for any q′ ∈ Q, q′ accepts π′ in Mφ iff

π′ |=e

∧
q′ (recall q′ ⊆ S(φ)). Now fix q ∈ Q; we must prove that q accepts π in Mφ

139



iff π |=e

∧
q. We reason as follows.

π |=e

∧
q

iff Aπ′ |=e

∧
q π = Aπ′

iff Aπ′ |=e anf (
∧
q) Theorem 8

iff Aπ′ |=e

∨
Ci anf (

∧
q) =

∨
Ci in ANF

iff Aπ′ |=e Ci some i Lemma 8(2)

iff A |=p

∧
L and π′ |=e

∧
F Lemma 8(1), L = lits(Ci), F =

nf (C)

iff A |=p

∧
L and π′ |=e

∧
q′ some q′ ∈ Qφ

Lemma 16

iff (q, A, q′) ∈ δφ and π′ |=e

∧
q′ some q′ ∈ Qφ

Definition of δφ

iff (q, A, q′) ∈ δφ and q′ accepts w′ in M Induction hypothesis

iff q accepts w in M Definition 26(2)

6.4.2 Discussion of Construction Mφ

We now comment of some aspects of Mφ, both from the standpoint of its complexity

but also in terms of heuristics for improving the construction in practice.
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Size of |Mφ|. The key drivers for the size of |Mφ| are the size of its state space, Qφ,

and its transition relation, δφ. The next theorem characterizes these.

Theorem 10 (Bounds on Size of Mφ). Let φ ∈ ΦAPe be in PNF, and let Mφ =

(Qφ,ΣAP , qI,φ, δphi, Fφ). Then we have the following.

1. |Qφ| ≤ 2|φ|.

2. |δφ| ≤ 4|φ| · 2|AP|.

Proof. For the first statement, we note that there is a state in Mφ for each subset

of S(φ), and that there are at most 2|φ| such subsets. The second follows from the

fact that each pair of states can have at most 2|AP| transitions between them.

It is worth noting that in the above result, the bound on the number of states is

tight: it is 2|φ|, not e.g. 2O(|φ|), which some tableau constructions for LTL yield. Also

note that if φ contains multiple instances of the same subformula, then |S(φ)| < |φ|;

this explains the inequality in Statement (1).

Optimizing Mφ. The size results in Theorem 10 are consistent with other tableau

constructions; they are in the worst case exponential in the size of the formulas

for which automata are constructed. This worst-case behavior cannot be avoided

over-all, but it can often be mitigated heuristically. In the remainder of this section

we consider different methods for doing so.

On-the-fly Construction of Qφ. The construction in Definition 27 may be seen

as pre-computing all possible states of Mφ. In practice many of these states are
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unreachable, and adding them to Qφ and computing their transitions is unnecessary

work. One method for avoiding this work is to construct Qφ in a demand-driven, or

on-the-fly manner. Specifically, one starts with the state qI,φ and adds this to Qφ.

Then one repeatedly does the following: select a state q in the current Qφ whose

transitions have not been computed, compute q’s transitions, adding states into Qφ

so that each transition has a target in Qφ. Stop when there are no states in Qφ

whose transitions have not been computed. The result of this strategy is that only

states reachable from qI,φ will be added into Qφ.

Symbolic Representation of Transitions. In Definition 27 transition labels are

represented concretely, as sets of atomic propositions. One can instead allow transi-

tion labels that are symbolic: these labels have form γ ∈ ΓAPe for some propositional

Extended LTL formula γ. A transition labeled by such a gamma can be seen as

summarizing all transitions in Mφ labeled by A ⊆ AP such that A |=p γ. The

construction given in Definition 27 suggests an immediate method for doing this:

rather than labeling transitions by A ⊆ AP such that A |=p

∧
lits(Ci), instead label

a single transition by lits(Ci).

Relaxation of ANF. Our definition of ANF says that a formula is in ANF iff

it has form
∨
Ci, where each clause Ci has form (

∧
L) ∧N(

∧
F). The method we

give for converting formulas into ANF involves the use of a routine for converting

formulas into DNF, which can itself be exponential. We adopted this mechanism

for ease of exposition, and also because in the worst case this exponential overhead
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is unavoidable. However, requiring the propositional parts of clauses to be of form∧
L, where L consists only of literals, is unnecessarily restrictive: all that is needed

for the construction of Mφ is to require clauses to be of form γ ∧N(
∧
F), where

γ ∈ ΓAPe is a proposition formula in Extended Finite LTL. Relaxing ANF in this

manner eliminates the need for full DNF calculations in general, and can lead to

time and space savings when transitions are being represented symbolically.

6.5 Implementation and Empirical Results

We have implemented our tableau construction as a C++ package. The user specifies

a formula φ ∈ ΦAPe and the corresponding NFA Mφ is constructed as defined in

Definition 27. For convenience, we also support the boolean implication operator

→ by immediately performing the syntactic rewrite φ→ ψ ≡ ¬φ ∨ ψ upon parsing

the formula. Our current implementation utilizes an on-the-fly construction of Qφ

such that only states reachable from the initial state are constructed and recursed

upon. We also support the option to represent transitions symbolically by bundling

edges together as a single transition whose label is the disjunction of all merged edge

labels.

We used the Spot [88] platform (v.2.8.1) to handle the parsing of input formulas

as well as the syntactic representation of the constructed output graph. To support

proper parsing and construction of a Finite LTL formula, we added support for the

X (Weak Next) operator. Additionally, several Spot-provided automatic formula
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rewrites are based on standard LTL identities and do not hold under finite semantics;

these were disabled (such as X tt ≡ tt).

We performed our tableau construction on the benchmark set of 184 standard

LTL formulas (92 formulas and their negations) used by Duret-Lutz [89]. As our

semantics for Finite LTL differs from traditional LTL, a direct comparison of of times

needed for automaton construction are not appropriate. We imposed a 60 minute

time-out for each formula, marked by “t/o” when applicable (this only occurred for

formulas 24 and 109). We also report formula complexity (|φ|), which is the number

of subformulas in φ. Experiments were carried out on a single machine with an Intel

Core i5-6600K (4 cores), with 32 GB RAM and a 64-bit version of GNU/Linux.

Figures 6.2 and 6.3 contain the results of our experiments. For each formula

in the testbed, four pieces of data are reported: the size of the formula, the number

of states in the resulting NFA, the number of transitions in the NFA, and the time

needed to build the automaton. In most cases the construction time is negligible,

although in two cases — Formulas 24 and 109 — our tool did not terminate before

the 60-minute time-out we imposed. The reasons for this behavior are under further

investigation. We have presented a summarized set of the results in Figure 6.1.

Formulas are ordered by complexity.
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Figure 6.1: Summarized results of experiments. Formulas are ordered by complexity.
(a) Formula complexity vs nodes in automaton Mφ. (b) Formula complexity vs edges
in automaton Mφ. (c) Formula complexity vs nodes + edges in automaton Mφ. (d)
Formula complexity vs computation time.
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Figure 6.2: Experimental benchmark: Formulas 0–91.

ID |φ| states edges time(s)

0 2 1 1 0.003 1
1 3 2 3 0.003 3
2 5 4 7 0.003 3
3 6 5 9 0.003 4
4 5 2 3 0.003 4
5 6 3 6 0.003 4
6 7 4 9 0.003 9
7 8 5 10 0.003 4
8 8 4 11 0.004 5
9 9 5 16 0.003 7

10 1 2 3 0.003 1
11 2 1 1 0.003 1
12 7 3 5 0.003 2
13 8 4 11 0.003 6
14 6 5 11 0.003 5
15 7 5 11 0.003 7
16 10 4 11 0.004 8
17 11 5 13 0.003 8
18 7 2 4 0.003 7
19 8 3 5 0.003 5
20 23 8 29 0.003 9
21 24 65 534 3.905 2
22 25 64 496 258.428 0
23 26 65 535 4.192 4
24 27 - - t/o
25 28 129 2234 55.127 2
26 1 1 1 0.003 1
27 2 2 3 0.003 1
28 4 4 7 0.003 7
29 5 5 9 0.003 5
30 4 2 3 0.003 2
31 5 3 6 0.003 5
32 6 4 9 0.004 2
33 7 5 10 0.004 0
34 6 4 11 0.004 3
35 7 5 16 0.003 6
36 5 3 5 0.003 3
37 6 4 11 0.003 4
38 6 4 7 0.003 4
39 7 5 9 0.003 4
40 10 6 15 0.003 5
41 11 9 56 0.015 2
42 8 4 11 0.005 3
43 9 5 10 0.003 5
44 8 4 11 0.005 9
45 9 5 16 0.003 6

ID |φ| states edges time(s)

46 4 2 4 0.003 6
47 5 2 3 0.003 4
48 10 6 13 0.003 7
49 11 7 15 0.004 8
50 7 3 7 0.004 9
51 8 3 6 0.003 8
52 12 8 30 0.018 7
53 13 7 16 0.004 8
54 18 8 40 0.313 9
55 19 9 31 0.052 7
56 10 5 9 0.003 4
57 11 9 41 0.006 7
58 11 5 11 0.003 4
59 12 9 29 0.006 7
60 16 7 18 0.003 6
61 17 33 515 0.138 9
62 13 8 36 0.010 0
63 14 9 30 0.007 0
64 13 8 40 0.010 6
65 14 9 42 0.006 2
66 9 5 10 0.003 6
67 10 7 19 0.003 9
68 11 6 15 0.004 2
69 12 7 13 0.003 6
70 15 7 18 0.003 6
71 16 33 365 0.141 2
72 13 8 31 0.086 2
73 14 7 14 0.004 2
74 17 12 76 0.479 9
75 18 10 30 0.004 2
76 10 8 33 0.006 8
77 11 5 10 0.003 5
78 14 18 77 0.014 5
79 15 19 58 0.007 2
80 14 9 41 0.033 9
81 15 10 25 0.004 1
82 16 32 249 0.642 8
83 17 19 59 0.007 2
84 26 32 411 15.476 9
85 27 27 111 0.022 3
86 7 4 13 0.003 9
87 8 3 6 0.003 9
88 13 10 29 0.005 0
89 14 11 42 0.007 9
90 9 3 7 0.003 9
91 10 4 9 0.003 9
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Figure 6.3: Experimental benchmark: Formulas 92–183.

ID |φ| states edges time(s)

92 15 16 93 0.074 4
93 16 11 43 0.007 7
94 20 24 267 2.070 5
95 21 21 117 0.019 6
96 9 4 13 0.004 3
97 10 3 7 0.003 4
98 16 10 29 0.005 2
99 17 11 42 0.012 0

100 11 3 7 0.004 0
101 12 4 10 0.003 9
102 18 16 93 0.081 2
103 19 11 43 0.012 9
104 25 24 267 2.452 2
105 26 21 162 0.134 2
106 19 6 20 0.004 3
107 20 64 740 0.289 3
108 25 9 36 0.004 3
109 26 - - t/o
110 1 2 3 0.003 4
111 2 2 3 0.003 0
112 2 3 6 0.003 9
113 3 4 11 0.003 5
114 5 4 11 0.004 2
115 6 3 6 0.003 4
116 6 5 11 0.003 5
117 7 5 16 0.003 9
118 3 4 10 0.003 5
119 4 4 11 0.003 8
120 2 4 6 0.004 0
121 3 3 6 0.003 3
122 9 4 6 0.003 9
123 10 6 13 0.003 4
124 6 4 12 0.003 9
125 7 5 11 0.004 0
126 13 9 32 0.004 9
127 14 17 55 0.006 4
128 2 2 3 0.004 0
129 3 2 3 0.003 4
130 8 5 9 0.003 6
131 9 7 10 0.003 9
132 9 4 8 0.003 4
133 10 7 10 0.004 0
134 14 7 26 0.006 2
135 15 9 15 0.003 7
136 13 9 28 0.006 0
137 14 9 15 0.004 2

ID |φ| states edges time(s)

138 4 2 4 0.003 6
139 5 2 3 0.003 3
140 6 3 5 0.003 7
141 7 2 4 0.003 7
142 7 4 12 0.003 5
143 8 5 11 0.004 1
144 4 4 16 0.003 7
145 5 3 5 0.003 2
146 4 4 8 0.003 2
147 5 3 4 0.003 4
148 8 33 312 0.090 3
149 9 12 52 0.005 1
150 13 12 52 0.021 8
151 14 25 132 0.008 1
152 13 19 63 0.028 0
153 14 25 150 0.008 8
154 10 4 8 0.004 4
155 11 6 13 0.004 0
156 6 2 2 0.003 5
157 7 4 6 0.003 6
158 2 3 5 0.003 3
159 3 3 5 0.003 1
160 3 2 3 0.003 7
161 4 4 11 0.003 8
162 4 3 5 0.003 7
163 5 4 11 0.003 7
164 14 7 13 0.003 8
165 15 20 90 0.065 3
166 4 2 3 0.003 3
167 5 2 4 0.003 2
168 6 4 6 0.003 8
169 7 4 10 0.003 6
170 4 3 5 0.003 6
171 5 2 4 0.003 8
172 5 5 10 0.003 4
173 6 5 20 0.004 1
174 4 2 4 0.003 5
175 5 3 6 0.003 6
176 10 5 9 0.003 4
177 11 4 7 0.004 0
178 11 32 1024 0.109 3
179 12 11 25 0.003 7
180 7 8 23 0.004 6
181 8 65 1395 0.150 1
182 7 8 28 0.006 2
183 8 9 50 0.004 5
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6.6 Conclusion

This chapter has defined the logic Finite LTL, which uses the syntax of LTL but

employs a semantics based on finite, rather than infinite, state sequences. It also has

provided a tableau-inspired construction for converting formulas into non-deterministic

finite automata whose languages consist of exactly the sequences making the cor-

responding formulas true. In the construction states are equivalent to subsets of

subformulas of the input formula, and accepting states are defined as those where

all contained subformulas satisfy the empty sequence. We have also observed that

the check for satisfaction by the empty sequence can be done purely syntactically

on the basis of the structure of the formula. We also have described a prototype

implementation of the approach and given empirical results on an existing bench-

mark for standard LTL. Our methodology, while heavily inspired by the standard

(infinite semantics) LTL community, transforms a Finite LTL formula directly into

an NFA, and does not rely upon any intermediate representation from the standard

LTL realm. The continued development of such “native” approaches will allow us

to appropriately and accurately reason over domains with finite sequences.
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Chapter 7: Finite LTL Query Checking

7.1 Introduction

A central problem in system analysis may be phrased as the behavioral understand-

ing problem: given concrete observations of a system’s behavior, infer high-level

properties characterizing this behavior. Such properties can be used for a variety of

purposes, including system specification, software understanding (when the system

in question is software), and root-cause failure analysis. Several researchers have

studied variants of this problems in a variety of contexts, from software engineer-

ing [1] to data mining [10] and artificial intelligence [90, 91].

This chapter considers the following variant of the behavioral understanding

problem: given a finite set of system executions encoded as data streams, and a

temporal-logic query, or “formula with a hole,” infer formulas that, when substituted

for hole, yield a temporal-logic formula satisfied by all data streams in the given set.

For example, if the query in question has form G var, where var is the “hole” and G

is the “always operator”, then a solution φ would be a formula that is invariant across

all data streams. Other temporal formulas can be used to characterize when error
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conditions are tripped, or when temporal correspondences hold between different

basic properties captured in the data streams. Using our query-solving technology,

an engineer can collect different system executions, which might be in the form

of system logs, or experimentally observed data, and then pose queries to develop

insights into the mechanisms underpinning system behavior.

