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To determine sex and race differences in strength, muscle power, movement velocity, and 

functional ability, knee extensor strength and muscle power normalized for muscle 

volume was measured in 79 middle-aged and older adults (30 men and 49 women, age 

range 50-85 yrs).  Results indicated that men had 55% greater muscle volume (MV; P < 

0.001), 24% greater 1 RM strength (P < 0.01), 9% greater muscle quality (MQ; 1 

RM/MV;  P < 0.05), 26% greater peak muscle power (PP; P < 0.01), and 14% greater 

MPQ  (PP/MV; P < 0.001) than women.  However, women displayed a 38% faster peak 

movement velocity than men when expressed per unit of muscle (movement velocity 

quality) (PV/MV; P < 0.001).  Race analysis showed that African Americans had 20% 

greater MV than Caucasians (P < 0.001), but 11% lower MQ (P < 0.01) and a 17% lower  

PV/MV (P < 0.05) than Caucasians of similar age.   Men displayed a 22% faster stair 

climb time than women, while Caucasians exhibited 19% and 16% faster times in rapid 

pace gait and 8-ft up-and-go, respectively.  Thus, despite greater strength and power per 



unit of muscle in men, women have a faster knee movement velocity per unit of muscle 

than men.  Moreover, African Americans have greater knee extensor muscle volume than 

Caucasians, but exhibit lower muscle quality and movement velocity quality.     
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INTRODUCTION     

Age-related declines in muscle mass and strength, a condition known as 

sarcopenia, as well as interventions designed for the prevention and treatment of 

sarcopenia, have been widely investigated in recent years (35, 83).  Sarcopenia is 

associated with deteriorations in health status and the performance of activities of daily 

living, and a rise in health care costs (31, 39, 56, 75) through increased risk of falls (49, 

50), hip fractures (3), and losses in functional ability (14, 36).  Lindle et al. (48) have 

shown significant declines in muscular strength beginning as early as the forties , while 

other studies have demonstrated accelerated strength losses after the age of 50 (1, 46, 60). 

One underlying cause of strength losses with age appears to be declines in muscle mass, 

especially in the lower extremities (27, 48, 80, 98).  However, age-related deterioration of 

neuromuscular function and reductions in the proportion and size of type II muscle fibers 

have also been reported (16, 46).  Past investigations have established that the loss in 

muscle mass (39, 100) and muscle strength (36, 44, 49, 77, 84, 98) are strongly correlated 

with reduced functional capacity in the elderly.  Although significant age-related 

functional declines can be attributed to losses in strength, muscular power, the product of 

force and velocity, appears to be more closely related to functional ability (8-10, 76, 88).  

It may also be possible that velocity alone influences the relationships observed between 

power and function (35). However, there is little information available on this or on the 

associations of peak muscle power, movement velocity and functional ability.  In this 

regard, recent studies have reported greater age-associated losses in muscular power than 

strength (9, 10, 60, 88). Some investigators have cited deficits in the velocity of 

movement as the primary cause of age related-power losses (15, 20, 97).  Pearson et al. 
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(72) reported similar age-related losses in velocity between aged elite masters 

weightlifters and age-matched controls, despite large differences in strength and power.   

Differences in methodologies and sample populations may explain some of the 

conflicting results in studies dealing with predictors of functional ability.  To our 

knowledge, no reports have examined the relationship of peak movement velocity, 

independent of power and force, with functional abilities.    

Another important factor to consider when evaluating relationships between 

muscle power, movement velocity and functional ability is muscle mass.  Several 

investigators have reported strong correlations between age-related losses in strength and 

muscle mass (57, 80), but the sarcopenic effect on power is not well understood.  While 

some studies have found no correlation between power and muscle CSA (23, 72), others 

have provided significant relationships between muscle CSA and its influence on 

muscular power (21, 38).  One possible explanation for the discrepancies observed in

these and other studies, is the use of girth measurements to estimate muscle mass, which 

can be affected by other anthropometric factors, such as subcutaneous fat.  Cadaver 

studies have shown that the use of computed tomography (CT) to assess muscle volume 

can provide an accurate and reliable assessment of muscle mass or volume (33, 63).                  

Previous studies in our lab have shown the importance of analyzing strength per 

unit of muscle volume, or muscle quality (MQ) in assessing age- and gender-related 

differences in muscle function (51, 93).  MQ is believed to be a better indicator of muscle 

function than strength alone because it takes into account the intrinsic characteristics of 

the musculature (45).  To our knowledge, no other investigators have reported the 
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expression of muscle power or movement velocity in the same way, i.e., per unit volume 

of muscle.  

In an attempt to identify subpopulations that have greater functional risks, many 

studies have assessed sex-differences in the age-related decline in power.  Although men 

are thought to lose a larger percentage of their power output than women per year (88), 

women have significantly lower power, even when normalized for overall body mass (5, 

7, 15, 45).  This lower power in women is thought to contribute to their higher rates of 

disability than men (76).  There is a substantial amount of information available 

concerning maximal force (strength) differences between sexes (1, 12, 17, 27, 34, 48, 84, 

88), but little information is available on the velocity component of power.  In addition, 

because strength differences narrow when normalized for muscle mass (15, 27), it may be 

of interest to determine sex differences in power when normalized per unit of muscle.   

To our knowledge, only three studies have reported peak velocity as it relates to 

power output in women (15, 20, 52).  Only one of these studies (15) has compared their 

findings to men of similar age, and this study observed lower peak power values in 

women that were attributed to deficits in velocity.   Each of these studies found that 

velocity influences power more than strength, but the data may be skewed due to the use 

of a very old population (15) and the use of a standing force jump plate (15, 20).  

Jumping requires a large amount of strength and coordination, as well as power, and will 

constitute a higher percentage of strength in the elderly.  At these near-maximal forces, 

velocity would likely have been compensated based on the force/velocity curve, and may 

reflect the very low velocities reported in these studies.  There is a need to determine sex-
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differences in power and velocity by keeping force constant relative to strength, which 

has not been reported.  

Although limited, some information does exist on sex-differences in power, but to 

our knowledge there are no reports on racial differences in power.   In this regard, power 

may be an important link to understanding racial differences in age-related deficits in 

muscle function.  Recent studies have shown that on average African Americans have 

greater muscle mass than Caucasians (2, 100).  Surprisingly, the larger muscle mass in 

African Americans has not correlated with greater strength in specific muscle groups.  

