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Both synthetic and biological polymers are a challenge to study because of the

many features and functional roles they carry. A good understanding of the macro-

molecule’s dynamical properties is essential for biological processes such as the cy-

toskeleton dynamics of actin or in creating novel materials such as biodegradable

nanocomposites. Here we focus on the Brownian dynamics of single semiflexible

polymer chains, specifically the relaxation and stiffening behaviors. To date, the

transient modeling of dilute solutions has concentrated mainly on flexible chains.

Semiflexible polymers, with a persistence length comparable to or larger than their

contour length show distinct properties in solution.

Brownian dynamics simulations based on a discretized version of the Kratky-

Porod chain model were employed. First, the relaxation of a bead-rod polymer

chain from an initially straight configuration was followed. Through a scaling-



law analysis, universal relaxation laws were determined covering all time scales.

A correlation describing the properties studied by the single parameter of chain

length was noticed. Based on this, we were able to confirm and explain the chain’s

stress and optical properties, as well as derive a nonlinear stress-optic law valid

for semiflexible chains at any time period. Also, we determine the relaxation for

long semiflexible chains exhibit two intermediate-time behaviors, as a result of the

interplay of Brownian and bending forces on the link tensions.

A second project involved the relaxation dynamics of a worm-like bead-spring

chain. Existing relaxation simulations of this bead-spring model are limited to

the stress behavior. Here we monitor the short and intermediate-time relaxation

behaviors of a nearly extended semiflexible chain. We also look at the effects of

the Kuhn length on a chain of constant length.

Finally, the interesting behavior of the coil-helix-rod stiffening transition was

studied. When subjected to external forces or a change in solution conditions the

macromolecule may stiffen. Being able to control the chain stiffness is of tech-

nological importance especially for nanotechnology devices where the constraint

of the walls limits the entropy available to the chain. We have successfully sim-

ulated the transient conformational behavior and subsequently understand the

chain dynamics involved through analysis of the chain’s length, width, and stress.
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Chapter 1

Polymer Physics

1.1 Introduction

Polymers are one of the most commonly used class of material in today’s world.

The diversity of this material is seen by its application in the food, plastic, defense,

pharmaceutical and various other industries. Polymers can be divided into two

groups, synthetic polymers and biopolymers. Synthetic polymers are known as

man-made polymers because of the scientist’s ability to control the synthesis and

growth of the macromolecule. Teflon, nylon, polycarbonate, and polyethylene are

some of the common names that describe such polymers. In contrast, biopolymers

occur naturally and are found in living organisms. Examples of biopolymers in-

clude the tobacco mosaic virus, cellulose, DNA, actin filaments, and microtubules.

A good understanding of the polymer’s dynamical properties is essential towards
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CHAPTER 1. POLYMER PHYSICS

the study of biological processes such as the cytoskeletal dynamics of actin [12] or

the dynamics of protein deposition on implant materials [48], or in creating novel

materials such as enhanced flat panel displays [53] or biodegradable nanocompos-

ites [58].

Because of the many features and functional roles they carry, both synthetic

and biological polymers are a challenge to study. This challenge is proven true

by noticing the many different experimental techniques such as fluorescence mi-

croscopy, electrophoresis, light scattering, optical microscopy, force spectroscopy,

and viscometry [49, 54, 55, 65, 68], along with the different simulation methods

ranging from Monte Carlo to Brownian dynamics, bead-spring models to bead-rod

models, and shear to extensional flow studies [19, 40, 59], used to gain insight on

the different properties of the macromolecule.

Here we are concerned with the physics of single semiflexible polymer chains.

In particular, the transient bead-rod and bead-spring chain properties are ex-

amined to understand the dynamics of the chain under various dilute solution

conditions. A dilute solution is defined such that the chain is surrounded by

solvent molecules and there is no chance of contact with another chain. The

non-Newtonian properties of the chain are captured through a Brownian dynam-

ics study. Among the properties studied are the chain length, stress, tension,

and the birefringence; all these properties can help give the full picture of chain

conformation and behavior in solution.

2



CHAPTER 1. POLYMER PHYSICS

In the past, attention has been mainly focused on flexible polymers. Semi-

flexible polymers however, with a persistence length comparable to or larger than

their contour length, show distinct properties in solution. Examples of biopoly-

mers, in order of increasing stiffness, are DNA, actin, microtubules, and collagen.

Some properties of these biomolecules include: DNA, molecular weight (MW) of

108 with a polymer persistence length of only 50 nm; actin, MW of 42,000 with

a persistence length of about 1.5-20 µm; the monomer MW of microtubules is

110,000 and the persistence length is up to 7 mm; finally, the stiff biopolymer

collagen is known to have a monomer weight of 300,000 with a persistence length

of 14.5 nm. Common examples of semiflexible synthetic polymers include Kevlar,

polyvinyl chloride (PVC), polyamide (nylon), and polyesters. The stiffness shown

in these polymers results in unique properties of their solutions. For example,

the importance of the semiflexibility in F-actin can be seen by recognizing that

as the persistence length increases the polymer bundles and adsorbs onto surfaces

easily [37]. In the case of synthetic polymers, the aromatic and amide molecular

groups in Kevlar result in its common use of providing strength for light-weight

materials.

Three simulation projects have been studied in this thesis. First, the relax-

ation of bead-rod polymer chains with both chain stiffness and the chain length

being the adjustable parameters. Polymer behavior of an initially extended chain

was monitored and through scaling-law analysis universal relaxation laws were

3



CHAPTER 1. POLYMER PHYSICS

determined for semiflexible chains. Studies of the stiff relaxation behavior show

the long chains exhibit two intermediate behaviors due to the presence of bending

energy. A correlation was noticed such that the properties studied can be pre-

dicted by the single variable of chain length. Because of this correlation, we were

able to also define a non-linear stress-optic law valid for stiff chains at all time

periods.

The second project, describes detailed simulation results for the relaxation

of the worm-like bead-spring chain. Existing simulations of the relaxation of

this bead-spring model are limited. The short and intermediate-time relaxation

behavior of this polymer model has been predicted.

Finally, the behavior of chain stiffening is also studied. When subjected to

external forces such as strain or a change in solution conditions such as an ionic

strength decrease the polymer chain, synthetic polymer or biopolymer, may stiffen

experiencing a helical conformation before reaching the final rod like state. By

being able to control the chain rigidity, researchers may create better trapping gel

networks, micro-electronic devices from plastics or novel drug delivery systems

[52]. The increase in the chain persistence length Lp or chain Kuhn length affects

the polymer conformation and consequently its behavior in solution. We have

successfully simulated the behavior and are able to see the coil-helix-rod transition

and subsequently understand the chain dynamics through analysis of the chain’s

three eigenvalues and the first normal stress component.

4



CHAPTER 1. POLYMER PHYSICS

1.2 Overview of Chapters

This thesis is organized as follows. Chapter 2 presents a review on various poly-

mer simulation techniques, the development of the two polymer chain models we

are interested in, along with their governing equations, and details of our Brow-

nian dynamics simulation method. Definitions of the properties of interest and

a comparison to experimental results are also discussed. Next, in Chapter 3, we

first present a background literature review on bead-rod relaxation studies fol-

lowed by our simulation results. Here we discuss and explain the results of using

the bead-rod model to predict polymer relaxation behavior for short and long

stiff chains. Similarly, Chapter 4 treats the relaxation study when the chain is

modeled as a worm-like chain. Using this bead-spring model, we determine the

relaxation dynamics at short and intermediate-times for semiflexible chains. In

Chapter 5, the results of adding a bending energy to an initially coiled bead-rod

chain is reported. An understanding of the dynamics of the coil-helix-rod behavior

is presented through analysis of the chain’s three eigenvalues and the first normal

stress component. The main conclusions of each study are reiterated in Chapter 6.

Finally, Chapter 7 discusses possible future work for the study of polymer physics

through the use of Brownian dynamics.

5



Chapter 2

Numerical Method

Computational modeling can be applied to an array of polymer systems ranging

from dilute or concentrated solutions to polymers in confined geometries. A recent

increase in interest of simulations can be attributed to advances in computational

power and computational resources. When the simulation method is not too

intensive one can test extreme cases such as longer or stiffer chains, as well as

monitor a wide range of molecular properties that otherwise might be limited

in experimental studies. The main setback is computing time, which can be

minimized with the use of supercomputers.

In this Chapter, we will give an overview on Brownian dynamics, describe both

the bead-rod and bead-spring models, explain our simulation method, and show

that both models agree well with past experimental and numerical observations.

6



CHAPTER 2. NUMERICAL METHOD

2.1 Introduction

Many possible numerical methods exist for the study of polymer solutions, pre-

dominantly molecular dynamics and Brownian dynamics. Molecular dynamics

is a great tool for understanding a polymer system at the atomic scale [26, 38]

while Brownian dynamics is more commonly used when a continuous system is of

interest.