Drawing on the concepts explored in Chapter 6, in this chapter we take our

representation of Finite LTL and use it as a base specification language for perform-

ing query checking.

7.2 Definitions and Problem Statements

We present here some formal definitions of chapter-specific concepts as well as some

the exact problem statement of Finite LTL query checking. As Chapter 6 is foun-

dational to the content presented herein, the reader is encouraged to refer to that

chapter for all necessary definitions and results.

7.2.1 Finite Data Streams

We now give a formal definition of data stream that is used throughout the remainder

of this chapter.

Definition 28 (Data Stream). Let AP be a set of atomic propositions and N the
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set of natural numbers. Then a data stream over AP is a finite sequence

(t0, A0) . . . (tn−1, An−1) ∈ (N× 2AP)∗

such that the following holds for all 0 ≤ i ≤ j < n: ti ≤ tj. We sometimes

refer to (ti, Ai) in a data stream as an observation and ti as the time stamp of the

observation. We use ΠAP to represent the set of all data streams over AP.

Intuitively, atomic propositions are observations that can be made about the

state of a system as it executes. Data stream π = (t0, A0) . . . (tn−1, An−1) can then

be seen as the result of observing the system for a finite period of time, where

at each time instant ti the atomic propositions Ai ⊆ AP are true while those in

AP/Ai are false. The condition imposed by Definition 28 on time stamps requires

that time advance monotonically throughout the data stream. We use ε to denote

the empty data stream. We write |π| = n for the length of data stream π =

(t0, A0) . . . (tn−1, An−1), πi = (ti, Ai) for the ith-indexed step in in π, and π(i) =

(ti, Ai) . . . (tn−1, An−1) for the suffix of π obtained by removing the first i elements

from the data stream. Note that πi is only defined when i < |π|, while π(i) is defined

when i ≤ |π|, and that π(0) = π and π(|π|) = ε.

In the rest of the chapter we will focus on so-called normalized data streams,

which are defined as follows.

Definition 29. Data stream π over AP is normalized if and only if for all i such
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that 0 ≤ i < |π|, πi has form (i, Ai).

In a normalized data stream, the time stamps of the elements in the sequence

begin at 0 and increase by 1 at every step. In such data streams we can omit the

explicit time stamp and instead represent the stream as a finite sequence A0 . . . An−1.

For normalized data streams represented as π = A0 . . . An−1 we abuse notation and

write π(i) as follows: π(i) = Ai . . . An−1. This definition makes π(i) normalized.1

7.2.2 Query Checking for Finite Data Streams

In our previous work on LTL Query Checking [84] as presented in Chapter 5, we

were interested in solving LTL queries over Kripke structures. In that setting a

query is a formula containing a missing propositional subformula; the goal of LTL

query-checking in this case is to construct solutions for the missing subformula.

In this chapter, we instead are interested in Finite LTL formulas and finite data

streams obtained by observing the behavior of the system in question. This section

defines the problem precisely and proves results used later in the chapter. When

considering a set of finite data streams, we operate on an underlying assumption

that the streams are all derived from the same source, e.g. are different executions of

the same system. In what follows we restrict AP to be finite as well as non-empty.

Finite LTL queries correspond to Finite LTL formulas with a missing proposi-

tional subformula, which we denote var. It should be noted that var stands for an

1This detail, while necessary to point out, is not important in what follows, since the properties
we consider in this chapter are insensitive to specific time-stamp values.
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unknown propositional formula; it is not analogous to a (fresh) atomic proposition.

The syntax of queries is as follows:

φ := var | a ∈ AP | ¬φ | φ1 ∧ φ2 | Xφ | φ1 Uφ2

In this chapter we only consider the case of a single propositional unknown,

although the definitions can naturally be extended to multiple such unknowns, as

well as missing subformulas lifted to arbitrary Finite LTL formulas rather than only

propositional formulas. We often write φ[var] for an LTL query with unknown var,

and φ[γ] for the LTL formula obtained by replacing all occurrences of var by LTL

propositional formula γ. If γ[var] is a query containing no modalities then we call

γ[var] a propositional query. We write Φ[var] for the set of Finite LTL queries and

Γ[var] ( Φ[var] for the set of propositional queries. We also lift the notion of logical

equivalence, ≡, to LTL queries as follows: φ1[var] ≡ φ2[var] iff φ1[γ] ≡ φ2[γ] for all

γ ∈ Γ.

The query-checking problem QC(Π, φ[var]) may be formulated as follows.

Given: Finite set Π of normalized data streams, Finite LTL query φ[var]

Compute: All propositional formulas γ such that for all π ∈ Π, π |= φ[γ]

If γ is such that π |= φ[γ] for all π in Π, then we call γ a solution for Π and φ[var],

and in this case we say that φ[var] is solvable for π. Computing all solutions for

QC(Π, φ[var]) cannot be done explicitly, since the number of propositional formulas
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is infinite. However, since AP is finite it turns out that logical equivalence, ≡,

induces a finite number of equivalence classes on Γ. We can use these equivalence

classes as finite representations of the set of solutions to a given query.

As an example Finite LTL query, consider G var. A solution to this query

would yield a formula that is invariant at every observation in every data stream

in Π. Another example of a finite LTL query φ[var] is G (var→ F err). Assuming

err is an atomic proposition representing the occurrence of an error condition, a

solution to this query would give conditions guaranteed to trigger a future system

error. Such information could be useful in subsequent root-cause analyses of why

the error occurred.

7.3 From Finite LTL Queries to Finite Automata

This section discusses how, given a Finite LTL query, how to compute a correspond-

ing automaton, similar to the methodology presented in Chapter 5 for standard LTL.

7.3.1 Finite Query Automata

A Finite Query Automaton is like a PNFA whose edge transition labels are propo-

sitional queries and whose acceptance condition depends on the propositional un-

known embedded in the queries.

Definition 30. Let var be an unknown proposition. A Finite Query Automaton

(FQA) B[var] is a quintuple (Q,AP , q0, δ[var], F [var]), where:
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• Q is a finite set of states;

• AP is a finite, non-empty set set of atomic proposition;

• q0 ∈ Q is the initial state;

• δ[var] ⊆ Q× Γ[var]×Q is the transition relation;

• F [var] ∈ Γ→ 2Q, the acceptance condition, is required to satisfy F [var](γ1) =

F [var](γ2) whenever γ1 ≡ γ2.

If γ ∈ Γ is a propositional formula then we write B[γ] for the instantation of B[var]

with γ for the PNFA (Q,AP , q0, δ[γ], F [γ]), where F [γ] = F [var](γ) and

δ[γ] = {(q, γ′[γ], q′) | (q, γ′[var], q′) ∈ δ[var]}

An FQA is intended to be the automaton analog of a Finite LTL query, where

var is the unknown proposition to be solved for. An instantiation of an FQA with

γ is then the PNFA obtained by replacing var by propositional formula γ. Note

that this replacement can have two effects on the language of the instantiation: one

via the transition relation, and the other via the accepting / non-accepting status

of states. This latter explains why the accepting condition of an FQA is a function

mapping propositional formulas to sets of states.

Our method for query-solving is automaton-theoretic; it is based on construct-

ing a FQA Bφ[var][var] from an LTL query φ[var]. Our method for computing
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Bφ[var][var] is uses a modification of the tableau construction presented in the previ-

ous section; we only sketch the details here. It can be shown that any query φ[var]

can be put into PNF, where ¬ can only be applied to atomic propositions or in-

stances of var. Automaton normal form can also be extended to PNF queries, where

each clause has form
∧
i `i ∧ ⊕φ′[var], with each `i either a literal, an occurrence

of var, or an occurrence of ¬ var; ⊕ ∈ {X,X}; and φ′[var] a query consisting of

a conjunction of subformulas from φ[var]. We may then define Bφ[var][var] to be

(Q,AP , δ[var], φ[var], F [var]), where each q ∈ Q is a query φq[var] ∈ Q consisting

of a conjunction of subformulas of φ[var], each (q, γ[var], q′) ∈ δ[var] is a proposi-

tional query based on the tableau construction, and F [var](γ) = {q | ε |= φq[γ]}.

We have the following.

Theorem 11. Let φ[var] be a PNF Finite LTL query, and let γ be a propositional

formula. Then L(Bφ[var][γ]) = Jφ[γ]K.

7.3.2 Composing Finite Automata

We close this section by defining a language-intersection composition operation, ⊗,

on PNFAs.

Definition 31. Let Bi, where i ∈ {1, 2}, be PNFAs (Qi,AP , qi, δi, Fi). Then B1⊗B2

is PNFA (Q1 ×Q2,AP , (q1, q2), δ1,2, F1 × F2) where

δ1,2 = {((q′1, q′2), γ1 ∧ γ2, (q′′1 , q′′2)) | (q′1, γ1, q′′1) ∈ δ1 and (q′2, γ2, q
′′
2) ∈ δ2}.
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Operation ⊗ can be extended to the case when one of the Bi is a QFA in an

obvious manner. WLOG assume B1 is PNFA (Q1,AP , q1, δ1, F1) and B2 is FQA

(Q2,AP , q2, δ2[var], F2[var]). Then B1 ⊗B2[var] is the QFA

(Q1 ×Q2,AP , (q1, q2), δ1,2[var], F1,2[var])

where δ1,2[var] is defined as δ1,2 in Definition 31 and F1,2[var](γ) = F1×F2[var](γ).

We have the following.

Theorem 12. Let B1 be a PNFA.

1. If B2 is a PNFA then L(B1 ⊗B2) = L(B1) ∩ L(B2).

2. If B2[var] is a FQA then for γ ∈ Γ, L((B1⊗B2[var])[γ]) = L(B1)∩L(B2[γ]).

7.4 Solving QC(Π, φ[var])

In this section we present our approach to solving the general query-checking prob-

lem QC(Π, φ[var]): given a finite set Π of data streams and Finite LTL query φ[var],

compute all γ such that for each π ∈ Π, π |= φ[γ]. We first consider the case when

Π = {π} is a singleton set. We then study the multi-stream case.

The basic approach for the single-stream case is as follows. Given (normalized)

data stream π, we first construct PNFA Bπ such that L(Bπ) = {π}. Then we

construct FQA B¬φ[var][var] from LTL query φ[var]; this QFA is such that for any

γ, L(B¬φ[var][γ]) = {π′ | π′ 6|= φ[γ]}. Then, if L(Bπ)∩L(B¬φ[var][γ]) = ∅, we have that

157



π |= φ[γ], and γ is a solution to query φ[var] and {π}. To solve QC({π}, φ[var]), it

suffices to construct Bπ,φ[var][var] = Bπ ⊗B¬φ[var][var] and then compute all γ such

that L(Bπ,φ[var][γ]) = ∅.

The key operations remaining to be addressed in this approach are the con-

struction of Bπ and the search for γ such that L(Bπ,φ[var][γ]) = ∅. We call such γ

shattering formulas in what follows. We consider each of these in turn.

7.4.1 Constructing PNFA Bπ for Data Stream π

The construction of Bπ from normalized data stream π is given below. Let π =

A0 . . . An−1. Also, if A ⊆ AP defined 〈A〉 ∈ Γ as follows:

〈A〉 =
∧
{a | a ∈ A} ∧

∧
{¬b ∈ AP | b 6∈ A}.

Then we define Bπ = (Q,AP , q0, δπ, {qn}), where Q = {q0, . . . , qn} and δπ =

{(qi, 〈Ai〉, qi+1) | i < |π|}. We have the following.

Lemma 17. Let π be a normalized data stream. Then L(Bπ) = {π}.

Proof. Immediate. Note that if π = ε then Q = {q0}, δπ = ∅ and F = {q0}.

7.4.2 Computing Shattering Formulas for Bπ,φ[var][var]

We now consider how to compute shattering formulas for FQA Bπ,φ[var][var].
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7.4.2.1 Shattering Propositional Queries.

Our approach to shattering B[var] relies on selecting values γ′ for var that cause

some transitions in B[var] to be disabled because the labels of such transitions,

which have form γ[var], become unsatisfiable when instantiated to γ[γ′].2 In effect,

this disables the transition labeled by γ[γ′] in B[γ′], as the transition can never be

taken while processing an observation from a data stream. When such a γ exists,

we call γ[var] shatterable and the corresponding γ′ a shattering formula for γ[var].

In the rest of this section we formalize an account of shatterability for propo-

sitional queries γ[var] that leads to an efficient representation of the shattering

formulas for a γ[var]. We start by considering special cases of γ[var]. Specifically,

we say that var is positive in propositional query γ[var] iff every occurrence of var

is within the scope of an even number of negations and negative iff every occurrence

is within the scope of an odd number of negations. In what follows we also write

γ1 ≤ γ2 if γ1 is at least as weak as γ2.

Theorem 13. Let γ[var] be shatterable.

1. If var is positive in γ[var], then there is a unique (modulo ≡) weakest shat-

tering formula γ′ for γ[var], and for every γ′′ such that γ′ ≤ γ′′, γ′′ is also a

shattering formula for γ[var].

2. If var is negative in γ[var], then there is a unique (modulo ≡) strongest shat-

2A formula γ is unsatisfiable iff γ ≡ false.
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tering formula γ′ for γ[var], and for every γ′′ such that γ′′ ≤ γ′, γ′′ is also a

shattering formula for γ′.

Proof. Case 1 follows from the fact that if var is positive in γ[var] then γ[var] can

be rewritten as γ′′[var], where γ[var] ≡ γ′′[var] and γ′′[var] has form var∧γ′′′ with

γ′′′ ∈ Γ (i.e. γ′′′ has no occurrences of var). It can easily be shown that γ′ in this

case is ¬γ′′′. The other case is dual and is omitted.

Characterizing the shatterability of general γ[var], in which var may appear both

positively and negatively, is more complex and relies on the following.

Definition 32. Propositional query γ[var] is in shattering normal form (SNF) iff

it has form γ1 ∨ (var∧γ2) ∨ ((¬ var) ∧ γ3), where each γi ∈ Γ and is in DNF.

Lemma 18. For every γ[var] ∈ Γ[var] there is a γ′[var] ∈ Γ[var] in SNF such

that γ[var] ≡ γ′[var].

Proof. Observe that if we view var as an atomic proposition then we can also treat

γ[var] as a propositional formula and convert it into DNF in such a way that every

clause has either no occurrences of var, or one occurrence of var, or one occurrence

¬ var. We finish building γ′[var] by grouping the clauses containing var and then

factoring out var, and similarly for ¬ var.

Theorem 14. Let γ[var] = γ1 ∨ (var∧γ2) ∨ ((¬ var) ∧ γ3) be in SNF.

1. γ[var] is shatterable iff γ1 is unsatisfiable and ¬γ2 ≤ γ3.
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2. If γ1 is unsatisfiable then γ′ shatters γ[var] iff ¬γ2 ≤ γ′ ≤ γ3.

Proof. Follows from the definition of shatterability and Theorem 13.