For example, Rantanen et al. (79) reported no difference in knee extension strength 

between Caucasians and African Americans, while Newman et al. (66) concluded that 

African Americans had greater muscular strength, but poorer muscle quality than 

Caucasians of a similar age.  Even more perplexing are conflicting results from studies on 

racial differences in functional performance.  Some investigations have shown that 

Caucasians, especially women, are at greater risk for falls than are African Americans 

(19, 32).  Conversely, Means et al. (59) concluded that African American women had 

poorer balance and mobility than Caucasian women and Visser et al. (100) reported 

worse lower extremity performance in African Americans.  Although there are 

methodological differences in the previously mentioned studies, it is clear that racial 

differences in aged muscle is not well understood.  Because peak power and movement 

velocity are associated with the ability to perform functional tasks related to activities of 

daily living, and because there are racial differences in functional ability among the 

elderly, determining racial differences in these two components may have important 

implications.   
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Therefore, the purpose of this study is to and to examine possible sex and racial 

differences that may exist among strength, power, and movement velocity and how these 

variables are related to functional ability in an older population.

METHODS

Subjects.  Seventy-nine healthy men (N = 30) and women (N = 49) between 50 

and 85 years of age volunteered to participate in the study. Racial identification was 

classified by self-report of the subject.  All subjects underwent a phone-screening 

interview, received medical clearance from their primary care physician and completed a 

detailed medical history prior to participating in the study.  Subjects qualified if they 

were not participating in regular vigorous physical activity (≥ 1x/wk) and had been 

sedentary for at least six months.  All subjects were nonsmokers, free of significant 

cardiovascular, metabolic, or musculoskeletal disorders that would affect their ability to 

safely perform heavy resistance exercise.  After all methods and procedures were 

explained, subjects read and signed a written consent form, which was approved by the 

Institutional Review Board of the University of Maryland, College Park. 

Body composition assessment.   Body weight was determined to the nearest 0.1 kg 

with subjects dressed in medical scrubs, and height was measured to the nearest 0.1 cm 

using a stadiometer (Harpenden, Holtain, Wales, UK).  BMI was calculated as weight 

(kg) divided by height (m) squared. Body composition was estimated by dual energy x-

ray absorptiometry (DXA) using the fan-beam technology (model QDR 4500A, Hologic, 

Waltham, MA).  A standardized procedure for patient positioning and utilization of the 

QDR software was used to ensure consistency from scan to scan.  Total body mass, fat-

free mass (FFM), and % fat were analyzed using Hologic’s version 8.21 software for 
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tissue area assessment. Total body FFM was defined as lean soft tissue mass plus total 

body bone mineral content (BMC).  The coefficients of variation for all DXA measures 

of body composition were calculated from repeated scans of 10 subjects who were 

scanned three consecutive times on the same visit with repositioning.  DXA scan 

coefficient of variation for assessing tissue measures was 0.6 % for FFM and 1.0 % for 

percent fat.  The scanner was calibrated daily against a spine calibration block and step 

phantom block supplied by the manufacturer.  In addition, a whole body phantom was 

scanned weekly to assess any machine drift over time. 

To quantify muscle volume, computed tomography (CT) imaging was performed 

(GE Lightspeed Qxi, General Electric, Milwaukee).  Axial slices of both thighs were 

obtained starting at the most distal point of the ischial tuberosity down to the most 

proximal part of the patella while the subjects were in a supine position.  Slice thickness 

was fixed at 10 mm, with 40 mm separating each slice based on the work from our lab by 

Tracy et al. (94).  Two technicians performed analyses of all images for each subject 

using MIPAV software (NIH, Bethesda, MD).  Briefly, for each axial slice, the cross-

sectional area (CSA) of the quadriceps muscle group was manually outlined as a region 

of interest.  The quadriceps CSA was manually outlined in every 10 mm axial image 

from the superior border of the patella to a point where the quadriceps muscle group is no 

longer reliably distinguishable from the adductor and hip flexor groups.  The sartorius 

muscle was not included in the CSA because it does not contribute to knee extension. 

Investigators were blinded to subject identification, sex, and race.  Repeated 

measurement coefficient of variation was calculated for each of two investigators based 

on repeated measures of selected axial slices of each person on two separate days.  
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Average intra-investigator CV was 1.7% and 2.3% for investigator one and two, 

respectively.  The average inter-investigator CV was < 4.3%.  Final muscle volume was 

calculated using the truncated cone formula as reported by Tracy et al. (94).  

One repetition maximum (1 RM) strength test.   The 1RM strength test was 

assessed unilaterally in the knee extensors and was defined as the highest resistance that 

can be used to complete one repetition of exercise successfully.  Three low resistance 

training sessions were conducted prior to the 1RM strength testing, so that subjects would 

be familiar with the equipment and proper exercise techniques.  On a separate visit 

following the two familiarization training sessions, knee extensor 1RM strength of both 

legs was assessed on the pneumatic knee extension apparatus (Keiser A-300 Leg 

Extension machine).  Prior to the start of testing, the seat was adjusted so that the axis of 

rotation of the knee extension apparatus was in line with the medial condyle of the tibia, 

and subjects were positioned with a pelvis strap (seat belt) to minimize the involvement 

of other muscle groups.  After ~ 60 s of rest upon a successful completion of a repetition, 

subsequent trials were performed at progressively higher resistance levels to minimize 

the total number of trials required before the true one repetition maximum value was 

obtained.  Vocal encouragement was given to all subjects in an attempt to maximize 

effort.  Termination criteria for the 1 RM test were as follows: 1) perceived exertion of 20 

on the RPE scale, 2) inability to perform a repetition through the full range of motion, or 

3) reporting >3 on the pain/discomfort scale (more than moderate, but less than severe 

pain).  All testing procedures were standardized based on specific seat adjustments and 

body position during testing.
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Muscle power and movement velocity.  Determination of peak knee extensor 

power and angular velocity was performed on a customized Keiser pneumatic resistance 

knee extension (K410) machine (Keiser Sports/Health Equip. Co., Inc., Fresno, CA) 

custom-equipped for muscle power assessment.  The K410 machine is instrumented with 

load cell force transducers and position sensors to detect rotary motion at the joint.  The 

K410 hardware is connected to a PC and uses an industrial data collection expansion card 

to digitize data at 400 times · s-1 from the force and position sensors.  This speed is 

configured and set by the K410 software.  The actual velocity assessment is derived from 

a crystal oscillator on the data collection board.   Power was calculated as the product of 

torque and angular velocity about the knee and reported in watts.  Torque was calculated 

by multiplying the force exerted by the distance from the knee joint to the force sensor 

(0.5 m) and reported in N-m.  Angular velocity was reported as rad · s-1.

