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Evolutionary PDE-based methods are widely used in image processing and

computer vision. For many of these evolutionary PDEs, there is little or no theory

on the existence and regularity of solutions, thus there is little or no understanding

on how to implement them effectively to produce the desired effects. In this thesis

work, we study one class of evolutionary PDEs which appear in the literature and

are highly degenerate.

The study of such second order parabolic PDEs has been carried out by us-

ing semi-group theory and maximum monotone operator in case that the initial

value is in the space of functions of bounded variation. But the noisy initial

image is usually not in this space, it is desirable to know the solution property

under weaker assumption on initial image. Following the study of time dependent

minimal surface problem, we study the existence and uniqueness of generalized

solutions of a class of second order parabolic PDEs. Second order evolutionary



PDE-based methods preserve edges very well but sometimes they have undesir-

able staircase effect. In order to overcome this drawback, fourth order evolu-

tionary PDEs were proposed in the literature. Following the same approach, we

study the existence and regularity of generalized solutions of one class of fourth

order evolutionary PDEs in space of functions of bounded Hessian and bounded

Laplacian. Finally, we study some evolutionary PDEs which do not satisfy the

parabolicity condition by adding a regularization term.

Through the rigorous study of evolutionary PDEs which appear in the lit-

erature of image processing and computer vision, we provide a solid theoretical

foundation for them which helps us better understand the behaviors and proper-

ties of them. The existence and regularity theory is the first step toward effective

numerical scheme. The regularity results also answer the questions to which func-

tion spaces the solutions of evolutionary PDEs belong and the questions if the

processing results have the desired properties.
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Chapter 1

Introduction

Variational methods and PDE-based methods appear in a large variety of image

processing and computer vision 1 areas ranging from optical flow computation to

stereo vision and surface reconstruction.

1.1 Image smoothing

Images are unavoidably degraded during acquisition and transmission. Image

smoothing is the process which is intended to reduce noise in the image in order

to retrieve useful information.

1Mapping from images to abstract description (Computer vision) versus mapping from ab-

stract description to images (Vision).
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1.1.1 Linear evolutionary PDEs in image smoothing

From variational problem to evolutionary PDE

Assume that the original image of a real scene is denoted by u ∈ L2(Ω), the

observed and noisy image of the same scene is denoted by u0 ∈ L2(Ω). Assume

that they satisfy the linear relationship u0 = Ru+n, where R is a linear operator

and n is the Gaussian noise. Given u0, we want to recover u. According to

maximum likelihood principle, we can find the approximation of u by solving the

least square problem

inf
u

∫
Ω

|Ru − u0|2 dx (1.1.1)

This problem is ill-posed [8]. The classic method to overcome ill-posed minimiza-

tion problems is to add regularization term to the minimization functional [88].

Now let’s consider

inf
u

{∫
Ω

|∇u|2 dx + λ

∫
Ω

|Ru − u0|2 dx
}

(1.1.2)

here λ is a positive weighting constant. The first term of minimization functional

is a smoothing term, the second term measures the fidelity to the initial data.

Under suitable assumptions on R, the minimization problem (1.1.2) admits a

unique solution which is characterized by the Euler-Lagrange equation

−∆u + λR∗(Ru − u0) = 0 (1.1.3)

with Neumann boundary condition ∂u
∂ν

= 0, ν is the outward normal of ∂Ω. We

may introduce a scale-space variable t and use gradient decent method to solve

2



the minimization problem which results in an evolutionary partial differential

equation ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∆u − λR∗(Ru − u0)

∂u
∂ν
|Γ = 0

u(x, 0) = u0(x)

(1.1.4)

here u̇ is the derivative with respect to scale-space variable t. In case there is no

confusion, we also call it time derivative.

Gaussian smoothing and linear evolutionary PDE

Gaussian filter is a classic method of smoothing noisy images and detecting edges.

It was introduced by Marr and Hildreth [65], then further developed by Witkin

[97], Koenderink [54], and Canny [15]. Let u0 ∈ L2(R2) be the noisy image and

Gσ = 1
2πσ2 e

−|x|2/2σ2
. Then the smoothed version of u0 is

(Gσ ∗ u0)(x) =

∫
R2

Gσ(x − y)u0(y) dy (1.1.5)

On the other hand, consider the following linear parabolic PDE⎧⎪⎪⎨
⎪⎪⎩

u̇ = ∆u

u(x, 0) = u0

(1.1.6)

Assume that u0 ∈ C(R2) and bounded, the solution of (1.1.6) is

u(x, t) = (G√
2t ∗ u0)(x) (1.1.7)

It is unique if we impose that u does not grow too fast

|u(x, t)| ≤ Cea|x|2 (1.1.8)

3



for some positive constants C and a. Therefore, smoothing a noisy image using a

Gaussian filter with parameter σ is the same as the solution of a linear parabolic

PDE at t = σ2

2
.

Figure 1.1: Gaussian smoothing, left: original image; middle: σ = 2; right:

σ = 4.

1.1.2 Advantages of using evolutionary PDE to process

images

We have seen some evolutionary PDEs in image processing. Are there advantages

to cast image processing problems into this frame work? It is well known that

images usually contain structures at a large variety of scales. The advantage of

casting image processing problem into evolutionary PDE frame work is that it

allows an image represented at multiple scales. By comparing the structure at

different scales, we obtain a hierarchy of image structures which are very useful

for image interpretation.

4



A scale-space is an image interpretation at continuum scales, embedding the

image u0 into a family
{
Ttu0 : t ≥ 0

}
of gradually simplified versions of it,

provided that it satisfies certain requirements which are very natural from the

image processing point of view [96]. Alvarez, Guichard, Lions and Morel [2]

showed that every scale space satisfies some axioms and invariance properties is

governed by a PDE with the original image as initial condition. In addition, if

we impose the linearity

Tt(au1 + bu2) = aTtu1 + bTtu2 ∀ t ≥ 0, a, b ∈ R (1.1.9)

The only candidate of linear scale space is Gaussian scale space [97, 94].

1.1.3 Nonlinear second order evolutionary PDEs in image

smoothing

The linear PDE quickly removes noise, but at the same time it blurs the edge

(see Figure 1.1). Since Gaussian filter is the only candidate in the linear frame-

work, people began to consider nonlinear filters. Perona and Malik [76] proposed

nonlinear PDEs to smooth images and detect edges⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ · (g(|∇u|2)∇u)

∂u
∂ν
|Γ = 0

u(x, 0) = u0(x)

(1.1.10)

here g(s2) = 1
1+(s/k)2

or g(s2) = e−(s/k)2 , k is some positive constant. The edges

of images smoothed by (1.1.10) are well localized from finer to coarser level, but

5



this PDE is not well-posed. It may suffer instability problems caused by very

noisy initial image.

We may also consider to modify model (1.1.2). Because the over-smoothing

is due to the L2 norm of the gradient, one feasible solution is to decrease the reg-

ularity, which leads Rudin, Osher and Fatemi [79] to propose the Total Variation

(TV) model

inf
u

{
F (u) =

∫
Ω

|∇u| dx +
λ

2

∫
Ω

|u − u0|2 dx
}

(1.1.11)

TV model preserves edges much better than Gaussian smoothing, which is the

direct result of L1 norm instead of L2 norm. Later, a class of such minimization

functionals was proposed for image smoothing [7]

F (u) =

∫
Ω

Φ(|∇u|) dx +
λ

2

∫
Ω

|Ru − u0|2 dx (1.1.12)

here R is a linear continuous operator, Φ(·) is an even convex function from

R → R
+ and approximately linear increasing. Thus, TV minimization functional

is a special case of (1.1.12). Let R∗ is the adjoint of R, the Euler-Lagrange

equation associated with the minimization problem can be formally written as

−∇
(Φ′(|∇u|)

|∇u| ∇u
)

+ λR∗(Ru − u0) = 0 (1.1.13)

Let g(s2) = Φ′(s)
s

and use gradient decent method to solve the minimization

6



problem, we obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ · (g(|∇u|2)∇u) − λR∗(Ru − u0)

∂u
∂ν

∣∣
Γ

= 0

u(x, 0) = u0

(1.1.14)

1.1.4 Nonlinear fourth order evolutionary PDEs in image

smoothing

Although total variation minimization method has a great success for denoising

and texture decomposition, sometimes it produces undesirable staircase effect

(Figure 1.2). In order to deal with this issue, minimization method with second

Figure 1.2: Staircase effect of second order model, left: noisy signal, right: de-

noised signal. Figure from Chan [21].

order derivatives in the functional and fourth order evolutionary PDEs were pro-

posed in the hope of taking the image curvatures into account. Chambolle and

7



Lions [20] proposed the following minimization functional

J(u1, u2) =

∫
Ω

|∇u1| dx + α

∫
Ω

|∇2u2| dx + λ

∫
Ω

(u1 + u2 − u0)
2 dx

to improve the staircase effects of total variation method. Here α, λ are weighting

parameters. If we let u = u1 + u2 and v = u2, we obtain

J(u, v) =

∫
Ω

|∇(u − v)| dx + α

∫
Ω

|∇2v| dx + λ

∫
Ω

(u − u0)
2 dx

What is the idea behind the new functional? “In some sense, we first approximate

locally the gradient of the function u0 by ∇v, that has itself a very low total

variation (α >> 1). Then we find u as an approximation of u0 such that u − v

has a low total variation”[20]. To the same purpose, Chan, Marquina and Muler

[21] proposed minimization functional

J(u) =

∫
Ω

[
α|∇u|ε1 + β

L(u)2

|∇u|3ε2
+

1

2
(u − u0)

2
]
dx (1.1.15)

to smooth noisy images, here |∇u|εi
=
√|∇u|2 + εi and L(u) is an elliptic opera-

tor and they restricted themselves to work with L(u) = ∆u. Lysaker, Lundervold

and Tai [62] proposed the following minimization functionals in medical image

processing

J1(u) =

∫
Ω

(|uxx| + |uyy|) dxdy +
λ

2

[ ∫
Ω

(u − u0)
2 dxdy − σ2

]
(1.1.16)

J2(u) =

∫
Ω

√
|∇2u|2 dxdy +

λ

2

[ ∫
Ω

(u − u0)
2 dxdy − σ2

]
(1.1.17)

Tumblin and Turk [91] proposed an evolutionary PDE to preserve the details of

high contrast scenes by building a coarse to fine order hierarchy of scene bound-

8



aries and shadings.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = −∇ · (g(|∇2u|))∇∆u) − λ(u − u0)

∂u
∂ν
|Γ = 0

∂∆u
∂ν

|Γ = 0

u(x, 0) = u0

(1.1.18)

here g(s) = k2

k2+s2 . They call it “Lower Curvature Image Simplifiers”. Later

Tumblin pointed out that |∇2u| is not rotational invariant. A better choice would

be use ∆u instead of ∇2u [11]. Thus, the new rotation invariant evolutionary

PDE ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = −∇ · (g(|∆u|))∇∆u)− λ(u − u0)

∂u
∂ν
|Γ = 0

∂∆u
∂ν

|Γ = 0

u(x, 0) = u0

(1.1.19)

which is formally the gradient flow of the Euler-Lagrange equation of the following

minimization problem

inf
u

{
J(u) =

∫
Ω

[
k∆u arctan

∆u

k
− k2

2
log
((∆u

k

)2
+1
)
+

λ

2
(u−u0)

2
]
dx
}

(1.1.20)

You and Kaveh [99] propose the functional

J(u) =

∫
Ω

f(|∆u|) dx (1.1.21)

9



to eliminate the staircase effects of Perona-Malik PDE (1.1.10). Through gradient

decent procedure, they formally derived the evolutionary PDE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = −∆(g(|∆u|)∆u)

∂u
∂ν
|Γ = 0

∂∆u
∂ν

|Γ = 0

u(x, 0) = u0

(1.1.22)

where g(|∆u|) = f ′(|∆u|)
|∆u| . In numerical experiments, they chose f(s) = log(1 +

(s/k)2).

1.2 Image enhancement

Image enhancement is the process of improving the perceptual quality of a dig-

itally stored image by manipulating the image with software. Osher and Rudin

[72] used shock filters to improve image quality

u̇ = −|∇u|F (L(u)) (1.2.1)

where F is a Lipschitz continuous function satisfying

⎧⎪⎪⎨
⎪⎪⎩

F (0) = 0

sign(s)F (s) > 0, s 	= 0

(1.2.2)

10



L is a nonlinear elliptic operator such that zero crossing define the edges of the

processed image. A typical example of (1.2.1) in 1D is⎧⎪⎪⎨
⎪⎪⎩

u̇ + (uxxsign(ux))ux = 0

u(x, 0) = u0(x)

Gilboa, Sochen and Zeevi [41] proposed the following evolutionary PDE to en-

hance image features with middle gradients: neither low gradients nor very high

gradients are enhanced.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ ·
(

∇u√
1+(|∇u|/kf )2

− α ∇u
1+(|∇u|/kb)2

)
− λ(u − u0) − ε∆2u

∂u
∂ν
|Γ = 0

∂∆u
∂ν

|Γ = 0

u(x, 0) = u0

(1.2.3)

here α, λ, kf , kb are weighting parameters. Please see Figure 1.3 for the enhance-

ment result of this PDE method.

1.3 Image texture decomposition

The minimization method and parabolic PDE-based method whose solutions

are in the space of functions of bounded variation are very successful in image

smoothing. Unfortunately, one drawback of these methods is that their inability

to handle textures and small structures properly. In practice, smaller details, such

as textures, are destroyed if the weighting parameter λ is too small. Gousseau

and Morel [42] may be the first to challenge the idea that natural images are

11



Figure 1.3: Image enhancement by flows based on triple well potentials, top: orig-

inal image; bottom: enhanced image. Figures are from http://visl.technion.

ac.il/~gilboa/ppt/huji02.pps

in the space of functions of bounded variation (BV ). Through an experimental

study of the distribution of the bilevels 2 of natural images, they showed the total

variation blows up to infinity with the increasing resolution. Meyer [68] took a

study of this problem from mathematical point of view. He proved that the norm

of error term ‖u−h‖ of the Osher, Rudin and Fatemi model in Besov space Ḃ−1,∞
∞

is always small. Thus, it is more appropriate to represent textures or oscillatory

2Consider a digital image I whose gray levels are between 0 and N , the k-bilevels of I is

defined by Il(i, j) = 1 if I(i, j) ∈ [(l − 1)N/k, lN/k], 0 otherwise. 1 ≤ l ≤ k.

12



by some weaker norms than L2 norm. He proposed some alternative space G 3.

Definition 1.3.1. [68] Let G denote the Banach space consisting of all general-

ized functions f(x) which can be written as

f(x) = ∂1g1(x) + ∂2g2(x) g1(x), g2(x) ∈ L∞(R2) (1.3.1)

The norm ‖f‖∗ of f in G is defined as the lower bound of all L∞ norms of the

functions |g| where g = (g1, g2), |g|(x) =
√|g1|2 + |g2|2(x) where the infimum is

computed over all decomposition (1.3.1) of f .

Vese, Osher [93], Aujol, Aubert [9], Osher, Solé, Vese [73] followed Meyer’s

idea to decompose image into Cartoon part and texture or noisy part in space G.

The decomposition of Osher, Solé, Vese [73] (See Figure 1.4 for the decomposition

result)

inf
u

{
F (u) =

∫
Ω

|∇u| dx +
λ

2

∫
Ω

|∇(∆−1(u0 − u)|2 dx
}

(1.3.2)

has almost the identical mathematical format as (1.1.12). From (3.4.93), they

formally derived second order evolutionary PDE
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ ·
[

∇u
|∇u|

]
− λ∆−1(u − u0)

∂u
∂ν
|Γ = 0

u(x, 0) = u0

3Together with this space G, two other functional spaces were also introduced. F is defined

as G but the John and Nirenberg space BMO(R2) is replacing the role of L∞(R2). E is the

Besov space Ḃ−1,∞
∞ . We have G ⊂ F ⊂ E [68].
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Figure 1.4: Image texture decomposition of Osher, Solé, Vese model. Left: orig-

inal image; middle: u (cartoon) part; right: v (texture) part. Figure from [73].

Tadmor, Nezzar [85] followed Rudin, Osher and Fatemi model (1.1.11) and took

a step further, they represented an image using hierarchical (BV, L2) decompo-

sition. They argued that images could be realized as general L2-objects and the

more noticeable features of images are identified within a proper subclass of all

L2 objects. This subclass is known to be functions of bounded variation. Given

initial image f ∈ L2(Ω) and initial scale λ0, their idea is to apply (1.1.11) to f

recursively:

f = u0 + v0 [u0, v0] = arginf
u+v=f

{ ∫
Ω
|∇u| dx + λ0

∫
Ω
|v|2 dx

}

v0 = u1 + v1 [u1, v1] = arginf
u1+v1=v0

{ ∫
Ω
|∇u1| dx + 2λ0

∫
Ω
|v1|2 dx

}

· · · · · ·

vj = uj+1 + vj+1 [uj+1, vj+1] = arginf
uj+1+vj+1=vj

{ ∫
Ω
|∇uj+1| dx + 2j+1λ0

∫
Ω
|vj+1|2 dx

}

After k such steps, it produces the following hierarchical decomposition of f :

u0 + u1 + · · ·+ uk + vk
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It was proved [85] that

‖f −
k∑

j=0

uj‖W−1,∞(Ω) =
1

λ02k+1

Here ‖f‖W−1,∞ = sup
{ ∫

Ω
f(x)g(x) dx : ‖∇g‖L1(Ω) ≤ 1

}
.

1.4 Image segmentation

Image segmentation is the problem to distinguish objects from background. A

segmentation is either a decomposition of the image domain into homogeneous

regions with boundaries, or a set of boundary points (See Figure 1.5).

Figure 1.5: Image segmentation, left: original image; right: segmented image.

Figure from [23].
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1.4.1 Mumford and Shah functional

Mumford and Shah [70] proposed to obtain a segmented image u from u0 by

minimize the functional

F (u, K) =

∫
Ω\K

[
(u − u0)

2 + α|∇u|2
]
dx + β

∫
K

dσ (1.4.1)

where K ⊂ Ω ⊂ R
d is the set of discontinuities, α, β are nonnegative constants

and
∫

K
dσ is the length of K. They conjectured that K is made of a finite set

of C1,1-curves. But this is too restrictive since one can’t hope to obtain any

compactness property. The difficulty is overcome by considering a wider class

of sets of finite length rather than just a set of C1,1-curves. The length of K is

defined as its (d − 1)-dimensional Hausdorff measure Hd−1(K). Therefore, the

Mumford and Shah functional becomes

F (u, K) =

∫
Ω\K

[
(u − u0)

2 + α|∇u|2
]
dx + βHd−1(K) (1.4.2)

where K ⊂ Ω̄ is closed. If K is given then u is determined as the solution of the

variational problem in the Sobolev space W 1,2(Ω \ K):

min
u

{∫
Ω\K

[
|∇u|2 + α(u − u0)

2
]
dx

}
(1.4.3)

“The difficulty in studying F is that it involves two unknowns u and K of different

nature: u is a function defined on an d-dimensional space, while K is an (d− 1)-

dimensional set”[8]. The existence of minimizer of Mumford-Shah functional is

proved in the space of special functions of bounded variation (SBV), uniqueness

is usually not true [8].
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1.4.2 Deformable models

Deformable models are physics-based models that deform under the theory of

elasticity. They are widely used techniques in image segmentation. These models

(snakes, balloons) are active in the sense that they can adopt themselves to fit

the given data. The active contour model algorithm, first introduced by Kass,

Witkin and Terzopoulos [50], deforms a contour to lock onto features of interest

within an image. Usually the features are lines, edges and object boundaries. The

algorithm are named snakes because the deformable contours resemble snakes as

they move. While 3-D active contour models are sometimes called active balloons.

Explicit models

Active contours can be thought as an energy-minimizing spline attracted by

image features. The energy functional consists of two parts: an internal en-

ergy and external energy. Assume that the spline is represented by a curve

C(s) = (x1(s), x2(s))
T in an image f , the energies are defined as

Eint(C(s)) =

∫
C(s)

α

2
|Cs(s)|2 +

β

2
|Css(s)|2 ds (1.4.4)

Eext(C(s)) = −
∫

C(s))

γ|∇f(C(s))|2 ds (1.4.5)

Here α, β, γ are nonnegative parameters and serve as the weights of energies.

Determining the weighting parameters is a difficult task for deformable models.

In internal energy (1.4.4), the first term is an elasticity term causing the curve
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to shrink, the second one is a rigidity term encouraging straight contours. While

external energy (1.4.5) pushes the contour to high gradients of the image f .

Because this model makes direct use of the spline contour, it is also called an

explicit model. Spline C(s) should minimize the energy functional

E(C(s)) = Eint(C(s)) + Eext(C(s)) (1.4.6)

Solving (1.4.6) through gradient descent procedure gives

Ċ = αCss + βCssss − γ∇(|∇f |2) (1.4.7)

The main shortcoming of the explicit model is that it can not split in order to

segment several objects simultaneously 4.

Implicit models

Implicit model was proposed by Caselles, Catté, Coll and Dibos [17], and by

Malladi, Sethian and Vemuri [64]. It overcomes the difficulty inherent in explicit

model. The idea of implicit models is to embed the initial curve C0(s) as a zero

level curve of a function u0 : R
2 → R, which is usually computed by using distance

transformation. Then u0 is evolved under a PDE which inherits knowledge from

the original image f .

u̇ = g(|∇Gσ ∗ f |2)|∇u|
(
∇ ·
( ∇u

|∇u|
)

+ ν

)
(1.4.8)

4Later, McInerney and Terzopoloulos [66, 67] proposed modified models to deal with several

objects at the same time.
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where g(s) is a stopping function, it is small for large s; ν|∇u| is the motion in

normal direction. When u does hardly change anymore at some time T , the final

contour C(s) is extracted as the zero level curve of u(x, T ). Alvarez, Lions and

Morel [3] proposed the following model

u̇ = g(|Gσ ∗ ∇u|2)|∇u|∇ ·
( ∇u

|∇u|
)

(1.4.9)

in the context of image smoothing. In (1.4.9), u(t) is the denoised image at time

t, while in (1.4.8), the zero level set of u(t) is the evolved image feature. The

well-posedness of (1.4.8) and (1.4.9) are studied in the viscosity sense 5. Implicit

model is very flexible in terms of topology. It allows contours splitting but it is

difficult to interpret implicit model in terms of energy minimization.

Geometric models

Geometric models (Geodesic snakes) were proposed by Caselles, Kimmel and

Sapiro [18] and by Kichenassamy [53]. They combine ideas of explicit and im-

plicit models and are represented implicitly and evolve according to an Eulerian

formulation. They are numerically implemented via level set algorithms 6and can

automatically handle changes in topology without resorting to dedicated contour

tracking. In the evolving process, unknown numbers of multiple objects can

be detected simultaneously. Geometric models are based on the minimization

5For the theory of viscosity solutions, please refer to [69].

6We refer to [71, 81] for the details of level set method.
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functional ∫
C(s)

g
(|∇fσ(C(s)|2)|Cs(s)| ds (1.4.10)

Embedding the initial curve as a level set of some image u0, the gradient descent

method leads to the following evolutionary PDE

u̇ = |∇u|∇ ·
(

g
(|∇fσ|2

) ∇u

|∇u|
)

(1.4.11)

A new term νg(|∇fσ|2)|∇u| is often added to achieve faster and more stable

attraction to edges:

u̇ = |∇u|
(
∇ ·
(

g
(|∇fσ|2

) ∇u

|∇u|
)

+ νg(|∇fσ|2)
)

(1.4.12)

The theoretical analysis of (1.4.12) concerning existence, uniqueness and stability

of a viscosity solution was studied in [18, 53].

Geodesic active contours have also been used for motion estimation and track-

ing [75, 74], for stereo vision [36, 37], for shape modeling and surface reconstruc-

tion [64, 47].

1.5 Optical flow problem

Optical flow field is defined as the velocity vector field of apparent motion of

brightness patterns in a sequence of images [46] (see Figure 1.6 for an optical

flow example). The computation of optical flow has proved to be an important

tool for 3-D object reconstruction and 3-D scene analysis. Optical flow problem
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Figure 1.6: Optical flow, left two: a rubik’s cube on a rotating turntable; right:

optical flow. Figures taken from Russell and Norvig [80].

is ill posed. In order to get well-posedness, we have to impose suitable a priori

knowledge. One constraint that has often been used in the literature is the “Op-

tical Flow Constraint” (OFC). OFC is the result of the assumption of constant

intensity E(x, y, t) of the image points across all of the image frames. Based on

this assumption, we have

∇E · (u, v)T + Et = 0 (1.5.1)

here ∇E = (Ex, Ey)
T and Ex, Ey, Et are image intensity gradients in x, y and

temporal directions. u = ∂x
∂t

, v = ∂y
∂t

, i.e. (u, v)T is the flow we are interested

in. From (1.5.1), it is not difficult to see that the computation of optical flow

(u, v) is not unique. It’s uniqueness is only up to the computation of the flow

along the intensity gradient ∇E at a point. This is called aperture problem.

One way of treating the aperture problem is through the use of regularization

in computation of optical flow. In their pioneering work, Horn and Schunk [48]
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used a L2 smoothness constraint.

∫
Ω

[
λ(∇E · (u, v)T + Et)

2 + (|∇u|2 + |∇v|2)
]
dxdy (1.5.2)

The first term measures the fidelity to OFC, and the second term imposes con-

straint on the smoothness of the flow field. The immediate difficulty with this

constraint is that at the object boundaries, where it is natural to expect dis-

continuities in the flow, such a constraint will have difficulty to capturing the

optical flow. Thus, Kumar, Tannenbaum and Balas [56] proposed the following

minimization problem to compute optical flow.

∫
Ω

[λ
2
(∇E · (u, v)T + Et)

2 + (|∇u| + |∇v|)
]
dxdy (1.5.3)

This model reduces the regularity requirement of flow field from L2 norm to L1

norm. Then, they derived the Euler-Lagrange equation⎧⎪⎪⎨
⎪⎪⎩

−∇ · ( ∇u
|∇u|
)

+ λEx(∇E · (u, v)T + Et) = 0

−∇ · ( ∇v
|∇v|
)

+ λEy(∇E · (u, v)T + Et) = 0

(1.5.4)

By introducing a new scale-space variable t′ and use gradient decent method to

solve (1.5.4), they obtained⎧⎪⎪⎨
⎪⎪⎩

u̇ = ∇ · ( ∇u
|∇u|
)− λEx(∇E · (u, v)T + Et)

v̇ = ∇ · ( ∇v
|∇v|
)− λEy(∇E · (u, v)T + Et)

(1.5.5)

here u̇, v̇ are the partial derivatives with respect to scale-space variable t′. Aubert,

Deriche and Kornprobst [6] proposed the following model

inf
u,v

{∫
Ω

[
|∇E · (u, v)T + Et|+ α(φ(Du) + φ(Dv)) + βc(x)(u2 + v2)

]
dx
}

(1.5.6)
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to compute optical flow. Here α and c(x) are weighting parameters. A strict

theoretical study of (1.5.6) is also provided [6]. Both of the authors reported

that the L1 norm approach preserves edges very well.

1.6 Shape from shading

Shape from shading is a method for determining the shape of a surface from the

gradual variation of shading in its image (See Figure 1.7 for an example). Under

Figure 1.7: Shape from shading, left: face mask image; right: 3D shape from shad-

ing. Figures are from http://www.cssip.edu.au/~danny/vision/shading.

html.

the assumption of Lambertian surface (each surface point appears equally bright

from all viewing directions), the scene radiance is simply proportional to the dot
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product between the direction of the illuminant s and the surface normal n:

Rρ,s(n) = ρs · n (1.6.1)

where ρ is the effective albedo. This is a particular example of reflectance map. In

general, the function Rρ,s is more complicated or known only numerically through

experiments. If we make some approximations about the image brightness, we

have the fundamental equation of shape from shading

E(x, y) = Rρ,s(n) (1.6.2)

here E(x, y) is the image brightness. Thus from this equation, the surface normal

(which is also called the needle map) can be recovered. Variational method is the

classic approach of shape from shading. The pioneering work in this approach

is due to Horn and his coworkers [49]. The Horn and Brooks functional uses a

quadratic regularizer:

∫
Ω

{[
E(x, y) − s · n]2 + λ

[(∂n

∂x

)2
+
(∂n

∂y

)2]
+ µ
[‖n‖2 − 1

]}
dxdy (1.6.3)

The first term is brightness error which encourages data-closeness of the mea-

sured image intensity and the reflectance map. It directly exploits shading infor-

mation. The second term is the regularizing term which imposes the smoothness

constraint on recovered surface normals and penalizes large local changes in sur-

face orientation. The third term forces n to close to a unit vector. Philip and

Edwin [98] proposed the following minimization functional

∫
Ω

{[
E(x, y) − s · n]2 + λ

[
ρσ

(∣∣∂n

∂x

∣∣)+ ρσ

(∣∣∂n

∂y

∣∣)]+ µ
[‖n‖2 − 1

]}
dxdy (1.6.4)
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to recover surface normal maps. If ρσ(x) = σ
π
log coshπx

σ
, they reported good

numerical results which offer reduced over-smoothing over discontinuities in real

world image. It is not hard to verify that ρσ(·) is a convex function with linear

increase at infinity in this case. Thus it is an L1 norm version of Horn and Brooks

functional.

1.7 Thesis outline

Although PDE techniques are widely used in image processing and computer

vision, for many of these PDEs, there is little or no theory on the existence

and regularity of solutions, thus there is little or no understanding on how to

implement them effectively to produce the desired effects.

In this thesis work, we systematically study the regularity and existence of the

generalized solution of one class of highly degenerate parabolic PDEs for given

noisy initial data u0 ∈ L2(Ω), which is the case often met in image processing

and computer vision. Through the rigorous study of these evolutionary PDEs, we

provide a solid theoretical foundation for them which helps us better understand

the behaviors and properties of them. The theory of existence and regularity

is the first step toward effective numerical scheme. The regularity results also

answer the questions to which function spaces the solutions of evolutionary PDEs

belong and the questions if the processing results have the desired properties. The

generalized solutions of these parabolic PDEs satisfy some variational inequalities
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and lie in the function spaces involving measures, similar function spaces involving

measures have been used in the study of 2-D vertex by Liu and Xin [60, 61].

