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Spatial interpolation is an important tool for prediction of unobserved points in space 

in the earth and environmental sciences. Three methods for spatial interpolation were 

atmospheric compared. The first two methods are ordinary kriging and Empirical 

Bayesian Kriging (EBK). The third method is the Bayesian Transformed Gaussian 

(BTG) model. The three methods are applied to remotely sensed satellite data of 

atmospheric carbon dioxide (XCO2) provided by NASA’s Orbiting Carbon 

Observatory (OCO-2) mission. Cross-validation on the data shows that the methods 

are close in terms of mean squared error (MSE) when applied to XCO2 data. 
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Chapter 1: Introduction 

 

1.1 Spatial Interpolation 

Spatial interpolation is an important tool for prediction of unobserved points 

in space. Over the past 80 years, the popularity of statistical interpolation has 

continued to grow in a variety of fields such as the earth and environmental sciences. 

As more sophisticated techniques and methods are developed and advanced software 

makes statistical interpolation easier to implement, it is important to understand the 

underlying theory and applications of the techniques. In this investigation will look at 

three ways to do prediction: ordinary kriging, empirical Bayesian kriging 

(Krivoruchko and Gribov 2019), and the Bayesian Transformed Gaussian Model 

(BTG) (De Oliveira et al. 1997). 
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Chapter 2: Kriging 
 

2.1 Stationary Random Fields 

Stationary random fields are of important use in spatial prediction. Stationarity is not 

absolutely needed, but it helps with deriving processes.  

Let {𝑍( s)}, s ∈ 𝐷, be a spatial process or a random field. By 𝐷 is a subset of 𝑅𝑑, 𝑑 ≥

1, and 𝑍( s) is a random variable for each 𝑠 ∈ 𝐷. A random field {𝑍( s)} is Gaussian 

if for all s1, … , s𝑛 ∈ 𝐷, the joint distribution of (𝑍( s1), … , 𝑍( s𝑛)) is multivariate 

normal. (Kedem and Fokianos p. 151) 

{𝑍( s)} is second-order stationary, when 

E(𝑍( s)) = 𝜇,  s ∈ 𝐷 

and 

Cov (𝑍(𝐬 + 𝐡), 𝑍(𝐬)) ≡ 𝐶(𝐡),  𝐬 + 𝐡, 𝐬 ∈ 𝐷 

The function 𝐶(⋅) is called the covariogram or covariance function. (Kedem and 

Fokianos p. 151) 

There are a couple of different useful functions depending on a parameter vector 𝜃 as 

follows.  

Exponential correlation 

𝐾𝜃(𝑙) = exp(𝑙θ2 log θ1), 

Where θ1 ∈ (0,1) controls the correlation range and θ2 ∈ (0,2] controls the 

smoothness of {𝑍(s)}. 
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Matern Correlation 

𝐾𝜽(𝑙) = {
1

2𝜃2−Γ(𝜃2)
(

𝑙

𝜃1
)

𝜃2

𝜅𝜃2
(

𝑙

𝜃1
)  if 𝑙 ≠ 0

1  if 𝑙 = 0

 

where 𝜃1 > 0, 𝜃2 > 0, and 𝜅𝜃2
 is a modified Bessel function of the third kind of order 

𝜃2. The parameter 𝜃2 is considered the more critical parameter controlling the mean 

square differentiability of {𝑍( s)}. 

Spherical Correlation: 

𝐾𝜃(𝑙) = {1 −
3

2
(

𝑙

𝜃
) +

1

2
(

𝑙

𝜃
)

3

 if 𝑙 ≤ 𝜃

0  if 𝑙 > 𝜃

 

where 𝜃 > 0 controls the correlation range. 

Realization of the spatial fields is below using RStudio software: 

 

1. library(gstat) 
2. library(sp) 
3. library(grDevices) 
4.   
5. xy <- expand.grid(1:100, 1:100) 
6. names(xy) <- c('x','y') 
7. g.dummy <- gstat(formula=z~1, locations=~x+y, dummy=T, beta=1, 

model=vgm(psill=0.025, range=5, model='Exp'), nmax=20) 
8. yy <- predict(g.dummy, newdata=xy, nsim=1) 
9. gridded(yy) = ~x+y 
10. spplot(obj=yy[1]) 
11.   
12. x <- seq(from = 1, to = 100, by = 1) 
13. y <- seq(from = 1, to = 100, by = 1) 
14. z <- matrix(0,100,100) 
15. for(i in 1:100) {for(j in 1:100){ z[i,j] <- yy$sim1[100*(i-1)+j]}} 
16.   
17. persp(x, y, z, 
18.       col="lightblue1", phi=20, theta=50,r=50, d=0.1,expand=0.5, ltheta=30,  
19.       lphi=180, shade=0.15, ticktype="detailed", nticks=5) 
20.   
21. h.dummy <- gstat(formula=z~1, locations=~x+y, dummy=T, beta=1, 

