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Smart Grid is a system that accommodates different energy sources, including solar, 

wind, tidal, electric vehicles, and also facilitates communication between users and 

suppliers. This study tries to picture the interaction among all new sources of energy 

and market, besides managing supplies and demands in the system while meeting 

network’s limitations.  First, an appropriate energy system mechanism is proposed to 

motivate use of green and renewable energies while addressing current system’s 

deficiencies. Then concepts and techniques from game theory, network optimization, 

and market design are borrowed to model the system as a Stackelberg game. Existence 

of an equilibrium solution to the problem is proved mathematically, and an algorithm 

is developed to solve the proposed nonlinear bi-level optimization model in real time. 

Then the model is converted to a mathematical program with equilibrium constraints 

using lower level’s optimality conditions. Results from different solution techniques 

including MIP, SOS, and nonlinear MPEC solvers are compared with the proposed 



  

algorithm. Examples illustrate the appropriateness and usefulness of the both proposed 

system mechanism and heuristic algorithm in modeling the market and solving the 

corresponding large scale bi-level model. To the best knowledge of the writer there is 

no efficient algorithm in solving large scale bi-level models and any solution approach 

in the literature is problem specific. This research could be implemented in the future 

Smart Grid meters to help users communicate with the system and enables the system 

to accommodate different sources of energy. It prevents waste of energy by optimizing 

users’ schedule of trades in the grid. Also recommendations to energy policy makers 

are made based on results in this research. This research contributes to science by 

combining knowledge of market structure and demand management to design an 

optimal trade schedule for all agents in the energy network including users and 

suppliers. Current studies in this area mostly focus either in market design or in demand 

management side. However, by combining these two areas of knowledge in this study, 

not only will the whole system be more efficient, but it also will be more likely to make 

the system operational in real world. 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

INTEGRATED DYNAMIC DEMAND MANAGEMENT AND MARKET 

DESIGN IN SMART GRID    

 

By 

 

 

Mona Asudegi 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Professor Ali Haghani, Chair 

Professor Peter Cramton 

Professor Michael O. Ball 

Professor Alireza Khaligh 

Professor Paul Schonfeld  

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Mona Asudegi 

2014 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

Dedication 

To my lovely parents, Zohreh and Akbar, who sacrificed their comfort for my 

dreams.  



 

 

iii 

 

Acknowledgements 

I would like thank my advisor, Dr. Ali Haghani. I deeply appreciate all the time and 

effort he has invested in my education. I tremendously benefited from his instruction, 

assistance, support, and genuine care. He encouraged me through all stages of this 

research and gave me the space for investigating new areas of knowledge. It has been 

a pleasure working with him. 

My thanks also go to all the members of my committee, Dr. Michael O. Ball, Dr. Peter 

Cramton, Dr. Alireza Khaligh, and Dr. Paul Schonfeld for their constructive feedback 

and valuable guidance. Their smart advices helped me through this multidisciplinary 

research. 

I would also like to thank my friends and fellow graduate students in our research group 

for all their care and support. Also thanks to all my friends in Maryland, who were 

always supportive and made it a second home for me here in US. 

But above all, I want to express my deep gratitude to my beloved family, who always 

supported me in all stages of my life. I am grateful to my parents. Without their life-

long love, unconditional support, and faith in me, I would have never had the power 

and confidence for reaching my dreams. The ones who sacrificed their peace for my 

peace of mind. The ones whom I owe everything in my life to. And also many thanks 

to my kind and caring brother who is always out there for me no matter what.  

  



 

 

iv 

 

Table of Contents 

Dedication ..................................................................................................................... ii 

Acknowledgements ...................................................................................................... iii 

Table of Contents ......................................................................................................... iv 

List of Tables .............................................................................................................. vii 

List of Figures ............................................................................................................ viii 

Chapter 1: Introduction ................................................................................................. 1 

Motivation and Background ..................................................................................... 1 

Problem Statement .................................................................................................... 7 

Research Context and Scope ................................................................................... 11 

Research Objectives ................................................................................................ 13 

Contributions........................................................................................................... 13 

Dissertation Outline ................................................................................................ 14 

Chapter 2: Literature Review and Background .......................................................... 16 

Market Equilibrium ................................................................................................. 16 

Demand Response Program .................................................................................... 20 

Chapter 3: Market Mechanism and Modeling ............................................................ 31 

Problem Structure ................................................................................................... 31 

Dealing with One Large and Complex System: Layers of Smart Grid .............. 31 

Market Mechanism and Assumptions ................................................................. 35 

Problem Formulation .............................................................................................. 43 



 

 

v 

 

Preliminaries and Problem Parameters ............................................................... 44 

Decision Variables .............................................................................................. 46 

Two-Way Model: Model with Trades in both levels .......................................... 47 

One-Way Model: Model with Trades solely in ISO level .................................. 55 

Chapter 4: Solution Methodology and Validation ...................................................... 56 

Background ............................................................................................................. 56 

Two-Way model ..................................................................................................... 58 

MPEC Model ...................................................................................................... 58 

MIP Model .......................................................................................................... 63 

SOS Model .......................................................................................................... 68 

Existence of Solution .......................................................................................... 70 

Solution Algorithm ............................................................................................. 84 

One-Way model ...................................................................................................... 89 

Existence of Solution .......................................................................................... 89 

Solution Algorithm ............................................................................................. 96 

Chapter 5:  Results .................................................................................................... 100 

Data Generation .................................................................................................... 100 

Numerical Results ................................................................................................. 105 

Sensitivity Analysis .............................................................................................. 119 

Chapter 6:  Conclusions and Future Work ................................................................ 124 

Conclusions and Recommendations ..................................................................... 124 

Future Research Paths ........................................................................................... 128 



 

 

vi 

 

Appendices ................................................................................................................ 130 

Appendix A: .......................................................................................................... 130 

Bibliography ............................................................................................................. 137 

 

 

 



 

 

vii 

 

List of Tables 

Table 1 Household appliances energy consumption ..................................................... 8 

Table 2 Summary of literatures on energy market equilibrium modeling .................. 21 

Table 3 Summary of literatures on demand response modeling ................................. 28 

Table 4 Comparison of this research’s specification to current literature .................. 30 

Table 5 Summary of one leader multi-follower Stackelberg game: Two-Way model 55 

Table 6 Summary of one leader multi-follower problem: One-Way Model .............. 55 

Table 7 Summary of one leader multi-follower Stackelberg game- MPEC Two-Way 

model........................................................................................................................... 62 

Table 8 Summary of one leader multi-follower Stackelberg game- MIP Two-Way 

model........................................................................................................................... 68 

Table 9 Summary of the solution algorithm for the Two-Way model ....................... 87 

Table 10 Percentage of Different Demand Category ................................................ 102 

Table 11 Scenarios’ Settings ..................................................................................... 105 

Table 12 Computational Statistics and Objectives for Different Scenarios ............. 106 

Table 13 Results for Small Sized Network ............................................................... 131 

Table 14 Results for Medium Sized Network........................................................... 133 

Table 15 Results for Large Sized Network ............................................................... 135 

 



 

 

viii 

 

List of Figures 

Figure 1 Decision makers in the system and their flow of influence .......................... 10 

Figure 2 Electric power markets: national overview .................................................. 32 

Figure 3 PJM control regions ...................................................................................... 32 

Figure 4 Electricity market structure and roles ........................................................... 34 

Figure 5 Market structure in Smart Grid ..................................................................... 38 

Figure 6 SDR’s decision problem at each point of time for each appliance............... 46 

Figure 7 BGF’s decision problem at each point of time ............................................. 46 

Figure 8 ISO’s decision problem at each point of time at each node ......................... 47 

Figure 9 SDRs schematic consumption utility function ............................................. 53 

Figure 10 Flowchart for the solution algorithm for the Two-Way model .................. 86 

Figure 11 Flowchart for the solution algorithm for the One-Way model ................... 97 

Figure 12 Solution time for different solution algorithms for One-Way Model ...... 107 

Figure 13 Solution time for different solution algorithms for Two-Way Model ...... 107 

Figure 14 Comparison of HHI index for different algorithms in One-Way model .. 109 

Figure 15 Comparison of HHI index for different algorithms in Two-Way model . 109 

Figure 16 Comparison of ISO Obj. for different algorithms in One-Way model ..... 110 

Figure 17 Comparison of ISO Obj. for different algorithms in Two-Way model .... 111 

Figure 18 Comparison of PAR index for different algorithms in One-Way model . 112 

Figure 19 Comparison of PAR index for different algorithms in Two-Way model . 113 



 

 

ix 

 

Figure 20 Demand distribution in Two-Way Model comparing to original hourly 

demands in Scenario 9 .............................................................................................. 113 

Figure 21 ISO objective for different solution methodologies in Two-Way Model 114 

Figure 22 ISO objective for different solution methodologies in Two-Way Model 114 

Figure 23 SDRs average objective in One-Way model ............................................ 115 

Figure 24 SDRs average objective in Two-Way model ........................................... 116 

Figure 25 BGFs average objective in One-Way model ............................................ 116 

Figure 26 BGFs average objective in Two-Way model ........................................... 117 

Figure 27 HHI index for One-Way and Two-Way models for all scenarios ............ 118 

Figure 28 PAR index for One-Way and Two-Way models for all scenarios ........... 118 

Figure 29 SDRs and BGFs average objective difference ((Two-Way Obj.) - (One-Way 

Obj.)) ......................................................................................................................... 119 

Figure 30 Sensitivity over SDRs' storage capacity-Scenario 9- Two-Way model ... 120 

Figure 31 Sensitivity over SDRs' generation capacity-Scenario 9- Two-Way model

................................................................................................................................... 121 

Figure 32 Sensitivity over Thermal Limit-Scenario 9- Two-Way Model ................ 121 

Figure 33 Sensitivity over Time of Use flexibility-Scenario 9- Two-Way model ... 123 

  



 

 1 

Chapter 1: Introduction 

Motivation and Background  

Carbon Dioxide is one of the major reasons of global warming. Using electricity 

generated from fossil fuels means CO2 is being released into the atmosphere. Fossil 

fuels not only are not environmentally friendly, but also have increasing prices due to 

their limited availability. A comprehensive interviews supplemented by academic 

literature (Sovacool, 2009), summarized the four most important mechanisms in 

promoting renewable energy and energy efficiency as: eliminating subsidies, altering 

electricity prices, forcing utilities to adopt renewable energies (FIT policies), and 

increasing the public information and supporting the low income families. In recent 

decade demand for green power has increased significantly. Currently about one third 

of US electricity customers have the option to purchase green power directly from 

marketer or utility company (Bird, Wüstenhagen et al., 2002). Contribution to 

environment and slowing global warming is not only about using more 

environmentally friendly sources of energy, but is also about energy consumption 

management. Schweitzer and Tonn (Schweitzer and Tonn, 2005) surveyed several 

energy efficiency projects and concluded that the least effective measures were related 

to carpools, interest reduction programs, procurement, and home energy rating systems. 

While the biggest opportunities were in improvements of  thermal integrity of building 

shells and envelopes, electric equipment, and lighting, along with better energy fuels, 

and employment of energy management controls for shifting demands. Demand 

Response (DR) programs help consumers and environment through scheduling and 



 

 2 

assigning their consumptions to optimal time periods of day with more available supply 

capacities.  

Different studies have discussed and examined importance and value of DR programs 

(Bushnell, Hobbs et al., 2009, Cappers, Goldman et al., 2010, Chao, 2010, Gottwalt, 

Ketter et al., 2011, Kowli, Negrete-Pincetic et al., 2010). Electricity DR programs 

mainly follow two approaches. One is minimizing consumption and the other is shifting 

demands from peak hours to non-peak hours. However, shifting demands without 

considering real time pricing, which is dependent on market, cannot make a significant 

contribution to managing demands. Research has shown the benefits of dynamic 

pricing in DR programs (Bushnell, Hobbs et al., 2009, Chao, 2010). A study on realistic 

generated load profiles in Germany showed peak demand is shifted from a peak time 

to another time if day ahead flat and hourly price is used in DR instead of Real Time 

Pricing (RTP). The study also depicted that DR with indirect participation of 

households through retailers has less incentive for users  (Gottwalt, Ketter et al., 2011). 

Consequently it is important to have an integrated demand scheduling and real time 

pricing model for demand response management in the power grid. Although several 

approaches and techniques are introduced for defining RTP (Samadi, Mohsenian-Rad 

et al., 2010), there is a major issue in implementing RTP in DR programs due to 

communication and exchange of information between consumers and the market. 

Studies relate low penetration of the RTP in DR programs to poor marketing and 

limitations in technical assistance to help participants manage price volatility (Albadi 

and El-Saadany, 2008). Although enrolled customers in DR programs in USA helped 

with about 38,000 MW peak load reduction in 2008, an empirical study implied only a 
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small share (less than 10%) of total potential peak reduction is in real time rate DR 

programs and concluded installing more interval meters for residential units and small 

commercials to inform the customers of the real time rates would overcome the issue 

(Cappers, Goldman et al., 2010).  

Pricing rules are mainly defined according to the economy and structure of market. 

Energy market is usually designed in two steps: forward and spot market (Baldick, 

Helman et al., 2005). Forward market is a beforehand (usually day ahead) market in 

which long term contracts are set, while spot market is real time in which contingencies 

and uncertainties are carried out. Studies suggest that forward market reduces the risks, 

mitigates market power, reduces incentives for manipulating prices, and coordinates 

new investments (Ausubel and Cramton, 2010, Kamat and Oren, 2004). However, it is 

important that spot market sends reliable price signals to forward market (Kamat and 

Oren, 2004). Roles and market power in electricity market affect pricing rules. O’Neill 

(2009), divides market process into three stages. The first stage is market rules which 

are decided by voting with commission approval. The second stage is Independent 

System Operator (ISO) who allocates rights and costs of transmission and 

interconnection services. Finally, the third stage is about auction market including 

sellers and buyers in which same rights are assumed for expressing marginal cost and 

value for both sides. Monopoly market with one seller has the minimum social welfare 

while oligopoly market with few sellers and perfectly competitive market with several 

sellers result in higher social welfare because of their competitive environment 

(Nanduri and Das, 2009). Defined functions and hierarchy among different stages and 

level of competition in the system determine electricity market structure (Ralph and 
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Smeers, 2006). The structure defines whether pricing model would be based on demand 

or supply function, locational marginal prices (LMP), bidding offers, or other 

definitions. 

The DOE & ORNL (Laboratory, 2008) concluded through their surveys that the most 

effective energy efficiency policies are combinations of policies addressing multiple 

issues. Having only feed-in-tariff (FIT), which is long term contracts or payments to 

renewable energy producers, without removing subsidies and implementing real time 

pricing interferes with the idea of users conserving energy or selling it back to the 

system. Moreover, removing subsidies on conventional energy sources only and not 

implementing more realistic prices in the system wouldn’t help changing usage 

behaviors. That is because countries are not motivated enough to not use cheaper 

sources of international resources compared to domestic resources. They found giving 

information to people is important. Usually decisions on type of energy appliances are 

made by ones who are not paying the bills and have contradictory objectives to ones 

who pay the bills (like landlords). People just look at lump sum values of the bills and 

have no idea about details of their consumptions. That means implementing realistic 

prices should be followed by giving information to consumers. When Norway 

increased prices suddenly by 43% due to shortage of capacity in 2003, consumers only 

decreased their demands by 2.3% (Aune, 2007).  

“subsidies for electricity related fuels have existed at least since 1880s, alternative rate 

designs since the 1950s, feed in tariff, system benefits charges, and the rest since the 

1970s and 1980s” (Sovacool, 2009). Investing in FIT but not implementing more 

realistic prices does not motivate consumers to invest on new technologies. To 



 

 5 

implement new pricing rules, people need to receive information. Moreover, as long as 

consumers do not trust the source of information they do not change their behavior. 

And so persuasion is very difficult. “So what seems to be lacking is not the availability 

of robust public policy mechanisms, but the political and social will to implement them” 

(Sovacool, 2009). So all these factors are connected to each other like a cycle and lack 

of any of them would break the cycle. 

Challenges discussed here could be resolved by implementing a system with two-way 

communication among participants in the power grid and market. Two-way 

communication facilitates information exchange and motivates interaction among all 

participants in the grid which may lead to shaving peak demands and managing storage 

capacities more efficiently. Participants in two-way communication could be individual 

costumers or retailers who help customers take most advantage of their money and 

resources. The main goal in this system would be improving the cost value of energy 

consumption and accommodation of environmentally friendly energy resources while 

providing financial benefit. This system is called Smart Grid. A Smart Grid would 

employ real-time, two-way communication technologies to allow users to connect 

directly with power suppliers and energy market. The U.S. National Institute of 

Standards and Technology (NIST) defines “The term “Smart Grid” refers to a 

modernization of the electricity delivery system so it monitors, protects and 

automatically optimizes the operation of its interconnected elements – from the central 

and distributed generator through the high-voltage transmission network and the 

distribution system, to industrial users and building automation systems, to energy 

storage installations and to end-use consumers and their thermostats, electric vehicles, 
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appliances and other household devices. The Smart Grid will be characterized by a 

two-way flow of electricity and information to create an automated, widely distributed 

energy delivery network. It incorporates into the grid the benefits of distributed 

computing and communications to deliver real-time information and enable the near-

instantaneous balance of supply and demand at the device level.” (Von Dollen, 2009). 

The U.S. National Institute of Standards and Technology (NIST) also measures DR 

programs and consumer energy efficiency as the highest priorities in the overview of 

the Smart grid: “Market information is currently not available to the customer domain. 

Without this information, customers cannot participate in the wholesale or retail 

markets. In order to include customers in the electricity marketplace, they need to 

understand when opportunities present themselves to bid into the marketplace and how 

much electricity is needed.”1 Implementing DR programs in Smart Grid could be 

effective in improving capacity margins and providing attractive alternatives to 

generation resources’ additions and transmission upgrades (Kowli, Negrete-Pincetic et 

al., 2010). The German industry group, BDI, has claimed demand side management 

technologies as the mainstream by 2015 in the roadmap of the transition from current 

energy infrastructure to Smart Grid (Block, Bomarius et al., 2008). They highlighted 

the development of “applications and services implementing the coordination of the 

energy grid on the economic level” as one of the main challenges in this way. This 

dissertation is focused on development of such an application. A novel energy system 

mechanism along with its mathematical model and solution algorithm for an integrated 

                                                 

1 Report to NIST on the Smart Grid Interoperability Standards Roadmap, Page 95, Section 6.2.1 
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dynamic demand response scheme in spot market for Smart Grid is developed. 

Optimization and game theory frameworks are employed as a basis to support the 

formulations and analysis.  

Problem Statement 

This research develops an advanced model integrating an appropriate market structure 

with corresponding demand management system for Smart Grid. As the future of 

energy and electricity market in the world and USA (Energy, 2009), Smart Grid 

includes several decision makers at different levels whose strategies affect the system. 

A hybrid market is chosen in this study to model this system which has a decentralized 

and more sophisticated design, but a more favorable structure after failure of California 

design (Baldick, Helman et al., 2005). Spot market clearing procedure is designed as a 

model of hierarchal optimization between ISO and Big Generating Firms (BGFs). 

Based on a survey from eleven market modeling experts on priorities for future market 

model developments, system operator should be seen as a strategic agent (Neuhoff, 

Barquin et al., 2005).  

To design an appropriate system for the future Grid, consideration of specific 

characteristics of Smart Grid is inevitable. First of all, there would be smart homes with 

smart appliances and meters in Smart Grid. Although some appliances in a house such 

as refrigerators, have strict time of use some others, such as dishwashers and dryers, 

have flexible time of use. Distribution of energy consumption among different 

appliances and devices in a household is demonstrated in Table 1. As it conveys, 78% 

of energy usage belongs to 12 main categories of appliances which mostly have 

demands with flexible time of use.  
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Table 1 Household appliances energy consumption2 

Appliance % of household energy consumption kWh/year/household 

Refrigerator 13.7 1,462 

Air conditioning 16.0 1,446 

Heating 10.1 3,524 

Water heating 9.1 2,552 

Lightening 8.8 940 

Cloth dryer 5.8 1,079 

Freezer 3.5 1,150 

TV 2.9 313 

Oven 2.9 314 

Dishwasher 2.5 512 

Computer 1.5 318 

Washer 0.9 120 

Residual 22.3 47,838 

 

Using real time pricing information provided by smart meters to users, flexible 

demands could be shifted from peak periods to non-peak periods. Moreover, 

establishing Smart Grid will increase popularity of plug-in electric vehicles on the 

roads. Electrical vehicles should be able to be plugged into the network in different 

locations and time instances for charging or discharging electricity which affects 

electricity network stability drastically. Finally, subscribers to Smart Grid could have 

independent roles as consumer, supplier, storage owner or a combination of two or 

                                                 

2 U.S. Energy Information Administration (July 2012) 
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three of these roles. That means they need to know whether they should consume, sell 

or store electricity at each time step. These unique characteristics introduce new 

decision making problems into energy systems. Subscribers to the system need to know 

not only when, but also where to buy/sell their extra energy for/from their appliances 

and vehicles from/to the grid in a way to meet their demands while being cost efficient. 

Some households, large schools, hospitals, companies or restaurants which have large 

solar panels on their roofs, or small wind turbines in their field might generate much 

more electricity than what they normally consume. This would be an option for them 

to sell the extra energy to the grid at the market price or they could store it for their 

future demands in their large scale batteries. Two-way communication in Smart Grid 

enables subscribers or their retailers to participate in the energy trade through smart 

meters which could be programmed beforehand or controlled by the retailer. 

Participants in the trade face a two dimensional decision making problem:  location and 

schedule of their demands, supply, and storage based on their individual preferences 

and real time prices. Given the notice, dependency among these decision making 

problems due to elasticity of price to total supply and demand in the grid, a game 

approach should be incorporated in the model. So in the proposed model each 

participant looks for his best strategy in a non-cooperative game as his schedule of 

demand and supply to maximize his payoff based on his utility function and real time 

market price. 

There are three main categories of decision makers in this problem (Figure 1): 

Independent System Operator (ISO), Big Generating Firms (BGF), and all Subscribers 

to the Demand Response program (SDR) in the system. Each decision maker has its 
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own objective, constraints, limitations, and solves its own problem. However, each 

decision affects others’ decisions. 

 

Figure 1 Decision makers in the system and their flow of influence 

ISO operates the transmission and distribution network and clears market as an 

independent decision maker. ISO decides on amounts of allowable trades among all the 

participants in the market based on the specifications of the system and limitations of 

the network. This decision making problem will be referred to as ISO’s decision 

problem in this study.  

Big Generating Firms, BGF, are the firms owning large generating facilities or the ones 

capable of providing large amounts of supply to the system such as large heat engines, 

large wind turbines, etc. BGF’s decisions can highly impact the system through 

availability of their generating capacity which determines market price. Their objective 

is to maximize their individual revenue while adhering to their capacity and network 

limitations. Since the number of BGFs is usually more than one, they compete against 

each other in an oligopoly market. 

The last category includes majority of decision makers who subscribe to the Demand 

Response program in the system and participate in the trades directly through 
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programming their smart meters or having a retailer to act on their behalf through 

controlling their smart meters and appliances. These players are referred to as SDR in 

this study. Their objective is to maximize their individual benefit, which here is defined 

as their individual welfare, while scheduling their demand and supply dynamically 

according to network limitations. 

Modeling Smart Grid in its real size is almost impossible considering all the 

computational difficulties. In Chapter 3, an approach is proposed to deal with the large 

size and complexity of this system while solving the problem in real world size.  

Research Context and Scope 

The broad context for this research is design of an integrated market mechanism and 

demand management model in Smart Grid at a zonal level. In this research interaction 

among participants in the network under the influence of the market specifications and 

network characteristics is studied. 

Current demand management studies are mostly appropriate for the old power grid 

(Albadi and El-Saadany, 2008). Few available studies that are related to Smart Grid 

(Chen, Kishore et al., 2011, Kiani Bejestani and Annaswamy, 2010, Mohsenian-Rad, 

Wong et al., 2010) do not consider and cover main characteristics of Smart Grid 

including location based decision making, two-way trades for each subscriber at each 

time step, incorporation of distributed storage capacities in the network, and most 

importantly including a market structure considering all these characteristics.  

In this study a novel integrated dynamic market mechanism is used to propose a 

demand response model for location-based scheduling of demand, supply and storage 

of subscribers in the Smart Grid based on real time pricing and players’ preference 
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function in a game theoretic approach while the market is being managed by the system 

operator at a zonal level.  

Computational tractability of optimization models and long term modeling capability 

of equilibrium models make their combination an appropriate approach to this problem. 

Few works attempted to solve multi player non cooperative games and  they mostly 

used iterative methods (Nanduri and Das, 2009). In this study we attempt to solve large 

scale multi player non cooperative game through optimization techniques. The game 

among participants is modeled as an optimization problem for each individual to 

maximize its benefit, while the market structure is modeled as a one-leader multi-

follower Stackelberg game through bi-level programming. Existence and validation of 

the approach is then proved through mathematical techniques. A decomposition based 

algorithm is used to develop a real time algorithm solution for the model in large scale. 

Mathematical proofs and solutions from the corresponding Mathematical Program with 

Equilibrium Constraints (MPEC), mixed integer, and SOS integer models are used to 

evaluate the proposed solution algorithm. Finally, the proposed model is evaluated on 

several case studies and sensitivity analysis is conducted on the parameters to show 

their effects on the decisions of the participants in the system. 

The proposed model makes Smart Grid run easier and promotes a certain level of 

disaggregation in such a large system. The results of this research could be 

implemented in the future Smart Grid meters to help users and market operators 

communicate together and enable accommodation of different resources of energy in 

the network. It would help preventing waste of energy by optimizing users’ schedule 

of trades in the grid. Moreover, recommendations to energy policy maker can be made 
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upon some of the results. This research is mostly focused on the operation side of the 

demand response program in the future smart grid system.  Therefore, the market 

design is not detailed in all its aspects. 