Following Lichnewsky and Temam [59], we explain why we introduce the weak

formulation of parabolic equations and the concept of generalized solutions. Let’s

assume that Ω is bounded domain, Q = [0, T ] × Ω, ∂Ω, u0 are sufficient regular

(say u0 ∈ C2(Ω̄)). Suppose that u is a classic solution of 1.1.14. Let v be a C2(Q̄)

test function, from 1.1.14, we obtain:

∫ s

0

〈
u̇, v − u

〉
dt =

∫ s

0

〈∇ · (g(|∇u|2)∇u), v − u
〉− λ

〈
Ru − u0, R(v − u)

〉
dt

On the other hand, by the convexity of Φ(·) and L2 norm, notice that g(|∇u|2) =

Φ′(|∇u|)
|∇u| , we obtain

∫
Ω

[
Φ(|∇v|) − Φ(|∇u|)] dx ≥ 〈g(|∇u|2)∇u,∇v −∇u

〉

1

2
‖Rv − u0‖2 − 1

2
‖Ru − u0‖2 ≥ 〈Ru − u0, R(v − u)

〉

Using integration by parts, we obtain

∫ s

0

〈
v̇ − u̇, v − u

〉
dt =

1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
]

〈
g(|∇u|2)∇u,∇v −∇u

〉
= −〈∇ · (g(|∇u|2)∇u), v − u

〉

If we define ĴR(u) =
∫
Ω

Φ(|∇u|) dx + λ
2

∫
Ω
(Ru − u0)

2 dx, we obtain

∫ s

0

〈
v̇, v−u

〉
dt+

∫ s

0

[
ĴR(v)−ĴR(u)

]
dt ≥ 1

2

[‖v(s)−u(s)‖2−‖v(0)−u0‖2
]

(1.7.1)

Conversely, if u ∈ C2(Q̄), u(0) = u0, u is satisfying homogeneous Neumann
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boundary condition and satisfies (1.7.1) for all v ∈ C2(Q̄), then

∫ s

0

〈
u̇, v − u

〉
dt +

∫ s

0

[
ĴR(v) − ĴR(u)

]
dt ≥ 0

Let v = u + tw with t > 0, we obtain

∫ s

0

〈
u̇, tw

〉
dt +

∫ s

0

[
ĴR(u + tw) − ĴR(u)

]
dt ≥ 0

This inequality is divided by t and let t → 0, we get

∫ s

0

〈
u̇, w
〉
dt +

∫ s

0

[〈
g(|∇u|2)∇u,∇w

〉
+ λ
〈
Ru − u0, Rw

〉
dt ≥ 0

Integration by parts, we get

∫ s

0

〈
u̇, w
〉
dt −

∫ s

0

[〈∇ · (g(|∇u|2)∇u), w
〉− λ

〈
R∗(Ru − u0), w

〉
dt ≥ 0

Since w ∈ C2(Q̄) is arbitrary, we obtain

u̇ = ∇ · (g(|∇u|2)∇u) − λR∗(Ru − u0)

In Chapter 3, we study a class of second order parabolic PDEs⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ · (g(|∇u|2)∇u) − λR∗(Ru − h)

∂u
∂ν
|Γ = 0

u(x, 0) = u0(x)

(1.7.2)

here u̇ denotes the partial derivative with respect to t, ν is the boundary normal

pointing outward. λ is some positive constant. Under the following assumptions

on g(·): ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(s) : [0, +∞) → [0, +∞) decreasing

αs − β ≤ s2g(s2) ≤ αs + β

c(s) = g(s) + 2sg′(s) ≥ 0

(1.7.3)
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Equation (3.1.1) is a parabolic equation and highly degenerate 7. Although it has

been studied in [7] by using semi-group theory and maximum monotone operator

in case that the initial value is in space of functions of bounded variation (BV)

[100, 35, 5], unfortunately, the noisy initial image u0 is usually not in this space,

it is desirable to know the solution property under weaker assumption on u0
8.

Following the study of time dependent minimal surface problem [86, 39] and total

variation flow problem [38], we prove the existence and regularity of generalized

solution of (3.1.1) if u0 ∈ L2(Ω). If u0 ∈ BV (Ω) ∩ L2(Ω), the existence and

uniqueness of generalized solution is proved, i.e. we have the following theorem,

Theorem 1.7.1 (Generalized Solution). Let Ω be a bounded open domain

with Lipschitz boundary. ĴR(u) =
∫
Ω

Φ(|Du|) dx + 1
2

∫
Ω
|Ru − h|2 dx.

(a) Suppose that u0, h ∈ L2(Ω), then there exists a function u such that

u ∈ L∞(0, T ; L2(Ω)) ∩ L1(0, T ; BV (Ω))

u ∈ L∞(s0, T ; BV (Ω)) ∩ C([s0, T ]; L2(Ω)), s0 ∈ (0, T ]

u̇ ∈ L2(0, T ; H−1(Ω))

u(t) is weakly continuous from [0, T ] → L2(Ω).

∀ s ∈ (0, T ], ∀ v ∈ L1(0, T ; BV (Ω))∩L2(0, T ; L2(Ω))∩C([0, T ]; L2(Ω)) such

7It has to be compared with the degenerate parabolic equations in [28]. There p > 1, here

p = 1.

8In [38], the generalized solution of gradient flow of total variation is studied in case u0 ∈

L2(Ω).

28



that v̇ ∈ L2(0, T ; L2(Ω)), we have

∫ s

0

∫
Ω

v̇(v − u) dx dt +

∫ s

0

[ĴR(v) − ĴR(u)]dt

≥ 1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
]

(1.7.4)

(b) Suppose u1 and u2 are two functions which satisfy (1.7.4) with initial data

u10, h1 and u20, h2 respectively. If u10, u20 ∈ L2(Ω)∩BV (Ω), h1, h2 ∈ L2(Ω).

Then, there holds stability inequality

‖u1(s) − u2(s)‖2 ≤ ‖u10 − u20‖2 + s‖h1 − h2‖2 ∀ s ∈ [0, T ] (1.7.5)

(c) If u0 ∈ BV (Ω) ∩ L2(Ω) and h ∈ L2(Ω), then u is unique, u(0) = u0 and

u ∈ L∞(0, T ; BV (Ω) ∩ L2(Ω)) ∩ C([0, T ], L2(Ω))

u̇ ∈ L2(0, T ; L2(Ω))

∀ s ∈ [0, T ], ∀ v ∈ L1(0, T ; BV (Ω)) ∩ L2(0, T ; L2(Ω)), we have

∫ s

0

∫
Ω

u̇(v − u) dx dt +

∫ s

0

[
ĴR(v) − ĴR(u)

]
dt ≥ 0

Remark 1.7.2. In case of u0 ∈ L2(Ω), the solution u(t) is only weakly continuous

from [0, T ] → L2(Ω). The strong continuity is usually not true. The uniqueness

of the solution is not proved either. In the literature, there are some mistakes

regarding the proof of continuity and uniqueness of u when u0 ∈ L2(Ω). By

looking at the proof of stability inequality in case u0 ∈ BV (Ω) ∩ L2(Ω), it is

tempting to use a density argument to do it: suppose that un
0 ∈ BV (Ω)∩L2(Ω) →
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u0 ∈ L2(Ω), un is the generalized solution corresponding to un
0 , but it turns out

that we don’t know if un → u in any sense.

In Chapter 4, we turn to study some fourth order parabolic PDEs which are

also highly degenerate. Among the PDEs in [20, 21, 99, 62], some are derived

from the special cases of variational problem

inf
u

{
J(u) =

∫
Ω

[
Φ1(|∇u|) + Φ(|∇2u|) +

λ

2

(
u − h

)2]
dx

}
(1.7.6)

here ∇2u is the Hessian matrix of u. Φ1(·), Φ(·) are even, convex functions from

R → R
+. They are nondecreasing in R

+ and satisfy the following assumptions:

⎧⎪⎪⎨
⎪⎪⎩

Φ(0) = 0 α|z| − β ≤ Φ(|z|) ≤ α|z| + β

Φ1(0) = 0 Φ1(|z|) ≤ α1|z| + β1

(1.7.7)

where α, α1, β, β1 are positive constants. The rigorous study of fourth order evo-

lutionary PDEs which appear in image processing is not common in literature.

Greer and Bertozzi may be the first to study them. In [43], they study the trav-

eling wave solutions of PDEs (1.1.10), (1.1.22), (1.1.19) in one space dimension

by adding a Burger’s convection term. In [44], they study the H1 solution of

mollifier regularized (1.1.19). Following the same approach as the second order

parabolic PDEs, we prove the existence and regularity of generalized solution of

one class of fourth order parabolic PDEs (1.7.8) in space of functions of bounded
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Hessian (BH) [25] with initial condition u0 ∈ L2(Ω).⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ · (Φ′
1(|∇u|)
|∇u| ∇u) −∇2 · (Φ′(|∇2u|)

|∇2u| ∇2u) − λ(u − h)

u(·, t) is periodic

u(x, 0) = u0(x)

(1.7.8)

here Φ, Φ1 are smooth functions which satisfy the previous assumptions. We have

the following theorem,

Theorem 1.7.3 (Generalized solution). Suppose that Ω =

d∏
i=1

(0, Li), a bounded

open set in R
d, Φ1, Φ are smooth functions which satisfy previous assumptions.

Ĵh(u) :=
∫
Ω

[
Φ1(|∇u|) + Φ(|∇2u|) + λ

2
(u − h)2

]
dx.

(a) If u0, h ∈ L2(Ω), then there exists u such that

u ∈ L∞(0, T ; L2(Ω)) ∩ L1(0, T ; BHper(Ω))

u ∈ L∞(s0, T ; BHper(Ω)) ∩ C([s0, T ]; L2(Ω)), s0 ∈ (0, T ]

u̇ ∈ L2(0, T ; V ′)

u(t) is weakly continuous from [0, T ] → L2(Ω).

∀v ∈ L1(0, T ; BHper(Ω)) ∩ L2(0, T ; L2(Ω)) with v̇ ∈ L2(0, T ; L2(Ω))

∫ s

0

∫
Ω

v̇(v − u) dxdt +

∫ s

0

(Ĵh(v) − Ĵh(u)) dt

≥ 1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
] ∀s ∈ (0, T ] (1.7.9)

(b) Suppose u1, u2 satisfies (1.7.9) with initial data u01, h1 and u02, h2 respec-

tively. Assume u01, u02 ∈ BHper(Ω) ∩ L2(Ω), h1, h2 ∈ L2(Ω) then

‖u1(s) − u2(s)‖2 ≤ ‖u01 − u02‖2 + λs‖h1 − h2‖2 ∀ s ∈ [0, T ]
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(c) Furthermore, if u0 ∈ L2(Ω) ∩ BHper(Ω), h ∈ L2(Ω), then u is unique and

u ∈ L∞(0, T ; BHper(Ω)) ∩ C([0, T ]; L2(Ω)), u̇ ∈ L2(0, T ; L2(Ω)), u(0) = u0

such that

∫ s

0

∫
Ω

u̇(v − u) dxdt +

∫ s

0

(Ĵh(v) − Ĵh(u)) dt ≥ 0 s ∈ [0, T ] (1.7.10)

∀v ∈ L1(0, T ; BHper(Ω)) ∩ L2(0, T ; L2(Ω)). Thus

∫
Ω

u̇(v − u) dx + Ĵh(v) − Ĵh(u) ≥ 0 a.e. t ∈ [0, T ] (1.7.11)

∀v ∈ BHper(Ω) ∩ L2(Ω).

The existence and uniqueness of the minimizer of the functional (1.7.6) in the

space of functions of bounded Hessian is also proved. We then introduce a new

function space — bounded Laplacian

BLp(Ω) =
{

u ∈ W 1,p(Ω) : ∆u ∈ M(Ω)
}

BLp
per(Ω) =

{
u ∈ W 1,p

per(Ω) : ∆u ∈ M(Ω)
}

to study fourth order evolutionary PDEs in [91, 99] which are ∆u (Laplacian of

u) instead of ∇2u. If we let Φ1 ≡ 0, Φ(s) = ks arctan(s/k) − k2

2
log((s/k)2 + 1),

then Φ′(s) = k arctan(s/k), we will recover PDE (1.1.19). Bertozzi and Greer

[11] made a change of variables w = arctan(∆u) when k = 1 and λ = 0 and

derived the equation satisfied by w

ẇ + cos2 w∆2w = 0 (1.7.12)
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They first proved the existence and uniqueness to the mollified equation with

periodic boundary condition

⎧⎪⎪⎨
⎪⎪⎩

ẇε = −Jε cos2 wε∆2Jεw
ε

wε(·, 0) = w0

where Jε is a standard mollifier. They then derived parameter ε independent

energy estimates and proved the existence and uniqueness of the smooth solution

of (1.1.19) when initial condition w0 ∈ H6(Ω). They also pointed out that an

interesting point for further study is to better understand the theory for the

LCIS equation for noisy initial data. Thanks to elliptic boundary value problem

involving measures [16, 4] and the density result of [27], we can prove the existence

and regularity of the generalized solution of fourth order parabolic PDEs with

initial data u0 ∈ L2(Ω).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ · (Φ′
1(|∇u|)
|∇u| ∇u) − ∆ · (Φ′(|∆u|)

|∆u| ∆u) − λ(u − h)

u(·, t) is periodic

u(x, 0) = u0(x)

(1.7.13)

We have the following theorem,

Theorem 1.7.4 (Generalized solution). Suppose that Ω =

d∏
i=1

(0, Li), Φ1, Φ

are smooth functions which satisfy previous assumptions. Ĵh(u) :=
∫
Ω

[
Φ1(|∇u|)+

Φ(|∆u|) + λ
2
(u − h)2

]
dx.
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(a) If u0, h ∈ L2(Ω), then there exists u such that

u ∈ L∞(0, T ; L2(Ω)) ∩ L1(0, T ; BLp
per(Ω))

u ∈ L∞(s0, T ; BLp
per(Ω)) ∩ C([s0, T ]; L2(Ω)), s0 ∈ (0, T ]

u̇ ∈ L2(0, T ; V ′)

u(t) is weakly continuous from [0, T ] → L2(Ω).

∀v ∈ L1(0, T ; BLp
per(Ω)) ∩ L2(0, T ; L2(Ω)) with v̇ ∈ L2(0, T ; L2(Ω))

∫ s

0

∫
Ω

v̇(v − u) dxdt +

∫ s

0

(Ĵh(v) − Ĵh(u)) dt

≥ 1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
] ∀s ∈ (0, T ] (1.7.14)

(b) Suppose u1, u2 satisfies (1.7.14) with initial data u01, h1 and u02, h2 respec-

tively. Assume u01, u02 ∈ BLp
per(Ω) ∩ L2(Ω), h1, h2 ∈ L2(Ω) then

‖u1(s) − u2(s)‖2 ≤ ‖u01 − u02‖2 + λs‖h1 − h2‖2 ∀ s ∈ [0, T ]

(c) Furthermore, if u0 ∈ L2(Ω) ∩ BLp
per(Ω), h ∈ L2(Ω), then u is unique and

u ∈ L∞(0, T ; BHper(Ω)) ∩ C([0, T ]; L2(Ω)), u̇ ∈ L2(0, T ; L2(Ω)), u(0) = u0

such that

∫ s

0

∫
Ω

u̇(v − u) dxdt +

∫ s

0

(Ĵh(v) − Ĵh(u)) dt ≥ 0 s ∈ [0, T ] (1.7.15)

∀v ∈ L1(0, T ; BLp
per(Ω)) ∩ L2(0, T ; L2(Ω)). Thus

∫
Ω

u̇(v − u) dx + Ĵh(v) − Ĵh(u) ≥ 0 a.e. t ∈ [0, T ] (1.7.16)

∀v ∈ BLp
per(Ω) ∩ L2(Ω).

34



Remark 1.7.5. In Theorem 1.7.3 and 1.7.4, if u0 ∈ L2(Ω), u(t) is only weakly

continuous from [0, T ] → L2(Ω). The uniqueness is usually not true. The reason

is mentioned in Remark 1.7.2. By the trace theorems of BH functions and BLp

functions in Chapter 2, it makes sense to consider the Neumann boundary value

problem. But we can’t prove the convergence of boundary condition. The trace

operator is continuous in the norm topology, or a weaker topology so called strict

(tight) convergence, but not in the weak∗ topology. The convergence we can

obtain is weak∗ topology, we can’t find a way to prove that the sequence does

not concentrate on the boundary of the domain. Thus, we failed to prove the

uniqueness of the generalized solution even u0 is sufficiently smooth in case of

Neumann boundary condition.

Finally, we study some evolutionary PDEs which even do not satisfy parabol-

icity condition. In practice, nonconvex functional minimization methods and the

corresponding evolutionary PDEs often perform better [8] in image smoothing.

Some such evolutionary PDEs are used for image smoothing and enhancement

[41]. ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= ∇ · (g(|∇u|2)∇u)

∂u
∂ν
|Γ = 0

u(x, 0) = u0(x)

(1.7.17)

The study of (1.7.17) are much more challenging. By adding a high order regular-

ization term, we prove the existence and regularities of regularized evolutionary
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PDEs which appear in [76, 41], i.e. we prove the following theorem,

Theorem 1.7.6 (Existence, uniqueness, and energy identity). Let u0 ∈

L2(Ω). Then, the initial-boundary-value problem (1.7.17) has a unique weak solu-

tion u : Ω× [0, T ] → R such that u ∈ L2(0, T ; H2
n(Ω)) and u̇ ∈ L2(0, T ; (H2

n(Ω))′).

For any v ∈ H2
n(Ω)), for a.e. t ∈ [0, T ],

⎧⎪⎪⎨
⎪⎪⎩

〈
u̇, v
〉

+
〈
g(|∇u|2)∇u,∇v

〉
+ ε
〈
∆u, ∆v

〉
dt = 0

u(x, 0) = u0

Furthermore, if u0 ∈ H2(Ω), then u ∈ L∞(0, T ; H2(Ω)), u̇ ∈ L2(0, T ; L2(Ω)), for

a.e. t ∈ [0, T ], u satisfies

1

2

d

dt

∫
Ω

|u|2 dx +

∫
Ω

g(|∇u|2)|∇u|2 dx + ε

∫
Ω

|∆u|2 dx = 0

d

dt

∫
Ω

(
Φ(|∇u|) +

ε

2
|∆u|2

)
dx +

∫
Ω

|u̇|2 dx = 0

here H2
n(Ω) =

{
v ∈ H2(Ω) :

∫
Ω

v dx = 0 , ∂νv|∂Ω = 0
}

, g(·) : R → R is a C1

function and satisfies: ⎧⎪⎪⎨
⎪⎪⎩

|g(s)| ≤ C, ∀ s ∈ R

|sg′(s)| ≤ C, ∀ s ∈ R.

If g(s2) = 1
1+s2 or g(s) = 1−s2, we will recover the PDEs in [57] which have been

studied with periodic boundary condition. If g(s2) = 1√
1+(s/kf )2

− α 1
1+(s/kb)2

, we

will recover (1.2.3).
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Chapter 2

Mathematical preliminary

Before we go to the details of studying those evolutionary PDEs, let’s recall some

mathematical preliminaries first.
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2.1 Mathematical notations

Ω bounded open domain in R
d, d = 1, 2, 3

1∗ = d
d−1

Γ the boundary of the domain Ω

Ω̄ = Ω ∪ Γ

Ld d-dimensional Lebegue measure, sometimes it is denoted by dx

C∞
0 (Ω) = C∞

c (Ω) = D(Ω), the space of C∞functions with compact support in Ω

Cc(Ω) the space of continuous functions with compact support in Ω

C(Ω̄) the space of uniformly continuous functions on Ω, thus there is

a unique continuous extension to Ω̄

C0(Ω) the completion of Cc(Ω) under sup-norm

D ′(Ω) the space of distributions on Ω

M(Ω) =
[
C0(Ω)

]′
, the space of bounded Radon measures on Ω

M(Ω̄) =
[
C(Ω̄)

]′
, the space of bounded Radon measures on Ω̄

‖ · ‖ the L2 norm

2.2 Generalized Sobolev spaces

W k,p(Ω), k ≥ 0 integer, 1 ≤ p ≤ ∞ is the Sobolev space of all functions u : Ω → R

having all distributional derivatives onto order k in Lp(Ω). The space W k,p(Ω),

equipped with the norm

‖u‖W k,p(Ω) =

{ ∑
|α|≤k

‖Dαu‖p
Lp(Ω)

}1/p

(2.2.1)
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is a Banach space. For s > 0 non-integer, we denote by [s] the integer part of s,

then W s,p(Ω) is a subspace of W [s],p(Ω) consisting of functions u ∈ W [s],p(Ω) for

which

[Dαu]ps−[s],p =

∫
Ω×Ω

|Dαu(x) − Dαu(y)|p
|x − y|d+p(s−[s])

dxdy (2.2.2)

is finite for all α, |α| = [s]. W s,p(Ω) is a Banach space with the norm

‖u‖W s,p(Ω) =

{
‖u‖p

W [s],p(Ω)
+ [Dαu]ps−[s],p

}1/p

(2.2.3)

these spaces are called Sobolev-Slobodeckii spaces. They are very special cases

of the scales of Besov and Triebel-Lizorkin spaces [89, 90].

Theorem 2.2.1 (Sobolev embeddings [63]). Let Ω be a bounded open domain

in R
d with Lipschitz boundary and let 0 ≤ s2 < s1, 1 ≤ p, q < ∞.

(a) If (s1 − s2)p < d, then

s1 − s2 ≥ d
(1
p
− 1

q

)
=⇒ W s1,p(Ω) ⊂ W s2,q(Ω)

s1 − s2 > d
(1
p
− 1

q

)
=⇒ W s1,p(Ω) ⊂⊂ W s2,q(Ω)

(2.2.4)

(b) If (s1 − s2)p > d, then for α ∈ [0, 1),

(s1 − s2 − α)p ≥ d =⇒ W s1,p(Ω) ⊂ C s2,α(Ω̄)

(s1 − s2 − α)p > d =⇒ W s1,p(Ω) ⊂⊂ C s2,α(Ω̄)

(2.2.5)

(c) If (s1 − s2)p = d, then ∀ q ∈ [1, +∞),

W s1,p(Ω) ⊂⊂ W s2,q(Ω) (2.2.6)
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The proof of this theorem can be found in Kufner [55].

Remark 2.2.2. Let Ω =

d∏
i=1

(0, Li), C∞
per(Ω̄) be the set of all restrictions onto Ω̄

of real-valued, L = (L1, . . . , Ld) periodic, C∞ functions on R
d. For any number

s > 0, any p ∈ [0,∞], let W s,p
per(Ω) be the closure of C∞

per(Ω̄) under the Sobolev

norm of W s,p(Ω). Note that W 0,p
per(Ω) = Lp(Ω). We write Hs

per(Ω) = W s,2
per(Ω).

2.3 Spaces involving time

Spaces involving time comprising functions mapping time into Banach spaces.

Let X denote a real Banach space, with norm ‖ · ‖.

Definition 2.3.1. The space Lp(0, T ; X) consists of all measurable functions

u : [0, T ] �→ X with

‖u‖Lp(0,T ;X) :=
( ∫ T

0

‖u(t)‖p dt
)1/p

< ∞ (2.3.1)

for 1 ≤ p < ∞, and

‖u‖L∞(0,T ;X) := ess sup
0≤t≤T

‖u(t)‖ < ∞ (2.3.2)

Definition 2.3.2. The space C([0, T ]; X) comprises all continuous functions u :

[0, T ] → X with ‖u‖C([0,T ];X) := max
0≤t≤T

‖u(t)‖ < ∞

Theorem 2.3.3 (Time Continuity). Let u ∈ Lp(t0, T ; X) and u̇ ∈ Lp(t0, T ; X)

for some 1 ≤ p ≤ ∞. Then

(a) u ∈ C([t0, T ]; X) (after possibly being redefined on a set of measure zero).
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(b) u(t) = u(s) +
∫ t

s
u̇(τ) dτ ∀ t0 ≤ s ≤ t ≤ T .

(c) Furthermore, we have the estimate

max
t0≤t≤T

‖u(t)‖ ≤ C
[‖u‖Lp(t0,T ;X) + ‖u̇‖Lp(t0,T ;X)

]
(2.3.3)

Proof. See Evans [34] Chapter 5.9 Theorem 2.

Theorem 2.3.4 (Time Continuity). Suppose that V is a Banach space, V ′

denotes it’s dual space, V ⊂ L2(Ω) ⊂ V ′, u ∈ L2(0, T ; V ), u̇ ∈ L2(0, T ; V ′). Then

(a) u ∈ C([0, T ]; L2(Ω)) (after possibly being redefined on a set of measure zero)

(b) The mapping t → ‖u(t)‖2 is absolutely continuous, with d
dt
‖u(t)‖2 = 2

〈
u̇(t), u(t)

〉

for a.e. t ∈ [0, T ].

(c) Furthermore, we have the estimate

max
0≤t≤T

‖u(t)‖ ≤ C
[‖u‖L2(0,T ;V ) + ‖u̇‖L2(0,T ;V ′)

]
(2.3.4)

Proof. Follow the same approach as Evans [34] Chapter 5.9 Theorem 3. See also

the Lemma 3.2 of Temam [87].

Lemma 2.3.5 (Lemma 3.3 of [87], see also [84]). Let X and Y be two

Banach spaces such that X ⊂ Y , if a function u ∈ L∞(0, T ; X) and is weakly

continuous with values in Y , then u is weakly continuous from [0, T ] into X. i.e.

t �→ 〈
u(t), v

〉
is continuous, ∀ v ∈ X.
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2.4 Compactness result

Theorem 2.4.1 (Weak sequential compactness [8]).

(a) Let X be a reflexive Banach space, K > 0, and xn ∈ X a sequence such

that |xn|X ≤ K. Then there exists x ∈ X and a subsequence xnj
of xn such

that xnj
⇀ x(j → ∞) weakly in X.

(b) Let X be a separable Banach space, K > 0, and ln ∈ X ′ such that |ln|X′ ≤

K. Then there exists l ∈ X ′ and a subsequence lnj
of ln such that lnj

⇀

l(j → ∞) weakly∗ in X ′.

Theorem 2.4.2 (Simon’s compactness result [83]). Assume X, B, Y are

Banach spaces, X ⊂ B ⊂ Y with the compact embedding X ⊂⊂ B. Let F =
{
f :

f ∈ F
}

be bounded in Lp(0, T ; X) where 1 ≤ p < ∞, and ∂F
∂t

=
{

∂f
∂t

: f ∈ F
}

be

bounded in L1(0, T ; Y ). Then F is relatively compact in Lp(0, T ; B).

2.5 Lower semicontinuity

Definition 2.5.1 (Lower semicontinuity). F is called lower semicontinuous

(l.s.c) for weak topology if for all sequence xn ⇀ x0 we have

lim
xn⇀x0

inf F (xn) ≥ F (x0) (2.5.1)

The same definition can be given with a strong topology.
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Theorem 2.5.2 (Convexity [8]). Let F : X → R be convex. Then F is weakly

lower semicontinuous if and only if F is strongly lower semicontinuous.

2.6 Measures and function spaces

We review some basic measure concepts first and then recall the definition of

function spaces involving measures. Many of the definitions and lemmas are

from [5]. We also refer to [78] for measure theory.

2.6.1 Measure, Radon measure, Hausdorff measure

Definition 2.6.1 (σ-algebras and measure spaces). Let X be a nonempty

set and let E be a collection of subsets of X.

(a) We say that E is an algebra if ∅ ∈ E , E1 ∪E2 ∈ E and X \E1 ∈ E whenever

E1, E2 ∈ E .

(b) We say that an algebra E is a σ-algebra if for any sequence
{
En

} ⊂ E its

union
⋃
n

En ∈ E .

(c) For any collection C of subsets of X, the σ-algebra generated by C is the

smallest σ-algebra containing C. If (X, τ) is a topological space, we denote

by B(X) the σ-algebra of Borel subsets of X, i.e., the σ-algebra generated

by the open subsets of X.

(d) If E is a σ-algebra in X, we call the pair (X, E) a measure space.
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Definition 2.6.2 (Measure). Let (X, E) be a measure space and let m ≥ 1 be

an integer.

(a) We say that µ : E → R
m is a measure if µ(∅) = 0 and for any sequence

{
En

}
n

of pairwise disjoint elements of E ,

µ
( ∞⋃

n

En

)
=

∞∑
n=0

µ(En)

(b) If µ is a measure, the total variation |µ|(E) is defined as

|µ|(E) = sup

{ ∞∑
n=0

|µ(En)| : En ∈ E pairwise disjoint, E =

∞⋃
n=0

En

}

(c) If µ is a real measure, we define its positive and negative parts respectively

as follows:

µ+ :=
|µ| + µ

2
and µ− :=

|µ| − µ

2

Definition 2.6.3 (Radon Measure). Let X be an l.c.s (locally compact and

separable) metric space, B(X) its Borel σ-algebra, and consider the measure space

(X,B(X)). A real or vector set function defined on the relatively compact Borel

subsets of X that is a measure on (K,B(K)) for every compact set K ∈ X is

called a real or vector Radon measure on X. If µ : B(X) → R
m is a measure, we

say that is a bounded Radon measure which is denoted by
[M(Ω)

]m
.

Remark 2.6.4. (a) Notice that if µ is a Radon measure and sup
{|µ|(K) : K ∈

X compact
}

< ∞ then it can be extended to the whole of B(X) and the

resulting set function is a bounded Radon measure.
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(b) Let X = Ω, the bounded Radon measure on Ω is denoted by
[M(Ω)

]m
which is the dual space of

[
C0(Ω̄)

]m
under the pairing

〈
φ, µ
〉

=

m∑
i=1

∫
Ω

φi dµi (2.6.1)

(c) Let X = Ω̄, the bounded Radon measure on Ω̄ is denoted by
[M(Ω̄)

]m
which is the dual space of

[
C(Ω̄)

]m
under the pairing

〈
φ, µ
〉

=
m∑

i=1

∫
Ω̄

φi dµi (2.6.2)

(c) It is easy to see that L1(Ω) ⊂ M(Ω̄). Since for any f ∈ L1(Ω), by extending

to any Lebesgue measurable functions f̄ defined on Ω̄

f̄(φ) =

∫
Ω

f(x)φ(x) dx ∀ φ ∈ C(Ω̄) (2.6.3)

defines a continuous linear functional on C(Ω̄). Consequently, f̄ ∈ M(Ω̄)

with f̄(Γ) = 0, moreover

|f̄ |(Ω̄) ≤ ‖f‖L1(Ω) (2.6.4)

Lemma 2.6.5. Let X be an locally compact and separable metric space and

µ : B(X) → R
d is a bounded Radon measure on it. Then any open set E ∈ X

|µ|(E) = sup
{ d∑

j=1

∫
X

φj dµj : v ∈ [C0(E)
]d

, ‖φ‖∞ ≤ 1
}

(2.6.5)

Definition 2.6.6 (Hausdorff measures). Let k ∈ [0,∞) and E ∈ R
d. The

k-dimensional Hausdorff measure of E is defined by

Hk(E) := lim
δ→0

Hk
δ (E) (2.6.6)
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where ∀δ > 0, Hk
δ (E) is defined by

Hk
δ (E) :=

ωk

2k
inf

{ ∞∑
i=1

[diam(Ei)]
k : diam(Ei) < δ, E ⊂

∞⋃
i=1

Ei

}
(2.6.7)

for finite for countable covers
{
Ei

}
, with the convention diam(∅) = 0 and ωk =

πk/2

Γ(k/2+1)
(here Γ(·) is Gamma function).

Definition 2.6.7 (Absolutely continuity and singularity). Let µ be a pos-

itive measure and ν a real or vector measure on the measure space (X, E).

(a) We say that ν is absolutely continuous with respect to µ, and write ν � µ,

if for every E ∈ E , µ(E) = 0 =⇒ |ν|(E) = 0.