Subjects were instructed to perform a knee extension with each leg unilaterally at 

a resistance of ~ 30% of their measured 1 RM at ~ 50% of their maximal velocity.  

Following a 30 s rest period, subjects performed three power tests on each leg alternating 

between right and left at 50%, 60%, and 70% of their 1 RM, with a 30 s rest period 

between each of the three trials and 2 min rest between each increase in resistance.  

Previous studies using similar methods and populations have reported that peak power 

occurs at ~ 60% - 70% of 1 RM (9, 24), therefore, 50%, 60%,and 70% of 1 RM loads 

were used in this study to cover all the ranges that peak power is likely to be observed.  

The tester offered standardized oral encouragement to subjects to extend their knee as 

quickly and forcefully as possible during each trial.  To establish a more stable 

assessment, all power tests were repeated 48-72 h after the initial test.  Data points 
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collected for each repetition were analyzed to determine peak power and velocity after 

testing.  The data were first passed through a zero-phase forward and reverse digital filter 

designed using MatLab software version 6.0.5 (MathWorks Inc., Natick, MA) to remove 

sensor noise.  A low-pass, 10th order Butterworth filter with a cut-off frequency of 10 Hz 

was used.  Because the resulting velocity and power curves were unimodal, a simple 

point-to-point search of the velocity and power data were conducted to determine the 

peak (see Appendix C, figure 1).   The highest power achieved throughout all trials of all 

loads was reported as the peak power, and the corresponding movement velocity at peak 

power was used as the velocity measure.  For both 1RM and power testing, only data for 

the subject’s self reported dominant leg was used for analysis.  For each test, the force 

reading was calibrated by hanging a known weight from the load cell, and angular 

distance was calibrated by manually moving the machine arm through the entire range of 

motion Prior to testing, a pilot study was conducted to assure machine reliability.  Testing 

reliability was established using the test-retest method on 10 subjects, allowing 48 hours 

between tests.  The Pearson correlation coefficient between tests for the right and left leg 

was 0.973 and 0.972, respectively.

Functional Ability Tests.  A subset of individuals over the age of 65 (n = 40) 

completed functional ability testing using five assessments of activities of daily living 

(ADL).     Each test was chosen based on performance relationships to strength and 

power (9, 10, 76).  During all tests, subjects wore a safety harness and were followed by a 

spotter in order to prevent falls.  Each test was timed with a stopwatch and reported to the 

nearest 0.1 second.  For tests in which the subjects were seated, a straight-backed, 

armless, plastic molded chair approximately 45 cm high at the front edge was used for 
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each test.  The back of the chair was placed against a wall for steadying support.  Each 

test was initiated at the command of “go” by the tester.  The tests included, 1) usual and 

rapid pace timed gait, 2) five chair stands, 3) 8-foot up-and-go, and 4) stair climb as 

described below.

1) Timed Gait, Usual and Rapid Pace - Subjects were instructed to stand behind a 

line on the floor and at the command of the tester, walk at a usual pace across a second 

line 6 meters away. Two trials were performed and the fastest of the two trials and the 

least number of steps taken to walk the 6 meters was reported.  During the rapid pace 

timed gait, the same procedures were followed, except subjects were instructed to walk as 

quickly as possible while still maintaining safety.

2)  Timed 5-Chair Stands - Subjects were instructed to sit halfway forward in the 

chair with their feet resting on the floor no wider than shoulder width apart and arms 

crossed over the chest.  At the command of the tester, subjects were instructed to stand up 

straight and immediately sit down five times consecutively as fast as possible while 

maintaining both feet on the floor at all times and proper balance. The timer was stopped 

when the subject successfully completed the fifth stand. Subjects who temporarily lost 

balance or needed to use their arms for assistance were given a second trial.  Prior to the 

test, subjects were asked to perform one practice stand slowly to ensure proper technique.

3)  8-Foot-Up-and-Go - The 8-foot up-and-go test followed the protocol described 

by Rikli and Jones (81).  The subjects assumed a similar position as the chair stands, 

except the hands were placed on the thighs, one foot was positioned slightly in front of 

the other foot and the torso slightly leaning forward. On the signal from the tester the 

subjects rose from the chair, walking as quickly as possible around a cone that was placed 
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8 feet away, and returned to the seated position in the chair. Two trials were given, and 

the faster of the two times was used for analyses.

4). Stair Climb – For the final measurement, subjects were asked to climb one 

flight of stairs (9 steps). The starting area was marked as the distance of one stair back 

from the first step. On the command of the tester the subject was required to climb the 

steps as quickly and safely as possible until both feet reached the top step.  Subjects were 

asked to refrain from using the hand-rail if possible, unless it was necessary for safety.  A 

single trial was given if the subject completed the climb without error.  Prior to the timed 

trial, a slow practice trial of three steps was performed to ensure the subject was fit to 

perform the test.  

Statistical Analysis.  All statistical analyses were conducted using SAS software 

(SAS version 8.2, SAS Institute Inc., Cary NC).  To determine variables which may be 

significantly related to the dependent measures, linear regression was used, with the level 

of significance set at P < 0.05.  Potential confounding variables included age, height, 

weight, BMI, percent fat, fat free mass, and medication use.  The use of medications was 

classified into the following categories:  diuretics, ACE inhibitors, hormone replacement 

therapies (HRT), and anti-inflammatory/pain reducers.  These categories were selected 

because of their potential for having physiological effects on muscle mass.  Once the 

confounding variables were identified, analysis of covariance (ANCOVA) was performed 

to determine between-group differences for each dependent variable.  To determine the 

relationships of strength, power, and movement velocity to measures of functional ability, 

Pearson product correlations were performed.  For each analysis, the assumptions of the 

model were checked, and necessary transformations were applied to the data in cases 
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where these assumptions were not met. Values are expressed as means ± standard error, 

and the significance was set at 0.05. 