Research Objectives 

This research has the following main objectives: 

 Propose a dynamic demand response model for location-based scheduling of demand, 

supply and storage of all subscribers in the Smart Grid which considers real time 

pricing and a preference function of the users in a game theoretic approach at a zonal 

level. 

 Propose an integrated dynamic market equilibrium and demand response model for 

Smart Grid to manage and control the zonal energy market in the system. 

 Develop a solution approach for the identified problems using mathematical 

techniques  

Contributions 

There are many future suggestions based on current game theory studies in both 

demand side management and micro grid distribution networks in Smart Grid which 

are summarized in (Saad, Han et al., 2012). This dissertation which is a combination 

of both micro-grid distribution and demand side management covers most of 

recommendations on future extensions to the state of the art mentioned in the current 

literature.  

This dissertation will make the following contributions to the energy market and 

demand management state of the art: 
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 Designing a dynamic game for Demand Response program in the Smart Grid which 

contributes to the state-of-the-art through: 

o Location-based decision making 

o Two-way trades for each subscriber at each time step 

o Incorporating distributed storage capacities in the network 

o Joint scheduling and storage optimization 

o Considering multiple energy sources beside multiple consumers 

o Enabling customers to optimize tradeoff between waiting time and billing 

charges for using appliances 

o Considering strategic energy source whose objective is not aligned with that 

of the consumers 

o Applicability of the model for Smart Grid by considering its specific 

characteristics 

 Designing an appropriate market mechanism to address current system’s deficiencies 

 Integrating market design and demand response program in a way to be applicable to 

Smart Grid at the zonal level 

 Developing games with players with different and opposing strategies 

 Developing solution algorithm for solving the proposed large scale Bi-level problem  

 Conducting sensitivity analysis on exogenous parameters 

Dissertation Outline 

Following the introduction in Chapter 1 which presented the motivations, problem 

statement, scope, objectives and research contributions, Chapter 2 reviews the related 

research in the literature. Chapter 3 is dedicated to defining market mechanism and 

problem formulation.  It presents assumptions, definitions, and the mathematical model 
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for the problem. Chapter 4 introduces the solution methodology and validates the 

approach. It also describes the different evaluation methods to be used in this study. 

Chapter 5 documents different case studies and numerical results. And finally, Chapter 

6 concludes the dissertation with a summary, conclusion, recommendations and future 

research path. 
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Chapter 2: Literature Review and Background 

This dissertation is based upon combining two areas of research, energy market 

equilibrium and demand response modeling, which was rarely done previously. In this 

section these two areas of knowledge are reviewed and finally the only work related to 

combination of the two areas is discussed. 

Market Equilibrium 

Recently there has been a fair amount of literature devoted to finding market 

equilibrium. Market structure and regulations define the modeling approach for finding 

market equilibrium. Approaches mostly fit into one of these categories: 

Cournot/Bertrand models, Supply Function Equilibrium (SFE), Conjecture Supply 

Function (CSF), Stackelberg, and Auction based models. 

In Cournot/Bertrand models, agents compete on quantity/price strategies for the Nash 

equilibrium which is the best response of an agent to its opponents’ strategy. Jing-Yuan 

and Smeers (1999) modeled an oligopolistic Cournot game for regulated transmission 

prices and generating firms and used Variational Inequality technique for solving it. 

Yao and Oren (2004) modeled a Stackelberg game for two settlement markets with 

forward market in the upper level and Cournot generating firms and Cournot ISO in 

the lower level while ISO decides on import/export quantities at nodes. They 

implemented two computational approaches: one based on penalty interior point 

algorithm (PIPA) and the other based on steepest descent approach. Yao and Willems 

(2005) capped forward prices and spot prices separately and concluded there is less 

incentive for generators to commit to forward contracts due to spot price caps, but there 
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are more incentives due to forward price caps. They showed spot zonal prices decrease 

under both cap settlements compared to single settlement cases. Since this problem 

could be decomposed to generators, they concluded there is no importance of 

generators’ ownership in the model. However, when transmission constraints were 

nonbinding, equilibrium gave uniform nodal prices that were systematically higher 

than Cournot equilibrium price corresponding to a single market with the aggregated 

system demand function. So they concluded that import/export variables for ISO as 

strategic variables are not satisfactory. To overcome the problem, Yao and Adler 

(2008)  modeled a stochastic Stackelberg game for two settlement markets with 

forward market in the upper level. They assumed Cournot generating firms and 

Bertrand ISO in the lower level. Strategic variables for ISO were locational price 

premiums. They then solved the Equilibrium Problems with Equilibrium Constraints 

(EPEC) using their iterative approach on Belgian electricity network. 

In SFE models firms compete over their offer curve strategies for the Nash equilibrium. 

Hobbs and Metzler (2000) proposed an oligopolistic game among supplier firms which 

was modeled as a MPEC. Leading firm in the upper level decided on the intercept of 

the bidding supply function and in the lower level ISO solved the quadratic problem 

for the single commodity Spatial Price Equilibrium (SPE) and linearized DC Optimal 

Power Flow (OPF) problem for all other firms to find their generation and demand 

quantity and transmission allowances. They used penalty interior point algorithm for 

solving the MPEC model. In their multi firm problem each firm solves its MPEC 

individually. 
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In CSF models, generating firms conjecture regarding their rival firm’s sales’ 

adjustment in response to price changes. CSF first used in power market in a work from 

Day and Hobbs (2002). This type of modeling is more flexible in large size 

transmission networks due to their smooth function; however, they have more 

behavioral parameters to calculate which should be estimated through empirical studies 

or sensitivity analysis. They claim CSF is a more realistic model for imperfection 

competitions for 3 main reasons: 1) CSF includes Cournot conjecture models as a 

special case. 2) Cournot models cannot be used when price elasticity in demand is zero. 

3) Unlike supply function equilibrium models, CSF equilibriums can be used for large 

scale models.   

In Stackelberg games one or more agents are leaders and other firms and agents will be 

followers. Decision on the hierarchy of decision makers in the model depends on 

assumptions and market organization defined in the problem (Ralph and Smeers, 2006). 

These problems are mostly modeled as EPEC models and leader decision problem is 

in the upper level while followers are in the lower level. Gabriel and Leuthold (2010) 

modeled an energy market with network constraints as a Stackelberg problem with a 

leading firm in the upper level and ISO as follower. The equilibrium constraints of the 

MPECs were converted to integer constraints and solved for a fifteen node network of 

the Western European grid. Pozo and Contreras (2011) formulated strategic bidding 

problem in pool based electricity market for joint price and quantity bids in multi agent, 

multi period and multi block games. They proposed finding multiple Nash equilibriums 

through an iterative procedure by adding a constraint emitting the hole containing 
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previous solution. They linearized EPEC using strong duality for the lower level and 

used Fortuny-Amat representation and a binary expansion for the bilinear expression.  

In auction based models, a bidding mechanism and market clearing procedure are 

designed. Gross and Finlay (1999) proposed a sealed bid auction model for determining 

the optimal bidding strategies of a bidder in a competitive electricity generation market. 

The only aspect they considered was generation strategy for generators. 

Attaviriyanupap and Kita (2005) proposed a bidding strategy for a day-ahead market. 

Bidding parameters for markets are determined through a non-convex optimization 

which they solved through evolutionary approach. They considered both single and 

double auctions. Double auction models for market mechanism in electricity and heat 

network has also been introduced in different studies (Block, Neumann et al., 2008, 

Block, Collins et al., 2009, Carsten, John et al., 2010). Zou (2009) designed a double 

auction mechanism to control the market power by transferring payments among 

participants based on their contributions to social welfare. Vytelingum and Ramchurn 

(2010) developed a market mechanism based on continuous double auction which 

manages congestion through pricing the electricity flow. They decided on quantities in 

an optimization approach and prices through a double auction. Wen and David (2001) 

assumed suppliers/large consumers bid a linear supply/demand function and 

maximized social welfare. They tried to find the optimal coefficients in the functions 

through stochastic optimization modeling using Monte Carlo approach. In another 

study, Lamparter and Becher (2010) proposed an agent-based double auction bidding 

mechanism for Smart Grid to maximize social welfare. Duan and Deconinck (2010) 

introduced a multi-agent model for the market in smart Grid considering all different 
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agents in 3 phases: activation, negotiation and conclusion. They examined different 

types of auctions in the simulation such as Frist Price Sealed Bid (FPSB), Vickery, 

English, and Dutch.  

There are also studies on energy market based on optimization models for one firm, 

and simulation based models (Marks, 2006, Ventosa, Baıllo et al., 2005) which do not 

necessarily look for an equilibrium in the market. 

The studies on energy market equilibrium and their main characteristics are 

summarized in Table 2. 

Demand Response Program 

Users or system operators can support the grid by adjusting loads in time. Demand 

response refers to costumers’ consumption adaptation to market either through shifting 

demands or reducing demands. Different demand response programs have been 

designed and implemented in energy and specifically electricity networks (Rahimi and 

Ipakchi, 2010).  

Demand response programs can be divided into two main categories (Albadi and El-

Saadany, 2008, Bollen, 2011): incentive based and price based programs. In incentive 

based programs customers receive either credit or money for reducing their 

consumption or shifting it. However in price based programs customers match their 

consumptions based on the prices in the system. Incentives can be either in form of 

curtailment programs or market based programs which can reward participants with 

bill credits, money rewards, or discounted rates. However, price based demand 

response programs are based on non-flat rates in the system during day which can be 

in different forms such as:  
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Table 2 Summary of literatures on energy market equilibrium modeling 
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(Day, Hobbs 

et al., 2002) 
⨯ ⨯ √ ⨯ ⨯ ISO, 

BGFs, 

Arbitrag

er 

CSF LCP 13 nodes, 56 

plants, 21 

flow gates 

(Yao, Adler 

et al., 2008) 

√ √ √ √ ⨯ ISO, 

BGFs 

Cournot 

Suppliers- 

Bertrand 

ISO 

EPEC-

Iteratively 

solving 

MPECs 

Belgian 

network (71 

lines, 53 

nodes) 

(Pozo and 

Contreras, 

2011) 

√ √ ⨯ ⨯ ⨯ ISO, 

BGFs 

Stackelber

g  

EPEC-

MILP 

6 generators 

(Yao, 

Willems et 

al., 2005) 

√ √ √ √ ⨯ ISO, 

BGFs 

Cournot 

Suppliers- 

Cournot 

ISO 

EPEC Belgian 

network (71 

lines, 53 

nodes) 

(Yao, Oren 

et al., 2004) 

√ √ √ √ ⨯ ISO, 

BGFs 

Cournot 

Suppliers- 

Cournot 

ISO 

EPEC-

Iterative 

PIPA & 

RSM 

 

(Gabriel and 

Leuthold, 

2010) 

⨯ ⨯ √ ⨯ ⨯ ISO, 

BGFs 

Stackelber

g 

MPEC-

MILP 

Western 

European 

Grid (15 

nodes) 

(Hobbs, 

Metzler et 

al., 2000) 

⨯ ⨯ √ ⨯ ⨯ ISO, 

BGFs 

SFE MPEC-

PIPA 

30 nodes, 41 

lines 

(Jing-Yuan 

and Smeers, 

1999) 

√ ⨯ √ ⨯ ⨯ Transmi

ssion, 

BGFs 

Cournot VI 4 nodes 

(Block, 

Neumann et 

al., 2008) 

⨯ ⨯ ⨯ √ ⨯ Seller , 

Buyer  

Double 

Auction 

MILP-

Heuristic 

 

(Carsten, 

John et al., 

2010) 

√ √ ⨯ √ ⨯ Seller, 

Buyer, 

Brokers 

Double 

Auction 

Simulation 

 

 

(Block, 

Collins et 

al., 2009) 

√ √ ⨯ √ √ Seller, 

Buyer, 

Brokers 

Double 

Auction 

Simulation 

 

 

(Duan and 

Deconinck, 

2010) 

√ ⨯ ⨯ √ ⨯ Sellers, 

Buyers, 

Brokers 

Multi 

Agent 

Simulation 

 

 

(Gross, 

Finlay et al., 

1999) 

√ ⨯ ⨯ ⨯ ⨯ BGFs Sealed Bid 

Auction 

Optimizatio

n-

Lagrangian 

Relaxation 

 

(Vytelingum

, Ramchurn 

et al., 2010) 

√ ⨯ ⨯ √ ⨯ Sellers, 

Buyers 

Double 

Auction 

Optimizatio

n for 

Quantities-

Algorithm 

for Prices 
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(Attaviriyan

upap, Kita et 

al., 2005) 

√ √ ⨯ √ ⨯ BGFs, 

Big 

Consum

ers 

Single 

Auction & 

Double 

Auction 

Optimizatio

n-

Evolutionar

y 

programmin

g 

 

(Zou, 2009) √ ⨯ ⨯ √ ⨯ Sellers, 

Buyers 

Double 

Auction 

Mechanism 

Design-

Algorithm 

 

(Wen and 

David, 

2001) 

⨯ √ ⨯ √ ⨯ BGFs, 

Big 

Consum

ers 

Double 

Auction 

Optimizatio

n-Monte 

Carlo 

6 suppliers, 

2 consumers 

(Lamparter, 

Becher et 

al., 2010) 

⨯ ⨯ ⨯ √ ⨯ Sellers, 

Buyers 

Double 

Auction 

Mechanism 

Design-

Agent 

Based 

 

 

 Time of use pricing: In this format there are higher prices during predefined expected 

peak periods.  

 Critical peak pricing: In this format higher prices are in place during up to 15 extreme 

days of the year and flat rate is in place other times. 

 Multi-tier prices: In this option prices are per kWh consumption over a certain 

consumption level or per carbon dioxide emission for a certain amounts of 

consumption. 

 Real time pricing: In this system prices are fluctuating based on the real value of 

electricity in the market. 

Benefits of non-flat pricing in DR programs are well known (Bushnell, Hobbs et al., 

2009, Chao, 2010). Albadi and El-Saadany (2008) defined DR program benefits in four 

main categories: benefits to participants, market wide benefits, reliability and market 

performance. They divided DR costs for both participants and program owners to initial 

and running costs such as establishing technologies and inconvenience costs. Gottwalt 

and Ketter (2011) simulated a demand response program with realistically generated 

load profiles in Germany and used both day ahead flat and hourly prices. However, 
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they concluded that peak demand is being shifted from a peak time to another time 

when real time pricing is not in effect.  

DR programs schedule and assign consumptions in different time steps. Approaches 

toward modeling DR programs are optimization based, game based, agent based, and 

algorithm based modeling.  

Optimization based models are mostly LP with one objective function. They model 

demand response for a user/users with a single resource of supply which could be a 

retailer or a utility company. Pedrasa and Spooner (2009, 2010) modeled appliances’ 

scheduling through an optimization model with a fitness function for the users. They 

used Particle Swarm and Binary Particle Swarm Optimization method as a heuristic 

population based search technique for solving the model.   

Mohsenian-Rad and Leon-Garcia (2010) proposed an LP optimization model for 

scheduling appliances with a tradeoff between minimizing waiting time cost and 

minimizing payments. They discussed different scenarios and adopted them into their 

model such as storage capacities in Plug in Hybrid Electric Vehicles (PHEV), and 

interruptible and uninterruptable residential loads. They depicted peak to average load 

ratio decreases drastically and claimed that as an incentive for utilities to deploy the 

model in large scale. They also showed that a combination of their designed scheduling 

and real time pricing would result in consumers’ payments reduction.  

Conejo and Morales (2010) proposed a LP robust optimization model for real-time 

demand response in Smart grid. They assumed price information is being 

communicated to the users hourly. Their model is dynamic on rolling horizon basis and 
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uncertainty in price is considered. LP solver is used for solving the model. They showed 

users benefit from an increased utility by incorporating the proposed model. 

Erol-Kantarci and Mouftah (2011) modeled a simple linear scheduling model for 

demand response and used heuristics for solving it. 

Lujano-Rojas and Monteiro (2012) used predictions of electricity prices, energy 

demand, renewable power production and power purchase of the costumers to 

determine the optimal utilization of different appliances and electrical vehicles through 

negotiations between retailer and costumer. They showed that the number of 

combinations increases exponentially and so used genetic algorithm for solving the 

problem. They claimed their proposed model would reduce electricity bill 8-22% for a 

typical summer day for users. 

Contrary to optimization models which only consider one objective, game-based 

models consider objectives of all players in the game. Game-based studies in DR 

programs mostly assume competition is among users of a single source of supply.  

Mohsenian-Rad and Wong (2010) modeled demand response to minimize cost of 

generation in the system and users’ payments minimization while distributing loads on 

time horizon to minimize peak to average load ratio (PAR). They showed that 

minimizing cost results in PAR reduction if the cost function is strictly convex and 

increasing. Their price function was proportional to total daily energy consumption of 

each user. However, in their proposed model network constraints, storage capacities, 

and location based decisions are not included.  

Chen and Li (2010) using supply function equilibrium as pricing model, designed two 

demand response models for matching and shaping demands. They showed in a 
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competitive market where customers are price takers, system achieves an efficient 

equilibrium that maximizes the social welfare, while in an oligopolistic market where 

customers are price anticipating and strategic, the system achieves a unique Nash 

equilibrium that maximizes another additive global objective function.  

Wang and Kennedy (2010) designed a bidding mechanism among retailers and 

suppliers for demand response. Generators and retailers submit bids for the time 

horizon considering price elasticity matrix which is the change in electricity 

consumption at a scheduled hour due to a change in electricity price of that same hour 

or any other hour. Their bidding mechanism is carried out by an iterative market 

clearing algorithm. 

Li and Chen (2011) proposed a demand response model in which users try to maximize 

their own benefit which leads to the retailer’s benefit. They used an interesting 

approach for modeling different devices including electrical vehicles. They defined the 

real time price function and showed that everyone would benefit from the real time 

price.  

Zhu and Basar (2011) found the Nash equilibrium for a stochastic model of demand 

response and scheduling of demands among large population. They introduced a multi-

resolution stochastic differential game framework to capture macroscopic and 

microscopic interactions among a large population of players.  

Chen and Kishore (2011) introduced a Stackelberg game among Energy Management 

Controller (EMC) in each home as follower and service provider as the leader based on 

a RTP model. Their RTP model is based on a retail price consisting of wholesale price 

(function of production) and the price gap which they designed to figure out the 
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influence of the difference between the actual demand and available supply. They 

showed the model is beneficial for both reduction in consumption and consumers’ 

payments.  

Bu and Yu (2011) proposed a 4 stage Stackelberg model for decision making on 

amounts retailers should buy from the electricity pool, the price they should offer to 

the costumers, and finally the amounts costumers should buy. Retailers have the option 

of choosing supplies from cheap and uncertain supply or expensive and certain supply 

in the first two stages. They used a backward induction method to solve the game.  

Li and Jayaweera (2011) proposed a two-level model in utility companies’ level. In 

first stage the weighted sum of generation cost and operation delay cost for the utility 

is minimized as a convex optimization. In second stage using a game theory approach, 

a Vickrey auction is run for scheduling demands to maximize social welfare for the 

users. They showed truthful bidding is a weakly dominant strategy for all costumers in 

a one-time Vickrey auction. One of the disadvantages of this model is that demands for 

appliances are not specifically determined and they assumed demands are divisible. 

Samadi and Schober (2011) proposed a Vickrey Clarke Groves based mechanism for 

the scheduling model in (Mohsenian-Rad, Wong et al., 2010) to maximize social 

welfare in which users reveal their truthful utility functions.  

Fan (2011) used a different approach and proposed a distributed framework for demand 

response and user adaption in smart Grid based on congestion pricing concept in 

Internet traffic control.  Applying differential equation, they found game equilibrium 

and showed load can be shifted by users through pricing strategies. 
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There are few agent based models in energy management area. Vandael and Boucké 

(2010) proposed a multi agent model for demand management of the plug-in hybrid 

vehicles. Vytelingum and Voice (2010) proposed a game agent based model for 

optimizing storage devices strategies. They proved the Nash solution and empirically 

showed the convergence to the Nash solution. They discussed the learning curve of the 

agents and showed that when learning rate is low, the social welfare is maximum. Their 

game approach implied that when about 38% of the population owns storage devices, 

the social welfare is the maximum.  

Algorithm based models are basically about randomly assigning consumptions. Lee 

and Park (2011a, 2011b) presented a genetic algorithm and an assignment heuristic for 

scheduling of appliances. A summary of the studies on Demand Response modeling is 

presented in  

Table 3. 

This dissertation is based upon combining the two areas of research, energy equilibrium 

and demand response modeling, which to the best of the author’s knowledge has not 

been studied previously. The only study which is related (Kiani Bejestani and 

Annaswamy, 2010) modeled market equilibrium and demand response through a 

MLCP model considering ISO, consumers and generating companies. However, their 

approach has major differences from this study. Their model does not consider any 

hierarchy of decision making among decision makers and, more importantly, their 

demand response program is very general and only determines quantities and not 

schedule of demand/supply. Storage capability and location-based decision are not 

supported. They also assume exogenous bidding prices for participants and use LMP 
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for market pricing. Sellers and buyers are separate entities. The study is mainly focused 

on market design, not demand management. Kiani and Annaswamy (2011) improved 

their work with a different approach to allow information exchange among dominant 

players such as real time price, congestion price, generation and consumption level and 

captured the dynamics of the real time market using the state-based game. They also 

investigated the stability of model under renewable energy and region of attraction 

uncertainty. Table 4 shows their work specifications and their differences from this 

research. 

Table 3 Summary of literatures on demand response modeling 
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(Lujano-

Rojas, 

Monteiro 

et al., 

2012) 

√ ⨯ ⨯ ⨯ ⨯ RTP-time 

series based 

Optimization-

Enumeration  

Genetic 

algorithm 

1 user, 5 

appliances, 

T=24 

(Erol-

Kantarci 

and 

Mouftah, 

2011) 

√ ⨯ ⨯ ⨯ ⨯ Exogenous 

tariffs 

Optimization-

LP 

Heuristic 4 appliances, 

T=24, 10-

210 days 

(Fan, 

2011) 
⨯ ⨯ ⨯ ⨯ ⨯ RTP- 

Congestion 

pricing in 

Internet 

traffic 

control 

Game Differential 

equation 

approach 

10 users 

(Samadi, 

Schober 

et al., 

2011) 

√ ⨯ ⨯ ⨯ ⨯ Both 

approaches: 

price takers 

and price 

anticipating 

participants 

Mechanism 

design-Vickrey 

Clarke Groves 

Simulation 10 users, 10 

appliances, 

T=24 

(Zhu and 

Basar, 

2011) 

√ ⨯ ⨯ ⨯ √ RTP-

Demand 

function 

Game  Multi 

resolution 

stochastic 

differential 

game 

framework 

 

(Li, Chen 

et al., 

2011) 

√ ⨯ √ ⨯ ⨯ RTP-Game 

based 

Game Distributed 

algorithm 

based on 

8 users, 6 

appliances 

each, T=24 
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gradient 

algorithm 

(Lee, Park 

et al., 

2011a, 

Lee, Park 

et al., 

2011b) 

√ ⨯ ⨯ ⨯ ⨯  Scheduling 

algorithm 

Heuristics-

assignment 

approach & 

genetic 

algorithm 

 

(Chen, 

Kishore et 

al., 2011) 

√ ⨯ ⨯ ⨯ ⨯ RTP-

function of 

production 

Game-

Stackelberg 

Backward 

induction 

50 users, 3 

appliances, 

one retailer, 

T=24, 10 

min slots 

(Bu, Yu 

et al., 

2011) 

⨯ ⨯ ⨯ ⨯ ⨯ RTP-Retailer 

decision 

variable 

Game-

Stackelberg 

Backward 

induction 

10 users 

(Li, 

Jayaweera 

et al., 

2011) 

⨯ ⨯ ⨯ ⨯ ⨯ Bidding 

offers 

Two level: 

Optimization 

& Vickrey 

auction 

mechanism 

KKT 

optimality 

condition-

Iterative 

algorithm 

5000 users, 

1 utility,  

T=24 

(Mohseni

an-Rad 

and Leon-

Garcia, 

2010) 

√ ⨯ √ ⨯ ⨯ RTP-simple 

weighted 

average price 

prediction 

model 

Optimization-

LP 

LP techniques- 

Interior point 

method 

1 user, 25 

appliances, 

T=24, 

sensitivity to 

up to 10 

users 

(Conejo, 

Morales 

et al., 

2010) 

⨯ ⨯ ⨯ ⨯ √ RTP(robust 

optimization

) 

Optimization-

LP 

Robust 

optimization 

for prices 

1 user, T=24 

(Pedrasa, 

Spooner 

et al., 

2010) 

√ ⨯ √ ⨯ ⨯ Exogenous 

peak/non-

peak pricing 

Optimization-

Fitness Func.  

Heuristics-

Particle Swarm 

Optimization 

1 user, 4 

appliances, 

T=24 

(Vandael, 

Boucké et 

al., 2010) 

⨯ ⨯ ⨯ ⨯ ⨯  Agent based Multi agent 

system 

Only PHEVs 

in the system 

(Vyteling

um, Voice 

et al., 

2010) 

⨯ ⨯ √ ⨯ ⨯ RTP-

Weighted 

moving 

average price 

prediction 

based on 

supply 

function 

Game based 

agent based 

Evolutionary 

game based 

heuristic 

 

(Mohseni

an-Rad, 

Wong et 

al., 2010) 

√ ⨯ ⨯ ⨯ ⨯ Proportional 

to their total 

daily energy 

consumption 

Game based 

optimization 

Iterative 

distributed 

algorithm 

10 users, 10-

20 

appliances, 

T=24 

(Chen, Li 

et al., 

2010) 

⨯ ⨯ ⨯ ⨯ ⨯ Competitive 

market/Oligo

poly market 

(Demand 

function) 

Game Distributed 

demand 

response 

algorithm 

10 users 

(Wang, 

Kennedy 

et al., 

2010) 

⨯ ⨯ ⨯ ⨯ ⨯ RTP-Price 

elasticity 

matrix 

Game-Bidding 

mechanism 

Iterative 

market clearing 

algorithm 

6 bus system 

with three 

retailers 

(Pedrasa, 

Spooner 
⨯ ⨯ ⨯ ⨯ ⨯  Optimization- 

Fitness Func. 

