A Comparison of Transfer Learning Algorithms for Defect
and Vulnerability Detection

Ashton Webster
University Of Maryland, College Park
ashton.webster@gmail.com

ABSTRACT

Machine learning techniques for defect and vulnerability de-
tection have the potential to quickly direct developers’ atten-
tion to software components with faulty implementations.
Effective application of such defect prediction methods in
practical software development environments requires trans-
fer learning algorithms so that models built using exist-
ing projects can recognize defects as they emerge in a new
project. Up until this study, comparing the efficacy of trans-
fer learning algorithms was challenging because previous
studies used differing data sets, baselines and performance
metrics. By providing open source implementations and
baseline performance metrics for several transfer learning
algorithms on two different data sets, our project offers soft-
ware engineers the tools to objectively compare methods and
readily identify top performing transfer learning algorithms
in the domain of both vulnerability and defect prediction.

1. INTRODUCTION

Detecting vulnerabilities and defects in software pro-
grams is as important as it is expensive. The IBM Sys-
tem Science Institute found that the relative cost of fixing
a bug during testing was 15 times higher than during de-
sign, while fixing a bug during maintenance costs 100 times
more than fixing it during project design [3]. Similarly, it is
clear that the longer a vulnerability remains undetected, the
more likely it is to be exploited by an attacker. The most
common method of preventing defects and vulnerabilities
is currently testing and code reviews. While these methods
provide many benefits, they rarely detect all code issues, and
are usually time and resource expensive. Therefore, many
researchers have considered the possibility of using software
metrics or language specific tokens along with machine learn-
ing techniques to identify specific code components likely to
contain bugs. This technique can be used in conjunction
with code reviews, so that the models created “suggest” files
for the developers to consider during review. The benefit is
often considerable, as more of the time taken by reviewers
can be spent on code that is actually defective, instead of
searching randomly without guidance. For example, Stuck-
man has found that nearly 80% of vulnerabilities in a code
base can be identified in this manner while only inspecting
20% of the total files [21].

However, this approach still has its drawbacks. The
main challenge is that in order to use the machine learning
approach, one needs to have access to a (preferably large) set
of programs with labeled vulnerabilities and defects. While
labeled datasets exist, they may be from projects in com-

pletely different domains than the project being developed.
It is not clear whether this “cross-project” data will be rel-
evant for labeling the target project. This is where a tech-
nique called transfer learning can be used: by taking a set
of potentially unrelated, labeled “source” domains and creat-
ing a model which can predict on a new, unlabeled “target”
domain. This method is more general than identifying de-
fects or vulnerabilities across projects; in general, transfer
learning algorithms are domain agnostic.

This technique has significant value, as being able to
use a previously curated dataset from unrelated projects,
efficiently find the relevant data, and predict the vulnerabil-
ities or defects on a new project has time and effort saving
value for developers. Unfortunately, it has not been clear
which transfer learning algorithms are best suited for this
task. Additionally, many transfer learning algorithms are
explored and compared in various papers, but rarely have
open source implementations that can be easily used in prac-
tice [9, 14,16, 20, 22]. The goal of the current study is to
rectify these previous limitations by providing open source
implementations of several transfer learning algorithms and
comparing their performance on two public datasets.

The rest of this paper is organized as follows: first,
section 2 provides a background on various approaches to
solving this problem. Next, in section 3, a brief summary
of the selected transfer learning algorithms is provided (sec-
tion 3.1), along with the baselines, and performance metrics
(section 3.2). Then, the experiment is defined and conducted
(section 4). Finally, discussion (section 5), conclusions (sec-
tion 6), and future work are outlined (section 7).

2. BACKGROUND

There are three main approaches for transfer learning
which rely on different fundamental assumptions about the
“problem” of predicting on a target domain. If we assume
that there is only a small subset of the existing source do-
main that is similar to the target domain, then we might
use the filtering approach, which seeks to eliminate irrele-
vant source domain data from the training set. Instead, if
we believe that the source domain and the target domain
are not similar, but can be made more similar by various
transformations to the feature space, then this leads us to
the idea of normalization. Finally, if we assume that each
instance of the target domain might benefit from prediction
based on a different subset of the available training source
data, then ensemble methods are a logical choice, because
multiple classifiers are used depending on the given test in-
stance to be classified. Additional details and examples of

these approaches are provided in the following sections.

2.1 Filtering Methods

Several popular methods use a filtering methodology,
using only “relevant” training examples. Turhan proposed
the “Burak” (Nearest Neighbors) algorithm [22], which finds
the closest training instances (from any project) to each test
instance. In [20], this method is compared to the “Peters”
filter, which flips the idea and focuses on finding the closest
test instance to each training instance. Although it remains
rare to see studies analyzing the performance of vulnerabil-
ity detection, Yamaguchi, Lindner, and Rieck demonstrate
that PCA can be used to effectively find the instances most
similar to vulnerable files and flag these for inspection [24].
Another idea, proposed by Fukushima, Kamei, and Mcln-
tosh, is is to filter away projects (instead of individual is-
ntances) that are not similar to the test project based on
correlation of predictors and dependent variables [6]. The
common thread in these methods is the decision to com-
pletely ignore certain training instances or entire projects
that are determined to be irrelevant to the prediction task
at hand.

2.2 Normalization/Weighting Methods

Normalization methods can be used to bring test and
training projects into a similarly distributed feature space.
For example, Nam, Pan, and Kim use a method called
TCA+ (Improved Transfer Component Analysis) to project
the target and source domain data to a common feature
space where classification can be performed. Similarly,
Minku, Sarro, Mendes, and Ferrucci suggest a method
called Dycom which is used which to scale effort estimations
from one project and apply them to other projects [16].
Another technique, somewhat related to normalization,
is weighting training instances based on similarity to test
instances. Ma, Luo, Zeng, and Chena found this method
helpful in creating priors for the Naive Bayes classifier from
other source projects and using them to predict on target
projects [13].