(b) We say they are mutually singular and write ν ⊥ µ, if there exists E ∈ E

such that µ(E) = 0 and |ν|(X \ E) = 0.

Theorem 2.6.8 (Radon-Nikodým). Let µ, ν be measures, assume that µ is a

positive measure and σ-finite. Then there is a unique pair of R
m valued measures

νa, νs such that νa � µ, νs ⊥ µ and ν = νa + νs. Moreover, there is a unique

function f ∈ [L1(X, µ)]m such that νa = fµ. The function f is called the density

of ν with respect to µ and is denoted by ν/µ.

2.6.2 Convex functions of a measure

Assume that Φ is a continuous convex function from R
l to R which has at most

a linear growth at infinity

|Φ(ξ)| ≤ C(1 + |ξ|) (2.6.8)
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for some constant C > 0.

Definition 2.6.9 (Recession function). The recession function Φ∞(·) of Φ(·)

is defined by

Φ∞(ξ) = lim
s→∞

sup
Φ(sξ)

s
∀ ξ ∈ R

l (2.6.9)

We assume furthermore that Φ possesses an recession function Φ∞(·). It is

easy to see that Φ∞ is continuous and positive homogeneous on R
l. Given a

measure µ ∈ M(Ω), we consider its Lebesgue decomposition µ = fdx + µs,

where µs is singular with respect to Lebesgue measure dx. We now define Φ(µ)

by setting

Φ(µ) = Φ ◦ fdx + Φ∞(µs) (2.6.10)

The formula (2.6.10) makes sense: Φ ◦ f makes sense as a function in L1(Ω)

because of (2.6.8); Φ∞(µs) is defined as

Φ∞(µs) = Φ∞ ◦ h|µs| (2.6.11)

where h is a |µs|-measurable function such that µs = h|µs|.

Remark 2.6.10. In (1.1.11), Φ(z) = |z|, then Φ∞(z) = |z|. In (1.1.20), Φ(z) =

k|z| arctan |z|
k
− k2

2
log
(( |z|

k

)2
+1
)
, then Φ∞(z) = kπ

2
|z|. In (1.6.4), Φ(z) = ρσ(z) =

σ
π

log cosh πz
σ

, then, Φ∞(z) = |z|.

We refer to Demengel and Temam [27], Ambrosio [5] on functions defined on

the space of bounded Radon measure M(Ω).
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2.6.3 Functions of bounded variation

Definition 2.6.11. Let u ∈ L1(Ω); we say that u is a function of bounded

variation in Ω if the distributional derivative of u is representable by a bounded

Radon measure in Ω, i.e. if

∫
Ω

u∇ · φ dx = −
d∑

i=1

∫
Ω

φidDiu ∀φ ∈ [C1
c (Ω)

]d
(2.6.12)

for some R
d valued measure Du = (D1u, · · · , Ddu) in Ω. The vector space of

all functions of bounded variation in Ω is denoted by BV (Ω). For functions

u ∈ [BV (Ω)
]m

, Du is an m × d matrix of measures Diu
j in Ω satisfying

m∑
j=1

∫
Ω

uj∇ · uj dx = −
m∑

j=1

d∑
i=1

∫
Ω

φj
i dDiu

j ∀ φ ∈ [C1
c (Ω)

]md
(2.6.13)

We represent by ∇u the absolutely continuous part of Du with respect to

Lebesgue measure dx, Dsu the singular part of Du with respect to dx. By

Theorem 2.6.8,

Du = ∇udx + Dsu (2.6.14)

Definition 2.6.12 (Variation). Let u ∈ [L1(Ω)
]m

. The Variation V (u, Ω) of

u in Ω is defined by

V (u, Ω) = sup
{ m∑

j=1

∫
Ω

uj∇ · φj dx : φ ∈ [C1
c (Ω)

]md
, ‖φ‖∞ ≤ 1

}
(2.6.15)

A simple integration by parts proves that V (u, Ω) =
∫
Ω
|∇u| dx if u is contin-

uously differentiable in Ω.
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Lemma 2.6.13 (Variation of BV functions). Let u ∈ [L1(Ω)
]m

. Then,

u ∈ [BV (Ω)
]m

iff V (u, Ω) < ∞. In addition V (u, Ω) = |Du|(Ω).

Lemma 2.6.14 (BV embedding). Assume Ω is bounded domain with Lipschitz

boundary. Then

BV (Ω) ⊂ Lp(Ω)

with continuous embedding if 1 ≤ p ≤ 1∗. If 1 ≤ p < 1∗, the embedding is

compact.

Usually, we can introduce three topologies in the space of functions of bounded

variation.
[
BV (Ω)

]m
, endowed with the norm

‖u‖BV (Ω) =

∫
Ω

|u| dx + |Du|(Ω) (2.6.16)

is a Banach space, but the norm topology is too strong for many applications.

Even continuously differentiable functions are not dense in
[
BV (Ω)

]m
. For an

example, in case m = 1, let’s consider any u ∈ BV (Ω) such that Du 	= 0 and

singular with respect to Lebesgue measure dx. Since |µ1 − µ2| = |µ1| + |µ2| for

mutually singular measures µ1, µ2, we obtain

|D(u − v)|(Ω) = |Du|(Ω) + |Dv|(Ω) ≥ |Du|(Ω) > 0 (2.6.17)

for any v ∈ C1(Ω)∩BV (Ω). However,
[
BV (Ω)

]m
functions can be approximated

by smooth functions in an intermediate topology, which is weaker than norm

topology and defined by the following distance:

d(u, v) =

∫
Ω

|u − v| dx +
∣∣|Du|(Ω) − |Dv|(Ω)

∣∣ (2.6.18)
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The convergence under this distance is called strictly convergence. We have the

following lemma:

Lemma 2.6.15. For any u ∈ [BV (Ω)
]m

, there exists a sequence of functions

un ∈ [W 1,1(Ω)
]m ∩ [C∞(Ω)

]m
such that

un → u strictly in
[
BV (Ω)

]m
(2.6.19)

Moreover, if Ω is a bounded Lipschitz domain, we can choose un ∈ [W 1,1(Ω)
]m ∩

[
C∞(Ω̄)

]m
(c.f.[5] Remark 3.22).

In fact, a slightly stronger density result is valid 1.

Definition 2.6.16 (Weak∗ convergence). Let u, un ∈ BV (Ω). We say that

{
un

}
weakly∗ converges in BV (Ω) to u if

{
un

}
converges to u in L1(Ω) and

{
Dun

}
weakly∗ converges to Du in Ω, i.e.

lim
n→∞

∫
Ω

φ dDun =

∫
Ω

φ dDu ∀ φ ∈ C0(Ω) (2.6.20)

Weak∗ convergence is weaker than strictly convergence. Under this conver-

gence BV (Ω) has the compactness result.

Lemma 2.6.17 (Strict convergence [5]). If
{
uh

} ∈ [BV (Ω)]m strictly con-

verges to u, and f : R
md → R is a continuous and positively 1-homogeneous

function, we have

lim
h→∞

∫
Ω

φf
( Duh

|Duh|
)

dDuh =

∫
Ω

φf
( Du

|Du|
)

dDu (2.6.21)

1Please refer to Section 2.6.6 or Demengel and Temam [27].
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for any bounded continuous function φ : Ω → R.

Theorem 2.6.18 (Boundary trace theorem [5]). Let Ω ⊂ R
d be an open

set with bounded Lipschitz boundary and u ∈ [BV (Ω)
]m

. Then, for Hd−1-almost

every x ∈ ∂Ω there exists Tu(x) ∈ R
m such that

lim
r→0

−
∫

Ω∩Br(x)

|u(y)− Tu(x)| dy = 0 (2.6.22)

Moreover, ‖Tu‖L1(∂Ω)m ≤ C‖u‖BV for some constant C depending only on Ω,

the extension ū of u to 0 out of Ω belongs to
[
BV (Rd)

]m
and, viewing Du as a

measure on the whole of R
d and concentrated on Ω, Dū is given by

Dū = Du − (Tu ⊗ ν)Hd−1(∂Ω) (2.6.23)

where a ⊗ b is the m × d matrix with (i, j)-th entry aibj (for ai ∈ R
m, b ∈ R

d).

Furthermore, for any i = 1, · · · , d, j = 1, · · · , m and φ ∈ C1
c (Ω̄) there holds

∫
Ω

uj ∂φ

∂xi

dx = −
∫

Ω

φ dDiu
i +

∫
∂Ω

(Tu)jνiφdHd−1 (2.6.24)

where ν = (ν1, · · · , νd) is the unit outer norm of the Ω.

In (2.6.14), ∇u is also called the approximate derivative of u. Now let’s define

the approximate upper limit u+(x) and the approximate lower limit u−(x) by

u+(x) = inf
{
t ∈ [−∞, +∞] : lim

r→0

dx({u > t} ∩ B(x, r))

rd
= 0
}

u−(x) = sup
{
t ∈ [−∞, +∞] : lim

r→0

dx({u > t} ∩ B(x, r))

rd
= 0
}
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If u ∈ L1(Ω), then

lim
r→0

−
∫

B(x,r)

|u(x) − u(y)| dy = 0 a.e. x (2.6.25)

A point x for which (2.6.25) holds is called a Lebesgue point of u, and we have

u(x) = lim
r→0

−
∫

B(x,r)

u(y) dy, u(x) = u+(x) = u−(x)

We denote by Su the jump set, that is, the complement, up to a set of Hd−1

measure zero, of the set of Lebesgue points

Su =
{
x ∈ Ω : u−(x) < u+(x)

}

For Hd−1 a.e. x ∈ Su, we can define a normal nu(x). Then, Du can be decom-

posed as [5]:

Du = ∇udx + (u+ − u−)nuHd−1|Su + Cu (2.6.26)

We define SBV (Ω) as the space of special functions of bounded variation, which

is the space of BV (Ω) functions such that Cu = 0.

2.6.4 Functions of bounded Hessian

We now introduce the space of functions of bounded Hessian.

Definition 2.6.19 (Bounded Hessian).

BH(Ω) =
{
u ∈ W 1,1(Ω) : D2u ∈ [M(Ω)

]d×d}

=
{
u ∈ L1(Ω) : D2u ∈ [M(Ω)

]d×d}

=
{
u ∈ L1(Ω) : Du ∈ [BV (Ω)

]d}
(2.6.27)
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where D2u denotes the distributional Hessian matrix of u.

If endowed norm ‖u‖BH(Ω) = ‖u‖W 1,1(Ω)+|D2u|(Ω), BH(Ω) is a Banach space.

If Ω =
d∏

i=1

(0, Li), we also define

BHper(Ω) = W 1,1
per(Ω) ∩ BH(Ω) (2.6.28)

Definition 2.6.20 (BH∗ convergence).
{
un

}
n≥1

BH∗ly converges to u is de-

fined as:

un → u strongly in W 1,1(Ω)

D2un ⇀ D2u weakly∗ in
[M(Ω)

]d×d

(2.6.29)

For various properties of BH(Ω), we refer to Demengel [25, 26].

Lemma 2.6.21 (BH embedding [25]). Let Ω ∈ R
d be bounded open set with

Lipschitz boundary, then

BH(Ω) ⊂ W 1,p(Ω) (2.6.30)

with continuous embedding if 1 ≤ p ≤ 1∗; the embedding is compact if 1 ≤ p < 1∗.

Lemma 2.6.22 (BH interpolation [25]). Let Ω ∈ R
d be Lipschitz, bounded

open set, for every δ > 0, there is a C(δ) > 0, such that

‖∇u‖L1(Ω) ≤ C(δ)‖u‖L1(Ω) + δ|D2u|(Ω) (2.6.31)
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2.6.5 Functions of bounded Laplacian

In order to study evolutionary PDEs which appear in [91, 99], we introduce a

new function space BLp(Ω), which defined by

BLp(Ω) =
{
u ∈ W 1,p(Ω) : ∆u ∈ M(Ω)

}
(2.6.32)

where 1 ≤ p < 1∗. If Ω =

d∏
i=1

(0, Li), define

BLp
per(Ω) =

{
u ∈ W 1,p

per(Ω) : ∆u ∈ M(Ω)
}

(2.6.33)

Lemma 2.6.23. BLp(Ω) is a Banach space if endowed norm topology:

‖u‖W 1,p(Ω) + |∆u|(Ω) (2.6.34)

Proof. Let
{
un

}
be a Cauchy sequence in BLp(Ω). Then

{
un

}
is a Cauchy

sequence in W 1,p(Ω). Since W 1,p(Ω) is Banach space, there exists u ∈ W 1,p(Ω)

such that un → u in W 1,p(Ω). On the other hand, there exists µ ∈ M(Ω) such

that ∆un → µ in M(Ω) since M(Ω) is a Banach space. For any φ ∈ D(Ω), we

have

∫
Ω

∆uφ = −
∫

Ω

∇u · ∇φ dx = − lim
n→∞

∫
Ω

∇un · ∇φ dx (2.6.35)

∫
Ω

µφ = lim
n→∞

∫
Ω

∆unφ = − lim
n→∞

∫
Ω

∇un · ∇φ dx (2.6.36)

Therefore, µ = ∆u in the distributional sense, i.e. the distributional derivative

∆u is a Radon measure on Ω. Consequently, BLp(Ω) is a Banach space.

Similarly, BLp
per(Ω) is a Banach space if endowed with norm topology.
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Theorem 2.6.24 (Trace theorem for BLp(Ω) [16]). Assume 1 < p < 1∗,

there exists a unique linear and continuous mapping γν such that

γν : BLp(Ω) → W−1/p,p(Γ) (2.6.37)

γν(u) = ∇u|Γ · ν , ∀u ∈ C1(Ω̄) (2.6.38)

〈
γν(u), γ(z)

〉
=

∫
Ω

∇u · ∇z dx +

∫
Ω

z d∆u , ∀ z ∈ W 1,q(Ω) (2.6.39)

where 1
p

+ 1
q

= 1.

Proof. This proof is from [16]. Let us take g ∈ W 1/p,q(Γ) = γ(W 1,q(Ω)) and

z ∈ W 1,q(Ω) such that γ(z) = g. Then we define

〈
γν(u), g

〉
=

∫
Ω

∇u · ∇z dx +

∫
Ω

z d∆u (2.6.40)

Let us prove that γν is well defined. First, from the inequality p < d
d−1

, it follows

that q > d, and therefore W 1,q(Ω) ⊂ C(Ω̄). On the other hand, if z1, z2 ∈ W 1,q(Ω)

and γ(z1) = γ(z2) = g, then we must prove that

∫
Ω

∇u · ∇z1 dx +

∫
Ω

z1 d∆u =

∫
Ω

∇u · ∇z2 dx +

∫
Ω

z2 d∆u (2.6.41)

To do this, let us take z = z1 − z2 ∈ W 1,q
0 (Ω) and

{
zk

} ∈ D(Ω) a sequence

converging to z in W 1,q
0 (Ω). Since q > d, we have that ∇zk → ∇z in

[
Lq(Ω)

]d
and zk → z in C(Ω̄), from where we obtain that

∫
Ω

∇u · ∇z dx +

∫
Ω

z d∆u = lim
k→∞

{∫
Ω

∇u · ∇zk dx +

∫
Ω

zk d∆u
}

= 0 (2.6.42)

the last inequality being a consequence of the definition of derivative in the dis-

tributional sense. So we have that γν is well defined, and obviously, it is linear.
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Let us prove the continuity.

∣∣〈γν(u), g
〉∣∣ ≤ ‖∇u‖Lp(Ω)d‖∇z‖Lq(Ω)d + ‖∆u‖M(Ω)‖z‖C(Ω̄)

≤ C‖u‖BLp(Ω)‖z‖W 1,q(Ω)

(2.6.43)

Taking now the infimum we obtain that

∣∣〈γν(u), g
〉∣∣ ≤ C‖u‖BLp(Ω) inf

γ(z)=g
‖z‖W 1,q(Ω) = C‖u‖BLp(Ω)‖g‖W 1/p,q(Ω) (2.6.44)

which implies the continuity of γν . From the definition of γν and using the

Green’s formula for regular functions, it is immediate to prove that (2.6.38) is sat-

isfied. The uniqueness follows from (2.6.39) and the surjectivity of γ : W 1,q(Ω) →

W 1/p,q(Ω).

2.6.6 Density result in space involving measures

X is the space defined by

X =
{
u ∈ [L1(Ω)

]m
: Su ∈ [M(Ω)

]l}
(2.6.45)

where S is a linear differential operator with constant coefficients which operates

from
[
C∞

0 (Ω)
]m

into
[
C∞

0 (Ω)
]l

. Let Φ(·) be a convex function such that Φ(0) = 0

and with at most linear growth. We denote by XΦ the space X equipped with

the intermediate topology defined by the distance

d(u, v) = ‖u−v‖L1(Ω)m +
∣∣∣
∫

Ω

|Su|−
∫

Ω

|Sv|
∣∣∣+∣∣∣

∫
Ω

|Φ(Su)|−
∫

Ω

|Φ(Sv)|
∣∣∣ (2.6.46)

We set

Y =
{

u ∈ [L1(Ω)
]m

: Su ∈ [L1(Ω)
]l}

(2.6.47)
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Theorem 2.6.25 (Density result [27]). Assume that Ω is an open bounded

domain with Lipschitz boundary 2and

∀ u ∈ X, ∀ φ ∈ C∞(Ω̄), S(φu) − φSu ∈ [L1(Ω)
]l

(2.6.48)

Then for every u given in X, there exists a sequence un ∈ [C∞(Ω)
]m ∩ Y such

that un → u in XΦ as n → ∞.

Suppose that Φ is a convex function which satisfies (2.6.8) and Φ(0) = 0. We

denote BLp
Φ(Ω) is the space BLp(Ω) equipped with the topology defined by

d(u, v) = ‖u−v‖W 1,p(Ω) +
∣∣∣
∫

Ω

|∆u|−
∫

Ω

|∆v|
∣∣∣+ ∣∣∣

∫
Ω

Φ(∆u)−
∫

Ω

Φ(∆v)
∣∣∣ (2.6.49)

This topology is stronger than the weak∗ topology on BLp(Ω) corresponding the

family of distance and semi-distances

‖u − v‖W 1,p(Ω), d(u, v) =
∣∣∣
∫

Ω

φ∆u −
∫

Ω

φ∆v
∣∣∣ φ ∈ C0(Ω) (2.6.50)

but it is weaker than the topology induced by norm. Following the approach of

Demengel [27], it is not hard to prove the following theorem.

Theorem 2.6.26. Assume that Ω is a bounded domain in R
d with Lipschitz

boundary, for any u ∈ BLp(Ω), then there is a sequence
{
un

} ∈ C∞(Ω) ∩ Y ,

such that

un → u in BLp
Φ(Ω) (2.6.51)

Here Y =
{
u ∈ W 1,p(Ω) : ∆u ∈ L1(Ω)

}
.

2In Demengel and Temam’s paper, the boundary of Ω is C1.

57



2.6.7 Elliptic BVP involving measures

Elliptic boundary value problems (BVP) involving L1 data or measures have been

intensively studied in the literatures, please refer to [16, 10, 14, 58, 30, 77, 4],

[82] Chapter two, [33] and the references therein. In our application, we are

particularly interested in the existence, regularity and uniqueness of the following

elliptic BVP problem ⎧⎪⎪⎨
⎪⎪⎩

−∆u = µ in Ω

∂u
∂ν

= 0 on Γ

(2.6.52)

where µ is a Radon measure on Ω̄. Amann [4] studied a more general elliptic

problems involving measures.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∆u = h(x, u) + µ in Ω

u = σ0 on Γ0

∂u
∂ν

= σ1 on Γ1

(2.6.53)

Here Γ = Γ0 ∪ Γ1. He casted the problem to functional analysis frame work:⎧⎪⎪⎨
⎪⎪⎩

Au = µ in Ω

Bu = σ on Γ

(2.6.54)

where (A,B) is a strongly uniformly elliptic BVP and is a linear isomorphism

from W 2,p(Ω) to Lp(Ω) × ∂W 2,p (1 < p < ∞). Assume that Γ = ∂Ω is C2,

µ ∈ M(Ω∪Γ1), σ = M(Γ), if σ|Γ0 = 0, then the elliptic boundary value problem

has a unique weak solution such that ∀ 0 < s ≤ 1

‖u‖W 2−s,1(Ω) ≤ C
(|µ|(Ω ∪ Γ1) + |σ|(Γ1)

)
(2.6.55)
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where C only depends on s, Ω and (A,B). Casas [16] has also studied the

existence and uniqueness of the linear elliptic equation with Neumann boundary

condition and measure data. He used a different approach with the assumption

of Γ to be in C1,1 and get a weaker estimate of the solution in terms of initial

data

‖u‖W 1,p ≤ C
[
|µ|(Ω) + |σ|(Γ) + ‖u‖L1(Ω)

]
(2.6.56)

where 1 ≤ p < 1∗. For (2.6.52), the problem has pure Neumann boundary

condition. Following Amann’s approach, we have the following theorem,

Theorem 2.6.27. If µ ∈ M(Ω̄), µ(Ω̄) = 0, Γ is C2 or Ω =
d∏

i=1

(0, Li), then

(2.6.52) has a weak solution which satisfies:

∥∥∥∥u −−
∫

Ω

u

∥∥∥∥
W 2−s,1(Ω)

≤ C|µ|(Ω̄) (2.6.57)

where 0 < s ≤ 1. Up to a constant, the solution is unique.

Remark 2.6.28. If Ω =
d∏

i=1

(0, Li), the elliptic boundary value problem with peri-

odic boundary condition has the similar result.

2.7 Monotone property of convex function

Lemma 2.7.1. Assume that Φ(·) : R → R convex and smooth, Φ(·) is nonde-

creasing on R
+. ξ, η ∈ R

l, then, we have

〈Φ′(|ξ|)
|ξ| ξ − Φ′(|η|)

|η| η, ξ − η
〉 ≥ 0 (2.7.1)
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Proof. Let f(ξ) = Φ′(|ξ|)
|ξ| ξ, then f(·) : R

l → R
l.

f ′(ξ) =
Φ′(|ξ|)
|ξ| Il×l +

Φ′′(|ξ|)|ξ| − Φ′(|ξ|)
|ξ|3 ξξt

By Rolle’s theorem, for some ζ which lies on the line between ξ and η,

〈
f(ξ) − f(η), ξ − η

〉
=
〈
f ′(ζ)(ξ − η), ξ − η

〉

= (ξ − η)T

(
Φ′(|ζ |)
|ζ | Il×l +

Φ′′(|ζ |)|ζ | − Φ′(|ζ |)
|ζ |3 ζζT

)
(ξ − η)

=
Φ′′(|ζ |)
|ζ |2 (ξ − η)T (ξ − η) +

Φ′(|ζ |)
|ζ |3

[|ζ |2|ξ − η|2 − (ξ − η)T ζζT (ξ − η)
] ≥ 0

The last step holds because Cauchy inequality and Φ′′(s) ≥ 0, Φ′(s) ≥ 0 for

s ≥ 0.

Lemma 2.7.2 (Convexity inequality). Assume that Φ(·) : R → R is a smooth

convex function, ξ, η ∈ R
l, then

Φ(|ξ|) − Φ(|η|) ≥ 〈Φ′(|η|)
|η| η, ξ − η

〉
(2.7.2)

Proof. This is a direct result of convex function.
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Chapter 3

The study of second order parabolic PDEs

In order to avoid over-smoothing of linear filter, many nonlinear second order

evolutionary equations were proposed [76, 3, 2, 92, 8]. In this chapter, we study

a class of highly degenerated second order parabolic PDEs which appear in [92, 8]

and have been derived in Section 1.1.3. For this class of parabolic PDE, the co-

efficients of the second order terms will vanish if |∇u| → ∞. A classic method to

study such PDEs is using the so-called vanish viscosity method (also called weak

convergence method). First, we study the regularized PDE which is obtained

by adding a regularization term ε∆u to the original equation. The existence of

weak solutions for regularized PDE is proved by using Galerkin method and the

property of monotone operator. For any ε > 0, we obtain uε which is the weak

solution of the regularized equation and satisfies some ε independent energy es-

timates. Next, we pass the limit ε → 0, by using the weak compactness result in

Lp(0, T ; B), here B is a Banach space, 1 < p < ∞ and the compactness result in

L1(0, T ; B), we will obtain u as the limit of uε. Then, by the lower semicontinuity
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property of L2 norm and the lower semicontinuity property of variational func-

tional involving measures, we will obtain that u satisfies a variational inequality.

3.1 Nonlinear second order parabolic equations

We consider⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ · (g(|∇u|2)∇u) − λR∗(Ru − h) in Ω × (0, +∞)

∂u
∂ν

= 0 on Γ × [0, +∞)

u(x, 0) = u0(x) on Ω

(3.1.1)

here u̇ denotes the partial derivative with respect to t, ν is the boundary normal

pointing outward, λ is some positive constant. R : L2(Ω) → L2(Ω), a linear

continuous operator, and R∗ is the adjoint. u0 and h are initial data functions 1.

Under the following assumptions on g(·)
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(s) : [0, +∞) → [0, +∞)

g(s) ≈ (s−
1
2 ) as s → +∞ ,

c(s) = g(s) + 2sg′(s) ≥ 0.

(3.1.2)

we will see that (3.1.1) is a parabolic equation. Let’s look at the principle terms

of (3.1.1):

∇ · (g(|∇u|2)∇u) = g(|∇u|2)∆u + 2g′(|∇u|2)
d∑

i=1

d∑
j=1

∂iu∂ju∂iju

= g(|∇u|2)∆u + 2g′(|∇u|2)(∇u)T∇2u∇u

(3.1.3)

1For the sake of generality, in (3.1.1), a function h is being introduced. In practice, h = u0.
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The coefficient matrix of the second order partial derivatives is

g(|∇u|2)I + 2g′(|∇u|2)

⎛
⎜⎜⎜⎜⎜⎜⎝

∂1u∂1u · · · ∂1u∂du

...
. . .

...

∂du∂1u · · · ∂du∂du

⎞
⎟⎟⎟⎟⎟⎟⎠

= g(|∇u|2)I + 2g′(|∇u|2)∇u(∇u)T

(3.1.4)

where I is a d × d identity matrix. ∀ η ∈ R
d, notice that g′(s) ≤ 0 and

ηT∇u(∇u)Tη ≤ |η|2|∇u|2, we obtain

ηTg(|∇u|2)Iη + 2g′(|∇u|2)ηT∇u(∇u)Tη

≥ ηT
[
g(|∇u|2) + 2g′(|∇u|2)|∇u|2]η ≥ 0

(3.1.5)

Therefore, (3.1.1) is a parabolic equation. It is worth to point out that each

equation in the system of evolutionary PDEs (1.5.5) is a special case of (3.1.1).

PDE (1.1.10) proposed by Perona and Malik [76] has a similar form as (3.1.1),

but it does not have the reaction term. They restricted themselves to functions

g(s) = 1
1+s/k2 or g(s) = e−s/k2

which do not satisfies (3.1.2) either. There are

some general results for degenerate parabolic equations in the literature [28]:

u̇ −∇ · a(t, x, u,∇u) = b(x, t, u,∇u)

where the functions a, b satisfy the structural conditions

a(t, x, u,∇u) · ∇u ≥ c0|∇u|p − φ0(x, t)

|a(t, x, u,∇u)| ≤ c1|∇u|p−1 + φ1(x, t)

|b(x, t, u,∇u)| ≤ c2|∇u|p + φ2(x, t)
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a.e. (x, t) with p > 1. c0, c1, c2 are given constants and φ0, φ1, φ2 are given non-

negative functions satisfying some integrability conditions. But we can’t apply

them because we have p = 1 here. The difficulty of studying (3.1.1) comes from

the highly degenerate behavior of it due to vanishing condition g(s) ≈ (s−
1
2 ) as

s → +∞ and is closely related to the fact that L1 is not a reflexive Banach space.

3.2 Notations

Now, let’s introduce some notations. For any z ∈ R, let Φ(z) =
∫ |z|
0

τg(τ 2) dτ ,

then Φ′′(z) = g(|z|2) + 2|z|2g′(|z|2), according to (3.1.2), Φ′′(z) ≥ 0, thus Φ(·) is

a convex function. Since g(s) ≈ 1√
s

as s → +∞, without loss of generality, let

α = lim
s→+∞

g(s2)s. We further assume 2

αs − β ≤ s2g(s2) ≤ αs + β , ∀ s ∈ [0, +∞) (3.2.1)

α|z| − β ≤ Φ(z) ≤ α|z| + β , ∀ z ∈ R (3.2.2)

here β is some positive constant. There are many functions which satisfy (3.1.2),

such as: Φ(z) = |z| (g(s) = 1√
s
), the total variation function, was introduced by

Rudin and Osher [79]; Φ(z) =
√

1 + z2−1 (g(s) = 1√
1+s

), the function of minimal

surfaces. We refer to [22] for more such functions. Notice the assumptions on

2In fact, from (3.2.2) and the convexity of Φ(·), we get s2g(s2) = sΦ′(s) ≥ Φ(s) ≥ αs − β.

On the other hand, due to the assumptions on g(s), sg(s2) is nondecreasing, we get sg(s2) ≤ α.

Thus (3.2.1) is redundant.
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g(·), we obtain the recession function 3 of Φ(·) is Φ∞(z) = α|z|. It is easy to

verify that Φ∞(·) is a positively 1-homogeneous function, i.e.

Φ∞(tz) = tΦ∞(z) ∀ z ∈ R, ∀ t ≥ 0

Let u ∈ BV (Ω), recall that the distributional derivative of u can be decomposed

as Du = ∇udx+Dsu, here dx is Lebesgue measure, Dsu is singular with respect

to dx. Define

Ĵ(u) =

∫
Ω

Φ(|∇u|) dx +

∫
Ω

Φ∞

(
Dsu

|Dsu|
)
|Dsu| (3.2.3)

Since Φ(·) satisfies (3.2.2), we have

Ĵ(u) =

∫
Ω

Φ(|∇u|) dx + α|Dsu|(Ω) (3.2.4)

Ĵ(u) is lower semicontinuous with respect to the convergence in L1(Ω) (cf. [5]

Theorem 5.47). If u ∈ W 1,1(Ω), then the second term vanishes. For any given

h ∈ L2(Ω) and linear continuous operator R, define

ĴR(u) =

∫
Ω

Φ(|∇u|) dx + α|Dsu|(Ω) +
1

2

∫
Ω

|Ru − h|2 dx (3.2.5)

Definition 3.2.1 (Subdifferential). The subdifferential ∂ĴR at u is defined as:

∂ĴR(u) =

{
ξ ∈ L2(Ω) : ĴR(v) − ĴR(u) ≥ 〈ξ, v − u

〉
, ∀ v ∈ L2(Ω)

}
(3.2.6)

3Refer to definition 2.6.9 for recession function.
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3.3 Semigroup approach

Chambolle and Lions [20] first studied PDE (3.1.1) in the case g(s) =
√

s by

using nonlinear semigroup theory and monotone operator. Following the same

approach, later, Vese [92] studied the general case. She proved the following

theorem [92, 8].