Heuristics-

Binary Particle 
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et al., 

2009) 

Swarm 

Optimization 

Table 4 Comparison of this research’s specification to current literature 
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(Kiani 

Bejestani and 

Annaswamy, 

2010) 

√ ⨯ √ √ ⨯ ⨯ ⨯ ISO, 

BGFs, 

Consumer 

Firms 

RTP- 

Curtailm

ent factor 

Cournot 

Game- 

One 

Level 

MLCP IEEE 4 

Bus, 

2Users, 

2BGFs 

(Kiani and 

Annaswamy, 

2011) 

√ ⨯ √ √ ⨯ ⨯ ⨯ ISO, 

BGFs, 

Consumer 

Firms 

RTP-

LMP 

Cournot 

Game- 

One 

Level 

State based 

Game 

based on 

gradient 

play 

IEEE 30 

Bus 

THIS 

RESEARCH 

√ ⨯ √ √ √ √ √ ISO, 

BGFs, 

DSRs 

RTP-

Inverse 

Supply 

Function 

Cournot 

Game-

Stackel

berg 

Heuristic-

MILP 

Large 

Scale 
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Chapter 3: Market Mechanism and Modeling 

Problem Structure 

Rules and structure of the market determines most of the interactions among 

participants in the market. In this chapter, the system mechanism, different layers of 

market, market players’ role and all other assumptions made through this study are 

introduced. 

Dealing with One Large and Complex System: Layers of Smart Grid 

As mentioned earlier, smart grid in its real size is a very large and complex system. 

Dealing with this large and complex system in real time is a real challenge. One way 

to overcome this issue is to decompose the whole system into different layers while 

considering the connection among them. This study tries to capture these connections 

and picture the whole system as a puzzle with several pieces. It then target each piece 

and models it. Then model all pieces’ relations and glue them together and complete 

the puzzle. 

There are several national electric power markets in USA, such as California (CAISO), 

New England (ISO-NE), and PJM (Figure 2). Each national market has several control 

regions (Figure 3). To model the market in Smart Grid it is assumed that each control 

region contains several zones. Zones include all users willing to participate in the 

market directly such as households in addition to all the retailers having customers in 

that zone. Retailers act on behalf of their customers who are not  
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Figure 2 Electric power markets: national overview3 

 

Figure 3 PJM control regions4 

willing to participate in the market directly and have transferred responsibility of 

controlling their appliances and electricity trades to their retailers. Zone sizes may 

differ depending on regional characteristics and infrastructure. This market structure is 

                                                 

3 http://www.ferc.gov/  

4 http://www.ferc.gov/ 

http://www.ferc.gov/market-oversight/mkt-electric/overview.asp
http://www.ferc.gov/market-oversight/mkt-electric/overview.asp
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not limiting and could be applied to current system if one assumes all households are 

required to choose a retailer to act on their behalf in the market. 

Considering the above-mentioned structure, three main layers are introduced in this 

study for the Smart Grid: Zonal, Regional, and Cross Regionals. The first layer is in 

the Zonal layer in which households and local retailers are SDR players in the market. 

Generating companies and big suppliers such as BGE and PEPCO who are willing to 

provide electricity to that zone are playing as BGFs. Finally a Zonal ISO clears the 

market and manages the distribution network. At the second layer which is the Regional 

level, each Regional market operator such as PJM and CAISO would act as an ISO and 

clears and manages the transmission network. All suppliers and large generating firms 

which have participated in zonal markets which are covered by that Regional market 

would act as SDR while their supply commitments to zonal markets would become 

their responsibility and demands. All other Regional markets willing to import or 

export electricity to that specific Regional market have the role of BGFs in that market. 

Finally, in the third layer, Cross Regional market, a higher level entity such as 

government would play the role of ISO. Regional markets such as CAISO and PJM 

would act as SDRs in the system while their supply commitments would become their 

responsibilities. All other countries and markets willing to trade in the Cross Regional 

level with the above-mentioned market would act as BGFs in the system. This assumed 

general market structure and participants roles in the Smart Grid are summarized in 

Figure 4. 
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Figure 4 Electricity market structure and roles 

This dissertation is focused on designing and modeling a market which reflects the 

interaction among all decision makers and their best strategies for their decision making 

problems at the Zonal level as the smallest piece of the puzzle. However, considering 

all the role adjustments defined above for the participants in different layers, without 

loss of generality, the model would be applicable to all other layers as well. Since the 

most difficult layer with the largest number of participants is the Zonal level, this study 

focuses on this layer of market. Thus, from this point on the word “market” refers to 

“Zonal market”. The market is modeled as a one-leader multi-follower Stackelberg 

game. Equilibriums of BGFs oligopoly and SDRs perfect competition in the lower level 
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are modeled as optimization problems for each individual, while ISO’s decision 

problem is in the upper level as the leader of the market.  

Market Mechanism and Assumptions 

Based on an extensive interview and survey among 93 institutions from all over the 

world during 3 years, Sovacool explored the most favored policy mechanisms for 

renewables and energy efficiency (Sovacool, 2009). Analysis of the results showed the 

most favorable mechanisms with the strongest support are eliminating subsidies, 

altering electricity prices, forcing utilities to adopt renewables, and increasing funding 

for renewable power through a national system benefit charge. The proposed 

mechanism and integrated demand response model in this study promote the most 

important recommended policy mechanisms in the mentioned study through different 

policies and rules. Following is the general market structure and assumptions in the 

mechanism.  

An electricity distribution network consists of several nodes and lines connecting nodes 

together. The network may not be a complete graph, and electricity is transmitted 

between nodes through the links based on their capacity and limits and the network’s 

specifications. Kamat and Oren (2004) provide a detailed literature review on models 

with transmission constraints besides transmission rights and pricing. Losses in 

transmission networks raise the nonlinearity issue in modeling and add significant 

complexity to the network problem (Chao and Peck, 1996). Hobbs and Drayton (2008) 

studied a one level Cournot game among generating firms and ISO, considering 

quadratic resistance losses and phase shifters in controllable DC lines. They showed 

the effectiveness of the considerations on prices and generation for both competitive 
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and Cournot models through examples. They claimed that in the competitive solution, 

congestion is more important than losses due to increase of flows under competition 

for higher loads which worsens the congestion, while in the Cournot solution price 

differences because of losses are more important due to higher expenses to ISO which 

makes up expenses. So they concluded that in oligopoly models considering losses are 

more important than in competitive markets. Practical models of competition among 

power generators use simplified models of transmission costs and constraints in order 

to be tractable. However, linearized DC models are used in oligopoly models due to 

two main reasons: existence of solutions and also computational costs. Consequently, 

since in this study perfect competition is assumed, considering linearized lossless DC 

network is a justified assumption. 

Subscribers, users and suppliers of electricity are all distributed over the network and 

located at nodes, which means there can be more than one participant at each node. 

Participants are either a BGF or a SDR with individual goals and limitations. Their 

strategies are influenced by the hierarchies of their decision levels in the system. 

In the zonal layer of the market, SDRs are all Subscribers to Demand Response 

program who are willing to participate in the market through communication with the 

network and could be households, small companies, schools, or retailers. Any 

household or user in the system can choose to participate in the market directly with a 

smart meter or transfer the responsibility to a retailer by adopting their plans and 

services and give them the right for controlling their appliances. BGFs are Big 

Generating Firms who own the big generators all over the network and have the power 

of affecting prices considerably with their strategies. ISO is the Independent System 
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Operator who is responsible for clearing the market and managing the whole system 

and transmission network. This structure is not limiting and still allows a BGF to act 

as an ISO if it owns the distribution network. However, in general, allowing suppliers 

to be owners of distribution networks leads to unfair distribution of market power 

among suppliers which is not in the best interest of suppliers or consumers. So in order 

to eliminate the conflict of interests and also consider the social welfare for the society 

a third party should be in charge of managing the system which here is called ISO. This 

confirms the conclusion from (Neuhoff, Barquin et al., 2005) on seeing system operator 

as a strategic agent.  

Since ISO manages the system with hierarchy, all other decision makers should follow 

its decision while competing with each other in the lower level. This type of market 

could be modeled as a one-leader multi-followers Stackelberg game in which ISO is 

the leader in the upper level and all other players are followers in the lower level while 

deciding on their strategies based on the leader’s decision. Stackelberg games were first 

proposed in 1934. This type of formulation is mostly appropriate for games with 

sequential moves among players (Fudenberg and Tirole, 1991, Gibbons, 1992).  

Figure 5 shows categories of decision makers and hierarchy of decision levels in the 

zonal market in Smart Grid. 

At each time instance, a SDR can buy or generate electricity from the grid or his 

generator and consume or store it, and/or he can sell or reserve electricity from his 

generator or extra energy stored in his batteries or appliances to the grid. Each SDR 

can have several appliances, batteries or generators with different demands, storage 
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Figure 5 Market structure in Smart Grid 

and generation capacity with a set of locations and time intervals at which they can be 

plugged into the network. For example, one can plug his electrical vehicle into the 

network both at his office when he is at work or at his house any time after he gets 

back. However, his preference value and cost may differ at each time and location. The 

problem for each SDR would be when, where, and how much to generate, consume, 

reserve, sell or buy electricity to or from the network at each time step during a time 

horizon in order to satisfy demands, generation and reserve constraints in addition to 

network limitations while competing with other players over maximizing his individual 

welfare. This is a dynamic non-cooperative Cournot game among SDRs on maximizing 

individual welfares through supply/demand scheduling strategies. Dynamic energy 

scheduling for appliances is on rolling horizon and demand shifting basis. To picture 

the scale of participants, it is possible to have each costumer participate in the market 

individually, or having one or several retailers in each zone acting on behalf of 

costumers while considering each household’s payoff function individually, or having 

both options available to users. The model which is proposed is not limiting in this 

aspect and can cover any of these scenarios as discussed previously. 
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BGFs compete in an oligopoly game on their generation, storage and trade quantities 

as Cournot players to maximize their revenue while the price in the market is 

determined based on the market’s inverse supply function. BGFs can be located 

anywhere in the grid and generation cost is a function of time and location. BGFs 

willing to provide supply to a zone may announce their maximum generating capacity 

assigned to that zone. The maximum capacity for each zone for each BGF can be 

determined based on stochastic demand estimation techniques which are out of the 

scope of this research. 

ISO is operating the distribution network and is responsible for clearing the market. As 

a Cournot player, ISO decides on trades’ (imports/exports) quantities for each player 

at each time instance and node of the network with hierarchy over all other players in 

the system. As an operator its goal is to motivate green energy consumption and 

reducing peak demands through rewarding local energy consumptions while meeting 

the networks’ constraints. Each big generating firm has to pay a fee to system 

coordinator (ISO) for using the electricity network, while ISO gives credit to small 

users exporting electricity to network which is a function of location and time. It is 

worth mentioning that the ISO objective in the current system is either revenue or social 

welfare maximization. However, in this study it is assumed that a new system is 

designed in which the goal is not to collect revenue but it is to expand the use of green 

and distributed energy in the system. To do so the ISO, as a non-profit entity, is 

motivating users to use local electricity by minimizing its income from the defined 

process. Comparison of different ISO objective would be an interesting future work.  
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The overall problem is to solve the defined real time operational decision making 

problems simultaneously. At each point in time, each SDR announces its demand, 

supply, storage quantities, and utility function; each BGF announces its maximum 

generating and storage capacities dedicated to that zone; and ISO depicts the network’s 

constraints. Output from the model would be the schedule of appliances for SDRs, 

schedule of generation and storage for BGFs and allowable trades (import/exports) in 

the Network.  

In order to incentivize businesses, utilities and big generating firms to invest in 

renewables, the proposed model maximizes their revenue as decision makers of the 

system.  Moreover, the defined market mechanism relies on unbundling generation, 

transmission, and distribution providers in order to eliminate power monopoly in the 

market and maximize social benefits. This would increase public participation in the 

system and results in a perfect competition with higher supply diversification. 

Additionally, considering each consumer’s individual utility function in maximizing 

its individual welfare is a green light for users to engage in the market. 

Based on experimental studies giving frequent feedback to consumer would help 

reducing demands (Becker, Seligman et al., 1979). The other aspect of the proposed 

mechanism is to inform consumers of energy efficiency and renewable sources. This 

will be possible through real time two way communications between users and 

suppliers and the grid. Real time data such as demand distributions and historical 

consumption trends would be among information available to all participants in the 

system. This would help consumers understand how their consumption behavior and 

decision affects their bills.  
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However, sending information without having real time prices implemented and 

appropriate models for benefiting from these information would only have slight 

behavioral effect (Geller, 1981). Even making use of green technology mandates or 

incentives without using real time prices would not send right signals to consumers and 

so would not be beneficial. In the proposed mechanism, there is no cap for electricity 

prices in the market. Prices are determined in real time based on available supply 

capacities in the market and would be a good signal of consumption and peak times 

during the day to consumers. On the other hand, eliminating caps will likely result in 

higher prices which may hurt lower income families and poorer households. Nodal 

price functions are a good reflection of socioeconomic characteristics of the area and 

their parameters may be set based on level of poverty in each area. Moreover, in order 

to protect these groups, this mechanism is capable of considering different solutions 

such as offering subset of concessions to lower income families and households. That 

may include discounts on the bills, special loans such as loans for upgrading their 

energy efficiency systems or tax credits for installing more efficient systems, rebates, 

or implementing feed-in-tariffs (FIT) for suppliers of green and renewable resources. 

These offers are not unrealistic and are currently being used in some states such as 

California and New York and some countries such as Denmark and Australia 

(Sovacool, 2009). Subsidies for electricity related fuels have existed since 1880. Using 

the proposed mechanism it is possible to use these subsidies in promoting distributed 

energies and green energy technologies instead of just reducing electricity prices 

through payments to big suppliers and transmission companies. Instead it provided 

loans to local suppliers and households. Even increasing prices without having all other 
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aspects in consideration would not help (Aune, 2007).  So in general, any successful 

mechanism should be a comprehensive one in order to overcome all the issues and 

deficiencies. The proposed mechanism in this study, as discussed above, covers all 

these aspects.  

Here is a list of assumptions made throughout this study: 

 The distribution network is a linearized lossless DC network. 

 All players in the system are rational. 

 Appliances could be only located at one node at each time step. 

 BGFs are individually owned and their maximum dedicated capacities to each zone are 

estimated and known. 

 Without loss of generality BGFs do not have demands. A BGF with demands could be 

divided into a BGF without demands and a SDR with demands only. 

 Demands are less desirable as they delay. That is, consumption preference functions 

are assumed to be Gaussian functions. Although there is no penalty for not meeting 

demands, and it is assumed that if any demand request is not satisfied the problem 

would be infeasible, this assumption is not limiting. Considering the available extra 

supply capacities during off peak hours, results showed that the infeasibility issue is 

overcome. This assumption makes the lower level problem convex, which is necessary 

in proving solution existence. 

 Generation cost for BGFs and SDRs, and reward fees are exogenous and depending on 

time and location. 

 Market price is the inverse of the supply function and is assumed to be linear and 

decreasing with positive parameters. Since the market is modeled for each zone, the 

prices would be Zonal prices and all users in one geographical zone with similar 

socioeconomics behaviors have the same prices. 
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 SDRs have access to trade information through their smart meters. 

 Dynamic problem is based rolling horizon with hourly steps.  

Problem Formulation 

It is of interest to see how market structure and rights in decision making would affect 

competition and demand management in the energy system. There may be questions 

regarding determining roles’ eligibility on making decisions over some variables. i.e., 

why not ISO be the only entity deciding on the trade values. So, for the sake of 

comparison, the problem defined in previous section is formulated from two aspects. 

The first, which is more likely, is when trade amounts are decision variables for all 

decision makers. This means trade amounts are variables in both levels. The second is 

giving the right of decision making over trade amounts only to the ISO. This means 

trades are only variable in one level (upper level). In the first case, there is a complete 

competition over all decision variables in the lower level and participants in the market 

can make their own decisions over their trade values. However, in the second case, 

despite having a competition in the lower level, the ISO has more control over the 

system and controls one of the variables solely with respect to other participants’ 

decisions. Comparing these two different policies in the market is of interest and will 

show if supervising a competition would make any difference in a system. These two 

perceptions make some differences in relations among participants in the system and 

also in the approach for solving the problem. In this section both concepts are 

formulated as One-Way and Two-Way models which refer to problems with trade 

variables in only upper level and with trade variables in both upper and lower level, 

respectively. 



 

 44 

The general form of the bi-level model called Two-Way model would be as follows: 

𝑚𝑎𝑥𝑥   𝑓(𝑥)  

𝑠. 𝑡.   𝑥 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥{𝑔(𝑥, 𝑦): (𝑥, 𝑦) ∈ 𝐶(𝑥, 𝑦)}  

As opposed to the One-Way model which is  

𝑚𝑎𝑥𝑥   𝑓(𝑥) 

𝑠. 𝑡.   𝑥 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥{𝑔(𝑦): 𝑦 ∈ 𝐶(𝑥, 𝑦)} 

Preliminaries and Problem Parameters 

Parameters and definitions used in this dissertation are as follows. 

N: Set of nodes in the network 

L: Set of lines in the network 

T: Set of time steps in a time horizon 

I: Set of SDRs 

G: Set of BGFs 

T0: First time interval in the time horizon 

A(i): Set of appliances of SDR 𝑖 

N(i, a): Set of locations where appliance 𝑎 of SDR 𝑖 can be plugged into the network 

Trequest𝑖,𝑎: Initial time of request for DEM𝑖,𝑎  

 

 

TE𝑖,𝑎,𝑛: Earliest possible time for appliance 𝑎 of SDR 𝑖 to connect to network in  

node 𝑛 

TL𝑖,𝑎,𝑛: Latest possible time for appliance a of SDR 𝑖 to connect to network in  

node 𝑛 
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V𝑖,𝑎,𝑡,𝑛: Preference function for consuming one unit of electricity for appliance 𝑎  

of SDR 𝑖 at node 𝑛 at time 𝑡 

VCHAR𝑖,𝑎,𝑡: Preference function for storing one unit of electricity for appliance 𝑎  

of SDR 𝑖 at time 𝑡 

C𝑖,𝑎,𝑡,𝑛: Generation cost of one unit of electricity by appliance 𝑎 of SDR 𝑖 at node 𝑛  

at time 𝑡 

CR𝑖,𝑎,𝑡: Storage cost for one unit of electricity for appliance 𝑎 of SDR 𝑖 at time 𝑡       

DEM𝑖,𝑎: Demand request for appliance 𝑎 of SDR 𝑖  

CHAR𝑖,𝑎,𝑡: Charge request for appliance 𝑎 of SDR 𝑖 at time 𝑡  

Q𝑖,𝑎: Generation capacity for appliance 𝑎 of SDR 𝑖  

RCAP𝑖,𝑎: Storage capacity for appliance 𝑎 of SDR 𝑖  

R0𝑖,𝑎
: Initial storage quantity for appliance 𝑎 of SDR 𝑖 at T0 

P𝑛,𝑡: Nodal export fee/reward fee at time 𝑡 

K𝑙: Thermal capacity of line 𝑙 

D𝑛,𝑙: Power transfer distribution factor from node 𝑛 to line 𝑙 

QG𝑔: Generation capacity for generator 𝑔  

RG𝑔: Storage capacity for generator 𝑔 

CG𝑔,𝑡: Generation cost for one unit of electricity by BGF 𝑔 at time 𝑡       

CRG𝑔,𝑡: Storage cost for one unit of electricity for generator 𝑔 at time 𝑡       

GNODE𝑔: Node at which generator 𝑔 is located  

G𝑛: BGFs located on node n 
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Decision Variables 

dem𝑖,𝑎,𝑡,𝑛: Consumption quantity for appliance 𝑎 of SDR 𝑖 in node 𝑛 at time 𝑡 

q𝑖,𝑎,𝑡,𝑛: Supply quantity for appliance 𝑎 of SDR 𝑖 in node 𝑛 at time 𝑡 

r𝑖,𝑎,𝑡: Storage level for appliance 𝑎 of SDR 𝑖 at time 𝑡 

x𝑖,𝑎,𝑡,𝑛: Trade (import(+) or export(−)) quantity for appliance 𝑎 of SDR 𝑖 in node 𝑛 at time 𝑡 

qg𝑔,𝑡: Generation quantity for generator 𝑔 at time 𝑡 

rg𝑔,𝑡: Storage level for generator 𝑔 at time 𝑡 

xg𝑔,𝑡: Export quantity for generator 𝑔 at time 𝑡 

expo𝑛,𝑡: Total nodal export by all SDRs from node 𝑛 at time 𝑡 

Interactions among all decision variables in the problem are shown in Figure 6, Figure 

7, and Figure 8. 

 

Figure 6 SDR’s decision problem at each point of time for each appliance 

 

Figure 7 BGF’s decision problem at each point of time 
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Figure 8 ISO’s decision problem at each point of time at each node 

Two-Way Model: Model with Trades in both levels 

ISO Decision Problem 

ISO’s decision problem is as follows: 

Min.∑ ∑ Pn,t. (∑ xg
g,t(gϵG|gnode(g) = n)  − 𝑒𝑥𝑝𝑜

𝑛,𝑡n∈Nt )  

(3. 1) 

Subject to: 

expo𝑛,𝑡 ≤ 0   ; ∀n, t 

(3. 2) 

expo𝑛,𝑡 ≤ ∑ ∑ x𝑖,𝑎,𝑡,𝑛aϵA(i)i∈I      ; ∀n, t 

(3. 3) 

∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI − ∑ xgg,tg∈G = 0 ;  ∀t  

(3. 4) 

−Kl  ≤ ∑ ((∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI − ∑ xgg,tg∈G|GNODEg=nnϵN )Dn,l) ≤ Kl ;  ∀lϵL, t    

(3. 5) 
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xi,a,t,n 𝑓𝑟𝑒𝑒 ; ∀i, aϵA(i), nϵN(i, a), t 

(3. 6) 

xgg,t ≥ 0  ;    ∀g, t 

(3. 7) 

ISO is a governmental entity or a third party whose goal is to motivate energy demand 

management participation and green energy consumption. Consequently, ISO intends 

to encourage users to use local generators which are mostly non-fossil generators and 

to generate their own electricity as much as possible in order to benefit from disperse 

energy capacities. To do so system operator is charging BGFs for using lines while 

paying users who exports electricity. The charge and payment is based on the location 

and time of use. ISO minimizes total income from these fees and maximized total 

rewards (3. 1). Fees are assumed to be exogenous and nodal based. (3. 2) and (3. 3) are 

total amount of exports by all SDRs at any time from each node. BGFs may include 

their fees for use of lines in their costs while selling electricity to market. But eventually 

this would be reflected in the behavior of users by reducing use of fossil generated 

electricity.  

(3. 4) is the flow conservation constraint. Equation (3. 5) is the thermal limit on lines 

in which Kl is thermal capacity of line l. 𝑥 values are import/export quantities at each 

node which could be negative. Their PTDF and Dn,l is the amount of flow 

increased/decreased on each link due to injection/withdrawal of electricity at each 

node. Since the flow could be in both directions on each line, this constraint should 

hold for both positive and negative values of the limits. Constraints (3. 6), and (3. 7) 
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indicate import and export variables in the grid in this decision making problem. The 

ISO model is a linear model with linear constraints. 

BGF Decision Problem 

In the lower level the first set of decision makers are the big generators and big 

suppliers. They compete with each other for supplying market’s demand while 

maximizing their revenue.  

∀gϵG:  

Max. ∑ ((Z − W∑ xggg,tggϵG )xgg,t − CGg,t. qgg,t − CRGg,t. rgg,t)t    

(3. 8) 

Subject to: 

qgg,t − QGg   ≤ 0      ;        ∀t    

(3. 9) 

qgg,t − xgg,t  − rgg,t + rgg,t−1 = 0       ;        ∀t      

(3. 10) 

rgg,t − RGg   ≤ 0      ;        ∀t 

(3. 11) 

xgg,t, rgg,t,  qgg,t ≥ 0 ; ∀t 

(3. 12) 

This model is solved for each BGF in the system. Solving for all BGFs optimal 

strategies, the Nash equilibrium (if exists) to the game will be found. Existence of 

equilibrium to the problem is discussed in Chapter 4. Equation (3. 8) is the objective 

function and is maximizing revenue which is the difference between generator’s 

income and cost. Price in this market is assumed to be equal to the inverse supply 
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function which is a linear function. As supply increases in the market, price decreases 

and so it has a negative slope. In this model, since zonal markets are considered, prices 

would be zonal prices. People living in one geographical zone have similar 

socioeconomics behaviors. So considering similar physical conditions in a zone such 

as severe weather conditions, and similar social economics behaviors, it is justified to 

assign each zone one price based on the zonal supply and demand function. A question 

may arise here: How realistic is using inverse supply function for setting the market 

price? There are different approaches in setting the market price. Each has its own 

advantages and disadvantages and is upon designer’s preference. Inverse supply 

function is chosen here to capture the game among suppliers in the market. Using 

shadow prices in determining the real time price could be also interesting. However, 

this makes the problem nonlinear and even more complex with such a large size and 

dynamic nature. Studying shadow prices and comparison to current inverse supply 

function would be of interest and is left for future investigations. 