model=vgm(psill=0.025, range=5, model='Sph'), nmax=20) 
22. yy1 <- predict(h.dummy, newdata=xy, nsim=1) 
23. gridded(yy1) = ~x+y 
24. spplot(obj=yy1[1]) 
25.   
26. x1 <- seq(from = 1, to = 100, by = 1) 
27. y1 <- seq(from = 1, to = 100, by = 1) 
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28. z1 <- matrix(0,100,100) 
29. for(i in 1:100) {for(j in 1:100){ z1[i,j] <- yy1$sim1[100*(j-1)+i]}} 
30.   
31. persp(x1, y1, z1, 
32.       col="lightblue1", phi=20, theta=50,r=50, d=0.1,expand=0.5, ltheta=30,  
33.       lphi=180, shade=0.15, ticktype="detailed", nticks=5) 
34.   
35. j.dummy <- gstat(formula=z~1, locations=~x+y, dummy=T, beta=1, 

model=vgm(psill=0.025, range=5, model='Mat'), nmax=20) 
36. yy2 <- predict(j.dummy, newdata=xy, nsim=1) 
37. gridded(yy2) = ~x+y 
38. spplot(obj=yy2[1]) 
39.   
40. x2 <- seq(from = 1, to = 100, by = 1) 
41. y2 <- seq(from = 1, to = 100, by = 1) 
42. z2 <- matrix(0,100,100) 
43. for(i in 1:100) {for(j in 1:100){ z2[i,j] <- yy2$sim1[100*(j-1)+i]}} 
44.   
45. persp(x2, y2, z2, 
46.       col="lightblue1", phi=20, theta=50,r=50, d=0.1,expand=0.5, ltheta=30,  
47.       lphi=180, shade=0.15, ticktype="detailed", nticks=5) 
48.   

 

 

 

 

 

 

Figure 1. Gaussian(1,1) random field, exponential correlation 
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Figure 3. Gaussian(1,1) random field, Matern correlation 

Figure 2. Gaussian(1,1) random field, spherical correlation 
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2.2 Ordinary Kriging 

 

Given the data 

𝐙 ≡ (𝑍(𝐬1), … , 𝑍(𝐬𝑛))
′
 

observed at locations {s1, … , s𝑛} in 𝐷, the problem is to estimate or predict 𝑍( s0) at 

location 𝐬0 using the best linear unbiased predictor (BLUP) obtained by minimizing 

E (𝑍( s0) − ∑  

𝑛

𝑖=1

 𝜆𝑖𝑍( s𝑖))

2

 subject to ∑  

𝑛

𝑖=1

𝜆𝑖 = 1 

 

Thus is minimized 

E (𝑍(𝐬0) − ∑  

𝑛

𝑖=1

 𝜆𝑖𝑍(𝐬𝑖))

2

− 2𝑚 (∑  

𝑛

𝑖=1

 𝜆𝑖 − 1) 

with respect to 𝜆1, … , 𝜆𝑛 and the Lagrange multiplier 𝑚. This is done by appealing to 

the second-order properties of the random field. (Kedem and Fokianos p. 156) 

The condition that the 𝜆𝑖 sum to 1 guarantees an unbiased predictor, 

E (∑  

𝑛

𝑖=1

 𝜆𝑖𝑍( s𝑖)) = E(𝑍( s0)) ∑  

𝑛

𝑖=1

𝜆𝑖 = 𝜇 

 

 

With the notation 
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𝟏  = (1,1, … ,1)′,  1 × 𝑛 vector 

𝐜  = (𝐶(𝐬0 − 𝐬1), … , 𝐶(𝐬0 − 𝐬𝑛))
′

𝐂  = (𝐶(𝐬𝑖 − 𝐬𝑗)) ,  𝑖, 𝑗 = 1, … , 𝑛

𝜆  = (𝜆1, 𝜆2, … , 𝜆𝑛)′

𝐦  = 𝑚1

 

the minimization leads to 

{

C𝜆 = c + m

∑  

𝑛

𝑖=1

 𝜆𝑖 = 1
 

So 

1 = 𝟏′𝝀 = 𝟏′𝐂−1(𝐜 + 𝐦) = 𝟏′𝐂−1𝐜 + 𝟏′𝐂−1𝑚𝟏 

or 

𝑚 =
1 − 1′C−1c

𝟏′C−1𝟏
 

and 

�̂� = 𝐂−1
(𝐜 +

1 − 𝟏′𝐂−1𝐜

𝟏′𝐂−1𝟏
𝟏) 