As a consequence of this theorem and Lemma 18, we have that the set of shattering

formulas for any shatterable propositional query γ[var] can be represented as an

interval [γ1, γ2] = {γ′ | γ1 ≤ γ′ ≤ γ2}. We sometimes refer to [γ1, γ2] as a shatter-

ing interval. Moreover, we have finitary representations of the equivalences classes

modulo ≡ of γ1 and γ2. Also note that when γ[var] is such that var is positive

this interval has form [γ′, false], while if var is negative then the interval has form

[true, γ′]; here the γ′ are the shattering formulas guaranteed by Theorem 13.

7.4.2.2 Shattering Finite Query Automata.

We now turn to the question of shattering FQA Bπ,φ[var][var]. Our approach relies

on using the results in the previous section to shatter transitions in B[var] and

compute PNFAs that we then check for for language-emptiness. We explain each of

these operations in turn.

Transition shattering. The purpose of this step is to select a collection of individu-

ally shatterable transitions in B[var] — i.e. transitions of form (q, γ[var], q′) where

γ[var] is shatterable — and compute a joint shattering interval, if one exists. That

this is possible is due to the following.

Lemma 19 ([92]). Let [γ′1, γ
′′
1 ] and [γ′2, γ

′′
2 ] be shattering intervals for γ1[var] and
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γ2[var], respectively. Then [γ′1 ∧ γ′2, γ′′1 ∨ γ′′2 ] is the shattering interval for query

γ1[var] ∧ γ2[var].

In what follows we write [γ′1, γ
′′
1 ] ∧ [γ′2, γ

′′
2 ] for [γ′1 ∧ γ′2, γ′′1 ∨ γ′′2 ]. This lemma gives

us an immediate means for computing the shattering interval of any non-empty

finite subset of shatterable propositional queries, and allows us to compute shatter-

ing intervals that shatter a given collection of transition labels in Bπ,φ[var][var], or

determine that such a set cannot be shattered).

Accepting States. Recall that states in Bπ,φ[var][var] have form (q, r), where q is a

state in Bπ and r is a state in B¬φ[var][var] and therefore has form φr[var], where

φr[var] is an LTL query. As seen above, the propositional formula γ can affect the

transitions in PNFA Bπ,φ[var][γ] by disabling some of those in Bπ,φ[var][var]; it can

also affect the accepting states. We explore this issue in what follows.

Define an equivalence relation ∼ε⊆ Γ×Γ as follows: γ1 ∼ε γ2 iff it is the case

that ε |= γ1 iff ε |= γ2. It is easy to see that ∼ε induces two equivalence classes on

Γ: [true]∼ε , consisting of γ such that ε |= γ, and [false]∼ε , consisting of γ′ such that

ε 6|= γ′. We have the following.

Lemma 20. Let γ1, γ2 ∈ Γ.

1. If γ1 ≡ γ2 then γ1 ∼ε γ2.

2. If γ1 ∼ε γ2 then for any Finite LTL query φ[var], ε |= φ[γ1] iff ε |= φ[γ2].
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Proof. (1) is immediate. (2) relies on the fact that determining if ε |= φ for Finite

LTL formula φ can be computed inductively on the structure of φ.

Based on this lemma, we observe that for any γ ∈ Γ, Bπ,φ[var][γ] can have

only one of two possible sets of accepting states, depending on whether π |= γ.

Specifically, define Fπ to be set of accepting states in Bπ and R to be the set of

states in B¬φ[var][var]. Also define the following.

Fε = Fπ × {r ∈ R | ε |= φr[γ] some γ ∈ Γ}

F¬ε = Fπ × {r ∈ R | ε 6|= φr[γ] some γ ∈ Γ}

Then, for any γ ∈ Γ, the accepting states of Bπ,φ[var][γ] are either Fε or F¬ε.

Computing Shattering Formulas for Bπ,φ[var][γ]. We now describe an algorithm for

computing a representation of the shattering conditions for Bπ,φ[var][γ].

Input: Bπ,φ[var][var]

Output: Set SC of shattering formulas, represented implicitly

1. Eliminate all spurious transitions in Bπ,φ[var][var], i.e. transitions of the form

((q, r), var[γ], (q′, r′)) such that γ[γ′] is unsatisfiable for all γ ∈ Γ.

2. Replace all unshatterable transitions ((q, r), γ[var], (q′, r′)) by ((q, r), true, (q′, r′)).

Call the remaining set of transitions δ.

3. TC := {γ[var] | ((q, r), γ[var], (q′, r′)) ∈ δ some q, q′, r, r′}.

4. For each γ[var] ∈ TC compute the shattering interval Iγ[var].
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5. SC := ∅, US := Γ− (
⋃
γ[var]∈TC Iγ[var])

6. If US ∩ [true]∼ε 6= ∅ and L(BUS,ε) = ∅, where BUS,ε is PNFA whose states

are the states of Bπ,φ[var][γ], whose transition relation is {((q, r), true, (q′, r′)) |

((q, r), γ[var], (q′, r′)) ∈ δ some q, q′, r, r′} and whose accepting states are Fε then

add US ∩ [true]∼ε to SC

7. If US ∩ [false∼ε
] 6= ∅ and L(BUS,¬ε) = ∅, where BUS,ε is PNFA whose states

are the states of Bπ,φ[var][γ], whose transition relation is {((q, r), true, (q′, r′)) |

((q, r), γ[var], (q′, r′)) ∈ δ some q, q′, r, r′} and whose accepting states are F¬ε then

add US ∩ [false]∼ε to SC.

8. For each nonempty subset T ⊆ TC do

(a) Compute IT =
∧
γ[var]∈TC Iγ[var].

(b) If IT ∩ US ∩ [true]∼ε 6= ∅ and L(BT,ε) = ∅, where BT,ε is PNFA whose states

are the states of Bπ,φ[var][γ], whose transition relation is {((q, r), true, (q′, r′)) |

((q, r), γ[var], (q′, r′)) ∈ δ some q, q′, r, r′, γ[var] 6∈ T} then add IT ∩ US ∩

[true]∼ε to SC

(c) If IT ∩ US ∩ [false]∼ε 6= ∅ and L(BT,¬ε) = ∅, where BT,¬ε is PNFA with

states states of Bπ,φ[var][γ], whose transition relation is {((q, r), true, (q′, r′)) |

((q, r), γ[var], (q′, r′)) ∈ δ some q, q′, r, r′, γ[var] 6∈ T} then add IT ∩ [false]∼ε

to SC.

9. Return SC.

It can be shown that γ shatters Bπ,φ[var][var] iff γ |= c ∈ SC.
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7.4.3 Solving QC(Π, φ[var]) when |Π| > 1

Having considered the case of query-checking a finite LTL query φ[var] for the

single data stream case of Π = {π}, we now consider the generalized case of a finite

set Π = {πi} of data streams. Naively one can compute individual solutions for

each πi ∈ Π. The solution for QC(Π, φ[var]) is all solutions found across solutions

for each sub-problem QC({πi}, φ[var]). One could consider applying a in iterative

approach which refines a running solution to the overall QC(Π, φ[var]) problem by

first fixing an ordering for {πi}. Let |Π| = n and Si be the solution for the first

i data streams, namely QC({π1, . . . , πi}, φ[var]). First, S1 = QC({π1}, φ[var]) is

computed as indicated in the above subsections. Then, to compute each subsequent

Si, we perform the individual QC({πi}, φ[var]), but restrict shattering intervals

to be contained inside of Si−1. This results in the shattering intervals of individual

transitions to be narrowed and potentially wholly unshatterable under the restricted

space, which allows us to remove these transitions from consideration. Sn the overall

solution for QC(Π, φ[var]).

Another option is to leverage the fact that our methodology inherently converts

data streams into finite automata. One could turn each data stream πi into its own

PNFA Bπi , and then compute a composed automaton Bc = ∩iBπi for which L(Bc)

is equivalent (or related to) to ∩iL(Bπi), which would require performing a single

(albeit more complex) query checking problem.
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7.5 Experimental Results

We have implemented our methodology described in previous sections in C/C++.

We make use of the Spot [88] platform (v.2.8.1) to handle the parsing of input formu-

las. Calls were also made to the Python SymPy symbolic computing package [93] to

perform simplifications to convert propositional formulas into desired normal forms.

The resulting code is able to support and represent finite state machines as well

as finite query automaton, and perform all relevant operations as discussed above,

including composition, language emptiness checking, and shattering computations.

We first evaluated our methodology using a dataset containing synthetic data

generated representing product sales as influenced by promotions. This dataset

contained sales volumes of fictitious 100 products as well as the status of 1000

promotions, each of which influences a subset of the product set. Three years of

daily data was captured, totalling 1095 days total. We created a datastream with

1095 time points containing atomic propositions of the forms

prodi i ∈ {1, . . . , 100}

promoi i ∈ {1, . . . , 1000}

For a time point t of the data stream, prodi is true if product i’s volume of sales

as reported on day t was greater than as reported on day t − 1, or false otherwise.

promoi is true on time point t if promotion i is active on day t, and false otherwise.
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We considered queries of the form

φ1[var] = G(prodi → F var)

where var is restricted to be drawn only from product propositions. Loosely, this is

the property stating that whenever product i increases in value from the previous

day, some price change triggers in other products on the same day. This is intended

to capture a correlation between products indicating that over all observed com-

binations of potential active promotions, the sales of two products are correlated

positively. The more directed query

φ2[var] = G(promoi ∧ prodj → F var)

was also considered, again with the same restriction on var. This query could

be useful when planning promotional strategy, as knowing that, were promotion

i to be active, a raise in sales of product j would also lead to a raise in sales

for other products (namely the solution to var), possibly precluding the need to

commit additional resources to promote those other products through additional

needs/promotions.

As |AP| = 1100 is clearly too large for us to directly apply query checking, we

sampled down the number of atomic propositions to random subsets and performed

query checking on these finite streams. Figure 7.1 reports average running times
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over 1000 samples for a fixed number of promotions and products. A hard cut-off of

10 minutes was imposed for all experiments. Configurations where all experiments

timed out were reported with “t/o.”

# products # promotions φ1[var] avg time φ2[var] avg time
2 0 0.928 ± 0.201 -
3 0 1.192 ± 0.063 -
4 0 2.147 ± 0.140 -
5 0 36.700 ± 1.490 -
2 1 1.241 ± 0.089 2.582 ± 0.466
3 1 2.223 ± 0.206 8.348 ± 5.563
4 1 36.238 ± 12.061 t/o
2 2 2.011 ± 0.217 7.398 ± 5.300
3 2 31.315 ± 17.614 t/o
2 3 8.144 ± 10.030 t/o

Figure 7.1: Average running times to perform query checking for down-sampled
data streams. φ2[var] is not applicable when no promotionsa re present in stream.
Averages taken over 1000 downsamples. All times in seconds.

Experiments were carried out on a single machine with 4 processors Intel c©

Core i5-6600K, with 32 GB RAM and a 64-bit version of GNU/Linux.

7.6 Conclusion

We have presented our work on performing LTL query checking over finite data

streams using an automaton-theoretic approach. Solving such queries can aid in

the comprehension of system behavior underlying observed execution traces, which

might allow for one to better understand or diagnose a system when it cannot be

accessed directly.
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Chapter 8: Formal Verification of Noisy Sequences

8.1 Introduction

Material presented in Chapter 5 dealt with query checking on standard LTL, while

Chapters 6 through 7 explored a variant of LTL with finite semantics in an attempt

to better support real-world scenarios. However, both standard LTL and Finite LTL

have a major drawback: their requirements are strict and rigid, and are intolerant

to potential noise entering through execution data. Even a small deviation can

be the deciding factor as to whether or not a system supports a property. This

is true of other well-studied temporal logics as well. Consider the CTL formula

A G A (φ1 Uφ2). This formula is satisfied if all paths always hold that all executions

satisfy φ1 Uφ2. Such a stringent requirement is violated in any number of ways.

Consider a data stream D that satisfies φ1 Uφ2. This means that there is a range

of time points, starting from the initial point in the stream, where φ1 is satisfied

at each of those points, and then φ2 is satisfied immediately following this range of

events. If φ1 were not present in even one of the time points in the initial range,

φ1 Uφ2 would no longer hold true for D. Consequently, any set of data streams
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D belongs to would not satisfy the formula A G A (φ1 Uφ2). It is unsatisfying for

such a small perturbation to impact the overall conclusion of a (potentially) much

larger data set in such a drastic way. Yet, a scenario where this situation would

occur is not rare. We list here several scenarios which could easily lead to such a

circumstance:

• Missing evidence - Observances of atomic propositions are missing from

data streams. Imperfect data acquisition, abstractions to the data stream

representation, and system failures could all contribute to such a situation.

The property φUψ may never be discovered if several data streams have a

missing φ annotation during stretches before ψ is encountered.

• Changing/hybrid behavior - Complex systems can lead to complex behav-

ior. From a batch of system logs generated over time, a log file may satisfy the

property aU b half of the time, and aU c the other half. This would suggest

two different behavioral patterns, especially if b and c are not suspected to be

related in any way. This overall property could be summarized to aU (b ∨ c),

but is weaker than either of the individual formulas.

• Overfitting to data - The set of data streams provided should not be ex-

pected to be every possible execution imaginable from the system, only a

sample. We may conclude a stronger property than is actually true of the

system because a counter-example was not present in the sample set. For ex-

ample, we may conclude aU (b ∧ c) for the set of data streams we are given,
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when in system satisfies only the weaker property aU b. In this case, we may

have always seen both b and c occurring to terminate the sequence of a’s in

each example data stream, but c’s appearance is not mandated by the system.

While exactness may be desirable in cases where errors are intolerable, many scenar-

ios would benefit from the extra knowledge that could be discoverable if “approxi-

mate” properties were expressible. Such properties would specify absolute properties

(i.e. it is satisfiable by a data set) expressing approximate characteristics (i.e. the

property is weaker than needed to to be satisfiable by the entire data set). This

would translate to a stronger property being true all a portion of the time. From

a system design perspective, being able to discover the set of properties at are true

“most of the time” could lead to isolating properties intended to be invariant but

are instead sometimes broken. Switching to a more black-box setting, being able

to make statements such as “behavior φ was observed 75% of the time” is useful

information which may provide further insight into a system under investigation. In

this case, if the degree of deviation from an absolute is substantial, this might be

indication that more complex behavior (such as φ ∨ ψ) underlies the mechanism.

8.2 Near/Partial Invariants

For some data sets and domains, expressing properties which apply to only a portion

of the data set are of interest. Such properties can capture complex design choices

where a property is true only in a fraction of the data set, as well as represent under-
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lying complex behavior when the system is unknown or not fully characterized. This

can be a growing concern in systems which themselves compose different subsystems

for different situations. Consider the example of an online payment system. One

might want the property “G (payment sent =⇒ F payment received)” to be true

over all data streams; namely for all executions, it is always the case that a payment

sent eventually results in the same payment being received. However, an inspection

of the logs from the system reveals that this property is true only for a portion of the

streams. It may further reveal that the cases where the payment requirement was

satisfied contained only data streams where the user paid by credit card, whereas

in the cases where the property was not present users paid exclusively with PayPal.

This would suggest something is wrong with the transaction system for PayPal, and

suggests a direction for a system designer to look in order to determine the cause of

the problem.

Similarly, for an organization using blockchain technology, one might be inter-

ested in identifying any potential double-spending, where a digital resource is spent

in multiple transactions by the same user, typically by first making a copy of the digi-

tal resource. The simplified property “G(resource spent =⇒ X¬F resource spent)”

requires that if a digital resource is spent once, it is never spent again in the future

(this model presumes that once the resource changes hands it has a new unique id

allowing itself to be spent at most one time). Were the organization to utilize two

blockchains internally, it might be the case that one chain becomes compromised or
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otherwise exhibits double-spending but the other does not.