Constraint (3. 9) is the generation capacity for each generator at each time step. (3. 10) 

is flow conservation constraint for each generator at each time step which includes all 

the generations, sales and difference in the storage level of the storage system. (3. 11) 

is the limit on storage capacity of the generators. Although large scale electricity 

storage is still not very efficient and economically justified, research path in this area 

of technology is very promising. Being one of the highlights of Smart Grid in the future 

(Von Dollen, 2009), storage capacities are considered in this modeling, though this 

assumption is not limiting at all. Finally (3. 12) are the variables in this decision making 

problem. Each generator is solving a quadratic programming problem. The objective 
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function is concave while the feasible region is a convex hull due to linearity of all the 

constraints. So each generator will have a global solution for its concave objective 

function.  

SDR Decision Problem 

The last set of decision makers are all subscribers in the system. These are the ones 

who declared their interest in participating in the market and demand response program 

through smart meters. There could be retailers who themselves cover a set of 

subscribers and customers and act on behalf of them considering each individual payoff 

function. In this problem each subscriber tries to find his optimal schedule of demand 

and supply to meet all his demand and limitations while maximizing his individual 

welfare. Since SDRs follow ISO’s decisions, their optimal schedule will also comply 

with network constraints.  

∀iϵI: 

Max.  ∑ (∑ ∑ (Vi,a,t,n. demi,a,t,nnϵN(i,a)aϵA(i)t − Ci,a,t,n. qi,a,t,n − (Z −

W∑ xgg,tgϵG ). xi,a,n,t) + ∑ (VCHARi,a,t. CHARi,a,t − CRi,a,t. ri,a,taϵA(i) ))                                                              

(3. 13) 

Subject to: 

∑ ∑ demi,a,t,nnϵN(i,a)t = DEMi,a       ;        ∀aϵA(i)    

(3. 14) 

riat − CHARi,a,t ≥ 0       ;        ∀aϵA(i), t  

(3. 15) 

∑ qi,a,t,nnϵN(i,a) − Qi,a   ≤ 0      ;        ∀aϵA(i), t  

(3. 16) 
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riat − RCAPi,a ≤ 0       ;        ∀aϵA(i), t 

(3. 17) 

∑ qi,a,T0,nnϵN(i,a) + ∑ xi,a,T0,nnϵN(i,a) − ri,a,T0
+ R0i,a

− ∑ demi,a,T0,nnϵN(i,a) =

0     ;       ∀aϵA(i)  

(3. 18) 

∑ qi,a,t,nnϵN(i,a) + ∑ xi,a,t,nnϵN(i,a) − ri,a,t + ri,a,(t−1) − ∑ demi,a,t,nnϵN(i,a) −

CHARi,a,t−1 = 0     ;       ∀aϵA(i), t ≠ T0  

(3. 19) 

ri,a,t, qi,a,t,n, demi,a,t,n ≥ 0    ;     ∀aϵA(i), nϵN(i, a), t 

(3. 20) 

xi,a,t,n 𝑓𝑟𝑒𝑒 ; ∀i, aϵA(i), nϵN(i, a), t 

(3. 21) 

In the objective function (3. 13), each subscriber maximizes his individual welfare. 

Individual welfare is the benefit each subscriber gains minus all his costs. Utility 

function is defined as the value of the electricity consumption for the subscriber at each 

time instance. The utility function for each subscriber’s energy consumption is assumed 

to be Gaussian and convex which means user’s preference is to consume energy as 

close as possible to their time of request (Figure 9):     𝑉𝑡 = 𝑎. 𝑒−((𝑡−𝑇𝑅𝑒𝑞𝑢𝑒𝑠𝑡)/𝑏)2 
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Figure 9 SDRs schematic consumption utility function 

SDR’s energy generation cost includes operational cost of devices such as solar panels 

and electric vehicles, plus device’s depreciation cost. Storage cost is also assumed to 

be sum of operational and depreciation cost per unit of electricity storage in storage 

devices and batteries. The price that a buyer pays or a seller earns from trading 

electricity is the inverse supply function of the BGFs.  

Equation (3. 14) assures all the demands are met. This is a hard constraint and may 

cause infeasibility if sufficient supply is not available in the network. It is possible to 

make it a soft constraint by changing the strict equality to less or equal constraint; 

however, this would cause semi-satisfied demands. Constraint (3. 15) is batteries’ 

demand satisfaction. For example, one may want to have his electric vehicle being fully 

charged by a specific time, this constraint would consider this request. 

Constraint (3. 16) is generation capacity limit of appliances. Constraint (3. 17) is the 

storage capacity constraint. Constraints (3. 18) and (3. 19) are flow conservation at each 

time step for each appliance. And finally, constraints (3. 20) and (3. 21) define variable 

conditions. 

As it is clear in model, BGFs’ variables are affecting SDRs’ decisions, but that is not 

true in reverse. This results in a hidden hierarchy of BGFs over SDRs. That is because 
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SDRs’ individual production and consumption levels are very small comparing to 

BGFs’ level of production. This decreases their effect on BGFs’ decision problem in 

general. However, to include their effect on the market behavior, indirect parameters 

and techniques such as demand functions and congestion pricing are suggested. In this 

study, demand and supply function is used to capture the behavior. Studying each 

individual’s influence on the market makes would be interesting and is among future 

work. 

Stackelberg Mathematical Model 

The Nash-Cournot game defined in this problem has three sets of players: ISO, BGFs, 

and SDRs. Optimization problem for each player in the game is described before. In 

this section the one leader multi-follower Stackelberg game among ISO as the leader, 

and BGFs and SDRs as its followers is presented. In this problem, ISO minimizes its 

objective by decision over trade levels given the response of the followers. Summary 

of the Stackelberg game model is illustrated in Table 5.  

In the main model of this study, Two-Way model, every participant shares the power 

of making decisions over trade amounts in the system. Here, the other model is 

formulated and evaluated with giving this power only to ISO. In other words, instead 

of having the market settle equilibrium through a competition, it gives one entity the 

power to control one of the variables for the whole system as an ISO. To evaluate such 

a system, the problem is modeled as a bi-level model in which ISO in the upper level 

maintains network constraints while trade amounts are variables only for ISO in the 

upper level and dictated to all other participants in the lower level. In reality, giving the 

right of decision making only to ISO would decrease level of supply diversification. 
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Table 5 Summary of one leader multi-follower Stackelberg game: Two-Way model 

One-Way Model: Model with Trades solely in ISO level 

The One-Way model would be the same as Two-Way model with only deference in 

variable definitions. The One-Way model with modified variables is illustrated in Table 

6.  

Table 6 Summary of one leader multi-follower problem: One-Way Model 

 

 

 

 

 

Level Hierarchy Player Objective Main Variable Equation(s) 

Upper Level Leader ISO Min. Income xi,a,t,n,xgg,t (3. 1)-(3. 7) 

Lower Level Follower BGFs Max. Revenue qgg,t, xgg,t, rgg,t (3. 8)-(3. 12)  

Follower SDRs Max.Individual 

Welfare 

demi,a,t,n,qi,a,t,n,

ri,a,t, xi,a,t,n 

(3. 13)-(3. 21)  

Level Hierarchy Player Objective Main Variable Equation(s) 

Upper 

Level 

Leader ISO Min. Income xi,a,t,n,xgg,t (3. 1)-(3. 7) 

Lower 

Level 

Follower BGFs Max. Revenue qgg,t (3. 8)-(3. 12)  

Follower SDRs Max. Individual Welfare demi,a,t,n,qi,a,t,n,ri,a,t (3. 13)-(3. 21)  
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Chapter 4: Solution Methodology and Validation 

This chapter is dedicated to proving the existence of a solution to the model in order to 

validate the Stackelberg game proposed for integrated demand response and market 

equilibrium in Smart Grid (Table 5). First a brief background on bi-level models is 

provided and the proof follows. The solution approach for the proposed model is 

discussed afterward. 

Background 

“Multilevel optimization problems are mathematical programs which have a subset of 

their variables constrained to be an optimal solution of other programs parameterized 

by their remaining variables” (Vicente and Calamai, 1994). Multilevel optimization is 

mostly related to economical decision making problems such as Stackelberg problems 

in game theory. It has different applications, such as revenue management, congestion 

management, network design problems, principal agent problem, origin destination 

matrix estimation and many more in transportation, management, planning and 

engineering design. In this study it is applied in the area of energy sector. Bi-level 

programming is a generally complex problem and most of studies focus on solving 

simple and small cases.  

Different methodologies in solving Bi-level problems can be categorized as following: 

 Methods based on vertex enumeration: This technique is mainly based on searching 

through different possible nodes in the region. For instance, Bard (Bard, 1983) 

developed grid search algorithm which uses bi-criteria optimization concept for 

solving bi-level programming. Hansen and Jaumard (Hansen, Jaumard et al., 1992) 

developed a branch and bound algorithms for solving bi-level problems based on 
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binding constraints of the followers. Bialas (Bialas, 1984) also proposed a vertex 

search algorithm in the accessible region, though his approach may result in local 

optimum. 

 Methods based on Karush-Kuhn-Tucker (KKT) conditions: One of the ideas in solving 

bi-level problems is converting the bi-level to a one level problem by adding the 

optimality conditions of the lower level to the upper level. Adding the KKT conditions 

of the lower level to the upper level, there will be an MPEC problem which is a one 

level problem to solve. However, due to the non-convex and non-smooth 

characteristics of a MPEC, normally solving such a problem is a difficult and complex 

process (Ban, Liu et al., 2006). Judice and Faustino (Júdice and Faustino, 1992) used 

hybrid enumerative method to develop a sequential LCP algorithm for solving MPEC 

problem which performs well in medium sized problems, but does not guarantee 

solution in all cases. White and Anandalingam (White and Anandalingam, 1993) 

benefited from penalty function for satisfying the complementarity constraints. MIP 

techniques can be also used in solving the corresponding MIP of the MPEC such as 

benders decomposition (Gabriel, Shim et al., 2010). Audet and Savard (Audet, Savard 

et al., 2007) proposed a finite branch and cut algorithm for solving the linear bi-level 

programming based on new classes of valid cuts in the corresponding MIP problem. 

Moreover, Bard and Moore (Bard and Moore, 1990)  reformulated the problem as a 

standard mathematical program by exploiting the follower’s Kuhn–Tucker conditions. 

Then a branch and bound scheme suggested by Fortuny-Amat and McCarl (Fortuny-

Amat and McCarl, 1981) is used to enforce the underlying complementary slackness 

conditions. The algorithm performs well in small problems with 100 variables. 

 Methods based on heuristics: As the problem size increases solving bi-level problems 

get even more complex. Some studies used heuristic and meta-heuristic methods for 

dealing with this issue. (Sahin and Ciric, 1998) incorporated simulated annealing 
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method. However, it was inefficient in solving even small problems. (Hejazi, 

Memariani et al., 2002) developed a genetic algorithm, but they recognized the 

difficulty in generating feasible chromosomes. Finally, (Gendreau, Marcotte et al., 

1996) developed a hybrid Tabu ascent algorithm based on penalty functions to find 

and improve the initial feasible solution which is a problem specific algorithm. 

 Nonlinear approaches: One other technique is to see the optimality conditions of the 

lower level as a type of nonlinear constraints. Having this idea, nonlinear approaches 

can be used for solving the problem. (Fletcher* and Leyffer, 2004, Leyffer, 2003, 

Leyffer and Munson, 2010, Ralph* and Wright, 2004) used this approach in their 

papers. 

There are great comprehensive surveys on bi-level programming problems and their 

solution techniques to which interested readers are referred (Colson, Marcotte et al., 

2005, Dempe, 2002, Vicente and Calamai, 1994).   

Two-Way model 

MPEC Model 

The game among participants and operator in Smart Grid is modeled as a one-leader 

multi-follower Stackelberg game. Stackelberg games are bi-level optimization models 

due to the hierarchy of decision making among players. One approach in solving 

Stackelberg problems is to substitute the lower level problems with their optimality 

conditions. This results in a one level MPEC problem. Convexity of BGFs’ quadratic 

and SDRs’ linear models makes the first order optimality condition and so Karush 

Kuhn Tucker optimality conditions (Bazaraa, Sherali et al., Cottle, Pang et al., 2009), 

both necessary and sufficient. As a result equilibrium for BGFs and SDRs’ game could 
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be found through solving KKT optimality conditions for all SDRs and BGFs together. 

Dual variables (ε) for BGFs’ constraints are shown in (4. 1) and (4. 3): 

qgg,t − QGg   ≤ 0      ;        ∀gϵG, t  − − εg,t
1   

(4. 1) 

qgg,t − xgg,t  − rgg,t + rgg,t−1 = 0      ;        ∀gϵG, t  − − εg,t
2   

(4. 2) 

rgg,t − RGg   ≤ 0      ;        ∀gϵG, t  − − εg,t
3  

(4. 3) 

KKT conditions for BGFs would be: 

0 ≤ −Z + 2Wxgg,t + W∑ xg
gg,tgg≠g − εg,t

2 ⊥ xgg,t ≥ 0; ∀gϵG, t    

(4. 4) 

0 ≤ CGg,t + εg,t
1 + εg,t

2 ⊥ qgg,t ≥ 0; ∀gϵG, t    

(4. 5) 

0 ≤ CRGg,t + εg,t+1
2 (t < T) − εg,t

2 + εg,t
3 ⊥ rgg,t ≥ 0; ∀gϵG, t    

(4. 6) 

0 ≤ QGg − qgg,t ⊥ εg,t
1 ≥ 0      ;        ∀gϵG, t   

(4. 7) 

qgg,t − xgg,t  − rgg,t + rgg,t−1(t > T0) = 0,    εg,t
2    free     ;        ∀gϵG, t    

(4. 8) 

0 ≤ RGg − rgg,t ⊥ εg,t
3 ≥ 0      ;        ∀gϵG, t   

(4. 9) 

And for SDRs model dual variables (β) are assigned as in (4. 10)-(4. 15): 
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∑ ∑ demi,a,t,nnϵN(i,a)t = DEMi,a       ;        ∀iϵI, aϵA(i)   − − βi,a
1   

(4. 10) 

riat − CHARi,a,t ≥ 0      ;     ∀iϵI, aϵA(i), t|CHARi,a,t exists − − βi,a,t
2   

(4. 11) 

∑ qi,a,t,nnϵN(i,a) − Qi,a   ≤ 0      ;        ∀iϵI, aϵA(i), t|Qi,a exists  − − βi,a,t
3   

(4. 12) 

riat − RCAPi,a ≤ 0       ;        ∀iϵI, aϵA(i), t|RCAPi,a exists − −βi,a,t
4    

(4. 13) 

∑ qi,a,T0,nnϵN(i,a) + ∑ xi,a,T0,nnϵN(i,a) − ri,a,T0
+ R0i,a

− ∑ demi,a,T0,nnϵN(i,a) =

0       ;      ∀iϵI, aϵA(i)   − − βi,a
5   

(4. 14) 

∑ qi,a,t,nnϵN(i,a) + ∑ xi,a,t,nnϵN(i,a) − ri,a,t + ri,a,(t−1) − ∑ demi,a,t,n −nϵN(i,a)

CHARi,a,t−1 = 0     ;     ∀iϵI, aϵA(i), t ≠ T0   − − βi,a,t
6   

(4. 15) 

Also to have all variables positive in the KKT condition the free trade variable is 

substituted by difference of two positive variable as x = 𝑥+ − 𝑥−. KKT conditions for 

SDRs would be as in (4. 16)-(4. 26): 

0 ≤ Z − W ∑ xg
g,tgϵG + βi,a

5 〈t = T0〉 + βi,a,t
6 〈t ≠ T0〉 ⊥ xi,a,t,n

+ ≥ 0; ∀i, aϵA(i), n, t  

(4. 16) 

0 ≤ −Z + W ∑ xg
g,tgϵG − βi,a

5 〈t = T0〉 − βi,a,t
6 〈t ≠ T0〉 ⊥ xi,a,t,n

− ≥ 0; ∀i, aϵA(i), n, t  

(4. 17) 
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0 ≤ −Vi,a,t,n + βi,a
1 − βi,a

5 〈t = T0〉 − βi,a,t
6 〈t ≠ T0〉 ⊥ demi,a,t,n ≥ 0; ∀i, aϵA(i), n, t  

(4. 18) 

0 ≤ Ci,a,t,n + βi,a
3 + βi,a

5 〈t = T0〉 + βi,a,t
6 〈t ≠ T0〉  ⊥ qi,a,t,n ≥  0 ; ∀i, aϵA(i), n, t     

(4. 19) 

0 ≤ CRi,a,t − βi,a,t
2 + βi,a,t

4 − βi,a
5 〈t = T0〉 + βi,a,(t+1)

6 〈t = T0〉 − βi,a,t
6 〈t ≠ T0〉 +

βi,a,(t+1)
6 〈t ≠ T0〉  ⊥ ri,at ≥  0 ;     ∀i, aϵA(i), t    

(4. 20) 

0 ≤ ri,a,t − CHARi,a,t ⊥ βi,a,t
2 ≥ 0       ;        ∀i, aϵA(i), t       

(4. 21) 

0 ≤ Qi,a − ∑ qi,a,t,nnϵN(i,a) ⊥ βi,a,t
3 ≥ 0      ;        ∀i, aϵA(i), t  

(4. 22) 

0 ≤ RCAPi,a − ri,a,t ⊥ βi,a,t
4 ≥ 0       ;        ∀i, aϵA(i), t  

(4. 23) 

∑ ∑ demi,a,t,nnϵN(i,a)t = DEMi,a   ,     βi,a
1    free       ;        ∀i, aϵA(i)         

(4. 24) 

∑ qi,a,T0,nnϵN(i,a) + ∑ (xi,a,t,n
+ − xi,a,t,n

− )nϵN(i,a) − ri,a,T0
+ R0i,a

− ∑ demi,a,T0,nnϵN(i,a) =

0 , βia
5     free ;   ∀i, aϵA(i)       

(4. 25) 

∑ qi,a,t,nnϵN(i,a) + ∑ (xi,a,t,n
+ − xi,a,t,n

− )nϵN(i,a) − ri,a,t + ri,a,(t−1) − ∑ demi,a,t,nnϵN(i,a) −

CHARi,a,t−1 = 0 , βi,a,t
6   free ; ∀i, aϵA(i), t ≠ T0       

(4. 26)  
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Optimality conditions for the lower level games are now in complementarity form and 

could be added to the upper level problem as a new set of constraints (Chen, Hobbs et 

al., 2006). This would shape a Mathematical Problem with Equilibrium Constraints 

(MPEC) (Cottle, Pang et al., 2009) as summarized in (Table 7). 

Table 7 Summary of one leader multi-follower Stackelberg game- MPEC Two-Way model 

Type Hierarchy Description Equation(s) 

Objective Function Leader ISO Objective Function (3. 1) 

Constraints Leader ISO Constraints (3. 2)-(3. 7) 

Follower BGFs Optimality Conditions (4. 4) -(4. 9) 

Follower SDRs Optimality Conditions (4. 16)-(4. 26) 

 

Although the MPEC has a convex objective function, it is nonlinear due to the presence 

of complementarity constraints. Generally, finding MPECs’ global solution is not easy 

using standard algorithms because of their non-convex feasible region. However, many 

researchers worked on these models to find an appropriate method for finding optimal 

solutions (Ferris and Pang, 1997, Gabriel and Leuthold, 2010, Leyffer and Munson, 

2010). Recent developments are capable of computing local stationary points and make 

MPEC a tractable tool for solving large scale Stackelberg games (Chen, Hobbs et al., 

2006, Leyffer and Munson, 2010). Although solvers such as NLPEC and NPATH are 

available for solving MPECs, the problem mostly gets computationally expensive and 

complex when it is large and so these solution approaches do not guarantee global 

optimality.  
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MIP Model 

Many researchers worked on MPEC models to develop an appropriate method for 

finding optimal solutions (Ferris and Pang, 1997, Gabriel and Leuthold, 2010, Leyffer 

and Munson, 2010). One famous approach is using integer programming technique to 

convert the nonlinear MPEC model to MILP.   

Computational tractability of optimization models makes them a favorable approach in 

solving large scale modeling (Ventosa, Baıllo et al., 2005). On the other hand, in games, 

equilibrium models are more appropriate since they can consider players’ strategies in 

the system. If equilibrium models could be converted into optimization models then 

both fitness of models and computational complexities are in favor of the model. So in 

this section the proposed MPEC model is transformed into an integer programming 

model not only to evaluate the applicability of this approach in real world size 

implementation, but also to compare its results with the results of the solution algorithm 

which will be introduced in this study. Integer programming techniques are employed 

and the complementarity constraints are transformed into linear disjunctive constraints 

based on the technique introduced in (Audet, Hansen et al., 1997). 

For any complementarity constraint such as (4. 27), using a dummy binary variable 𝜑 

and a dummy large number M (as an upper bound for the constraint), it can be written 

as (4. 28)-(4. 30): 

 

0 ≤ 𝑓(𝑥) ⊥ x ≥ 0           

(4. 27) 
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0 ≤ 𝑓(𝑥) ≤ 𝑀.𝜑          

(4. 28) 

0 ≤ x ≤ M. (1 − 𝜑)       

(4. 29) 

𝜑 ∈ {0,1}          

(4. 30) 

However, the associated MIP model has some disadvantages. Beside difficulties in 

solving the problem in large scale and real time, there would be many BigMs in the 

associated MIP model. Using the approach introduced in (Gabriel, Shim et al., 2010) 

some of the BigMs can be estimated. However, for those not being estimated, 

sensitivity analysis should be conducted. These constants make the problem unstable 

which makes MIP an unreliable approach. 

BigMs for most of constraints are estimated based on their maximum limit or their 

marginal prices. In this study shadow prices on the capacities are assumed to be α times 

their usage cost.  Some other bounds need more investigations. For instance, bound on 

xgg,t in (4. 32) can be estimated based on (4. 37). 

Following the idea, complementarity constraints of BGFs and SDRs in the MPEC 

model introduced in Table 7 can be converted to linear disjunctive constraints using 

dummy binary variables δ and λ  as shown below. The resulting problem is a large MIP 

model which can be solved using integer programming methodologies.  

0 ≤ −Z + 2Wxgg,t + W∑ xg
gg,tgg≠g − εg,t

2 ≤ M. 𝛿𝑔,𝑡
1  ; ∀gϵG, t    

(4. 31) 



 

 65 

0 ≤ xgg,t ≤ (RG𝑔 + QG𝑔). (1 − 𝛿𝑔,𝑡
1 )    

(4. 32) 

0 ≤ CGg,t + εg,t
1 + εg,t

2 ≤ M. 𝛿𝑔,𝑡
2   ;   ∀gϵG, t  

(4. 33) 

0 ≤ qgg,t ≤ QGg. (1 − 𝛿𝑔,𝑡
2 )   ;     ∀gϵG, t    

(4. 34) 

0 ≤ QGg − qgg,t ≤ QGg. 𝛿𝑔,𝑡
3       ;        ∀gϵG, t    

(4. 35) 

0 ≤ εg,t
1 ≤ α. CGg,t. (1 − 𝛿𝑔,𝑡

3 )      ;        ∀gϵG, t     

(4. 36) 

qgg,t − xgg,t  − rgg,t + rgg,t−1(t > T0) = 0    ;        ∀gϵG, t          

(4. 37) 

0 ≤ CRGg,t + εg,t+1
2 (t < T) − εg,t

2 + εg,t
3 ≤ M. 𝛿𝑔,𝑡

4   ;   ∀gϵG, t  

(4. 38) 

0 ≤ rgg,t ≤ RGg. (1 − 𝛿𝑔,𝑡
4 )   ;     ∀gϵG, t    

(4. 39) 

0 ≤ RGg − rgg,t ≤ RGg. 𝛿𝑔,𝑡
5       ;        ∀gϵG, t    

(4. 40) 

0 ≤ εg,t
3 ≤ α. CRGg,t. (1 − 𝛿𝑔,𝑡

5 )      ;        ∀gϵG, t     

(4. 41) 
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𝛿𝑔,𝑡
1 , 𝛿𝑔,𝑡

2 , 𝛿𝑔,𝑡
3 , 𝛿𝑔,𝑡

4 , 𝛿𝑔,𝑡
5 ∈ {0,1}     ;     ∀gϵG, t    

(4. 42) 

εg,t
2      free      ;        ∀gϵG, t    

(4. 43) 

0 ≤ Z − W ∑ xg
g,tgϵG + βi,a

5 〈t = T0〉 + βi,a,t
6 〈t ≠ T0〉 ≤ M. 𝜆i,a,t,n

1 ; ∀i, aϵA(i), n, t  

(4. 44) 

0 ≤ xi,a,t,n
+ ≤ M. (1 − 𝜆i,a,t,n

1 ) 

(4. 45) 

0 ≤ −Z + W ∑ xg
g,tgϵG − βi,a

5 〈t = T0〉 − βi,a,t
6 〈t ≠ T0〉 ≤ M. 𝜆i,a,t,n

2 ; ∀i, aϵA(i), n, t  

(4. 46) 

0 ≤ xi,a,t,n
− ≤ M. (1 − 𝜆i,a,t,n

2 ) 

(4. 47) 

0 ≤ −Vi,a,t,n + βi,a
1 − βi,a

5 〈t = T0〉 − βi,a,t
6 〈t ≠ T0〉  ≤ M. 𝜆i,a,t,n

3  ;  ∀i, aϵA(i), n, t    

(4. 48) 

0 ≤ demi,a,t,n ≤ DEMi,a. (1 − 𝜆i,a,t,n
3 ) ;    ∀i, aϵA(i), n, t    

(4. 49) 

0 ≤ Ci,a,t,n + βi,a
3 + βi,a

5 〈t = T0〉 + βi,a,t
6 〈t ≠ T0〉  ≤ M. 𝜆i,a,t,n

4  ;     ∀i, aϵA(i), n, t    

(4. 50) 

0 ≤ qi,a,t,n ≤ Qi,a. (1 − 𝜆i,a,t,n
4 ) ;    ∀i, aϵA(i), n, t    

(4. 51) 
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0 ≤ CRi,a,t − βi,a,t
2 + βi,a,t

4 − βi,a
5 〈t = T0〉 + βi,a,(t+1)

6 〈t = T0〉 − βi,a,t
6 〈t ≠ T0〉 +

βi,a,(t+1)
6 〈t ≠ T0〉  ≤ M. 𝜆i,a,t

5  ;     ∀i, aϵA(i), t    

(4. 52) 

0 ≤ ri,at ≤ RCAPi,a. (1 − 𝜆i,a,t
5 ) ;    ∀i, aϵA(i), t  

(4. 53) 

0 ≤ ri,a,t − CHARi,a,t ≤ RCAPi,a. 𝜆i,a,t
6        ;        ∀i, aϵA(i), t       

(4. 54) 

0 ≤ βi,a,t
2 ≤ M. (1 − 𝜆i,a,t

6 )  ;  ∀i, aϵA(i), t  

(4. 55) 

0 ≤ Qi,a − ∑ qi,a,t,nnϵN(i,a) ≤ Qi,a. 𝜆i,a,t
7       ;        ∀i, aϵA(i), t       

(4. 56) 

0 ≤ βi,a,t
3 ≤ α.∑ Ci,a,t,nnϵN(i,a) . (1 − 𝜆i,a,t

7 )      ;        ∀i, aϵA(i), t    

(4. 57) 

0 ≤ RCAPi,a − ri,a,t ≤ RCAPi,a. 𝜆i,a,t
8        ;        ∀i, aϵA(i), ts    

(4. 58) 

0 ≤ βi,a,t
4 ≤ α. CRi,a,t. (1 − 𝜆i,a,t

8 )       ;        ∀i, aϵA(i), t         

(4. 59) 

∑ ∑ demi,a,t,nnϵN(i,a)t = DEMi,a      ;        ∀i, aϵA(i)  

(4. 60) 
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∑ qi,a,T0,nnϵN(i,a) + ∑ (xi,a,t,n
+ − xi,a,t,n

− )nϵN(i,a) − ri,a,T0
+ R0i,a

− ∑ demi,a,T0,nnϵN(i,a) =

0 ;   ∀i, aϵA(i)       

(4. 61) 

∑ qi,a,t,nnϵN(i,a) + ∑ (xi,a,t,n
+ − xi,a,t,n

− )nϵN(i,a) − ri,a,t + ri,a,(t−1) − ∑ demi,a,t,nnϵN(i,a) −

CHARi,a,t−1 = 0  ;      ∀i, aϵA(i), t ≠ T0       

(4. 62) 

𝜆i,a,t,n
1 , 𝜆i,a,t,n

2 , 𝜆i,a,t,n
3 , 𝜆i,a,t,n

4 , 𝜆i,a,t
5 , 𝜆i,a,t

6 , 𝜆i,a,t
7 , 𝜆i,a,t

8 ∈ {0,1}  ;     ∀i, aϵA(i), n, t        

(4. 63) 

βi,a
1 , βi,a

5 , βi,a,t
6      free ;       ∀i, aϵA(i), t ≠ T0  

(4. 64) 

A summary of the complete MIP model for the Stackelberg game problem is shown in 

Table 8. 