The ordinary kriging predictor is then 

�̂�( s0) = �̂�
′
Z 

The minimized mean-square prediction error, denoted by 𝜎𝑘
2( s0), is called the kriging 

variance and is given by 



 

 

8 

 

𝜎𝑘
2( s0) = E (𝑍( s0) − �̂�( s0))

2
= 𝐶(0) − �̂�

′
c + 𝑚 

It follows that when 𝑍(s) is Gaussian, 

�̂�( s0) ± 1.96𝜎𝑘( s0) 

Produce a 95% confidence interval for the prediction �̂�. It is important to note that 

this may not be the case for non-Gaussian fields 

 

2.3 Empirical Bayesian Kriging (EBK) 

EBK is two geostatistical models. The intrinsic random function kriging (IRFK), and 

simple kriging with external trend (also known as linear mixed model or LMM). Both 

processes use the same algorithms so they can be combined into one computational 

model: 

𝑧𝑖 = 𝑦(𝑠𝑖) + 𝜖𝑖 , 𝑖 = 1 … 𝐾̅̅ ̅̅ ̅̅ ̅, 

where 𝑧𝑖 is the actual observed value at the location 𝑠𝑖 , 𝑦(𝑠) is the Gaussian process at 

the location 𝑠, 𝜖𝑖 is the error and 𝐾 is the number of data measurements (Krivoruchko 

and Gribov 2019). With simple kriging with external trend, 𝑦(𝑠) is a constant or can 

be derived by the covariates. Since real world data is not always Gaussian, 

transformation to Gaussian distribution can be used for the simple kriging portion of 

the model.  

The goal of the algorithm is to estimate the spatial process error 𝑦(𝑠). 
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Most spatial data measured from natural processes is by some extent nonstationary. 

Ignoring this produces bias in the covariance parameters (Krivoruchko and Gribov 

2019). 

2.4 Empirical Bayesian Kriging Algorithm 

1. Parameters and semivariogram of the spatial process Θ, are estimated from the 

data.  

2. Using the spatial process Θ, new values are simulated at each data location 

𝐾sim  times. 

3. New parameters Θ𝑖 , 𝑖 = 1 … . 𝐾sim
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , for the spatial process are estimated from 

the newly simulated data and a histogram is generated and can be used as an 

estimate of prior distribution. 

4. The simulated Θ𝑖 , 𝑖 = 1 … 𝐾sim , is now known as the empirical prior 

distribution. The model parameters can only take Θ𝑖 values, that is 

𝑓(Θ′ ∣ 𝐳) = 0 for Θ′ ≠ Θi. 

5. Each simulated model is use to create a weight using Bayes Rule, 𝑤𝑖 ∝

𝑓(𝐳 ∣ Θ𝑖), 𝑤𝑖 = 
𝑓(𝐳∣Θ𝑖)

∑
𝑖=1

𝐾sim  𝑓(𝐳∣Θ𝑖)
, ∑𝑖=1

𝐾s=m  𝑤𝑖 = 1, where 𝑓(𝐳 ∣ Θ𝑖) is the conditional 

probability of the data 𝐳 given the model parameters Θ𝑖. 

6. The predictions and standard errors of the predictions are generated at the data 

locations by the following. 

𝐸[ 𝑦(𝑠) ∣∣ 𝐳 ] = �̂�(𝑠) = ∑  

𝐾sim 

𝑖=1

  (𝑤𝑖 ⋅ 𝐸[𝑦(𝑠) ∣ 𝐳, Θ𝑖]),

Var[ 𝑦(𝑠) ∣∣ 𝐳 ] = E[(𝑦(𝑠) − �̂�(𝑠))2 ∣ 𝐳] =,
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∑  

𝐾𝑠𝑖𝑚

𝑖=1

  (𝑤𝑖 ⋅ (Var [𝑦(𝑠) ∣ 𝐳, Θ𝑖] + (E[𝑦(𝑠) ∣ 𝐳, Θ𝑖] − �̂�(𝑠))2)) 

 

where E[𝑦(𝑠) ∣ 𝐳, Θ𝑖] and Var [𝑦(𝑠) ∣ 𝐳, Θ𝑖] are given by kriging equations 

(Krivoruchko and Gribov 2019). 