In molecular dynamics, both the chain and solvent molecules of the model

are represented on an atomic level. Calculating the particle-particle interactions,

as well as accounting for any interaction potentials is time consuming, hence

this method is primarily used to study the short-time properties of the polymer

system. Newton’s equation of motion is used to solve the model. While molecular

dynamics has been around for decades, limitations exist in being able to study

the behavior of chains of long length.

On the other hand, a continuum model allows one to disregard the difficulties in

simulating explicit solvent forces and instead consider the solvent as a continuous

incompressible fluid that exerts stochastic interactions on the polymer. The ran-

dom or irregular collisions of the polymer with the many small solvent molecules

is what defines the Brownian motion. One such stochastic numerical method is

Brownian dynamics simulation. Not only do the beads experience drag, they also

are under constant thermal bombardment by the solvent molecules. To get a good

idea of the polymer’s behavior under the effect of this force an average must be

7



CHAPTER 2. NUMERICAL METHOD

taken over an ensemble of chains. The Langevin equation of motion accounts for

the chain’s intramolecular forces, as well as the stochastic force. Because of its

continuous nature Brownian dynamics simulations require less computational time

than molecular dynamics and allow for capturing the overall polymer behavior,

hence it will be our simulation method of choice. We simulate the macromolecule

under theta solvent conditions based on the Brownian dynamics method developed

by Grassia & Hinch [33].

Brownian dynamics simulations have been used by many researchers in recent

years to further understand the dynamics of polymer chains, an overview of the

literature on this method will be covered in later chapters.

8



CHAPTER 2. NUMERICAL METHOD

2.2 Model Description

Two non-linear models are considered for our Brownian dynamics studies, the

bead-rod and the bead-spring models. The main difference between the two is

the scale of resolution, where a spring in the bead-spring model represents many

Kuhn lengths while a link in the the bead-rod model only represents a Kuhn

length [44]. Brownian dynamics simulations based on a discretized version of the

Kratky-Porod wormlike chain model, were employed. In both models the polymer

is represented as massless N + 1 beads connected by N links or springs.

2.2.1 Bead-rod model

Until recently the use of the bead-rod model has been limited due to the necessary

constraints on the link lengths. The Brownian dynamics method we present here

is based on a modified version Grassia and Hinch [33] described for a flexible bead-

rod model. By adding pseudo-potential forces, Grassia and Hinch converted the

statistics of the system from that of a rigid link to an infinitely stiff bead-spring

system allowing for equal probability of the chain angles and solving for the bead

motion through the midstep method. With the bead-rod chain now at equilibrium

there is no longer a need to equilibrate the initial conformation thereby minimizing

computational time.

9



CHAPTER 2. NUMERICAL METHOD

Figure 2.1: Bead-rod representation of a macromolecule.

As seen in figure 2.1, to represent the macromolecule, the chain is modeled as

a sequence of beads connected by rigid rods. The freely-jointed chain is composed

of N + 1 massless beads, each representing a few monomers, connected by N links

of fixed bond length b allowing the contour length of the polymer to always be

fixed. For a fixed link length, b, the properties of the polymer chain are defined

by the number of links N and the bending energy E. The rods act as a constraint

holding the beads at a set distance, while the beads themselves act to provide

friction for the chain. The beads experience Brownian motion and consequently

are under constant bombardment from the solvent molecules. The length of the

links corresponds to the Kuhn length. Because the bond length is fixed, the

transverse link length can be related to the longitudinal link length such that

d2⊥ = b2 − d2‖, and consequently the chain’s length R‖, since R‖ ∼ Nd‖.

10



CHAPTER 2. NUMERICAL METHOD

To study the behavior of stiff chains a bending energy term E is included. The

bending energy is proportional to the square of the chain’s local curvature

φbend =
1

2
Eb

∫ L

0

(

∂2
X

∂s2

)2

ds. (1)

Since the chain stiffness is governed by the angle θi between two consecutive links,

the bending energy of the discrete model can be defined as

φbend = E
N
∑

i=1

(1− cos θi). (2)

The bending energy is related to the chain persistence length Lp by E/kBT = Lp/b,

where kB is the Boltzmann constant. Based on this relation the dimensionless

chain bending parameter becomes E = E/kBT . As the bending energy increases,

the chain model goes from a freely-jointed to a rigid-rod model.

2.2.2 Bead-spring model

The bead-spring polymer model is a widely used polymer model. The Hookean

dumbbell model is the simplest model and is described as two beads connected

by a linear spring force. In this model the springs represent an elastic force in

the polymer while the drag force is accounted for by the two beads. The simple

11



CHAPTER 2. NUMERICAL METHOD

force law is described as Fi = Hdi where the spring constant H is defined as

H =
3kBT

b2k
. A more realistic model is the finitely extensible nonlinear elastic

(FENE) spring model, where the nonlinear spring potential serves to limit the

maximum extension of the springs. Warner [71] described the force law as

Fi = H
di

1−
(

dmagi
cleni

)2
(3)

with a restriction of dmag < clen, i.e. the connecting vector can not exceed the

maximum allowed spring extension. If the rate of stretching by a single spring

is faster than the chain stretching then the bead-spring model is no longer an

appropriate representation of the polymer.

Unlike the FENE or Hookean model the worm-like chain model (WLC) has

not received as much computational attention. The worm-like chain has been

proven to successfully describe the force-extension behavior of DNA molecules [8].

The mechanics of this model is based on the following spring law recognized by

Marko and Siggia [47]

Fi =
Hdi

6dmagi
[

1
(

1− dmagi
cleni

)2
− 1 +

4dmagi
cleni

]. (4)

12
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Figure 2.2: Bead-spring representation of a macromolecule.

We model the polymer such that the chain, again with N + 1 massless beads, is

now connected by N springs, see figure 2.2. Unlike the bead-rod model the springs

connecting the beads represent many Kuhn steps. To avoid unrealistic behavior,

due to large fluctuations of the chain length, similar to the FENE model, care

must be taken to ensure that the spring length does not exceed the maximum

bond length.

13



CHAPTER 2. NUMERICAL METHOD

2.3 Simulation Method

For both stiff chains and extended chains, hydrodynamics has little effect on

intrachain dynamics, however, the force can be included if needed for studying

other systems such as in the presence of flow fields [3, 34].

Summing the forces acting on each bead i and neglecting bead inertia leads to

the first-order differential Langevin equation

ζ
dX i

dt
= F

rand

i + F
ten

i + F
cor

i + F
bend

i (5)

where X i is the position vector for bead i and the length of each link is expressed

as di = X i+1 −X i. The friction coefficient ζ is related to the solvent viscosity ηs

by the relation ζ i = 6πηsbi and because the bead radius bi is set to be constant for

all beads the friction coefficient is assumed to be uniform. F rand

i is the Brownian

force experienced by the beads due to the constant random bombardments of the

solvent molecules. To get a good idea on the behavior of the polymer chain we

take many statistically independent realizations. To produce random numbers for

each realization, we re-initialize the random seed for each run generating numbers

that are statistically independent and uniformly distributed. The random force is

calculated only at the start of each time step such that 〈F rand

i F
rand

i 〉 = 2kBTζ/∆t.

The tension force F
ten

i serves to maintain a fixed link length with the presence of

constraining tensions Ti on each link such that F
ten

i = Tidi − Ti−1di−1. For the

14
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bead-spring model since there is no fixed link length the tension force is replaced

by a spring force as described in Eq. (2). To make the equilibrium probability

distribution of the bead-rod chain configurations Boltzmann a corrective potential

force F
cor

i = −∇i(kBT ln
√
det) is added, where det is the determinant of a NxN

tridiagonal symmetric matrix. Finally, the bending force F
bend

i is derived from

the chain bending energy F
bend

i = −(∂φbend/∂X i).

All physical properties mentioned from here on have been non-dimensionalized.

Due to the ever present Brownian forces, a time scale related to the diffusive

motion of a single bead, τrand = ζb2/kBT is used to represent a unit of time. Length

values are scaled with b, forces by kBT/b, and stresses by kBT . As mentioned

earlier, the relevant parameters of this study end up being the number of links

and the bending parameter.

The Langevin equation is solved for new bead positions by the midpoint

method in O(N) operations [33]. Care must be taken in determining the time

step. The size of the time step can affect the accuracy of the solution if it is too

big. To make sure the time step is small enough, we make it 10−2 times smaller

than the smallest time scale present in the problem, however, a very small time

step has the disadvantage of requiring longer computational time. To account for

the randomness brought on by Brownian motion, we take ensemble averages of up

to 10,000 chains to get a clear picture of the polymer chain’s dynamic properties.