2.3 Ensemble methods

Ensemble methods are one popular idea in the field
of transfer learning for defect and vulnerability detection.
These methods create multiple “weak learners” from a sub-
set of the training data or features and use different vot-
ing, averaging, or clustering methods to produce predic-
tions. One method is the “Cluster-Then-Label” idea, which
involves creating groups of data around test instances, train-
ing classifiers within each group, and then labeling the in-
stances using the multiple created models. A simple im-
plementation of this method using K-means clustering has
already already been used in intrusion detection with high
success levels [10]. For example, Menzies et al. propose a
two-step process consisting of a clustering function named
WHERE and a rule-learning function named WHICH, fo-
cusing on human-readable and understandable output [14].
Additionally, Kamishima, Hamasaki, and Akaho use a mod-
ified bagging algorithm called TrBagg, which creates many
weak learners by repeatedly resampling the dataset using a
technique known as “Bagging” [9]. Several methods are pro-
posed on how to recombine the predictions of the individual
classifiers generated by TrBagg to produce very accurate
predictions in different contexts.

2.4 Limitations

Despite the considerable body of work available on
various different transfer learning algorithms, several chal-
lenges remain. While many options are available, it is not
clear which transfer learning algorithms are the best because
they are not compared with consistent performance metrics.
Additionally, many of these algorithms were created for the
domain of defect prediction, and it is not clear whether they
can also be useful for vulnerability detection. Unfortunately,
practical usage of these algorithms is currently difficult be-
cause few of the previously mentioned papers provide an im-
plementation of their prescribed methods. This work seeks
to resolve some of these shortcomings by comparing sev-
eral transfer learning algorithms on the same dataset with
a variety of performance metrics. Furthermore, based on
the descriptions from these papers, the algorithms are im-
plemented and provided as open-source code. These con-
tributions will benefit researchers and practitioners alike;
researchers will benefit from a set of uniformly compared
baselines while developers will benefit from easily accessible
off-the-shelf algorithms and recommendations of the highest
performers.

3. EXPERIMENT DESIGN

The main goals of this paper are threefold: (a) to con-
tribute an open-source, well-documented implementation of
several transfer learning algorithms proposed in other pa-
pers; (b) to provide baseline benchmarks for transfer learn-
ing algorithms on multiple datasets; and (c) to analyze the
results of the benchmarking and determine the best per-
forming algorithm. The primary question being answered
is whether the performance of any transfer learning meth-
ods significantly outperforms the baselines, where baselines
will be defined as simple, non-transfer learning methods of
prediction.

To achieve these goals and answer the research ques-
tion, we define the following experiment design. Each exper-
iment consists of assigning one project as the target project
and the others as source projects. This is analogous to the
situation where a developer has no available training data
within the project he or she is working on, but has an exist-
ing labeled dataset from other projects. Each transfer learn-
ing algorithm is applied and evaluated on this test project.
For the PHP Vulnerability Dataset, both metrics and token
features are evaluated separately. This is repeated once with
every project as the target project. So, for example, if we
have labeled projects A, B, and C, we first take A and B as
the source projects and treat C as the target project. After
each transfer learning algorithm and baseline is applied and
evaluated, B, followed by A, are used as the target projects,
with the others as source projects. Note that because the
training set is exclusively from the source projects, the terms
“source projects” and “training set” are equivalent in this
work, but not in general, as the target project might have a
subset of previously labeled files that is also used for train-
ing. Similarly, “target project” and “test set” are equivalent
in this work, but not in general.

To perform this experiment several components are
needed; namely transfer learning algorithms and baseline
techniques for comparison, datasets, and performance
metrics. Transfer learning algorithms were implemented
manually as an initial step. Five transfer learning algo-

rithms (Burak, Peters, Cluster-Then-Label, TrBagg, and
Gravity Weighting) along with two baselines techniques
(Inspection Baseline and Source Baseline) were selected and
implemented in Python, with the source made available at
an open source repository *. For the datasets, one dataset
(PROMISE) was selected for defect prediction, and another
(PHP vulnerability dataset) was selected for vulnerabilities.
Finally, performance metrics were defined for the purpose of
comparing the transfer learning algorithms. The following
sections describe these experimental components and how
they were developed.

3.1 Algorithms Implemented

Five transfer learning algorithms are implemented and
tested in this study and compared to two baselines. The se-
lection of transfer learning algorithms was based on some
intuitively beneficial aspects. Algorithms with a history of
success in defect or vulnerability detection were preferred.
Additionally, an attempt was made to select algorithms us-
ing disparate techniques. For example, we have filtering al-
gorithms (Burak, Peters, and Cluster-Then-Label), ensem-
ble methods (TrBagg), and weighting/normalization meth-
ods (Gravity Weight).

Random Forest is used for all classification tasks based
on its high performance in a variety of tasks as explained
in [2], and specifically for its high performance in in defect
prediction [12]. All transfer learning algorithms were imple-
mented in Python, and the scikit-learn [19] library was used
for its implementation of Random Forest and several other
convenience functions. A brief explanation of the details and
implementation for each algorithm follows.

3.1.1 Burak

This simple filtering algorithm was first proposed by
Turhan [22]. For every target test instance, the closest k in-
stances from any other project are selected for the training
data. In line with the original experiment [22] and the repli-
cation [20], we set k = 10 for our experiment. This method
is also known as the “Nearest Neighbors” method.