EBK was chosen for this investigation because of its recent incorporation into 

ArcGIS, a popular tool for many Geographical Informational Science (GIS) students 

and professionals. 
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Chapter 3: Bayesian Transform Gaussian 

 

3.1 Model Description 

Bayesian approach to kriging leads to a prediction at the original scale called the 

predictive density function 

 

𝑝(𝐳𝑜 ∣ 𝐳)  = ∫  
Ω

 𝑝(𝐳𝑜, 𝜼 ∣ 𝐳)𝑑𝜼

 = ∫  
Ω

 𝑝(𝐳𝑜 ∣ 𝜼, 𝐳)𝑝(𝜼 ∣ 𝐳)𝑑𝜼
 

where 𝐳𝑜 = (𝑧𝑜1, … , 𝑧𝑜𝑘)′ is the value to be predicted, and 𝜂 is the vector of model 

parameters taking values in Ω, {𝑍(𝐬), 𝐬 ∈ 𝐷}, 𝐷 ⊂ 𝑅2, is a random field observed at 𝑛 

locations in 𝐷, 𝐙 = (𝑍(𝐬1), … , 𝑍(𝐬𝑛))
′
, with the goal to predict the unobserved 

random vector 𝐙0 = (𝑍(𝐬01), … , 𝑍(𝐬0𝑘))
′
, at known distinct locations 𝐬01, … , 𝐬0𝑘 in 

𝐷. The extra generality of predicting a vector rather than a scalar is obtained without 

any additional computational effort (De Oliveira et al. 1997). 

Let 𝐺 = {𝑔𝜆(⋅): 𝜆 ∈ Λ} be a parametric family of nonlinear monotone transformations 

where each 𝑔𝜆(⋅) ∈ 𝐺 has a continuous derivative 𝑔𝜆
′ (𝑥). Assume that for some 

unknown 𝜆 ∈ Λ the process 

{𝑌(𝐬) = 𝑔𝜆(𝑍(𝐬)), 𝐬 ∈ 𝐷} 

is a Gaussian random field. To match format with log-Gaussian random field, the 

original field {𝑍(𝐬), 𝐬 ∈ 𝐷} is referred to as 𝑔𝜆-Gaussian random field. 
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E(𝑌( s)) = ∑  

𝑝

𝑗=1

𝛽𝑗𝑓𝑗( s) = 𝛽′𝑓( s), s ∈ 𝐷 

where 𝛽 = (𝛽1, … , 𝛽𝑝)
′

∈ 𝑅𝑝 are unknown regression parameters, and 𝑓(𝐬) = 

(𝑓1(𝐬), … , 𝑓𝑝(𝐬))
′
 is a set of known location-dependent covariates. 

Variance in terms of precision: 

Var (𝑌(𝐬)) = 𝜏−1 

where 𝜏 is the precision of the random field. 

3.2 Parametric Correlation: 

Cov (𝑌(𝐬), 𝑌(𝐮)) =
1

𝜏
𝐾𝜽(∥ 𝐬 − 𝐮 ∥),  𝐬, 𝐮 ∈ 𝐷 

The parameter 𝜃 = (𝜃1, … , 𝜃𝑞)
′

∈ Θ ⊂ 𝑅𝑞 is a structural parameter controlling the 

range of correlation and/or the smoothness of the random field, and for every 𝜃 ∈ Θ, 

𝐾𝜃(⋅) is an isotropic correlation function. Isotropy is not essential, unlike ordinary 

kriging and any 𝐾𝜃(⋅) will suffice. 

For any vector 𝐚 = (𝑎1, … , 𝑎𝑛) define 𝑔𝜆(𝐚) ≡ (𝑔𝜆(𝑎1), … , 𝑔𝜆(𝑎𝑛)). Then the 

Gaussian assumption about 𝑌(𝐬) implies, 

(𝑔𝜆(𝑍0), 𝑔𝜆(𝑍) ∣ 𝛽, 𝜏, 𝜃, 𝜆)
′

∼ 𝒩𝑘+𝑛 ((
𝐗0𝛽
𝐗𝛽

) ,
1

𝜏
(

𝐄𝜽 𝐁𝜃

𝐁𝜃 Σ𝜃
)) 

for some 𝜆 ∈ Λ and (𝛽, 𝜏, 𝜃)′ ∈ 𝑅𝑝 × (0, ∞) × Θ. The matrices 𝐗 and 𝐗0 are known 

𝑛 × 𝑝 and 𝑘 × 𝑝 design matrices, respectively, defined by 𝑋𝑖𝑗 = 𝑓𝑗(𝐬𝑖), 𝑋0,𝑖𝑗 = 
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𝑓𝑗( s0𝑖), and E𝜃, B𝜃 and Σ𝜃 are respectively 𝑘 × 𝑘, 𝑘 × 𝑛, and 𝑛 × 𝑛, correlation 

matrices defined as 

𝐄𝜽,𝑖𝑗
= 𝐾𝜃(∥∥𝐬0𝑖 − 𝐬0𝑗∥∥)

𝐁𝜃,𝑖𝑗
= 𝐾𝜃(∥∥𝐬0𝑖 − 𝐬𝑗∥∥)

𝚺𝜃,𝑖𝑗
= 𝐾𝜃(∥∥𝐬𝑖 − 𝐬𝑗∥∥)

 

It is assumed that 𝑋 has full rank and that the matrix Σ𝜃, 𝜃 ∈ Θ, is nonsingular. 