The shorter length chains are studied using larger ensemble averages with a still
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small enough computing time (3-48hrs) on the Pentium IV cluster in our research

group. Through the use of supercomputers at the National Center for Super-

computing Applications (NCSA) in Illinois, longer chains with a strong bending

energy are able to be considered in a timely manner. To reduce computational

time, the program is parallelized using Message Passing Interface (MPI) and exe-

cuted on the distributed memory PC superclusters, namely Platinum, Tungsten,

and Teragrid. With the use of up to 160 Intel Pentium III processors or 320 Intel

Xeon processors results were obtained within a few days.
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2.4 Properties

Despite the complexity at the molecular level, the macroscopic properties of poly-

mer chains are influenced by characteristic length scales that are comparable to

the persistence length of the molecules. Among the properties of interest in this

dissertation are the chain eigenvalues, stresses, and birefringence; these properties

help give the full picture of the chain conformation when placed under different

solution conditions.

2.4.1 Configuration

By looking at a function that involves all the length scales of the macromolecule

from that of the single bead to the entire chain, the chain evolution over extended

time periods can be determined. Such a function is seen in the eigenvalues of the

gyration tensor

R
2

G =
1

NB

NB
∑

i=1

(X i −Xc)(Xi −Xc) (6)

where Xc =
∑NB

i=1
X i/NB is the center of mass of the chain [14].

Of the three eigenvalues, the first, or largest, eigenvalue R2
G,1 measures the

chain length along its major axis and is used to monitor the polymer longitudinal

length R‖ (see figure 2.3). The other two eigenvalues, R2
G,2 and R2

G,3, measure

the chain’s size along its two minor axes and provide information about the chain

width R⊥. Note that R2
G,1 ∼ R2

‖ and R2
G,2 ∼ R2

⊥.
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Figure 2.3: Polymer chain eigenvalues from the gyration tensor.

2.4.2 Stress

Looking at the stress contribution from the polymer chain can further help to

understand the chain’s configuration behavior. The stress tensor given as

σ = −
NB
∑

i=1

X iF
total

i (7)

reveals how the forces are present across the chain. Here F
total

i is the sum of the

forces acting on each bead as mentioned in Eq. (5). The tensor is affected by the

polymer deformation, while at equilibrium it is isotropic.
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2.4.3 Birefringence

Another property of interest is the birefringence of the solution. Birefringence

is formally defined as the double refraction of light, which occurs with solution

anisotropy. The term anisotropy refers to a non-uniform spatial distribution of

properties, resulting in different values being obtained when a sample is probed

from several directions. A ray of light incident on a birefringent material splits

the beam into two rays. Anisotropic crystals, such as quartz or calcite, have

distinct axes and interact with light by a mechanism that is dependent upon the

orientation of the crystalline lattice with respect to the incident light angle. On

the other hand, many transparent solids are optically isotropic, meaning that the

index of refraction is equal in all directions throughout the crystalline lattice.

Examples of isotropic solids include glass, table salt, diamond, and a wide variety

of both organic and inorganic compounds. Light entering an isotropic material

is refracted at a constant angle and passes through at a single velocity without

being polarized.

Changes in the solution birefringence offer insight into chain orientation. The

property is induced through stress from the movement of the local chain segments

in solution, therefore, the straighter the chain the more birefringent the solution

becomes. As a straight chain the maximum birefringence value for the bead-rod

model is N . Computationally the indices of refraction of the rays are exploited

to learn about the solution’s birefringence. The relaxation of the chain’s tensions
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causes local changes to the index of refraction. The anisotropies of each segment

is added to get the refractive index tensor

n =

N
∑

i=1

d̂id̂i (8)

where d̂ is the unit link length [50]. Knowing the refractive index components one

can then calculate the birefringence by

B =
√

(n11 − n22)2 + 4(n12)2 (9)

where 1 and 2 are the two rays.
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2.5 Comparison to Experiments

If we were to make a comparison of our bead-rod model to a λ-phage DNA

molecule of contour length 21.2 µm and Kuhn length of approximately 0.132

µm [65] then we see that a chain consisting of 150 beads, or Kuhn steps, means

bk= L/Nk = 21.2/150 = 0.141 µm which proves to be a close description for the

λ-phage DNA molecule. Hence in our studies, because the Kuhn length is kept

constant, chains with fewer beads represent fragments of the biomolecule while

chains with beads greater than 150 represent longer molecules.

A comparison of Brownian dynamics simulations with experimental measure-

ments of polymer chains subjected to a flow field has been done by Larson et al.

[44]. Here the authors successfully concluded the agreement of simulation and

experimental measurements for DNA chains under extensional flow. Larson et al.

not only numerically studied the unraveling dynamics of a single bead-spring flex-

ible chain but also compared the results to the recent experimental findings of

Perkins et al. [57] and Smith et al. [64]. The experimental studies, performed by

Chu’s group, consisted of analyzing the transient extension behavior of a fluores-

cently stained flexible lambda bacteriophage DNA (λ-DNA) molecule. Excellent

agreement was noted and because of the extra information obtained computation-

ally, the group was able to further conclude that the initial state of the chain does

influence the unraveling path it takes. The stronger flow rate dominates over the

Brownian motion, therefore the initial configuration is affected more by the drag

21



CHAPTER 2. NUMERICAL METHOD

force, which can be seen by noticing the rapid full extension of the dumbbell chain

under a stronger flow.

In contrast, with the use of Brownian dynamics simulations Jendrejack and

co-workers [34] reproduced the experimental relaxation time of a stained DNA

molecule. They defined the DNA molecule using the WLC model and included

both hydrodynamic interactions (HI) and excluded volume (EV) effects. The

experimental relaxation time of 4.1sec was reproduced by setting bk = 0.106µm.

A comparison to the extensional results of the Chu group [65] also, coincided well.

A similar observation of chain deformation was done by Li et al. [45]. Here

they compared the results of previous experimental findings to their simulation

results of dilute DNA and polystyrene solutions under shear flow. A comparison

of the two methods showed that there is excellent agreement for DNA molecules

while an over-prediction of polystyrene deformation was noticed. The authors

suggested this difference in results for polystyrene molecules could either be due

to the differences between the solvent effects on DNA and polystyrene molecules

or an inaccuracy in the experimental method. They noted that while microscopy

allows for direct observation of the polymer conformation, the indirectness of light

scattering can only provide a bulk measure of microstructural information.

Another successful comparison on the transient study of DNA molecules was

discussed by Dimitrakopoulos [15]. In that study, the simulated chain conforma-

tions and chain rotation were consistent with the experimental findings of Perkins
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et al. [55]. Qualitative agreement was also noted in the long-time exponential de-

cay exhibited by the relaxing chain. The comparison of Brownian dynamics results

to theoretical predictions and experimental findings of stiff chains has also been

done. With the use of the bead-rod model, Dimitrakopoulos et al. [13] accurately

described the linear stress relaxation of flexible DNA molecules and semiflexible

F-actin molecules.

Finally, Shankar et al. [62] simulated biopolymers and synthetic polymers of

varying stiffness and also compared their results to existing experimental data.

The authors noticed excellent agreement with earlier experimental work for the

viscoelastic measurements of dilute solutions. The successful observation of single

polymer chains in experiment and simulation allow for us to expand the study

towards semiflexible chains.
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Relaxation of a Bead-Rod Chain

In this chapter, we consider the relaxation of initially straight semiflexible bead-

rod chains. This study is motivated by the recent work of researchers using manip-

ulation techniques with tethered beads and advanced imaging techniques through

fluorescent staining to observe the time-dependent conformational dynamics of

polymer chains such as DNA or polystyrene. Experimental studies followed the

transient behavior of DNA collapsing after extension [55], or the motion of flu-

orescent stained actin filaments guided by molecular motors [39]. The direct

visualization of molecules in solution was a breakthrough, no longer limiting the

study of polymer rheological properties to their static behavior. Not only are the

properties of the chain at equilibrium of interest, but how the chain coils back

and the change in properties along the way to equilibrium is of significance.
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Here the relaxation of a single semiflexible polymer chain from an initial

straight configuration is studied. Physically this problem may correspond to a

polymer chain being fully stretched by a strong flow, switching the flow off and

then observing the chain relax towards equilibrium. The aim of this study is to

fully understand the polymer conformation, stress, and optical transient behav-

ior. The configuration relaxation has been determined over extended time periods

through monitoring of the eigenvalues of the gyration tensor and application of

the scaling law methodology. By studying the chain’s lengths, the molecular con-

formation information gained was subsequently used to examine the stress and

optical relaxation course of the semiflexible chain. Studying these chain proper-

ties as the chain relaxes from an initially extended state can provide insight, for

example, as to how the polymer molecule functions within the cell influencing cell

characteristics and behavior.