Because this method requires computing the distance
from every instance to every other instance, it can be compu-
tationally expensive. An approximation proposed by Men-
zies (and used in this study) is to first run k-means to cre-
ate “batches” of instances close to one another and then the
Burak Method within each batch [20]. The benefit of this
method is that the number of distance calculations is re-
duced from N? to Zf(n?, where N is the size of the train-
ing set, K is the number of clusters, and n; is the number
of instances in the ith cluster. For this study, the number
of batches was set at N/100, such that each cluster should
have approximately 100 instances.

3.1.2 Peters

Building off of the Burak filter, [20] proposes the “Pe-
ters” filter and demonstrates the benefits of letting training
data drive the process of training set selection. Instead of fil-
tering based on the training instances closest to a given test
instance, this method first groups by closest test instance
to each training instance and then filters away all but the

L All implemented transfer learning algorithms are available
with documentation at https://github.com/ashtonwebster/
tl algs

closest training instance for each test instance. In summary,
the process is:

1) For each train instance, find closest test instance.

2) For a test instance x;, let the set of training instances
be F, such that z; is the closest test instance for each
feF.,.

3) For each test instance z;, find the closest training in-
stance f; in F,, and include this in the training set.

4) The final set of F' = {fy...fn} is the filtered training
set.

Similar to above, the batching approximation method
is used for efficiency, but this time the number of batches is
N/30, such that the number of instances in each cluster is
approximately 30.

3.1.3 Cluster-Then-Label

Another simple approach to transfer learning is to
use the semi-supervised learning approach of “Cluster-Then-
Label.” The idea is to first cluster using an unsupervised
machine learning algorithm and then, within each cluster,
train a classifier within each cluster. New instances are then
labeled by first identifying the closest cluster (e.g. euclidean
distance to the metric vector) and classifying based on the
model trained on that cluster. The proposed benefit of this
method in the context of the fully supervised task of identi-
fying software defects and vulnerabilities is that the closest
training instances (potentially from several different source
domains) to the given test instance will provide the greatest
benefit to model performance. For our study, the K-means
algorithm was used with k& = 8 (i.e. 8 cluster centers were
used). This parameter selection was arbitrary, but addi-
tional research could provide empirical evidence to guide
better parameter selection.

3.1.4 TrBagg

TrBagg was first introduced by [9]. The main idea is
to take advantage of a machine learning technique known
as bagging. Training data is repeatedly sampled without
replacement to train many weak classifiers, which can then
be combined in different ways to produce a classification.
The main extension on weak classification contributed by
Kamishima is that the weak classifiers are only incorporated
to the ensemble if there is evidence to suggest that adding
the weak classifier will improve the ability of the overall
ensemble to classify instances of the specific target class.
Several heuristic methods were implemented, but we will
use the simplest form, which is simply standard bagging
from the entire available training set.

3.1.5 Gravity Weighting

Ma, Luo, Zeng, and Chena propose a “Transfer Naive
Bayes” algorithm which relies on gravitational weight-
ing [13]. That is, training instances are weighted inversely
proportional to their distance from the test instances, based
on measure of similarity defined in the paper.

Specifically, Ma defines an indicator function h:

i) — 1if min; < ai; < maz;

(aij) =
0 else

where min; and maz; are the minimum and maxi-

mum value for feature j across all test instances, respec-

tively, and a;; is the value of feature j for training instance

https://github.com/ashtonwebster/tl_algs
https://github.com/ashtonwebster/tl_algs

i. Intuitively, h is an indicator function which determines
whether a;; is within the range of values of the test instances
(min; is the bottom of this range for the feature, max; is the
top). Then, using this A function, the number of “similar”
features for instance i, denoted s;, can be computed:

k

si =y hlai;)

j=1

Finally, the weighting measure is computed:

Si

k—s;+1

Where k is the total number of features. This gives
a weight on [0, 1], with higher weights assigned to instances
with more features in the range of values of the test features.

Although this weighting is proposed for creating a
prior distribution for the Naive Bayes classifier, in this study,
it is used in as an instance weight parameter for Random
Forest.

3.1.6 Baselines

There are two baselines which will be used for com-
parison:

W; =

e “Inspection Baseline”: If we assume a uniform distri-
bution of vulnerabilities throughout the code base, it
is expected that looking at X% of the code will reveal
approximately X% of the vulnerabilities. This can be
thought of as the random approach, where the code
reviewer simply inspects files at random. No machine
learning is used, making this the most naive option.

e “Source Baseline”: All available source project data is
used, with no additional filtering, weighting, or other
special techniques.

Returning to our example, let’s suppose we have two
source projects A, B, and a single target project C. For the
Inspection Baseline, we ignore A and B completely and just
consider C'. We then take in the inspection ratio as a param-
eter. This parameter represents the maximum proportion of
the dataset to be inspected. Based on this parameter, the in-
spection ratio simply randomly samples the given proportion
of C and flags these files as vulnerable or defective. In expec-
tation, this should correctly identify a proportional number
of vulnerabilities or defects. Obviously this is a very naive
baseline, but it represents the performance floor of random
guessing. For the Source Baseline, we build a classifier using
just the data from A and B, with no other special transfer
learning methods, and simply predict on C. This baseline is
far less trivial to outperform, as demonstrated by the results
of this study.