RESULTS

Physical Characteristics. Subject characteristics grouped by sex and race are 

summarized in Table 1.  There was no significant difference in age between sexes.  Men 

had significantly greater height and weight than women (both P < 0.001), but there was 

no difference in BMI.  Men also had greater FFM than women (P < 0.001), and 

significantly lower percent body fat (P < 0.001).   There were no significant differences 

between African Americans and Caucasians for any physical characteristics, except age, 

where African Americans were significantly younger than Caucasians (P < 0.001).

Within these groups, 40% of the Caucasians were men and 60% were women, whereas, 

32% of the African Americans were men and 68% were women. There were six subjects 

who were not included in the racial analysis because they were not categorized as either 

Caucasian or African American.  

Sex Differences.  Differences in knee extensor 1RM strength, peak power (PP), 

movement velocity (PV), and muscle volume (MV) between sexes are presented in Table 

2.  The results in this table indicate that men were 24% stronger (P < 0.01), exhibited 

26% higher PP (P < 0.01), had 14% faster PV (P < 0.001), and 55% larger MV than 

women (P < 0.001).  Diuretic use in women was the only medication category found to 

be significantly related to muscle volume and was included as a confounding variable.  A 

separate analysis was run without the women who were on diuretics and the results 

indicated that exclusion of those subjects did not significantly affect the difference 

between the groups.  Men had a significantly greater power at 50% and 60% of 1RM (P < 
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0.01), but there was no significant difference observed at 70% of 1RM (table 4).  When 

PP was normalized for MV (MPQ), the difference narrowed, but men still showed 14% 

greater PP than women (P < 0.001).  Figure 1 demonstrates that MQ in men was also 9% 

higher than women (P < 0.05).  Although PV was significantly greater for men at peak (P

< 0.05), when normalized for MV (PV/MV, movement velocity quality), women 

exhibited a 38% faster movement velocity than men (Figure 1; P < 0.001).  Results for 

sex differences in tests of functional ability (FA) in a subset of individuals over age 65

are presented in Table 5.  Sex comparisons revealed no significant differences in function 

except for the stair climb, where the men’s times were 22% faster than women (P < 

0.01).

Racial Differences.  Table 3 illustrates racial differences in knee extensor 1RM 

strength, PP, PV, and MV.  There was no significant difference in 1RM strength between 

races.  There were no significant differences observed among racial groups for absolute 

PP (table 3), 50%, and 60% (table 4) of 1RM, but, African Americans exhibited 

significantly greater power at 70% of 1RM (P < 0.05).  African Americans had 20% 

greater MV (P < 0.001), but their MQ values (Figure 2) were 11% less than Caucasians 

(P < 0.01).  Adjustment for MV did not show any significant difference between racial 

groups for PP.  There was no difference between groups for absolute PV, however, as 

shown by Figure 2, when movement velocity was normalized per unit of MV, Caucasians 

had 17% greater movement velocity quality (P < 0.05).  Results for race differences in 

tests of functional ability (FA) in a subset of individuals over age 65 are presented in 

Table 5.  Race comparisons revealed times 19% and 16% faster for Caucasians in rapid 
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pace timed gait and 8-foot up-and-go, respectively (P < 0.05).  There were no other race 

differences observed for any other functional ability variable.  

Combined group correlations.  The relationships of strength, power, and 

movement velocity to functional ability are presented in Table 6.  The strongest 

correlations observed were between 1RM and stair climb time (r = -0.5;  P < 0.05), MQ 

and 5-chair stand time (r = -0.49;  P < 0.05), MQ and 8-ft up-and-go (r = -0.49;  P < 

0.05), MQ and stair climb (r = -0.5;  P < 0.05), MPQ and usual pace (r = -0.5;  P < 0.05).    

DISCUSSION

The findings in this study add new perspectives to our understanding of sex and 

race differences in strength, power, and movement velocity in middle-aged and older 

adults.  In this regard, a new finding is that women exhibit significantly faster knee 

extension movement velocity per volume of muscle than men.  As expected, men have 

significantly greater knee extension strength and power than women of similar age, but 

this difference narrows when normalized for muscle volume and expressed as muscle 

power quality.  Moreover, when assessed at higher relative loads (70% of 1 RM), sex 

differences in peak muscle power disappear.  Therefore, when describing the force-

velocity-power relationship, the sex of the person may be an important consideration.  

This study was also the first to report racial differences among these variables.  In 

this regard, although African Americans show significantly greater power at higher 

relative loads (70%) than Caucasians, no differences were observed between races for

overall peak power and movement velocity.  Moreover, when these values were 

normalized for muscle volume, this difference disappeared for peak power and favored 

Caucasians for movement velocity, suggesting that the greater muscle mass in African 
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Americans was not accompanied by concomitantly faster movement velocities compared 

to Caucasians.  This finding is in agreement with the original hypothesis, but the finding 

of no difference in strength or peak power between races was unexpected and did not 

support our hypothesis.

Previous studies that have examined sex differences in power have concluded that 

men have greater absolute power than women (5, 45, 88).  This conclusion appears 

logical because on average men have greater absolute strength and muscle mass than 

women.  However, it has been argued that fair comparisons of muscle function between 

sexes should express values relative to the size of the muscle mass involved in the 

movement.  Sex differences in absolute muscle strength reflect differences in muscle 

quantity rather than architectural characteristics or metabolic function of the muscles in 

use (58).  Previous studies that have attempted to control for body size differences 

between men and women have normalized leg extension power for total body mass and 

found that women still have significantly less power than men (5, 88).  Caserotti et al. 

(15) found similar results, but when power was normalized for lean body mass estimated 

by bioimpedance, the difference between men and women disappeared.  In contrast, we 

observed that although the difference narrowed when expressed as muscle power quality 

by normalizing for the volume of the contracted muscle, men were still significantly more 

powerful than women.  To our knowledge, the current investigation is the first to examine 

this comparison between sexes when normalizing for the entire muscle involved in 

producing the movement (i.e., knee extension). 