The path back to equilibrium is also of importance to many rheological prob-

lems encountered in industry. Under a strained force, such as an extensional flow,

the macromolecule will deform. Once the strain is released, the chain will undergo

a transition from that of a stretched state to a coiled phase affecting properties

which depend on the polymer configuration. Recognizing the dynamics of the

macromolecule as it relaxes is the first step towards understanding the behavior

and manipulation of chains in confined spaces such as microfluidic devices. The

results of this study can also improve our understanding towards the applica-
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tion of polymeric materials in Micro-Electro-Mechanical Systems (MEMS), and

pharmaceutical and biomedical processes.
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3.1 Introduction

Progress on the study of polymer physics has been made from theory to exper-

imental work to present day simulation work. Here we will review some of the

significant experimental results on polymer relaxation and Brownian dynamics

simulations on the bead-rod model.

Chu’s group [55] set out to experimentally find scaling relations for the dy-

namic properties of single molecules by studying their dependence with time. By

attaching one end of the chain to a bead, the chain was able to be manipulated

with optical tweezers, and molecular motion of the stained DNA was directly ob-

served through an optical microscope. The trapped bead was held stationary as

single molecules of DNA were stretched to full extension by a flow velocity of 20

µm/s. Once flow was stopped fluorescent images were recorded, directly mea-

suring the relaxation of the chain. Configuration changes showed an initially fast

relaxation of the free end to 70% of its length, followed by a slower relaxation time

as the chain reached its equilibrium coil-like state. Points of increased fluorescence

intensity were noted along the chain, signaling the presence of knots, or overlap of

molecules, during the relaxation process. Data was analyzed with inverse Laplace

transformations to get a spectra of exponential decay and with data collapse to

measure scaling relations. The longest relaxation time followed a scaling law of

τ ≈ L3ν , with the scaling exponent measured to be 1.66. As expected the peaks of

the relaxation spectrum did not match with the Rouse or Zimm theory [22]. Since
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these two theory models describe behavior at equilibrium. The data were rescaled

with time and length to arrive at a relation dependent only on the single variable

of length. The linear behavior showed scaling agreement with results from the

Laplace transform.

The experimental findings on the transient behavior of single DNA molecules

led the way to further investigate properties of single molecules with an ultimate

goal of understanding polymer dynamics. A stretched flexible polymer chain, in

addition to experiment, can be simulated through Brownian dynamics to measure

its relaxation properties. The simulation work of Hinch and coworkers [33] on

the relaxation of polymer stresses lead the Brownian dynamics study of bead-rod

models. Using the Langevin equation with a small enough time step to integrate

the ODE, Brownian motion was simulated and stress was calculated according to

Kramers’ stress formula for chains of up to 100 beads in length. For a straight

chain configuration the stress was measured and found to scale on the order of

N3. The authors saw the first normal component of stress decay by a power

law at intermediate times, and finally an exponential decay at long times. The

initial slow decay, can be explained by the large Brownian forces present causing

sideways diffusion of the beads. At long times a more rapid exponential decay

was noticed. Here the relaxation is dominated by the decay of the longitudinal

extension of the chain. Their results show that even though the chain relaxes back

to its equilibrium state, the long time relaxation scales differently from the Rouse
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model. The relaxation rate was found to be higher than the predicted value. They

base this difference on the existence of a quasi-static balance between link tensions

and bead diffusion. Neglecting excluded volume had no effect on the results.

Further studies on the relaxation transient dynamics of bead-rod chains were

performed by Doyle et al. [21]. The authors extended bead-rod chains in various

linear flow fields and then monitored the relaxation behavior of the polymer. The

observed stress relaxation data was in agreement with the results of Grassia and

Hinch. The short time birefringence relaxation was also studied and a hysteresis

was found between the stress and birefringence behavior of the bead-rod model.

Hatfield and Quake [31] focused on the effects of the forces involved in the

relaxation process of single chains. They showed the tension force dominating

over hydrodynamics through theory, simulation of a bead-rod chain of 21 beads,

and comparison to the experimental results of the Chu’s group. Because both

tension forces and hydrodynamic interactions were included, the Rouse model

was used to separate the effects of the two. By looking at the direct influence

of extension on chain dynamics, the authors concluded that due to anisotropy,

caused by extension, the polymer relaxation time splits into two components. A

longitudinal and transverse time scale is observed. Due to symmetry at the coiled

state only one relaxation time is observed at equilibrium. They were also able to

see the influence of tensions over hydrodynamics on the relaxation time. As chain

extension is varied the change in the tension forces influences the relaxation time
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more noticeably than hydrodynamics.

Andrews et al. [4] heightened the bead-rod study by looking into the effects of

a new variable. What made their research interesting was the inclusion of chain

stiffness. Using the bending constant of the chain as the independent variable in

the simulations the authors predicted the influence of chain flexibility on chain

conformation. The authors not only studied the effect of steady and shear-flow

but also looked into the relaxation properties of a seven-bead chain at short times.

The relaxation studies revealed how an increase in stiffness leads to an increase in

the chain’s relaxation time. The effect of the tension and bending forces were more

evident for the semiflexible chains by means of bumps on the data, while the rigid

rods had a single curve, due to the dominance of its bending force over tension;

proving the influence rigidity has on the chain’s conformational and rheological

properties.
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3.2 Results and Discussion

While flexible relaxation dynamics has been studied both experimentally and com-

putationally, the transient dynamics of semiflexible chains remains poorly under-

stood over all time scales. As was seen by the review on Andrews et al. [4], flex-

ibility of the chain does influence the rheological properties. Relaxation studies

involving the bead-rod model are limited by not covering all modes of relaxation

experienced by the chain, flexibility of the chain, or chains of long lengths.

Here we monitor the transient behavior of various chains to provide scaling

laws that are a function of the chain’s length, stiffness, and time. Because it is

time consuming to study chains of long length over extended time periods, un-

derstanding the scaling behavior of the property will prove useful. The properties

of interest here are the chain lengths, normal stresses, and birefringence. Not

only are we interested in the properties at equilibrium but how the chain under-

goes the conformation transition and the change in properties along the way to

equilibrium.

3.2.1 Dynamics and Time Scales

The relaxation process is governed by the chain’s various length scales; short,

intermediate and long. An understanding of the semiflexible chain’s relaxation

mechanism can be seen by looking at the forces involved in the three different
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time periods. Initially, because the chain is straight, bending forces, if present, are

negligible and the tension force on each bead is seen to scale as T ∼ N 2. Hence, at

short-times t � N−2, both flexible chains (E=0) and stiff chains (E > N) display

a free transverse bead diffusion d2⊥ ∼ t, due to the dominance of the transverse

Brownian forces over the transverse tension forces F ten
⊥ � F rand

⊥ . At the transition

time τten ∼ N−2, the tension forces and Brownian forces reach a balance. For

flexible chains at intermediate-times N−2 � t � N2, the tension forces dominate

the dynamics and a quasi-steady equilibrium balance of the tension forces along

the chain length is observed [15, 33]. Due to the presence of Brownian forces, a

relaxation of the tension force is observed for flexible chains, when t ∼ N 2 the

tension becomes T = O(1).

On the other hand, because of the added bending force, stiff chains exhibit two

intermediate-time periods. At early intermediate-times N−2 � t � N4/E3, the

chain is still almost straight; thus the longitudinal bending forces are negligible

and the dominance of the longitudinal tension component is seen F bend
‖ � F ten

‖ ;

a behavior identical to flexible chains is observed. Only at the transition time of

τmid ∼ N4/E3 does the tension force start to decrease due to the presence of both

the Brownian and bending forces. The late intermediate-time period N 4/E3 �

t � N4/E, exist when the chain stiffness begins to have a noticeable effect on the

longitudinal relaxation process. The late intermediate-time period ends when the

longest bending time scale for the polymer chain is reached τ⊥ ∼ N4/E.
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An influence of the chain length on the dominance of the tension and bending

forces was also noticed. Long stiff chains, N > (E/N), exhibit an early universal

intermediate behavior due to their still straight chain configuration, while the

late intermediate behavior was seen for all stiff chains due to the presence of the

bending energy.

Finally, at long-times no behavior was noticed for stiff chains because the

chains are already near equilibrium by the end of the intermediate-time period. In

summary, the relaxation mechanism is governed by the relaxation of the tensions

accumulated in the initial configuration. Table 3.1 shows an overview of the time

scales for both flexible and semiflexible chains.

Table 3.1: Relaxation time scales for the bead-rod model

τrand ∼ ζb2/kBT unit time

E = 0 τten ∼ N−2 short-time

flexible τnmode ∼ N2 long-time
E ≥ N τbend ∼ E−1 short-time

semiflexible τmid ∼ N4/E3 early-intermediate time

τ⊥ ∼ N4/E late-intermediate time
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3.2.2 Configuration

Because single bead motion is affected only by the neighboring beads, a quick (a

few time decades) relaxation of the bead is noticed; thus a clear understanding

of the full chain configuration is not able to be seen over a large enough time

period [19, 33]. We expand on previous studies by considering the transient be-

havior of the eigenvalues. Because the second and third eigenvalues show the same

relaxation behavior, discussion is limited to the behavior of the second eigenvalue.