3.2 Datasets

Two datasets were used for this study. First, we exam-
ine the dataset publicly available from the PROMISE repos-
itory [8], which contains 34 projects. This dataset included
20 different software engineering metrics per file (such as
Lack of Cohesion and Average Cyclomatic Complexity) in
addition to the number of defects in the file. The number of
defects in the file was changed to be a binary field such that
the value was zero if no defects were present and one other-
wise. In all, this dataset contains 87,399 files of which 14,623

Project Total Vulnerable Percent Vul-
Files Files nerable

Drupal 200 62 31.0%

Moodle 2942 24 0.82%

phpMyAdmin 321 27 8.41%

Table 1: Comparison of number of vulnerabilities in
PHP projects

contained at least one defect. The purpose of the PROMISE
dataset was to evaluate the transfer learning algorithms on
a well known defect dataset used in many previous studies,
including [1,7,11,13,20].

The second dataset used is a publicly available dataset
created by Walden et al. from three web-based PHP projects
[23]. This dataset identifies the number of vulnerabilities
per file based on security announcements from the National
Vulnerability Database [18] and from project specific pages.
Three projects were considered: Moodle, phpMyAdmin, and
Drupal, all of which are open source and web based. Both
software metrics (though not all the same as the PROMISE
dataset) and tokens (vectors indicating which PHP language
tokens were present) were available for each file. In total,
there were 3,465 files with 113 vulnerabilities. Note that
the distribution of vulnerabilities across the projects was far
from uniform. In particular, Moodle had the lowest fre-
quency of vulnerabilities, while Drupal had the highest. See
Table 1 for more details.

3.3 Performance Metrics

With the datasets and the methods defined, it is im-
portant to consider how we will go about comparing the per-
formance of the methods on the datasets. There are many
available metrics for defect prediction which may extend to
vulnerability detection. Accuracy, although simple, is not
frequently used due to class skew (i.e. the number of vulner-
able or defective instances is far outnumbered by the number
of non-vulnerable instances). For example, simply labeling
all Moodle instances as benign (no vulnerabilities) will re-
sult in an accuracy of 99.16% percent, because only 0.84%
of the total files are vulnerable. Clearly, this is not a good
estimate of the performance of the classifier.

Recall is on of the most popular performance metric
selections for defect and vulnerability detection; that is, the
proportion correctly identified positive instances (i.e. defects
or vulnerabilities) detected out of all positive instances. The
complimentary measure, precision, is often used to assess
the proportion of identified positive instances that are actu-
ally positive instances. F-measure (also known as F1 Score
or F Score) is also frequently used, which incorporates the
geometric mean of precision and sensitivity. However, Men-
zies suggests that when the number of positive instances is
relatively small compared to total instances, the variability
of precision measures results in instabilities in the measure,
and can often make the precision (and in turn, F-measure)
performance metrics less useful [15]. In [20], the F-measure
is therefore replaced with the G-measure, which removes the
dependence on precision by instead incorporating the false
positive rate.

For this study, we use a measure proposed by Stuck-
man in [21], who suggests the measure Area Under Cost
Efficiency Curve (AUCEC). The curve is given as follows:

AUCEC and AUEC

o
@ |
=
© |
(=
o
<
=]
s AUCEC
AUEC
=
o | | I I
0.0 0.2 0.4 0.6 0.8 1.0
IR

Figure 1: Diagram illustrating the AUCEC measure.
Replicated from Figure 4.1 in [21].

Where recall is given as:

p_ TP
TP+ FN
“Inspection Ratio” is given as:

TP+ FP
TP+ FP+ FN+TN

Where TP is True Positives, F'N is False Negatives,
F'P is False Positives, and T'N is True Negatives. Intuitively,
IR represents the proportion of total files in the project
that would have to be inspected in order to find the positive
instances identified by the model.

Often, the AUCEC50 measure is used instead of
AUCEC, which measures only the area under the curve up
to 50% inspection ratio. This captures the most “useful”
part of the classification, because most companies are not
interested in a method that flags more than 50% of the
codebase for inspection in order to find vulnerabilities. As
in [21], we follow this precedent.

AUCECS50 primarily focuses on the number of vul-
nerabilities found per file inspected, which is the goal we
are trying to optimize. It is also resistant to class skew,
which is present in this field especially (vulnerable files tend
to be considerably outnumbered by non-vulnerable files,
with a similar pattern exhibited for defects). Furthermore,
AUCECS50 incorporates the fact that most classifiers
produce an intermediate, continuous confidence level which
is converted into a binary prediction. Instead of only
observing the prediction itself, AUCEC50 implicitly varies
the prediction confidence threshold from 0 to 1 to obtain
inspection ratio’s between 1 and 0, respectively. Specifically,
if the confidence threshold is 0, then everything will be
classified as vulnerable, and everything will be inspected.

IR =

Meanwhile, if the threshold is set at 1, then only the subset
of files with the highest likelihood of vulnerability will
be inspected (which should be very small). Practitioners
can pick a confidence value that maximizes recall and
minimizes the number of files inspected in this manner.
Based on these benefits, AUCEC50 is used throughout the
rest of this paper as the primary metric for comparison of
algorithms. However, in order to allow for comparison with
results of other, more frequently used metrics, we include
several other supplemental metrics, including F-measure,
G-measure, Recall, and Inspection Ratio.

4. RESULTS

In order to determine if the difference between transfer
learning algorithm performance is greater than what would
be expected due to chance, we use the Friedman test [5].
The Friedman test uses the null hypothesis that the ob-
served difference between the classification methods is sim-
ply due to randomness, similar to the ANOVA test. How-
ever, ANOVA relies on assumptions of normality, homogene-
ity, and sphericity of variance, which do not hold in practice
in this domain [4]. The Friedman test avoids the normality
assumption by using relative rankings. The Friedman test is
proposed as a good test for comparison of multiple machine
learning methods on a fixed dataset, and is the primary test
used in a similar study performed by Lessman et al. [12]. If
the Friedman test reveals that the difference between per-
formance of the classifiers is not due to random chance, then
the post-hoc Nemenyi test can be used to identify the subset
of classifiers which significantly outperform the others [17].