The likelihood 𝐿(𝜂; 𝐳) ≡ 𝑝(𝐳 ∣ 𝜂) of the model parameters 𝜂 = (𝛽, 𝜏, 𝜃, 𝜆)′ based on 

the original data 𝐳 = (𝑧1, … , 𝑧𝑛)′ is given by 

𝐿(𝜼; 𝐳) = (
𝜏

2𝜋
)

𝑛/2

|𝚺𝜽|−1/2 

 × exp {−
𝜏

2
(𝑔𝜆(𝐳) − 𝐗𝜷)

′
𝚺𝜽

−1 (𝑔𝜆(𝐳) − 𝐗𝜷)} 𝐽𝜆
 

for 𝑧𝑖 ∈ 𝑔𝜆
−1(𝑅), where 

𝐽𝜆 = ∏𝑖=1
𝑛  |𝑔𝜆

′ (𝑧𝑖)| 

is the Jacobian of the transformation (De Oliveira et al. 1997). 

The Bayesian paradigm calls for the update of the prior distribution by means of 

Bayes theorem taking into account the likelihood of the observed data. 

𝑝(𝜷, 𝜏, 𝜽, 𝜆) ∝
𝑝(𝜽)𝑝(𝜆)

𝜏𝐽𝜆
𝑝/𝑛

 

where 𝒑(𝜽) and 𝒑(𝝀) are the prior marginals of 𝜽 and 𝝀, respectively. 

The joint posterior distribution of the model parameters given the data is obtained 

from its factors, 
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𝑝(𝜼 ∣ 𝐳) = 𝑝(𝜷, 𝜏, 𝜽, 𝜆 ∣ 𝐳) = 𝑝(𝜷, 𝜏 ∣ 𝜽, 𝜆, 𝐳)𝑝(𝜽, 𝜆 ∣ 𝐳). 

A compact Θ × Λ is a sufficient condition for this posterior to be proper. 

From the fact that conditional on 𝜃 and 𝜆, 𝑔𝜆(𝐳) is a linear model in terms of the 

transformed data 

(𝜷 ∣ 𝜏, 𝜽, 𝜆, 𝐳) ∼ 𝒩𝑝 (�̂�𝜽,𝜆,
1

𝜏
(𝐗′𝚺𝜽

−1𝐗)−1)

(𝜏 ∣ 𝜽, 𝜆, 𝐳) ∼ 𝐺𝑎 (
𝑛 − 𝑝

2
,

2

�̃�𝜽,𝜆
)

 

where 

�̂�𝜽,𝜆 = (𝐗′𝚺𝜽
−1𝐗)−1𝐗′𝚺𝜽

−1𝑔𝜆(𝐳) 

is the weighted least squares estimate of parameter 𝛽 based on the transformed data 

(De Oliveira et al. 1997). 

Prediction of an Unknown Point Z0 

With the joint posterior distribution 𝑝(𝜂 ∣ 𝑧) from the last section, the 

predictive density 𝑝(𝐳𝑜 ∣ 𝐳)  requires 𝑝(𝐳𝑜 ∣ 𝜼, 𝐳). The latter can be derived from the 

parametric correlation. 

(𝑔𝜆(𝐙0) ∣ 𝜷, 𝜏, 𝜽, 𝜆, 𝐳) ∼ 𝒩𝑘 (𝐌𝜷,𝜽,𝜆,
1

𝜏
𝐃𝜽) 

where 

𝐌𝜷,𝜽,𝜆 = 𝐁𝜽𝚺𝜽
−1𝑔𝜆(z) + 𝐇𝜽𝜷 

𝐇𝜽 = 𝐗0 − 𝐁𝜽𝚺𝜽
−1𝐗 

D𝜽 = E𝜽 − B𝜽𝚺𝜽
−1𝐁𝜽

′ . 