Previous investigations have attempted to explain this reduced power output in 

women by citing deficits in movement velocity as the primary factor.  For example, 
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Caserotti et al. (15) concluded that men and women showed similar force values at peak 

power, but that women had less power due to reduced movement velocity.  In addition, 

DeVito et al. (20) reported that reductions in velocity most influenced the loss of power 

in women age 50-75.  Our findings are in agreement with these previous results, in that 

men exhibited greater absolute movement velocity.  However, when considering the 

volume of the muscle in use, our study revealed that women had considerably greater 

velocity at peak power, suggesting that deficits in strength are more related to the lower 

peak power outputs observed in women.  One possible explanation for this finding is 

presented by Krivickas et al. (43).  They measured the maximum shortening velocity of 

muscle fibers in older men and women and found that men had greater age-associated 

losses in velocity of type II fibers, while women showed no change in velocity of type II 

fibers when compared to younger women, suggesting a preferential sparing of the 

velocity of type II fibers in older women.  Similarly, Trappe et al. (95, 96) reported that, 

at baseline, there were significant gender differences in single muscle fiber contractile 

properties.  In this study, myosin heavy chain (MHC) I fibers of older women contracted 

38% faster than older men, and MHC IIa fibers contracted 69% faster in women.  These 

findings offer further insight into sex differences in movement velocity, illustrating that 

other mechanisms other than muscle mass, such as neuromuscular function and fiber type 

distribution may be influential.  

From the results of this investigation and others, it is important to establish which 

factors influence the underlying differences in functional ability observed between sexes.  

The finding that women showed slower stair climb times is consistent with previous 

studies that have reported better lower extremity performance (99) and functional 
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mobility (84) in men than women of similar age.  However, although there was a trend 

for men to perform better in all measures of functional ability, stair climb time was the 

only to show a significant difference between sexes.  This observation is probably due to 

small sample sizes and low statistical power, therefore lessening the possibility to detect a 

true difference in the ability to perform the various tasks.  When examining the 

relationships of muscle volume, strength, power, and movement velocity to tests of 

function, significant correlations were found, but were much lower than expected.  It was 

initially hypothesized that peak power and strength would be more associated with higher 

force tasks, while movement velocity would strongly correlate with tasks of lower force 

requirement.  However, strength and muscle quality only explained 25% of the variance 

in stair climb time, while movement velocity did not show a significant correlation with 

any measure of functional ability.  However, small sample sizes may have masked any 

existing significant relationship.  Therefore, future studies should aim to determine sex 

differences in functional ability and which variables of muscle function (i.e., strength, 

power, or velocity) most influence these deficits.

Differences in the assessment of peak power and velocity may also explain 

discrepancies in the values reported for power and velocity in this study and others.  In 

this context, the two most common methods reported to assess power output have been 

the foot plate/flywheel rig (5, 10, 72, 88, 89) and the standing jump force plate (15, 20, 

22).  Although some of the studies using the foot plate/flywheel rig have reported peak 

power measurements, they are actually measuring the total area under the power curve.  

This measurement mixes slower velocities at the beginning of the movement to overcome 

the inertial phase of the movement, as well as near the end of the range of movement 
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where co-contraction of antagonist muscle groups also result in slower velocities.  These 

velocities are averaged in with the faster velocities that occur in the middle of the range 

of motion.  An example of how this difference in testing can affect results comes from 

Macaluso et al. (55) who found that the increased co-contraction of the knee flexors in 

older women compared to younger women may at least partially explain lower knee 

extension average torque seen in older women.  Thus, it is conceivable that this 

phenomenon could explain discrepancies in the literature on sex differences in strength, 

power, and movement velocity.  Assessing power at its peak in the range of motion  

eliminates the lower torque and velocities at the beginning and near the end of the range 

of motion and therefore may provide a more accurate description of true power 

differences between men and women.  

Another disadvantage of the flywheel rig is that it requires overcoming a fixed 

inertia for both young and older subjects, with the older subjects being forced to use a 

greater percentage of their maximal force capability.  This ultimately affects the optimal 

velocity necessary to achieve peak power.  The standing force jump plate is also based on 

similar assumptions, which means that older individuals, particularly women, in some 

cases need to overcome near maximal forces to produce the desired movement.  

Therefore, movement velocity is likely compromised, and the movement does not favor 

the optimal force-velocity relationship (54).  

To our knowledge, no other investigation has reported the product of peak torque 

and peak velocity (peak power) from maximal knee extension exercise.  Recent studies 

have used similar equipment to that used in this investigation (i.e., Keiser pneumatic

resistance equipment) with a computer interface and various loads relative to each 
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subject’s maximum force production (9, 25, 53).  However, these studies are still 

reporting the average, not peak power during the exertion.  Our measure of peak power 

may be more functionally relevant to events such as catching oneself from a fall or 

quickly correcting a loss of balance, because these actions would likely be limited by the 

ability to instantaneously maximize both muscle strength and the speed of movement (30, 

71, 85, 101).

Currently, there are very few studies that have examined differences in muscle 

function characteristics between races.  Our finding that African Americans had greater 

knee extensor muscle volume than Caucasians is similar to reports by Newman et al.(66)

and Visser et al. (100).  The former reported greater lower extremity lean mass in African 

Americans as assessed by DEXA, while the latter used computed tomography to report 

larger CSA of thigh muscles.  Aloia et al. (2) also reported greater whole body muscle 

mass in African-Americans estimated from total body potassium.  However, the present 

study is the only report we are aware of that has used direct measurements of muscle 

volume for normalizing muscle function to allow valid comparisons between racial 

groups.  Unlike the consensus reached for racial differences in muscle mass, reports on 

strength between races remains inconclusive.  For example, Newman et al. (66) showed 

greater knee extension strength in African Americans using an isokinetic dynamometer 

whereas, Rantanen et al. (79) reported no significant differences in knee extension 

strength between races, but the validation of the instrument used to assess strength in 

their study is unclear.  In contrast with all of the previous studies, Means et al. (59)

reported lower strength values in African American women over the age of 65 compared 

to Caucasian women of similar age.  However, in their study, strength was assessed 
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manually by a physical therapist and therefore did not measure the maximal force 

production of the subject.  The differences in strength assessment may be the cause for 

conflicting results among our study and others.  For example, when strength was 

expressed per unit of muscle (i.e., muscle quality), our results support the findings of 

Newman et al. (66), who reported lower specific tension in the lower extremities of 

African-American men and women.  To our knowledge, no study has reported racial 

differences in peak power and movement velocity.  