We introduce the notion of a partial invariant. These invariants are properties

that are satisfied by only a portion of the evidence, in our case only a portion of

the data streams. We use near invariant to refer to those properties that satisfy

“almost all” data streams. We refer to properties that satisfy all evidence as full or

total invariants. The current design envisions using cut-off thresholds to deem what

is considered as a near or partial invariant, based upon what portion of the data

streams must be satisfied. Consider the following scenario where the data streams

have been partitioned according to whether or not they satisfy a property φ:

Does D |= φ?

D1: Yes (90%) D2: No (10%)

In this case there perhaps is a strong motivation to report φ as a partial

(possibly near) invariant, as set D1 which is 90% of the total data streams observed

satisfy φ. Performing a partitioning in this manner also allows us to further analyze

the 10% portion that is exactly the set D2. In the case of the online payment

situation given above, it might be found that all data streams inD2 satisfy a property

stating that PayPal was used.

Partial invariants can be desirable for a number of reasons. We several exam-

ples include:

• Design bug – The system designer may have intended for the partial invari-
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ant to be a total invariant, but some design issue led to a corner case being

missed. In Chapter 4 we were able to infer a transition that was missing in a

reconstructed state machine due to an error in system code.

• Unexpected/Emergent behavior – A partial invariant may represent be-

havior that manifested unexpectedly due to other characteristics of the sys-

tem. This could correspond to undocumented specifications, or an unexpected

emergent interaction between composed subsystems.

• Inherently complex nature – Partial invariants capture inherently more

complex behavior than a total invariant because they occur only a portion

of the time. Specifying the “equivalent” total invariant makes the invariant

description itself much more complex. When designing a system, detecting

or properly documenting them can be challenging, and may be entirely over-

looked.

8.3 Noisy Linear Temporal Logic

With partial invariants in mind, we formalize the notion as a new temporal logic,

which we call noisy Linear Temporal Logic (noisy LTL). We first provide some

intuition behind the logic, and then detail the syntax and semantics as well as

provide some example formulas and prove some useful properties about the logic. We

then consider an alternative to the logic which may appeal to specific applications.
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8.3.1 Characterizing Deviation from LTL

Schematically one can envision the semantics of traditional LTL as pertaining to

requirements over ranges and points of time. For example, the LTL formula aU b

requires that for some finite interval of the naturals [0, i), a must be satisfied, until,

at time point i, b must then be satisfied at time point i. With the goal to introduce

a deviation from a requirement about a range, a natural adjustment that could be

made is to allow for the range requirement to be enforced over “most” of the range

rather than “all” of the range. Continuing the above example, we could allow up to 3

time points in the range where property a is not required inside of [0, i). We call such

change a lax deviation. Alternatively, introducing deviation on a requirement about

a point could entail requiring a multiplicity of the point before the requirement

is satisfied. Starting again from the property aU b, one could require that the b

property be satisfied an extra 3 times before the a range ends. We call such a

change a redundant deviation. Figure 8.1 illustrate these deviations.

These sorts of types of deviations are exactly what noisy LTL captures. We

will now show the syntax and semantics for the logic, where variants of existing LTL

operators represent either a lax or redundant deviation.

175



t

φUψ

φ

ψ

i

(a) Sketch of aU b.

t

φUN [k = 3]ψ

φ

ψ

v1 v2 v3 i

(b) Laxness in aU b.

t

φU′
N [k = 3]ψ

φ

ψ

(c) Redundancy in aU b.

Figure 8.1: Adding noise to aU b.

8.3.2 Syntax of Noisy LTL

We have positioned noisy LTL as an extension of traditional LTL, as such the syntax

is a superset of traditional LTL.

Definition 33 (Noisy LTL Syntax). For a given AP, the following grammar defines
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the set of noisy LTL formulas, with a ∈ AP.

φ ::= a | ¬φ | φ ∧ φ | Xφ | φUφ LTL (base)

| ff | tt | φ ∨ φ | φRφ | Fφ | Gφ LTL (derived)

| φUN[c]φ | φRN[c]φ left-noisy operators

| φU′N[c]φ | φR′N[c]φ | F′N[c]φ | G′N[c]φ right-noisy operators

We extend the term modal to include the left- and right- noisy operators. We use

ΦAPN to refer to the set of all noisy LTL formulas and ΓAPN ( ΦAPN for the set of

all propositional formulas (those formulas containing no modal operators). We will

often write Φ and Γ instead of ΦAPN and ΓAPN when it is clear from context.

The first two rows of the grammar are the syntax for traditional LTL, along with

derived operators presented in the previous section. Note that we have chosen a set

of operators such that the language is closed under logical duality. The third row of

the syntax contains operators that allow noise on the left-handed subformula, while

the fourth row contains operators allowing noise of the right-handed subformula. We

call operators from the third and fourth rows noisy operators, they are all denoted

with a subscript “N”. Right-handed noisy operators are additionally marked with

a ′. All noisy operators contain a noise parameter c which takes an integer as

a value, intended to capture deviation from the traditional operator to which the

noisy operator corresponds.
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As is the case for traditional LTL, we have syntactically defined {UN,RN} to

be logical duals, as well as {U′N,R′N}, so both RN and R′N are included to make

the logic closed under duality. The same is true for {F′N,G′N}, which are themselves

derived from U′N (or equivalently R′N). This is summarized as follows:

φ1 RN[c]φ2 = ¬((¬φ1) UN[c](¬φ2))

φ1 R′N[c]φ2 = ¬((¬φ1) U′N[c](¬φ2))

F′N[c]φ = ttU′N[c]φ

G′N[c]φ = ¬F′N[c](¬φ)

It might seem strange that there are no left-noisy operators for F or G (FN,GN).

However, as the natural extension of Fφ = ttUφ would be to make FN[c]φ =

ttUN[c]φ, this would result in a not-so-interesting operator as all the noise is on the

left-handed subformula, namely tt. A similar reason holds for GN[c]φ = ffRN[c]φ.

In fact, if the semantics (presented in the next section) of UN and RN are inspected,

one can observe that {FN,GN} collapse to {F,G}.

8.3.3 Semantics of Noisy LTL

We will now present the semantics of noisy LTL, starting with the semantics for the

fragment representing standard LTL.

Definition 34 (Noisy LTL Semantics). Let φ be a noisy LTL formula and let π ∈
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(2AP)ω. Then, the satisfaction relation π |= φ, is defined inductively on the structure

of φ as follows:

• π |= a ∈ AP iff a ∈ π0

• π |= ¬φ iff π 6|= φ

• π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

• π |= Xφ iff π(1) |= φ

• π |= φ1 Uφ2 iff

∃i ∈ N :

π(i) |= φ2 ∧ ∀j ∈ N :

(0 ≤ j < i) =⇒ π(j) |= φ1

• π |= φ1 UN[c]φ2 iff

∃V ⊂ N, | V | ≤ c,∃i ∈ N :

π(i) |= φ2 ∧ ∀j ∈ N− V :

(0 ≤ j < i) =⇒ π(j) |= φ1
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• π |= φ1 R′N[c]φ2 iff

∃V ⊂ N, | V | ≤ c,∀i ∈ N− V :

π(i) |= φ2 ∨ ∃j ∈ N :

(0 ≤ j < i) ∧ π(j) |= φ1

The semantics for derived standard LTL (R, F, G) are the same as for standard

LTL. The semantics for the remaining noisy operators follow from their syntactic

relations to the above two noisy operators, and are explicitly given here:

• π |= φ1 RN[c]φ2 iff

∀V ⊂ N, | V | ≤ c,∀i ∈ N :

π(i) |= φ2 ∨ ∃j ∈ N− V :

(0 ≤ j < i) ∧ π(j) |= φ1

• π |= φ1 U′N[c]φ2 iff

∀V ⊂ N, | V | ≤ c,∃i ∈ N− V :

π(i) |= φ2 ∧ ∃j ∈ N :

(0 ≤ j < i) =⇒ π(j) |= φ1

• π |= F′N[c]φ iff

∀V ⊂ N, | V | ≤ c,∃i ∈ N− V :

π(i) |= φ

• π |= G′N[c]φ iff

∃V ⊂ N, | V | ≤ c,∀i ∈ N− V :

π(i) |= φ

Items above the dashed line are identical to those of traditional LTL, while those
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below the line are semantics for the new noisy operators. We write JφK for the set

{π : π |= φ} and say that φ1 and φ2 are logically equivalent, with notation φ1 ≡ φ2,

if Jφ1K = Jφ2K.

t
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Figure 8.2: Sketches of Noisy LTL Operators

Graphical sketches of the noisy operators are provided in Figure 8.2. Intuitively,

the larger the noise parameter, the more deviation there is. The crux of the noisy

semantics is the V entity, which is a subset of the natural numbers, marking indices

of interest for one of the two subformulas based on the operator at which deviations

can occur. For lax operators (i.e. UN, R′N, G′N), V is existentially quantified and

specifies a set of indices (of size at most c) where the requirement for the noisy
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subformula is not enforced. For operators expressing redundant noise (RN, U′N, F′N),

V is universally quantified and serves to provide a minimum coverage requirement

such that the noisy subformula must occur at least c + 1 times to avoid being

potentially eclipsed by indices in V .

The duality of the modal operators serves to tether lax and redundant noise.

The base semantics establish UN to be lax, and as a consequence the dual operator

RN expresses redundant noise. The same is true starting from R′N and dualizing

to U′N. Figure 8.3 presents a breakdown of the noisy operators based on which

subformula is noisy and what type of noise is captured. In principle we could also

consider another class of noisiness where we add redundant deviation to a ranges

and lax deviation to points. This would allow us to effectively swap U ↔ R as

presented in Figure 8.3 (i.e. we would have a left-handed redundantly noisy Until

operator), but the applications for this seems minimal.

Noisy subformula
φ ψ

lax φUN ψ φR′N ψ
redundant φRN ψ φU′N ψ

lax redundant
G′N φ F′N φ

Figure 8.3: Noisy LTL Operator Characteristics.

8.3.4 Example Formulas

We provide a several examples of noisy LTL formulas with interpretation.

• MSFT upUN[c = 2]GOOG up - Stock in Microsoft (usually) goes up until stock
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in Google goes up.

• new jobRN[c = 5]¬open new server - More than 5 jobs must be added to

the job queue before another server is created to handle requests.

• G(at batU′N[c = 2]strike) - 3 strikes and you’re out.

• winR′N[c = 3]alive - The player has 3 lives to beat the game.

• F′N[c = 3]failsafe button - The button must be pressed, but it is faulty and

may misfire up to k times. Pressing k+1 times guarantees it will be observed.

• G′N[c = 2]attends meetings - He only missed at most 2 meetings all year.

8.3.5 Properties of Noisy LTL

We have constructed noisy LTL to be an extension of traditional LTL, with the

same base syntax and semantics for the operators in common. Because the noisy

operators are intended to express deviation from the corresponding base operators,

semantically they are related.

Lemma 21 (Grounding out noise). For c = 0 and arbitrary noisy LTL formulas φ

and ψ, noisy temporal logic reduces to standard LTL:

• φUN[c = 0]ψ ≡ φUψ.

• φRN[c = 0]ψ ≡ φRψ.

• φU′N[c = 0]ψ ≡ φUψ.

• φR′N[c = 0]ψ ≡ φRψ.

As well as for derived operators:
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• F′N[c = 0]φ ≡ Fφ. • G′N[c = 0]φ ≡ Gφ.

Proof. Immediate upon comparison of the semantics of the noisy temporal operator

with c = 0 in each case to their non-noisy correspondent.

We also have some straight-forward simplifications when the noise parameter c is

taken to be a negative integer.

Lemma 22 (Negative values of c). Let i be an integer less than 0 and φ, ψ be

arbitrary noisy LTL formulas. We have the following:

• φUN[c = i]ψ = ff

• φRN[c = i]ψ = tt

• φU′N[c = i]ψ = tt

• φR′N[c = i]ψ = ff

As well as for derived operators:

• F′N[c = i]φ = tt • G′N[c = i]φ = ff

Proof. Observe for {UN,R
′
N,G

′
N} we are existentially quantifying V with size at

most i (which cannot exist for negative i). For {RN,U
′
N F′N}, we are universally

quantifying V over sets of size at most i (vacuously satisfying the semantics).

We can also relate two noisy LTL formulas with similar structure, differing only in

the noise parameter.

Lemma 23 (Subsumption of Noisy Operators). For noisy LTL formulas φ, ψ and

integers u ≤ v, we have the following tautologies:
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• φUN[c = u]ψ → φUN[c = v]ψ

• φRN[c = u]ψ ← φRN[c = v]ψ

• φU′N[c = u]ψ ← φU′N[c = v]ψ

• φR′N[c = u]ψ → φR′N[c = v]ψ

And by extension, the following tautologies as well.

• F′N[c = u]φ← F′N[c = v]φ • G′N[c = u]φ→ G′N[c = v]φ

Proof. Something “less lax” can satisfy a “more lax” requirement. Conversely, some-

thing “more redundant” can satisfy a “less redundant” requirement.

Lemma 24 (Subsumption of U and R). For noisy LTL formulas φ, ψ and integer

i ∈ N, the following are tautologies for all j ∈ N:

• φU′N[c = i]ψ → φUN[c = j]ψ

• φRN[c = i]ψ → φR′N[c = j]ψ

Proof. Combining Lemmas 21 and 23, we have the following two tautologies:

φU′N[c = i]ψ → φUψ and φUψ → φUN[c = j]ψ

Together, this yields the lemma’s claim. A similar argument holds for the R-related

subsumption.

This result was surprising to us at first, as it allows us to relate left- and right-handed

noise. However, given that for both U and R exactly one of the noisy variants is

lax (UN,R
′
N) while the other is redundant (RN,U

′
N), we can see how they can be
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connected through the “neutral” non-noisy operator. This leads us to a corollary

which will be useful later for showing decidability.

Corollary 3 (Uniqueness of φUψ and φRψ). For a conjunction of noisy LTL

clauses C = {ci}, there exists a refined conjunction C ′ that is semantically equiv-

alent and has at most one occurrence of any of {U,UN,U
′
N} for each pair of sub-

formulas φ, ψ. The same is true for {R,RN,R
′
N}. All of the above is also true for

disjunctions.

Proof. Consider the sets

All-Until(φ, ψ) := {φ U ψ : U ∈ {U,UN[i],U′N[i]}, i ∈ N}

and

All-Release(φ, ψ) := {φ R ψ : R ∈ {R,RN[i],R′N[i]}, i ∈ N}

From Lemmas 21, 23, and 24, we have shown a total ordering for each of these sets

for arbitrary φ, ψ by formula strength (φ is stronger than ψ if φ → ψ) for each of

these sets. Note that if φ is stronger than ψ, then φ ∧ ψ = φ, while φ ∨ ψ = ψ.

Thus, if we ever encounter two formulas from the same class of All-Until(φ, ψ) or

All-Release(φ, ψ) as part of a conjunction or disjunction, one of the formulas can

be removed without affecting the semantics. Applying this iteratively gives us the

refined set of conjuncts (or disjuncts).
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The above reuslts can also be extended to the classes for Eventually {F,F′N} and

Always G,G′N}, as they are syntactically derived from Until and Release (respec-

tively).