For completeness we review the behavior of flexible chains as presented by

Dimitrakopoulos [15]. By looking at the unscaled relaxation behavior of the chain

length, one can see the polymer chain stays aligned in the longitudinal direction

well into late long times when rotation effects take place to incur a rapid relax-

ation. During short and intermediate-times, the chain expands in the transverse

direction showing scaling laws of R2

G,2 ∼ t and R2

G,2 ∼ N−1/2 t3/4 respectively

for the two time periods. In order to get the intermediate-time scaling behav-

ior of ∆R2
G,1 ∼ Nt1/2, the reduction of the property with its zero time value

∆R2
G,1 = R2

G,1(0) − R2
G,1(t), is scaled with N 2 (the scaling at the end of the

intermediate-time) while the first normal mode relaxation is used (i.e., the long-

time relaxation scaling) τnmode = τrand
[

12 sin2(
π

2(N + 1)
)
]−1

, to get an over-

lap of the curves at intermediate-times. Chain anisotropy is observed by the

differences in the transverse intermediate-time behavior of R2
G,2 ∼ t3/4 and the

longitudinal intermediate-time behavior of R2
G,1 ∼ t1/2. At long-times, the re-
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duction of the property is taken with respect to its equilibrium value, such that

δR2
G,1 = R2

G,1(t)− (R2
G,1)eq where (R2

G,1)eq = 0.76(R2
G)eq.

The intermediate longitudinal and transverse relaxations of an initially straight

stiff chain are shown in figures 3.1 and 3.2. The short-time free bead diffusion is

shown along with the scaling behavior for both the early and late intermediate-

times. The early intermediate-time behavior of the chain’s width R2
G,2 ∼ N−1/3t5/6

is seen in figure 3.2a, while the longitudinal universal relaxation of ∆R2
G,1 ∼ Nt1/2,

is seen again in the early-time behavior in figure 3.1a. The late intermediate-time

behavior of the chain’s length and width behavior can be seen in figures 3.1b

and 3.2b. The dependence of the chain stiffness E is noticed during the late

intermediate-time period, where the chain length is seen to grow as ∆R2
G,1 ∼

N2E−3/4t1/4, see figure 3.1b, and the width increases as R2
G,2 ∼ E−1/4t3/4, see

figure 3.2b.
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Figure 3.1: Scaling law for the relaxation of the chain’s length for stiff polymer
chains with E/N = 10 at (a) early intermediate-times and (b) late intermediate-
times. The free diffusion at short-times is also shown.
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Figure 3.2: Scaling law for the relaxation of the chain’s width for stiff polymer
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3.2.3 Stress

As a straight chain configuration only normal stresses are present. The first nor-

mal stress component σ11, is effected by the chain’s tensions in the longitudinal

direction, σ11 ∼
∑

T ∼ RG,1F
ten
‖ while the the weaker stress σ22 is due to the

transverse Brownian force. Through our earlier analysis on the polymer configu-

ration and dynamics, we can now better understand the polymer stress relaxation

behavior by recognizing the dependence of the stress on the longitudinal length

component.

The flexible relaxation behavior of the two normal stress components can be

found in reference [15]. Similar to the relaxation of the configuration, anisotropy

in the stress is also noticed, σ11 ∼ t−1/2 while σ22 ∼ t−1/4, during the intermediate-

time period.

Figure 3.3 displays the early and late intermediate behavior of E/N = 10 stiff

chains. As expected, figure 3.3a shows the universal σ11 ∼ N2t−1/2 relaxation

behavior observed for the flexible chains. At late intermediate-times a power

law scaling of σ11 ∼ N3E−3/4t−3/4 is noticed. Because there is no change in the

polymer length until long times, the short and intermediate time stress relaxation

behavior is affected only by the change in the transverse direction. Not until long

times is there a rapid stress relaxation seen due to the relaxation of the chain

length and corresponding tensions.
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Figure 3.3: Scaling law for the relaxation of the chain’s normal stress component
σ11, for stiff polymer chains with E/N = 10 at (a) early intermediate-times and
(b) late intermediate-times.

39



CHAPTER 3. RELAXATION OF A BEAD-ROD CHAIN

3.2.4 Birefringence

Previous Brownian dynamics studies on birefringence relaxation have been lim-

ited to the long-time behavior and the index of refraction was indirectly studied

through a linear stress-optic coefficient [19, 21].

We first examine the components of the refractive index tensor for polymer

relaxation. By doing so, it was noticed, as seen in figure 3.4, that n12 has no

distinct behavior and is much smaller in magnitude compared to the difference of

the two normal components. Based on this analysis, n12 can be eliminated from

Eq. (9) allowing birefringence to be simplified into

B ∼= n11 − n22. (1)

At equilibrium the birefringence of the chain is zero; consequently, the two normal

components are equal in value (n11)eq = (n22)eq = (n33)eq = N/3 as seen in

figure 3.5.

Because of the linear birefringence relation described in Eq. (1), the refractive

indices display the same scaling behavior as the birefringence. The flexible scaling

behavior of both the refraction indices and birefringence relaxation can be seen in

figures 3.6, 3.7 and 3.8.
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Figure 3.6: Scaling law for the relaxation of the reduction of the first index of
refraction for flexible polymer chains at (a) intermediate-times and (b) long-times.
The free diffusion at short-times is also shown.
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Figure 3.7: Scaling law for the relaxation of the second index of refraction for
flexible polymer chains at (a) intermediate-times and (b) long-times. The free
diffusion at short-times is also shown.
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Figure 3.8: Scaling law for the relaxation of the birefringence reduction for flexible
polymer chains at (a) intermediate-times and (b) long-times. The free diffusion
at short-times is also shown.
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The optical evolution for flexible chains shows free diffusion at short-times, an

intermediate-time behavior of B ∼ t1/2 in figure 3.8a, and a long-time exponential

decay ofB ∼ N exp(−2.3 t/τrouse) in figure 3.8b. The long time decay also matches

the long-time behavior originally found by Doyle et al. [19].

Due to the similar behavior of the refractive indices with birefringence, the

semiflexible behavior of only birefringence is shown in figures 3.9 and 3.10. As

seen in figure 3.9, both short and long stiff chains, due to the free diffusion, have

the same linear scaling of ∆B ∼ Nt at short-times. As expected, the evolution

for stiff chains reveals the same early universal law of B ∼ t1/2, followed by a late

power law of ∆B ∼ NE−3/4t1/4, as shown in figure 3.10.
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As the chain relaxes toward its equilibrium shape, the decay of both normal

refractive index components are seen to be related to the chain’s longitudinal

relaxation. Even though the second normal component is a function of the per-

pendicular chain orientation n22 =
∑

d2⊥, as mentioned earlier due to fixed bond

lengths, the link width is a function of the chain’s length R‖, so both the normal

index components are a property of the chain length. Thus, the optical prop-

erties can be defined as a function of the chain’s longitudinal length such that

∆B ∼ ∆R2
G,1/N . A summary of the power-law behaviors found for the three

properties is seen in table 3.2.

Table 3.2: Relaxation behavior of the bead-rod model for semiflexible chains

length ∆R2
G,1 ∼ Nt1/2 early-intermediate time

∆R2
G,1 ∼ N2E−3/4t1/4 late-intermediate time

width R2
G,2 ∼ N−1/3t5/6 early-intermediate time

R2
G,2 ∼ E−1/4t3/4 late-intermediate time

stress σ11 ∼ N2t−1/2 early-intermediate time

σ11 ∼ N3E−3/4t−3/4 late-intermediate time

birefringence ∆B ∼ t1/2 early-intermediate time

∆B ∼ NE−3/4t1/4 late-intermediate time
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A relationship between the refractive index tensor and the stress tensor can be

found through the stress-optic law n = Cσ, where C is the stress-optic coefficient

[24]. From this proportionality, knowing the birefringence of the material allows

for understanding of the stresses present. The constant coefficient C, has been

found to be independent of molecular weight but dependent on the solvent, where

after a limit is reached the polymer concentration has no effect on the constant

[24]. Experiments and simulations have shown the validity of this linear relation

for weak flow rates only. Doyle et al. studied the law for the relaxation of flexible

chains and concluded that the coefficient is constant only at long-times [19]. A

more general relation between stress and birefringence was recently seen in the

work of Ghosh et al. [27]. This relation however, is only valid for the intermediate

and long-time relaxation of flexible chains.