Although we did not find race differences in peak power or its corresponding 

movement velocity, our finding that Caucasians exhibit greater movement velocity when 

normalized for muscle volume may have implications for differences in functional 

abilities between races.  The findings that African Americans exhibited slower rapid pace 

and 8ft up-and-go times support the observation of lower movement velocity quality in 

African Americans, as these tasks require less force and greater velocity production. 

Although these findings are similar to other studies that have reported worse functional 

performance in African Americans (59, 67, 100), there are conflicting reports on which 

racial group is at highest risk for losses in independence (19, 32).  It is likely that 

differences in muscle volume, strength, power and movement velocity between races 

influence functional abilities in performing activities of daily living, but this relationship 

has not been investigated. Therefore, further research is needed on racial differences in 

functional ability, with an emphasis on determining the extent to which they can be 

explained by differences in muscle volume, strength, power, and movement velocity.  

A major limitation to this study is the cross-sectional design, which does not 

allow for conclusions on causal relationships.  Secondly, the sample size of African 
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Americans for examining racial differences was quite small.  Post hoc analysis revealed 

that MV, PP at 70% 1RM, PV, and movement velocity quality (PV/MV) were the only 

variables to reach the 0.8 level of statistical power.  Thus, it is possible that there may be 

differences between races among the other variables that were not observed due to 

insufficient statistical power.  

In conclusion, these results indicate that men exhibit greater strength and peak 

power per unit of muscle than women, but women have greater movement velocity per 

unit of muscle than men.  African Americans have greater muscle volume than 

Caucasians, but exhibit lower strength and movement velocity per unit of muscle, which 

may be related to poorer performance on tests of functional ability.  African Americans 

possess greater power than Caucasians when tested at high loads.  Future research should 

aim to further examine how these variables act to influence sex and race differences in 

functional ability with aging.   



Table 1.  Physical characteristics grouped by sex and race

Values are means ± SE. 

N = number of subjects;  FFM = fat free mass;  BF = percent body fat;  BMI = body mass index.

One man and two women did not have data for Weight, FFM, BF, BMI due to missing DXA scans.

One Caucasian and one African American did not have data for weight, FFM, BF, BMI due to missing DXA scans.

* Significantly different from men (P < 0.001)
†  Significantly different from Caucasians (P < 0.001)

Men Women African Americans Caucasians

N 30 49 28 45

Age, yr 63 ± 1 63 ± 1 59 ± 1 66 ± 1†

Height, cm 173.8 ± 1.3 161.8 ± 1.0* 166.6 ± 0.9 167.1 ± 1.6

Weight, kg 91.3 ± 2.7 75.5 ± 2.2* 83.8 ± 2.8 80.1 ± 2.7

BMI, kg/cm2 30.1 ± 0.8 29.0 ±  0.8 30.2 ± 0.9 28.5 ± 0.8

FFM, kg 64.6 ± 1.8 45.5 ± 1.0* 54.3 ± 2.2 52.0 ± 1.9

BF, %  29.0 ± 1.0 39.0 ± 1.0* 35.2 ± 1.4 34.8 ± 1.2
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Table 2.  Sex differences in 1RM knee extension strength, power, movement velocity, 
and muscle volume of the knee extensors

Men Women

N = 30 N = 49

1 RM, kg 43 ± 2* 25 ± 1

PP, watts (Nm· rad·s-1) 1410 ± 70* 785 ± 38

PV, rad·s-1 5.8 ± 0.1* 5.1 ± 0.1

MV, cm3 1857 ± 72* 1195 ± 41

MPQ, watts/cm3  ( x 10-1) 7.6 ± 0.2* 6.6 ± 0.2

Values reported are overall group means ± SE, but p-values are based on 

least-square means, considering the significant co-variates.

N = number of participants; 1RM = one-repetition maximum;  PP = peak power; 

PV = velocity of peak power;  MV = muscle volume;  MPQ = muscle power quality.

One man and two women were missing from MV measures due to errors in CT scans.
* Significantly greater than women (P < 0.05).
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Table 3.  Racial differences in 1RM knee extension, strength, power, movement velocity,
and muscle volume of the knee extensors

African-Americans Caucasians

N = 28 N = 45

1 RM, kg 30 ± 2 34 ± 2

PP, watts (Nm· rad·s-1) 1176 ± 81 941 ± 64

PV, rad·s-1 5.5 ± 0.2 5.3 ± 0.1

MV, cm3 1627 ± 89* 1355 ± 66

MPQ, watts/cm3  ( x 10-1) 7.0 ± 0.2 6.9 ± 0.2

Values reported are overall group means ± SE, but p-values are based on 

least-square means, considering the significant co-variates.

N = number of participants; 1RM = one-repetition maximum;  PP = peak power 

PV= velocity of peak power;  MV = muscle volume;  MPQ = muscle power quality.

Three Caucasians were missing from MV measures due to errors in CT scans.
* Significantly greater from Caucasians (P < 0.05).
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Table 4.  Race and sex differences in power and velocity at relative loads

Men Women African Americans Caucasians

N 30 49 28 45

P50%, watts (Nm· rad·s-1) 1363 ± 67* 760 ± 35 1117 ± 76 927 ± 63

P60%, watts (Nm· rad·s-1) 1383 ± 73* 760 ± 38 1152 ± 82 916 ± 65

P70%, watts (Nm· rad·s-1) 1343 ± 74 734 ± 38 1125 ± 84† 868 ± 62

V50%, rad·s-1 6.2 ± 0.2* 5.3 ± 0.1 6.0 ± 0.2 5.5 ± 0.1

V60%, rad·s-1 5.5 ± 0.2* 4.8 ± 0.1 5.5 ± 0.2† 4.8 ± 0.1

V70%, rad·s-1 4.7 ± 0.2* 4.2 ± 0.1 4.8 ± 0.2† 4.1 ± 0.1

Values reported are overall group means ± SE, but p-values are based on least-square means, considering the       

significant co-variates.