So, 
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𝑝(𝐳𝑜 ∣ 𝜼, 𝐳) = (
𝜏

2𝜋
)

𝑘/2

|𝐃𝜽|−1/2 ∏  

𝑘

𝑗=1

  |𝑔𝜆
′ (𝑧𝑜𝑗)|

 × exp {−
𝜏

2
(𝑔𝜆(𝐳𝑜) − 𝐌𝜷,𝜽,𝜆)

′
𝐃𝜽

−1 (𝑔𝜆(𝐳) − 𝐌𝜷,𝜽,𝜆)}

 

Now the integral of 𝑝(𝐳𝑜 ∣ 𝜼, 𝐳)𝑝(𝜼 ∣ 𝐳) needed for 𝑝(𝐳𝑜 ∣ 𝐳). By integrating out 𝛽 

and 𝜏 in the simplified form is obtained: 

𝑝(𝐳𝑜 ∣ 𝐳)  = ∫  
Λ

 ∫  
Θ

 𝑝(𝐳𝑜 ∣ 𝜽, 𝜆, 𝐳)𝑝(𝜽, 𝜆 ∣ 𝐳)𝑑𝜽𝑑𝜆

 =
∫  

Λ
 ∫  

Θ
 𝑝(𝐳𝑜 ∣ 𝜽, 𝜆, 𝐳)𝑝(𝐳 ∣ 𝜽, 𝜆)𝑝(𝜽)𝑝(𝜆)𝑑𝜽𝑑𝜆

∫  
Λ

 ∫  
Θ

 𝑝(𝐳 ∣ 𝜽, 𝜆)𝑝(𝜽)𝑝(𝜆)𝑑𝜽𝑑𝜆

 

Now, 

(𝑔𝜆(𝐙0) ∣ 𝜽, 𝜆, 𝐳) ∼ 𝑇𝑘 (𝑛 − 𝑝, 𝐦𝜽,𝜆, (�̃�𝜽,𝜆𝐂𝜽)
−1

) 

is a 𝑘-variate Student 𝑡-distribution with 𝑛 − 𝑝 degrees of freedom (De Oliveira et al. 

1997). 

Applying BTG 

The btg program is a software implementation of the BTG model. In its current state, 

the program allows the user to: 

1. Predict 𝑍(𝐬0) and its uncertainty. 

2. Compute the 95% prediction intervals based on the standard errors of the above 

uncertainty. 

3. Cross-validate the predictions of 𝑍(𝐬0). 

The btg program has some limitations. The range of Z0 must be positive since the Box-

Cox transformation functions are positive real numbers. Due to issues in compiling 

with the original code produce by De Oliveria the program no longer produces a 3D 
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grid map of the data but does allow for prediction and cross-validation. The code is 

also computationally expensive so around maximum of 50 data points can be used for 

the cross-validation analysis (De Oliveira et al. 1997). 
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Chapter 4: Comparison 

4.1 Atmospheric CO2 

Atmospheric Carbon Dioxide (XCO2) is one of the primary greenhouse gases 

on Earth. Since industrialization, XCO2 (measured in parts per million) has increased 

by over a third from the highest previous concentration of 300ppm over the past 

800,000 years (Lüthi, et al., 2008). It has been well documented that the sudden 

increase of XCO2 over the past 150 years has decreased the amount of thermal energy 

that radiates back into space causing a consistent warming trend that has caused rapid 

changes in the Earth’s climate. The Earth naturally maintains a balance of sources 

(emitters of XCO2) and sinks (areas that remove XCO2) known as the carbon cycle 

(NOAA 2021). Because of the exponential increase of XCO2 over the past 150 years, 

the natural carbon sinks are not enough to keep the XCO2 in balance. Figure 4 gives 

contexts to this increased at a fixed spatial point at Mauna Lao Observatory. 
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4.2 OCO-2 Application  

In order to mitigate the changing climate, there must be 1.) a reduction of the 

burning of fossil fuels that is contributing to the continued rise of XCO2 and 2.) an 

expansion of carbon sinks to remove the XCO2 already in the atmosphere.  

 Carbon sinks are areas that absorb more carbon than they release. This might 

include land-based sinks (such as forests, grasslands, soil) or ocean-based sinks (such 

as mangrove forests, seagrass, salt marshes, and ocean absorbed CO2). Via 

photosynthesis and geologic processes, these sinks slowly remove the atmospheric 

CO2. As countries and corporations tout “carbon neutral” activities that often come up 

short in their reporting consistent and remote measurements of XCO2 is important to 

Figure 4. Atmospheric CO2 Measured At Mauna Loa Observatory (Source: NOAA) 
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understand the location of both sources and sinks. In 2014, NASA launched the 

Orbiting Carbon Observatory-2 (OCO-2) to fulfill this task. OCO-2 carries 3 

spectrometers that collects high-resolution spectra from reflected sunlight that passes 

through oxygen molecules in O2 and CO2. Measurements from the three different 

spectrometers are combined into a sounding and then run through a physical retrieval 

algorithm to estimate the XCO2. The measurements of XCO2 are as a column 

averaged to produce the measurement in column-averaged dry mole fraction in ppm. 