Table 8 Summary of one leader multi-follower Stackelberg game- MIP Two-Way model 

Type Hierarchy Description Equation(s) 

Objective Function Leader ISO Objective Function (3. 1) 

Constraints Leader ISO Constraints (3. 2)-(3. 7) 

Follower BGFs Integer Opt. Conditions (4. 31)-(4. 43)  

Follower SDRs Integer Opt. Conditions (4. 44)-(4. 64)  

SOS Model 

Another way to linearize the complementarity constraint of an MPEC is to use SOS1 

variables (Siddiqui and Gabriel, 2013). A specifically ordered set of variables (SOS1), 

is a group of variables of which at most one member can have a nonzero value in the 
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solution. A mixed integer solver is required to solve any model containing SOS1 

variables since the solution process needs to impose mutual exclusively and so it 

implicitly defines an additional set of binary variables. However, the SOS1 variables 

do not have to take on integer solutions. One of the advantages of employing SOS 

technique to complementarity constraints instead of MIP technique is preventing 

unstable solutions in MIP model due to large number of BigMs.  

Using newly defined variables 𝜋 and 𝛿, any complementarity constraint such as (4. 27) 

could be written as a group of linear constraints. Assume   

 𝜋 =
𝑥+𝑓(𝑥)

2
        

(4. 65) 

𝛿 =
𝑥−𝑓(𝑥)

2
       

(4. 66) 

𝜋2 = 𝛿2 

(4. 67) 

Since  

0 ≤ 𝑥  , 𝑓(𝑥) ≥ 0          

(4. 68) 

It can be concluded that 

𝜋 = |𝛿| 

(4. 69) 

Moreover, based on theorem mentioned in (Beale, 1975), an absolute value of a 

variable can be written as combination of its positive and negative parts which can be 
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interpreted as special order set variables of type 1 (SOS1). So if 𝛿+ and 𝛿− be SOS1 

variables then the complementarity constraint (4. 27) can be written as; 

𝑓(𝑥) ≥ 0          

(4. 70) 

𝑥 ≥ 0          

(4. 71) 

𝜋 = 𝛿+ + 𝛿−        

(4. 72) 

𝜋 =
𝑥 + 𝑓(𝑥)

2
 

(4. 73) 

𝛿+ − 𝛿−  =
𝑥−𝑓(𝑥)

2
       

(4. 74) 

Applying the above mentioned definition to complementarity constraints on the MPEC 

problem in Table 7, an SOS model will be produced. The corresponding SOS model 

can be solved using CPLEX commercial solver. 

Existence of Solution 

Before introducing the developed solution algorithm for the proposed model, it is 

necessary to validate the model and show whether the aforementioned Stackelberg 

game has any feasible solution or not. That is to check whether the game among 

different participants in the lower level has any feasible equilibrium which is also 

feasible in the upper levels’ constraints.  
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In this section solution existence to the Nash-Cournot game among BGFs and SDRs 

shown in Table 7 is discussed. Ralph and Smeers (2006) overviewed application of 

Equilibrium Problems with Equilibrium Constraints (EPEC) in electricity markets and 

brought up non-existence and multiple solution existence in this type of models. Hu 

and Ralph (2007) studied Equilibrium Problems with Equilibrium Constraints (EPEC) 

which are multiple MPECs in bi-level game for restructured electricity market. They 

established sufficient conditions for existence of pure strategy Nash equilibriums for 

these categories of problems and showed the stationary conditions of an EPEC can be 

phrased as a complementarity problem for which solutions are the Nash stationary 

points. However, contrary to general MPECs, there are different theorems and lemmas 

on solution existence for Linear Complementarity Problems (LCP) (Cottle, Pang et al., 

2009). LCP is a special case of MPEC with no equality constraints. These theorems 

will be borrowed in this study to prove the existence of equilibrium.  

Existence of equilibrium for the lower level games does not necessarily guarantee a 

solution to the whole MPEC problem. Even if the feasible region of the lower level is 

non empty and has feasible equilibrium points in it, but still these feasible equilibrium 

sets may not be feasible in the network constraints which are in the upper level problem. 

To deal with this issue, for the sake of proving the existence of solution, network 

constraints are considered in the BGFs and SDRs’ decision problems. This ensures the 

optimality conditions also will consider upper level’s constraints. That means if 

solution exists to this problem, then it is justified to conclude that the main problem 

with upper level constraints also has feasible solution. 
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To transform the MPEC to an LCP, some modifications to the original problems are 

needed. The modifications do not make any changes to the main problem and the model 

still will have the same feasible region and objective function. To convert the MPEC 

model in Table 7 to an LCP model, equality constraints (4. 8), (4. 24), (4. 25), and (4. 

26) should be transformed to inequality constraints which means their corresponding 

constraints in the original model (Table 5), would change. (3. 10) would be   

qgg,t − xgg,t  − rgg,t + rgg,t−1 ≥ 0       ;      ∀gϵG, t  − − εg,t
2−t                                   

(4. 75) 

qgg,t − xgg,t  − rgg,t + rgg,t−1 ≤ 0     ;        ∀gϵG, t  − − εg,t
2+t                                  

(4. 76) 

And (3. 14) would be 

DEMi,a ≤ ∑ ∑ demi,a,t,nnϵN(i,a)t     ;     ∀i, aϵA(i) − − βi,a
1−      

(4. 77) 

∑ ∑ demi,a,t,nnϵN(i,a)t ≤ DEMi,a     ;      ∀i, aϵA(i) − − βi,a
1+  

(4. 78) 

And (3. 18) would be 

∑ qi,a,T0,nnϵN(i,a) + ∑ (xi,a,t,n
+ − xi,a,t,n

− )nϵN(i,a) − ri,a,T0
+ R0i,a

− ∑ demi,a,T0,nnϵN(i,a) ≥

0    ;   ∀i, aϵA(i)   − − − − βi,a
5−  

(4. 79) 

∑ qi,a,T0,nnϵN(i,a) + ∑ (xi,a,t,n
+ − xi,a,t,n

− )nϵN(i,a) − ri,a,T0
+ R0i,a

− ∑ demi,a,T0,nnϵN(i,a) ≤

0    ;   ∀i, aϵA(i)   − − − − βi,a
5+  

(4. 80) 
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And finally (3. 19) would be 

∑ qi,a,t,nnϵN(i,a) + ∑ (xi,a,t,n
+ − xi,a,t,n

− )nϵN(i,a) − ri,a,t + ri,a,(t−1) − ∑ demi,a,t,nnϵN(i,a) −

CHARi,a,t−1 ≥ 0     ; ∀i, aϵA(i), t ≠ T0   − − − − βi,a,t
6−   

(4. 81) 

∑ qi,a,t,nnϵN(i,a) + ∑ (xi,a,t,n
+ − xi,a,t,n

− )nϵN(i,a) − ri,a,t + ri,a,(t−1) − ∑ demi,a,t,nnϵN(i,a) −

CHARi,a,t−1 ≤ 0     ; ∀i, aϵA(i), t ≠ T0   − − − − βi,a,t
6+   

(4. 82) 

Also network constraints (3. 4) and (3. 5) should be considered in taking the KKT 

conditions. 

∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI − ∑ xgg,tg∈G ≥ 0 ;  ∀t − − − − θt
1− 

(4. 83) 

∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI − ∑ xgg,tg∈G ≤ 0 ;  ∀t − − − − θt
1+ 

(4. 84) 

∑ ((∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI − ∑ xgg,tg∈G|GNODEg=nnϵN )Dn,l)+Kl ≥ 0 ;  ∀lϵL, t   − −

− − θl,t
2  

(4. 85) 

Kl − ∑ ((∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI − ∑ xgg,tg∈G|GNODEg=nnϵN )Dn,l) ≥ 0 ;  ∀lϵL, t   

− − − − θl,t
3  

(4. 86) 

Substituting the modified constraints in the original model, the model would be still 

linear and convex, and so KKT conditions are both necessary and sufficient. Taking 
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KKTs from the modified model, the Nash-Cournot game among the BGFs and SDRs 

would be in the form of an LCP as follows:   

0 ≤ −Z + 2W. xgg,t +  W∑ xggg,t𝑔𝑔≠𝑔 + εg,t
2− − εg,t

2+ + θt
1− − θt

1+ + θl,t
2 ∑ Dn,l𝑙 −

θl,t
3 ∑ Dn,l𝑙 ⊥ xgg,t ≥ 0   ;     ∀gϵG, t  

(4. 87) 

0 ≤ CGg,t + εg,t
1 − εg,t

2− + εg,t
2+ ⊥ qgg,t ≥ 0   ;     ∀gϵG, t                                             

(4. 88) 

0 ≤ CRGg,t + εg,t+1
2+ (t < T) − εg,t+1

2− (t < T) − εg,t
2+ + εg,t

2− + εg,t
3 ⊥ rgg,t ≥ 0; ∀gϵG, t    

(4. 89) 

0 ≤ QGg − qgg,t ⊥ εg,t
1 ≥ 0      ;        ∀gϵG, t     

(4. 90) 

0 ≤ qgg,t − xgg,t  − rgg,t + rgg,t−1(t > T0)  ⊥ εg,t
2− ≥ 0     ;        ∀gϵG, t    

(4. 91) 

0 ≤ −qgg,t + xgg,t + rgg,t − rgg,t−1(t > T0)  ⊥ εg,t
2+ ≥ 0          ;        ∀gϵG, t   

(4. 92) 

0 ≤ RGg − rgg,t ⊥ εg,t
3 ≥ 0      ;        ∀gϵG, t   

(4. 93) 

0 ≤ ∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI − ∑ xgg,tg∈G ⊥ θt
1− ≥ 0  

(4. 94) 

0 ≤ −∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI + ∑ xgg,tg∈G ⊥ θt
1+ ≥ 0  

(4. 95) 
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0 ≤ ∑ ((∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI − ∑ xgg,tg∈G|GNODEg=nnϵN )Dn,l)+Kl ⊥ θl,t
2 ≥ 0  

(4. 96) 

0 ≤ −∑ ((∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI − ∑ xgg,tg∈G|GNODEg=nnϵN )Dn,l)+Kl ⊥ θl,t
3 ≥ 0  

(4. 97) 

0 ≤ Z − W ∑ xg
g,tgϵG + βi,a

5+〈t = T0〉 − βi,a
5−〈t = T0〉 + βi,a,t

6+ 〈t ≠ T0〉 − βi,a,t
6− 〈t ≠ T0〉 +

θt
1+ − θt

1− − θl,t
2 ∑ Dn,l𝑙 + θl,t

3 ∑ Dn,l𝑙 ⊥ xpi,a,t,n ≥ 0; ∀i, aϵA(i), n, t  

(4. 98) 

0 ≤ −Z + W ∑ xg
g,tgϵG − βi,a

5+〈t = T0〉 + βi,a
5−〈t = T0〉 − βi,a,t

6+ 〈t ≠ T0〉 + βi,a,t
6− 〈t ≠ T0〉 −

θt
1+ + θt

1− + θl,t
2 ∑ Dn,l𝑙 − θl,t

3 ∑ Dn,l𝑙 ⊥ xni,a,t,n ≥ 0; ∀i, aϵA(i), n, t  

(4. 99) 

0 ≤ −Vi,a,t,n + βi,a
1+ − βi,a

1− − (βi,a
5+ − βi,a

5−)〈t = T0〉 − (βi,a,t
6+ − βi,a,t

6− )〈t ≠ T0〉  ⊥

demi,a,t,n ≥  0 ;     ∀i, aϵA(i), n, t    

(4. 100) 

0 ≤ Ci,a,t,n + βi,a
3 + (βi,a

5+ − βi,a
5−)〈t = T0〉 + (βi,a,t

6+ − βi,a,t
6− )〈t ≠ T0〉  ⊥ qi,a,t,n ≥

 0 ;     ∀i, aϵA(i), n, t     

(4. 101) 

0 ≤ CRi,a,t − βi,a,t
2 + βi,a,t

4 − (βi,a
5+ − βi,a

5−)〈t = T0〉 + (βi,a,(t+1)
6+ − βi,a,(t+1)

6− )〈t = T0〉 −

(βi,a,t
6+ − βi,a,t

6− )〈t ≠ T0〉 + (βi,a,(t+1)
6+ − βi,a,(t+1)

6− )〈t ≠ T0〉  ⊥ ri,at ≥  0 ;    ∀i, aϵA(i), t       

(4. 102) 

0 ≤ ri,a,t − CHARi,a,t ⊥ βi,a,t
2 ≥ 0       ;        ∀i, aϵA(i), t       

(4. 103) 
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0 ≤ Qi,a − ∑ qi,a,t,nnϵN(i,a) ⊥ βi,a,t
3 ≥ 0      ;        ∀i, aϵA(i), t       

(4. 104) 

0 ≤ RCAPi,a − ri,a,t ⊥ βi,a,t
4 ≥ 0       ;        ∀i, aϵA(i), t         

(4. 105) 

0 ≤ ∑ ∑ demi,a,t,nnϵN(i,a)t − DEMi,a ⊥ βi,a
1− ≥ 0       ;        ∀i, aϵA(i)          

(4. 106) 

0 ≤ DEMi,a − ∑ ∑ demi,a,t,nnϵN(i,a)t ⊥ βi,a
1+ ≥ 0       ;        ∀i, aϵA(i)       

(4. 107) 

0 ≤ ∑ qi,a,T0,nnϵN(i,a) + ∑ (xpi,a,T0,nnϵN(i,a) − xni,a,T0,n) − ri,a,T0
+ R0i,a

−

∑ demi,a,T0,nnϵN(i,a) ⊥ βia
5− ≥ 0    ;   ∀i, aϵA(i)       

(4. 108) 

0 ≤ −∑ qi,a,T0,nnϵN(i,a) − ∑ (xpi,a,T0,nnϵN(i,a) − xni,a,T0,n) + ri,a,T0
− R0i,a

+

∑ demi,a,T0,nnϵN(i,a) ⊥ βia
5+ ≥ 0    ;   ∀i, aϵA(i)       

(4. 109) 

0 ≤ ∑ qi,a,t,nnϵN(i,a) + ∑ (xpi,a,t,nnϵN(i,a) − xni,a,t,n) − ri,a,t + ri,a,(t−1) −

∑ demi,a,t,nnϵN(i,a) − CHARi,a,t−1 ⊥ βi,a,t
6− ≥ 0; ∀i, aϵA(i), t ≠ T0    

(4. 110) 

0 ≤ −∑ qi,a,t,nnϵN(i,a) − ∑ (xpi,a,t,nnϵN(i,a) − xni,a,t,n) + ri,a,t − ri,a,(t−1) +

∑ demi,a,t,nnϵN(i,a) + CHARi,a,t−1 ⊥ βi,a,t
6+ ≥ 0 ; ∀i, aϵA(i), t ≠ T0       

(4. 111) 
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Now that the model is in LCP format, it is possible to continue with the proof of 

existence. Assume 

𝑧 = [𝑧1 𝑧2]  

𝑞 = [
𝑞1

𝑞2
]  

𝑀 = [(
𝑀1 0
0 𝑀2

)]  

Then the modified Stackelberg model (4. 87)-(4. 111) could be written as 𝐿𝐶𝑃∗(𝑞,𝑀) 

when: 

𝑧1
𝑇 = [xgg,t qgg,t rgg,t εg,t

1 εg,t
3 εg,t

2− εg,t
2+ θt

1− θt
1+ θl,t

2 θl,t
3 ]  

𝑧2
𝑇 =

[xpi,a,t,n xni,a,t,n demi,a,t,n qi,a,t,n ri,a,t βi,a,t
2  βi,a,t

3 βi,a,t
4 βi,a

1− βi,a
1+ βia

5− βia
5+ βi,a,t

6− βi,a,t
6+ θt

1− θt
1+ θl,t

2 θl,t
3 ]  

𝑞1 =

[
 
 
 
 
 
 
 
 
 
 
 
 

−𝑍
CGg,t

CRGg,t

QGg

RGg

0
0

∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI

−∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵI

∑ (Dn,l ∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵInϵN )+Kl

−∑ (Dn,l ∑ ∑ ∑ xi,a,t,nnϵN(i,a)aϵA(i)iϵInϵN )+Kl]
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𝑞2 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑍
−𝑍

−Vi,a,t,n

Ci,a,t,n

CRi,a,t

−CHARi,a,t

Qi,a

RCAPi,a

−DEMi,a

DEMi,a

R0i,a

−R0i,a

−CHARi,a,t−1

CHARi,a,t−1

−∑ xgg,tg∈G

∑ xgg,tg∈G

−∑ Dn,l ∑ xgg,tg∈G|GNODEg=nnϵN +Kl

∑ Dn,l ∑ xgg,tg∈G|GNODEg=nnϵN +Kl ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

𝑀1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 {

2𝑊; 𝑔′ = 𝑔

𝑊;𝑔′ ≠ 𝑔
} 0 0 00 1 −1 1−1Dn,l−Dn,l

0 0 0 10 −1 1 0 0 0 0

0 0 0 01{
1; 𝑔′ = 𝑔

−1; 𝑡′ = 𝑡 + 1|𝑡 < 𝑇
}{

−1; 𝑔′ = 𝑔

1; 𝑡′ = 𝑡 + 1|𝑡 < 𝑇
}0 0 0 0

0 −1 0 00 0 0 0 0 0 0
0 0 −1 00 0 0 0 0 0 0

−1 1 {
−1; 𝑔′ = 𝑔

1; 𝑡′ = 𝑡 − 1|𝑡 > T0
} 00 0 0 0 0 0 0

1 −1{
1; 𝑔′ = 𝑔

−1; 𝑡′ = 𝑡 − 1|𝑡 > T0
}00 0 0 0 0 0 0

−1 0 0 00 0 0 0 0 0 0
1 0 0 00 0 0 0 0 0 0

−Dn,l 0 0 00 0 0 0 0 0 0

Dn,l 0 0 00 0 0 0 0 0 0 ]
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𝑀2 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 1 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0

0 0 {
−1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

−1; 𝑡 = T0

0; 𝑡 ≠ T0
} 0 0 0 0 0

0 0 {
1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

−1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

1; 𝑡 = T0

0; 𝑡 ≠ T0
} 0 0 0 0 0

0 0 {
0; 𝑡 = T0

−1; 𝑡 ≠ T0
} {

0; 𝑡 = T0

1; 𝑡 ≠ T0
} {

−1; 𝑡 = t, t ≠ T0

1; 𝑡 = t − 1
} 0 0 0 0 0

0 0 {
0; 𝑡 = T0

1; 𝑡 ≠ T0
} {

0; 𝑡 = T0

−1; 𝑡 ≠ T0
} {

1; 𝑡 = t, t ≠ T0

−1; 𝑡 = t − 1
} 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
Dn,l −Dn,l 0 0 0 0 0 0 0 0

−Dn,l Dn,l 0 0 0 0 0 0 0 0

  

0 0 0 0 −1 1 −Dn,l Dn,l

0 0 0 0 1 −1 Dn,l −Dn,l

{
1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

−1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

0; 𝑡 = T0

1; 𝑡 ≠ T0
} {

0; 𝑡 = T0

−1; 𝑡 ≠ T0
} 0 0 0 0

{
−1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

0; 𝑡 = T0

−1; 𝑡 ≠ T0
} {

0; 𝑡 = T0

1; 𝑡 ≠ T0
} 0 0 0 0

{
1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

−1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

−1; 𝑡 = t + 1
1; 𝑡 = t, 𝑡 ≠ T0

} {
1; 𝑡 = t + 1

−1; 𝑡 = t, 𝑡 ≠ T0
} 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Cottle and Pang (2009) define a matrix 𝑀 ∈ 𝑅𝑛×𝑛 to be: 

a. Copositive if 𝑦𝑇𝑀𝑦 ≥ 0 for all  𝑦 ∈ 𝑅+
𝑛 
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b. Strictly copositive if 𝑦𝑇𝑀𝑦 > 0 for all  nonzero 𝑦 ∈ 𝑅+
𝑛 

c. Copositive-plus if M is copositive and the following implication holds: 

[𝑦𝑇𝑀𝑦 = 0, 𝑦 ≥ 0] ⟹ [(𝑀 + 𝑀𝑇)𝑦 = 0] 

d. Copositive-star if M is copositive and the following implication holds: 

[𝑦𝑇𝑀𝑦 = 0,𝑀𝑦 ≥ 0, 𝑦 ≥ 0] ⟹ [𝑀𝑇𝑦 ≤ 0] 

They showed if 𝑀 ∈ 𝑅𝑛×𝑛 is strictly copositive, then for each 𝑞 ∈ 𝑅𝑛, the 𝐿𝐶𝑃(𝑞,𝑀) 

has a solution. And if 𝑀 ∈ 𝑅𝑛×𝑛 is copositive star, then the following statements would 

be equivalent: 

a. M is an S-matrix (Stiemke Matrix) (𝐿𝐶𝑃(𝑞,𝑀) is feasible for all choices of q)  

b. M is a Q-matrix (𝐿𝐶𝑃(𝑞,𝑀) is solvable for all choices of q). 

Using these theorems and the defined 𝐿𝐶𝑃∗(𝑞,𝑀), solution existence is proved as 

follows. 

Proposition 1 

𝐿𝐶𝑃∗(𝑞,𝑀) has a solution and is feasible and solvable for all choices of q. 

Proof: 

If 𝑦1 ∈ 𝑅+
11∗|𝐺|

, 𝑦2 ∈ 𝑅+
18 , and 𝑦 = [𝑦1 𝑦2] ∈ 𝑅+

𝑛: 

𝑦𝑇𝑀𝑦 = 𝑦𝑇 (
𝑀1 0
0 𝑀2

) 𝑦 = 𝑦1
𝑇𝑀1𝑦1 + 𝑦2

𝑇𝑀2𝑦2     

(P. 1) 

If two parts are separated then it is easy to show 

𝑦1
𝑇𝑀1𝑦1 = 2𝑊 ∑ 𝑦1

1𝑔2

𝑔 + 𝑊 ∑ ∑ 𝑦1
1𝑔′

.𝑔′≠𝑔𝑔 𝑦1
1𝑔

      

(P. 2) 

Based on assumptions made for the problem it is given that 
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{
𝑦1 > 0 
𝑊 > 0

}                 

(P. 3) 

(P. 2) & (P. 3) ⟹ 𝑦1
𝑇𝑀1𝑦1 > 0         

(P. 4) 

If it is assumed that 

{

𝑦1 ≥ 0
𝑀1𝑦1 ≥ 0

𝑦1
𝑇𝑀1𝑦1 = 0

}            

(P. 5) 

⟹ 𝑦1 = 0 ⟹ 𝑀1
𝑇𝑦1 ≤ 0              

(P. 6) 

On the other side, since 𝑀2 is a skew-symmetric matrix for any 𝑦2, it is clear that 

𝑦2
𝑇𝑀2𝑦2 = 0                 

(P. 7) 

and 

𝑀2 + 𝑀2
𝑇 = 0 ⟹ (𝑀2 + 𝑀2

𝑇)𝑦2 = 0            

(P. 8) 

So if it is assumed that 

{

𝑦2 > 0
𝑀2𝑦2 ≥ 0

𝑦2
𝑇𝑀2𝑦2 = 0

}     

(P. 9) 

Considering 𝑀2 = −𝑀2
𝑇  
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It can be concluded that 𝑀2
𝑇𝑦2 ≤ 0 should always be true. So if 𝑦 > 0, it can be 

concluded that 

(P. 4)&(P. 7)⟹ {

𝑦1
𝑇𝑀1𝑦1 ≥ 0

𝑦2
𝑇𝑀2𝑦2 = 0
𝑦 > 0

} ⟹ 𝑦𝑇𝑀𝑦 > 0    

(P. 10) 

Based on (Cottle, Pang et al., 2009) and (P. 10), 𝑀 is strictly copositive, and so for each 

𝑞 ∈ 𝑅𝑛, 𝐿𝐶𝑃∗(𝑞,𝑀) has a solution. 