Theorem 3.3.1. Let Ω ⊂ R
d be an open bounded, and connected subset of R

d

(d = 1, 2) with Lipschitz boundary. Let u0 ∈ Dom(∂ĴR) and h = u0. Then there

exists a unique function u(t) : [0, +∞) → L2(Ω) such that

u(t) ∈ Dom(∂ĴR), ∀ t > 0, u̇ ∈ L∞(0, +∞, L2(Ω)) (3.3.1)

− u̇ ∈ ∂ĴR(u(t)), a.e. t ∈ (0, +∞), u(0) = u0 (3.3.2)

If u1 and u2 are two solutions with u01, u02 as initial conditions respectively, then

‖u1(t) − u2(t)‖ ≤ ‖u01 − u02‖ ∀ t ≥ 0 (3.3.3)

3.4 Vanish viscosity approach

PDE (3.1.1) is a generalization of the classical time dependent minimal surface

problem, whose study is carried out by using vanish viscosity method [59, 39].

Following this approach, Feng and Prohl [38] studied (3.1.1) in case g(s) =
√

s.

We shall follow the same approach to study (3.1.1). The generalized solution of

PDE (3.1.1) is studied in two cases: u0, h ∈ L2(Ω); u0 ∈ BV (Ω) ∩ L2(Ω), h ∈
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L2(Ω). Our approach is to consider first the regularized problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ · (g(|∇u|2)∇u) − λR∗(Ru − h) + ε∆u in Ω × (0, +∞)

∂u
∂ν

= 0 on ∂Ω × [0, +∞)

u(x, 0) = u0(x) on Ω

(3.4.1)

We then derive some ε independent estimates and pass the limit ε → 0. For

simplicity, let’s assume λ = 1 from now on.

Lemma 3.4.1. Suppose that g satisfies (3.1.2) then,

〈
g(|ξ|2)ξ − g(|η|2)η, ξ − η

〉 ≥ 0 (3.4.2)

Proof. Since g(|z|2) = Φ′(z)
|z| and Φ(·) is an increasing convex function, by Lemma

2.7.1, we conclude that (3.4.2) holds.

3.4.1 Weak solution of regularized PDE

Before moving on, we need to clarify what weak solution means for the regularized

equation.

Definition 3.4.2 (Weak Solution). A function u : Ω × [0, T ] → R is called a

weak solution of the initial-boundary-value problem (3.4.1), if

(a) u ∈ L2(0, T ; H1(Ω)) and u̇ ∈ L2(0, T ; H−1(Ω));

(b) ∀ v ∈ H1(Ω), a.e. t ∈ [0, T ],

〈
u̇, v
〉

+
〈
g(|∇u|2)∇u,∇v

〉
+
〈
Ru − h, Rv

〉
+ ε
〈∇u,∇v

〉
= 0 (3.4.3)
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where
〈·, ·〉 denotes the action of a distribution on a test function or the

inner product of L2(Ω).

(c) u(0) = u0

Remark 3.4.3. According to Theorem 2.3.4, u ∈ C([0, T ]; L2(Ω)).

Theorem 3.4.4 (Existence and uniqueness of weak solution). Let u0 , h ∈

L2(Ω). Then, the initial-boundary-value problem (3.4.1) has a unique weak solu-

tion u : Ω × [0, T ] → R, u ∈ C([0, T ], L2(Ω)) and satisfies the following inequali-

ties:

1

2
‖u‖2 +

∫ t

0

∫
Ω

[
g(|∇u|2)|∇u|2 +

1

2
(Ru − h)2 + ε|∇u|2

]
dx

≤ 1

2

[
‖u0‖2 + T‖h‖2

]
(3.4.4)

∫ t

0

t‖u̇‖2 dt + t

∫
Ω

Φ(|∇u|) dx +
1

2
t‖Ru − h‖2 +

ε

2
t‖∇u‖2

≤ 1

2

[
‖u0‖2 + T‖h‖2

]
+ 2βT ∀ t ∈ [0, T ] (3.4.5)

∫ T

0

‖u̇‖2
H−1(Ω) dt ≤ 6

[
‖u0‖2 + T‖h‖2

]
+ 3α2m(Ω)T (3.4.6)

here α is the constant in (3.2.1), m(Ω) is the Lebesgue measure of Ω. Further-

more, if u0 ∈ H1(Ω), we have

∫ T

0

‖u̇‖2 +

∫
Ω

Φ(|∇u|) dx +
1

2
‖Ru − h‖2 +

ε

2
‖∇u‖2

≤ 2
[ ∫

Ω

Φ(|∇u0|) dx +
1

2
‖Ru0 − h‖2 +

ε

2
‖∇u0‖2

] (3.4.7)
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Galerkin method

We use Galerkin method to prove the existence of weak solution of (3.4.1). As-

sume that the functions ωk = ωk(x) (k = 1, · · · ) are the eigenfunctions of the

following problem ⎧⎪⎪⎨
⎪⎪⎩

−∆u = 0

∂u
∂ν
|Γ = 0

(3.4.8)

We have
{
ωk

}∞
k=1

∈ C∞(Ω). If Γ, the boundary of Ω is of class Ck,1, k >= 3+[d
2
],

then
{
ωk

}∞
k=1

∈ C2(Ω̄) 4. In image processing, we often have Ω =
d∏

i=1

(0, Li). In

this case,
{
ωk

}∞
k=1

∈ C∞(Ω̄) 5. Furthermore,

{
ωk

}∞
k=1

is an orthogonal basis of H1(Ω) (3.4.9)

{
ωk

}∞
k=1

is an orthonormal basis of L2(Ω) (3.4.10)

if we normalize
{
ωk

}∞
k=1

in L2(Ω). Let Vm = span
{
ωk

}m

k=1
and Pm is the finite

dimensional projection from L2(Ω) to Vm.

Theorem 3.4.5 (Galerkin approximation). Let u0, h ∈ L2(Ω), for each in-

teger m ≥ 1, there exists a unique um : Ω × [0, T ] → R such that

(a) um ∈ C∞(Ω × [0, T ]) and um(t) ∈ Vm for any t ∈ [0, T ].

4Please refer to [45].

5In this case, ωk is the cosine sequence.
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(b) Assume hm = Pmh, u0m = Pmu0. ∀ v ∈ Vm and any t ∈ [0, T ],

〈
u̇m, v

〉
+
〈
g(|∇um|2)∇um,∇v

〉
+
〈
Rum − hm, Rv

〉
+ ε
〈∇um,∇v

〉
= 0

um(0) = u0m (3.4.11)

and the energy estimates

1

2
‖um‖2 +

∫ T

0

∫
Ω

[
g(|∇um|2)|∇um|2 +

1

2
(Rum − hm)2 + ε|∇um|2

]
dx

≤ 1

2

[
‖u0‖2 + T‖h‖2

]
∀ t ∈ [0, T ] (3.4.12)

∫ t

0

t‖u̇m‖2 dt + t

∫
Ω

Φ(|∇um|) dx +
1

2
t‖Rum − hm‖2 +

ε

2
t‖∇um‖2

≤ 1

2
(‖u0‖2 + T‖h‖2) + 2βT (3.4.13)

∫ T

0

‖u̇m‖2
H−1(Ω) dt ≤ 6(‖u0‖2 + T‖h‖2) + 3α2m(Ω)T (3.4.14)

where m(Ω) is the measure of Ω. Furthermore, if u0 ∈ H1(Ω), we have

∫ T

0

‖u̇m‖2 dt +
[ ∫

Ω

Φ(|∇um|) dx +
1

2
‖Rum − hm‖2 +

ε

2
‖∇um‖2

]

≤ 2
[ ∫

Ω

Φ(|∇u0m|) dx +
1

2
‖Ru0 − h‖2 +

ε

2
‖∇u0‖2

] (3.4.15)

Proof of Galerkin approximation. Fix now a positive integer m. We will look for

a function um : [0, T ] → H1(Ω) of the form

um(t) =
m∑

k=1

ak
m(t)ωk (3.4.16)

We hope to select the coefficients ak
m(t) (0 ≤ t ≤ T, k = 1, · · · , m) so that

ak
m(0) =

〈
u0, ωk

〉
(3.4.17)

〈
u̇m, ωk

〉
+
〈
g(|∇um|2)∇um,∇ωk

〉
+
〈
Rum − hm, Rωk

〉
+ ε
〈∇um,∇ωk

〉
= 0
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We first note from the above equation in finite dimensional space that

〈
u̇m, ωk

〉
= ȧk

m(t), k = 1, · · · , m, (3.4.18)

ȧk
m(t) = fk(a

1
m(t), · · · , am

m(t)), k = 1, · · · , m, (3.4.19)

where all fk : R
m → R (1 ≤ k ≤ m) are smooth and locally Lipschitz. It follows

from the theory for initial-value problems of ordinary differential equations that

there exists Tm > 0 such that the initial-value problem (3.4.19) and (3.4.17), has

a unique smooth solution a1
m(t), · · · , am

m(t) for t ∈ [0, Tm]. For each t ∈ [0, Tm],

set v = um(t) in (3.4.11), we obtain

1

2

d

dt
‖um‖2 +

∫
Ω

[
g(|∇um|2)|∇um|2 + (Rum − hm)2 + ε|∇um|2

]
dx

=

∫
Ω

[
(Rum − hm)hm

]
dx ≤ 1

2

[ ∫
Ω

(Rum − hm)2 dx +

∫
Ω

h2
m dx

]

≤ 1

2
(

∫
Ω

(Rum − hm)2 dx +

∫
Ω

h2 dx)

(3.4.20)

Therefore,

1

2

d

dt
‖um‖2 +

∫
Ω

[
g(|∇um|2)|∇um|2 +

1

2
(Rum − hm)2 + ε|∇um|2

]
dx

≤ 1

2
‖h‖2 ∀ t ∈ [0, Tm]

(3.4.21)

Integrate (3.4.21) against t, we get,

‖um(t)‖2 ≤ ‖u0‖2 + T‖h‖2 ∀ t ∈ [0, Tm] (3.4.22)

This, together with the orthogonality of
{
ωk

}m

k=1
, implies that

m∑
k=1

[ak
m(t)]2 = ‖um(t)‖2 ≤ ‖u0‖2 + T‖h‖2
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The solution (a1
m(t), · · · , am

m(t)) of the initial-value problem (3.4.19) and (3.4.17)

can be uniquely extended to a smooth solution over [0, T ]. Thus, (3.4.12) follows

and

‖um‖2
L∞(0,T ;L2(Ω)) ≤ ‖u0‖2 + T‖h‖2

‖∇um‖2
L2(0,T ;L2(Ω)) ≤

‖u0‖2 + T‖h‖2

ε

(3.4.23)

Set now v = tu̇m(t) in (3.4.11)

t‖u̇m‖2 +
d

dt

[
t

∫
Ω

Φ(|∇um|) dx +
1

2
t‖Rum − hm‖2 +

1

2
εt‖∇um‖2

]

=
[ ∫

Ω

Φ(|∇um|) dx +
1

2
‖Rum − hm‖2 +

1

2
ε‖∇um‖2

] (3.4.24)

Integrate (3.4.24) against t from 0 to s, and recall (3.2.2)

∫ s

0

t‖u̇m‖2 dt +
[
s

∫
Ω

Φ(|∇um|) dx +
1

2
s‖Rum − hm‖2 +

1

2
εs‖∇um‖2

]

=

∫ s

0

[ ∫
Ω

Φ(|∇um|) dx +
1

2
‖Rum − hm‖2 +

1

2
ε‖∇um‖2

]
dt

≤
∫ s

0

[
α

∫
Ω

|∇um| dx +
1

2
‖Rum − hm‖2 +

1

2
ε‖∇um‖2

]
dt + βT

(3.4.25)

On the other hand, from (3.2.2) and (3.4.12), we know that

α

∫ s

0

∫
Ω

|∇um| dx +

∫ s

0

[1
2
‖Rum − hm‖2 + ε‖∇um‖2

]
dt

≤ 1

2

[
‖u0‖2 + T‖h‖2

]
+ βT

(3.4.26)

Hence,

∫ s

0

t‖u̇m‖2 dt +
[
s

∫
Ω

Φ(|∇um|) dx +
1

2
s‖Rum − hm‖2 +

1

2
εs‖∇um‖2

]

≤ 1

2

[
‖u0‖2 + T‖h‖2

]
+ 2βT ∀ s ∈ [0, T ]

(3.4.27)

Recall that

‖u̇m‖H−1(Ω) = sup
{

< u̇m, v > : ‖v‖H1
0 (Ω) ≤ 1

}
(3.4.28)
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It is easy to see that (3.4.11) is valid for all v ∈ H1
0 (Ω), then

‖u̇m‖H−1(Ω) ≤ ‖g(|∇um|2)∇um‖ + ‖Rum − hm‖ + ε‖∇um‖ (3.4.29)

Take square of the above inequality and integrate t from 0 to T , we obtain

∫ T

0

‖u̇m‖2
H−1(Ω) dt

≤ 3

∫ T

0

[
‖g(|∇um|2)∇um‖2 + ‖Rum − hm‖2 + ε‖∇um‖2

]
dt

≤ 3α2m(Ω)T + 6(‖u0‖2 + T‖h‖2)

(3.4.30)

If u0 ∈ H1(Ω), set v = u̇m(t) in (3.4.11) to get (3.4.15). Therefore,

∫ T

0

‖u̇m‖2dt +
[ ∫

Ω

Φ(|∇um|) dx +
1

2
‖Rum − hm‖2 +

ε

2
‖∇um‖2

]

≤ 2
[ ∫

Ω

Φ(|∇u0m|) dx +
1

2
‖Ru0m − hm‖2 +

ε

2
‖∇u0m‖2

]

≤ 2
[ ∫

Ω

Φ(|∇u0m|) dx +
1

2
‖Ru0 − h‖2 +

ε

2
‖∇u0‖2

]
(3.4.31)

Proof of theorem 3.4.4. According to energy estimates (3.4.14), (3.4.13) and (3.4.23),

for any fixed ε > 0, the sequence
{
um

}∞
m=1

is bounded in L∞(0, T ; L2(Ω)) ∩

L2(0, T ; H1(Ω)),
{
u̇m

}∞
m=1

is bounded in L2(0, T ; H−1(Ω)) and
{√

tu̇m

}∞
m=1

is

bounded in L2(0, T ; L2(Ω)). Consequently, there exists a subsequence
{
uml

}∞
l=1

⊂
{
um

}∞
m=1

and a function u ∈ L∞(0, T ; L2(Ω))∩L2(0, T ; H1(Ω)), u̇ ∈ L2(0, T ; H−1(Ω))
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and
√

tu̇ ∈ L2(0, T ; L2(Ω)) such that

uml
⇀ u weakly in L2(0, T ; H1(Ω))

u̇ml
⇀ u̇ weakly in L2(0, T ; H−1(Ω))

uml
→ u strongly in L2(0, T ; L2(Ω))

√
tu̇ml

⇀
√

tu̇ weakly in L2(0, T ; L2(Ω))

(3.4.32)

the strong convergence is due to H1(Ω) ⊂⊂ L2(Ω) and a compactness result [83]

(see also Theorem 2.4.2). Let v ∈ H1(Ω) and η ∈ C[0, T ]. For each m ≥ 1,

set v = vm(= Pmv) in (3.4.11), multiply both sides of the identity by η(t), and

integrate against t to yield

∫ T

0

〈
η(t)vm, u̇m(t)

〉
dt +

∫ T

0

〈
η(t)∇vm, g(|∇um(t)|2)∇um(t)

〉
dt

+

∫ T

0

〈
Rum(t) − hm, Rvm

〉
dt + ε

∫ T

0

〈
η(t)∇vm,∇um(t)

〉
dt = 0

(3.4.33)

We still denote the subscript ml of convergence sequence as m,

∫ T

0

〈
η(t)vm, u̇m(t)

〉
dt −

∫ T

0

〈
η(t)v, u̇(t)

〉
dt

=

∫ T

0

〈
η(t)(vm − v), u̇m(t)

〉
dt +

∫ T

0

〈
η(t)v, u̇m(t) − u̇(t)

〉
dt

(3.4.34)

The first term

∣∣ ∫ T

0

〈
η(t)(vm − v), u̇m(t)

〉
dt
∣∣ ≤ ‖η‖‖vm − v‖H1(Ω)

∫ T

0

‖u̇m‖H−1(Ω) dt

≤ ‖η‖‖vm − v‖H1(Ω)T

∫ T

0

‖u̇m‖2
H−1(Ω) dt → 0 as m → ∞

(3.4.35)

It follows from the weak convergence of u̇m in L2(0, T ; H−1(Ω)), the second term

→ 0 as m → ∞. Therefore

∫ T

0

〈
η(t)vm, u̇m(t)

〉
dt →

∫ T

0

〈
η(t)v, u̇(t)

〉
dt as m → ∞ (3.4.36)
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From the strong convergences um → u, Pmv → v, u0m = Pmu0 → u0, hm =

Pmh → h, we obtain

∫ T

0

〈
η(t)Rum − hm, Rvm > dt →

∫ T

0

〈
η(t)Ru − h, Rv > dt (3.4.37)

as m → ∞. It follows from um ⇀ u weakly in H1(Ω) and Pmv → v strongly in

H1(Ω),

∫ T

0

〈
η(t)∇um,∇vm

〉
dt →

∫ T

0

〈
η(t)∇u,∇v

〉
dt as m → ∞ (3.4.38)

Finally, let’s consider the nonlinear term. g(|∇um|2)∇um is bounded L2(0, T ; L2(Ω)d),

there exists some ξ ∈ L2(0, T ; L2(Ω)d), such that g(|∇um|2)∇um ⇀ ξ. Therefore,

as m → ∞
∫ T

0

〈
η(t)∇vm, g(|∇um|2∇um

〉
dt →

∫ T

0

〈
η(t)∇v, ξ

〉
dt (3.4.39)

Let m → ∞, we get from (3.4.34), (3.4.37), (3.4.38) and (3.4.39) that

∫ T

0

η(t)
[〈

u̇, v
〉

+
〈
ξ,∇v

〉
+
〈
Ru − h, Rv > +ε

〈∇u,∇v >
]
dt = 0 (3.4.40)

Since η(t) ∈ C[0, T ] is arbitrary, this implies:

〈
u̇, v
〉

+
〈
ξ,∇v

〉
+
〈
Ru − h, Rv > +ε

〈∇u,∇v >= 0 a.e. t ∈ [0, T ] (3.4.41)

Notice that, by Theorem 2.3.4, after possibly being redefined on a set of measure

zero, we have u ∈ C([0, T ]; L2(Ω)). Moreover, u(t) = u(s) +
∫ t

s
u̇(τ) dτ for any

s, t ∈ [0, T ]. Replace η(t) in (3.4.40) by ηT (t) = 1 − t
T

and integrate by parts
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against t for the first term to get∫ T

0

ηT (t)
[〈

ξ,∇v
〉

+
〈
Ru − h, Rv

〉
+ ε
〈∇u,∇v

〉]
dt

+

∫ T

0

1

T

〈
u(t), v

〉
dt =

〈
u(0), v

〉 (3.4.42)

Repeat the same argument using (3.4.11) with vm = Pmv to get

∫ T

0

ηT (t)
[〈

g(|∇um|2)∇um,∇vm

〉
+
〈
Rum − hm, Rvm

〉
+ ε
〈∇u,∇vm

〉]
dt

+

∫ T

0

1

T

〈
um(t), vm

〉
dt =

〈
u0m, vm

〉

Let m → ∞, we deduce from (3.4.34), (3.4.37), (3.4.38) and (3.4.39),∫ T

0

ηT (t)
[〈

ξ,∇v
〉

+
〈
Ru − h, Rv

〉
+ ε
〈∇u,∇v

〉]
dt

+

∫ T

0

1

T

〈
u(t), v

〉
dt =

〈
u0, v

〉 (3.4.43)

Now, a comparison of (3.4.42) and (3.4.43), together with the arbitrariness of

v ∈ H1(Ω), we get u(0) = u0. Similarly, let η(t) = − t
T
, we deduce

lim
m→∞

〈
um(T ), vm

〉
=
〈
u(T ), v

〉
(3.4.44)

On the other hand,

∣∣〈um(T ), vm − v
〉∣∣ ≤ ‖um(T )‖‖vm − v‖ (3.4.45)

From (3.4.23), we know that lim
m→∞

〈
um(T ), vm − v

〉
= 0. Consequently,

lim
m→∞

〈
um(T ), v

〉
= lim

m→∞
〈
um(T ), vm

〉
=
〈
u(T ), v

〉 ∀ v ∈ H1(Ω) (3.4.46)

Let v = u in (3.4.41) and integrate against t from 0 to T , we get∫ T

0

〈
ξ,∇u

〉
dt =

1

2
‖u0‖2 − 1

2
‖u(T )‖2

−
∫ T

0

〈
Ru − h, Ru

〉
dt −

∫ T

0

ε
〈∇u,∇u

〉
dt

(3.4.47)
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Let vm = um in (3.4.11) and integrate against t from 0 to T , we get

∫ T

0

〈
g(|∇um|2)∇um,∇um

〉
dt =

1

2
‖u0‖2 − 1

2
‖um(T )‖2

−
∫ T

0

ε
〈∇um,∇um

〉
dt −

∫ T

0

〈
Rum − hm, Rum

〉
dt

(3.4.48)

Therefore

lim
m→∞

sup

∫ T

0

〈
g(|∇um|2)∇um,∇um

〉
dt

=
1

2
‖u0‖2 − lim

m→∞
inf

1

2
‖um(T )‖2

− lim
m→∞

inf

∫ T

0

[〈
Rum − hm, Rum

〉
+ ε
〈∇um,∇um

〉]
dt

(3.4.49)

Notice that L2 norm is lower semicontinuous 6, from (3.4.47) and (3.4.49), we

deduce

lim
m→∞

sup

∫ T

0

〈
g(|∇um|2)∇um,∇um

〉
dt ≤

∫ T

0

〈
ξ,∇u

〉
dt (3.4.50)

Now, from Lemma 3.4.1, we obtain, ∀ v ∈ L2(0, T ; H1(Ω))

0 ≤ lim
m→∞

sup

∫ T

0

〈
g(|∇um|2)∇um − g(|∇v|2)∇v,∇um −∇v

〉
dt

≤
∫ T

0

〈
ξ − g(|∇v|2)∇v,∇u −∇v

〉
dt ∀ v ∈ L2(0, T ; H1(Ω))

(3.4.51)

Let v = u − θw for some constant θ > 0,

∫ T

0

〈
ξ − g(|∇u − θ∇w|2)∇u − θ∇w,∇w

〉
dt ≥ 0 (3.4.52)

Let θ → 0, we deduce

∫ T

0

〈
ξ − g(|∇u|2)∇u,∇w

〉
dt ≥ 0 ∀w ∈ L2(0, T ; H1(Ω)) (3.4.53)

6L2 norm is lower semicontinuous with respect to strong convergence, from Theorem in

Section 2.5, L2 norm is lower semicontinuous with respect to weak convergence.
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i.e.
〈
ξ,∇v

〉
=
〈
g(|∇u|2)∇u,∇v

〉
for any v ∈ H1(Ω) and a.e. t ∈ [0, T ]. Therefore

〈
u̇, v
〉

+
〈
g(|∇u|2)∇u,∇v

〉
+
〈
Ru − h, Rv

〉
+ ε
〈∇u,∇v

〉
= 0 (3.4.54)

∀ v ∈ H1(Ω), a.e. t ∈ [0, T ]. All the inequalities follow directly from the corre-

sponding ones in Theorem 3.4.5.

Uniqueness

Suppose that u1 and u2 are the weak solutions of PDE (3.4.1) with initial values

u10, h1 and u20, h2 respectively. Then,

〈
u̇1, v

〉
+
〈
g(|∇u1|2)∇u1,∇v

〉
+
〈
Ru1 − h1, Rv

〉
+ ε
〈∇u1,∇v

〉
= 0 (3.4.55)

〈
u̇2, v

〉
+
〈
g(|∇u2|2)∇u2,∇v

〉
+
〈
Ru2 − h2, Rv

〉
+ ε
〈∇u2,∇v

〉
= 0 (3.4.56)

(3.4.55) - (3.4.56) and let w = u1 − u2, v = u1 − u2 and w0 = u10 − u20,

〈
ẇ, w

〉
+
〈
g(|∇u1|2)∇u1 − g(|∇u2|2)∇u2,∇u1 −∇u2

〉

+
〈
Rw − (h1 − h2), Rw

〉
+ ε
〈∇w,∇w

〉
= 0

(3.4.57)

Since
〈
g(|∇u1|2)∇u1 − g(|∇u2|2)∇u2,∇u1 −∇u2

〉 ≥ 0, we get

‖u1(t) − u2(t)‖2 ≤ ‖u10 − u20‖2 + t‖h1 − h2‖2 a.e. [0, T ] (3.4.58)

On the other hand, after possibly being redefined on a set of measure zero, u1, u2 ∈

C([0, T ], L2(Ω)). Thus

‖u1(t) − u2(t)‖2 ≤ ‖u10 − u20‖2 + t‖h1 − h2‖2 ∀ t ∈ [0, T ] (3.4.59)

This inequality ensures the uniqueness of the solution.
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3.4.2 Existence and uniqueness of generalized solution

We have proved that the existence and uniqueness of the weak solution of regu-

larized PDE and derived some ε independent energy estimates. Now let’s study

the properties of original PDE. We have the following theorem.

Theorem 3.4.6 (Generalized Solution). Let Ω be a bounded open domain

with Lipschitz boundary.

(a) Suppose that u0, h ∈ L2(Ω), then there exists a function u such that

u ∈ L∞(0, T ; L2(Ω)) ∩ L1(0, T ; BV (Ω))

u ∈ L∞(s0, T ; BV (Ω)) ∩ C([s0, T ]; L2(Ω)), s0 ∈ (0, T ]

u̇ ∈ L2(0, T ; H−1(Ω))

u(t) is weakly continuous from [0, T ] → L2(Ω).

∀ s ∈ (0, T ], ∀ v ∈ L1(0, T ; BV (Ω))∩L2(0, T ; L2(Ω))∩C([0, T ]; L2(Ω)) such

that v̇ ∈ L2(0, T ; L2(Ω)), we have

∫ s

0

∫
Ω

v̇(v − u) dx dt +

∫ s

0

[ĴR(v) − ĴR(u)]dt

≥ 1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
]

(3.4.60)

(b) Suppose u1 and u2 are two functions which satisfy (3.4.60) with initial data

u10, h1 and u20, h2 respectively. If u10, u20 ∈ L2(Ω)∩BV (Ω), h1, h2 ∈ L2(Ω).

Then, there holds stability inequality

‖u1(s) − u2(s)‖2 ≤ ‖u10 − u20‖2 + s‖h1 − h2‖2 ∀ s ∈ [0, T ] (3.4.61)
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(c) If u0 ∈ BV (Ω) ∩ L2(Ω) and h ∈ L2(Ω), then u is unique, u(0) = u0 and

u ∈ L∞(0, T ; BV (Ω) ∩ L2(Ω)) ∩ C([0, T ], L2(Ω))

u̇ ∈ L2(0, T ; L2(Ω))

∀ s ∈ [0, T ], ∀ v ∈ L1(0, T ; BV (Ω)) ∩ L2(0, T ; L2(Ω)), we have

∫ s

0

∫
Ω

u̇(v − u) dx dt +

∫ s

0

[
ĴR(v) − ĴR(u)

]
dt ≥ 0 (3.4.62)

Remark 3.4.7. (a) In case of u0 ∈ L2(Ω), the solution u(t) is only weakly con-

tinuous from [0, T ] → L2(Ω). The strong continuity is usually not true.

The uniqueness of the solution is not proved either. In the literature, there

are some mistakes regarding the proof of continuity and uniqueness of u

when u0 ∈ L2(Ω). By looking at the proof of stability inequality in case

u0 ∈ BV (Ω) ∩ L2(Ω), it is tempting to use a density argument to do it:

suppose that un
0 ∈ BV (Ω) ∩ L2(Ω) → u0 ∈ L2(Ω), un is the generalized so-

lution corresponding to un
0 , but it turns out that we don’t know if un → u

in any sense.