OCO-2 is a polar orbiting satellites it hits the same geolocation every 16 days. It 

should be noted that since the retrievals are based on infrared radiance, clouds 

obscure measurements of XCO2 limiting the total coverage data (NASA 2020). 

OCO-3 builds on the OCO-2 mission while adding measurements of Solar 

Induced Florescence (SIF). The OCO-3 instrument was added to the International 

Space Station (ISS) in 2019. The orbit of the ISS allows for viewing between 

latitudes less than 52 degrees. The instrument is essentially the same spectrometer of 

the OCO-2 but the configuration has a pointing mechanism that allows rapid 

transition of the viewing angle to allow for more focused, targeted sampling 

locations. This also allows for significant overlapping data with OCO-2 (NASA 

2020). 

Data retrievals are from both instruments are provided by NASA’s Jet 

Propulsion Laboratory and can be accessed through NASA Goddard DAAC user 

interface (NASA 2020). Additionally, JPL has provided users with the CO2 Virtual 

Science Data Environment that provides quick access to data from any of the NASA 

products focusing on satellite observations of carbon dioxide.  
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Because the many variables such as cloud and sunlight reflection, the current 

data products for both OCO-2 and OCO-3 are presented in point data over the 

measured areas (Figure 5). This presents a unique opportunity to use spatial 

interpolation to fill in the gaps between the point data. The comparison data was 

created from a satellite pass over Los Angeles in September 2019. The map of the 

area is below: 

 

 

 

 

Figure 5. Atmospheric CO2 Measured At Mauna Loa Observatory (Source: NOAA) 
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With the resulting histogram and interpolation of the data points. 

 

 

Figure 6. Histogram of sampled data points 
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Figure 7. Contour of ordinary kriging interpolation 

Figure 8. Contour of empirical Bayesian kriging interpolation 
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Data from each of the three interpolation methods ordinary kriging (OK), Empircal 

Bayesian kriging (EBK), and Bayesian Transform Guassian (BTG) in ppm over the 

LA region study area. 

Measured Predicted OK StdError OK Predicted EBK StdError EBK Predicted BTG StdError BTG
406.65802 407.4307421 0.549530785 407.5294681 0.568853736 407.805 1.311208206

406.75742 407.5037859 0.428242383 407.4448046 0.45421862 407.806 1.09382314

406.96472 407.7345647 0.543879834 407.6367422 0.516746755 407.855 0.800523878

407.15866 407.9502608 0.505167499 407.9326588 0.481243213 407.789 0.39614436

407.21277 407.6256519 0.352134967 407.6109734 0.419481043 407.788 0.333900221

407.32413 407.5849573 0.474026431 407.6494244 0.483870772 407.784 0.215557776

407.4303 407.845229 0.471369439 407.8169504 0.460542996 407.777 0.142283612

407.45914 407.3112458 0.533317208 407.26909 0.510219794 407.781 0.122912647

407.46332 407.0420493 0.414767007 407.1819925 0.453263271 407.779 0.101986977

407.48535 407.9830875 0.56227345 407.9210368 0.545520886 407.779 0.102048303

407.59534 407.8936771 0.476950926 407.8063752 0.468959846 407.779 0.083246099

407.5971 407.5826827 0.526422672 407.7607858 0.503889231 407.775 0.030537912

407.61017 407.8971315 0.364237317 407.9413369 0.431665907 407.775 0.030635851

407.61526 407.3056452 0.355724387 407.3758586 0.435417841 407.775 0.02737635

407.68265 407.4825397 0.46857465 407.5001931 0.471000762 407.792 0.012595124

407.71698 407.365805 0.490298955 407.3522444 0.476813365 407.779 0.003433866

407.76596 407.448425 0.539608057 407.4760367 0.523352576 407.769 9.99934E-07

407.84314 407.7551363 0.364737216 407.8369556 0.433032219 407.744 0.009164769

407.85538 407.6754396 0.529433787 407.6990739 0.500531395 407.766 0.008870626

407.91187 407.8279609 0.527383142 407.8238445 0.498111896 407.764 0.021278057

407.95682 407.5490166 0.513280196 407.5482036 0.498096788 407.753 0.042645967

408.19055 407.2399721 0.572713261 407.1600921 0.573375036 407.754 0.189803121

408.20923 407.4758584 0.516911601 407.5377465 0.491936135 407.752 0.209557951

408.24356 407.4995083 0.585171439 407.5048039 0.647401496 407.756 0.234341192

408.2459 408.4308398 0.418060191 408.3521213 0.468838039 407.752 0.247556003

408.25754 407.5660832 0.448339296 407.6002789 0.455380614 407.659 0.361785408

408.44186 408.1601164 0.529178499 408.1821352 0.521878223 407.746 0.481190555

408.4735 408.2287481 0.541359672 408.2297138 0.552051148 407.745 0.525188641

408.63864 408.2901479 0.390742074 408.2078818 0.444214546 407.737 0.815022562

408.7057 408.1700996 0.483401278 408.0607319 0.477314908 407.737 0.946487711

Table 1. Table of cross-validation results 
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Method Mean Squared Error (MSE) 