Moreover, if  

𝑦𝑇𝑀𝑦 = 0 ⟹ 𝑦1
𝑇𝑀1𝑦1 + 𝑦2

𝑇𝑀2𝑦2 = 0                 

(P. 11) 

but given (P. 7) it is concluded that 

𝑦2
𝑇𝑀2𝑦2 = 0 ⟹ 𝑦1

𝑇𝑀1𝑦1 = 0         

(P. 12) 

Given  

𝑊 > 0 ⟹ 𝑦1 = 0                 

(P. 13) 

As a result if  {
𝑀𝑦 ≥ 0
𝑦 ≥ 0

} then                          

⟹ 𝑀1𝑦1 + 𝑀2𝑦2 ≥ 0                

(P. 14) 

However, from (P. 13) it is known that 

𝑦1 = 0 ⟹ 𝑀2𝑦2 ≥ 0                       

(P. 15) 
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Since 𝑀2 is a skew-symmetric matrix so  

⟹ 𝑀2𝑦2 ≥ 0 𝑎𝑛𝑑 𝑀2 = −𝑀2
𝑇 ⟹ 𝑀2

𝑇𝑦2 ≤ 0 ⟹ 𝑀𝑦 ≤ 0      

(P. 16) 

So 𝑀 is copositive star which means M is both S and Q-matrix, and so 𝐿𝐶𝑃∗(𝑞,𝑀) is 

feasible and solvable for all choices of q. □ 

Proposition 2 

The MPEC Stackelberg game defined in Table 7 has at least a solution if feasible region 

is non-empty. 

Proof:  

In the MPEC model, ISO as the leader decides on the amount of trades 

(imports/exports) in the network. Different decisions of ISO affect the lower level 

𝐿𝐶𝑃∗(𝑞,𝑀) by varying 𝑞 vector. According to Proposition 1, 𝐿𝐶𝑃∗(𝑞,𝑀) is feasible 

and solvable for all choices of 𝑞 and has at least a solution.  

Since network constraints are added to the LCP of the lower level decision problems, 

it is shown that there is always at least one feasible equilibrium solution for every 

decision made by ISO which is also feasible in the ISO’s constraints. So if ISO’s 

constraints make a feasible region itself, then it definitely has a common area with 

feasible region of the lower level game, and so the MPEC would at least have one 

optimal solution for the linear objective function of the ISO. □ 

Despite proving existence of solution to general proposed MPEC, there is still an issue 

of having multiple solutions for the problem. Although 𝐿𝐶𝑃∗(𝑞,𝑀) has a feasible 

solution for all q, the solution might not be unique and there might be multi-equilibria 

for the game. Studies are available on finding all equilibria in a game (Cottle, Pang et 
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al., 2009, Day, Hobbs et al., 2002, Leyffer and Munson, 2010). However, existence of 

multiple solutions for the lower level game is a benefit for the model since it extends 

the feasible region for ISO. Choosing the right market equilibrium in case of multiple 

equilibriums in the Stackelberg model will be a major concern as this issue has been 

raised in some studies (Neuhoff, Barquin et al., 2005). However, the author believes 

this can be a plus to the model since at any time the operator can choose the best 

solution among multiple solutions based on the situation.  

Solution Algorithm 

Two main challenges are on the table solving the proposed Stackelberg model. First is 

the huge size of variables in real cases which increases dramatically with increase in 

the number of users and appliances and changes in network topology. This gets worse 

considering the dynamic nature of the problem. The problem is being solved in a rolling 

horizon manner and so should be solved in a matter of minutes in real cases. Second is 

the special shape of the feasible region. Heuristics are basically developed based on 

finding an initial feasible solution and then improving it. However, if the feasible region 

is small and has a special shape, then heuristics mostly behave weakly in finding the 

initial feasible point to start with. Considering the size and dynamic nature of the 

problem, the MPEC and the converted MIP model are both very complex and time 

consuming to solve. To overcome these mentioned challenges there is a need for 

developing a new algorithm to benefit from the special structure of the problem.  

Bi-level programming problems are mathematical optimization modeling in which 

decision variables are divided into two sets and one of them being determined 

parametrically based on the other set. Although using bi-level programming is very 
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useful and realistic in many real world problems, generally solving them is very 

complex and difficult. The complexity is even more sensible when the size of the 

problem increases. Complexity of the models and solution approaches mainly are 

dependent on how decision variables are divided between different levels of the model 

and how all of them are related to each other. Consequently, how to model a bi-level 

problem and benefiting from special structure of the model are the main keys toward 

solving them. 

Previously, it was shown that the lower level optimization model is guaranteed to have 

at least one feasible solution for any solution of the upper level decision problem. This 

is one of the key bases on which to build the algorithm. In the first stage of the 

algorithm, ISO’s decision problem is solved including all lower level constraints. Then 

total trades at each time and flow levels on lines are fixed. The fixed amounts are 

dictated as constants to all other participants in the system in the second stage. There 

are two main games in the lower level. One is among BGFs and the other is among 

SDRs. In the BGF’s game, SDRs’ trade values are set based on the ISO’s solution. 

Then the algorithm solves BGF’s problem for their best decisions through maximizing 

sum of their objectives in stage 2 while including ISO’s constraints. BGFs decisions 

from stage 2 are then fixed and fed into the SDRs decision problem. In stage 3, each 

user’s best action in the game assuming fixed BGFs’ variables, total trades at each time 

and lines’ flows is found through maximizing total sum of SDRs’ objectives. To ensure 

feasibility of solutions for ISO’s problem, ISO’s constraints are included in stage 3. 

Moreover, to eliminate some of the bad solutions a cut is added based on the best bound 

of the solution. Finally, in stage 4, ISO’s problem is resolved assuming all the lower 
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level variables are fixed to search for the best possible solution and objective value. 

The flowchart of the developed algorithm and the algorithm itself are shown in Figure 

10 and Table 9. 

 

Figure 10 Flowchart for the solution algorithm for the Two-Way model 

Benefiting from the special structure of the model and the assumptions, it can be shown 

the solution of the proposed algorithm is a feasible solution to the proposed Stackelberg 

model. Assume the following: 

Case 1: is the MPEC shown in Table 7 with BGFs’ and SDRs’ KKT conditions 

included as the ISO’s constraints. Optimal solution and objectives for this case are 

shown by 𝑥1
∗, 𝑥𝑔1

∗ , 𝐼𝑆𝑂1
∗, 𝐵𝐺𝐹1

∗, 𝑆𝐷𝑅1
∗ respectively.  
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Case 2: is the algorithm proposed for solving the Stackelberg game in Case 1 and 

shown in Table 9. Optimal solution and objectives for this case are shown as 𝑥2
∗, 𝑥𝑔2

∗ , 

𝐼𝑆𝑂2
∗, 𝐵𝐺𝐹2

∗, 𝑆𝐷𝑅2
∗.  

Finally, assume solution set of 𝑥2, 𝑥𝑔2
, 𝐼𝑆𝑂2, 𝐵𝐺𝐹2, 𝑆𝐷𝑅2 is reached in the first stage 

of Case 2. In stage 2, sum of 𝑥2 in (3. 4) and (3. 5) is fixed and then BGFs decision 

problem is solved for 𝑀𝑎𝑥.∑ 𝐵𝐺𝐹𝑔𝑔  to find  𝑥𝑔2
∗ , 𝑞𝑔2

∗ , and 𝑟𝑔2
∗ .  

Table 9 Summary of the solution algorithm for the Two-Way model 

 

Proposition 3 

Stage Input Equation(s) 

1  Solve  

Min. ∑ ∑ Pn,t. (∑ xgg,t(gϵG|gnode(g) = n)  − 𝑒𝑥𝑝𝑜𝑛,𝑡n∈Nt )  

s.t.: (3. 2)-(3. 7) & (3. 9)-(3. 12) & (3. 14) -(3. 21) 

2 x̅i,a,t,n Solve  

Max. ∑ ∑ ((Z − W∑ xggg,tggϵG )xgg,t − CGg,t. qgg,t − CRGg,t. rgg,t)t𝑔ϵG   

s.t.: (3. 4)-(3. 5) & (3. 9)-(3. 12) 

3 xg̅̅ ̅g,t, 

expo̅̅ ̅̅ ̅̅ 𝑛,𝑡 

Solve  

Max. ∑ ∑ (∑ ∑ (Vi,a,t,n. demi,a,t,nnϵN(i,a)aϵA(i)t − Ci,a,t,n. qi,a,t,n − (Z −𝑖ϵI

W ∑ xgg,tgϵG ). xi,a,n,t) + ∑ (VCHARi,a,t. CHARi,a,t − CRi,a,t. ri,a,taϵA(i) ))   

s.t.: expo̅̅ ̅̅ ̅̅ 𝑛,𝑡 ≤ ∑ ∑ x𝑖,𝑎,𝑡,𝑛aϵA(i)i∈I    

& (3. 4)-(3. 5) & (3. 14) -(3. 21) 

4 x̅i,a,t,n, xg̅̅ ̅g,t Solve 

Min. ∑ ∑ Pn,t. (∑ xg̅̅ ̅g,t(gϵG|gnode(g) = n)  − 𝑒𝑥𝑝𝑜𝑛,𝑡n∈Nt )  

s.t.: 

(3. 2)-(3. 3) 
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Set of 𝑥𝑔2
∗ , 𝑞𝑔2

∗ , 𝑟𝑔2
∗ , and ∑ 𝐵𝐺𝐹2

∗
𝑔  in Case 2 is an equilibrium set for the BGFs’ game 

in Case1. 

Proof: (Proof by contradiction) 

Assume to the contrary that the solution set is not an equilibrium in Case 1. That is 

having all players’ with the same decisions; one player has a better move to play. Its 

move can be either through change of 𝑞𝑔2
, 𝑟𝑔2

 or 𝑥𝑔2
.  

i. If it is due to a different value of 𝑞𝑔2
 and 𝑟𝑔2

 , then new set of decisions for the player 

does not affect other decision makers’ decision. Since its new decision does not have 

influence over other players’ objective. This means there should be a better objective 

value for that player using the new set of 𝑞𝑔2
 and 𝑟𝑔2

. According to Bellman’s principle 

of optimality, this results in a better total ∑ 𝐵𝐺𝐹𝑔𝑔 . However, it was assumed that 

∑ 𝐵𝐺𝐹2
∗

𝑔  is maximized and no better solution should exist. So this is contradictory to 

the assumption.  

ii. If it is due to different value of 𝑥𝑔2
, then in order to comply with constant sum of 𝑥𝑔2

 

in constraints (3. 4) and (3. 5), other players should also change their strategy which is 

a contradiction as well. 

So solution set ∑ 𝐵𝐺𝐹2
∗

𝑔 , 𝑥𝑔2
∗ , 𝑞𝑔2

∗ , and 𝑟𝑔2
∗  is an equilibrium to the BGF’s game in 

Case1. □ 

It can also be shown in the same approach that solution of stage 3 in Case 2 is an 

equilibrium in the SDR’s game in Case 1.  

Proposition 4 

Objective value of stage 1 in Case 2 is a lower bound for the problem. 

Proof: 
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In Case 2, the equilibrium in the lower level games are found upon a fixed constant fed 

into (3. 4) and (3. 5) in each game. This fixed constant is set by ISO, while in Case 1, 

for each set of equilibrium in the lower level there is a fixed constant for the (3. 4) and 

(3. 5) constraints. ISO is optimizing its objective over these feasible equilibrium sets. 

In stage 1 of Case 2, the best constant for (3. 4) and (3. 5) constraints for ISO’s decision 

problem is found. Although this constant remains the same for the final equilibrium 

sets in stage 4, but export variable would change and so objective value will change. 

However, this value will never be better than the stage 1’s objective value. So the 

objective in stage 1 can be used as the lower bound for the problem. □ 

One-Way model 

Existence of Solution 

Solution existence for the One-Way model can be proved in the same way as the Two-

Way model. The only difference is that while xi,a,t,n and xgg,t are variables in the lower 

level of the Two-Way model, they are not in the lower level of the One-Way model. 

So as will be shown, there is no need to consider the upper level constraints in the lower 

level game to prove the solution existence. After modifying the equilibrium constraints 

of the One-Way problem in Table 6, and taking the KKT of the modified model, the 

LCP of the One-Way problem would be as follows:  

0 ≤ CGg,t + εg,t
1 − εg,t

2− + εg,t
2+ ⊥ qgg,t ≥ 0   ;     ∀gϵG, t                                             

(4. 112) 

0 ≤ CRGg,t + εg,t+1
2+ (t < T) − εg,t+1

2− (t < T) − εg,t
2+ + εg,t

2− + εg,t
3 ⊥ rgg,t ≥ 0; ∀gϵG, t    

(4. 113) 



 

 90 

0 ≤ QGg − qgg,t ⊥ εg,t
1 ≥ 0      ;        ∀gϵG, t     

(4. 114) 

0 ≤ qgg,t − xgg,t  − rgg,t + rgg,t−1(t > T0)  ⊥ εg,t
2− ≥ 0     ;        ∀gϵG, t    

(4. 115) 

0 ≤ −qgg,t + xgg,t + rgg,t − rgg,t−1(t > T0)  ⊥ εg,t
2+ ≥ 0          ;        ∀gϵG, t   

(4. 116) 

0 ≤ RGg − rgg,t ⊥ εg,t
3 ≥ 0      ;        ∀gϵG, t   

(4. 117) 

0 ≤ −Vi,a,t,n + βi,a
1+ − βi,a

1− − (βi,a
5+ − βi,a

5−)〈t = T0〉 − (βi,a,t
6+ − βi,a,t

6− )〈t ≠ T0〉  ⊥

demi,a,t,n ≥  0 ;     ∀i, aϵA(i), n, t    

(4. 118) 

0 ≤ Ci,a,t,n + βi,a
3 + (βi,a

5+ − βi,a
5−)〈t = T0〉 + (βi,a,t

6+ − βi,a,t
6− )〈t ≠ T0〉  ⊥ qi,a,t,n ≥

 0 ;     ∀i, aϵA(i), n, t     

(4. 119) 

0 ≤ CRi,a,t − βi,a,t
2 + βi,a,t

4 − (βi,a
5+ − βi,a

5−)〈t = T0〉 + (βi,a,(t+1)
6+ − βi,a,(t+1)

6− )〈t = T0〉 −

(βi,a,t
6+ − βi,a,t

6− )〈t ≠ T0〉 + (βi,a,(t+1)
6+ − βi,a,(t+1)

6− )〈t ≠ T0〉  ⊥ ri,at ≥  0 ;    ∀i, aϵA(i), t       

(4. 120) 

0 ≤ ri,a,t − CHARi,a,t ⊥ βi,a,t
2 ≥ 0       ;        ∀i, aϵA(i), t       

(4. 121) 

0 ≤ Qi,a − ∑ qi,a,t,nnϵN(i,a) ⊥ βi,a,t
3 ≥ 0      ;        ∀i, aϵA(i), t       

(4. 122) 
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0 ≤ RCAPi,a − ri,a,t ⊥ βi,a,t
4 ≥ 0       ;        ∀i, aϵA(i), t         

(4. 123) 

0 ≤ ∑ ∑ demi,a,t,nnϵN(i,a)t − DEMi,a ⊥ βi,a
1− ≥ 0       ;        ∀i, aϵA(i)          

(4. 124) 

0 ≤ DEMi,a − ∑ ∑ demi,a,t,nnϵN(i,a)t ⊥ βi,a
1+ ≥ 0       ;        ∀i, aϵA(i)       

(4. 125) 

0 ≤ ∑ qi,a,T0,nnϵN(i,a) + ∑ xi,a,T0,nnϵN(i,a) − ri,a,T0
+ R0i,a

− ∑ demi,a,T0,nnϵN(i,a) ⊥

βia
5− ≥ 0    ;   ∀i, aϵA(i)       

(4. 126) 

0 ≤ −∑ qi,a,T0,nnϵN(i,a) − ∑ xi,a,T0,nnϵN(i,a) + ri,a,T0
− R0i,a

+ ∑ demi,a,T0,nnϵN(i,a) ⊥

βia
5+ ≥ 0    ;   ∀i, aϵA(i)       

(4. 127) 

0 ≤ ∑ qi,a,t,nnϵN(i,a) + ∑ xi,a,t,nnϵN(i,a) − ri,a,t + ri,a,(t−1) − ∑ demi,a,t,nnϵN(i,a) −

CHARi,a,t−1 ⊥ βi,a,t
6− ≥ 0; ∀i, aϵA(i), t ≠ T0    

(4. 128) 

0 ≤ −∑ qi,a,t,nnϵN(i,a) − ∑ xi,a,t,nnϵN(i,a) + ri,a,t − ri,a,(t−1) + ∑ demi,a,t,nnϵN(i,a) +

CHARi,a,t−1 ⊥ βi,a,t
6+ ≥ 0 ; ∀i, aϵA(i), t ≠ T0       

(4. 129) 

Assume 

𝑧 = [𝑧1 𝑧2]  

𝑞 = [
𝑞1

𝑞2
]  
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𝑀 = [(
𝑀1 0
0 𝑀2

)]  

Then the modified One-Way Stackelberg model (4. 112)-(4. 129) could be written as 

𝐿𝐶𝑃∗(𝑞,𝑀) when:  

𝑧1
𝑇 = [qgg,t rgg,t εg,t

1 εg,t
3 εg,t

2− εg,t
2+]  

𝑧2
𝑇 = [demi,a,t,n qi,a,t,n ri,a,t βi,a,t

2  βi,a,t
3 βi,a,t

4 βi,a
1− βi,a

1+ βia
5− βia

5+ βi,a,t
6− βi,a,t

6+ ]  

𝑞1 =

[
 
 
 
 
 
 
CGg,t

CRGg,t

QGg

RGg

−xgg,t

xgg,t ]
 
 
 
 
 
 

   

𝑞2 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

−Vi,a,t,n

Ci,a,t,n

CRi,a,t

−CHARi,a,t

Qi,a

RCAPi,a

−DEMi,a

DEMi,a

∑ xi,a,T0,nnϵN(i,a) + R0i,a

−∑ xi,a,T0,nnϵN(i,a) − R0i,a

∑ xi,a,t,nnϵN(i,a) − CHARi,a,t−1

−∑ xi,a,t,nnϵN(i,a) + CHARi,a,t−1]
 
 
 
 
 
 
 
 
 
 
 
 
 

  

𝑀1 =

[
 
 
 
 
 
 
 
 

0 0 10 −1 1

0 0 01{
1; 𝑔′ = 𝑔

−1; 𝑡′ = 𝑡 + 1|𝑡 < 𝑇
}{

−1; 𝑔′ = 𝑔

1; 𝑡′ = 𝑡 + 1|𝑡 < 𝑇
}

−1 0 00 0 0
0 −1 00 0 0

1 {
−1; 𝑔′ = 𝑔

1; 𝑡′ = 𝑡 − 1|𝑡 > T0
} 00 0 0

−1{
1; 𝑔′ = 𝑔

−1; 𝑡′ = 𝑡 − 1|𝑡 > T0
}00 0 0

]
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𝑀2 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 −1 1
0 0 0 0 1 0 0 0
0 0 0 −1 0 1 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

{
−1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

−1; 𝑡 = T0

0; 𝑡 ≠ T0
} 0 0 0 0 0

{
1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

−1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

1; 𝑡 = T0

0; 𝑡 ≠ T0
} 0 0 0 0 0

{
0; 𝑡 = T0

−1; 𝑡 ≠ T0
} {

0; 𝑡 = T0

1; 𝑡 ≠ T0
} {

−1; 𝑡 = t, t ≠ T0

1; 𝑡 = t − 1
} 0 0 0 0 0

{
0; 𝑡 = T0

1; 𝑡 ≠ T0
} {

0; 𝑡 = T0

−1; 𝑡 ≠ T0
} {

1; 𝑡 = t, t ≠ T0

−1; 𝑡 = t − 1
} 0 0 0 0 0

  

{
1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

−1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

0; 𝑡 = T0

1; 𝑡 ≠ T0
} {

0; 𝑡 = T0

−1; 𝑡 ≠ T0
}

{
−1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

0; 𝑡 = T0

−1; 𝑡 ≠ T0
} {

0; 𝑡 = T0

1; 𝑡 ≠ T0
}

{
1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

−1; 𝑡 = T0

0; 𝑡 ≠ T0
} {

−1; 𝑡 = t + 1
1; 𝑡 = t, 𝑡 ≠ T0

} {
1; 𝑡 = t + 1

−1; 𝑡 = t, 𝑡 ≠ T0
}

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Proposition 5 

𝐿𝐶𝑃∗(𝑞,𝑀) has a solution and is feasible and solvable for all choices of q. 

Proof: 

If 𝑦1 ∈ 𝑅+
6∗|𝐺|

, 𝑦2 ∈ 𝑅+
12 , and 𝑦 = [𝑦1 𝑦2] ∈ 𝑅+

𝑛: 

𝑦𝑇𝑀𝑦 = 𝑦𝑇 (
𝑀1 0
0 𝑀2

) 𝑦 = 𝑦1
𝑇𝑀1𝑦1 + 𝑦2

𝑇𝑀2𝑦2     

(P. 17) 

Both 𝑀1and 𝑀2 are skew-symmetric matrices for any 𝑦1 and 𝑦2, and so it is clear that 
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𝑦1
𝑇𝑀1𝑦1 = 0                 

(P. 18) 

𝑦2
𝑇𝑀2𝑦2 = 0                 

(P. 19) 

And  

𝑀1 + 𝑀1
𝑇 = 0 ⟹ (𝑀1 + 𝑀1

𝑇)𝑦1 = 0            

(P. 20) 

𝑀2 + 𝑀2
𝑇 = 0 ⟹ (𝑀2 + 𝑀2

𝑇)𝑦2 = 0            

(P. 21) 

So if it is assumed that 

{

𝑦1 > 0
𝑀1𝑦1 ≥ 0

𝑦1
𝑇𝑀1𝑦1 = 0

} 

(P. 22) 

{

𝑦2 > 0
𝑀2𝑦2 ≥ 0

𝑦2
𝑇𝑀2𝑦2 = 0

}     

(P. 23) 

Considering 𝑀1 = −𝑀1
𝑇 and 𝑀2 = −𝑀2

𝑇  

It can be concluded that 𝑀1
𝑇𝑦1 ≤ 0 and 𝑀2

𝑇𝑦2 ≤ 0 should always be true. So if 𝑦 > 0, 

it can be concluded that 

(P. 22)&(P. 23) ⟹ {

𝑦1
𝑇𝑀1𝑦1 = 0

𝑦2
𝑇𝑀2𝑦2 = 0
𝑦 > 0

} ⟹ 𝑦𝑇𝑀𝑦 = 0    

(P. 24) 
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Based on (Cottle, Pang et al., 2009) and (P. 24), 𝑀 is copositive. 

Moreover, if  

𝑦𝑇𝑀𝑦 = 0 ⟹ 𝑦1
𝑇𝑀1𝑦1 + 𝑦2

𝑇𝑀2𝑦2 = 0                 

(P. 25) 

given (P. 22)&(P. 23) it is known that 

𝑦2
𝑇𝑀2𝑦2 = 0  & 𝑦1

𝑇𝑀1𝑦1 = 0         

(P. 26) 

Since 𝑀1 and 𝑀2 are skew-symmetric matrices so  

⟹ 𝑖𝑓 𝑀1𝑦1 ≥ 0 & 𝑦1 ≥ 0 | 𝑀1 = −𝑀1
𝑇 ⟹ 𝑀1

𝑇𝑦1 ≤ 0 

(P. 27) 

⟹ 𝑖𝑓 𝑀2𝑦2 ≥ 0 & 𝑦2 ≥ 0 | 𝑀2 = −𝑀2
𝑇 ⟹ 𝑀2

𝑇𝑦2 ≤ 0      

(P. 28) 

⟹ 𝑦𝑇𝑀𝑦 = 0,𝑀𝑦 ≥ 0, 𝑦 ≥ 0 ⟹ 𝑀𝑇𝑦 ≤ 0 

(P. 29) 

Based on (Cottle, Pang et al., 2009) and (P. 29), 𝑀 is copositive star which means M is 

both S and Q-matrix, and so 𝐿𝐶𝑃∗(𝑞,𝑀) is feasible and solvable for all choices of q. □ 

Proposition 6 

The One-Way model has at least a solution if the feasible region is non-empty. 

Proof:  

In the MPEC model, ISO as the leader decides on the amount of trades 

(imports/exports) in the network. Different decisions of ISO affect the lower level 

𝐿𝐶𝑃∗(𝑞,𝑀) by varying 𝑞 vector. According to Proposition 5, 𝐿𝐶𝑃∗(𝑞,𝑀) is feasible 
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and solvable for all choices of 𝑞 and has at least a solution. So if ISO’s constraints 

make a feasible region which has a common area with feasible region of the lower level 

game, the MPEC would at least have one optimal solution from the linear objective 

function of the ISO. □ 

Solution Algorithm 

As proved in previous section the One-Way 𝐿𝐶𝑃∗(𝑞,𝑀) is feasible and solvable for all 

choices of q. That means for all decisions of ISO, lower level problem has at least a 

feasible solution. Relying on this fact, the algorithm for solving the One-Way model is 

designed as described here. 