N = number of participants; P% = power at percentage of 1RM; V% = velocity at percentage of 1RM.
*Significantly different from women (P < 0.05)
†Significantly different from Caucasians (P < 0.05
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Table 5.  Sex and race differences in tests of functional ability

Usual Pace Rapid Pace 5-Chair Stands 8-ft up-and-go Stair Climb

Men (N = 11) 5.3 ± 0.2 3.6 ± 0.2 7.5 ± 0.8 5.1 ± 0.2 3.6 ± 0.2

Women (N = 17) 5.2 ± 0.3 3.8 ± 0.1 8.8 ± 0.5 6.1 ± 0.2 4.5 ± 0.2*

African Americans (N = 5) 5.6 ± 0.2 4.1 ± 0.3 8.5 ± 0.7 6.4 ± 0.4 4.2 ± 0.4

Caucasians (N = 22) 5.2 ± 0.2 3.6 ± 0.1† 8.2 ± 0.5 5.5 ± 0.2† 4.2 ± 0.2

Values are means ± SE.  All values are reported as seconds to the nearest 0.1.

N = number of participants.

One woman was not included in 5-chair stands due to missing data.

One Caucasian was not included in 5-chair stands due to missing data.
* Significantly different than men (P < 0.01).
† Significantly different than African Americans (P < 0.05).
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Table 6.  Relationships of strength, peak power, movement velocity to measures of functional ability.

Usual Pace Rapid Pace 5-Chair Stands 8-ft up-and-go Stair Climb

1RM -0.25 (.06) -0.38 (.14) -0.27 (.073) -0.41 (.17) -0.50 (.25)

PP -0.33 (.11) -0.16 (.03) -0.15 (.02) -0.23 (.05) -0.44 (.19)

PV -0.36 (.13) -0.10 (.01) -0.07 (.01) -0.25 (.06) -0.24 (.06)

MQ -0.43 (.18) -0.41 (.16) -0.49 (.24) -0.49 (.24) -0.50 (.25)

MPQ -0.50 (.25) -0.18 (.03) -0.30 (.09) -0.33 (.11) -0.44 (.19)

PV/MV -0.19 (.04) 0.05 (.003) -0.15 (.02) -0.10 (.01) 0.16 (.03)

     Values are correlation coefficient (R2).

     1RM = one-repetition maximum;  PP = peak power; PV = velocity of peak power;  

     MV = muscle volume;  MQ = muscle quality;  MPQ = muscle power quality
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FIGURE CAPTIONS

Fig.1.  Differences in muscle quality (MQ) and movement velocity quality (PV/MV) 

between sexes.  Men exhibited significantly greater MQ than women (P < 0.05).  PV/MV 

was significantly greater in women than in men (P < 0.001).

Fig 2.  Differences in muscle quality (MQ) and movement velocity quality (PV/MV) 

between races.  African-Americans showed significantly lower MQ (P < 0.01) and 

PV/MV (P < 0.05) than Caucasians.
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Figure 1.  Sex differences in MQ and PV/MV
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Figure 2.  Race differences in MQ and PV/MV
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APPENDIX A

PROPOSAL INFORMATION

Statement of the problem

The purpose of this study is to determine the influence of race and sex differences 

on the relationship of strength, peak muscle power, movement velocity, and functional 

ability in middle-aged and older adults (age range 50-85).  To achieve this purpose, peak 

power of the knee extensors will be assessed at three different percentages of 1RM 

strength levels.  The peak power and corresponding velocity will be correlated with 

functional ability tests simulating activities of daily living (ADL).  Peak Power and 

velocity measures will be expressed with and without being normalized for quadriceps 

muscle volume (MV).

Experimental hypotheses

1. Men will have a significantly greater absolute peak power than women, but the 

difference will narrow when adjusted for MV. 

2. African-Americans will have greater strength and MM than Caucasians, but will 

not have a significantly greater MQ than Caucasians

3. African-Americans will show greater peak power than Caucasians due to greater 

strength and muscle mass.

4. Peak power and strength will be more associated with higher force functional tests 

(5 Chair stands, 8-foot up-and-go, stair climb) than will movement velocity

5. Movement velocity will be more associated with low force functional tasks (usual 

and rapid gait).
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Delimitations

1. The scope of this study will be limited to 30 men and 49 women (45 Caucasian, 

28 African-American) between the ages of 50 and 85 who were volunteer 

participants in the GUSTO Study at the University of Maryland.

2. Participation in the study was limited to sedentary, non-smokers who were free of 

obvious signs of any musculoskeletal or cardiovascular disease.

Limitations

1. The participants were volunteers recruited according to demographics and were 

not randomly selected from the entire population.  

2. Participants were verbally encouraged to perform maximal exertions on all 

measures, therefore maximal effort is assumed but not verified.

3. Conclusions made from comparing African-American subjects may lack 

statistical power due to a small sample size.

4. The age group of the participants in this study were rather heterogeneous (50-84 

yrs).

5. It was assumed that participants were inactive prior to the study.

Operational definitions

1. Antagonist:  Muscles that oppose a particular movement in order to slow or stop 

the movement

2. Concentric:  the phase of muscle action during which the muscles are shortening 

while generating force throughout a range of motion.  Presently termed 

“shortening phase” of muscle contraction.
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3. Extension:  A movement that increases the angle between the bones of the limb at 

the joint.

4. Force/Velocity Curve:  The curve explaining the inverse relationship between 

muscular force production and movement velocity

5. Inertia:  A force that must be overcome in order to start a movement

6. Muscular Power:   the product of torque and angular velocity during a single 

repetition of movement

7. Sarcopenia:  Age-associated loss of skeletal muscle resulting in reduction of 

muscle mass and strength
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APPENDIX B

  LITERATURE REVIEW

Loss of muscle mass, strength, and power with age

Age-associated changes in skeletal muscle mass and function, known as 

sarcopenia, have been widely investigated.  Sarcopenia, from Greek meaning poverty of 

flesh, is the wasting of skeletal muscle with increasing age, and has been linked to 

deficits in strength, power, and functional ability in older adults.  Although differing in 

design and methodology, numerous studies have reported lower amounts of muscle mass 

in older individuals (26-28, 34, 40, 46, 69, 102).  Although there are conflicting reports 

on the average age at which the loss of muscle begins, it appears that the most significant 

changes occur after the age of fifty.  Janssen et al. (40) reported a reduction in relative 

skeletal muscle mass starting in the third decade, but that a noticeable decrease in 

absolute muscle mass was not observed until the end of the fifth decade.  Also, Larsson et 

al. (46) reported the largest decrease in the area of type II muscle fibers between 40-49 

and 50-59 age groups.  Although these and other cross-sectional studies have been 

effective in illustrating muscle mass changes between age groups, longitudinal studies 

have provided even more accurate conclusions on changes in skeletal muscle as an 

individual ages.  A study by Frontera et al.(26) examined muscle size and function in 

nine older men (age 65.4 ± 4.2y) and were reevaluated after 12 years.  With the use of 

computerized tomography they observed reductions in the CSA of the thigh muscles 

(14.7%), the quadriceps femoris muscle (16.1%), and flexor muscles (14.9%).   This is 

similar to a study by Hughes et al. (34), who reported muscle mass losses of ~13% per 
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decade when men between the ages of 46-78 were reevaluated after an average of 9.7 

years.  