One chief concern when using machine learning algo-
rithms (and similarly for transfer learning algorithms), is
to avoid owerfitting, where hyperparameters are tuned with
respect to the test set to give artificially high performance
at the expense of not generalizing well to new datasets. To
allay this concern, a validation dataset was used which con-
sisted of a 20% random sample of the Drupal dataset in
order to tune several hyperparameters for the Random For-
est classifier and the transfer learning algorithms. Tests on
this validation set (which was not used in any of the ac-
tual experiment test or training sets) revealed that setting
the number of trees to 100 (from the default of 20) lead to
significant improvement in the Random Forest classification
accuracy.

Interestingly, validation set experimentation with the
TrBagg algorithm revealed that using the simplest method
(no filtering of weak learners) produced the best results for
the Drupal dataset. Often, using the filtering approaches
when bagging resulted in training sets that were too small to
be useful. Therefore, the simplest method explained above
was used. Further research is needed to determine which
TrBagg heuristic method performs the best over a larger
number of contexts, but from now on in the paper, the reader
should assume “TrBagg” refers to the simplistic bootstrap-
ping technique with no additional voting.

For the actual experiments, we show three different
figures which show the main comparisons of different meth-
ods:

e A chart (of the type first proposed by [4]) showing the
pairwise comparisons of the Nemenyi post-hoc test for
average rank (used to demonstrate which classifiers are
significantly outperforming the others).

e An example of a single projects AUCEC50 curve,
showing the trade off of IR (inspection ratio) and R
(recall).

e A table of the top ten classifiers ranked by descending
AUCEC50 values, with popular performance metrics
such as F-measure, G-measure, recall, precision, accu-
racy, and several others.

We begin with a comparison of transfer learning
methods in the context of defect prediction using the public
PROMISE dataset. We then move on to a comparison of
transfer learning methods for vulnerability detection on the
PHP Vulnerability Dataset. For the PHP Vulnerability
Dataset, we consider the two different input formats for
each experiment (metrics and tokens) separately.

4.1 PROMISE

PROMISE Metrics - Method vs Average Rank

—— TrBag
~— Source_Baseline
~—— GravityWeight
-— ClusterThenLabel
~— Burak

Peters

Average Rank

Figure 2: The average rank graph (illustrating the
post-hoc Nemenyi test). Each line corresponds to
a measure of the average rank for the algorithm.
The leftmost point on each line is the actual aver-
age rank across all projects; the line itself represents
the critical difference, which is the minimum amount
by which other projects’ average ranks must differ
to be considered significantly different). The dotted
grey is added to illustrates that projects to the left
(TrBagg and Source Baseline) are significantly out-
performing the other algorithms because the others
have ranks higher (i.e. worse) than the critical dif-
ference.

First, we consider the table of top models by descend-
ing AUCECS50 score in Table 2. Notice that Source Baseline
(the method of training on all available source projects with
no transfer learning) and TrBagg (the method using resam-
pling to create an ensemble of classifiers) make up most of
the top 10, and tend to have very similar performance within
the same projects. The top 10 classifiers serve as a baseline
for several performance measures on this dataset. To better
understand how the AUCEC50 values in this table are com-
puted, the AUCEC curve for the Tomcat project is demon-
strated in Figure 3. Each curve in this graph represents a
transfer learning algorithm or a baseline. Each point on the
curves gives information about the tradeoff of proportion

Performance Metric Peters - Burak

Difference

G Measure -0.021
AUCEC50 -0.020
F-measure -0.028
FP Rate -0.024
Recall -0.038
Precision -0.016
Accuracy 0.000

Rank 1.000

Table 3: Median difference of several performance
metrics for Burak and Peters methods. Positive val-
ues indicate that the Peters algorithm outperformed
the Burak algorithm, while negative values indicate
the opposite.

of code inspected and proportion of defects detected. For
example, when 20% of the code base is “recommended” for
review (i.e. classified as defective, seen as .2 on the inspection
ratio axis), the Source Baseline correctly identifies approxi-
mately 60% of the total vulnerabilities. For this project, all
methods appear to be outperforming the “inspection base-
line”, indicated by the straight diagonal line from the origin
(which comes from the assumption that random inspection
of N% of the files should detect approximately N% of the
defects). The AUCECS50 score (representing the area un-
der this curve from 0 to 50% inspection) for the Tomcat
project for the source baseline is 0.566, which is more than
two times higher than the AUCEC50 score for the inspection
ratio, which is always .250.

By applying the Friedman test, we conclude that the
differences in transfer learning methods for the PROMISE
dataset are not solely due to chance because the p-value is
less than .0001. The average rank graph in Figure 2, demon-
strating the Nemenyi post-hoc test, shows that TrBagg and
the Source Baseline methods outperform the Cluster-Then-
Label, Burak, and Peters algorithms (but not the Gravity-
Weight algorithm).