8.3.6 Relating F′N,G
′
N to Traditional LTL

Noisy LTL has been defined as a syntactic and semantic extension of traditional

LTL. We further have determined that a fragment of the noisy LTL language is a

purely syntactic extension of traditional LTL, specifically the fragment containing

traditional LTL + {F′N,G′N}. Consider noisy LTL formula φ = F′N[c]ψ with non-

negative c and traditional LTL formula ψ. Then a sequence π satisfies φ under noisy

LTL semantics if and only if ψ occurs at least c + 1 distinct times in π. One could

express the same property in traditional LTL as:

φ = F(ψ ∧X F(ψ ∧X F(ψ ∧ . . .X Fψ) . . .))︸ ︷︷ ︸
c+1 ψ’s

From duality, we can similarly express G′N using traditional LTL. φ = G′N[c]ψ can

be rewritten as:

φ = G(ψ ∨X G(ψ ∨X G(ψ ∨ . . .X Gψ) . . .))︸ ︷︷ ︸
c+1 ψ’s

We can relax the restriction on ψ to be a formula from the fragment LTL + {F′N,G′N}

by observing that we can apply the above syntactic rewrites recursively as needed on
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the subformulas of ψ. The related LTL pattern φ = F(p1∧F(p2∧F(p3∧. . .F pc) . . .))

for pi ∈ AP was studied in [94] as an example of a formula template whose minimal

Büchi automaton is known.

8.4 Decidability of Noisy LTL

We show that, given a formula φ in noisy LTL, we can construct a Büchi automaton

Bφ such that the language L(Bφ) accepted by Bφ contains exactly the set of ω-

regular sequences that satisfy φ, i.e. L(Bφ) = JφK, as is done for traditional LTL.

We utilize a tableau style construction [86] for this problem, adapted for noisy LTL.

Constructing such an automaton allows us to prove decidability of the language

emptiness problem for noisy LTL.

8.4.1 Unrolled semantics of Noisy LTL

A core requirement of utilizing a tableau construction is to have a set of recursive

semantics for each modal operator (excluding X) which recursively unrolls the for-

mula by one time step based on semantics. The resulting unrolling provide several

useful properties, including that each non-X modal operator is guarded by a X in

the parse tree of the formula. A table containing the recursive semantics for LTL

is shown in Figure 8.4. Our aim is to produce another such table containing all

unrolled semantics for noisy LTL operators. We will first show the unrolling for

UN[c].
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Operator Unrolled Semantics
φUψ ψ ∨ (φ ∧X(φUψ))
φRψ ψ ∧ (φ ∨X(φRψ))
Fφ φ ∨X Fφ
Gφ φ ∧X Gφ

Figure 8.4: LTL Unrolled Semantics

Lemma 25 (Unrolled semantics for φUN [c]ψ). For non-negative integer c ≥ 0

and noisy LTL formulas φ and ψ, the formula φUN[c]ψ has the following unrolled

semantics:

φUN[c]ψ ⇐⇒ ψ ∨
(
φ ∧X(φUN[c]ψ)

)
∨X(φUN[c− 1]ψ)

Proof. First we handle the special case where c = 0. Consider the proposed unrolled

semantics:

φUN[c = 0]ψ ⇐⇒ ψ ∨
(
φ ∧X(φUN[c = 0]ψ)

)
∨ [X(φUN[c = −1]ψ)]

From Lemma 21 we have that φUN[c = 0]ψ = φUψ, and from Lemma 22

we have that φUN[c = −1]ψ = ff, so the unrolling reduces to the known unrolled

semantics for U:

φUψ ⇐⇒ ψ ∨
(
φ ∧X(φUψ)

)

For the remaining case where c ≥ 1, we prove implication in both directions.
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(←) Assume π |= ψ∨ (φ∧X(φUN[c]ψ))∨X(φUN[c−1]ψ). Then, one of the three

disjuncts must be true. We will perform a case analysis for each, showing that

the semantics for π |= φUN[c]ψ is satisfied:

– π |= ψ: Then, let i = 0 and V ⊆ N be arbitrary. Clearly, we have that

π(i) |= ψ ∧ ∀j ∈ N− V : (0 ≤ j < i) =⇒ π(j) |= φ, which is equivalent

to π |= φUN[c]ψ.

– π |= φ ∧ X(φUN[c]ψ): Then, π |= φ and π(1) |= φUN[c]ψ. Expanding

π(1) |= φUN[c]ψ we have

∃i ≥ 1,V ⊆ N, | V | ≤ c : π(i) |= ψ∧∀j ∈ N−V : (1 ≤ j < i) =⇒ π(j) |= φ

so combined with π |= φ we have

∃i ≥ 1,V ⊆ N, | V | ≤ c : π(i) |= ψ∧∀j ∈ N−V : (0 ≤ j < i) =⇒ π(j) |= φ

which is a strictly stronger statement than the same statement where is

bounded i ≥ 0, which are the semantics of φUN[c]ψ, so π |= φUN[c]ψ.

– π |= X(φUN[c− 1]ψ): Then, π(1) |= φUN[c− 1]ψ, equivalently

∃i ≥ 1,V ⊆ N, | V | ≤ c−1 : π(i) |= ψ∧∀j ∈ N−V : (1 ≤ j < i) =⇒ π(j) |= φ

Let i′,V ′ be an instance set satisfying these semantics. Let V ′′ = V ′ ∪{0}
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be a new violation set formed by adding the index 0 to V ′. Note that

| V ′′ | ≤ c. So, we have that for the choice of i′,V ′′:

π(i′) |= ψ ∧ ∀j ∈ N− V ′′ : (0 ≤ j < i′) =⇒ π(j) |= φ

Note that we can expand the range for j from (1 ≤ j < i′) to (0 ≤ j < i′)

because 0 ∈ V ′′. Thus, we have shown the existence of a choice for i,V

to enforce π |= φUN[c]ψ.

We have handled all 3 cases and thus have shown that

π |= ψ ∨ [φ ∧X(φUN[c]ψ)] ∨X(φUN[c− 1]ψ) =⇒ π |= φUN[c]ψ

(→) Now assume π |= φUN[c]ψ. To prove

π |= φUN[c]ψ =⇒ π |= ψ ∨ [φ ∧X(φUN[c]ψ)] ∨X(φUN[c− 1]ψ)

we will show that one of the three disjuncts must be true. Because π |=

φUN[c]ψ, we have that

∃i ≥ 0,V ⊆ N, | V | ≤ c : π(i) |= ψ ∧ ∀j ∈ N− V : (0 ≤ j < i) =⇒ π(j) |= φ

Let i′,V ′ be an instance set satisfying these semantics. We will perform a case
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analysis on i′,V ′, and π, proving one of the disjuncts to be true in each case.

First assume i′ = 0. If this is the case, then π(0) |= ψ ≡ π |= ψ (the first

disjunct) so we are done. Now assume i′ ≥ 1. For an arbitrary π, either π |= φ

or π 6|= φ. We consider each case:

– π |= φ:

∗ If 0 ∈ V ′, let V ′′ = V ′−{0}. Note that | V | can still be upper bounded

by c. Then, π |= φ and π(i′) |= ψ ∧ ∀j ∈ N − V ′′ : (0 ≤ j < i′) =⇒

π(j) |= φ, where the second statement can be relaxed to

π(i′) |= ψ ∧ ∀j ∈ N− V ′′ : (1 ≤ j < i′) =⇒ π(j) |= φ

Existentially quantifying i′ to i and V ′′ to V gives us

∃i ≥ 1,V ⊆ N, | V | ≤ c : π(i) |= ψ∧∀j ∈ N−V : (1 ≤ j < i) =⇒ π(j) |= φ

which are the semantics for π(1) |= φUN[c]ψ, or equivalently, π |=

X(φUN[c]ψ). Thus π |= φ ∧ X(φUN[c]ψ), and so we have proven

the second disjunct to be true.

∗ If 0 /∈ V ′, then let V ′′ = V ′, whose cardinality is still bounded above

by c. We can apply the same argument for the above case using this

choice of V ′′ to again show that the second disjunct is true.

192



– π 6|= φ: Then we must have 0 ∈ V ′ in order to satisfy the semantics of

aUN[c]ψ. Let V ′′ = V ′−{0}. Note that | V ′′ | = | V ′ |−1, so | V ′′ | ≤ c−1.

We have

π(i′) |= ψ ∧ ∀j ∈ N− V ′′ : (1 ≤ j < i′) =⇒ π |= φ

which can be existentially quantified over i′ and V ′′ to obtain

For all cases we have shown that at least one of the three disjuncts holds, and

thus

π |= φUN[c]ψ =⇒ π |= ψ ∨ [φ ∧X(φUN[c]ψ)] ∨X(φUN[c− 1]ψ)

This proves the overall unrolling.

We can see that these semantics are very similar to the semantics of φUψ:

simply a third disjunct was added. Intuitively this third disjunct captures the noise

of the formula. We can dualize the unrolling for φUN[c]ψ to obtain an unrolling for

φRN[c]ψ:

φRN[c]ψ ⇐⇒ ψ ∧
(
φ ∨X(φRN[c]ψ)

)
∧X(φRN[c− 1]ψ)

The semantic unrollings for right-handed noise will require a few more nota-
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tional conveniences.

Definition 35. Let ξ[c] := X(ttR′N[c − 1] tt) be a noisy LTL formula template

such that for a choice of c, ξ[c] is a noisy LTL formula.

Lemma 26 (Encoding c ≥ 1 in noisy LTL). For c ∈ N, Jξ[c]K = JttK if and only if

c ≥ 1, while Jξ[c]K = JffK iff c = 0.

Proof. Lemma 22 gives us that if c = 0, then Jξ[c]K = JffK. For c ≥ 1, we have the

semantics of ξ[c] as:

π |= ξ[c] ⇐⇒ ∃V ⊂ N, |V | ≤ c,∀i ∈ N− V :

π(i) |= tt∨∃j ∈ N :

(0 ≤ j < i) ∧ π(j) |= tt

which is logically equivalent to tt.

Definition 36 (Shifting Violation Set indices). For an arbitrary violation set V ⊆ N

and a δ ∈ N, let shift(V , δ) = {i+ δ : i ∈ V} be the set formed by shifting all indices

in V to the right by δ time points.

Note that shift(V , δ) is itself a violation set of the same cardinality as V , i.e. violation

sets are closed under the shift operator (requiring non-negative δ).

Lemma 27 (Unrolled semantics for φR′N [c]ψ). For non-negative integer c ≥ 0

and noisy LTL formulas φ and ψ, the formula φR′N[c]ψ has the following unrolled
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semantics:

φR′N[c]ψ ⇐⇒
(
φ∧ψ

)
∨
(
φ∧X(ξ[c])

)
∨
(
ψ∧X(φR′N[c]ψ)

)
∨X(φR′N[c−1]ψ)

Proof. Recall the semantics for φR′N[c]ψ:

π |= φR′N[c]ψ ⇐⇒ ∃V ⊂ N, |V | ≤ c,∀i ∈ N− V :

π(i) |= ψ ∨ ∃j ∈ N :

(0 ≤ j < i) ∧ π(j) |= φ

We will show equivalence by proving implication in both directions. First, we will

show

π |= φR′N[c]ψ ← π |=
(
φ∧ψ

)
∨
(
φ∧X(ξ[c])

)
∨
(
ψ∧X(φR′N[c]ψ)

)
∨X(φR′N[c−1]ψ)

Assume the premise; one of the four disjuncts must be true. We will perform a case

analysis on each disjunct:

• φ∧ψ: Then, π |= φ and π |= ψ, so π(0) |= φ and π(0) |= ψ. Let V ′ = ∅. Then,

we have

∀i ∈ N− V ′ : π(i) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ
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Note here that when i ≥ 1, j = 0 is a solution to the existence claim. Observe

that | V ′ | = 0 ≤ c for any c ∈ N. Existentially quantifying V ′, we have

∃V ⊆ N, | V | ≤ c, ∀i ∈ N− V : π(i) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ

which exactly states π |= φR′N[c]ψ.

• φ ∧X(ξ[c]): Then, π |= φ and π |= X(ξ[c]). From Lemma 26 we have c ≥ 1.

Let V ′ = {0}. Note that | V ′ | = 1 ≤ c. Then, the following is true:

∀i ∈ N− V ′ : ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ

We can add a disjunct to the existential term with no impact to logical validity:

∀i ∈ N− V ′ : π(i) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ

And finally we can existentially quantify V ′:

∃V ⊆ N, | V | ≤ c, ∀i ∈ N− V : π(i) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ

which again exactly states π |= φR′N[c]ψ.

• ψ ∧X(φR′N[c]ψ): Then, π(0) |= ψ and π |= X(φR′N[c]ψ), which means that
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π(1) |= φR′N[c]ψ and so we have

∃V ⊆ N, | V | ≤ c,∀i ∈ N−V : π(1)(i) |= ψ∨∃j ∈ N : (0 ≤ j < i)∧π(1)(j) |= φ

and equivalently

∃V ⊆ N, | V | ≤ c,∀i ∈ N−V : π(i+1) |= ψ∨∃j ∈ N : (0 ≤ j < i)∧π(j+1) |= φ

Let V ′ be a violation set that satisfies this property. Let V ′′ = shift(V ′, 1),

with | V ′′ | ≤ c. V ′′ corresponds to the indices in V ′ over π(0) = π, not π(1).

The following holds for V ′′:

∀i ∈ N− V ′′ : π(i) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ

By construction 0 /∈ V ′′, but the above holds for i = 0 because π(0) |= ψ. For

i > 0, we can observe that the above semantics for π(1) |= φR′N[c]ψ covers us.

Existentially quantifying V ′′ gives us

∃V ∈ N, | V | ≤ c, ∀i ∈ N− V : π(i) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ

which, as above, exactly states π |= φR′N[c]ψ.
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• X(φR′N[c− 1]ψ): Then, π(1) |= φR′N[c− 1]ψ, so we have

∃V ⊆ N, | V | ≤ c−1,∀i ∈ N−V : π(i+1) |= ψ∨∃j ∈ N : (0 ≤ j < i)∧π(j+1) |= φ

Let V ′ be a violation set that satisfies this property. Let V ′′ = {0}∪shift(V ′, 1)

with | V ′′ | ≤ c. V ′′ corresponds to the indices in V ′ over π(0) = π, not π(1)

and includes 0 as an index. The following holds for V ′′:

∀i ∈ N− V ′′ : π(i) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ

and existentially quantifying V ′′ gives us

∃V ⊆ N, | V | ≤ c, ∀i ∈ N− V : π(i) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j) |= φ

which, as in all three above cases, exactly states π |= φR′N[c]ψ.

In each of the four cases, we have shown that π |= φR′N[c]ψ. Now, we will show the

converse, i.e.

π |= φR′N[c]ψ → π |= [φ ∧ ψ] ∨ [φ ∧X(ξ[c])] ∨ [ψ ∧X(φR′N[c]ψ)] ∨X(φR′N[c− 1]ψ)

Assume the new premise, π |= φR′N[c]ψ. Let V ′ be a violation set that satisfies

this property. We will show that at least one of the disjuncts of the consequent must

hold based on case analysis of the structure of π and V ′. First we consider if π |= φ
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or not:

• [π |= φ]: Now consider if π(0) |= ψ:

– π(0) |= ψ: Then we have both π |= φ and π |= ψ, thus

π |= (φ ∧ ψ)

which is the first disjunct, so we are done with this case.