(b) From (3.4.62), it is easy to see that, for a.e. t ∈ [0, T ]

∫
Ω

u̇(v − u) dx + ĴR(v) − ĴR(u) ≥ 0 ∀ v ∈ BV (Ω) ∩ L2(Ω) (3.4.63)

Proof. The proof is carried out by using the same approach as Lichnewski and

Temam [59], Gerhardt [39], Feng [38].
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Part (a)

For each ε > 0, consider the regularized problem (3.4.1), from theorem 3.4.4, we

know, there exists a weak solution uε which satisfies the following ε independent

bounds:

‖uε‖L∞(0,T ;L2(Ω)) +
√

ε‖∇uε‖ + ‖uε‖L1(0,T ;W 1,1(Ω)) ≤ C0(T, ‖u0‖, ‖h‖)

‖u̇ε‖L2(0,T ;H−1(Ω)) ≤ C1(T, ‖u0‖, ‖h‖)

‖√tu̇ε‖L2(0,T ;L2(Ω)) +
√

ε‖√t∇uε‖L∞(0,T ;L2(Ω)) + ‖tuε‖L∞(0,T ;W 1,1(Ω))

≤ C2(T, ‖u0‖, ‖h‖)

(3.4.64)

here C0, C1, C2 are constants. These bounds imply that there exists a function

u ∈ L∞(0, T ; L2(Ω)), tu ∈ L∞(0, T ; BV (Ω)) and a subsequence
{
uε
}

ε>0
(which

is denoted by the same notation) such that as ε → 0

uε ⇀ u weakly∗ in L∞(0, T ; L2(Ω))

uε ⇀ u weakly in L2(0, T ; L2(Ω)) (3.4.65)

uε → u strongly in L1(0, T ; Lp(Ω))

u̇ε ⇀ u̇ weakly in L2(0, T ; H−1(Ω)) (3.4.66)

u̇ε ⇀ u̇ weakly in L2(t0, T ; L2(Ω)) ∀ t0 ∈ (0, T ]

√
tu̇ε ⇀

√
tu̇ weakly in L2(0, T ; L2(Ω)) (3.4.67)

tuε → tu strongly in Lp(Ω) for a.e. t ∈ [0, T ] (3.4.68)

uε → u strongly in Lp(Ω) for a.e. t ∈ [t0, T ] ∀ t0 ∈ (0, T ]
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where 1 ≤ p < 1∗. The strong convergence is due to the fact that BV (Ω)

compactly embedded in Lp(Ω)(cf. Lemma 2.6.14) and the compactness result

of Simon [83] (See also Theorem 2.4.2). Since u ∈ L∞(0, T, L2(Ω)), u is contin-

uous from [0, T ] into H−1(Ω), by Lemma 2.3.5, we know that u(t) is weakly

continuous from [0, T ] → L2(Ω). Since L1(0, T ; BV (Ω)) is neither reflexive

nor the dual of some separable Banach space, we can’t directly conclude that

u ∈ L1(0, T, BV (Ω)). Thanks to Fatou’s lemma, we have

lim
ε→0

inf

∫ T

0

[ ∫
Ω

|∇uε| dx
]
dt ≥

∫ T

0

[
lim
ε→0

inf

∫
Ω

|∇uε| dx
]
dt (3.4.69)

From uε → u strongly in L1(0, T ; Lp(Ω)), we have uε → u strongly in Lp(Ω) a.e. t ∈

[0, T ]. On the other hand, the variation of a function is lower semicontinuous with

respect to L1 convergence. Thus, we conclude

∫ T

0

[
lim
ε→0

inf

∫
Ω

|∇uε| dx
]
dt ≥

∫ T

0

[ ∫
Ω

|Du| dx
]
dt (3.4.70)

i.e. u ∈ L1(0, T ; BV (Ω)). Since ∀ s0 > 0, u̇ ∈ L2(s0, T ; L2(Ω)), by The-

orem 2.3.3, after possibly being redefined on a set of measure zero, we have

u ∈ C([s0, T ], L2(Ω)), i.e. u ∈ C((0, T ], L2(Ω)). ∀ s1, s2 > 0,

u(s2) = u(s1) +

∫ s2

s1

u̇ dt, uε(s2) = uε(s1) +

∫ s2

s1

u̇ε dt

From (3.4.65) and (3.4.66), we obtain

uε(s) ⇀ u(s) weakly in L2(Ω) ∀ s ∈ (0, T ] (3.4.71)
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Substitute v by v − uε in (3.4.3) and integrate against t from 0 to s(≤ T ), we

obtain∫ s

0

∫
Ω

u̇ε(v − uε) dxdt +

∫ s

0

∫
Ω

g(|∇uε|2)∇uε · (∇v −∇uε) dxdt

+

∫ s

0

∫
Ω

(Ruε − h)(Rv − Ruε) dxdt

+ ε

∫ s

0

∫
Ω

∇uε · (∇v −∇uε) dxdt = 0

(3.4.72)

Φ(s) is a convex function and recall that Φ(s) =
∫ s

0
g(τ 2)τ dτ , thus,

Φ(|∇v|) − Φ(|∇uε|) ≥ g(|∇uε|2)∇uε · (∇v −∇uε) (3.4.73)

and we also have the following

∫ s

0

∫
Ω

u̇ε(v − uε) dx dt =

∫ s

0

∫
Ω

v̇(v − uε) dxdt

− 1

2

[‖v(s) − uε(s)‖2 − ‖v(0) − u0‖2
]

(3.4.74)

1

2

[ ∫ s

0

∫
Ω

(Rv − h)2 dx dt −
∫ s

0

∫
Ω

(Ruε − h)2 dx dt
]

≥
∫ s

0

∫
Ω

(Ruε − h)(Rv − Ruε) dxdt (3.4.75)

Hence ∫ s

0

∫
Ω

v̇(v − uε) dx dt +

∫ s

0

(ĴR(v) − ĴR(uε)) dt

+ ε

∫ s

0

∫
Ω

∇uε · (∇v −∇uε) dx dt

≥ 1

2

[‖v(s) − uε(s)‖2 − ‖v(0) − u0‖2
]

(3.4.76)

which holds ∀ v ∈ L1(0, T ; H1(Ω))∩L2(0, T ; L2(Ω)) such that v̇ ∈ L2(0, T ; L2(Ω)).

By Fatou’s Lemma and the lower semicontinuity of Ĵ(·) with respect to L1 norm,

lim
ε→0

inf

∫ s

0

Ĵ(uε) dt ≥
∫ s

0

lim
ε→0

inf Ĵ(uε) dt ≥
∫ s

0

Ĵ(u) dt (3.4.77)
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It is not hard to verify that L2 norm is lower semicontinuous with respect to

strong convergence. Notice that L2 norm is convex, from [8] Theorem 2.1.2, we

conclude that it is lower semicontinuous with respect to weak convergence. Thus,

lim
ε→0

inf ‖v(s) − uε(s)‖2 ≥ ‖v(s) − u(s)‖2 ∀ s ∈ (0, T ]

lim
ε→0

inf

∫ s

0

‖Ruε − h‖2 ≥
∫ s

0

‖Ru − h‖2

(3.4.78)

Now let ε → 0 and notice that
√

ε‖∇uε‖ is bounded, we have, for any s ∈ [0, T ]

∫ s

0

∫
Ω

v̇(v − u) dx dt +

∫ s

0

[ĴR(v) − ĴR(u)]dt

≥ 1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
] (3.4.79)

∀ v ∈ L1(0, T ; H1(Ω)) ∩ L2(0, T ; L2(Ω)) such that v̇ ∈ L2(0, T ; L2(Ω)). However,

for each v ∈ BV (Ω), there exists (cf.[27], see also Section 2.6.6) a sequence

{vn}n≥1 ∈ C∞(Ω) ∩ W 1,1(Ω) such that vn → v strongly in L2(Ω) and Ĵ(v) =

limn→∞ Ĵ(vn). Thus, (3.4.60) holds 7.

Stability inequality

To this purpose, let’s prove the following lemma which is using the techniques in

[39, 59].

7The proof of the density result of [27] is based on mollification, for the time dependent

function, the space variable mollification will make sure the time derivative of the sequence

converge strongly.
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Lemma 3.4.8. Let η > 0 and uη be the solution of the following ODE:⎧⎪⎪⎨
⎪⎪⎩

ηu̇η + uη = u for 0 < t < T ;

uη(0) = u0

(3.4.80)

If u satisfies (3.4.60) and u0 ∈ BV (Ω) ∩ L2(Ω), then as η → 0

uη → u strongly in L2(0, T ; L2(Ω))

uη → u strongly in L1(0, T ; BV (Ω))

uη(s) → u(s) strongly in L2(Ω) ∀ s ∈ [0, T ]

(3.4.81)

Furthermore,

‖u̇‖2
L2(0,T ;L2(Ω)) ≤ ĴR(u0) (3.4.82)

Proof of lemma. It is easy to see that for any t > 0

uη(t) = e−t/ηu0 + 1/η

∫ t

0

e(τ−t)/ηu(τ) dτ = e−t/ηu0 + (u ∗ ρη)(t) (3.4.83)

where the definition of u has been extended by setting u = 0 for t < 0 and ρη(t) =

(1/η)ρ(t/η), ρ(t) = e−t. It is checked in a standard way that if u ∈ Lq(0, T ; X)

(where 1 ≤ q ≤ +∞ and X is a Banach space), then u ∗ ρη → u in Lq(0, T ; X)

as η → 0. On the other hand, if u0 ∈ X, u0e
−t/η → 0 in Lq(0, T ; X) as η → 0.

Therefore, (3.4.81) hold. Now, let’s take v = uη in (3.4.60), we get

1

2
‖uη(s) − u(s)‖2 + η

∫ s

0

∫
Ω

|u̇η|2 dx dt ≤
∫ s

0

(ĴR(uη) − ĴR(u)) dt (3.4.84)

We write uη as a convex combination

uη = e−t/ηu0 + (1 − e−t/η)
1

η(1 − e−t/η)

∫ t

0

e(τ−t)/ηu(τ) dτ
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From the convexity of ĴR(u) and Jensen’s inequality, we obtain

ĴR(uη) ≤ e−t/ηĴR(u0) + 1/η

∫ t

0

e(τ−t)/ηĴR(u(τ)) dτ

Thus, we get from (3.4.84)

η

∫ T

0

∫
Ω

|u̇η|2 dx dt +

∫ T

0

ĴR(u) dt

≤ ĴR(u0)

∫ T

0

e−t/ηdt + 1/η

∫ T

0

∫ t

0

e(τ−t)/η ĴR(u(τ)) dτ dt

≤ η(1 − e−T/η)ĴR(u0) +

∫ T

0

ĴR(u) dt

Thus ‖u̇η‖2
L2(0,T ;L2(Ω)) ≤ ĴR(u0). ‖u̇η‖L2(0,T ;L2(Ω)) is bounded and uη → u in

L2(0, T ; L2(Ω)), upon take a subsequence, u̇η ⇀ u̇. Consequently, (3.4.82) holds.

Now let’s prove the stability inequality (3.4.61). Let u1 and u2 be two func-

tions which satisfy (3.4.60) with initial data u10, h1 and u20, h2 respectively.

Notice that u10, u20 ∈ L2(Ω) ∩ BV (Ω). Set

u :=
u1 + u2

2
, u0 :=

u10 + u20

2

For any η > 0, define uη as in Lemma 3.4.8, now take v = uη in each inequality

(3.4.60) with u1, u2 in place of u, u10 and u20 in place of u0, h1 and h2 in place of

h, add the two resulting inequalities

− 2η

∫ s

0

‖u̇η‖2 dt +

∫ s

0

[
2Ĵ(uη) − Ĵ(u1) − Ĵ(u2)

+
1

2

(‖Ruη − h1‖2 + ‖Ruη − h2‖2 − ‖Ru1 − h1‖2 − ‖Ru2 − h2‖2
)]

dt

≥ 1

2

[
‖uη(s) − u1(s)‖2 + ‖uη(s) − u2(s)‖2 − 1

2
‖u10 − u20‖2

]
(3.4.85)
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Notice that Ĵ(·) is a convex functional, we have 2Ĵ(u) ≤ Ĵ(u1) + Ĵ(u2). Thus,

we get

− 2η

∫ s

0

‖u̇η‖2 dt +

∫ s

0

[
2Ĵ(uη) − 2Ĵ(u) +

1

2

(‖Ruη − h1‖2

+ ‖Ruη − h2‖2 − ‖Ru1 − h1‖2 − ‖Ru2 − h2‖2
)]

dt

≥ 1

2

[
‖uη(s) − u1(s)‖2 + ‖uη(s) − u2(s)‖2 − 1

2
‖u10 − u20‖2

]
(3.4.86)

Let η → 0 and by Lemma 3.4.8, we get (3.4.61).

Part (c)

Since u0 ∈ BV (Ω)∩L2(Ω), by stability inequality, we know that u is unique. From

(3.4.82), we have u̇ ∈ L2(0, T ; L2(Ω)). Combine this and u ∈ L∞(0, T ; L2(Ω)), by

Theorem 2.3.3, we know that u ∈ C([0, T ]; L2(Ω)) after possibly being redefined

on a set of measure zero and u(s2) = u(s1)+
∫ s2

s1
u̇ dt. This unique u is the limit of

a subsequence
{
uε
}

ε>0
which satisfies uε(s2) = uε(s1) +

∫ s2

s1
u̇ε dt. Combine with

(3.4.65) and (3.4.66), we obtain

uε(s) ⇀ u(s) weakly in L2(Ω) ∀ s ∈ [0, T ] (3.4.87)

Since uε(0) = u0 for all ε > 0, thus u(0) = u0 and

∫ s

0

∫
Ω

v̇(v − u) dx dt =

∫ s

0

∫
Ω

u̇(v − u) dx dt

+
1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
] (3.4.88)

Notice that the time derivative of v has been transferred to u, (3.4.62) holds

∀ v ∈ L1(0, T ; BV (Ω) ∩ L2(0, T ; L2(Ω)). Now, let’s prove u ∈ L∞(0, T ; BV (Ω)).
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Assume first u0 ∈ H1(Ω), by energy estimate (3.4.7), we know that this unique

u can be regarded as the limit of sequence
{
uε
}

ε>0
which satisfies

ĴR(uε) ≤ C
[ ∫

Ω

Φ(|∇u0|) dx +
ε

2
‖∇u0‖2 +

1

2
‖Ru0 − h‖2

]

Thus, we get ĴR(u) ≤ C(
∫
Ω

Φ(|∇u0|) dx + 1
2
‖Ru0 − h‖2) for a.e. t ∈ [0, T ]. For

u0 ∈ L2(Ω) ∩ BV (Ω), there exists a sequence of
{
un

0

}∞
n=1

⊂ H1(Ω) such that

un
0 → u0 strongly in L2(Ω)

un
0 → u0 strictly in BV (Ω)

Using the lower semicontinuity of ĴR, we obtain that ĴR(u) ≤ C(
∫
Ω

Φ(|Du0|) +

1
2
‖Ru0 − h‖2) for a.e. t ∈ [0, T ] still holds. Thus u ∈ L∞(0, T ; BV (Ω)).

3.4.3 Evolutionary PDE and variational problem

Theorem 3.4.9. Suppose u0 ∈ BV (Ω) ∩ L2(Ω) and g ∈ L2(Ω). Let u satisfies

(3.4.63) and ū be the minimizer of ĴR(u). Then,

lim
t→∞

‖u(t) − ū‖Lp(Ω) = 0 ∀ p ∈ [1, 1∗) (3.4.89)

Proof. We follow the approach of Feng [38]. The existence and uniqueness of the

minimizer ū of ĴR(u) was proved in Vese [7]. Take v(t) = u(t − τ) for τ > 0 in

(3.4.62) with s = T , dividing the resulted inequality by −τ and then let τ → 0

yields ∫ T

0

‖u̇‖2 dt + ĴR(u(T )) ≤ ĴR(u0) < ∞ (3.4.90)
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Hence, there exists a sequence
{
tj
}

with tj → ∞ as j → ∞ such that

lim
j→∞

‖u̇(tj)‖ = 0

‖u(tj)‖BV (Ω)∩L2(Ω) ≤ C for any j ≥ 1

(3.4.91)

By compactness of BV (Ω), there exists a subsequence of
{
u(tj)

}
(still denoted

by the same notation) and û ∈ BV (Ω) ∩ L2(Ω) such that u(tj) converges to û

weakly∗ in BV (Ω), strongly in Lp(Ω) for 1 ≤ p < 1∗, and weakly in L2(Ω) as

j → ∞. Finally, let j → ∞ in (3.4.63) after choosing t = tj and using the fact

that ĴR is lower semicontinuous with respect to L1 convergence, we get

ĴR(v) ≥ ĴR(û) ∀ v ∈ BV (Ω) ∩ L2(Ω) (3.4.92)

which implies that û is a minimizer of ĴR. By the uniqueness of minimizer,

we conclude that û = ū and that the whole sequence
{
u(t)
}

converges to ū as

t → ∞.

It is worth to point out that the solution of the minimization problem is in

W 1,1(Ω) (cf. [31]) provided that the operator R is coercive, i.e. ‖Ru‖ ≥ θ‖u‖,

the initial data h ∈ H1(Ω) and Ω satisfies some regularity condition.

3.4.4 Relationship with texture decomposition PDE

The texture decomposition model of Osher, Solé, Vese [73]

inf
u

{
F (u) =

∫
Ω

|∇u| dx +
λ

2

∫
Ω

|∇(∆−1(h − u)|2 dx
}

(3.4.93)
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has almost the identical mathematical format as

inf
u

{
F (u) =

∫
Ω

|∇u| dx +
λ

2

∫
Ω

|h − Ru|2 dx
}

(3.4.94)

The difference is that the linear operator Ro = ∇∆−1 (R∗
oRo = ∆−1∇ · ∇∆−1 =

∆−1) acts on original image h too in OSV model. The study of the formally

derived second order evolutionary PDE from OSV model

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = −∇ ·
[

∇u
|∇u|

]
+ λ∆−1(h − u)

u(0) = u0

∂u
∂ν
|Γ = 0

(3.4.95)

is essentially the same as (3.1.1).
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Chapter 4

The study of fourth order parabolic PDEs

In chapter 3, we studied the solution existence and regularity of generalized so-

lutions of one class of second order parabolic PDEs. Although they have a great

success for denoising, edge detection and texture decomposition, sometimes they

produce undesirable staircase effect, namely, the transformation of smooth re-

gions (ramps) into piecewise constant regions (stairs) [29, 20, 21, 13]. Thus,

minimization functionals with second order derivatives of u and the fourth order

PDEs are proposed in the literatures [20, 91, 21, 99, 62] to eliminate the stair-

case effects suffered by first order derivative models. It is not a surprise that

fourth order parabolic PDEs appear in image processing literatures since many

such PDEs have been appeared widely in material science and fluid dynamics

[12, 24, 40]. For this class of fourth parabolic PDE, the coefficients of the fourth

order terms will vanish if |Su| → ∞, here S is a differential operator, S = ∇2

or ∆. We use a classic method — vanish viscosity method to study them. First,

by using Galerkin method and the property of monotone operator, we prove the
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existence of weak solutions for regularized PDEs which are obtained by adding

a regularization term −ε∆2u to the original equations. Thus, For any ε > 0, we

obtain uε which is the weak solution of the regularized equation and satisfies some

ε independent energy estimates. Next, we pass the limits ε → 0, by using the

weak compactness result in Lp(0, T ; B), here B is a Banach space, 1 < p < ∞

and the compactness result in L1(0, T ; B), we will obtain u as the limit of uε.

Finally, by the lower semicontinuity property of L2 norm and the lower semicon-

tinuity property of variational functional involving measures, we will obtain that

u satisfies a variational inequality.

4.1 Minimization functional

We consider the following minimization functional

J(u) =

∫
Ω

[
Φ1(|∇u|) + Φ(|∇2u|) +

λ

2
(u − h)2

]
dx (4.1.1)

where ∇u, ∇2u are the gradient and Hessian matrix of u respectively. Minimiza-

tion functionals in [20, 99, 62] are the special cases of (4.1.1). We shall study the

existence and uniqueness of the solution of (4.1.1) in BH(Ω). Assume

H.1 Φ(·) and Φ1(·) are even, convex functions from R to R
+. They are nonde-

creasing in R
+.

H.2 Φ(0) = 0, Φ1(0) = 0 (without loss of generality).
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H.3 Φ(·) has linear growth and satisfies

α|z| − β ≤ Φ(|z|) ≤ α|z| + β (4.1.2)

where α, β are positive constants.

H.4 Φ1(·) satisfies

Φ1(|z|) ≤ α1|z| + β1 (4.1.3)

α1, β1 are some nonnegative constants.

Remark 4.1.1. (a) For smooth convex function Φ(·) defined on R, we have

Φ(s0) − Φ(s) ≥ (s0 − s)Φ′(s) ∀ s0, s ∈ R (4.1.4)

Set s0 = 0 and s0 = 2s respectively, we obtain:

Φ′(s)s ≥ Φ(s), Φ′(s)s ≤ Φ(2s) − Φ(s) (4.1.5)

Thus, Φ′(s) ≤ Φ(2s)
s

≤ 2αs+β
s

, lim
s→+∞

Φ′(s) ≤ 2α. Notice ∀ s ≥ 0, Φ′(s) is

nondecreasing, thus it is bounded, i.e. Φ′(s) ≤ C. Similarly, Φ′
1(s) ≤ C.

(b) Since Φ is a convex and linear growth function, the recession function

1of Φ, Φ∞(z) = α|z|. For example, in (1.1.20), Φ(z) = kz arctan z
k
−

k2

2
log( z2

k2 +1), Φ∞(z) = kπ
2
|z|. Although functional J(u) =

∫
Ω

Φ1(|∇u|) dx+

∫
Ω

Φ(|∇2u|) dx+ λ
2

∫
Ω
(u−h)2 dx is well defined and finite on W 2,1, unfortu-

nately W 2,1 is not a reflexive Banach space and the minimization problem

1Please refer to definition 2.6.9
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may not have solution in this space. Following the ideas of Chambolle and

Lions [20], Vese [92], we study this minimization problem in BH(Ω) 2.

Theorem 4.1.2. Let Ω be a domain in R
d with Lipschitz boundary, h ∈ L2(Ω),

λ > 0. Under the above assumption about Φ(·) and Φ1(·), the minimization

problem

inf
u

{
Ĵ(u) =

∫
Ω

[
Φ(|∇2u|) + Φ1(|∇u|) + λ(u − h)2

]
dx + α|D2

su|(Ω)
}

(4.1.6)

for u ∈ BH(Ω), D2u = ∇2udx + D2
su the Lebesgue decomposition of D2u, has a

unique solution u ∈ BH(Ω).

The functional Ĵ : BH(Ω) → [0, +∞) is lower semicontinuous with respect to

BH∗ topology and less than or equal to J , where J is defined by

J(u) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

[
Φ(|∇2u|) + Φ1(|∇u|) + λ

2
(u − h)2

]
dx u ∈ W 2,1(Ω)

+∞ u ∈ BH(Ω) \ W 2,1(Ω)

(4.1.7)

J(·) is not lower semicontinuous on BH(Ω). The so called relaxed functional J̄

is defined by

J̄(u) = inf
{

lim
n→∞

inf J(·) : un ∈ W 2,1(Ω), un → u ∈ W 1,1(Ω)
}

(4.1.8)

for any u ∈ W 2,1(Ω). J̄(u) is the largest lower semicontinuous functional which

is less than or equal to J(u). Obviously, Ĵ(u) ≤ J̄(u). However, From theorem

2.3 in Demengel and Temam [27], for any u ∈ BH(Ω), there exists a sequence

2Please refer to Section 2.6.4 for definition of BH and various properties of it.
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{
un

}
n≥1

∈ C∞(Ω) ∩ W 2,1(Ω) such that

un → u strongly in W 1,1(Ω)

(|D2un|)(Ω) → (|D2u|)(Ω)

Φ(|D2un|)(Ω) → Φ(|D2u|)(Ω)

(4.1.9)

Hence J̄(u) ≤ Ĵ(u). Therefore, Ĵ(·) is the relaxation of J(·) on BH(Ω) with

respect to weak∗ topology.

Remark 4.1.3. The proof of the above theorem is based on mollification. In [27],

Demengel and Temam assumed the regularity of the boundary Γ of Ω to be C1.

In fact, by using a slightly modified technique (see [35]), it is not hard to see that

the theorem is valid when Γ is Lipschitz.

Existence. Let C will be some constant which may differ from line to line. Assume

that {un}n≥1 be a minimizing sequence for (4.1.6), due to the linear assumption

on Φ(·), We have

|D2un|(Ω) ≤ C, ‖un − h‖ ≤ C (4.1.10)

From (2.6.31), we obtain that un is bounded in BH(Ω). Therefore, there exists

u ∈ BH(Ω), such that

un → u strongly in W 1,p(Ω), D2un ⇀ D2u weakly∗ in M(Ω) (4.1.11)

where 1 ≤ p < 1∗. We have used the fact (2.6.30). From the lower semicontinuity

of Ĵ(u), we have

Ĵ(u) ≤ lim
n→∞

infĴ(un) (4.1.12)
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Thus, u is a minimizer of Ĵ .

Uniqueness. Let u, v ∈ BH(Ω) be two different solutions of the minimization

problem (4.1.6), from the strict convexity of Ĵ , we have

Ĵ(
1

2
u +

1

2
v) <

1

2
[Ĵ(u) + Ĵ(v)] = infĴ (4.1.13)

It is a contradiction! Thus, the minimizer is unique.

It is not hard to see that the relaxation functional of (1.1.20) in one space

dimension and J2(u) of (1.1.16) have unique solutions in BH(Ω).

4.2 Fourth order parabolic equations

In section 4.1, we mentioned that Lysaker, Lundervold, and Tai [62] proposed

the minimization functional to denoising medical images. For minimization func-

tional (1.1.17), by deriving Euler-Lagrange equation and employing gradient de-

cent method to solve minimization problem, they obtained the evolutionary par-

tial differential equation:

u̇ +
(

uxx

|∇2u|

)
xx

+
(

uxy

|∇2u|

)
xy

+
(

uyx

|∇2u|

)
yx

+
(

uyy

|∇2u|

)
yy

+ λ(u − u0) = 0 (4.2.1)

with homogeneous Neumann boundary conditions. This evolutionary PDE, to-

gether with the one dimensional case of PDE proposed in [91] are the special
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cases of the following PDEs:

⎧⎪⎪⎨
⎪⎪⎩

u̇ = ∇ · (Φ′
1(|∇u|)
|∇u| ∇u) −∇2 · (Φ′(|∇2u|)

|∇2u| ∇2u) − λ(u − h)

u(0) = u0

(4.2.2)

here Φ, Φ1 are smooth functions which satisfy H.1 to H.4. From now on, we

restrict ourself to only consider Ω =
d∏

i=1

(0, Li), L = (L1, · · · , Ld). In this case,

the homogeneous Neumann boundary condition problem can be mapped to a

periodic boundary condition problem by reflection symmetry (See figure 4.1).

Following the same approach as the second order evolutionary equations, we shall

u
0
 

Figure 4.1: Extension of u0 to periodic boundary

prove the existence and regularity of the generalized solution if u0, h ∈ L2(Ω) and

u0 ∈ BHper(Ω) ∩ L2(Ω), h ∈ L2(Ω).
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4.2.1 Solution of regularized equation and energy esti-

mates

For this purpose, first, we will prove the existence and uniqueness of the weak

solution of the regularized equation:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ · (Φ′
1(|∇u|)
|∇u| ∇u) −∇2 · (Φ′(|∇2u|)

|∇2u| ∇2u) − λ(u − h) − ε∆2u

u(t) is L − periodic ∀ t ∈ (0, T ]

u(0) = u0

(4.2.3)

here L = (L1, · · · , Ld). Then we derive some ε independent bounds and pass the

limit to ε → 0. Let V = H2
per(Ω), V ′ is the dual space. We define

Bε[u, v; t] =
〈
g1(∇u),∇v

〉
+
〈
g(∇2u),∇2v

〉
+ ε
〈
∆u, ∆v

〉
(4.2.4)

J ε[u, h; t] =

∫
Ω

[
Φ1(|∇u|) + Φ(|∇2u|) +

λ

2
(u − h)2 +

ε

2
|∆u|2

]
dx (4.2.5)

where g1(∇u) =
Φ′

1(|∇u|)
|∇u| ∇u, g(∇2u) = Φ′(|∇2u|)

|∇2u| ∇2u,
〈∇2u,∇2v

〉
=

d∑
i,j=1

∂iju∂ijv.

Definition 4.2.1 (Weak Solution). A weak solution of (4.2.3) is defined as

u ∈ L2(0, T, V ) ∩ C([0, T ], L2(Ω)) such that u̇ ∈ L2(0, T, V ′) and
⎧⎪⎪⎨
⎪⎪⎩

〈
u̇, v
〉

+ Bε[u, v; t] + λ
〈
u − h, v

〉
= 0 a.e. t ∈ [0, T ] ∀ v ∈ V

u(0) = u0

(4.2.6)

Existence and uniqueness of weak solution

Theorem 4.2.2 ( Existence and Uniqueness of Weak Solution ). Assume

that u0 ∈ L2(Ω), h ∈ L2(Ω), Φ1, Φ are smooth functions which satisfy H.1-H.4
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of section 4.1, Then there is a unique weak solution of (4.2.3) which satisfies the

following energy estimates:

1

2

d

dt
‖u‖2 + Bε[u, u; t] +

λ

2

∫
Ω

(u − h)2 dx ≤ λ

2
‖h‖2 (4.2.7)

∫ T

0

t‖u̇‖2 dt + tJ ε[u, u0; t] ≤ C
(‖u0‖2 + ‖h‖2) (4.2.8)

∫ T

0

‖u̇‖2
V ′ dt ≤ C

(‖u0‖2 + ‖h‖2
)

(4.2.9)

Moreover, if u0 ∈ V , we have

∫ t

0

‖u̇‖2 + α

∫
Ω

|∇2u| dx +
λ

2

∫
Ω

(u − h)2 dx +
ε

2
‖∆u‖2

≤ α1

∫
Ω

|∇u0| dx + β1 + α

∫
Ω

|∇2u0| dx + 2β

+
ε

2
‖∆u0‖2 +

λ

2
‖u0 − h‖2

(4.2.10)

Proof. Assume the functions
{
ωk

}
k≥1

are smooth and

{
ωk

}∞
k=1

is an orthogonal basis of V

{
ωk

}∞
k=1

is an orthonormal basis of L2(Ω)

(4.2.11)

We could take
{
ωk

}∞
k=1

be the appropriately normalized eigenfunctions of the

following periodic boundary value problem 3:

⎧⎪⎪⎨
⎪⎪⎩

−∆u = 0

u is L − periodic

3In fact, the eigenfunctions are cosine and sine functions.
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Solution in finite dimensional space Fix a positive integer m, we will look

for the weak solutions of (4.2.3) in a finite dimensional space in the form of

um =
m∑

k=1

ak(t)ωk (4.2.12)

um : [0, T ] �→ V which satisfies:⎧⎪⎪⎨
⎪⎪⎩

〈
u̇m, ωk

〉
+ Bε[um, ωk; t] + λ

〈
um − hm, ωk

〉
= 0

〈
um(0), ωk

〉
=
〈
u0, ωk

〉 (4.2.13)

for 0 ≤ t ≤ T, k = 1, · · · , m, here hm is the finite dimensional projection of h

onto linear space generated by
{
ωk

}m

k=1
. u0m is the finite dimensional projection

of u0 onto the same space.

Theorem 4.2.3 (Galerkin approximation). For each integer m = 1, 2, · · · ,

there exists a unique function um of the form (4.2.12) satisfying (4.2.13).

Proof. Assuming um has the structure (4.2.12), from (4.2.11), we first notice

〈
u̇m(t), ωk

〉
= a′

k(t). Therefore,⎧⎪⎪⎨
⎪⎪⎩

a′
k(t) = fk(a1(t), · · · , am(t)) k = 1, · · · , m

ak(0) =
〈
u0, ωk

〉
k = 1, · · · , m

(4.2.14)

where fk : R
m �→ R(1 ≤ k ≤ m) are locally Lipschitz. It follows from the Picard

theorem on a Banach Space that there exists a Tm > 0 such that (4.2.14) has a

unique absolutely continuous solution (a1(t), · · · , am(t)) for t ∈ [0, Tm]. For each

t ∈ [0, Tm], multiply (4.2.13) by ak(t) and sum for k = 1, · · · , m, we obtain:

1

2

d

dt
‖um‖2 + Bε[um, um; t] +

λ

2
‖um − hm‖2 ≤ λ

2
‖hm‖2 ≤ λ

2
‖h‖2 (4.2.15)
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The orthogonality of
{
ωk

}∞
k=1

implies that

m∑
k=1

|ak(t)|2 = ‖um‖2 ≤ λ‖h‖2 + T‖u0‖2 (4.2.16)

The solution of (4.2.13) is bounded on [0, Tm], hence can be uniquely extended

to [0,∞).