As a short aside, we note that these results seem to
be different from those found in [20], which assert that the
Burak filter outperforms the Peters filter by a median of
40% using the G-measure on the PROMISE dataset using
metrics. However, Table 3 reveals a -2% median difference
between Peters and Burak in AUCEC50 (that is, Peters has
an AUCEC50 .02 lower than the Burak filter). The Peters
Filter also outperforms the Burak filter in other measures
of success; for example, the median F-measureure for the
Peters filter is 2% lower and the AUCECS50 score is about 3
percent lower than the respective scores for the Burak filter.
Furthermore, the Burak and Peters filter are both signifi-
cantly outperformed by the Source Baseline method (which
simply uses all available training data without filtering at
all). While [20] did use the same dataset (PROMISE), one
major difference in the implementation of the experiment
was that projects with more than 100 instances were used
for training and projects with less than 100 instances were
used for testing. This experiment does not make that dis-
tinction. Additionally, different batching values were used
(Peters used batches of size approximately 10, while we use
larger batches, which should give more accurate distance fil-

Function Name Test Proj. Name IR Recall Prec. Accuracy F-measure AUCEC50 G

TrBagg E-Learning 0.188 0.600 0.250 0.828 0.353 0.637 0.386
Source Baseline E-Learning 0.188 0.600 0.250 0.828 0.353 0.600 0.386
TrBagg Berek 0.186 0.438 0.875 0.767 0.583 0.576 0.917
TrBagg Tomcat 0.199 0.610 0.275 0.821 0.379 0.572 0.414
Gravity Weight Tomcat 0.199 0.610 0.275 0.821 0.379 0.570 0.414
Source Baseline Tomcat 0.199 0.558 0.251 0.811 0.347 0.566 0.387
TrBagg Serapion 0.200 0.556 0.556 0.822 0.556 0.563 0.684
Burak Serapion 0.200 0.444 0.444 0.778 0.444 0.561 0.586
Gravity Weight InterCafe 0.185 0.500 0.400 0.815 0.444 0.556 0.548
Burak InterCafe 0.185 0.500 0.400 0.815 0.444 0.556 0.548

Table 2: Top 10 Classifiers by Descending AUCECS50 score with selected performance metrics for the

PROMISE dataset

tering). Further research is required to determine if other
variables intervened to result in inconsistent results between
our studies.

4.2 PHP Vulnerabilities

PHP Vuln. Metrics - Method vs Average Rank

— TrBag

~— Source_Baseline

~—= Burak

~—— GravityWeight

+— ClusterThenLabel
Peters

Average Rank

Figure 5: PHP Metrics - average rank

For the PHP Vulnerability Dataset, the top 10 classi-
fiers by AUCECS50 are again provided in table 4. The top
10 classifiers were almost entirely created on the Moodle
dataset, which might be explained by the fact that Moodle
had the smallest proportion of vulnerable files at 0.84%. An
example AUCECS50 curve is provided as an example for the
Moodle project in Figure 4.

While there was a significant difference between trans-
fer learning methods in the PROMISE dataset, the Fried-
man test determines that the methods applied to the PHP
Vulnerability Dataset did not have a statistically significant
difference in performance for either metrics or tokens (the p
values were 0.1746 and 0.3992 for metrics and tokens, respec-
tively). This is confirmed in Figures 5 and 6 (Nemenyi post-
hoc tests), where we see that all of the horizontal lines are
overlapping and therefore none of the average ranks among
the projects is greater than the critical difference necessary
for statistical significance. Note that the Nemenyi post-hoc
test is not actually appropriate here because the Friedman
test did not return a positive result, but the diagram is pro-
vided to aid the reader in understanding the negative result

PHP Vuln. Tokens - Method vs Average Rank

—— TrBag

~—— Source_Baseline

—— Peters

~—— Burak

—— ClusterThenLabel
GravityWeight

Average Rank

Figure 6: PHP Tokens - Nemenyi post-hoc test. In
all cases, we see that none of the average ranks for
the methods is significantly better than the others.

of the Friedman test.

S. DISCUSSION

We can now return to the question posed in the in-
troduction: Does the performance of any transfer learning
method significantly outperform the baslines?. With few ex-
ceptions, the Source Baseline method (simply using all of
the data available from other projects with no filtering) ap-
pears to perform at least as well as other methods. In most
cases, TrBagg and Cluster-Then-Label perform at a simi-
lar level to the Source Baseline as well. This appears to be
the case for both defect detection and vulnerability detec-
tion. Based on these facts and the results of the Friedman
and Nemenyi tests, we can conclude that none of the imple-
mented transfer learning methods significantly outperform
the Source Baseline for either vulnerability (as seen in the
PHP Vulnerability Dataset) or defect prediction (as seen in
the PROMISE dataset).

At first glance, this is an unsatisfying conclusion, but
two caveats are worth mentioning. First, there may exist
some transfer learning algorithm that was not tested on this
dataset that outperforms this baseline, and this study does
not prove that it is impossible to outperform the Source

10 ‘ Metrics

T —
— Source_Baseline
TrBag

Burak

Peters
GravityWeight
ClusterThenLabel
inspect all baseline

Recall

1.0

Inspection Ratio

Figure 3: An example of the AUCECS50 curve for the Tomcat project in the PROMISE dataset.

10 ‘ . Metrics ‘ _
/7—/ — Source_Baseline
TrBag
— [— — Burak
— Peters
0.8 / — GravityWeight
/ — ClusterThenLabel
/ — inspect all baseline
0.6
=
3
&
0.4}
0217
I/
[
|
0.0 I L I I
0.0 0.2 0.4 0.6 0.8 1.0

Inspection Ratio

Figure 4: Here we have an example AUCEC50 curve, which compares the proportion of code inspected
and the proportion of total vulnerabilities found. The methods are closely clustered but all outperform the

“inspect all” baseline, which represents code reviews of X% of the code revealing an expected X% of the
vulnerabilities.