– π(0) 6|= ψ: Then for i = 0 the body of the semantics (assumed above to

be true) is not satisfied:

π(0) |= ψ ∨ ∃j ∈ N : (0 ≤ j < 0) ∧ π(j) |= φ ⇐⇒ ff

which means that 0 ∈ V ′ in order to avoid this expression. Because V ′

has at least one element, its size is greater than or equal to 1, and thus

π |= ξ[c]. Because we have assumed also that π |= φ, we have

π |= φ ∧X(ξ[c])

which is the second disjunct, so we are done with this case.

• [π 6|= φ]: Now consider if 0 ∈ V ′:
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– 0 6∈ V ′: Then, for i = 0, the body of the semantics must be true:

π(0) |=ψ ∨ ∃j ∈ N : (0 ≤ j < 0) ∧ π(j) |= φ

π(0) |=ψ ∨ ff (No such j)

π(0) |=ψ

π |=ψ

Let V ′′ = {i− 1 : i ∈ V ′} and π′ = π(1). V ′′ is still a subset of N because

0 is not a member of V ′. Consider the following:

∀i ∈ N− V ′′ : π′(i) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π′(j) |= φ

≡ ∀i ∈ N− V ′′ : π(1)(i) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(1)(j) |= φ

≡ ∀i ∈ N− V ′′ : π(i+ 1) |= ψ ∨ ∃j ∈ N : (0 ≤ j < i) ∧ π(j + 1) |= φ

We want to show that this is true based on our assumption that π |=

φR′N[c]ψ. Because V ′′ is a 1 time point shift from V ′ and π(1) is the

suffix of π (shifted to the same time point), this is the same expression

body of φR′N[c]ψ except that π(0) |= φ is never considered here. However,

because we have assumed that π 6|= φ, we have π(0) 6|= φ and thus we

can safely discount this consideration, and thus we have shown that the
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above holds. Existentially quantifying V ′′ gives us

∃V ⊆ N, | V | ≤ c,∀i ∈ N−V : π(i+1) |= ψ∨∃j ∈ N : (0 ≤ j < i)∧π(j+1) |= φ

≡ ∃V ⊆ N, | V | ≤ c,∀i ∈ N−V : π(1)(i) |= ψ∨∃j ∈ N : (0 ≤ j < i)∧π(1)(j) |= φ

≡ π(1) |= φR′N[c]ψ ≡ π |= X(φR′N[c]ψ)

Thus, we have shown that π |= ψ and π |= X(φR′N[c]ψ), so collectively

π |= ψ ∧X(φR′N[c]ψ)

which is the third disjunct, so we are done with this case.

– 0 ∈ V ′: Let V ′′ = {i − 1 : i ∈ V ′−{0}} be a new violation set with the

removal of 0 as an element and a 1 time step shift. V ′′ is a subset of N

by construction. Note that | V ′′ | = | V ′ | − 1 ≤ c. Also, let π′ = π(1). We

can apply a similar argument as the above case where 0 6∈ V ′ (the only

difference is that we use c− 1 instead of c) to show that

π(1) |= φR′N[c− 1]ψ ≡ π |= X(φR′N[c− 1]ψ)

which is the fourth disjunct, so we are done with this case.

We have shown that over all cases, we can arrive at one of the disjuncts of the
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consequent, thus we have shown overall that the overall disjunction holds and

thus are down with this direciton.

Having shown both directions, we are done.

We can compute the semantics for U′N[c] by dualizing the unrolling of R′N[c], and

then apply the syntactic definitions of F′N[c] and G′N[c] to obtain their unrollings.

The full table of syntactic unrollings for noisy operators is presented in Figure 8.5.

Operator Unrolled Semantics

φUN[c]ψ ψ ∨
(
φ ∧X(φUN[c]ψ)

)
∨X(φUN[c− 1]ψ)

φRN[c]ψ ψ ∧
(
φ ∨X(φRN[c]ψ)

)
∧X(φRN[c− 1]ψ)

φR′N[c]ψ
(
φ ∧ ψ

)
∨
(
φ ∧X(ttR′N[c− 1] tt)

)
∨
(
ψ ∧X(φR′N[c]ψ)

)
∨X(φR′N[c− 1]ψ)

φU′N[c]ψ
(
φ ∨ ψ

)
∧
(
φ ∨X(ffU′N[c− 1] ff)

)
∧
(
ψ ∨X(φU′N[c]ψ)

)
∧X(φU′N[c− 1]ψ)

F′N[c]ψ
(
ψ ∨X(F′N[c]ψ)

)
∧X(F′N[c− 1]ψ)

G′N[c]ψ
(
ψ ∧X(G′N[c]ψ)

)
∨X(G′N[c− 1]ψ)

Figure 8.5: Semantic unrollings of noisy operators in noisy LTL

8.4.2 Tableau Construction

We refer the reader to literature [86, 89] regarding tableau-style constructions, and

present an abridged description here. With a complete set of recursive semantics, we

can perform a tableau-style construction of a Büchi automaton Bφ from a noisy LTL

formula φ. This will allow us to indirectly reason about φ by performing computation

on φ’s representative automaton, much as is done for LTL. In particular, we show

decidability of the language emptiness for a noisy LTL formula φ. Let S(φ) be the set

of subformulas of φ. We create a Büchi automaton Bφ where the set of states of Bφ
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is 2S(φ); that is to say that each state q in the automaton corresponds to a subset of

the subformulas, i.e. q ∈ 2S(φ). We mark the state corresponding to {φ} as the initial

state and perform a traversal of the graph, creating edges as we visit new states.

Upon visiting a state q = {si}, we compute the conjunction of all si, i.e. ψ =
∧
si.

We then put ψ into a semantically equivalent formula ψ′ of a normal form which is a

disjunction of conjuncts, and where each disjunct has as conjuncts (negated) literals

and exactly one conjunction of subformulas guarded by X. This normal form is

then used to construct an edge in Bφ for each disjunct, where the source state of the

new edge if q, the destination state is the state corresponding to the set of conjoined

subformulas that are guarded, and the edge label is the conjunction of the (negated)

literals. To achieve this normal form we apply propositional logic manipulation

(De Morgan’s law, distributivity of ∧/∨), apply the unrolling semantics of modal

operators, and group guarded terms using distributivity of X with ∧.

As an example, let the visited state be q = {aUN[2]b} (a single subformula).

Then ψ = aUN[2]b and is put in the normal form

ψ′ =
(
b ∧X(tt)

)
∨
(
a ∧X(aUN[2]b)

)
∨
(
tt∧X(aUN[1]b

)

The result lets us create three edges from q, as shown in Figure 8.6. Note that the

labels on the edges are propositional formulas, which can be seen as a compressed

representation of individual transitions containing a single subset of the AP . Edge e
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can be taken if the next element of the path sequence π satisfies (using propositional

semantics) the propositional label of e.

{aUN[2]b}

{tt}

{aUN[1]b}

b

a

tt

Figure 8.6: Tableau method applied to state q = {aUN[2]b}.

Having shown how to construct a corresponding Büchi Bφ from a noisy LTL

formula φ, solving the language emptiness problem for φ can be performed by first

compute Bφ and then determining if Bφ has any accepting inputs. This can be

done by first computing the set of strongly connected components of Bφ, and then

determining if the connected component containing the input state can reach any

non-trivial connected component containing an accepting state. Construction of

the Büchi could in the worse case have us traverse all 2S(φ) states corresponding to

subsets of subformulas of φ. We note that our notion of subformula here is extended;

if we have noisy LTL formula φO[c = i]ψ with O ∈ {UN,RN,U
′
N,R

′
N}, then all

formulas of the set {φO[c = j]ψ : 0 ≤ j < c} are considered subformulas. This

extends to the unary noisy operators {F′N,G′N} from their syntactic construction.

8.4.3 Observations about Tableau Construction

Some observations about the unrolling semantics presented in Section 8.4.1 can also

be leveraged to provide a better worse-case analysis. We can achieve some savings
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when computing strongly connected components of Büchi automaton Bφ. While

noramlly an SCC algorithm starts by grouping all states into a single partition, we

can avoid this general assumption by considering how transitions are created in Bφ.

Each unrolling summarized in Figure 8.5 of a noisy operator contains only noise

parameters c or c − 1, and thus the iterative unrolling of subformulas will result

in a monotonic decrease of noise parameters until the subformulas ground out to

traditional LTL as shown in Lemma 21.

From this, we can reason that Bφ will never have a transition created starting

from a lower noise formula to a higher noise formula of the same type with match-

ing subformulas. Put another way, we know that tableau-style constructions never

generate transitions from state q = {si} to state q′ = {tj} if some s ∈ q is a proper

subformula of some t ∈ q′, and by our extended notion of subformula we can observe

a monotonic decrease of noise. All of this is to say that because we cannot re-enter

areas of more elevated noise, when we “step down” a level we cannot reenter through

some series of transitions and thus have moved to another strongly connected com-

ponent. Strongly connected components exist only in one “level,” and thus we can

limit our computation of strongly connected components by ignoring all transitions

that bridge levels of noise.

205



8.4.4 Tableau Examples

We provide a number of example formulas and their corresponding Büchi automaton.

We have implemented the tableau construction described above in C++. We made

use of the Spot [88] platform (v.2.8.1) to handle the parsing of input formulas as

well as the syntactic representation of the constructed Büchi automata. To support

the proper parsing and construction of a noisy LTL formula, we added support for

all noisy operators introduced in Definition 33.

Example 1: φ = aU b

For φ = aU b, we have a very simple two-state system. First, a state for φ:

φ = φ1 = aU b ≡ b ∨ (a ∧X(aU b))

≡ [b ∧X(tt)] ∨ [a ∧X(aU b)]

≡ [b ∧X(tt)] ∨ [a ∧X(φ1)]

thus there are two out-edges from this state defined by each disjunct. One of the

out-edges transitions to the state for tt:

tt ≡ X(tt)
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φ1 = a U b

a

ttb

Σ

Figure 8.7: Büchi for φ = aU b

thus there is a single out-edge from this state (leading back to itself) which takes

unrestricted input (all elements of the input alphabet Σ). Because this state has

no outgoing edges (which would correspond to no pending obligations), it can be

marked an accepting state. A graphical representation is given in Figure 8.7.

Example 2: φ = aUN[c = 2]b

Next we consider a lax left noisy example of Until, namely φ = aUN[c = 2]b. We

start with φ1 = φ:

φ1 ≡ [b] ∨ [a ∧X(aUN[c = 2]b)] ∨ [X(aUN[c = 1]b)]

≡ [b ∧X(tt)] ∨ [a ∧X(φ1)] ∨ [X(aUN[c = 1]b)]

which leads us to φ2 = aUN[c = 1]b:

φ2 ≡ [b] ∨ [a ∧X(aUN[c = 1]b)] ∨ [X(aUN[c = 0]b)]

≡ [b ∧X(tt)] ∨ [a ∧X(φ2)] ∨ [X(aU b)]
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φ1 = (a UN[c=2] b)

a

φ2 = (a UN[c=1] b)

Σ

tt

b

a

φ3 = a U b

Σ

b

a

b
Σ

Figure 8.8: Black edges represent the “standard” transitions that would exist in a
non-noisy version (i.e. φ = aU b). Red edges represent transitions between noisy
state operators of different parameter value c. Green edges represent transitions
leading to the accepting state.

and finally φ3 = aU b:

φ3 ≡ b ∨ [a ∧X(aU b)]

≡ [b ∧X(tt)] ∨ [a ∧X(φ3)]

again with the standard tt state:

tt ≡ X(tt)

Putting this all together we can construct the 4-state Büchi automaton for φ =

aUN[c = 2]b, as shown graphically in Figure 8.8.
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Example 3: φ = (aU b) U c

We now consider the more complex scenario of φ = (aU b) U c, where we have

nested (standard) LTL operators. We start with φ1 = φ:

φ1 ≡ [c] ∨ [(aU b) ∧X((aU b) U c)]

≡ [c] ∨ [(aU b) ∧X(φ1)]

Here, the subformula φ2 = (aU b) is not covered by an immediately preceding X,

so we must now compute its own unrolling, and return to the final unrolling of φ1:

φ2 ≡ b ∨ [a ∧X(aU b)]

≡ [b ∧X(tt)] ∨ [a ∧X(φ2)]

We can now continue the unrolling for φ1:

φ1 ≡ [c] ∨ [φ2 ∧X(φ1)]

≡ [c] ∨ [(b ∨ [a ∧X(φ2)]) ∧X(φ1)]

≡ [c] ∨ [b ∧X(φ1)] ∨ [a ∧X(φ2) ∧X(φ1)]

≡ [c ∧X(tt)] ∨ [b ∧X(φ1)] ∨ [a ∧X(φ1 ∧ φ2)]
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φ1 = (a U b) U c

b
φ1 ∧ φ2a

tt
c

φ2 = a U b

a

b

b

a ∧ c
a

b ∧ c
Σ

Figure 8.9: φ = (aU b) U c. Green edges as before are transitions that lead to the
accepting state.

which leads us to the state for φ1 ∧ φ2:

φ1 ∧ φ2 ≡
(

[c ∧X(tt)] ∨ [b ∧X(φ1)] ∨ [a ∧X(φ1 ∧ φ2)]
)
∧
(

[b ∧X(tt)] ∨ [a ∧X(φ2)]
)

≡
(

[c] ∨ [b ∧X(φ1)] ∨ [a ∧X(φ1 ∧ φ2)]
)
∧
(

[b] ∨ [a ∧X(φ2)]
)

≡ [b ∧ c] ∨ [a ∧ c ∧X(φ2)] ∨ [b ∧X(φ1)]∨

[a ∧ b ∧X(φ1 ∧ φ2)] ∨ [a ∧ b ∧X(φ1 ∧ φ2)] ∨ [a ∧X(φ1 ∧ φ2)]

≡ [b ∧ c] ∨ [a ∧ c ∧X(φ2)] ∨ [b ∧X(φ1)] ∨ [a ∧X(φ1 ∧ φ2)]

Figure 8.9 shows the graphical representation of this.