Energy estimates in finite dimension

Theorem 4.2.4 (Energy estimates). There exists a constant C, depending

only on Ω, T, λ and Φ1, Φ, such that

1

2

d

dt
‖um‖2 + Bε[um, um; t] +

λ

2

∫
Ω

(um − hm)2 dx ≤ λ

2
‖h‖2 (4.2.17)

∫ t

0

t‖u̇m‖2 dt + tJ ε[um, hm; t] =

∫ t

0

J ε[um, hm; t] dt (4.2.18)

∫ T

0

‖u̇m‖2
V ′ ≤ C

(‖u0‖2 + ‖h|2) (4.2.19)

If u0 ∈ V , then

∫ t

0

‖u̇m‖2 + α

∫
Ω

|∇2um| dx +
λ

2

∫
Ω

(um − hm)2 dx +
ε

2
‖∆um‖2

≤ α1

∫
Ω

|∇u0| dx + β1 + α

∫
Ω

|∇2u0| dx

+ 2β +
ε

2
‖∆u0‖2 +

λ

2
‖u0 − h‖2

(4.2.20)

Proof. Multiply equation (4.2.13) by ak(t), sum for k = 1, · · · , m, and then recall

(4.2.12) to find

〈
u̇m, um

〉
+ Bε[um, um; t] + λ

〈
um − hm, um

〉
= 0 (4.2.21)
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Thus, we obtain (4.2.17). Multiply equation (4.2.13) by ta′
k(t), sum for k =

1, · · · , m,

t
〈
u̇m, u̇m

〉
+

d

dt
tJ ε[um, hm; t] = J ε[um, hm; t] (4.2.22)

Thus, we obtain (4.2.18). Notice (4.1.5) and assumptions on Φ, Φ1, from (4.2.17)

we obtain ∫ T

0

[ ∫
Ω

(α|∇2um| − β) dx +
λ

2
‖um − hm‖2

]
dt

≤
∫ T

0

[
Bε[um, um; t] +

λ

2
‖um − hm‖2

]
dt

≤ λ

2
‖h‖2 +

1

2
‖u0‖2

(4.2.23)

On the other hand,

∫ T

0

J ε[um, hm; t] dt ≤
∫ T

0

[ ∫
Ω

α1|∇um| + β1

]
dxdt

+

∫ T

0

[
α|∇2um| + β +

λ

2
(um − hm)2 +

ε

2
|∆um|2

]
dxdt

(4.2.24)

Notice um ∈ H2(Ω) ⊂ BH(Ω), combine Lemma 2.6.22 (see also Adams [1],

the interpolation inequality), (4.2.23), (4.2.24) we obtain, for some C does not

depend on ε, but could depend on Ω, T, α1, α, β, β1, λ,

∫ T

0

t‖u̇m‖2 dt + tJ ε[um, hm; t] ≤ C
(‖u0‖2 + ‖h‖2

)
(4.2.25)

Recall that

‖u̇m‖V ′ = sup
{〈

u̇m, v
〉

: ‖v‖V ≤ 1
}

(4.2.26)

∀ v ∈ V with ‖v‖H2(Ω) ≤ 1, we have

v = v1 + v2; v1 =
m∑

k=1

bkωk (4.2.27)
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and
〈
ωk, v2

〉
= 0 (k = 1, · · · , m). Since the functions

{
ωk

}∞
k=1

are orthogonal in

V , ‖v1‖H2(Ω) ≤ ‖v‖H2(Ω) ≤ 1. From (4.2.13),

〈
u̇m, v

〉
+ Bε[um, v1; t] + λ

〈
um − hm, v1

〉
= 0 (4.2.28)

Consequently,

〈
u̇m, v

〉 ≤
∫

Ω

[
Φ′

1(|∇um|)|∇v1| + Φ′(|∇2um|)|∇2v1|

+ ε|∆um||∆v1| + |um − hm||v1|
]
dx

≤
{[ ∫

Ω

Φ′
1(|∇um|)2 dx

] 1
2

+
[ ∫

Ω

Φ′(|∇2um|)2 dx
] 1

2

+ ε
[ ∫

Ω

|∆um|2 dx
] 1

2

+
[ ∫

Ω

|um − hm|2 dx
] 1

2
}
‖v1‖H2(Ω)

(4.2.29)

By Cauchy inequality,

〈
u̇m, v

〉2 ≤ 4
{∫

Ω

[
Φ′

1(|∇um|)2 + Φ′(|∇2um|)2

+ ε|∆um|2 + |um − hm|2
]
dx
}
‖v1‖2

H2(Ω)

(4.2.30)

Therefore

‖u̇m‖2
V ′ ≤ 4

∫
Ω

[
Φ′

1(|∇um|)2 + Φ′(|∇2um|)2

+ ε|∆um|2 + (um − hm)2
]
dx

(4.2.31)

By Remark 4.1.1, Φ′
1(|z|) ≤ C and Φ′(|z|) ≤ C for some constant C. Conse-

quently,

‖u̇m‖2
V ′ ≤ 4

∫
Ω

[
ε|∆um|2 + (um − hm)2

]
dx + 4C2m(Ω) (4.2.32)

here m(Ω) is the Lebesgue measure of Ω. From (4.2.17), we obtain:

∫ T

0

∫
Ω

(um − hm)2 dxdt + ε

∫ T

0

∫
Ω

|∆um|2 dxdt ≤ C
(‖u0‖2 + ‖h‖2

)
(4.2.33)
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Thus (4.2.31) - (4.2.33) implies (4.2.19). Now assume u0 ∈ V , multiply (4.2.13)

by a′
k(t), sum for k = 1, · · · , m, we find

〈
u̇m, u̇m

〉
+

d

dt
J ε[um, hm; t] = 0 (4.2.34)

Integrate against t, we obtain∫ t

0

‖u̇m‖2 dt + J ε[um, hm; t]

≤
[ ∫

Ω

Φ1(|∇u0m|) +

∫
Ω

Φ(|∇2u0m|) +
λ

2
(u0m − hm)2 +

ε

2
|∆u0m|2

]
dx

≤
[ ∫

Ω

Φ1(|∇u0|) +

∫
Ω

Φ(|∇2u0|) +
λ

2
(u0 − h)2 +

ε

2
|∆u0|2

]
dx

(4.2.35)

Notice the assumptions on Φ(·), Φ1(·), we deduce (4.2.20).

Existence and uniqueness of weak solution From (4.2.17) and (4.2.19), it

is not hard to see

‖um‖L∞(0,T ;L2(Ω)) + ‖um‖L2(0,T ;V )

+ ‖u̇m‖L2(0,T ;V ′) ≤ C(ε)
(‖u0‖L2(Ω) + ‖h‖2

) (4.2.36)

where C(ε) is a constant which could be depending on Ω, T, ε. According to this

energy estimate, we see that the sequence
{
um

}∞
m=1

is bounded in L2(0, T ; V ), and

{
u̇m

}∞
m=1

is bounded in L2(0, T ; V ′). Consequently, there exists a subsequence

{
uml

}∞
l=1

⊂ {
um

}∞
m=1

and a function u ∈ L2(0, T ; V ) ∩ L∞(0, T ; L2(Ω)), with

u̇ ∈ L2(0, T ; V ′), such that

uml
⇀ u weakly in L2(0, T ; V )

uml
⇀ u weakly∗ in L∞(0, T ; L2(Ω))

u̇ml
⇀ u̇ weakly in L2(0, T ; V ′)

(4.2.37)
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Since V ⊂⊂ H1
per(Ω), By the compactness result in Simon [83] (see Theorem

2.4.2) or Temam [87], we obtain

uml
→ u strongly in L2(0, T ; H1

per(Ω)) (4.2.38)

On the other hand, g(∇2um) is bounded in L2(0, T ; L2(Ω)d×d), upon picking up

a subsequence from
{
uml

}∞
l=1

, we still denote this subsequence as
{
uml

}∞
l=1

,

g(∇2uml
) ⇀ ξ weakly in L2(0, T ; L2(Ω)d×d) (4.2.39)

g1(∇uml
) is bounded in L2(0, T ; L2(Ω)d), upon picking up another subsequence

from
{
uml

}∞
l=1

, we still denote this subsequence as
{
uml

}∞
l=1

,

g1(∇uml
) ⇀ ξ1 weakly in L2(0, T ; L2(Ω)d) (4.2.40)

Next fix an integer N and choose a function v ∈ C1([0, T ]; V ) having the form

v(t) =
N∑

k=1

dk(t)ωk (4.2.41)

where
{
dk

}N

k=1
are given smooth functions. We choose m ≥ N , multiply (4.2.13)

by dk(t), sum for k = 1, · · · , N , and then integrate with respect to t to obtain

∫ T

0

[〈
u̇m, v

〉
+ Bε[um, v; t]

]
dt + λ

∫ T

0

〈
um − hm, v

〉
dt = 0 (4.2.42)

Set m = ml and recall (4.2.37) - (4.2.40), let l → ∞, we find

∫ T

0

[〈
u̇, v
〉
+
〈
ξ1,∇v

〉
+
〈
ξ,∇2v

〉
+ε
〈
∆u, ∆v

〉]
dt+λ

∫ T

0

〈
u−h, v

〉
dt = 0 (4.2.43)

Since the functions v of form (4.2.41) is dense in L2(0, T ; V ), we conclude that

(4.2.42) holds for all function v ∈ L2(0, T ; V ). From theorem 2.3.4, we have
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u ∈ C([0, T ], L2(Ω)). In order to prove u(x, 0) = u0(x), we first note from (4.2.43)

that ∫ T

0

[
− 〈u, v̇

〉
+
〈
ξ1,∇v

〉
+
〈
ξ,∇2v

〉
+ ε
〈
∆u, ∆v

〉]
dt+

λ

∫ T

0

〈
u − h, v

〉
dt = −〈u(0), v(0)

〉 (4.2.44)

for each v ∈ C1([0, T ]; V ) with v(T ) = 0. Similarly, from (4.2.42), we deduce

∫ T

0

[
− 〈um, v̇

〉
+ Bε[um, v; t]

]
dt + λ

∫ T

0

〈
um − hm, v

〉
dt

= −〈um(0), v(0)
〉 (4.2.45)

Set m = ml and let l → ∞, once again employ (4.2.37) - (4.2.40) to find

∫ T

0

[
− 〈u, v̇

〉
+
〈
ξ1,∇v

〉
+
〈
ξ,∇2v

〉
+ ε
〈
∆u, ∆v

〉]
dt+

λ

∫ T

0

〈
u − h, v

〉
dt = −〈u0, v(0)

〉 (4.2.46)

since uml
(0) → u0 in L2(Ω). As v(0) is arbitrary, from (4.2.44) and (4.2.46), we

conclude u(0) = u0. Pick up v ∈ C1([0, T ], V ) such that v(0) = 0, we can deduce

uml
(T ) ⇀ u(T ) weakly in L2(Ω). Let v = u in (4.2.43), we obtain

∫ T

0

[〈
ξ1,∇u

〉
+
〈
ξ,∇2u

〉]
dt

=
1

2
‖u0‖2 − 1

2
‖u(T )‖2 −

∫ T

0

[
ε
〈
∆u, ∆u

〉
+ λ
〈
u − h, u

〉]
dt

(4.2.47)

From (4.2.42), we deduce

∫ T

0

[〈
g1(∇um),∇um

〉
+
〈
g(∇2um),∇2um

〉]
dt

=
1

2
‖u0‖2 − 1

2
‖um(T )‖2 −

∫ T

0

[
ε
〈
∆um, ∆um

〉
+ λ
〈
um − hm, um

〉]
dt

(4.2.48)

It can be easily verified that L2 norm is lower semicontinuous with respect to

strong convergence. Since L2 norm is convex, by theorem 2.5.2, we conclude
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that L2 norm is lower semicontinuous with respect to weak convergence. As

consequences,

lim
l→∞

inf ‖uml
(T )‖2 ≥ ‖u(T )‖2

lim
l→∞

inf

∫ T

0

‖∆uml
‖2 dt ≥

∫ T

0

‖∆u‖2 dt

(4.2.49)

From (4.2.38), lim
l→∞

∫ T

0

〈
uml

− hml
, uml

〉
dt =

∫ T

0

〈
u − h, u

〉
dt. Thus, we have

lim
l→∞

sup

∫ T

0

[〈
g1(∇uml

),∇uml

〉
+
〈
g(∇2uml

),∇2uml

〉]
dt

=
1

2
‖u0‖2 − 1

2
lim
l→∞

inf ‖uml
(T )‖2 − lim

l→∞
inf

∫ T

0

ε‖∆uml
‖2 dt

− lim
l→∞

inf

∫ T

0

λ
〈
uml

− hml
, uml

〉
dt

≤ 1

2
‖u0‖2 − ‖u(T )‖2 −

∫ T

0

[
ε‖∆u‖2 + λ

〈
u − h, u

〉]
dt

≤
∫ T

0

[〈
ξ1,∇u

〉
+
〈
ξ,∇2u

〉]
dt

(4.2.50)

Φ(·), Φ1(·) are convex and smooth, by Lemma 2.7.1, ∀w ∈ L2(0, T ; V ),

〈
g1(∇um) − g1(∇w),∇um −∇w

〉 ≥ 0

〈
g(∇2um) − g(∇2w),∇2um −∇2w

〉 ≥ 0

(4.2.51)

Set m = ml and let l → ∞, we find

0 ≤ lim
l→∞

sup

∫ T

0

〈
g1(∇uml

) − g1(∇w),∇uml
−∇w

〉
dt

+ lim
l→∞

sup

∫ T

0

〈
g(∇2uml

) − g(∇2w),∇2uml
−∇2w

〉
dt

= lim
l→∞

sup

∫ T

0

[〈
g1(∇uml

),∇uml

〉
+
〈
g(∇2uml

),∇2uml

〉]
dt

− lim
l→∞

∫ T

0

[〈
g1(∇uml

),∇w
〉

+
〈
g(∇2uml

),∇2w
〉]

dt
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− lim
l→∞

∫ T

0

[〈
g1(∇w),∇uml

〉
+
〈
g(∇2w),∇2uml

〉]
dt

+

∫ T

0

[〈
g1(∇w),∇w

〉
+
〈
g(∇2w),∇2w

〉]
dt (4.2.52)

By (4.2.50), (4.2.40), (4.2.39), (4.2.38) and (4.2.37), we obtain

0 ≤
∫ T

0

[〈
ξ1,∇u

〉
+
〈
ξ,∇2u

〉]
dt −

∫ T

0

[〈
ξ1,∇w

〉
+
〈
ξ,∇2w

〉]
dt

− lim
l→∞

∫ T

0

[〈
g1(∇w),∇u

〉
+
〈
g(∇2w),∇2u

〉]
dt

+

∫ T

0

[〈
g1(∇w),∇w

〉
+
〈
g(∇2w),∇2w

〉]
dt

=

∫ T

0

〈
ξ1 − g1(∇w),∇u−∇w

〉
dt

+

∫ T

0

〈
ξ − g(∇2w),∇2u −∇2w

〉
dt

(4.2.53)

Fix any v ∈ L2(0, T ; V ) and set w := u − θv (θ > 0) in (4.2.52). We obtain then

∫ T

0

〈
ξ1 − g1(∇(u − θv)),∇v

〉
dt +

∫ T

0

〈
ξ − g(∇2(u − θv)),∇2v

〉
dt ≥ 0

Let θ → 0

∫ T

0

[〈
ξ1 − g1(∇u),∇v

〉
+
〈
ξ − g(∇2u),∇2v

〉]
dt ≥ 0 (4.2.54)

Replace v by −v, we deduce that

∫ T

0

[〈
ξ1 − g1(∇u),∇v

〉
+
〈
ξ − g(∇2u),∇2v

〉]
dt ≤ 0 (4.2.55)

Therefore,

∫ T

0

[〈
ξ1,∇v

〉
+
〈
ξ,∇2v

〉]
dt

=

∫ T

0

[〈
g1(∇u),∇v

〉
+
〈
g(∇2u),∇2v

〉]
dt

(4.2.56)
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Substitute (4.2.56) into (4.2.43), to find

∫ T

0

[〈
u̇, v
〉

+ Bε[u, v; t]
]
dt + λ

∫ T

0

〈
u − h, v

〉
dt = 0 (4.2.57)

This inequality holds for all functions v ∈ L2(0, T ; V ), Hence in particular

〈
u̇, v
〉

+ Bε[u, v; t] + λ
〈
u − h, v

〉
= 0 (4.2.58)

for each v ∈ V and a.e. 0 ≤ t ≤ T . Let v = u, in (4.2.58), we deduce (4.2.7).

The other energy estimates (4.2.8), (4.2.9) and (4.2.10) are direct consequences

of (4.2.25), (4.2.19) and (4.2.20) when m → ∞.

Stability of weak solution

Theorem 4.2.5 (Stability). If u1, u2 are two solutions of (4.2.3) with initial

datum u01, h1 and u02, h2 respectively, then

‖u1(t) − u2(t)‖2 ≤ ‖u01 − u02‖2 + λt‖h1 − h2‖2 (4.2.59)

Proof. Since u1, u2 are weak solutions of (4.2.3), we have

〈
u̇1, v

〉
+ Bε[u1, v; t] + λ

〈
u1 − h1, v

〉
= 0

〈
u̇2, v

〉
+ Bε[u2, v; t] + λ

〈
u2 − h2, v

〉
= 0

Therefore,

〈
u̇1 − u̇2, v

〉
+
〈
g1(∇u1) − g1(∇u2),∇v

〉

+
〈
g(∇2u1) − g(∇2u2),∇2v

〉
+ ε
〈
∆u1 − ∆u2, ∆v

〉

+ λ
〈
u1 − u2 − (h1 − h2), v

〉
= 0
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Let v = u1 − u2, recall Lemma 2.7.1, we obtain

〈
g1(∇u1) − g1(∇u2),∇u1 −∇u2

〉 ≥ 0

〈
g(∇2u1) − g(∇2u2),∇2u1 −∇2u2

〉 ≥ 0

Thus,

1

2

d

dt
‖u̇1 − u̇2‖2 + λ‖u1 − u2‖2 ≤ λ

〈
h1 − h2, u1 − u2

〉

≤ λ

2
‖u1 − u2‖2 +

λ

2
‖h1 − h2‖2

which implies

1

2

d

dt
‖u̇1 − u̇2‖2 ≤ λ

2
‖h1 − h2‖2

Integrate against t, we obtain (4.2.59).

4.2.2 Existence and uniqueness of generalized solution

Recall (4.1.6),

Ĵ(u) :=

∫
Ω

[
Φ1(|∇u|) + Φ(|∇2u|)

]
dx + α|D2

su|(Ω) (4.2.60)

which is lower semicontinuous with respect to W 1,1 convergence. Let

Ĵh(u) :=

∫
Ω

[
Φ1(|∇u|) + Φ(|∇2u|) +

λ

2
(u − h)2

]
dx + α|D2

su|(Ω) (4.2.61)

Theorem 4.2.6 (Generalized solution). Suppose that Ω =

d∏
i=1

(0, Li), a bounded

open set in R
d, Φ1, Φ are smooth functions which satisfy H.1-H.4.
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(a) If u0, h ∈ L2(Ω), then there exists u such that

u ∈ L∞(0, T ; L2(Ω)) ∩ L1(0, T ; BHper(Ω))

u ∈ L∞(s0, T ; BHper(Ω)) ∩ C([s0, T ]; L2(Ω)), s0 ∈ (0, T ]

u̇ ∈ L2(0, T ; V ′)

u(t) is weakly continuous from [0, T ] → L2(Ω).

∀ v ∈ L1(0, T ; BHper(Ω)) ∩ L2(0, T ; L2(Ω)) with v̇ ∈ L2(0, T ; L2(Ω))

∫ s

0

∫
Ω

v̇(v − u) dxdt +

∫ s

0

(Ĵh(v) − Ĵh(u)) dt

≥ 1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
] ∀ s ∈ (0, T ] (4.2.62)

Such u is called a generalized solution of (4.2.2).

(b) Suppose u1, u2 satisfies (4.2.62) with initial data u01, h1 and u02, h2 respec-

tively. Assume u01, u02 ∈ BHper(Ω) ∩ L2(Ω), h1, h2 ∈ L2(Ω) then

‖u1(s) − u2(s)‖2 ≤ ‖u01 − u02‖2 + λs‖h1 − h2‖2 ∀ s ∈ [0, T ] (4.2.63)

(c) Furthermore, if u0 ∈ L2(Ω) ∩ BHper(Ω), h ∈ L2(Ω), then u is unique and

u ∈ L∞(0, T ; BHper(Ω)) ∩ C([0, T ]; L2(Ω)), u̇ ∈ L2(0, T ; L2(Ω)), u(0) = u0

such that

∫ s

0

∫
Ω

u̇(v − u) dxdt +

∫ s

0

(Ĵh(v) − Ĵh(u)) dt ≥ 0 s ∈ [0, T ] (4.2.64)

∀ v ∈ L1(0, T ; BHper(Ω)) ∩ L2(0, T ; L2(Ω)). Thus

∫
Ω

u̇(v − u) dx + Ĵh(v) − Ĵh(u) ≥ 0 a.e. t ∈ [0, T ] (4.2.65)
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∀ v ∈ BHper(Ω) ∩ L2(Ω).

The case u0, h ∈ L2

Proof. The first part of the proof is devoted to the existence of the generalized

solution if u0, h ∈ L2(Ω). Fix any ε > 0, for u0 ∈ L2(Ω), according to Theorem

4.2.2, there exists a unique uε which satisfies the energy estimates:

‖uε‖L∞(0,T ;L2(Ω)) + ‖uε‖L1(0,T ;BH(Ω)) + ε1/2

[ ∫ T

0

‖∆uε‖2 dt

]1/2

≤ C
(‖u0‖ + ‖h‖) (4.2.66)

‖√tu̇ε‖L2(0,T ;L2(Ω) + ‖tuε‖L∞(0,T ;BH(Ω)) ≤ C
(‖u0‖ + ‖h‖) (4.2.67)

‖u̇ε‖L2(0,T ;V ′) ≤ C
(‖u0‖ + ‖h‖) (4.2.68)

here C is a ε independent constant, it may depend on T , Ω. Therefore, there

exists u ∈ L∞(0, T, L2(Ω)), u̇ ∈ L2(0, T ; V ′),
√

tu̇ ∈ L2(0, T ; L2(Ω)), tu ∈

L∞(0, T, BH(Ω)) such that a subsequence of
{
uε
}

(we still denote it uε)

uε ⇀ u weakly in L2(Ω) a.e t ∈ [0, T ]

u̇ε ⇀ u̇ weakly in L2(0, T ; V ′)

uε → u strongly in L1(0, T ; W 1,p
per(Ω)) (4.2.69)

√
tu̇ε ⇀

√
tu̇ weakly in L2(0, T ; L2(Ω))

tD2uε ⇀ tD2u weakly* in M(Ω) a.e. t ∈ [0, T ]

tuε → tu strongly in W 1,p
per(Ω) a.e. t ∈ [0, T ] (4.2.70)
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where 1 ≤ p < 1∗. Notice that W 1,p ⊂⊂ BH(Ω), the strong convergence (4.2.69)

and (4.2.70) are due to the compactness result of Simon [83] which is stated in

Theorem 2.4.2. Since u ∈ L∞(0, T, L2(Ω)), u is continuous from [0, T ] into V ′,

by Lemma 2.3.5, we know that u(t) is weakly continuous from [0, T ] → L2(Ω).

Thanks to Fatou’s lemma, we have

lim
ε→0

inf

∫ T

0

∫
Ω

|∇2uε| dxdt ≥
∫ T

0

lim
ε→0

inf

∫
Ω

|∇2uε| dxdt (4.2.71)

Notice that
∫
Ω
|D2u| is a special case of Ĵ(u), by the lower semicontinuity of Ĵ(u)

with respect to W 1,1 convergence, we obtain

∫ T

0

lim
ε→0

inf

∫
Ω

|∇2uε| dxdt ≥
∫ T

0

∫
Ω

|D2u|dt (4.2.72)

Thus, u ∈ L1(0, T ; BHper(Ω)). Similarly, from (4.2.70), we know that, for any

0 < s0 ≤ T , u ∈ L∞(s0, T ; BH(Ω)), u̇ ∈ L2(s0, T ; L2(Ω)). By Theorem 2.3.3,

u ∈ C([s0, T ], L2(Ω)). Thus, u ∈ C((0, T ], L2(Ω)). Since ∀ s1, s2 > 0,

uε(s2) = uε(s1) +

∫ s2

s1

u̇ε(t) dt, u(s2) = u(s1) +

∫ s2

s1

u̇(t) dt

we obtain,

lim
ε→0

〈
u(s2) − uε(s2), v

〉
= lim

ε→0

〈
u(s1) − uε(s1), v

〉 ∀ v ∈ L2(Ω) (4.2.73)

Consequently, uε(s) ⇀ u(s) ∀ s ∈ (0, T ]. For each uε, we have

⎧⎪⎪⎨
⎪⎪⎩

〈
u̇ε, v

〉
+ Bε[uε, v; t] + λ

〈
uε − h, v

〉
= 0 a.e. t ∈ [0, T ] ∀ v ∈ V

uε(0) = u0

(4.2.74)
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Substitute v by v − uε and integrate with respect to t from 0 to s, we obtain

∫ s

0

[〈
u̇ε, v − uε

〉
+ Bε[uε, v − uε; t] + λ

〈
uε − h, v − uε

〉]
dt = 0 (4.2.75)

Nevertheless,

∫ s

0

〈
v̇ − u̇ε, v − uε

〉
dt =

1

2

[‖v(s) − uε(s)‖2 − ‖v(0) − u0‖2
]

(4.2.76)

Consequently, ∀ v ∈ L1(0, T ; V ) ∩ L2(0, T ; L2(Ω)) such that v̇ ∈ L2(0, T ; L2(Ω)),

we have ∫ s

0

[〈
v̇, v − uε

〉
+ Bε[uε, v − uε; t] + λ

〈
uε − h, v − uε

〉]
dt

=
1

2

[‖v(s) − uε(s)‖2 − ‖v(0) − u0‖2
] (4.2.77)

It is easy to verify that λ
2
‖v − h‖2 − λ

2
‖uε − h‖2 ≥ λ

〈
uε, v − uε

〉
. Since Φ1(·), Φ(·)

are convex, from Lemma 2.7.2, we deduce:

Φ1(|∇v|) − Φ1(|∇uε|) ≥ 〈g1(∇uε),∇v −∇uε
〉

Φ(|∇2v|) − Φ(|∇2uε|) ≥ 〈g(∇2uε),∇2v −∇2uε
〉 (4.2.78)

Thus,

Ĵh(v) − Ĵh(u
ε) + ε

〈
∆uε, ∆v

〉 ≥ Ĵh(v) − Ĵh(u
ε) + ε

〈
∆uε, ∆v − ∆uε

〉

≥ Bε[uε, v − uε; t] + λ
〈
uε − h, v − uε

〉 (4.2.79)

Since Φ′
1(·) is bounded, we have

∫ s

0

∫
Ω

∣∣∣Φ1(|∇uε|) − Φ1(|∇u|)
∣∣∣dxdt ≤ C

∫
Ω

∣∣|∇uε| − |∇u|∣∣ dxdt (4.2.80)

From the strong convergence (4.2.69), we obtain

lim
ε→0

∫ s

0

∫
Ω

Φ1(|∇uε|) dxdt =

∫ s

0

∫
Ω

|Φ1(|∇u|) dxdt (4.2.81)
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Notice the lower semicontinuity, by Fatou’s lemma and the strong convergence

(4.2.69),

lim
ε→0

inf

∫ s

0

∫
Ω

Φ(|∇2uε|) dxdt ≥
∫ s

0

lim
ε→0

inf

∫
Ω

Φ(|∇2uε|) dxdt

≥
∫ s

0

∫
Ω

Φ(|D2u|)dt =

∫ s

0

∫
Ω

Φ(|∇2u|) dxdt + α

∫ s

0

|D2
su|(Ω)dt

(4.2.82)

From (4.2.66), we know that ε‖∆uε‖2 is bounded. Hence ε
〈
∆uε, ∆v

〉 → 0 as

ε → 0. Combine (4.2.77), (4.2.79) and the lower semicontinuity of L2 norm with

respect to weak convergence, let ε → 0, we obtain

∫ s

0

∫
Ω

v̇(v − u) dxdt +

∫ s

0

Ĵh(v) dt−
∫ s

0

Ĵh(u) dt

≥ 1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
] (4.2.83)

∀ v ∈ L1(0, T ; V ) ∩ L2(0, T ; L2(Ω)) and v̇ ∈ L2(0, T ; L2(Ω)). By a density argu-

ment, we deduce (4.2.62) holds for ∀ v ∈ L1(0, T ; BHper(Ω))∩L2(0, T ; L2(Ω)) and

v̇ ∈ L2(0, T ; L2(Ω)).

Stability inequality

The following lemma is useful in the proof of the stability inequality. It’s proof

is same as the proof of Lemma 3.4.8.

Lemma 4.2.7. Let η > 0 and uη be the solution of the following ODE:

⎧⎪⎪⎨
⎪⎪⎩

ηu̇η + uη = u for 0 < t < T ;

uη(0) = u0

(4.2.84)
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If u satisfies (4.2.62) and u0 ∈ BHper(Ω) ∩ L2(Ω), then as η → 0

uη → u strongly in L2(0, T ; L2(Ω))

uη → u strongly in L1(0, T ; BHper(Ω))

uη(s) → u(s) strongly in L2(Ω) ∀ s ∈ [0, T ]

(4.2.85)

Furthermore,

‖u̇‖2
L2(0,T ;L2(Ω)) ≤ Ĵh(u0) (4.2.86)

Now let’s prove the stability inequality (4.2.63). Set

u :=
u1 + u2

2
, u0 :=

u01 + u02

2

For any η > 0, define uη as in Lemma 4.2.7, now take v = uη in each inequality

(4.2.62) with u1, u2 in place of u, u01, u02 in place of u0, h1, h2 in place of h, add

them together

− 2η

∫ s

0

‖u̇η‖2 dt +

∫ s

0

[
Ĵh1(uη) + Ĵh2(uη) − Ĵh1(u1) − Ĵh2(u2)

]
dt

≥ 1

2

[
‖uη(s) − u1(s)‖2 + ‖uη(s) − u2(s)‖2 − 1

2
‖u01 − u02‖2

] (4.2.87)

Notice that Ĵ(·) is a convex functional, we have

− 2η

∫ s

0

‖u̇η‖2 dt + 2

∫ s

0

[
Ĵ(uη) − Ĵ(u)

]
dt

+
λ

2

∫ s

0

∫
Ω

[
(uη − h1)

2 + (uη − h2)
2 − (u1 − h1)

2 − (u2 − h2)
2
]
dxdt

≥ 1

2

[
‖uη(s) − u1(s)‖2 + ‖uη(s) − u2(s)‖2 − 1

2
‖u01 − u02‖2

]
(4.2.88)
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Let η → 0 and by Lemma 4.2.7, we have

λ

4

∫ s

0

∫
Ω

(h1 − h2)
2 dxdt

≥ λ

2

∫ s

0

∫
Ω

[
(u2 − u1)(h2 − h1) − (u1 − u2)

2
]
dxdt

=

∫ s

0

∫
Ω

[
(u − h1)

2 + (u − h2)
2 − (u1 − h1)

2 − (u2 − h2)
2
]
dxdt

≥ 1

2

[
‖u(s) − u1(s)‖2 + ‖u(s) − u2(s)‖2 − 1

2
‖u01 − u02‖2

]

=
1

4

[
‖u1(s) − u2(s)‖2 − ‖u01 − u02‖2

]

(4.2.89)

Thus, (4.2.63) holds.