Format Type Function Name Test Proj. 1R Recall Prec. Accuracy F-measure AUCEC50 G
Name
Metrics TrBagg Moodle 0.201 0.708 0.029 0.803 0.055 0.675 0.056
Metrics Source Baseline Moodle 0.187 0.625 0.027 0.815 0.052 0.658 0.053
metrics Gravity Weight Moodle 0.199 0.542 0.022 0.801 0.043 0.642 0.043
Tokens Burak Moodle 0.192 0.583 0.025 0.809 0.048 0.602 0.048
Tokens TrBagg Moodle 0.200 0.625 0.026 0.802 0.049 0.590 0.049
Tokens Gravity Weight Moodle 0.199 0.583 0.024 0.803 0.046 0.566 0.047
Tokens Source Baseline Moodle 0.190 0.583 0.025 0.811 0.048 0.561 0.049
Metrics Cluster-Then- Moodle 0.170 0.375 0.018 0.455 0.034 0.506 0.035
Label

Metrics Burak Moodle 0.172 0.417 0.020 0.827 0.038 0.475 0.039
Tokens Burak phpMyAdmin 0.193 0.407 0.177 0.792 0.247 0.464 0.292

Table 4: Top 10 Classifiers by Descending AUCECS50 score with selected performance metrics for the PHP

Vulnerability Dataset

Baseline. Second, the Source Baseline has high performance
in absolute terms and is not a trivial baseline (compared to,
say, the inspection baseline, which is significantly outper-
formed in all cases). In other words, it is still possible to
produce high performing classifiers without complex trans-
fer learning algorithms by simply using the Source Baseline
in this case.

One hypothesis as to why this may have occurred lies
in the tradeoff inherent in transfer learning: the idea is that
“irrelevant” training data is filtered away or discounted dur-
ing weighting; however, if the “irrelevant” training data turns
out to be relevant, this method is effectively reducing the
size of the training set, which will have negative implications
on the performance of the algorithm. The best performing
transfer learning algorithms and the Source Baseline tend to
use all of the data to some extent, while lower performing
methods tend to filter more aggressively. For example, the
Burak and Peters filters have filtered training sets that are,
at a maximum, the same size as the test set, and as the
test set is usually considerably smaller (a single project),
this has significant impact on the effectiveness of the classi-
fier. At least for the selected datasets, it appears the benefit
of transfer learning algorithms filtering, weighting, or clus-
tering on the training data was outweighed by the cost of
reducing the effective size of the training set.

It is interesting to note that while the PROMISE
dataset showed statistically significant differences between
the performance of the transfer learning algorithms, no
significant differences were discovered in the PHP Vul-
nerability Dataset. There are two possible conclusions
based on the results of the Friedman test: either (a) the
difference between the methods is purely due to chance
or (b) there exists a difference between the methods, but
the Friedman test lacks the statistical power necessary to
detect the difference. Support for the (b) can be found in
the considerably smaller number of blocks (projects) in the
PHP Vulnerability Dataset, which would drive test power
down. Furthermore, because the Friedman test uses relative
rankings instead of the normality assumption, it inherently
has less power in general than ANOVA tests. It is worth
noting that the number of blocks (projects to test on) in the
PHP Vulnerability Dataset is considerably smaller than the
number of projects in the PROMISE dataset, which makes
the power even lower. In [25], Zimmerman explains that

the Asymptotic Relative Efficiency (ARE, a measure of
relative power) reveals that the Friedman test has relatively
low power compared to other techniques. Therefore, more
labeled projects are needed to conclude which method
is best for vulnerability detection. Until then, Source
Baseline is a good option based on its simplicity and similar
performance to the other options.

The results from this study can now guide selection of
algorithm for cross project prediction and provide a base-
line for future transfer learning algorithms. For example, a
practitioner with access to a dataset mapping file features to
labels (vulnerable/not vulnerable or defective/not defective)
can now compute the same features on his or her (unlabeled)
project and use this study’s results to determine which trans-
fer learning algorithm to use (specifically, Source Baseline or
TrBagg are a good choice). Alternatively, a researcher who
has developed a new transfer learning algorithm can test the
performance of the algorithm on this dataset, repeat the sta-
tistical tests, and easily determine whether the new transfer
learning algorithm significantly outperforms the ones out-
lined in this study. Thus, this work has several practical
benefits.

6. FUTURE WORK

In the present work, it appears that the Peters algo-
rithm did not significantly outperform the Burak algorithm
in any case, which differs from the results found in [20].
Experiments are now being conducted to see if the previ-
ous experiment can be replicated exactly, and in what cases
the Peters and Burak algorithms have significantly different
performance.

Future work will also consider the addition of differ-
ent types of features which may contribute to better perfor-
mance. While many metrics and tokens are available, it is
worth considering more subjective features that underlie the
code components. For example, adding labels for different
data structures or coding patterns used by files could have
performance benefits for the transfer learning algorithms.
The idea is that conceptually similar components of the pro-
gram can be identified and used to improve classification of
vulnerabilities within those sections.

Finally, deconstructing the most useful features used
by the algorithms could provide insight into what aspects
of code contribute to faults in security and behavior. The

most useful features might be derived using feature subset
selection algorithms, which are available by design in many
machine learning algorithms. These insights could then be
provided to developers in order to encourage coding prac-
tices that minimize defects and vulnerability.

7. CONCLUSIONS

In this paper, open source implementations of state
of the art transfer learning algorithms were provided and
compared on two public datasets. The results demonstrate
that among the transfer learning algorithms, TrBagg and
Cluster-Then-Label are the best performers for both vul-
nerability and defect prediction, but no algorithm signifi-
cantly outperforms the Source Baseline. This suggests that
even seemingly unrelated projects may be useful for cross-
project defect and vulnerability prediction. In other words,
the Source Baseline is still a high performing option in prac-
tice, even if it theoretically does not perform well on certain
datasets where projects are vastly different.

Baselines provided by this paper can now be used to
compare new transfer learning approaches in a consistent
and easily understandable manner. These baselines can also
guide the selection of transfer learning algorithms for defect
and vulnerability detection in enterprise settings. It is hoped
these tools will benefit both developers and practitioners
seeking to more quickly and easily identify vulnerabilities
and defects.