Based on our results on the relaxation behavior of the polymer stress and index

of refraction and their dependence on ∆RG,1, we have formulated a generalized

nonlinear stress-optic law

σ11 ∼ N2d(B(0)− B(t))

dt
. (2)

This law is valid for all time periods and for any chain stiffness. Figure 3.11

displays the stress-optic law for stiff chains. The chains show that with time the

ratio of actual stress to stress predicted by Eq. (2) is constant. Noise in the data is
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due to the calculation of the derivative d(B(0)−B(t))/dt. Also, for long chains we

were able to see behavior independent of N with the ratio remaining at a constant

value of ∼ 0.02.
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Figure 3.11: Stress-optic law for stiff polymer chains with E/N = 10.
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Chapter 4

Relaxation of a Worm-Like Chain

We continue our single molecule study by examining the relaxation dynamics

of the worm-like bead-spring model. Even though the bead-rod model has been

shown to model flexible polymer behavior such as polystyrene molecules, the force-

extension curve of DNA has been well described by the WLC model [8]. In this

model the bonds of the polymer are no longer rigid rods as in the bead-rod model

but are represented as entropic springs accounting for the chain’s elastic nature.

The appeal of polymers towards biological and industrial purposes are endless.

The ability to predict the dynamics of biological and synthetic chains through

computational modeling will be of great value. Towards this goal, we investigate

the relaxation dynamics of the worm-like chain model. Through parallel computer

resources, we try to capture and understand the polymer’s properties missing in

previous studies.
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4.1 Introduction

One of the first attempts to model the bead-spring model towards the properties

of DNA was done by Bustamante et al. [8]. The force extension study showed

how DNA approaches its contour length with an inverse square-root dependence

on the force. This model has been proven to successfully describe the force-

extension behavior of DNA molecules. The force-extension measurements were

further examined by Bouchiat et al. [7]. Here the persistence length was predicted

for DNA molecules at low and high extension and found to be independent of the

stretching force.

Ladoux and Doyle [41] studied and compared the behavior of a tethered WLC

chain to a freely jointed chain. Under shear flow the effects of extension was

predicted through theory, simulations, and experiment. A scaling analysis showed

that the freely jointed chain is more easily extended than the WLC. This difference

can be explained by looking at the spring force laws of the two models. The scaling

laws were confirmed through Brownian dynamics simulations and fluorescence

microscopy experiments on λ− phage DNA chains. The experimental relaxation

time was also measured by stopping the shear flow and allowing the molecules

to come to equilibrium. The authors determined the following relaxation times,

τ = 0.45 s, τ = 1.45 s, and τ = 2.56 s for a λ, 2λ, and 3λ length DNA molecules,

respectively. Experimental extension data for the three tethered molecules were

plotted against the scaling laws for the two chain models and agreement with the
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WLC scaling was noted. The results closely followed the extension rate predicted

by the WLC. Hydrodynamic interactions were neglected.

Jendrejack et al. [34] extended the WLC study by looking into the effects of

hydrodynamic interactions on the model. The authors show how the bead-spring

model can be used to correctly predict the stretch behavior of chains up to six

times longer (Ns = 60, Lc = 126µm) by proportionally increasing the number of

springs in the WLC model. The longest relaxation time of the WLC model is

described as

λ =
ζb2kNk,s

24kBT sin2( π
2Nb

)
(1)

where Nk,s represents the number of Kuhn steps per spring. The maximum spring

length can then be described as clen = bkNk,s. The Brownian dynamics algorithm

held the Kuhn length constant and accounted for both EV and HI. The behavior

of longer chains was seen to be better predicted by the HI model.

A later work by Shaqfeh et al. [63] looked into the transient behavior of both

the WLC and inverse Langevin spring chains following extensional flow. The effect

of various flow rates was measured to determine the relaxation of the chains. As

was seen earlier by Doyle et al. [21] for the bead-rod model, the authors saw a

universal stress relaxation. After large deformation, under different strain rates,

the stresses were seen to collapse onto a single curve. A difference in the stress

decay of the two models was also noted. The WLC follows a power-law decay
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of −0.69 while the freely-jointed chain follows the flexible −0.5 power-law decay

predicted by earlier authors. Stress relaxation was measured directly through

experiment and Brownian dynamics simulations.

The recent observations of Brownian dynamics simulations on the WLC model

are limited. Studies using the spring model have focused more on the extension

dynamics of the chain when placed under a linear flow field or subjected to force-

extension tests. There is still much to be gained on the physics of semiflexible

WLC chains.
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4.2 Results and Discussion

Here we expand on our earlier relaxation study by shifting focus to the WLC

bead-spring model. Via Brownian dynamics simulations we have captured the

relaxation of chain length, width, stress, and spring force behavior.

In this model the polymer elastic force is represented by springs while the

drag force is accounted for by the chain beads. The springs connecting the beads

represent many Kuhn steps; therefore, making this model ideal for the study of

long chains. To limit the maximum extension of the springs a nonlinear spring

potential is added. Due to possible large fluctuations of the chain length, care

must be taken to ensure that the spring length does not exceed the maximum

bond length. Setting a restriction of dmag < clen allows for the connecting vector

to not exceed the maximum allowed spring extension. If the rate of stretching by

a single spring is faster than the chain stretching, then the bead-spring model is

no longer an appropriate representation of the polymer.

The mechanics of this model is based on the following spring law first recog-

nized by Marko and Siggia [47]

Fi =
Hdi

6dmagi
[

1
(

1− dmagi
cleni

)2
− 1 +

4dmagi
cleni

]. (2)
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where H, the spring constant, is a function of the Kuhn length. Since our interest

is on semiflexible chains we set bk = 0.005. To realistically model the chain and

avoid over-stretching we set the initial conformation to 99% extension and reject

conformations where the maximum extension is exceeded. The number of rejection

steps is dependent on how large the adopted time step is. A large time step would

result in a large bead displacement, thereby leading to a very large and unrealistic

spring force. The size of the time step used in the simulations was dependent on

the Kuhn length, spring extension, and the chain length. An inverse relationship

with chain length was noticed, such that the smaller the length the smaller the

time step needed. Consequently, greater computational time was required. Due

to this drawback our results are limited to chains of up to 40 springs; however,

our results cover several time decades. For a chain of 40 springs, a time step of

10−9 was used and studied at least 8 time decades to capture most of the chain’s

relaxation behavior. The simulations used 3200 independent realizations.

The unscaled relaxation behavior for the chain length is seen in figure 4.1.

Similar to the bead-rod relaxation, we see a rapid longitudinal relaxation occurring

late into the intermediate times. The short-time constant behavior of the length,

coincides with the chain going through an initial relaxation in the transverse

direction. The effect of chain length shows that the longer the chain the more time

is needed for it to relax to its equilibrium state. The increase in bonds increases

the competition between the Brownian force and the spring force delaying the
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path back to equilibrium. Because the chains are not fully extended one can

notice the initial value of the chain length is slightly smaller than the expected

0.1N2 value for a fully-extended chain. When compared to the long-time behavior

of our relaxation study on flexible bead-rod chains, we see agreement.
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Figure 4.1: Unscaled chain length for N=2-40 of a WLC with bk = 0.005.
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The short-time length and width relaxation can be seen in figures 4.2(a) and

4.3(a) respectively. The transverse fluctuations give rise to a short-time free dif-

fusion. This behavior, driven by Brownian motion, agrees with the predictions

of the bead-rod model for short-time relaxation behavior. The single bead time

scale of τrand accounts for the Kuhn length in the relaxation scaling.

During the early stages of stress relaxation we find the first normal component

of stress scaling as high as Nb−2

k . As shown in figure 4.4(a), the initial stress is

proportional to N. Because of the inverse relationship with the Kuhn length, the

stress of the nearly extended chain is seen to be large in value. The high growth in

stress at the nearly extended state can be attributed to a loss of entropic freedom

in the WLC. Figure 4.5(a) shows the relaxation behavior of the second normal

stress component. We see an initial stress on the order of N − 1.

Furthermore, we have predicted the short-time spring force behavior for the

three chain lengths of interest. The direct effect of the spring force is seen in

figure 4.6. Initially the tension is as high as 106 and then relaxes down to an

order of ≈ 103 within 6 decades. We see at both zero-time and long-time that

the spring force is independent of chain length. At extension and equilibrium the

spring force is dependent only on the Kuhn length. The intermediate relaxation

of the spring force as a function of length can also be seen.
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The longest relaxation time of the WLC model described in Eq (1) has been

simplified to:

λ =
bk

24 sin2( π
2Nb

)
(3)

for our model parameters. This time scale can then be used to predict the

intermediate-time behavior of the chains. We show such behavior in figures 4.2(b),

4.3(b), and figure 4.4(b). At intermediate-times the chain length scales as

R2

G,1(0)− R2

G,1(t) = ∆R2

G,1 ∼ t0.35, (4)

while the width shows the same short-time free diffusion behavior. The continuous

growth seen for the chain width is attributed to the beads being connected by

entropic springs. The intermediate stress behavior predicts the following scaling

σ11 ∼ t−0.69. (5)

This power law is in agreement with the recent findings of Shaqfeh et al. [63].