The case u0 ∈ BHper(Ω) ∩ L2(Ω)

Proof. Assume first u0 ∈ V , for any ε > 0, from Theorem 4.2.2, there exists uε

such that (4.2.6) holds and satisfies the following energy estimates

‖uε‖L∞(0,T ;L2(Ω)) ≤ C
[‖u0‖ + ‖h‖] (4.2.90)

‖u̇ε‖L2(0,T ;L2(Ω)) + ‖uε‖L∞(0,T ;BH(Ω)) +
√

ε‖∆uε‖

≤ C
[‖u0‖BH(Ω) + ‖h‖]+

√
ε‖∆u0‖ (4.2.91)

Consequently, there exists a subsequence of uε and u̇ε (we still use the same

notation to denote the subsequence), u ∈ L∞(0, T ; BH(Ω)) ∩ L∞(0, T ; L2(Ω))
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and u̇ ∈ L2(0, T ; L2(Ω)), such that

uε ⇀ u weakly in L2(0, T ; L2(Ω))

u̇ε ⇀ u̇ weakly in L2(0, T ; L2(Ω))

uε ⇀ u weakly in L2(Ω) a.e. t ∈ [0, T ]

uε → u strongly in W 1,p
per(Ω) a.e. t ∈ [0, T ]

(4.2.92)

where 1 ≤ p < 1∗. The strong convergence is due to W 1,p(Ω) ⊂⊂ BH(Ω) and the

compactness result of Simon [83] (see Theorem 2.4.2). By Theorem 2.3.3, we know

that, after possibly being redefined on a set of measure zero, u ∈ C([0, T ], L2(Ω))

and u(s2) = u(s1) +
∫ s2

s1
u̇(t) dt. On the other hand, uε ∈ C([0, T ], L2(Ω)) and

uε(s2) = uε(s1) +
∫ s2

s1
u̇ε(t) dt. Therefore

〈
uε(s2) − u(s2), v

〉
=
〈
uε(s1) − u(s1), v

〉
+

∫ s2

s1

〈
u̇ε(t) − u̇(t), v

〉
dt (4.2.93)

Let ε → 0, by the weak convergence u̇ε ⇀ u̇ in L2(0, T ; L2(Ω)), we have

lim
ε→0

〈
uε(s2) − u(s2), v

〉
= lim

ε→0

〈
uε(s1) − u(s1), v

〉
(4.2.94)

Since uε(s) ⇀ u(s) in L2(Ω) for a.e. s ∈ [0, T ], we conclude

uε(s) ⇀ u(s) ∀ s ∈ [0, T ] (4.2.95)

Replace u, v with uε and v − uε in (4.2.6) respectively, integrate against t from 0

to s ∈ [0, T ], we deduce

∫ s

0

〈
u̇ε, v − uε

〉
dt +

∫ s

0

[
Bε[uε, v − uε; t] + λ

〈
uε − h, v − uε

〉]
dt = 0 (4.2.96)
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for a.e. t ∈ [0, T ]. Notice the convexity of Φ1(·), Φ(·), (· − h)2, by Lemma 2.7.1,

we find

Φ1(|∇v|) − Φ1(|∇uε|) ≥ 〈g1(∇uε),∇v −∇uε
〉

Φ(|∇2v|) − Φ(|∇2uε|) ≥ 〈g(∇2uε),∇2v −∇2uε
〉

λ

2
(v − h)2 − λ

2
(uε − h)2 ≥ λ(uε − h)(v − uε)

(4.2.97)

Therefore,

∫ s

0

[〈
u̇ε, v − uε

〉
+ Ĵh(v) − Ĵh(u

ε) + ε
〈
∆uε, ∆v

〉]
dt

≥
∫ s

0

[〈
u̇ε, v − uε

〉
+ Ĵh(v) − Ĵh(u

ε) + ε
〈
∆uε, ∆v − ∆uε

〉]
dt

≥
∫ s

0

[〈
u̇ε, v − uε

〉
+ Bε[uε, v − uε; t] + λ

〈
uε − h, v − uε

〉]
dt = 0

(4.2.98)

Recall (4.2.92), from the lower semicontinuity of Ĵ in BH(Ω) with respect to

convergence in W 1,1(Ω), we have

−
∫ s

0

Ĵ(u) dt ≥ −
∫ s

0

lim
ε→0

inf Ĵ(uε) dt (4.2.99)

From the lower semicontinuity of L2 norm with respect to weak convergence, we

have

−
∫ s

0

‖u − h‖2 dt ≥ −
∫ s

0

lim
ε→0

inf ‖uε − h‖2 dt (4.2.100)

The weak convergence u̇ε ⇀ u̇ implies

lim
ε→0

∫ s

0

〈
u̇ε, v

〉
dt =

∫ s

0

〈
u̇, v
〉
dt (4.2.101)

The weak convergence uε(s) ⇀ u(s) implies

−‖u(s)‖2 ≥ − lim
ε→0

inf ‖uε(s)‖2 (4.2.102)
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From (4.2.98) and (4.2.99) - (4.2.102), notice that ε
〈
∆uε, ∆v

〉 → 0 as ε → 0 we

obtain

∫ s

0

〈
u̇, v
〉
dt +

1

2

[‖u0‖2 − ‖u(s)‖2
]
+

∫ s

0

[
Ĵh(v) − Ĵh(u)

]
dt ≥ 0 (4.2.103)

∀ v ∈ L2(0, T ; V ). u0 = uε(0) ⇀ u(0) implies u(0) = u0. Thus

∫ s

0

〈
u̇, v − u

〉
dt +

∫ s

0

[
Ĵh(v) − Ĵh(u)

]
dt ≥ 0 (4.2.104)

By a standard density argument, (4.2.103) holds ∀ v ∈ L1(0, T ; BHper(Ω)) and

v̇ ∈ L2(0, T ; L2(Ω)). We just prove that (4.2.103) holds for u0 ∈ V . For any

function u0 ∈ L2(Ω) ∩ BHper(Ω), notice the stability inequality, another density

argument suffices.

4.3 Evolutionary PDE with ∇2u replaced by ∆u

In higher dimensional space, the computation of ∇2u is quite time consuming. In

order to reduce the computation cost, we consider PDEs in which ∇2u is replaced

by ∆u, here ∆ denotes either the distributional derivative or weak derivative
d∑

i=1

∂2
xi

. Again, we restrict ourselves to consider only Ω =
d∏

i=1

(0, Li). Consider

the following evolutionary equation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇(
Φ′

1(|∇u|)
|∇u| ∇u) − ∆(Φ′(|∆u|)

|∆u| ∆u) − λ(u − h)

u(t), L − periodic

u(0) = u0

(4.3.1)
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where Φ1 and Φ satisfies the assumptions H.1-H.4 of section 4.1. If we let Φ1 ≡ 0,

Φ(s) = ks arctan(s/k) − k2

2
log((s/k)2 + 1), then Φ′(s) = k arctan(s/k), we will

recover PDE (1.1.19). Bertozzi and Greer [11] made a change of variables w =

arctan(∆u) when k = 1 and λ = 0 and derived the equation satisfied by w

ẇ + cos2 w∆2w = 0 (4.3.2)

They first proved the existence and uniqueness to the mollified equation with

periodic boundary condition⎧⎪⎪⎨
⎪⎪⎩

ẇε = −Jε cos2 wε∆2Jεw
ε

wε(0) = w0

(4.3.3)

where Jε is a standard mollifier. They then derived parameter ε independent

energy estimates and proved the existence and uniqueness of the smooth solution

of (1.1.19) when initial condition w0 ∈ H6(Ω). They also pointed out that an

interesting point for further study is to better understand the theory for the LCIS

equation for noisy initial data. Through the vanish viscosity study of (4.3.1), we

will get a clear idea on the generalized solution of (1.1.19).

4.3.1 Regularized equation and energy estimates

Now, let’s consider the regularized equation:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇(
Φ′

1(|∇u|)
|∇u| ∇u) − ∆(Φ′(|∆u|2)

|∆u| ∆u) − λ(u − u0) + ε∆2u

u(t) is L − periodic

u(0) = u0

(4.3.4)
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Adopt the same approach as Section 4.2.1, we can prove the existence and unique-

ness of weak solution and derive some ε independent energy estimates. V and V ′

are defined as Section 4.2. Define:

Bε[u, v; t] =
〈Φ′

1(|∇u|)
|∇u| ∇u,∇v

〉
+
〈Φ(|∆u|)

|∆u| ∆u, ∆v
〉

+ ε
〈
∆u, ∆v

〉
(4.3.5)

J ε[u, h; t] =

∫
Ω

[
Φ1(|∇u|) + Φ(|∆u|) +

λ

2
(u − h)2 +

ε

2
|∆u|2

]
dx (4.3.6)

A weak solution of (4.3.4) is defined as u ∈ L2(0, T, V ) ∩ C([0, T ], L2(Ω)) such

that u̇ ∈ L2(0, T, L2(Ω)) and

⎧⎪⎪⎨
⎪⎪⎩

〈
u̇, v
〉

+ Bε[u, v; t] + λ
〈
u − h, v

〉
= 0 a.e. t ∈ [0, T ] ∀ v ∈ V

u(0) = u0

(4.3.7)

Theorem 4.3.1 ( Existence and uniqueness ). Assume that u0 ∈ L2(Ω), h ∈

L2(Ω), Φ1, Φ are smooth functions which satisfy H.1-H.4 of section 4.1, Then

there is a unique weak solution of (4.3.4) which satisfies the following energy

estimates:

1

2

d

dt
‖u‖2 + Bε[u, u; t] +

λ

2

∫
Ω

(u − h)2 dx ≤ λ

2
‖h‖2 (4.3.8)

∫ T

0

t‖u̇‖2 dt + tJ ε[u, u0; t] ≤ C
(‖u0‖2 + ‖h‖2) (4.3.9)

∫ T

0

‖u̇‖2
V ′ dt ≤ C

(‖u0‖2 + ‖h‖2
)

(4.3.10)
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Moreover, if u0 ∈ H2(Ω), we have

∫ t

0

‖u̇‖2 + α

∫
Ω

|∆u| dx +
λ

2

∫
Ω

(u − h)2 dx +
ε

2
‖∆u‖2

≤ α1

∫
Ω

|∇u0| dx + β1 + α

∫
Ω

|∆u0| dx

+ 2β +
ε

2
‖∆u0‖2 +

λ

2

∫
Ω

(u0 − h)2 dx

(4.3.11)

4.3.2 Existence and uniqueness of generalized solution

Define

Ĵ(u) :=

∫
Ω

[
Φ1(|∇u|) + Φ(|∆u|)

]
dx + α|∆su|(Ω) (4.3.12)

Ĵ(u) is lower semicontinuous with respect to W 1,1(Ω) convergence.

Ĵh(u) :=

∫
Ω

[
Φ1(|∇u|) + Φ(|∆u|) +

λ

2
(u − h)2

]
dx + α|∆su|(Ω) (4.3.13)

Theorem 4.3.2 (Generalized solution). Suppose that Ω =

d∏
i=1

(0, Li), Φ1, Φ

are smooth functions which satisfy H.1-H.4.

(a) If u0, h ∈ L2(Ω), then there exists u such that

u ∈ L∞(0, T ; L2(Ω)) ∩ L1(0, T ; BLp
per(Ω))

u ∈ L∞(s0, T ; BLp
per(Ω)) ∩ C([s0, T ]; L2(Ω)), s0 ∈ (0, T ]

u̇ ∈ L2(0, T ; V ′)

u(t) is weakly continuous from [0, T ] → L2(Ω).
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∀ v ∈ L1(0, T ; BLp
per(Ω)) ∩ L2(0, T ; L2(Ω)) with v̇ ∈ L2(0, T ; L2(Ω))

∫ s

0

∫
Ω

v̇(v − u) dxdt +

∫ s

0

(Ĵh(v) − Ĵh(u)) dt

≥ 1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
] ∀ s ∈ (0, T ] (4.3.14)

Such u is called a generalized solution of (4.3.1).

(b) Suppose u1, u2 satisfies (4.3.14) with initial data u01, h1 and u02, h2 respec-

tively. Assume u01, u02 ∈ BLp
per(Ω) ∩ L2(Ω), h1, h2 ∈ L2(Ω) then

‖u1(s) − u2(s)‖2 ≤ ‖u01 − u02‖2 + λs‖h1 − h2‖2 ∀ s ∈ [0, T ] (4.3.15)

(c) Furthermore, if u0 ∈ L2(Ω) ∩ BLp
per(Ω), h ∈ L2(Ω), then u is unique and

u ∈ L∞(0, T ; BHper(Ω)) ∩ C([0, T ]; L2(Ω)), u̇ ∈ L2(0, T ; L2(Ω)), u(0) = u0

such that

∫ s

0

∫
Ω

u̇(v − u) dxdt +

∫ s

0

(Ĵh(v) − Ĵh(u)) dt ≥ 0 s ∈ [0, T ] (4.3.16)

∀ v ∈ L1(0, T ; BLp
per(Ω)) ∩ L2(0, T ; L2(Ω)). Thus

∫
Ω

u̇(v − u) dx + Ĵh(v) − Ĵh(u) ≥ 0 a.e. t ∈ [0, T ] (4.3.17)

∀ v ∈ BLp
per(Ω) ∩ L2(Ω).

Remark 4.3.3. In Theorem 4.2.6 and 4.3.2, if u0 ∈ L2(Ω), u is only weakly con-

tinuous from [0, T ] → L2(Ω). The uniqueness is usually not true. The reason is

mentioned in Remark 3.4.7. By the trace theorems of BH functions and BLp
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functions in Chapter 2, it makes sense to consider the Neumann boundary value

problem. But we can’t prove the convergence of boundary condition. The trace

operators are continuous in the norm topology, or a weaker topology so called

strict (tight) convergence, but not in the weak∗ topology. The convergence we

can obtain is weak∗ topology, we can’t find a way to prove that the sequence

does not concentrate on the boundary of the domain. Thus, we failed to prove

the uniqueness of the generalized solution even u0 is sufficiently smooth in case

of Neumann boundary condition.

The proof of this theorem is essentially the same as the proof of Theorem 4.2.6.

The main difference is to replace the compact embedding W 1,p ⊂⊂ BH(Ω) with

W 1,p
per(Ω) ⊂⊂ BLp

per(Ω) which is a direct result of elliptic periodic boundary value

problem.

The case u0, h ∈ L2(Ω)

Proof. Fix any ε > 0, for u0, h ∈ L2(Ω), according to Theorem 4.3.1, there exists

a unique uε which satisfies the energy estimates:

‖uε‖L∞(0,T ;L2(Ω)) + ‖uε‖L1(0,T ;BLp
per(Ω)) + ε1/2

[ ∫ T

0

‖∆uε‖2 dt
]1/2

≤ C
(‖u0‖ + ‖h‖) (4.3.18)

‖√tu̇ε‖L2(0,T ;L2(Ω) + ‖tuε‖L∞(0,T ;BLp
per(Ω)) ≤ C

(‖u0‖ + ‖h‖) (4.3.19)

‖u̇ε‖L2(0,T ;V ′) ≤ C
(‖u0‖ + ‖h‖) (4.3.20)
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here C is a ε independent constant, it may depend on T , Ω. Therefore, there

exists u ∈ L∞(0, T, L2(Ω)), u̇ ∈ L2(0, T ; V ′),
√

tu̇ ∈ L2(0, T ; L2(Ω)), tu ∈

L∞(0, T, BLp
per(Ω)) such that a subsequence of

{
uε
}

(we still denote it uε)

uε ⇀ u weakly in L2(Ω) a.e. t ∈ [0, T ] (4.3.21)

u̇ε ⇀ u̇ weakly in L2(0, T ; V ′)

uε → u strongly in L1(0, T ; W 1,p
per(Ω)) (4.3.22)

√
tu̇ε ⇀

√
tu̇ weakly in L2(0, T ; L2(Ω))

tD2uε ⇀ tD2u weakly* in M(Ω) a.e. t ∈ [0, T ]

tuε → tu strongly in W 1,p
per(Ω) a.e. t ∈ [0, T ] (4.3.23)

where 1 ≤ p < 1∗. Notice that W 1,p
per ⊂⊂ BLp

per(Ω), the strong convergence

(4.3.22) and (4.3.23) are due to the compactness result of Simon [83] which is

stated in Theorem 2.4.2. Since u ∈ L∞(0, T, L2(Ω)), u is continuous from [0, T ]

into V ′, by Lemma 2.3.5, we know that u(t) is weakly continuous from [0, T ] →

L2(Ω). Thanks to Fatou’s lemma, we have

lim
ε→0

inf

∫ T

0

∫
Ω

|∆uε| dxdt ≥
∫ T

0

lim
ε→0

inf

∫
Ω

|∆uε| dxdt

Notice that
∫
Ω
|∆u| is a special case of Ĵ(u). It is lower semicontinuous with

respect to W 1,1 convergence, we obtain

∫ T

0

lim
ε→0

inf

∫
Ω

|∆uε| dxdt ≥
∫ T

0

∫
Ω

|∆u|dt
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Thus, u ∈ L1(0, T ; BLp
per(Ω)). Similarly, from (4.3.23), we know that, for any

0 < s0 ≤ T , u ∈ L∞(s0, T ; BLp
per(Ω)), u̇ ∈ L2(s0, T ; L2(Ω)). By Theorem 2.3.3,

u ∈ C([s0, T ], L2(Ω)). Thus, u ∈ C((0, T ], L2(Ω)) and u(s2) = u(s1) +
∫ s2

s1
u̇(t) dt,

∀ s1, s2 > 0. On the other hand, uε ∈ C([0, T ]; L2(Ω)) and uε(s2) = uε(s1) +

∫ s2

s1
u̇ε(t) dt. Thus, we obtain

lim
ε→0

〈
u(s2) − uε(s2), v

〉
= lim

ε→0

〈
u(s1) − uε(s1), v

〉 ∀ v ∈ L2(Ω) (4.3.24)

Consequently, uε(s) ⇀ u(s) ∀ s ∈ (0, T ]. For each uε, we have

⎧⎪⎪⎨
⎪⎪⎩

〈
u̇ε, v

〉
+ Bε[uε, v; t] + λ

〈
uε − h, v

〉
= 0 a.e. t ∈ [0, T ] ∀ v ∈ V

uε(x, 0) = u0(x)

(4.3.25)

Substitute v by v − uε and integrate with respect to t from 0 to s, we obtain

∫ s

0

[〈
u̇ε, v − uε

〉
+ Bε[uε, v − uε; t] + λ

〈
uε − h, v − uε

〉]
dt = 0 (4.3.26)

Nevertheless,

∫ s

0

〈
v̇ − u̇ε, v − uε

〉
dt =

1

2

[‖v(s) − uε(s)‖2 − ‖v(0) − u0‖2
]

(4.3.27)

Consequently, ∀ v ∈ L1(0, T ; V ) ∩ L2(0, T ; L2(Ω)) such that v̇ ∈ L2(0, T ; L2(Ω)),

we have

∫ s

0

[〈
v̇, v − uε

〉
+ Bε[uε, v − uε; t] + λ

〈
uε − h, v − uε

〉]
dt

=
1

2

[‖v(s) − uε(s)‖2 − ‖v(0) − u0‖2
] (4.3.28)
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It is easy to verify that λ
2
‖v − h‖2 − λ

2
‖uε − h‖2 ≥ λ

〈
uε, v − uε

〉
. Since Φ1(·), Φ(·)

are convex, from Lemma 2.7.2, we deduce:

Φ1(|∇v|) − Φ1(|∇uε|) ≥ 〈g1(∇uε),∇v −∇uε
〉

Φ(|∇2v|) − Φ(|∇2uε|) ≥ 〈g(∇2uε),∇2v −∇2uε
〉 (4.3.29)

Thus,

Ĵh(v) − Ĵh(u
ε) + ε

〈
∆uε, ∆v

〉 ≥ Ĵh(v) − Ĵh(u
ε) + ε

〈
∆uε, ∆v − ∆uε

〉

≥ Bε[uε, v − uε; t] + λ
〈
uε − h, v − uε

〉 (4.3.30)

Since Φ′
1(·) is bounded, we have

∫ s

0

∫
Ω

∣∣∣Φ1(|∇uε|) − Φ1(|∇u|)
∣∣∣ dxdt

≤ C

∫
Ω

∣∣|∇uε| − |∇u|∣∣ dxdt

(4.3.31)

From the strong convergence (4.3.22), we obtain

lim
ε→0

∫ s

0

∫
Ω

Φ1(|∇uε|) dxdt =

∫ s

0

∫
Ω

|Φ1(|∇u|) dxdt (4.3.32)

Notice the lower semicontinuity, by Fatou’s lemma and the strong convergence

(4.3.22),

lim
ε→0

inf

∫ s

0

∫
Ω

Φ(|∆uε|) dxdt ≥
∫ s

0

lim
ε→0

inf

∫
Ω

Φ(|∆uε|) dxdt

≥
∫ s

0

∫
Ω

Φ(|∆u|)dt

(4.3.33)

From (4.3.18), we know that ε‖∆uε‖2 is bounded. Hence ε
〈
∆uε, ∆v

〉 → 0 as

ε → 0. Combine (4.3.28), (4.3.30) and the lower semicontinuity of L2 norm with
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respect to weak convergence, let ε → 0, we obtain∫ s

0

∫
Ω

v̇(v − u) dxdt +

∫ s

0

Ĵh(v) dt−
∫ s

0

Ĵh(u) dt

≥ 1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
] (4.3.34)

∀ v ∈ L1(0, T ; V ) ∩ L2(0, T ; L2(Ω)) and v̇ ∈ L2(0, T ; L2(Ω)). By a density argu-

ment, we deduce (4.3.14) holds for ∀ v ∈ L1(0, T ; BLp
per(Ω))∩L2(0, T ; L2(Ω)) and

v̇ ∈ L2(0, T ; L2(Ω)).

Stability inequality

Now let’s prove the stability inequality (4.3.15).

Lemma 4.3.4. Let η > 0 and uη be the solution of the following ODE:⎧⎪⎪⎨
⎪⎪⎩

ηu̇η + uη = u for 0 < t < T ;

uη(0) = u0

(4.3.35)

If u satisfies (4.3.14) and u0 ∈ BLp
per(Ω) ∩ L2(Ω), then as η → 0

uη → u strongly in L2(0, T ; L2(Ω))

uη → u strongly in L1(0, T ; BLp
per(Ω))

uη(s) → u(s) strongly in L2(Ω) ∀ s ∈ [0, T ]

(4.3.36)

Furthermore,

‖u̇‖2
L2(0,T ;L2(Ω)) ≤ Ĵh(u0) (4.3.37)

The proof of this lemma is almost identical to the proof of 3.4.8. We will omit

it here. Set

u :=
u1 + u2

2
, u0 :=

u01 + u02

2
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For any η > 0, define uη as in Lemma 4.3.4, now take v = uη in each inequality

(4.3.14) with u1, u2 in place of u, u01, u02 in place of u0, h1, h2 in place of h, add

them together

− 2η

∫ s

0

‖u̇η‖2 dt +

∫ s

0

[
Ĵh1(uη) + Ĵh2(uη) − Ĵh1(u1) − Ĵh2(u2)

]
dt

≥ 1

2

[
‖uη(s) − u1(s)‖2 + ‖uη(s) − u2(s)‖2 − 1

2
‖u01 − u02‖2

] (4.3.38)

Notice that Ĵ(·) is a convex functional, we have

− 2η

∫ s

0

‖u̇η‖2 dt + 2

∫ s

0

[
Ĵ(uη) − Ĵ(u)

]
dt

+
λ

2

∫ s

0

∫
Ω

[
(uη − h1)

2 + (uη − h2)
2 − (u1 − h1)

2 − (u2 − h2)
2
]
dxdt

≥ 1

2

[
‖uη(s) − u1(s)‖2 + ‖uη(s) − u2(s)‖2 − 1

2
‖u01 − u02‖2

]
(4.3.39)

Let η → 0 and by Lemma 4.3.4, we have

λ

4

∫ s

0

∫
Ω

(h1 − h2)
2 dxdt

≥ λ

2

∫ s

0

∫
Ω

[
(u2 − u1)(h2 − h1) − (u1 − u2)

2
]
dxdt

=

∫ s

0

∫
Ω

[
(u − h1)

2 + (u − h2)
2 − (u1 − h1)

2 − (u2 − h2)
2
]
dxdt

≥ 1

2

[
‖u(s) − u1(s)‖2 + ‖u(s) − u2(s)‖2 − 1

2
‖u01 − u02‖2

]

=
1

4

[
‖u1(s) − u2(s)‖2 − ‖u01 − u02‖2

]

(4.3.40)

Thus, (4.3.15) holds.

The case u0 ∈ BLp
per(Ω) ∩ L2(Ω)

Proof. Since u0 ∈ BLp
per(Ω)∩L2(Ω), by stability inequality, we know that there is

a unique u which satisfies (4.3.14). From Lemma 4.3.4, we obtain u̇ ∈ L2(0, T ; L2(Ω)).
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Since u ∈ L∞(0, T ; L2(Ω)), by Theorem 2.3.3, we know that u ∈ C([0, T ]; L2(Ω))

after possibly being redefined on a set of measure zero and u(s2) = u(s1) +

∫ s2

s1
u̇(t) dt ∀ s1, s2 ∈ [0, T ]. From the proof of part (a), u is the limit of a subse-

quence
{
uε
}

ε>0
which satisfies uε(s2) = uε(s1) +

∫ s2

s1
u̇ε(t) dt , ∀ s1, s2 ∈ [0, T ] and

uε(0) = u0. Therefore

〈
u(s2) − uε(s2), v

〉
=
〈
u(s1) − uε(s1), v

〉
+

∫ s2

s1

〈
u̇(t) − u̇ε(t), v

〉
dt ∀ v ∈ L2(Ω)

By (4.3.21), we obtain u(t) ⇀ u(t) in L2(Ω) ∀ t ∈ [0, T ]. Thus u(0) = u0 and

∫ s

0

∫
Ω

v̇(v − u) dx dt =

∫ s

0

∫
Ω

u̇(v − u) dx dt

+
1

2

[‖v(s) − u(s)‖2 − ‖v(0) − u0‖2
]

Notice that the time derivative of v has been transferred to u, (4.3.16) holds ∀ v ∈

L1(0, T ; BLp
per(Ω)) ∩ L2(0, T ; L2(Ω)). Now, let’s prove u ∈ L∞(0, T ; BLp

per(Ω)).

First, assume that u0 ∈ H2
per(Ω), by energy estimate (4.3.11) and the embeddings

in BLp
per(Ω), we know that the unique generalized solution u can be regarded as

the limit of a sequence
{
uε
}

ε>0
which satisfies

Ĵh(u
ε) ≤ C

[ ∫
Ω

|∆u0| dx +
λ

2
‖u0 − h‖2 +

ε

2
‖∆u0‖2

]

Thus, we get Ĵh(u) ≤ C
[ ∫

Ω
|∆u0| dx + λ

2
‖u0 − h‖2

]
for a.e. t ∈ [0, T ]. For

u0 ∈ L2(Ω) ∩ BLp
per(Ω), there exists a sequence of

{
un

0

}∞
n=1

⊂ H2
per(Ω) such that

un
0 → u0 strongly in L2(Ω)

un
0 → u0 strictly in BLp

per(Ω)
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Using the lower semicontinuity of Ĵh, we obtain that Ĵh(u) ≤ C
[ ∫

Ω
|∆u0| dx +

λ
2
‖u0 − h‖2

]
for a.e. t ∈ [0, T ] still holds. Thus u ∈ L∞(0, T ; BLp

per(Ω)).

132



Chapter 5

The study of PDEs derived from nonconvex functional

In Chapter 3 and Chapter 4, we have mainly studied the properties of convex func-

tional and corresponding PDEs (PDEs derived from the Euler-Lagrange equation

of minimization problems). In practice, some nonconvex functional minimization

often perform better than convex functional minimization in image smoothing [8].

Unfortunately, the study of the corresponding evolutionary PDEs is much more

challenging because they even do not satisfy the parabolicity condition. A well

known example is (1.1.10) proposed by Perona and Malik [76]. In this chapter,

we will use regularization method to study a class of evolutionary PDEs which

do not satisfy parabolicity condition. Following Galerkin method, we prove the

existence of the weak solution of the regularized equation and obtain energy es-

timates. These energy estimates are usually are ε dependent which are different

from the energy estimates in Chapter 3 and 4. Thus, we couldn’t vanish the

regularization term as before.
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5.1 Smoothing-enhancing PDEs

In one space dimension, if |∂xu| ≤ k, the Perona-Malik PDE (1.1.10) is of forward

parabolic type, and backward parabolic type for |∂xu| > k. In the backward re-

gion, Perona-Malik PDE resembles the backward diffusion equation u̇ = −∂xxu, a

classical example for an ill-posed equation. In the same way as forward diffusion

smoothes contrasts, backward diffusion enhances them. Thus, the Perona-Malik

PDE may sharpen edges, if their gradient is larger than the contrast parame-

ter k. Kichenassamy [52] limited himself to one space dimension and proved that

(1.1.10) doesn’t have a global weak solution. “The restriction to one space dimen-

sion is not a significant one: if the equation has no solution in this case, the only

alternative would be to imagine that there is a solution which depends explicitly

on y when it’s initial condition does not — the equation therefore introduce new

features. Such behavior, however, not observed numerically”. Later, he proposed

a notation of generalized solutions, which are piecewise linear and contain jumps.

Kawohl and Kutev [51] proved that the Perona-Malik PDE does have a unique

weak solution which is continuously differentiable, satisfies a maximum-minimum

principle, and which is exists for some finite time, but not for the entire inter-

val [0,∞). It is an open question whether the smooth Kawohl-Kutev solution,

which exists for some finite time, turns into such a discontinuous one afterwards.

Interestingly, practical implementation of the Perona-Malik model work often

better than one would expected from theory. In the following, we add a fourth
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order term to a more general equation and study the property of the regularized

equation. From now on, let’s make some general assumptions on g(·):
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(s) : R → R is a C1 function

|g(s)| ≤ C, ∀ s ∈ R

|sg′(s)| ≤ C, ∀ s ∈ R.

(5.1.1)

Obviously, g(s2) = 1
1+(s/k)2

or g(s2) = e−(s/k)2 satisfy these conditions. Let Φ(s) =

∫ s

0
τg(τ 2)dτ . For simplicity, in this chapter, we assume that Ω =

d∏
i=1

(0, Li). C is

a constant which could depend on Ω, T and ε and may differ from line to line.

5.1.1 Existence and uniqueness of weak solution of regu-

larized equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= ∇ · (g(|∇u|2)∇u) − ε∆2u on Ω × (0, +∞)

u(x, 0) = u0(x) on Ω

∂νu = 0 on ∂Ω × (0, +∞)

∂ν∆u = 0 on ∂Ω × (0, +∞)

(5.1.2)

where ν is the unit normal of the boundary of the domain Ω pointing outward.