Example 4: φ = (aU b) UN[c = 2]c

We now look at adding noise to the previous scenario, specifically on the outer-level

modality, namely φ = (aU b) UN[c = 2]c. We start with φ1 = φ:

φ1 ≡ [c] ∨ [(aU b) ∧X((aU b) UN[c = 2]c)] ∨ [X((aU b) UN[c = 1]c]

≡ [c] ∨ [(aU b) ∧X(φ1)] ∨ [X((aU b) UN[c = 1]c]
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We pause to unroll φ2 = aU b:

φ2 ≡ [b] ∨ [a ∧X(aU b)]

as well as φ3 = (aU b) UN[c = 1]c = φ2 UN[c = 1]c:

φ3 ≡ [c] ∨ [φ2 ∧X(φ2 UN[c = 1]c)] ∨ [X(φ2 UN[c = 0]c)]

≡ [c] ∨ [φ2 ∧X(φ3)] ∨ [X(φ2 U c)]

We then recurse on unrolling φ4 = (aU b) U c. From the previous example, we have

that this unrolling is

φ4 ≡ [c] ∨ [b ∧X(φ4)] ∨ [a ∧X(φ2 ∧ φ4)]

Also from the previous example, we have the unrolling for φ2 ∧ φ4:

φ2 ∧ φ4 ≡ [b ∧ c] ∨ [b ∧X(φ4)] ∨ [a ∧ c ∧X(φ2)] ∨ [a ∧X(φ2 ∧ φ4)]

We can now resume the unrolling for φ3 by inserting the unrolling for φ2:

φ3 ≡ [c] ∨ [(b ∨ (a ∧X(φ2))) ∧X(φ3)] ∨ [X(φ4)]

≡ [c] ∨ [b ∧X(φ3)] ∨ [a ∧X(φ2 ∧ φ3)] ∨ [X(φ4)]
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And we can return to finish the unrolling for φ1:

φ1 ≡ [c] ∨ [([b] ∨ [a ∧X(φ2]) ∧X(φ1)] ∨ [X(φ3)]

≡ [c] ∨ [b ∧X(φ1)] ∨ [a ∧X(φ1 ∧ φ2)] ∨ [X(φ3)]

We now can compute the unrolling for the state φ2 ∧ φ3:

φ2 ∧ φ3 ≡
[
b ∨ (a ∧X(φ2))

]
∧
[
[c] ∨ [b ∧X(φ3)] ∨ [a ∧X(φ2 ∧ φ3)] ∨ [X(φ4)]

]
≡ [b ∧ c] ∨ [b ∧X(φ3)] ∨ [a ∧ b ∧X(φ2 ∧ φ3)] ∨ [b ∧X(φ4)]∨

[a ∧ c ∧X(φ2)] ∨ [a ∧ b ∧X(φ2 ∧ φ3)] ∨ [a ∧X(φ2 ∧ φ3)] ∨ [a ∧X(φ2 ∧ φ4)]

≡ [b ∧ c] ∨ [b ∧X(φ3)] ∨ [b ∧X(φ4)]∨

[a ∧ c ∧X(φ2)] ∨ [a ∧X(φ2 ∧ φ3)] ∨ [a ∧X(φ2 ∧ φ4)]

Finally, we can unroll φ1 ∧ φ2:

φ1 ∧ φ2 ≡
[
[c] ∨ [b ∧X(φ1)] ∨ [a ∧X(φ1 ∧ φ2)] ∨ [X(φ3)]

]
∧
[
[b] ∨ [a ∧X(φ2)]

]
≡ [b ∧ c] ∨ [a ∧ c ∧X(φ2)] ∨ [b ∧X(φ1)] ∨ [a ∧ b ∧X(φ1 ∧ φ2)]∨

[a ∧ b ∧X(φ1 ∧ φ2)] ∨ [a ∧X(φ1 ∧ φ2)] ∨ [b ∧X(φ3)] ∨ [a ∧X(φ2 ∧ φ3)]

≡ [b ∧ c] ∨ [a ∧ c ∧X(φ2)] ∨ [b ∧X(φ1)]∨

[a ∧X(φ1 ∧ φ2)] ∨ [b ∧X(φ3)] ∨ [a ∧X(φ2 ∧ φ3)]
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φ1 = (aUb)UN[c=2]c

b

φ3 = (aUb)UN[c=1]c

Σ

φ1 ∧ φ2

a

tt

c

φ2 = a U b

a

b
b

φ4 = (aUb)Uc

Σ

φ2 ∧ φ3
a

c

b

φ2 ∧ φ4
a

c

b

a ∧ cb

a

a

b ∧ c

a ∧ cb

b

a

a

b ∧ c

a ∧ c

b

a

b ∧ c

Σ

Figure 8.10: φ = (aU b) UN[c = 2]c. Edge colors are as in the past few figures.
Note that when compared to Figure 8.9, we have effectively produced parameterized
copies of states referring to the outer modality of φ.

Which concludes the final unrolling with all temporal modalities captured by

a X operator. Figure 8.10 shows the graphical representation of this.

Example 5: φ = aR b

Let φ1 = φ:

φ1 ≡ b ∧ [a ∨X(aR b)]

≡ [a ∧ b] ∨ [b ∧X(aR b)]

≡ [a ∧ b ∧X(tt)] ∨ [b ∧X(φ1)]
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φ1 = a R b

b

tta ∧ b

Σ

Figure 8.11: φ = aR b.

Graphically, this is shown in Figure 8.11

Example 6: φ = aRN[c = 2]b

Let φ1 = φ:

φ1 ≡ [a ∧ b ∧X(aRN[c = 1]b)] ∨ [b ∧X(aRN[c = 2]b)]

≡ [a ∧ b ∧X(aRN[c = 1]b)] ∨ [b ∧X(φ1)]

Unrolling φ2 = aRN[c = 1]b:

φ2 ≡ [a ∧ b ∧X(aRN[c = 0]b)] ∨ [b ∧X(aRN[c = 1]b)]

≡ [a ∧ b ∧X(aR b)] ∨ [b ∧X(φ2)]

Unrolling φ3 = aR b:

φ3 ≡ [a ∧ b] ∨ [b ∧X(φ3)]
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φ1 = a RN[c=2] b

b

φ2 = a RN[c=1] ba ∧ b

b

φ3 = a R ba ∧ b

b

tta ∧ b

Σ

Figure 8.12: φ = aRN[c = 2]b.

Returning to “anonymize” φ1 and φ2:

φ1 ≡ [a ∧ b ∧X(φ2)] ∨ [b ∧X(φ1)]

φ2 ≡ [a ∧ b ∧X(φ3)] ∨ [b ∧X(φ2)]

Figure 8.12 shows the graphical representation.

Example 7: φ = (aR b) R c

Let φ1 = φ:

φ1 ≡ [(aR b) ∧ c] ∨ [c ∧X((aU b) U c)] ≡ [(aR b) ∧ c] ∨ [c ∧X(φ1]

Recurse by unrolling φ2 = aR b:

φ2 ≡ [a ∧ b] ∨ [b ∧X(φ2)]
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φ1 = (a R b) R c

c φ2 = a R bb ∧ c

tt

a ∧ b ∧ c

b

a ∧ b

Σ

Figure 8.13: φ = (aR b) R c.

Going back to φ1:

φ1 ≡ [([a ∧ b] ∨ [b ∧X(φ2)]) ∧ c] ∨ [c ∧X(φ1]

≡ [a ∧ b ∧ c] ∨ [b ∧ c ∧X(φ2)] ∨ [c ∧X(φ1]

Figure 8.13 shows the graphical representation.

Example 8: φ = (aR b) RN[c = 2]c

Let φ1 = φ:

φ1 ≡ [(aR b) ∧ c ∧X((aR b) RN[c = 1]c)] ∨ [c ∧X(φ1)]
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Unrolling φ2 = (aR b) RN[c = 1]c:

φ2 ≡ [(aR b) ∧ c ∧X((aR b) RN[c = 0]c)] ∨ [c ∧X(φ2)]

≡ [(aR b) ∧ c ∧X((aR b) R c)] ∨ [c ∧X(φ2)]

Unrolling φ3 = aR b:

φ3 ≡ [a ∧ b] ∨ [b ∧X(φ3)]

Unrolling φ4 = (aR b) R c:

φ4 ≡ [a ∧ b ∧ c] ∨ [b ∧ c ∧X(φ3)] ∨ [c ∧X(φ4)]

Returning to φ2:

φ2 ≡ [φ3 ∧ c ∧X(φ4)] ∨ [c ∧X(φ2)]

≡ [
(

[a ∧ b] ∨ [b ∧X(φ3)]
)
∧ c ∧X(φ4)] ∨ [c ∧X(φ2)]

≡ [a ∧ b ∧ c ∧X(φ4)] ∨ [b ∧ c ∧X(φ3 ∧ φ4)] ∨ [c ∧X(φ2)]
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And returning to φ1:

φ1 ≡ [φ3 ∧ c ∧X(φ2)] ∨ [c ∧X(φ1)]

≡ [
(

[a ∧ b] ∨ [b ∧X(φ3)]
)
∧ c ∧X(φ2)] ∨ [c ∧X(φ1)]

≡ [a ∧ b ∧ c ∧X(φ2)] ∨ [b ∧ c ∧X(φ2 ∧ φ3)] ∨ [c ∧X(φ1)]

Unrolling φ2 ∧ φ3:

φ2 ∧ φ3 ≡
(

[a ∧ b ∧ c ∧X(φ4)] ∨ [b ∧ c ∧X(φ3 ∧ φ4)] ∨ [c ∧X(φ2)]
)
∧
(

[a ∧ b] ∨ [b ∧X(φ3)]
)

≡ [a ∧ b ∧ c ∧X(φ4)] ∨ [a ∧ b ∧ c ∧X(φ3 ∧ φ4)] ∨ [a ∧ b ∧ c ∧X(φ2)]∨

[a ∧ b ∧ c ∧X(φ3 ∧ φ4)] ∨ [b ∧ c ∧X(φ3 ∧ φ4)] ∨ [b ∧ c ∧X(φ2 ∧ φ3)]

≡ [a ∧ b ∧ c ∧X(φ4)] ∨ [a ∧ b ∧ c ∧X(φ2)]∨

[b ∧ c ∧X(φ3 ∧ φ4)] ∨ [b ∧ c ∧X(φ2 ∧ φ3)]

Unrolling φ3 ∧ φ4:

φ3 ∧ φ4 ≡
(

[a ∧ b] ∨ [b ∧X(φ3)]
)
∧
(

[a ∧ b ∧ c] ∨ [b ∧ c ∧X(φ3)] ∨ [c ∧X(φ4)]
)

≡ [a ∧ b ∧ c] ∨ [a ∧ b ∧ c ∧X(φ3)] ∨ [a ∧ b ∧ c ∧X(φ4)]∨

[a ∧ b ∧ c ∧X(φ3)] ∨ [b ∧ c ∧X(φ3)] ∨ [b ∧ c ∧X(φ3 ∧ φ4)]

≡ [a ∧ b ∧ c] ∨ [a ∧ b ∧ c ∧X(φ4)] ∨ [b ∧ c ∧X(φ3)] ∨ [b ∧ c ∧X(φ3 ∧ φ4)]
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φ1 = (a R b) R N[c=2] c

c

φ2 = (a R b) R N[c=1] c

a ∧ b ∧ c φ2 ∧ φ3

b ∧ c

c

φ4 = (a R b) R c

a ∧ b ∧ c φ3 ∧ φ4

b ∧ c

φ3 = a R b

b

tta ∧ b
b ∧ c

c

a ∧ b ∧ c

a ∧ b ∧ c

a ∧ b ∧ c

b ∧ c

b ∧ c

b ∧ c
a ∧ b ∧ c

b ∧ c

a ∧ b ∧ c

Σ

Figure 8.14: φ = (aR b) RN[c = 2]c

Figure 8.14 shows the graphical representation.

8.5 Window-based Noisy LTL

The above syntax and semantics for noisy LTL employ violation sets bounded in

terms of raw counts of time points where noise can occur. In some instances this may

not be the most desirable way of expressing deviation. For example, the formula

aUN[3]b requires an unspecified, finite range of time where property a is satisfied at

each point (allowing up to 3 time points where a may be omitted), up until property

b is satisfied once. As no bounds is placed on the length of the a range, the choice of

c = 3 as the noisy parameter may have distorted implications when considered over

different sequences where the lengths of the a ranges differ drastically. We consider

an alternative manner to represent noise, using a notion of a sliding window over the

data stream π. Such approaches have been researched in the past decade and a half

(at least) in the database community [95, 96] and have found increasing importance

with the growing size of data sets.
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The intuition behind using a sliding window is to create fixed-width, over-

lapping frames along π on top of normative ranges from LTL. In each such frame

the noisy version of the requirement is locally enforced. Noisy operators using a

sliding window have an additional noise parameter w, which is the frame width

(e.g. UN[c, w]). For example, aR′N[c = 3, w = 100]b would require that for every

100-width frame, until a is observed, we would allow at most 3 missing values of b

in the frame. We first introduce some notation to make expressing the semantics of

window-based noisy LTL easier.

Definition 37 (Sliding Window Notation). For the purposes of a sliding window,

We define the following terms:

• For i, w ∈ N, let window(i, w) = {i, . . . , i + w − 1}, i.e. the indices of the

w-width window starting at time point i.

• For w, f ∈ N, let before(w, f) = {0, . . . , f−w} be the set of all starting indices

for w-width windows that do not include indices past f .

Definition 38 (Sliding Window Syntax and Semantics). For a fixed set of atomic

propositions AP, sliding-window noisy LTL has the following syntax and semantics:

Syntax Syntax is the same as in Definition 33, with noise parameters [c, w]
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replace noise parameter [c]:

φ ::= a | ¬φ | φ ∧ φ | Xφ | φUφ LTL (base)

| ff | tt | φ ∨ φ | φRφ | Fφ | Gφ LTL (derived)

| φUN[c, w]φ | φRN[c, w]φ left-noisy operators

| φU′N[c, w]φ | φR′N[c, w]φ | F′N[c]φ | G′N[c]φ right-noisy operators

Semantics The semantics for the traditional LTL fragment are the same as

presented in the raw count case. The semantics for the noisy window operators are:

π |= φUN[c, w]ψ iff ∃V ⊆ N,∃i ∈ N :

π(i) |= ψ ∧ ∀j ∈ before(w, i) :

(| V ∩window(j, w)| ≤ c) ∧ ∀k ∈ N− V :

(k ∈ window(j, w)) =⇒ π(k) |= φ

π |= φR′N[c, w]ψ iff ∃V ⊆ N,∀i ∈ N :

(| V ∩window(i, w)| ≤ c) ∧ ∀j ∈ window(i, w)− V :

π(j) |= ψ ∨ ∃k ∈ N : (0 ≤ k < j) ∧ π(k) |= φ
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The laxness is enforced per window frame. The duals RN[c, w] and U′N[c, w] can be

computed as normal (as well as F′N[c, w] and G′N[c, w]), which requires redundancy

per window frame. One could also equivalently employ a ratio-based noisy operator

here (denoted with r). We observe that here the choice between raw-count c or

ratio-based r as a noisy parameter is inconsequential; for the above semantics one

can switch between the conventions [c, w] and [r, w] using r = c
w

.

8.5.1 Decidability for Sliding Window Semantics

We pause here to consider possible methods of computing decidability for noisy

LTL under sliding window semantics. As suggested before, De Bruijn graphs have

the natural support for a sliding window. One thought would be to encode the

semantics of a sliding window frame as a De Bruijn graph represented as a Büchi

automaton and then compose it with a de-noised version of the input formula to

produce a joint automata representing semantics of both the sliding window AND

the temporal logic formula. In general we would have a representation of multiple

De Bruijn windows, one for each noisy operator with window semantics.

Definition 39 (De Bruijn Graph). For a set of symbols Σ with |Σ| = m and n ∈ N,

a De Bruijn graph DB(m,n) = (V,E) is a directed graph of mn vertices, defined

explicitly as follows:

• The vertex set V = Σn is the set of all n-length sequences of symbols from Σ.

• An edge (u, v) belongs to the edge set E ⊆ V × V if and only if there exists
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some word w ∈ Σn−1 and two symbols a, b ∈ Σ such that u = aw and v = wb.

We can consider the edge labeled with b.