The algorithm for solving the One-Way model has the same base as of the algorithm 

for the Two-Way model with few changes. For the One-Way algorithm, in stage 1, 

trade values are all fixed and fed into next stages. Then in stages 2 and 3, instead of 

having game among participants, a decision problem is solved through an optimization. 

Since trade values are fixed in stage 1, and ISO’s variables wouldn’t change in the 

process, there wouldn’t be any need to stage 4. The algorithm’s flowchart is shown in 

Figure 11. 
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Figure 11 Flowchart for the solution algorithm for the One-Way model 

Benefiting from special structure of the model and the assumptions, it can be shown 

the solution of the proposed algorithm is an optimal solution to the original One-Way 

model in Table 6. Assume the following: 

Case 1: is an MPEC depicted in Table 6 with ISO’s decision problem in the upper level 

and BGFs’ and SDRs’ KKT conditions included as the ISO’s constraints. The set of 

optimal solutions and objectives for this case are shown by 𝑥1
∗, 𝑥𝑔1

∗ , 𝐼𝑆𝑂1
∗, 𝐵𝐺𝐹1

∗, 𝑆𝐷𝑅1
∗. 

The feasible region for Case 1 is 𝑓(𝐵𝐺𝐹𝑒𝑞𝑢. (𝑥𝑔1
) , 𝑆𝐷𝑅𝑒𝑞𝑢. (𝑥1, 𝑥𝑔1

)), while the 

feasible region of the lower level is continuous over the upper levels’ variables based 

on what was discussed in the solution existence. 

Case 2: is the algorithm shown in Figure 11. Set of optimal solutions and objectives for 

this case are shown as  𝑥2
∗, 𝑥𝑔2

∗ , 𝐼𝑆𝑂2
∗, 𝐵𝐺𝐹2

∗, 𝑆𝐷𝑅2
∗. The feasible region for Case 2 is 

shown by 𝜒 and the set of all equilibriums for the lower level is Γ(𝜒). 

Proposition 7 

Case 1 and Case 2 give the same optimal objective value. 

Proof: 
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Since decision variables of ISO are not variables in the lower level, ISO has hierarchy 

over BGFs and SDRs. Also some decision variables of the BGFs are not variables in 

SDRs’ problem, which results in a hidden hierarchy of BGFs over SDRs. Case 1’s 

feasible region is a subset of lower level’s feasible equilibriums. On the other hand, 

Case 2’s feasible region is larger compared to Case 1 and BGFs and SDRs feasible 

region is getting more restricted by setting the decisions from the upper level to fix 

values. So the feasible region of the lower level problem in Case 2 is a subset of the 

feasible region of the lower level in Case 1.  

Now to the contrary assume 𝐼𝑆𝑂1
∗  ≠  𝐼𝑆𝑂2

∗ , then: 

As mentioned earlier: ∀𝑥2
∗, 𝑥𝑔2

∗ ∈ 𝜒: Γ(𝜒) ≠ ∅  

Solving the lower level problems for optimality the results would be: 

(𝐵𝐺𝐹𝑒𝑞𝑢. (𝑥𝑔2
∗) , 𝑆𝐷𝑅𝑒𝑞𝑢. (𝑥2

∗, 𝑥𝑔2
∗)) ∈ Γ(𝜒) 

Moreover: 𝑓(𝐵𝐺𝐹𝑒𝑞𝑢. (𝑥𝑔2
∗) , 𝑆𝐷𝑅𝑒𝑞𝑢. (𝑥2

∗, 𝑥𝑔2
∗))  ∈

𝑓(𝐵𝐺𝐹𝑒𝑞𝑢. (𝑥𝑔1
) , 𝑆𝐷𝑅𝑒𝑞𝑢. (𝑥1, 𝑥𝑔1

)) 

So there will be only three possible cases: 

{

𝑎) 𝐼𝑆𝑂2
∗ > 𝐼𝑆𝑂1

∗

𝑏) 𝐼𝑆𝑂2
∗ < 𝐼𝑆𝑂1

∗ 
𝑐) 𝐼𝑆𝑂2

∗  = 𝐼𝑆𝑂1
∗
} 

𝑎) 𝐼𝑓 𝐼𝑆𝑂2
∗ > 𝐼𝑆𝑂1

∗:  

∃ 𝑓(𝐵𝐺𝐹𝑒𝑞𝑢. (𝑥𝑔2
∗) , 𝑆𝐷𝑅𝑒𝑞𝑢. (𝑥2

∗, 𝑥𝑔2
∗))  

∈ 𝑓(𝐵𝐺𝐹𝑒𝑞𝑢. (𝑥𝑔1
) , 𝑆𝐷𝑅𝑒𝑞𝑢. (𝑥1, 𝑥𝑔1

))|𝐼𝑆𝑂2
∗ > 𝐼𝑆𝑂1

∗

→ 𝐼𝑆𝑂1
∗ 𝑖𝑠 𝑛𝑜𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⊗ 

𝑏) 𝐼𝑓 𝐼𝑆𝑂2
∗ < 𝐼𝑆𝑂1

∗: 
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∃ (𝑥1
∗, 𝑥𝑔1

∗)  ∈ 𝜒|𝐼𝑆𝑂1
∗ > 𝐼𝑆𝑂2

∗ ⇒ 𝐼𝑆𝑂2
∗ 𝑖𝑠 𝑛𝑜𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⊗ 

“a” and “b” are contradictions. So “c” should be true and so 𝐼𝑆𝑂2
∗ = 𝐼𝑆𝑂1

∗. □ 

As shown in the proof, the objective value of the proposed algorithm and the main 

MPEC problem have to be the same. However, this may not be true for the solution 

variables. This is due to possible existence of multiple solutions at equilibrium.  
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Chapter 5:  Results 

To evaluate the proposed model and compare different solution methodologies with the 

proposed solution algorithm, several examples are designed and solved. Results are 

compared and presented in this chapter. Sensitivity analysis is then conducted on the 

exogenous parameters. Finally conclusions and recommendations are made based on 

the results.  

Data Generation 

To evaluate the model it is best to apply the model and solution algorithm on real world 

systems with real data. However, due to confidentiality and security concerns finding 

a complete network system with its real data is almost impossible. As a result, here 

network and demand data is generated randomly in MATLAB based on real data found 

from open sources. Then different scenarios on several electricity networks with 

different characteristics defined to evaluate the model. 

Network data is borrowed from IEEE distribution test feeders5. Different networks with 

different sizes are used in generating examples. PTDF matrix for each network is 

calculated based on method explained in (Benjamin, 2012). To calculate the PTDF 

matrix for each case, networks are assumed to be built from one phase lines. That means 

the largest impedance is taken for the ones with more than one phase. Also, networks 

are assumed to be DC lossless and so R is set to be zero for all lines. Moreover, node 

                                                 

5 http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html 
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one in all networks is taken as the reference node and level of consumption is assumed 

to be the same among all nodes while generating PTDF matrices. 

SDRs in the system are divided into four categories: commercial and building, 

residential, industrial with shifts and industrial with no shift users. Percentage of each 

category among users is shown in Table 10. The hourly demand distribution is 

estimated based on PJM dataset6 in May 2011. Since the provided data is for the whole 

PJM territory with a population of about 61 million7, the distribution is adjusted 

according to the size of each designed problem. The hourly distribution demand 

function is used for generating request times of demands for the users. For demand 

amounts, each appliance of users is assigned a random demand according to their 

category and their share of demand distribution in Table 10.  For large user categories, 

industrials and commercials, some constant and uninterrupted demand is generated to 

cover the minimum demand they have for utilities in 24 hours. Each constant demand 

is set as a new appliance with an inflexible request time during the day. Two of these 

constant demands are assumed to be flexible and 1/3 of them could be shifted to other 

time spots as two appliances, which means these categories each have 26 appliances. 

The maximum number of registered appliances for the residential users is assumed to 

be 5. Appliances could connect to grid at different random nodes and time periods upon 

availability of SDRs. 

                                                 

6 http://www.eia.gov/tools/faqs/faq.cfm?id=100&t=3 

7 http://www.pjm.com/about-pjm/who-we-are.aspx 
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Covering demands for electrical vehicles is one of the highlights of this model. It is 

assumed that 40% of the residential users have EV and their demand is generated based 

on EV hourly charging demand distribution function published by ECOtality8 (a DOE 

Project). Electrical vehicles are taken to be an appliance with a battery capacity of 4-

10 (kWh)9. 

Table 10 Percentage of Different Demand Category10 

 

Nodal fees and rewards function is estimated based on price distribution provided by 

BGE for May of 2011 to comply with the time span used for demand distribution11. 

Prices are generated randomly and then smoothed to reduce the peaks and downs. 

The utility function for satisfying demands is assumed to be Gaussian with its 

maximum at the request time of the demand (5. 1). As the time of meeting demand 

diverges from the requested time, the value of satisfying demand is decreasing.  

𝑉𝑡 = 𝑎. 𝑒−((𝑡−𝑇𝑅𝑒𝑞𝑢𝑒𝑠𝑡)/𝑏)2 

(5. 1) 

Where “a” and “b” are randomly generated constants. 

                                                 

8 http://www.theevproject.com/documents.php 

9 U.S. Department of Energy (July 2012) 

10 http://www.eia.gov/tools/faqs/faq.cfm?id=447&t=3 

11 http://www.eia.gov/tools/faqs/faq.cfm?id=100&t=3 

User Categories Percentage of users

Commercial 0.20%

Shift industrial 0.30%

No shift idustrial 0.10%

Residential 99.40%

http://www.eia.gov/tools/faqs/faq.cfm?id=447&t=3
http://www.eia.gov/tools/faqs/faq.cfm?id=447&t=3
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Storage and all other data used in the examples are randomly generated based on 

information and data provided by U.S. Energy Information Administration12, U.S. 

Department of Energy13 and Electricity Storage Association14 as follows. 

Distributed storage in the market has maximum capacity of 100 (kWh) and assigned to 

10% of the users. Storage cost for any type of battery is assumed to be 0.01-0.03 

($/kWh)15. 20% of SDRs assumed to have generation capacity. Distributed generation 

such as solar panels, or small wind turbines for SDRs are assumed to have capacity of 

about 50-1000 (kWh) and their generation cost is uniformly distributed on 0.03-0.09 

($/kWh). BGFs generation capacity is uniformly distributed on 5-1000 (MW), and their 

generating cost is about 0.009-0.050 ($/kWh)16. Their storage capacity is assumed to 

be 1% of their generation capacity with the cost of 0.01-0.03 ($/kWh). Slope and 

intercept for the inverse supply function for BGFs in the system are set to 0.000001 

($/kWh2) and 0.05 ($/kWh) respectively.  

To compare the complexity of the problem, different scenarios on different networks 

with different number of BGFs and DSRs are defined and compared as shown in Table 

11. To evaluate the appropriateness of the proposed Stackelberg model and market 

structure, each scenario is solved with two different models of One-Way and Two-Way 

to show the difference between the two mechanisms defined in Chapter 3. Additionally, 

                                                 

12 http://www.eia.gov/ 

13 http://www.eere.energy.gov/ 

14 http://www.electricitystorage.org/about/welcome 

15 Electricity Storage Association (July 2012) 

16 U.S. Energy Information Administration (July 2012) 

http://www.eia.gov/
http://www.eere.energy.gov/
http://www.electricitystorage.org/about/welcome
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two more models are compared with the One-Way and Two-Way Stackelberg models. 

One is demand satisfaction with no Demand Response program for SDRs. In this model 

demands are assigned to the first available time spot after the request time of the 

demands. So SDRs’ feasibility constraints are added to the ISO’s decision problem, 

while BGFs are still competing in the lower level. This model is called NO DR model. 

The other model assumes that there is neither a demand response program among 

SDRS, nor there is any game among BGFs. Hence their constraints are all added to 

ISO’s decision problem as a one level problem. This model is called NO DR-NO 

GAME. Comparing these two models with the Stackelberg game model would show 

benefits of the integrated demand response model and also the new market mechanism 

designed in this study. 

Moreover, to evaluate the proposed solution algorithm, different solution 

methodologies in solving the Stackelberg model are compared. As discussed in Chapter 

4, the proposed Stackelberg game can be converted to a MPEC model. Then the MPEC 

model can be solved through either nonlinear MPEC solvers in the market or through 

SOS, MIP or heuristic techniques. In next section, all these approaches are used and 

compared together and with the proposed algorithm in Chapter 4 which will be called 

Mona from this point. The corresponding MPECs, SOS, and MIPs are solved using 

GAMS 24.2.1 (NPATH, CPLEX, and Xpress solvers). All other algorithms, Mona, NO 

DR, and NO DR-NO GAME are coded and solved in Xpress optimization suite 7.1 on 

a computer with i7 CPU and 8.00 GB of RAM. All designed scenarios are shown in 

Table 11. Each set of network is used to generate different sets of scenarios with 

different number of users. Each scenario is then solved with 6 different algorithms: 
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Mona, SOS, MIP, MPEC, NO DR, NO DR-NO GAME with both One-Way and Two-

Way models. Detailed results for all scenarios are presented in Appendix A. Results 

and computational statistics for all scenarios will be discussed in next section. 

Table 11 Scenarios’ Settings 

Topology Node Line Model Scenario SDRs BGFs 

Small 13 12 One-Way 1 5 1 

2 50 2 

3 100 2 

Two-Way 1 5 1 

2 50 2 

3 100 2 

Medium 37 36 One-Way 4 10 1 

5 100 2 

6 1000 10 

7 5000 10 

Two-Way 4 10 1 

5 100 2 

6 1000 10 

7 5000 10 

Large 122 117 One- Way 8 100 2 

9 1000 5 

10 5000 10 

Two-Way 8 100 2 

9 1000 5 

10 5000 10 

Numerical Results 

Basic computational statistics for different scenarios defined in Table 11 are 

summarized in Table 12. As number of users and suppliers increases, number of 

variables and constraints increases dramatically and so does solution time.  

Results indicate that the MPEC solver is incapable of solving almost all problem 

instances other than Scenario 1 with only 5 users for local optimal (Table 13-Table 15). 

When user number increases to 1000 and more, SOS and MIP solvers also become 

unreliable and inefficient in most cases. However, Mona solves all scenarios to 

optimality or a good near optimal solution in a reasonable time, which makes it a 
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reliable algorithm for solving both One-Way and Two-Way models compared to other 

solution methodologies.  

Table 12 Computational Statistics and Objectives for Different Scenarios 

Topology Node Line Model Scenario SDRs BGFs 

Number  

of 

Constraints 

Number 

of 

Variables 

Solution 

Time 

(Sec) 

(Mona) 

Small 13 12 

One-Way 

1 5 1 3,142 1,449 0.05 

2 50 2 20,903 12,326 0.31 

3 100 2 39,488 23,636 0.59 

Two-Way 

1 5 1 5,410 2,174 0.08 

2 50 2 50,526 21,495 0.39 

3 100 2 97,970 41,744 0.67 

Medium  37 36 

One-Way 

4 10 1 7,995 3,611 0.13 

5 100 2 43,457 25,309 0.80 

6 1000 10 405,629 247,015 15.52 

7 5000 10 9,928,633 2,168,684 231.16 

Two-Way 

4 10 1 22,367 5,456 0.25 

5 100 2 191,408 43,562 1.10 

6 1000 10 2,000,587 441,527 27.34 

7 5000 10 9,928,633 2,168,684 911.59 

Large 122 117 

One-Way 

8 100 2 49,383 26,114 0.94 

9 1000 5 410,297 247,197 10.31 

10 5000 10 1,978,042 1,208,129 267.32 

Two-Way 

8 100 2 503,799 44,410 1.26 

9 1000 5 5,381,282 442,287 19.28 

10 5000 10 26,734,009 2,170,724 982.62 

 

To have an effective demand response model, the dynamic model needs to be run every 

30 minutes. So it is important to have a solution algorithm which can find a solution in 

less than 30 minutes. Comparing solution times for both One-Way and Two-Way 

models, the algorithm Mona is performing better than any other solution algorithm in 

all scenarios (Figure 12 and Figure 13). 
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Figure 12 Solution time for different solution algorithms for One-Way Model 

 

Figure 13 Solution time for different solution algorithms for Two-Way Model 

To be able to evaluate the results and effect of the models on the market, it is important 

to investigate some market indicators. Market share, 𝑠𝑖, is an indicator of competition 

in a market and is a percentage of the market supplied by a specific entity. When market 

share is mostly assigned to a limited number of suppliers, it conveys that there is less 
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competition in the market. As the market moves toward perfect competition, market 

share distributes among all suppliers more evenly and so their standard deviations 

decrease. Hirschman-Herfindhal Index (HHI) (Ventosa, Baıllo et al., 2005) is an 

indicator for market share evaluation and is defined in equation (5. 2). 𝑠𝑖 is the market 

share of supplier 𝑖 among 𝑁 suppliers. 

𝐻𝐻𝐼 = ∑ 𝑠𝑖
2𝑁

𝑖=1 ,   
1

𝑁
 ≤ 𝐻𝐻𝐼 ≤ 1  

(5. 2) 

As 𝐻𝐻𝐼 increases, competition level in the market decreases. So small enough HHIs 

show that the market is not a monopoly. One of the goals in Smart Grid is to encourage 

participation of individuals in the market and motivate use of distributed energy sources 

in supplying demands. Here 𝐻𝐻𝐼 is used to show whether a market is a monopoly or a 

competitive market and it also indicates the level of supply diversification in the 

market.  Figure 15 illustrates HHI for different scenarios comparing the proposed 

Stackelberg model with NO DR and NO DR-No GAME. Lower HHI in the models 

with competition among suppliers (Mona and NO DR algorithms) compared to NO 

DR-NO GAME approach shows how implementing competition among suppliers can 

prevent the monopoly of supply in the market and motivate supply diversification. This 

is valid in both One-Way and Two Way models (Figure 14 and Figure 15). Results 

demonstrate the capability of the proposed Stackelberg model in distributing market 

power among players in the game which interprets perfect competition in the market. 

Distributed market share in a system not only prevents system from going toward 

monopoly, but also supports availability of supply in case of unpredicted disruptions. 

In this market, the system is not relying on a few sets of generating companies and so 
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it would be more reliable. Interestingly, results confirm that as the number of generators 

and users increases in the market, there is more supply diversification in the system. 

 

Figure 14 Comparison of HHI index for different algorithms in One-Way model 

 

Figure 15 Comparison of HHI index for different algorithms in Two-Way model 

Increase of supply diversification in the market not only leads to better market 

indicators, it also results in use of more renewable energies and thus a better objective 



 

 110 

function value (Figure 16 and Figure 17). Results convey that having a competitive 

market without demand response is better than having none of the features, while 

implementing the integrated competitive demand response model is the best of all.    

 

Figure 16 Comparison of ISO Obj. for different algorithms in One-Way model 

Mohsenian-Rad and Wong (2010) used an index called PAR (5. 3), which is Peak to 

Average load Ratio, to indicate how loads are distributed during the time horizon.  

𝑃𝐴𝑅 =
𝐿𝑜𝑎𝑑𝑝𝑒𝑎𝑘

𝐿𝑜𝑎𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒
   

(5. 3) 
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Figure 17 Comparison of ISO Obj. for different algorithms in Two-Way model 

They minimized PAR in their objective function and claimed that as PAR decreases, 

consumption would get leveled and this would be beneficial to the system. However, 

this may not always be true, specifically when dynamic pricing is applied and idle 

capacities are available in the system. PAR might be a good indicator when limited 

constant capacities are available, but with integration of renewable energy and 

distributed generation capacities in the network, it is better to minimize cost instead of 

PAR while trying to keep load levels in acceptable range through applying real time 

prices based on total consumption in the market. This approach not only reduces costs, 

but also incentivizes users to consume during time periods with lower prices and more 

available capacities which may lead to lower PAR depending on parameters in the 

pricing function. In this study the objective function is to motivate use of local 

generators, while market price is directly dependent on total consumption in the market 

which encourages demands being shifted to more cost efficient time windows while 

using available capacities efficiently. Although Figure 18 and Figure 19 demonstrate 
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better PAR index for algorithm Mona in most scenarios, it is not always guaranteed 

and it is dependent on generated data sets. Limited feasible time intervals for satisfying 

demands, lower inverse supply function’s parameters in some time windows, and 

availability of low cost distributed supplies in the network in specific time periods 

could be reasons for shifting demand toward specific time instances in different data 

sets which result in always better objective function but not necessarily a lower PAR 

indicator.  However, as is shown in Figure 20, it is clear that the algorithm shifted 

demands from some peak windows to to off peak times of day. 

 

Figure 18 Comparison of PAR index for different algorithms in One-Way model 

Among different solution methodologies applied to the Stackelberg model, as is shown 

in Figure 12, Figure 13, Figure 21, and Figure 22, Mona has better solution time 

compared to other methods for all scenarios. This is while it has a good objective value 

and almost the same HHI and PAR indices as other methods (Table 13-Table 15).  
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Figure 19 Comparison of PAR index for different algorithms in Two-Way model 

 

Figure 20 Demand distribution in Two-Way Model comparing to original hourly demands in Scenario 9 
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Figure 21 ISO objective for different solution methodologies in Two-Way Model 

 

Figure 22 ISO objective for different solution methodologies in Two-Way Model 

Moreover, Mona performs well in encouraging participants in the network. Average 

SDRs and BGFs’ objective functions in Mona are considerably better than any of the 

other models (NO DR and NO DR-NO GAME) (Figure 23-Figure 26). It is obvious 

that having competition in the market is very important for BGFs to increase revenue. 

Also applying demand response model in a competetive market makes it more 

appealing for households and users to participate in the system. Comparing 
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participants’ avgerage objective in Mona with MIP and SOS is not a valid comparison 

due to the way the algorithm works. In the proposed algorithm by adding cuts in the 

second and third stages based on the best possible solution of the ISO, the algorithm 

maximizes all individual objectives. This results in finding the best set of equilibrium 

solutions for the lower level problem. However, in the MIP and SOS algorithms, the 

objective is only focused on optimizing the objective function and so comparison of 

the equilibrium sets is not a fair comparison. It is also necessary to mention that without 

having access to real data it is very difficult to estimate the users’utility function. 

Underestimation of the utilities is a reason for big differences in SDRs’ average 

objective functions from different methods as are shown in Figure 23 and Figure 24.  

 

Figure 23 SDRs average objective in One-Way model 
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Figure 24 SDRs average objective in Two-Way model 

 

Figure 25 BGFs average objective in One-Way model 
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Figure 26 BGFs average objective in Two-Way model 

So Mona generally perfoms better from both aspects of solution methodology 

(compared to MPEC, MIP, and SOS) and modeling (comapred to NO Dr and NO DR-

NO GAME). 

An interesting result came from comparison of One-Way and Two-Way models. As it 

is clear in Figure 27 and Figure 28, the market share index is almost the same in both 

models. This conveys that although having a competition would improve the system, 

strict controling of one variable by an operator does not affect the competition level. 

That means, if the system is left to reach its equilibrium itself or let an operator to 

control one of the system variables individually does not make any differnce in market 

indices. However, if all users have the right of decision making over all variables, their 

objective values will be better. That is a system with perfect competition is more 

encouraging for participants than a semi-controled competetive market (Figure 29).  
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Figure 27 HHI index for One-Way and Two-Way models for all scenarios 

 

Figure 28 PAR index for One-Way and Two-Way models for all scenarios 
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Figure 29 SDRs and BGFs average objective difference ((Two-Way Obj.) - (One-Way Obj.)) 

Sensitivity Analysis 

Exogenous input in this problem is generated randomly based on real data. However, 

it is of interest to study how their values may affect solution results. To study these 

changes and also make appropriate policy recommendations, sensitivity analysis is 

conducted over several scenarios. In this section, results from one of the scenarios are 

discussed (scenario 9). In the sensitivity analysis several cases are compared to the base 

case. In each case a multiplier is applied to the studied base input. That is numbers on 

the horizontal axis on the sensitivity graphs are percentage multipliers of the base case 

in the sensitivity analysis. 

Higher storage capacities in the system would make the decision problem more 

flexible. As is shown in Figure 30, increase of storage capacity gives the option to users 

to buy and store more electricity in the time of low prices and use during peak times. 

This results in lower objective function. On the other hand, having more storage 

capacity, users are more willing to buy from one specific provider with lower cost and 
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store in advance instead of buying from a higher cost local generator. This would result 

in higher HHI and so less supply diversification in the market. However, this would 

encourage local users to install lower cost and more efficient storage and generation 

systems. The intercept between HHI and objective function would be a good estimate 

of average storage capacity to have in the system in order to have both good objective 

function and competitive market. This is the same for distributed generation capacities 

(Figure 31). Having larger local generation capacities, objective function gets better. 

However, the provider with lower cost would be able to supply more electricity in the 

system which results in higher supply diversification in the market. However, this again 

could be a good motive for local generators to reduce their initial costs and use more 

efficient generators. So motivating use of bigger generators and storage devices in 

households and local generators would result in a better objective function and 

eventually more efficient system.  

 

Figure 30 Sensitivity over SDRs' storage capacity-Scenario 9- Two-Way model  
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Figure 31 Sensitivity over SDRs' generation capacity-Scenario 9- Two-Way model 

However, larger storage capacities and genertors for local use are not efficient and 

economical yet. Improvements in the area of storage and generation technologies need 

to advance more. Consequently, responsible entities may want to invest in these area 

of research for development of more efficient and reliable storage and generation 

capacities. 

 

Figure 32 Sensitivity over Thermal Limit-Scenario 9- Two-Way Model 
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Network limitation always makes problems more complex. Sensitivity analysis on 

thermal limits of lines demontrated that increase of thermal limit would result in better 

objective function and HHI. However, after a certain capacity, increaing the limit 

would not be beneficial. Though decreasing limits more than 40% of current limits 

would cause problem infeasibilty. So another good area of investment would be to 

increase the lines capacities in some parts of the network. 