Suppose that −
∫
Ω

u0(x) dx = µ0 and u(x, t) is a solution of (5.1.2), let v(x, t) =

u(x, t) − µ0, it is easy to verify that v satisfies (5.1.2) and
∫
Ω

v(x, 0) dx = 0 with

initial condition v(x, 0) = u0(x) − µ0. Therefore, without loss of generality, we

assume
∫
Ω

u0(x) dx = 0.
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Lemma 5.1.1. If u(x, t) is a solution of problem (5.1.2), then it satisfies

d

dt

∫
Ω

u(x, t) dx = 0

Proof. From (5.1.2), we have

∫
Ω

u̇(x, t) dx =

∫
Ω

∇ · (g(|∇u|2)∇u) dx−
∫

Ω

ε∆2u dx

By Green’s formula,

∫
Ω

∇ · (g(|∇u|2)∇u) dx =

∫
∂Ω

g(|∇u|2)∇u · ν ds = 0

∫
Ω

∆2u dx =

∫
∂Ω

∇(∆u) · ν ds = 0

Thus d
dt

∫
Ω

u(x, t) dx = 0. i.e.
∫
Ω

u(x, t) dx =
∫
Ω

u0(x) dx.

Define:

H2
n(Ω) =

{
v ∈ H2(Ω) :

∫
Ω

v dx = 0 , ∂νv|∂Ω = 0
}

(5.1.3)

It is easy to see that H2
n(Ω) is a Hilbert space. Denote (H2

n(Ω))′ the dual space

of H2
n(Ω). Assume that

ωk(x) =

d∏
i=1

√
2

Li
cos(πki

xi

Li
) (5.1.4)

with x = (x1, · · · , xd)
t, k = (k1, · · · , kd). Thus {ωk}∞|k|=1 is orthogonal basis of

H2
n(Ω) and is normalized under L2(Ω) norm.

Vm ≡ span {ωk : 1 ≤ |k| ≤ m} (5.1.5)

Definition 5.1.2 (Weak solution). A function u : Ω × [0, T ] → R is called a

weak solution of the initial boundary value problem (5.1.2), if
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(a) u ∈ L2(0, T ; H2
n(Ω)) ∩ C([0, T ]; L2(Ω)) and u̇ ∈ L2(0, T ; (H2

n(Ω))′);

(b) For any v ∈ H2
n(Ω), a.e. t ∈ [0, T ],

〈
u̇, v
〉

+
〈
g(|∇u|2)∇u,∇v

〉
+ ε
〈
∆u, ∆v

〉
dt = 0 (5.1.6)

where
〈·, ·〉 denotes the inner product of L2(Ω) or the action of a distribution

on a test function.

(c) u(x, 0) = u0(x)

Lemma 5.1.3 (Generalized Poincaré Inequality[87]). If Ω is bounded and

Lipschitz set in R
n, and let p be a continuous seminorm on H1(Ω) which is a

norm on the constants (p(a) = 0, a ∈ R). Then there exists a constant c(Ω)

depending only on Ω such that

‖u‖ ≤ c(Ω)(‖∇u‖ + p(u)), ∀u ∈ H1(Ω). (5.1.7)

Specifically, p(u) =
∣∣ ∫

Ω
u(x) dx

∣∣. Thus, ∀u ∈ H2
n(Ω), we have ‖u‖ ≤ c(Ω)‖∇u‖.

Lemma 5.1.4. For any v ∈ H2
n(Ω) that

‖∇v‖2 ≤ ‖v‖‖∆v‖ (5.1.8)

C2‖∆v‖2 ≤ ‖v‖2
H2(Ω) ≤ C1‖∆v‖2 (5.1.9)

Proof. For (5.1.8), by Green’s Formula,

‖∇v‖2 =

∫
Ω

∇v · ∇v dx = −
∫

Ω

v∆v dx +

∫
∂Ω

v∇v · ν ds

= −
∫

Ω

v∆v dx ≤
∫

Ω

|v||∆v| dx ≤ ‖v‖‖∆v‖.
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The left hand side of (5.1.9) is trivial. From Temam [87, p. 154], we obtain, for

any δ > 0

‖v‖2
H2(Ω) ≤ C1(‖∆v‖2 + δ‖v‖2)

Let δ = 1
2C1

,

1

2
‖v‖2

H2(Ω) ≤ ‖v‖2
H2(Ω) −

1

2
‖v‖2 ≤ C1‖∆v‖2

Thus, (5.1.9) holds.

Lemma 5.1.5. Let Pm be the L2(Ω) projection operator onto Vm, ∀u ∈ H2
n(Ω),

we have

‖Pmu‖H2(Ω) ≤ C‖u‖H2(Ω), lim
m→∞

‖Pmu − u‖H2(Ω) = 0

Proof. Let
{
ωk(x)

}∞
|k|=1

be the orthogonal basis of Hn(Ω) which is defined in

(5.1.4), then

u =
∞∑

|k|=1

akwk(x), Pmu =
m∑

|k|=1

akwk(x)

Therefore,

‖Pmu‖2 ≤ ‖u‖2, lim
m→∞

‖Pmu − u‖ = 0

It is easy to verify that ∆wk ∈ Vm for 1 ≤ |k| ≤ m and ∆wk /∈ Vm if |k| > m

(recall that ωk(x) is the cosine sequence). Thus ∆Pmu = Pm∆u. Consequently

‖∆Pmu‖2 ≤ ‖∆u‖2, lim
m→∞

‖∆Pmu − ∆u‖ = 0

By (5.1.9), we have

‖Pmu‖H2(Ω) ≤ C‖u‖H2(Ω), lim
m→∞

‖Pmu − u‖H2(Ω) = 0
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Theorem 5.1.6 (Galerkin approximation). Let u0 ∈ L2(Ω), For each integer

m ≥ 1, there exists a unique um : Ω × [0, T ] → R such that

(a) um ∈ C∞(Ω̄ × [0, T ]) and um(t) ∈ Vm for any t ∈ [0, T ].

(b) For any v ∈ Vm and any t ∈ [0, T ]

〈
v, u̇m

〉
+
〈∇v, g(|∇um|2)∇um

〉
+ ε
〈
∆v, ∆um

〉
= 0 (5.1.10)

(c) um(0) = Pmu0; where Pm is the projection to finite subspace Vm.

(d) um satisfies energy estimate

‖um‖L∞(0,T ;L2(Ω)) + ‖um‖L2(0,T ;H2(Ω)) + ‖u̇m‖L2(0,T ;(H2
n(Ω))′) ≤ C (5.1.11)

Furthermore, if u0 ∈ H2(Ω), we have

‖um‖L∞(0,T ;H2(Ω)) + ‖um‖L2(0,T ;H2(Ω)) + ‖u̇m‖L2(0,T ;L2(Ω)) ≤ C (5.1.12)

Galerkin Approximation. The proof is following [57]. Fix now a positive integer

m, let s(m) = dim(Vm). We will look for a function um : [0, T ] → H2
n(Ω) of the

form

um(t) :=

s(m)∑
k=1

ak
m(t)ωk

where we hope to select the coefficient ak
m(t) (0 ≤ t ≤ T, k = 1, · · · , s(m)), such

that ⎧⎪⎪⎨
⎪⎪⎩

〈
u̇m, ωk

〉
+
〈
g(|∇um|2)∇um,∇ωk

〉
+ ε
〈
∆um, ∆ωk

〉
= 0

ak
m(0) =

〈
u0, ωk

〉 (5.1.13)
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From the orthonormality of {ωk : k = 1, · · · , s(m)}, we obtain⎧⎪⎪⎨
⎪⎪⎩

d
dt

ak
m(t) = fk

m(a1
m(t), · · · , a

s(m)
m (t)), k = 1, · · · , s(m)

ak
m(0) =

〈
u0, ωk

〉
, k = 1, · · · , s(m)

(5.1.14)

where all fk
m : R

s(m) → R(1 ≤ k ≤ s(m)) are smooth and locally Lipschitz. It

follows from the theory for initial-value problems of ordinary differential equations

that there exists Tm > 0 such that the initial-value problem (5.1.14) has a unique

smooth solution (a1
m(t), · · · , a

s(m)
m ) for t ∈ [0, Tm]. For each t ∈ [0, Tm] , set

v = um(t) ∈ Vm in (5.1.10), we have

1

2

d

dt
‖um(t)‖2 +

∫
Ω

g(|∇um|2)|∇um|2 dx + ε‖∆um‖2 = 0 (5.1.15)

Integrate against t, we obtain, for all t ∈ [0, Tm],

‖um(t)‖2 + 2ε

∫ t

0

‖∆um‖2 dt

≤ ‖u0‖2 + 2

∫ t

0

∣∣g(|∇um(t)|2)∣∣‖∇um(t)‖2 dt

≤ ‖u0‖2 + 2C

∫ t

0

‖∇um(t)‖2 dt

≤ ‖u0‖2 + ε

∫ t

0

‖∆um‖2 dt +
C2

ε

∫ t

0

‖um‖2 dt

(5.1.16)

The last inequality is due to Cauchy inequality and Lemma 5.1.4. By Gronwall’s

inequality, we conclude ‖um(t)‖2 ≤ C. This, with the orthogonality of {ωk}s(m)
k=1 ,

implies that
s(m)∑
k=1

[
ak

m(t)
]2

= ‖um(t)‖2 ≤ C (5.1.17)

The solution (a1
m(t), · · · , a

s(m)
m (t)) of the initial-value problem (5.1.14) is thus

bounded on [0, Tm], hence can be uniquely extended to a smooth solution over
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[0,∞). ∀ v ∈ H2
n(Ω), we can write v = v1 + v2 with v1 ∈ Vm and v2 ⊥ Vm. Hence,

(5.1.10) holds for any v ∈ H2
n(Ω). Consequently,

〈
u̇m, v

〉 ≤ ‖g(|∇um|2)∇um‖‖∇v‖ + ε‖∆um‖‖∆v‖ a.e. t ∈ (0, T ) (5.1.18)

Notice the definition of (H2
n(Ω))′ norm

‖u̇m‖(H2
n(Ω))′ = sup

{〈
u̇m, v

〉
: ‖v‖H2

n(Ω) ≤ 1
}

(5.1.19)

We obtain

‖u̇m‖(H2
n(Ω))′ ≤ ‖g(|∇um|2)∇um‖ + ε‖∆um‖ a.e. t ∈ (0, T ) (5.1.20)

Take square on both sides of (5.1.20) and employ Cauchy inequality, we obtain

‖u̇m‖2
(H2

n(Ω))′ ≤ 2
(‖g(|∇um|2)∇um‖2 + ε‖∆um‖2

)
a.e. t ∈ (0, T ) (5.1.21)

Integrate against t from 0 to T , we have

‖u̇m‖2
L2(0,T ;(H2

n(Ω))′) ≤ 2

∫ T

0

[ ∫
Ω

g(|∇um|2)2|∇um|2 dx dt + ε

∫
Ω

|∆um|2 dx
]
dt

≤ 2

∫ T

0

[
C‖∇um‖2 dt + ε‖∆um‖2

]
dt ≤ C (5.1.22)

Notice (5.1.9), combine (5.1.22), (5.1.16) and (5.1.17), we obtain (5.1.11). If

u0 ∈ H2(Ω), set v = u̇m(t) in (5.1.10) to get for any t ∈ [0, T ] that

‖u̇m‖2 +
d

dt

∫
Ω

[
Φ(|∇um|) +

ε

2
|∆um|2

]
dx = 0 (5.1.23)

Integrate against t, we obtain

‖u̇m‖2
L2(0,T ;L2(Ω)) +

∫
Ω

Φ(|∇um|) dx +
ε

2

∫
Ω

|∆um|2 dx

=

∫
Ω

Φ(|∇um(0)|) dx +
ε

2

∫
Ω

|∆um(0)|2 dx

(5.1.24)
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Therefore,

‖u̇m‖2
L2(0,T ;L2(Ω)) +

ε

2
‖∆um‖2 ≤ C (5.1.25)

From (5.1.9) of lemma 5.1.4 and(5.1.25), we obtain (5.1.12).

Theorem 5.1.7 (Existence, uniqueness, and energy identity). Let u0 ∈

L2(Ω). Then, the initial-boundary-value problem (5.1.2) has a unique weak solu-

tion u : Ω × [0, T ] → R. Furthermore, if u0 ∈ H2(Ω), then u ∈ L∞(0, T ; H2(Ω)),

u̇ ∈ L2(0, T, L2(Ω)), for a.e. t ∈ [0, T ], u satisfies

1

2

d

dt

∫
Ω

|u|2 dx +

∫
Ω

g(|∇u|2)|∇u|2 dx + ε

∫
Ω

|∆u|2 dx = 0 (5.1.26)

d

dt

∫
Ω

(
Φ(|∇u|) +

ε

2
|∆u|2

)
dx +

∫
Ω

|u̇|2 dx = 0 (5.1.27)

Proof. It follows from Theorem 5.1.6 that there exists a sequence of functions

{um} ∈ L2(0, T ; H2
n(Ω)) ∩ L∞(0, T ; L2(Ω)) with {u̇m} ⊂ L2(0, T ; (H2

n(Ω))′) such

that for each m ≥ 1, any vm ∈ Vm,⎧⎪⎪⎨
⎪⎪⎩

〈
u̇m, vm

〉
+
〈
g(|∇um|2)∇um,∇vm

〉
+ ε
〈
∆um, ∆vm

〉
= 0

um(0) = Pmu0

(5.1.28)

Consequently, there exists u ∈ L2(0, T ; H2
n(Ω)) with u̇ ∈ L2(0, T ; (H2

n(Ω))′) such

that

um ⇀ u in L∞(0, T ; L2(Ω)) (5.1.29)

u̇m ⇀ u̇ in L2(0, T ; (H2
n(Ω))′) (5.1.30)

um ⇀ u in L2(0, T ; H2(Ω)) (5.1.31)

um → u in L2(0, T ; H1(Ω)) (5.1.32)
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where the strong convergence (5.1.32) follows from (5.1.31) and the compactness

result of Simon [83]. Therefore, part (a) of Definition 5.1.2 is satisfied. Letv ∈

H2
n(Ω) and η(t) ∈ C[0, T ]. For each m ≥ 1, set vm = Pmv in (5.1.28), multiply

both sides of the resulting identity by η(t), and integrate against t to yield,∫ T

0

〈
η(t)∇Pmv, g(|∇um(t)|2)∇um(t)

〉
dt

+

∫ T

0

〈
η(t)Pmv, u̇m(t)

〉
dt + ε

∫ T

0

〈
η(t)∆Pmv, ∆um(t)

〉
dt = 0

(5.1.33)

From Lemma 5.1.5, (5.1.30), (5.1.31), we obtain

∫ T

0

〈
η(t)Pmv, u̇m(t

〉
dt →

∫ T

0

〈
η(t)v, u̇(t)

〉
dt as m → ∞

∫ T

0

〈
η(t)∆Pmv, ∆um(t)

〉
dt →

∫ T

0

〈
η(t)∆v, ∆u(t)

〉
dt as m → ∞

While

∣∣ ∫ T

0

〈
η(t)∇Pmv, g(|∇um(t)|2)∇um(t)

〉
dt

−
∫ T

0

〈
η(t)v, g(|∇u(t)|2)∇u(t)

〉
dt
∣∣

≤ ‖η‖L∞(0,T )

[
‖∇Pmv −∇v‖

∫ T

0

∥∥g(|∇um(t)|2)∇um(t)
∥∥ dt (5.1.34)

+ ‖∇v‖
∫ T

0

∥∥g(|∇um(t)|2)∇um(t) − g(|∇u(t)|2)∇u(t)
∥∥ dt
]

Notice (5.1.1) and (5.1.11), we obtain

∫ T

0

∥∥g(|∇um(t)|2)|∇um(t)|∥∥ dt ≤ C (5.1.35)

∥∥g(|∇um(t)|2)∇um(t) − g(|∇u(t)|2)∇u(t)
∥∥ (5.1.36)

=
∥∥(g(|ξ|2)I + 2g′(|ξ|2)ξtξ

)(∇um(t) −∇u(t)
)∥∥

≤ C‖∇um(t) −∇u(t)‖
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From (5.1.34), (5.1.35) and (5.1.36), we have

∣∣∣
∫ T

0

〈
η(t)∇Pmv, g(|∇um(t)|2)∇um(t)

〉
dt

−
∫ T

0

〈
η(t)v, g(|∇u(t)|2)∇u(t)

〉
dt
∣∣∣

≤ C‖Pmv − v‖H2(Ω) + C‖um − u‖L2(0,T ;H2(Ω))

→ 0 as m → ∞

(5.1.37)

Therefore,

∫ T

0

η(t)
{〈

v, u̇(t)
〉

+
〈∇v, g(|∇u(t)|2)∇u(t)

〉

+ ε
〈
∆v, ∆u(t)

〉}
dt = 0

(5.1.38)

Since η(t) is arbitrary, this implies (5.1.6). Notice that, after a possible modi-

fication of u on a set of measure zero, we have u ∈ C([0, T ]; L2(Ω)) (cf. The-

orem 2.3.3). Moreover, u(t) = u(s) +
∫ t

s
u′(τ) dτ for any s, t ∈ [0, T ], where

u(t) = u(t) ∈ L2(Ω) and u′(t) = u̇(t). In (5.1.38), let η(t) = −t/T + 1 and

integrate by parts against t for the first term to get

∫ T

0

η(t)
{〈∇v, g(|∇u(t)|2)∇u(t)

〉
+ ε
〈
∆v, ∆u(t)

〉}
dt

+

∫ T

0

1

T

〈
v, u(t)

〉
dt =

〈
v, u(0)

〉 (5.1.39)

In (5.1.28), letvm = Pmv and use the same argument, we get

∫ T

0

1

T

〈Pmv, um(t)
〉
dt +

∫ T

0

η(t)
〈∇Pmv, g(|∇um(t)|2)∇um(t)

〉
dt

+

∫ T

0

η(t)ε
〈
∆Pmv, ∆um(t)

〉
dt =

〈Pmv, um(0)
〉

=
〈Pmv,Pmu0

〉 (5.1.40)
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Let m → ∞, we have

∫ T

0

η(t)
{〈∇v, g(|∇u(t)|2)∇u(t)

〉
+ ε
〈
∆v, ∆u(t)

〉}
dt

+

∫ T

0

1

T

〈
v, u(t)

〉
dt =

〈
v, u0

〉 (5.1.41)

Compare (5.1.38) and (5.1.41), we get
〈
v, u(0)

〉
=
〈
v, u0

〉
. Since v ∈ H2

n(Ω) is

arbitrary, we have u(0) = u0. Therefore, u is a weak solution. The uniqueness

follows from the stability established in Theorem 5.1.8. Now if u0 ∈ H2(Ω), from

energy estimate (5.1.12), we obtain u ∈ L∞(0, T, H2
n(Ω)) and u̇ ∈ L2(0, T ; L2(Ω)).

The first energy identity can be obtained by setting v = u(t) in (5.1.6). Notice

(5.1.29) and (5.1.30), the second energy identity is obtained by letting m → ∞

in (5.1.24).

Theorem 5.1.8 (Stability). Let u01, u02 ∈ L2(Ω). Let u1, u2 be the given weak

solutions of (5.1.2) with u1(x, 0) = u01 and u2(x, 0) = u02 a.e., respectively, Then,

‖u1 − u2‖L∞(0,T ;L2(Ω)) + ‖u1 − u2‖L2(0,T ;H2(Ω)) ≤ C‖u01 − u02‖ (5.1.42)

Proof. Let w = u1 − u2. Since u1 and u2 are two weak solutions, we have for any

v ∈ H2
n(Ω) and a.e t ∈ (0, T ) that

〈
v, ẇ
〉

+
〈∇v, g(|∇u1|2)∇u1 − g(|∇u2|2)∇u2

〉
+ ε
〈
∆v, ∆w

〉
= 0 (5.1.43)

Since w ∈ L2(0, T ; H2
n(Ω)) and ẇ ∈ L2(0, T ; L2(Ω)), d

dt

〈
w, w

〉
= 2
〈
w, ẇ

〉
. We

obtain

1

2

d

dt
‖w‖2 + ε‖∆w‖2 ≤ ‖∇w‖2 ≤ C‖w‖‖∆w‖ ≤ ε

2
‖∆w‖2 +

C

2ε
‖w‖2
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By Gronwall’s inequality,

‖w(t)‖2 ≤ ec(ε)t
(‖u01 − u02‖2 −

∫ t

0

(ε‖∆w‖2) dt)
)

Hence, (5.1.42) holds.

5.1.2 Relationship with other PDEs

Liu and Li [57] studied the following PDEs in the context of modeling epitaxial

growth of thin films

u̇ = −∇ · ( ∇u

1 + |∇u|2 + ε∇u
)

(5.1.44)

u̇ = −∇ · ((1 − |∇u|2)∇u + ε∇u
)

(5.1.45)

These two PDEs are special cases of (5.1.2) if they are imposed homogeneous

Neumann boundary condition. We also notice that (1.2.3) is a special case of

(5.1.2). Thus, we proved the well-posedness of (1.2.3).

5.2 You-Kaveh PDE

In section Chapter 4 section 4.1, we mentioned that You and Kaveh [99] proposed

a minimization functional of the form

∫
Ω

f(|∆u|) dx (5.2.1)

to smoothing images. They intentionally used nonconvex function f because

convex function will lead to globally planar images. Indeed, as we studied in
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Original Processed

Figure 5.1: Image enhancement by flows based on triple well potentials. Figures

are from http://visl.technion.ac.il/~gilboa/ppt/huji02.pps

Chapter 4, if f is convex and satisfies the conditions of Chapter 4, the solution

of the corresponding evolutionary is in W 1,p with 1 ≤ p < 1∗. The question is

how it behaves if we use a nonconvex f? In their numerical experiment, You and

Kaveh chose g(s) = 1
1+(s/k)2

, here g(s) = f ′(s)
s

. Greer and Bertozzi [43] studied

the traveling wave solution of the one dimensional You-Kaveh PDE (1.1.22) by

adding a Burgers’ convection term:

u̇ +
1

2
(u2)x = −(g(uxx)uxx)xx (5.2.2)

They proved that smooth traveling wave solution of (5.2.2) does not exist for

sufficient large jump height. Following the ideas of Catte, Lions, Morel and Coll
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[19] to study ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇ = ∇ · (g(|∇Gσ ∗ u|∇u
)

on (0, T ) × Ω

∂u
∂ν

= 0 on (0, T ) × Γ

u(x, 0) = u0(x)

(5.2.3)

it is possible to prove the well posedness of regularized You-Kaveh PDE

u̇ = ∆
(
g(|∆(Gσ ∗ u)|)∆u

)
(5.2.4)

with L2 initial condition and homogeneous Neumann boundary. Here Gσ is Gaus-

sian filter.
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Chapter 6

Numerical experiments

In this chapter, we use finite difference method to solve evolutionary PDEs and

compare the processing results of different PDEs.

6.1 Second order method

We first describe the explicit finite difference method of second order evolutionary

PDEs.

6.1.1 Explicit finite difference method in 1D

Let uk
i = u(i∆x, k∆t), ∆fu

k
i = (uk

i+1 − uk
i )/∆x, ∆bu

k
i = (uk

i−1 − uk
i )/∆x, Ck

fi
=

g(|∆fu
k
i |2), Ck

bi
= g(|∆bu

k
i |2). Then the explicit finite difference discretization of

(3.1.1) with R = I is

uk+1
i − uk

i

∆t
=

1

∆x
(Ck

fi
∆fu

k
i − Ck

bi
∆bu

k
i ) + λ(uk

i − hk
i ) (6.1.1)

In order to make sure the stability of the scheme, we need that ∆t/(∆x)2 ≤ 1
2
.
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6.1.2 Explicit finite difference method in 2D

Let ∆x = ∆y, uk
i,j = u(ih, jh, k∆t),

∆Euk
i,j = (uk

i+1,j − uk
i,j)/∆x, ∆W uk

i,j = (uk
i−1,j − uk

i,j)/∆x

∆Nuk
i,j = (uk

i,j+1 − uk
i,j)/∆x, ∆Suk

i,j = (uk
i,j−1 − uk

i,j)/∆x

(6.1.2)

and

Ck
Ei,j

= g(|∆Euk
i,j|2), Ck

Wi,j
= g(|∆Wuk

i,j|2)

Ck
Ni,j

= g(|∆Nuk
i,j|2), Ck

Si,j
= g(|∆Suk

i,j|2)
(6.1.3)

Then the explicit finite difference discretization of (3.1.1) with R = I is [32]

uk+1
i,j −uk

i,j

∆t
= 1

∆x
(Ck

Ei,j
∆Euk

i,j − Ck
Wi,j

∆W uk
i,j)

+ 1
∆x

(Ck
Ni,j

∆Nuk
i,j − Ck

Si,j
∆Suk

i,j) + λ(uk
i,j − hk

i,j)

(6.1.4)

The stability of the scheme requires that

∆t/2(∆x)2 ≤ 1

2
(6.1.5)

A semi-implicit scheme was proposed by Weickert [95]. It is stable even the time

step and space step do not satisfy (6.1.5). Numerical experiments are carried out

in one space dimension and two space dimension. The denoising results of three

diffusion function are compared. They are g(s2) = 1√
1+(s/k)2

, the minimal surface

diffusion function; g(s2) = arctan(s/k)
s

, the Tumblin-Turk diffusion function; and

g(s2) = 1
1+(s/k)2

, the Perona-Malik (You-Kaveh) diffusion function. The first two

satisfies the conditions (3.1.2), while the third one does not.
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6.1.3 Smoothing one dimensional signal

The original signal is a trapezoidal (Fig.6.1).
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Signal with Gaussian noise, µ = 0.0; σ = 0.5
Original Signal

Figure 6.1: Original and noisy trapezoidal Signal
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Perona−Malik diffusion k = 0.1; t = 10

Figure 6.2: Denoising results at t = 10, from left to right Minimal surface,

Tumblin-Turk, Perona-Malik diffusion function

6.1.4 Smoothing Lena image

Now, let’s take a look at the denoising results on Lena image.
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Figure 6.3: Denoising results at t = 25, from left to right Minimal surface,

Tumblin-Turk, Perona-Malik diffusion function
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Figure 6.4: Denoising results at t = 50, from left to right Minimal surface,

Tumblin-Turk, Perona-Malik diffusion function
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Figure 6.5: Denoising results at t = 100, from left to right Minimal surface,

Tumblin-Turk, Perona-Malik diffusion function
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Figure 6.6: Denoising results at t = 500, from left to right Minimal surface,

Tumblin-Turk, Perona-Malik diffusion function

Original Image Degraded image

Figure 6.7: Left: original Lena image; right: Lena image degraded by Gaussian

noise σ = 30
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Second order MS Second order TT0

Figure 6.8: Denoised image with Minimal surface (k = 1.5) and Tumblin-Turk

(k = 1) diffusion function at t = 15

Second order PM Linear Denoising

Figure 6.9: Denoised image with Perona Malik (k = 8) diffusion at t = 25 and

linear diffusion at t = 4, i.e. Gaussian smoothing with σ = 2
√

2
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Second order MS Second order TT0

Figure 6.10: Denoised image by Minimal surface (k = 1.5) and Tumblin-Turk

(k = 1) diffusion function at t = 25

6.2 Fourth order method

Now let’s describe the finite difference scheme of fourth order evolutionary PDEs.

We only consider the case in Section 4.3 with Φ1(·) = 0 and g(s2) = Φ′(s)
s

.

6.2.1 Explicit finite difference method in 1D

Let uk
i = u(i∆x, k∆t), ∆uk

i = (uk
i+1 +uk

i−1 − 2uk
i )/(∆x)2. Then the explicit finite

difference discretization of (4.3.1) in 1D is

uk+1
i −uk

i

∆t
= 1

(∆x)2
(g(|∆uk

i+1|2)∆uk
i+1 + g(|∆uk

i−1|2)∆uk
i−1

−2g(|∆uk
i |2)∆uk

i ) + λ(uk
i − hk

i )

(6.2.1)
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6.2.2 Explicit finite difference method in 2D

Assume ∆x = ∆y, let uk
i,j = u(ih, jh, k∆t),

∆uk
i,j = (uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j)/(∆x)2, (6.2.2)

and

Ck
i,j = g(|∆uk

i,j|2∆uk
i,j (6.2.3)

Then the explicit finite difference scheme of (4.3.1) with Φ1(·) = 0 is

uk+1
i,j −uk

i,j

∆t
= 1

(∆x)2
(Ck

i+1,j + Ck
i−1,j + Ck

i,j+1 + Ck
i,j−1 − 4Ck

i,j))

+ λ(uk
i,j − hk

i,j)

(6.2.4)

6.2.3 Smoothing one dimensional signal

The same 1D signal in 6.1.3 is being used.
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Figure 6.11: Fourth order PDE smoothing results for k = 1 at t = 50, from left

to right, Minimal surface, Tumblin-Turk, You-Kaveh diffusion function.

6.2.4 Smoothing Lena image

Again, we choose Lena image as our test image.
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Figure 6.12: Fourth order PDE smoothing results for k = 1 at t = 500, from left

to right, Minimal surface, Tumblin-Turk, You-Kaveh diffusion function.
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Figure 6.13: Fourth order PDE smoothing results for k = 1 at t = 5000, from

left to right, Minimal surface, Tumblin-Turk, You-Kaveh diffusion function.

Forth order MS Forth order TT Forth order PM

Figure 6.14: Fourth order PDE smoothing results for k = 1 at t = 100, from left

to right, Minimal surface, Tumblin-Turk, You-Kaveh diffusion function.
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Forth order MS Forth order TT Forth order PM

Figure 6.15: Fourth order PDE smoothing results for k = 1 at t = 500, from left

to right, Minimal surface, Tumblin-Turk, You-Kaveh diffusion function.

Forth order MS Forth order TT Forth order PM

Figure 6.16: Fourth order PDE smoothing results for k = 1 at t = 1000, from

left to right, Minimal surface, Tumblin-Turk, You-Kaveh diffusion function.

158



6.3 Conclusion

From the figures presented before, we know that the longer the diffusion time,

the smoother the denoised signal. Perona-Malik diffusion function does not sat-

isfy (3.1.2), hence we don’t expect that it has a global solution in time [96, 8],

but in practice, the only noticeable drawback of it is the staircase effects. The

reason is that a standard discretization serves as a regularizer [96, 8]. The second

order nonlinear diffusion equations do perform better than linear diffusion, they

preserves edges much better than Gaussian smoothing. But we also notice that

the second order method has staircase effects. For different functions g(·), the

numerical results are very different. Especially in 1D, the result of Tumblin-Turk

function is smoother than minimal surface function and Perona-Malik function.

From theorem 3.4.6, we know that the solutions of the first two are in the space

of functions of bounded variation, the different smoothing behaviors are due to

the different nonlinear properties of them.

The fourth order PDEs take a much longer diffusion time to smooth signals

and images and the computation cost of solving fourth order PDEs is much higher

than solving second order PDEs. In case that the diffusion functions derived from

convex functions which satisfy assumptions in Section 4.1, the smoothing results

will be in W 1,p for any diffusion time t > 0 as we studied in Chapter 4. Hence

they do not keep edges as sharply as the second order PDEs, but they do not

produce staircase effects either. For diffusion functions derived from non-convex
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functions such as You-Kaveh diffusion functional 1.1.21, there are speckles in the

smoothing results for smaller k and relatively short diffusion time. The edges do

not preserve as well as second order methods if we increase diffusion time and

parameter k. You and Kaveh proposed [99] average method to post-process it to

eliminate the speckles.
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