Finally, in examining the second normal stress component, seen in figure 4.5(b),

we see a slower power law decay at the rate of 0.25, noticeable for the longer

chains.
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Figure 4.2: Scaling law for the relaxation of the chain’s length for WLC with
bk = 0.005 at (a) short and (b) intermediate-times. Note that ∆R2
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Figure 4.3: Scaling law for the relaxation of the chain’s width for WLC with
bk = 0.005 at (a) short and (b) intermediate-times.
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Figure 4.6: Short-time relaxation of the spring tension for WLC with bk = 0.005.

67



CHAPTER 4. RELAXATION OF A WORM-LIKE CHAIN

The effect of the Kuhn length on a constant chain length of N = 10 was also

studied. To avoid large computational costs, we first examine the influence of bk

on chains with an extension of 50%. The three lengths of interest were bk = 0.001,

bk = 0.005, and bk = 0.05. As can be seen in figure 4.7 the zero-time value of

the chain length is independent of the Kuhn length and only dependent on the

percentage of extension. We see the initial length of a 50% extended N = 10 WLC

is ≈ 2.5. Not until late into the short-times is the effect of the rigidity noticed.

As expected, a rapid decay of the most flexible chain, bk = 0.001 is seen first.

At long times we see the chains reaching full relaxation as evidenced by the end

plateau. The effect of rigidity can be seen on the relaxation length, the higher the

Kuhn length the more extended the final configuration is due to the presence of

larger bending forces. Looking at the chain width in figure 4.8, we see again the

zero-time value is free of chain rigidity. The rate of growth of the chain width is

dependent on the stiffness, with the more rigid chain reaching a higher growth.

Analysis of the stress behavior shows an initial inverse relationship with bk, see

figure 4.9. This inverse behavior can be explained by looking at the spring force

law described in Eq (1), where we see the inverse dependence with bk; recall that

the spring constant is H =
3kBT

bk
. All chains equilibrate to the same end value.

Finally, we show the relaxation behavior of the second normal stress component

in figure 4.10. The relaxation is based on the degree of flexibility.
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Figure 4.7: Chain length relaxation behavior of a N=10 WLC at various Kuhn
lengths.
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Figure 4.8: Chain width relaxation behavior of a N=10 WLC at various Kuhn
lengths.
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Figure 4.9: First normal stress relaxation behavior of a N=10 WLC at various
Kuhn lengths.
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Figure 4.10: Second normal stress relaxation behavior of a N=10 WLC at various
Kuhn lengths.
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Chapter 5

Chain Stiffening

The focus of this chapter is to study and understand the dynamics a flexible

chain undergoes when subjected to stiffening conditions. Studying the effect of

chain flexibility on the macromolecule’s properties is valuable towards further

understanding the behavior of polymers experiencing a temperature, solvent, or

structure change. This study is analogous to polymer systems changing confor-

mations from that of a flexible coiled state to a rigid rod state due to the influence

of surrounding conditions. The increase in stiffness is commonly experienced by

nanoscale devices where the constrained polymer is subjected to rapid solution

changes [59].

In this work, a method for the dynamic simulation of stiffened macromolecules

is presented. The transient properties and conformations adopted by the chain

have been studied extensively. We focus on understanding the transient dynamics

of this coil-rod transition and its effect on the polymer properties.
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5.1 Introduction

Past research has concentrated on polymers only at constant strength, however,

with recent advances in technology, researchers have now been focusing on manip-

ulating the rigidity of polymer chains to limit the chain bending. When subjected

to external forces, such as strain or a change in solution conditions, such as an

ionic strength increase, most polymer chains will stiffen. The increase in the chain

persistence length, or chain Kuhn length, effects the polymer conformation and

consequently its behavior in solution. The effect of stiffening polymer chains has

been studied for both biopolymers and synthetic polymer systems.

Experimental studies on the ionic effects on the flexibility of single DNA

molecules can be seen by Baumann et al. [5]. Through force extension stud-

ies Baumann et al. monitored chain elasticity as a function of both monovalent

and multivalent cations. As monovalent salt concentration increased, from 1.86-

586 mM, the chain persistence length decreased, from 96.3-45.1 nm. Multivalent

cations such as Mg2+, putrescine2+, and Co(NH3)
3+

6 were also studied, and the

same inverse relationship was noticed.

Similar behavior has been observed for even concentrated solutions. Rouault

[59], through Monte Carlo simulations monitored chain stiffening dynamics of a

living polymer system. An interesting observation of this study was the effect

the persistence length had on the chain contour length. An increase in the chain

bending energy led to a decrease in the chain contour length. Upon reaching its
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equilibrium rod-like state, further increase in bending energy resulted in a decrease

in chain contour length.

Kemp et al. [36] studied the ordering of polymers as a function of temperature.

In that work, the behavior of single molecules was investigated experimentally and

computationally. Four distinct equilibrium configurations were revealed when

amino acid monomers were subjected to a decrease in temperature. To reach the

final stiff state, the flexible chain transitioned from a collapsed globular state,

noticed by a decrease in R2
g, to a flexible helical state where an increase in the

chain size is noticed, to a final rod state. The protein organized itself at a given

temperature such that its free energy was at a minimum, obeying thermodynamic

laws.

Kinetic studies can be seen by Nisoli et al. [51] and Sakaue et al. [60]. Nisoli

and co-workers followed the excitation kinetics of chains by the addition of various

vinyl groups to the polymer backbone. The authors explore the flexibility effects

based on the location and size of the side groups. The chain with alternating side

groups, the most stiff chain, displayed the fastest kinetic decay to ground state.

Relaxation was independent of size or location and only depended on the rigidity

(i.e. how many side groups) of the chain. A similar study is seen by Sakaue et al.

[60]. Here the coil-rod transition kinetics through chain nucleation and growth of

a single semiflexible polymer chain was followed. Both the toroid and rod folding

states were studied by observing the chain’s internal energy and bond orientations.

75



CHAPTER 5. CHAIN STIFFENING

The authors focused on comparing the folding and unfolding path of the polymer

chain and concluded that a hysteresis exists.

Examples from the literature show knowledge on the polymer stiffening behav-

ior has been gained through macroscopic measurements. A range of studies has

been done in this area both experimentally and computationally to understand

the dynamics, kinetics, and thermodynamics of the coil-rod transition. However,

there is still much to be learned about the dynamic behavior and the physics

involved in the stiffening process. Past experimental studies on this process have

focused on the direct change to the chain persistence length, not the shape or

property dynamics.

76



CHAPTER 5. CHAIN STIFFENING

5.2 Results and Discussion

Existing stiffness studies, as seen from the review focus on the contour length

effect, kinetics, and/or thermodynamics of the polymer chain. Focus on the ex-

pansion dynamics is rather limited and has not detailed the transient physics. The

studies, also, have focused on semi-dilute to concentrated solutions. The objective

here is to look at the effect on a single chain’s physical properties as the shape

transition from that of a coil to helix to rod state is made. By starting with a stiff

chain forced into a coiled position and allowing it to extend over time, due to the

bending and Brownian forces present, the effect of rigidity on the polymer chain

properties can also be studied.

In our simulations, the time needed for the chain to reach the desired stiffness

is rather small compared to the time the polymer takes to arrive at its final

equilibrium shape; thus, we define the desired stiffness immediately at t = 0. At

the end of the dynamic process, the chain equilibrates to its rod-like shape.

We have successfully modeled this interesting behavior. In figure 5.1 the initial

coiled configuration for the N=100 chain is shown at time t = 0. Upon experi-

encing a bending energy of E/N=10, within a short period, the helical shape is

assumed by time t = 1. This rearrangement of the beads can be attributed to

a minimization in energy. Finally, the chain grows and equilibrates to reach its

rigid rod structure as seen at time t = 100.
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The evolution of the three eigenvalues for the N = 100 chain is seen in fig-

ure 5.2. Expansion and relaxation behavior for the three chain lengths has been

predicted over 9 decades. Towards the end of the short-time we see a gradual in-

crease in the two chain widths, signalling the growth of the helix. Upon reaching

their maximum the two eigenvalues rapidly decrease causing the chain to grow in

the 1-D direction; i.e., to become a rod-like polymer.
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Figure 5.1: Stiffening of a N=100 polymer chain from an initial coiled state (t/τrand
=0) to its intermediate helical shape (t/τrand =1) followed by the final stiff con-
figuration with E=1000 (t/τrand =100).
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Figure 5.2: Eigenvalues from the gyration tensor, E/N = 10.
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To understand the short-time and intermediate-time dynamics we determine

scaling laws for the chain length, the chain width, and the first normal stress.

Chains lengths up to N = 100 have been studied, covering stiffness ratios from

E/N = 0.1 to E/N = 100. We have successfully determined the universal stiff-

ening behavior of the three properties. Because the scaling laws account for the

stiffness ratio, E/N , our results are universal for all stiffness ratios studied.

Figure 5.3 presents the short and intermediate-time scaling behavior of the

first eigenvalue. As seen in figure 5.3(a), free diffusion of the chains is present.