One of the ideas in demand response programs benefit from flexibility of users in their 

demands. The best case is when all demands are completely flexible (Relaxed), and can 

be met at any time of the day, and the worse case is when demands are very restricted 

(Restricted) and have to be satistied at the time of request. These two scenarios are 

compared with the base case in which demands are just flexible and have to be satisfied 

during a certain time window.  Figure 33 illustrate results from these three cases. As it 

is expected, objective function, PAR and HHI are all better when demands are relaxed 

and have no time restrictions. However, when it comes to restricted case, the problem 

is not feasible anymore. That means with increase of public knowledge and 

encouraging people toward relaxing their time of use for some of their demands, both 

users and suppliers would benefit. So investment in increasing public knowledge could 

be another area of attention. 
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Figure 33 Sensitivity over Time of Use flexibility-Scenario 9- Two-Way model 
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Chapter 6:  Conclusions and Future Work 

Conclusions and Recommendations 

Researchers showed that one of the best areas for energy efficiency opportunity is in 

installing energy management controls that shift time of electricity use (Schweitzer and 

Tonn, 2005). In this study Smart Grid in its real size is divided into three main tiers of 

zonal, regional and cross regional market. Then an appropriate market mechanism and 

an integrated dynamic Demand Response program and market equilibrium applicable 

to zonal level is proposed. The model promotes a certain level of disaggregation in such 

large systems. The problem is modeled as a one-leader multi-follower Stackelberg 

game. This research has contributed to the state of art not only in energy market and 

demand management modeling individually, but also extended the state of the art by 

combining these two areas of knowledge to develop an appropriate system applicable 

to the future of energy systems, Smart Grid. To the best of the author’s knowledge, this 

is the first attempt in combining Demand Response scheduling and market equilibrium 

modeling. The algorithm proposed in this research could be implemented in the future 

Smart Grid meters to help users communicate with the system and enables the system 

to accommodate different sources of energy.       

The proposed market mechanism has several important characteristics. It has good 

incentives for both public and private sectors to engage in the system. The proposed 

model would give users knowledge of their usage portfolio. That is instead of old 

fashioned lump sum electricity bill, they can understand how much they are paying for 

each appliance and when and what is the highest and lowest rates during day. This 

would give them a better sense of their usage behavior. Results showed higher 
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individual welfare through applying the proposed integrated model, which is a good 

incentive for consumers to participate in the proposed mechanism and also motivate 

them to install renewable energy sources. Also the proposed model maximizes big 

suppliers’ revenue as decision makers of the system which is a good incentive for them 

to participate in the system. Also unbundling generation, transmission, and distribution 

providers eliminates power monopoly in the market and maximizes individual benefits. 

Moreover, in the current systems big consumers pay less than small consumers while 

the proposed model is treating everyone the same which is another appealing feature 

for small users. Also the mechanism eliminates price cap in the system and considers 

real time nodal prices based on reverse supply function. Although this captures the 

elasticity of the market price but it may hurt the lower income families. In order to 

protect these groups, this mechanism is capable of considering different solutions such 

as offering subset of concessions to lower income families and household. Although 

the proposed mechanism is covering many different aspects since this research is 

mostly focused on the operation side of demand response program in the future system, 

the market design is not detailed in every aspects. 

In the demand response modeling of the Smart Grid the hierarchal decision making 

problem among ISO, BGFs, and SDRs is modeled as a bi-level model. Two different 

types of hierarchy for the ISO are studied. One with complete power over trade values, 

and the other is a shared right of decision making with other users. Presuming that ISO 

has the hierarchy in decision making over the trade amounts in the network, while 

proving feasibility of the lower level equilibrium problem, an algorithm is then 

developed for solving the dynamic problem. The model is then transformed to a MPEC 
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and then to a mixed integer problem. Commercial solvers and software is used to 

evaluate the proposed algorithm and mathematical models. The proposed integrated 

demand response and market equilibrium model in this study is applied to several 

different scenarios on several electricity networks with different characteristics.  

Although the model can be transformed to MPEC model, MPEC algorithms are based 

on nonlinear techniques and so are not capable of solving large scale problems. The 

SOS algorithm is very time consuming and is not applicable in real size problems. 

Eventually, the MIP algorithm, is both time consuming and not reliable in large scale 

problems. However, in some cases it provides better solutions. There is a major issue 

with the MIP approach. That is the instability of the model. MIP’s solution is very much 

dependant on the value of BigMs in the problem. With a little change in the value of 

BigM, the problem suddenly falls into infeasibility. As discussed in the MIP model 

section, determining BigM in solving the MIP is very crucial. Since the MIP model is 

unstable due to its sensitivity to BigMs’ value, even if it provides a good solution in a 

reasonable time, the solution is not very reliable. 

One of the specifications of the proposed algorithm, Mona, is its search direction. In 

the proposed algorithm the problem is being solved from top to bottom while 

optimization algorithms are mostly bottom to top. Bottom to top search means 

searching among feasible solutions, while in this algorithm search starts from the big 

picture which is the best bound. 

Comparison of numerical solutions from the integrated demand response model applied 

through Mona or any of the solution methods (SOS, MIP, or MPEC) with the NO DR 

and NO DR-NO GAME models, shows better market indicators for the proposed 
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mechanisms. This means better use of distributed energy sources in the system while 

implementing DR programs combined with competition in the market. Better HHI 

indicates that the proposed model would prevent monopoly in the system and also 

results in higher supply diversification. Moreover, the proposed model would distribute 

demand peaks to the best time of day with more available resources and less prices. 

Better individual welfare and higher revenues are good incentives for public and private 

sectors for acceptance of the proposed system among themselves. The model also 

facilitates use of storage capacities through managing their charging schedule during 

low price time periods which also results in more leveled demands during the day. 

Depending on the data sets, an average of 23% of demands are shifted during the day 

from peak times to off peak times applying the proposed model. This is a little better 

than 20% shifted demands through applying only time-of-use tariffs (Sovacool, 2009).  

Based on sensitivity analysis it is recommended that responsible entities invest in 

development of storage and renewable generation with higher capacities in order to 

have more efficient system. Also investment on network capacity improvement and 

increase of public knowledge would result in a better market share indicator and so 

better individual welfare for public and revenue for suppliers. 

Finally, the author believes unbundling generation, transmission, and distribution 

providers is a necessity in order to make a market performs better in both aspects of 

system efficiency and incentivizing users. Moreover, expanding information 

availability to participants and trusting the system to converge to an equilibrium itself 

rather than forcing controls over some decisions would increase public participation 

which results in a better system performance. 
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Future Research Paths 

This study opens a new path of research in the area of energy system modeling and 

management. Several studies can be done after this research which are introduced in 

this section as follows.  

 System resiliency is an issue in electrical distribution and transmission networks. 

Modifying the proposed model to be resilient in case of unforeseen events is the next 

step of this study. 

 It would be of interest to study the stochastic feature of demand and generation capacity 

in future. Though, due to dynamic nature of the studied problem it is not necessary to 

consider it in the model to have meaningful results.  

 Implementing a good and accurate pricing function directly affects the output of the 

proposed system. Applying and evaluating different dynamic pricing functions in the 

proposed system such as shadow prices are among interesting future works.  

 In the proposed system, SDRs influence market price indirectly through total market 

demand and supply. It would be interesting to study their direct effect on market 

pricing and compare the results with the current model. 

 It is of interest to study different objective functions and attitudes for the ISO and 

compare the results in future.  

 Using an accurate utility function would definitely result in better and more 

encouraging output. Implementing Smart Grid system, there will be a huge amount of 

data collected and available for investigation. One piece of information to gain from 

these data is estimating users’ utility function. This can be captured from historical 

demand data to better understand users’ demand behavior.  

 This model is based on shifting and scheduling demands. However, considering 

demand reduction and semi satisfied demands in future would also be interesting. 
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 Although the examples are generated based on open sourced real data, it is always of 

interest to apply the model on real networks with real demand data.  
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Appendices 

Appendix A: 

Results from all scenarios are summarized in the following three tables. 
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Table 13 Results for Small Sized Network 
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S
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1
3
 

1
2
 

O
n

e-
W

ay
 

1
 

5
 

1
 

Mona 0.05 0.00 0.00 6.18 72.62 0.530 0.2700 0.00 - 70.86 30.18 Optimal - 

SOS 0.54 0.00 0.00 6.18 82.70 0.530 0.2700 0.00 - -336.00 29.00 Optimal - 

MIP 0.15 0.15 0.00 6.18 79.13 1.000 0.4100 0.06 - 72.00 33.00 Optimal - 

MPEC 5.13 0.11 0.00 7.62 85.02 0.370 0.2000 0.03 - -335.00 30.00 Local Optimal - 

NO DR 0.06 1.66 0.00 10.44 89.21 0.910 0.3900 0.00 - 62.00 35.00 Optimal - 

NO DR-NO GAME 0.04 1.92 0.00 11.72 89.21 0.990 0.4100 -3657.62 - 48.00 41.00 Optimal - 

2
 

5
0
 

2
 

Mona 0.31 0.01 0.01 2.68 25.01 0.160 0.0500 0.00 0.00 111.10 64.57 Optimal 0% 

SOS 0.65 0.01 0.01 2.67 19.75 0.130 0.0500 0.00 0.00 -308.00 66.00 Optimal 0% 

MIP 5.76 0.45 0.00 2.02 21.27 0.180 0.0600 0.01 0.01 139.00 73.00 Optimal - 

MPEC 2036.98 - - - - - - - - - - Infeasible - 

NO DR 0.23 18.13 0.00 3.24 39.04 0.380 0.0800 0.00 0.00 97.00 67.00 Optimal - 

NO DR-NO GAME 0.19 15.25 0.00 3.71 37.96 0.500 0.1000 -301.52 65.00 97.00 67.00 Optimal - 

3
 

1
0
0
 

2
 

Mona 0.59 0.06 0.06 2.03 17.84 0.110 0.0300 0.00 0.00 102.61 69.69 Optimal 0% 

SOS 1.36 0.00 0.00 2.24 18.19 0.080 0.0300 0.00 0.00 -315.00 69.00 Optimal - 

MIP 7.16 0.68 0.00 2.56 14.84 0.090 0.0300 0.03 0.04 129.00 76.00 Optimal - 

MPEC 3665.71 - - - - - - - - - - Infeasible - 

NO DR 0.40 34.44 0.00 3.68 31.15 0.330 0.0600 0.00 0.00 88.00 67.00 Optimal - 

NO DR-NO GAME 0.35 77.98 0.00 3.29 31.94 0.250 0.0500 0.00 0.00 87.00 64.00 Optimal - 
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Mona 0.08 0.00 0.00 6.18 89.21 0.530 0.2700 0.00 - 71.00 30.00 Optimal - 

SOS 0.36 0.00 0.00 6.35 99.30 0.530 0.2700 0.00 - -351.00 39.00 Optimal - 

MIP 0.10 0.00 0.00 6.51 50.93 0.530 0.2700 0.00 - -359.00 47.00 Optimal - 

MPEC 3.08 - - - - - - - - - - Infeasible - 

NO DR 0.56 1.74 0.00 14.08 89.21 1.000 0.4100 0.00 - 50.00 43.00 Optimal - 

NO DR-NO GAME 0.04 1.92 0.00 11.72 89.21 0.990 0.4100 -3657.62 - 48.00 41.00 Optimal - 

2
 

5
0
 

2
 

Mona 0.39 0.01 0.01 2.24 21.30 0.160 0.0500 0.00 0.00 135.00 72.00 Optimal 0% 

SOS 2.96 0.01 0.01 2.59 18.02 0.200 0.0600 0.00 0.00 -304.00 68.00 Optimal 0% 

MIP 1.72 0.01 0.00 2.41 26.20 0.350 0.0800 0.00 0.00 -309.00 64.00 Optimal - 

MPEC 95.02 - - - - - - - - - - Infeasible - 

NO DR 0.27 25.90 0.00 5.10 43.83 0.640 0.1100 0.00 0.00 99.00 67.00 Optimal - 

NO DR-NO GAME 0.23 12.99 0.00 3.92 36.47 0.500 0.1000 -301.52 65.00 95.00 67.00 Optimal - 

3
 

1
0
0
 

2
 

Mona 0.67 0.06 0.06 2.37 12.56 0.100 0.0300 0.00 0.00 128.00 75.00 Optimal 0% 

SOS 3600.43 - - - - - - - - - - No Solution - 

MIP 0.84 0.06 0.00 1.69 15.62 0.170 0.0400 0.00 0.00 -317.00 67.00 Optimal - 

MPEC 244.97 - - - - - - - - - - Infeasible - 

NO DR 0.43 41.13 0.00 4.00 31.09 0.550 0.0700 0.00 0.00 82.00 62.00 Optimal - 

NO DR-NO GAME 0.33 67.62 0.00 3.29 31.94 0.850 0.0900 -100.36 141.94 87.00 64.00 Optimal - 

T
o
p

o
lo

g
y 

N
o

d
e 

L
in

e 

M
o
d

el
 

S
c
e
n

a
ri

o
 

S
D

R
s 

B
G

F
s 

Algorithm 

Solution 

Time 

(sec.) 

ISO 

Obj. 
Bound 

Peak 

to Avg. 

Load 

(PAR) 

Shifted 

Demand 

(%) 

Market 

Share 

(HHI) 

Market 

Share 

(SD) 

BGF Obj. 

(Avg.) 

BGF 

Obj. 

(SD) 

SDR 

Obj. 

(Avg.) 

SDR 

Obj. 

(SD) 

Model Stat gap 



 

 133 

Table 14 Results for Medium Sized Network 
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Mona 0.13 0.13 0.13 8.11 33.61 0.410 0.1800 0.00 - 115.09 61.79 Optimal 0% 

SOS 0.21 0.13 0.13 7.28 35.34 0.610 0.2300 0.00 - -1078.00 67.00 Optimal 0% 

MIP 0.30 0.37 0.00 9.92 37.16 0.530 0.2100 0.03 - 130.00 56.00 Optimal - 

MPEC 300.96 - - - - - - - - - - Infeasible - 

NO DR 0.13 26.40 0.00 5.44 38.09 0.880 0.2800 0.12 - 67.00 42.00 Optimal - 

NO DR-NO GAME 0.11 27.59 0.00 6.49 39.90 0.970 0.3000 -2942.96 - 67.00 36.00 Optimal - 

5
 

1
0
0
 

2
 

Mona 0.80 0.63 0.63 2.53 20.61 0.050 0.0200 0.11 0.16 107.13 66.45 Optimal 0% 

SOS 60.50 0.66 0.63 2.15 19.47 0.060 0.0200 0.11 0.16 -1058.00 62.00 Integer Solution 5% 

MIP 20.94 2.25 0.00 2.39 17.15 0.070 0.0200 0.18 0.25 138.00 73.00 Optimal - 

MPEC 3642.14 - - - - - - - - - - Infeasible - 

NO DR 0.50 35.74 0.00 2.55 35.67 0.300 0.0500 1.53 2.16 97.00 64.00 Optimal - 

NO DR-NO GAME 0.53 95.96 0.00 1.92 18.98 0.450 0.0700 -2083.67 1343.60 94.00 60.00 Optimal - 

6
 

1
0
0
0
 

1
0
 

Mona 15.52 322.71 322.71 1.87 1.58 0.030 0.0100 0.39 1.25 4518.75 71397.36 Optimal 0% 

SOS 50.55 322.70 322.70 1.89 1.48 0.020 0.0000 5.37 11.56 3359.00 71324.00 Optimal 0% 

MIP 7389.47 2441.59 0.00 0.00 0.00 0.000 0.0000 0.00 0.00 4568.00 71770.00 Unfinished - 

MPEC 3857.73 - - - - - - - - - - Infeasible - 

NO DR 4.86 5954.96 0.00 1.88 2.43 0.290 0.0200 91.67 174.07 4515.00 71232.00 Optimal - 

NO DR-NO GAME 14.81 6622.54 0.00 1.95 2.03 0.160 0.0100 -1096.81 1125.89 4529.00 71670.00 Optimal - 

7
 

5
0
0
0
 

1
0
 

Mona 231.16 4.91 4.91 1.98 1.37 0.010 0.0000 0.00 0.00 4595.73 76372.76 Optimal 0% 

SOS 952.06 4.82 4.82 1.98 1.09 0.004 0.0000 0.00 0.00 3438.00 76355.00 Optimal 0% 

MIP 682.05 4.92 0.00 0.00 0.00 0.000 0.0000 0.00 0.00 4633.00 76313.00 Unfinished - 

MPEC 35044.54 - - - - - - - - - - Infeasible - 

NO DR 23.04 19722.69 0.00 1.93 1.74 0.320 0.0100 -41.91 164.14 4592.00 76281.00 Optimal - 

NO DR-NO GAME 248.39 26698.45 0.00 1.96 2.08 0.160 0.0100 -1672.45 1406.26 4598.00 76330.00 Optimal - 
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Algorithm 

Solution 

Time 

(sec.) 

ISO Obj. Bound 

Peak 

to 

Avg. 

Load 

(PAR) 

Shifted 

Demand 

(%) 

Market 

Share 

(HHI) 

Market 

Share 

(SD) 

BGF 

Obj. 

(Avg.) 

BGF 

Obj. 

(SD) 

SDR 

Obj. 

(Avg.) 

SDR 

Obj. 

(SD) 

Model Stat gap 

   

T
w

o
-W

ay
 

4
 

1
0
 

1
 

Mona 0.25 0.13 0.13 8.11 35.11 0.410 0.1800 0.00 - 118.00 59.00 Optimal 0% 

SOS 0.48 0.13 0.13 7.28 38.22 0.610 0.2300 0.00 - -1078.00 67.00 Optimal 0% 

MIP 0.45 0.13 0.00 8.33 37.67 0.510 0.2000 0.00 - -1080.00 67.00 Optimal - 

MPEC 1588.43 - - - - - - - - - - Infeasible - 

NO DR 0.20 30.53 0.00 5.44 38.09 0.890 0.2800 0.12 - 66.00 42.00 Optimal - 

NO DR-NO GAME 0.10 33.21 0.00 5.44 34.16 0.970 0.3000 -2617.13 - 74.00 61.00 Optimal - 

5
 

1
0
0
 

2
 

Mona 1.10 0.81 0.63 2.68 16.47 0.050 0.0200 0.27 0.39 125.00 67.00 Optimal 30% 

SOS 135.22 0.69 0.63 2.60 16.77 0.050 0.0200 0.11 0.16 -1061.00 64.00 Integer Solution 11% 

MIP 15.21 0.66 0.00 2.09 20.09 0.070 0.0200 0.00 0.00 -1057.00 61.00 Optimal - 

MPEC 243.85 - - - - - - - - - - Infeasible - 

NO DR 0.51 33.89 0.00 2.55 35.01 0.180 0.0400 1.15 1.63 96.00 65.00 Optimal - 

NO DR-NO GAME 0.50 85.53 0.00 2.18 21.67 0.460 0.0700 -2741.67 348.77 102.00 66.00 Optimal - 

6
 

1
0
0
0
 

1
0
 

Mona 27.34 323.24 322.71 2.00 1.73 0.030 0.0100 0.61 1.93 4570.00 71726.00 Optimal 0% 

SOS 3605.72 - - - - - - - - - - No Solution - 

MIP 406.20 322.84 0.00 1.90 2.04 0.030 0.0100 0.00 0.00 3351.00 71114.00 Optimal - 

MPEC 4177.31 - - - - - - - - - - Infeasible - 

NO DR 5.22 5960.98 0.00 2.11 2.49 0.330 0.0200 62.34 116.34 4528.00 71605.00 Optimal - 

NO DR-NO GAME 11.64 5820.87 0.00 2.00 2.86 0.160 0.0100 -898.68 634.83 4507.00 71059.00 Optimal - 

7
 

5
0
0
0
 

1
0
 

Mona 911.59 4.91 4.91 1.94 0.93 0.003 0.0000 0.00 0.00 4637.00 76316.00 Optimal 0% 

SOS 4052.34 - - - - - - - - - - No Solution - 

MIP 2760.95 4.91 0.00 1.94 1.23 0.003 0.0000 0.00 0.00 3434.00 76314.00 Optimal - 

MPEC - - - - - - - - - - - - - 

NO DR 66.52 21924.74 0.00 1.94 1.92 0.240 0.0100 -388.12 1282.74 4590.00 76285.00 Optimal - 

NO DR-NO GAME 236.44 25939.55 0.00 2.07 2.00 0.160 0.0100 -1558.27 1429.85 4593.00 76289.00 Optimal - 
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Table 15 Results for Large Sized Network 
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Algorithm 
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Time 

(sec.) 

ISO Obj. Bound 

Peak 
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Load 

(PAR) 

Shifted 

Demand 

(%) 

Market 

Share 

(HHI) 

Market 

Share 

(SD) 

BGF 

Obj. 

(Avg.) 

BGF 

Obj. 

(SD) 

SDR 

Obj. 

(Avg.) 

SDR Obj. 

(SD) 
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1
2
2
 

1
1
7
 

O
n
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W

ay
 

8
 

1
0
0
 

2
 

Mona 0.94 2.09 2.09 4.49 16.03 0.140 0.0400 0.00 0.00 93.72 62.60 Optimal 0% 

SOS 5.42 2.31 2.09 4.20 17.07 0.150 0.0400 0.00 0.00 -3720.00 60.00 Integer Solution 11% 

MIP 585.75 4.67 0.00 4.55 15.13 0.150 0.0400 0.00 0.00 121.00 67.00 Optimal - 

MPEC 3794.09 - - - - - - - - - - Infeasible - 

NO DR 0.55 39.68 0.00 3.47 32.18 0.280 0.0500 1.03 1.09 85.00 61.00 Optimal - 

NO DR-NO GAME 0.57 146.68 0.00 3.83 15.18 0.470 0.0700 -2943.68 893.29 90.00 64.00 Optimal - 

9
 

1
0
0
0
 

5
 

Mona 10.31 1028.52 1028.52 1.92 2.47 0.040 0.0100 0.00 0.00 4672.74 75566.20 Optimal 0% 

SOS 1741.35 1069.99 1028.04 1.92 2.44 0.030 0.0100 0.00 0.00 861.00 75565.00 Integer Solution 4% 

MIP 13689.96 - - - - - - - - - - Unfinished - 

MPEC 4251.55 - - - - - - - - - - Infeasible - 

NO DR 4.51 5448.28 0.00 2.06 3.89 0.040 0.0100 0.00 0.00 4666.00 75488.00 Optimal - 

NO DR-NO GAME 8.07 6050.91 0.00 1.92 2.60 0.030 0.0100 -1718.28 1106.39 4667.00 75507.00 Optimal - 

1
0
 

5
0
0
0
 

1
0
 

Mona 267.32 524.61 524.61 1.94 1.06 0.010 0.0000 0.00 0.00 4562.70 73595.50 Optimal 0% 

SOS 3624.47 - - - - - - - - - - No Solution - 

MIP 10910.98 0.00 0.00 0.00 0.00 0.000 0.0000 0.00 0.00 5.00 8.00 Unfinished - 

MPEC 48968.62 - - - - - - - - - - Infeasible - 

NO DR 77.86 23560.86 0.00 1.93 1.12 0.240 0.0100 -87.15 445.26 4558.00 73412.00 Optimal - 

NO DR-NO GAME 228.39 29982.30 0.00 2.08 1.71 0.140 0.0100 -2006.26 2090.49 4562.00 73560.00 Optimal - 
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8
 

1
0
0
 

2
 

Mona 1.26 2.09 2.09 4.44 17.00 0.170 0.0400 0.00 0.00 99.00 61.00 Optimal 0% 

SOS 11.13 2.09 2.09 4.37 18.50 0.140 0.0400 0.00 0.00 -3723.00 61.00 Optimal 0% 

MIP 193.46 2.09 0.00 4.38 20.22 0.150 0.0400 0.00 0.00 -3721.00 62.00 Optimal - 

MPEC 6063.09 - - - - - - - - - - Infeasible - 

NO DR 0.58 42.25 0.00 3.47 32.18 0.210 0.0400 1.03 1.09 85.00 61.00 Optimal - 

NO DR-NO GAME 0.56 126.23 0.00 3.56 16.07 0.470 0.0700 -3254.26 307.68 88.00 66.00 Optimal - 

9
 

1
0
0
0
 

5
 

Mona 19.28 1028.52 1028.52 1.92 2.53 0.040 0.0100 0.00 0.00 4702.00 75500.00 Optimal 0% 

SOS 3611.16 - - - - - - - - - - No Solution - 

MIP 749.58 1028.52 0.00 1.92 2.46 0.040 0.0100 0.00 0.00 862.00 75569.00 Optimal - 

MPEC - - - - - - - - - - - - - 

NO DR 5.37 4732.54 0.00 2.06 3.42 0.040 0.0100 69.55 115.64 4668.00 75495.00 Optimal - 

NO DR-NO GAME 9.26 5936.32 0.00 1.96 2.86 0.040 0.0100 -2104.69 1367.78 4668.00 75509.00 Optimal - 

1
0
 

5
0
0
0
 

1
0
 

Mona 982.62 524.61 524.61 1.96 0.89 0.010 0.0000 0.00 0.00 4600.00 73552.00 Optimal 0% 

SOS 12846.89 - - - - - - - - - - No Solution - 

MIP 3870.23 - - - - - - - - - - No Solution - 

MPEC 65213.77 - - - - - - - - - - N/A - 

NO DR 96.63 25337.72 0.00 1.94 1.01 0.340 0.0100 -57.19 209.66 4558.00 73408.00 Optimal - 

NO DR-NO GAME 476.15 30457.98 0.00 1.95 1.91 0.230 0.0100 -1722.57 1873.10 4557.00 73402.00 Optimal - 
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