Some possible structures that could be of use as as follows. For a noisy LTL

formula φ ∈ ΦAP and a path sequence π ∈ (2AP)ω, consider:

• Let φ(π) =


1 if π |= φ

0 otherwise

be an indicator variable for whether or not π

models φ,

• Let πφ = φ(π(0))φ(π(1)) . . . φ(π(n)) . . . be the infinite sequence of bits such

that the bit at time index i indicates whether or not the suffix of π starting

at index i (itself an infinite sequences) satisfies φ or not.

• For noise parameter c with window size w, let G = DB(2, w). Let G′ be

the subgraph of G formed by deleting all vertices containing c + 1 or more

0’s in its sequence, as well as all incident edges. L(G′), the set of all infinite

sequences generated by G′, is exactly the set of all infinite sequences that

satisfy the sliding window semantics. Note that we can use L(·) here as defined

for Büchi automaton by first converting G′ into a Büchi BDB(φ) by using the

implied transition label as mentioned in Definition 39 and marking all states

as accepting. For a particular choice of c and w, we know the exact number

of states and edges of G′ = (V,E):

– |V | =
∑c

i=0

(
w
i

)
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– |E| = 2(
∑c−1

i=0

(
w
i

)
) + 1.5

(
w
c

)
= 2|V | − 0.5

(
w
c

)
= O(|V |)

Observe that for any node u containing at most (c − 1) 0’s, there is in G′

exactly two edges (u, v1) and (u, v2) with u as a source node. However, for

any node u which has exactly c 0’s in its sequence, the edge leaving labeled by

a 0 would have led to a node that was deleted from G if and only if the first

symbol of u’s sequence is a 1. Thus by symmetry half of these nodes have one

outgoing edge and the other half have two and thus on average there are 1.5

outgoing edges.

Using such a De Bruijn construct, we could compose it with with a de-noised version

of a noisy LTL formula-turned Büchi to produce a joint Büchi automaton. The De

Bruijn construct would capture the sliding window semantics for legal (as defined by

the noisy parameters) frameshifts while the de-noised noisy LTL formula captures

the LTL semantics. The joint Büchi would capture the semantics of both. For

example, if AP = {a, b}, and φ = aUN[c = 2, w = 5]b, then we would do the

following:

1. Let φ′ = aU b be the de-noised LTL formula. Compute Bφ. This represents

the LTL window semantics.

2. Compute BDB(φ) as above from DB(2, 5). This represents the window seman-

tics.

3. Compute the compose Bφ ∩BDB(φ).
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The language of this composed Büchi would be equivalent to the set of se-

quences modeling φ. This resulting Büchi would then be used in the normal fashion

for model checking (see 3.2.1). This approach currently only is tractable for formulas

where noisy operators have only propositional formulas as their noisy subformula,

the reason being that individual indices of πφ are computable in O(1) time as se-

quences are read. This is in general not the case when an arbitrary subformula is

used. Chapter 9 lists addressing this limitation as future work.

8.5.2 Window-Based Example Formulas

We provide some additional example formulase here for window-bases semantics.

• sick dayUN[c = 3, w = 30]end of school - a student is never sick for more

than 3 days on a given 30 day interval.

• knockRN[c = 2, w = 10]door closed - The door remains closed unless you

knock at least 3 times within 10 time units.

• knockR′N[c = 2, w = 10]door closed - The door is closed most of the time

until you knock.

• hungryU′N[r = 0.5, w = 2]eat - I will be hungry until I eat enough within a 2

hour window.

• F′N[c = 3, w = 20]light - At some future time point, the light will be on at

least 4 times within the next 20 time steps.
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• G′N[r = 0.99, w = 1000] service up - for any 1000 consecutive time units, the

service is up 99% of the time. 1

8.6 Conclusion

In this chapter we have explored the notion of partial invariants as a means to

characterize degrees of uncertainty in a system and developed a novel temporal

logic termed “noisy Linear Temporal Logic” to aid in characterizing it. We showed

how to convert formulas from the logic to equivalent Büchi automata, which allows

for well-established standard LTL to be applicable in order to solve the usual formal

methods problems such as language emptiness and verification. We also explored

an alternative version of noisy LTL which used sliding windows in order to better

capture properties of interest. have We shown decidabilty for a fragment of this

variant.

1This models the notion of High Availability for a service.
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Chapter 9: Conclusion

9.1 Summarized Results of Problems Addressed

This document describes the work done developing a framework for learning tempo-

ral properties from data streams, leveraging research conducted both in the model

checking and machine learning domains. The problem domains and motivation were

provided in Chapter 1. Related work was presented in Chapter 2, while more re-

lated work more foundational to our own research was presented with more in-depth

detail in Chapter 3. The remaining chapters presented our research contributions

scoped of this thesis. We provide here a per-chapter summary of the specific prob-

lems considered along with our resulting solutions, including some discussion on the

evidence/artifacts encountered that support our findings.

9.1.1 Chapter 4 — Model-Based Invariant Extraction from Test Cases

An automated methodology for mining putative system invariants from test cases

was proposed. Putative invariants were mined using an iterative approach incor-

porating data mining and coverage-guided test case generation. The technique was
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applied in a pilot study involving a MATLAB/Simulink implementation of a vehi-

cle cruise control, where invariants were recovered and compared against a natural

language documentation specifying system behavior. Some invariants were found to

exist that were not present in the document specification, and some were found to

be missing from the original specification. This justified the use of the methodology

as an automated technique for comparing model-based implementations to earlier

representations such as design documents earlier in product development.

9.1.2 Chapter 5 — LTL Query Checking

This chapter presented an automaton-based solution to LTL query checking prob-

lem. This method adapted the well-known automaton-theoretic approach to LTL

model checking by extending the standard conversion of LTL formulas into automata

to accommodate a representation for LTL queries into query automata. Such a mod-

ification was shown to be done syntactically, and thus existing tools for constructing

Büchi automaton from LTL formulas could be used (in our case LTL3BA). The sub-

problem of shattering edges in a Büchi automaton was also presented and explored.

Sample models from the NuSMV model checker distribution were taken and run

against an instrumented NuSMV which produced explicit Kripke structures for the

models. Query checking was then performed for a number of safety properties. It

was shown that the complexity of the algorithm was O
(
|M| · 22|AP|

)
. However,

in situations where a single minimal shattering set exists, a greedy algorithm was
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presented that performs in O
(
|M| · |AP| · 2|AP|

)
.

9.1.3 Chapter 6 — Finite LTL

This chapter presented a novel representation of linear temporal logic using finite-

sequence semantics in order to naturally support and model properties over se-

quences that occur in the real world. We presented syntax and semantics for the

novel logic, show a number of theoretical results concerning Finite LTL, and provide

a tableau-style construction to product a finite automaton from a Finite LTL for-

mula, analogous to the well-known tableau constructions for traditional LTL that

construct a Büchi automaton from an LTL formula. We also discuss the potential

for several optimizations that could be made to the construction which improve

the running time of the construction as well as the size of the resulting automa-

ton. Lastly, we provide empirical results from our implementation of the tableau

construction.

9.1.4 Chapter 7 — Finite LTL Query Checking

This chapter combined some of the insights drawn from the previous two chapters,

integrating the problem of LTL query checking and the problem of supporting fi-

nite sequence semantics of the model. We present work done on Finite LTL query

checking, and assume we are provided not with a model to query check but instead

with a set of its executions. The subproblem of shattering was revisited with extra

229



considerations taken due to the nature of the finite sequence semantics being used,

and a number of theoretical results were provided. We also reported on a set of

empirical results.

9.1.5 Chapter 8 — Formal Verification of Noisy Sequences

In the last chapter detailing our research contributions to this document, we ex-

plored the problem of representing uncertainty and deviation in data streams from

some intended baseline behavior. We introduced Noisy LTL, a derivative of LTL

whose robustness to deviation is parameterized for added flexibility. We provided a

number of theoretical results both regarding Noisy LTL itself as well as relating it

to traditional LTL. We also provided a construction from a Noisy LTL formula to

Büchi automaton, which enables model checking of Noisy LTL for data streams.

9.2 Future Work by Chapter

This section discusses possible future lines of research for content presented in this

thesis, broken down by chapter. While outside the scope of the thesis itself, much

of the future work listed here can be considered natural extensions of the thesis

material.
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9.2.1 Chapter 4 Future Work

• Alternative coverage criteria - The iterative refinement methodology pre-

sented in Chapter 4 presented a template framework. As such, we leave as

future work the exploration of alternative approaches different coverage crite-

ria would have on the quality of invariant sets.

• Expand expressiveness of requirements - The language of association

rules is somewhat limited compared to the full expressibility that a temporal

logic offers. For the purposes of our project, we were effectively mining the

temporal logic fragment Γ =⇒ XnewState. As future work we leave the

exploration of different requirement-generation strategies which would permit

the inference of a class of requirements at the level of (perhaps) a full temporal

logic. As mentioned in Section 4.4.2, the choice of utilizing Magnum Opus re-

stricts invariant expression, especially in the case where ranged invariants have

a semantic meaning attached (especially for real-valued inputs and outputs).

If, given a data set where such meaning is possible, we would need to make

use of an alternative data mining approach, such as an adaptation of Daikon

to suite our needs.
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9.2.2 Chapter 5 Future Work

• Relax query restrictions - We have presented a graph-based technique for

performing query checking on system models. Currently we have only explored

formulas in which a single missing subformula is allowed. We leave as future

work the extension to queries involving multiple missing subformulas, as well

as queries in which the missing subformula can appear both positively and

negatively in the query.

• Exploit edge label relationships - When currently considering sets of edge

labels, we assume that they are i.i.d.. However, some preliminary empirical

findings suggest that oftentimes we have distinct edge labels that are logically

related. For example, in a set E of edge labels we might have two propositional

queries φ[var] and ψ[var] such that φ[var] =⇒ ψ[var]. In this case, we can

group φ[var] and ψ[var] as a single group action to shatter or not shatter.

Exploring such relationships could help to reduce search time of a shattering

solution.

• Explore edge label orderings - Currently when building the sets of edge

labels to determine a shattering condition we choose labels at random. Differ-

ent orderings could be explored, such as biasing selection of edge labels based

on some metrics of the graph. Raw frequency is one option, one could also

consider computing some notion of edge centrality to each label and ranking
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based on that metric. Solving edge shattering in general is still computation-

ally challenging; the goal would be to explore which heuristic works best under

which classes of scenarios.

9.2.3 Chapter 6 Future Work

• Additional optimizations to tableau construction - Our tableau con-

struction is to our knowledge the first such construction for a LTL logic defined

over finite semantics. The general tableau approach for constructing automa-

ton from a temporal logic formula presents computational challenges (the size

of the resulting machine Mphi is exponential in the number of subformulas of

φ); consequently research has focused on optimizations and heuristics to the

construction. While our novel approach does leverage some of the more com-

mon improvements (on-the-fly construction of Qφ and symbolic representation

of transitions), a number of additional heuristics could be leveraged from exist-

ing standard LTL literature to the finite-semantic tableau construction. Fur-

thermore, we leave as future work the exploration of additional improvements

that could be made due to the finite nature of our logic, such as the ability to

syntactically determine acceptance (which we already have presented).
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9.2.4 Chapter 7 Future Work

• Alternative representations for Π - Our query checking methodology first

converts data streams into finite automata. These automata are linear, rep-

resenting only a single execution. Solving the query checking problem is then

done on a per-automaton basis and a consensus is taken before reporting an

overall solution.

Instead, one could consider exploring an alternative approach where, after

computing the individual PNFA Bπi , one produces a composed automaton Bc

formed from all of the individual automata. Such an approach would only

require solving a single query checking problem rather than one per stream.

There are a number of ways to perform the composition, we leave as future

work exploring the impact adopting such an approach would have.

• Alternative satisfaction for QC(Π, φ[var]) - We have explored the query

checking problem under finite semantics with both a single data stream and

multiple data streams. For the latter case, there are a number of ways one

could choose to define a set of streams to satisfy a formula. In Chapter 7,

we have required that all streams in the set must satisfy the solution to the

query checking problem. One could consider having a looser requirement,

perhaps with a fractional cutoff (e.g. a simple majority) where at least some

specified portion of the streams satisfy the proposed solution. Such a property
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could be expressed as a partial invariant of the system using some form of

noisy LTL, for example. We leave as future work the exploration of these

alternative definitions for satisfying the query checking problem over multiple

data streams.

9.2.5 Chapter 8 Future Work

• Noisy LTL operators as discrimination functions - First, the idea of

partial invariants bears resemblance to decision points made during during

decision trees. One could possibly explore the benefits of allowing noisy LTL

formulas as discriminant functions used in building a decision tree during a

learning process for improved accuracy.

• Expand decidability for sliding window semantics - At present, decid-

ability for sliding window semantics of noisy LTL is known only in cases where

the noised subformula is a propositional formula (no temporal modalities).

The current challenge lies in the notion of composition: the Büchi represent-

ing the de-noised formula expects a stream of alphabet symbols, while the De

Bruijn graph expects a stream of (in the general case) noisy LTL properties.

This may be attainable with some application of fixpoint theory by applying

some transformation on-the-fly to the stream of alphabet symbols. As future

work, one could seek to expand this to support a larger fragment of noisy LTL

(or full noisy LTL).
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9.3 Final Remarks

In summary, the work presented in this document explored different aspects and

approaches to reason and learn about a system when taking real world limitations

such as finiteness or noise into consideration. This was done either by studying the

system directly or through observations made from its executions. We believe that

through formal investigation of a system’s data streams, we are able to effectively

transfer that knowledge to the underlying system.
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and Aarti Gupta. Probabilistic temporal logic falsification of cyber-physical sys-
tems. ACM Transactions on Embedded Computing Systems (TECS), 12(2s):95,
2013.

240



[36] Paulo Tabuada and Daniel Neider. Robust linear temporal logic. CoRR,
abs/1510.08970, 2015.

[37] Philippe Schnoebelen. The complexity of temporal logic model checking.
In Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Za-
kharyaschev, editors, Advances in Modal Logic 4, papers from the fourth con-
ference on ”Advances in Modal logic,” held in Toulouse (France) in October
2002, pages 393–436. King’s College Publications, 2002.

[38] E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” revis-
ited: on branching versus linear time temporal logic. J. ACM, 33(1):151–178,
1986.

[39] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear
temporal logics. J. ACM, 32(3):733–749, 1985.

[40] Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent pro-
grams satisfy their linear specification. In Mary S. Van Deusen, Zvi Galil, and
Brian K. Reid, editors, Conference Record of the Twelfth Annual ACM Sympo-
sium on Principles of Programming Languages, New Orleans, Louisiana, USA,
January 1985, pages 97–107. ACM Press, 1985.

[41] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to au-
tomatic program verification (preliminary report). In Proceedings of the Sym-
posium on Logic in Computer Science (LICS ’86), Cambridge, Massachusetts,
USA, June 16-18, 1986, pages 332–344. IEEE Computer Society, 1986.

[42] Moshe Y Vardi. An automata-theoretic approach to linear temporal logic. In
Logics for concurrency, pages 238–266. Springer, 1996.

[43] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM
J. Comput., 1(2):146–160, 1972.
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Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and An-
thony Scopatz. Sympy: symbolic computing in python. PeerJ Computer Sci-
ence, 3:e103, January 2017.

[94] J. Cichon, A. Czubak, and A. Jasinski. Minimal büchi automata for certain
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