The short-time scale is seen to be linear with respect to the bending energy

∆R2

G,1 ∼ tE. (1)

The intermediate scaling seen in figure 5.3(b), shows a 1/2 power law growth

resulting in the following scaling law

∆R2

G,1 ∼ t1/2E1/2. (2)

Upon examining the scaling behavior of the chain width, we see similar behavior;

figures 5.4(a) and 5.4(b) respectively, show the short-time free diffusion and the

intermediate power law growth of 1/2. The universal scaling laws for the chain

width can be described by Eq (1) and Eq (2). Both the chain length and width

have been reduced with respect to their zero-time value to arrive at the concluded
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scalings. The matching behavior of the two eigenvalues describe the isotropic

nature of the stiffening process.
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Finally, the dynamics of the first normal stress component can be seen in

figure 5.5. We can notice the effect of both chain length and rigidity on the

zero-time stress behavior. Figure 5.5(a) predicts a short-time stress scaling of

σn ∼ (N link) X (E per link). (3)

As seen in figure 5.5(b) at intermediate-times a power law decay of −0.5 is expe-

rienced by the chain resulting in an intermediate-time scaling such that

σn ∼ Nt−1/2E1/2. (4)

We confirm the normal stress behavior by looking at the behavior of the chain

length. The isotropic growth seen by the chain’s length and width reveals the

normal force acting on the macromolecule at short-time,

Fn ∼ N
d(∆RG,1)

dt
∼ N t−1/2E1/2 (5)

knowing this we predict the corresponding short-time normal stress

σn ∼ ∆RG,1Fn ∼ NE. (6)
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A similar intermediate-time analysis yields,

Fn ∼ N
d(∆RG,1)

dt
∼ N t−3/4E1/4 (7)

σn ∼ ∆RG,1Fn ∼ Nt−1/2E1/2. (8)

As expected, both analytical results are in agreement with the numerical behavior

predicted in Eq. (3) and Eq. (4) based on the data in figure 5.5.
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Chapter 6

Conclusions

Semiflexible polymer molecules exhibit complex physical behaviors when sub-

jected to different solution conditions. The effect of forces on dilute chain dy-

namics has been studied. The focus of this research was to understand the non-

Newtonian properties of single semiflexible polymer molecules under transient

relaxation and stiffening conditions. Through computational modeling we were

able to predict the various dynamics covering most time scales experienced by the

macromolecule. With a Brownian dynamics algorithm, we have conducted the

nonequilibrium studies on chains of varying lengths and rigidity.

The dynamic behavior of a bead-rod chain was monitored as it relaxed from

an initially extended state. In past works, Brownian dynamics nonequilibrium

relaxation studies were limited to short chains and focused predominately on the

stress and birefringence behavior of flexible chains at short times. Through scaling

88



CHAPTER 6. CONCLUSIONS

law analysis universal relaxation laws were determined for semiflexible chains. A

correlation was found such that the properties studied can be based on the single

parameter of chain length. The transient properties and conformations adopted

by long stiff chains in solution have also been examined. Studies of the relaxation

behavior show the long chains exhibiting two intermediate-time behaviors due

to the presence of bending energy. We conclude the eigenvalues of the gyration

tensor are a valuable tool towards the understanding of polymer deformation in

solution. Not only were we able to identify polymer shape changes, but we also

were able to use the chain length to predict other chain properties, such as stress

and birefringence, as well as to derive a nonlinear stress-optic law valid for stiff

chains and all time scales.

The second project, similar to the first, describes the detailed simulation

method and results for the relaxation of a nearly extended worm-like chain. The

short and intermediate-time relaxation for bead-spring chains with bk = 0.005

was observed. We find the worm-like chain model predicts the short-time free

diffusion seen for bead-rod chains. A disadvantage of this model is the small time

step required. The differences between the two chain models can be seen with the

short-time stress scaling. The bead-rod stress is on the order of N 3 while the WLC

model depends on the elasticity and scales as Nb2k. Another main difference can

be noticed in the behavior of the chain width. Unlike the bead-rod model where

the link lengths are fixed, there is no preservation of the spring lengths. This
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is especially noticeable in the behavior of the chain width, where a continuous

growth is seen even at intermediate times.

Finally, the coil-helix-rod stiffening behavior was successfully followed via

Brownian dynamics simulations. In this study, we show that the chain evolves

from a flexible coil to a rigid rod by first going through an intermediate helical

shape change, especially noticeable in the longer chains. The influence of the

bending energy on chain properties such as the chain length, width, and stress

was also predicted for both short and intermediate-times.

Brownian dynamics of a series of different dilute solution conditions and poly-

mer models has been presented. The simulation of polymers under various solution

conditions has furthered our understanding of polymer structure to property re-

lationships. An advantage of computer simulations is the ability to control the

interactions of the system. An important conclusion that we draw from these stud-

ies is that the configuration behavior of the chain can be used to infer the scaling

of other chain properties such as stress, birefringence, or tensions. Through par-

allel computation we were able to study chains much longer than previous studies

and cover a wide range of stiffnesses.
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Future Work

There are several avenues that should be further explored; namely the extension

behavior of bead-rod chains and the stiffening dynamics of WLC.

An understanding of the macromolecule’s properties would not be complete

without studying the chain behavior at extension. The goal of this study would be

to explain the full transient behavior of chain deformation and orientation under

extensional flow. Studying the physics of this problem can provide insight towards

developing molecular models and relevant equations relating chain properties sub-

jected to an external stretching force.

Following the behavior of the chain as it approaches equilibrium is just as

important as following the behavior of the chain as it diverges from equilibrium.

This study will help towards understanding chain deformation and its subsequent

effect on chain properties. As the chain is being stretched by an extensional
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flow, the chain properties and associated time scales can be monitored to further

understand chain deformation and orientation under this linear flow. The influence

of flow on polymer chains is of interest due to the solution’s non-Newtonian nature.

Understanding chain deformation and dynamics has been an ongoing study for

many decades [11, 42] and there is still more to be understood, especially material

behavior and manipulation in microfluidics and other nanotechnology systems.

The study of extensional flow is especially of interest because of its ability

to deform the chain greatly away from equilibrium. Under the influence of ex-

tensional flow, when the drag force exceeds the Brownian forces, a coil-stretch

transition is noticed. Chain properties such as the radius of gyration, viscosity

and birefringence stay unaffected remaining close to their equilibrium (no-flow)

value until a critical strain rate is passed, then a sharp growth in chain size, vis-

cosity or birefringence is noticed [9, 19, 70]. This change is due to the polymer

transitioning from that of a coiled chain to a stretched chain. The critical strain

rate has been found to be dependent on the chain length and on hydrodynamic

interactions (HI) [9, 46].

Starting with a random chain configuration, single chains can be fully extended

through the presence of a strong extensional or shear flow. This can be compared

to experimental studies involving attaching one end of the macromolecule to a

bead and then exerting a flow field past the tethered end [56, 57, 64]. Previous

results with flexible chains under extensional flow demonstrate that the chains
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undergo many conformational stages ranging from folds, kinks, dumbbells, to

a final extended state [19, 44, 57, 64]. Larson et al. [44] not only studied the

unraveling dynamics of single flexible polymer chains but also compared results

to the recent experimental findings of Perkins et al. and Smith et al. [57, 64].

Excellent agreement was noted. They were also able to confirm that the initial

conformation of the chain does dominate the unraveling path it takes.

Even though the effects of extension on the dynamics of the polymer chain has

been studied both experimentally and through simulations, the studies are lim-

ited to flexible chains. The effect of an extensional flow field on chains of varying

length and rigidity can be studied over extended time periods through parallel

computation. To see the influence on the physics and evolution of the chain’s

time scales, the flow strength can also be a variable of interest. Since, after a long

enough time period the chain will be at an extended state, our experience on the

relaxation of initially straight bead-rod chains will be useful to understanding the

long-time semiflexible behavior of this problem. The reverse behavior from relax-

ation is not expected due to the different mechanics and the non-linear dynamics

involved [9, 27].

Another possible study includes further investigating the WLC relaxation

study; i.e., looking at chain properties such as birefringence to understand the

optical behavior of the model compared to the bead-rod results, or understanding

the effect of the Kuhn length on the chain dynamics and forces involved at near
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extension. Studying the effect of flexibility on the chain properties for a constant

chain length may also be explored. Because the chain length will be held constant

we expect the zero time value, for both chain length and width to be indepen-

dent of bk. The intermediate-time relaxation of the eigenvalues will be dependent

on the stiffness, such that the most elastic chain will come to equilibrium faster

than the more rigid chain. However, unlike the behavior of the chain lengths, one

would expect the initial stress to be dependent on the chain’s Kuhn length. An

inverse dependence is predicted because of the inverse relationship between the

spring force and bk. The polymer field of study is rich with interesting physics;

many possibilities exist for future studies for this class of material.
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