8. ACKNOWLEDGMENTS

I would like to thank my advisor Dr. James Purtilo
for his considerable assistance with this project. I would
also like to thank Ryan Eckenrod for his many suggestions
and improvements to the contents of this paper.

9. REFERENCES

[1] N. Bettenburg, M. Nagappan, and A. E. Hassan.
Think locally, act globally: improving defect and effort
prediction models. pages 60-69, jun 2012.

[2] R. Caruana and A. Niculescu-Mizil. An empirical
comparison of supervised learning algorithms. In
Proceedings of the 23rd international conference on
Machine learning - ICML ’06, pages 161-168, New
York, New York, USA, jun 2006. ACM Press.

[3] M. Dawson, D. N. Burrell, E. Rahim, and S. Brewster.
Integrating software assurance into the software
development life cycle (SDLC). Journal of Information
Systems Technology & Planning, 3(6):49-53, 2010.

[4] J. Demsar. Statistical Comparisons of Classifiers over
Multiple Data Sets. The Journal of Machine Learning
Research, 7:1-30, 2006.

[5] M. Friedman. The Use of Ranks to Avoid the
Assumption of Normality Implicit in the Analysis of
Variance. Journal of the American Statistical
Association, 32(200):675-701, 1937.

[6] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita,
and N. Ubayashi. An empirical study of just-in-time
defect prediction using cross-project models.
Proceedings of the 11th Working Conference on
Mining Software Repositories - MSR 2014, pages
172-181, 2014.

[7] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang. An
investigation on the feasibility of cross-project defect
prediction. Automated Software Engineering,
19(2):167-199, 2012.

[8] M. Jureczko and L. Madeyski. Towards identifying
software project clusters with regard to defect
prediction. Proceedings of the 6th International
Conference on Predictive Models in Software
Engineering - PROMISE ’10, page 1, 2010.

[9] T. Kamishima, M. Hamasaki, and S. Akaho. TrBagg:
A simple transfer learning method and its application
to personalization in collaborative tagging.
Proceedings - IEEE International Conference on Data
Mining, ICDM, pages 219-228, 2009.

[10] B. Klimkowski. Analysis of a Semi-Supervised
Learning Approach to Intrusion Detection. PhD thesis,
University of Maryland, 2014.

[11] E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, and
J. W. Keung. When to use data from other projects
for effort estimation. In Proceedings of the IEEE/ACM
international conference on Automated software
engineering - ASE ’10, page 321, New York, New
York, USA, 2010. ACM Press.

[12] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking Classification Models for Software
Defect Prediction: A Proposed Framework and Novel
Findings. IEEE Transactions on Software
Engineering, 34(4):485-496, jul 2008.

[13] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer
learning for cross-company software defect prediction.
Information and Software Technology, 54(3):248-256,
2012.

[14] T. Menazies, A. Butcher, D. Cok, A. Marcus,

L. Layman, F. Shull, B. Turhan, and T. Zimmermann.
Local versus Global Lessons for Defect Prediction and
Effort Estimation. IEEE Transactions on Software
Engineering, 39(6):822-834, jun 2013.

[15] T. Menzies, J. Greenwald, T. Menzies, A. Dekhtyar,
J. Distefano, and J. Greenwald. Problems with
Precision : A Response to Comments on > Data
Mining Static Code Attributes to Learn Defect
Predictors *. 33(November 2015):7-10, 2007.

[16] L. Minku, F. Sarro, E. Mendes, and F. Ferrucci. How
to Make Best Use of Cross-Company Data for Web
Effort Estimation ? ESEM, (3), 2015.

[17] P. Nemenyi. Distribution-Free Multiple Comparisons.
PhD thesis, 1963.

[18] NIST. National Vulnerability Database (NVD).

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

[20] F. Peters, T. Menzies, and A. Marcus. Better cross
company defect prediction. In IEEE International
Working Conference on Mining Software Repositories,
pages 409-418, 2013.

[21] J. Stuckman. Continuous , Effort-Aware Prediction of
Software Security Defects. PhD thesis, University of
Maryland, College Park, 2015.

[22]

[23]

[24]

B. Turhan, T. Menzies, A. B. Bener, and J. Di
Stefano. On the relative value of cross-company and
within-company data for defect prediction. Empirical
Software Engineering, 14(5):540-578, 2009.

J. Walden, J. Stuckman, and R. Scandariato.
Predicting Vulnerable Components: Software Metrics
vs Text Mining. In 2014 IEEE 25th International
Symposium on Software Reliability Engineering, pages
23-33. IEEE, nov 2014.

F. Yamaguchi, F. Lindner, and K. Rieck. Vulnerability
Extrapolation: Assisted Discovery of Vulnerabilities
Using Machine Learning. Proceedings of the 5th
USENIX Conference on Offensive Technologies,

page 13, 2011.

D. W. Zimmerman and B. D. Zumbo. Relative Power
of the Wilcoxon Test, the Friedman Test, and
Repeated-Measures ANOVA on Ranks. Journal of
Ezxperimental Education, 62(1):11, 1993.

	Introduction
	Background
	Filtering Methods
	Normalization/Weighting Methods
	Ensemble methods
	Limitations

	Experiment Design
	Algorithms Implemented
	Burak
	Peters
	Cluster-Then-Label
	TrBagg
	Gravity Weighting
	Baselines

	Datasets
	Performance Metrics

	Results
	PROMISE
	PHP Vulnerabilities

	Discussion
	Future Work
	Conclusions
	Acknowledgments
	References