Ordinary Kriging 0.2557928198 

Empirical Bayesian Kriging 0.2498231109 

BTG 0.319744823 

 

 

Example of validation exercise and raster maps creation using EBK default model. 

The following python code is used to process larger amounts of data and compare 

between the ordinary kriging and Empirical Bayesian Kriging. This dataset is over the 

full month of August 2019 in Northern California.  

1. import arcpy 
2. import os 
3. import time 
4.   
5. workspace = os.getcwd() 
6. arcpy.env.workspace = workspace 
7.   
8. start = time.time() 
9.   
10. # Process: Empirical Bayesian Kriging 
11. arcpy.EmpiricalBayesianKriging_ga("California CO2.shp", z_field="C)2", 

out_ga_layer="GALayer", out_raster="", cell_size="6431.3811596", 
transformation_type="NONE", max_local_points="100", overlap_factor="1", 
number_semivariograms="100", search_neighborhood="NBRTYPE=StandardCircular 
RADIUS=602402.270130742 ANGLE=0 NBR_MAX=15 NBR_MIN=10 SECTOR_TYPE=ONE_SECTOR", 
output_type="PREDICTION", quantile_value="0.5", threshold_type="EXCEED", 
probability_threshold="", semivariogram_model_type="POWER") 

12.   
13. # Process: GA Layer To Rasters 
14. tempEnvironment0 = arcpy.env.mask 
15. arcpy.env.mask = " California CO2.shp shp" 
16. arcpy.GALayerToRasters_ga(in_geostat_layer="GALayer", 

out_raster="ResPrediction", output_type="PREDICTION", 
quantile_probability_value="", cell_size="5000", points_per_block_horz="1", 
points_per_block_vert="1", additional_rasters="'ResStandErr' 
PREDICTION_STANDARD_ERROR #", out_elevation="") 

17. arcpy.env.mask = tempEnvironment0 
18.   
19. # Process: Copy Raster 

Table 2. MSE Comparisons 
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20. arcpy.CopyRaster_management(in_raster="ResPrediction", 
out_rasterdataset="Prediction.tif", config_keyword="", background_value="", 
nodata_value="-3.402823e+38", onebit_to_eightbit="NONE", colormap_to_RGB="NONE", 
pixel_type="", scale_pixel_value="NONE", RGB_to_Colormap="NONE", format="TIFF", 
transform="NONE", process_as_multidimensional="CURRENT_SLICE", 
build_multidimensional_transpose="NO_TRANSPOSE") 

21.   
22. # Process: Copy Raster 
23. arcpy.CopyRaster_management(in_raster="ResStandErr", 

out_rasterdataset="StandardError.tif", config_keyword="", background_value="", 
nodata_value="-3.402823e+38", onebit_to_eightbit="NONE", colormap_to_RGB="NONE", 
pixel_type="", scale_pixel_value="NONE", RGB_to_Colormap="NONE", format="TIFF", 
transform="NONE", process_as_multidimensional="CURRENT_SLICE", 
build_multidimensional_transpose="NO_TRANSPOSE") 

24.   
25. end = time.time() 
26.   
27. print(datetime.timedelta(seconds = round(end - start))) 
28.   

 

 

 

Figure 9. Contour of ordinary kriging interpolation of Northern California 
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Figure 9. Contour of EBK interpolation of Northern California 
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Chapter 5: Conclusion 
 

The Gaussian assumption for the spatial data involves covariance parameters 

and transformation parameter if the data is not Gaussian.On the other hand, the BTG 

and EBK method do not require the specification of parameters, since their estimation 

is integrated into the method. EBK uses simulated data to estimate the parameters. 

BTG only falls slightly behind the other methods as far as MSE 

BTG is useful in situations when there is a large number of unknown parameters and 

a small number of data points. The BTG algorithm, which uses Monte-Carlo method 

for integration, is its computational complex. An update of the BTG code would be an 

interesting addition for future investigation. 

EBK is useful when there is a large amount of datapoints over a larger spatial 

field as the subsetting of simulated data allows for non-stationality to be incorporated 

into the predicted data. For further studies, it would be interesting to compare BTG 

and EBK on environmental data that is not Gaussian. 
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