Age related losses in muscle mass have also been associated with decreased force 

production in older individuals.  Several studies have shown a strong correlation between 

losses in muscle mass and strength with aging.  Larsson et al. (46) reported the strength 

declines they observed correlated significantly with the selective atrophy of type II 

muscle fibers (r = 0.54, P < 0.001), and quadriceps size and strength were correlated in 

70-year-old men and women (r = 0.77, P < 0.03 and r = 0.66, P < 0.001) in separate 

studies by Young et al. (102, 103).  However, Reed et al. (80) reported a relatively weak 

correlation between midthigh muscle area and strength (r = 0.29) and suggest that even 

though the two are related, measures of body mass should not be used to predict muscle 

strength.  In this regard, numerous investigations have examined the extent of strength 

losses in older individuals (1, 11, 12, 26, 27, 34, 46, 48, 64, 65, 69, 74, 99, 102).  Similar 

to losses in muscle mass, strength is thought to begin to decrease after the age of 50, as 

reported by Larsson et al. (46).  Although this appears to be the consensus, some studies 

have reported strength losses even earlier.  Lindle et al (48) showed losses in knee 

extension concentric peak torque as early as the forties, while Borges (12) reported 

significantly lower isokinetic knee extension torque between 20 and 30 years of age in 

men and 40 to 50 years of age in women.  Cross-sectional studies have shown that, on 

average, strength in older adults (60-86 years) is anywhere between 22-54% less than 

their younger counterparts (64, 69, 74, 102, 103).  Similar to investigations on muscle 

mass, a longitudinal design provides a more precise measurement of changes in strength 

with aging.  Bassey et al. (6) examined handgrip strength in men and women over age 65 
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and found that after four years, handgrip strength had declined between 12-19% and the 

changes were significantly related to age.  A study by Frontera et al. (26) examined 

strength of the knee and elbow extensors in older men (age 65.4 ± 4.2y) and tested them 

again after 12 years.  They found that both muscle groups showed losses ranging from 

20-30% at all velocities tested.  Another study by Hughes et al. (34) reported losses of 

14% per decade in the knee extensors and 16% per decade in the knee flexors.  They also 

noted that, particularly in men, the longitudinal rates of decline in strength were ~60% 

greater than estimates from a cross-sectional study of the same population.  Therefore, 

although each of previously mentioned studies has been effective in reporting muscle 

mass and strength losses with age, it appears that the longitudinal design is more sensitive 

in detecting changes in this population.

In an attempt to better quantify changes in skeletal muscle function with aging, 

recent investigations have adjusted strength measures for individual variations in muscle 

mass (1, 27, 48, 51, 61, 102, 103).  This variable has been commonly referred to as 

muscle quality (MQ) or specific tension, and believed to be a better indicator of muscle 

function than strength alone because it takes into account the intrinsic characteristics of 

the musculature (51).  With regards to examining changes in MQ with age, there have 

been relatively few studies, all of which are of cross-sectional design.  The longitudinal 

studies in this area have concentrated more on interventions to improve MQ, rather than 

changes over time.  Nevertheless, the existing literature does provide useful insight on 

muscle function with aging.  Although some of these studies are consistent in their 

conclusions, there are some who have reported conflicting results.  Studies by Lindle et al 

(48), Young et al (103), and Lynch et al (51) have all reported a age-related decline in 
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MQ, although the type of contraction may influence the results.  In the Young et al. study 

(103), there was a 19% loss of MQ between 20- and 70-year-olds, which is similar to the 

25% loss reported in the Lynch (51) investigation.  However, in the Lynch et al. 

investigation, they also reported a 40% loss during concentric contractions.  In contrast to 

these reports, Frontera et al (27) reported no difference in isokinetic torque when 

expressed per kilogram of muscle mass.  However, this study used urinary creatinine 

excretion to estimate muscle mass, which may measure muscle properties different than 

that of CSA or measures of fat-free mass (61).  Therefore, it appears that when using MQ 

to assess age –related differences in muscle function the type of contraction and method 

of estimating muscle mass are important considerations.  

In addition to assessing changes in strength with age, researchers recently have 

shown interest in muscular power, which is the combination of strength and movement 

velocity.   One reason for the new interest in this variable is a study by Skelton et al (88), 

who reported that leg extensor muscular power was more sensitive to aging (loss of 

3.5%/yr) than was strength alone (loss of 1-2%/yr).  Despite its cross-sectional design, 

this was the first study to report this phenomenon and has influenced further research.  

Although utilizing a different muscle group, this finding was confirmed by Metter et al. 

(60).  In this study, power was tested every two years in subjects aged 20-80 years, 

showing a decline after the age of 40 and a 10% larger decrease than strength.  Despite 

differences in testing methodologies, recent investigations have all confirmed that age has 

an important influence on power (22, 37, 38, 45, 53, 97).  However, other factors other 

than losses in muscle mass and strength contribute to this phenomenon.  In a study by 

Ferretti et al. (22), power measures were normalized for CSA of the thigh muscles, 
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however, there was still a significant difference in power (~17%) between 20-30 year-

olds and adults over 50.  This finding indicates that although losses muscle mass are 

related to power, they cannot fully explain deficits in power in older adults.  Lanza et al. 

(45) reported a significant age-by- speed interaction, where older subjects showed further 

impaired power at higher speeds.  This indicates the need to further investigate movement 

velocity and its contribution to power losses in the elderly.  Macaluso et al. (53) also 

found that the increased co-contraction of the knee flexors in older women compared to 

younger women may at least partially explain lower power values in older adults.  

Therefore, future research should include these considerations in order to make accurate 

conclusions on losses in muscle power with aging.

The relationship of muscle mass, strength, and power to functional ability

The loss in muscle mass, strength, and power with aging is clinically significant 

because it is associated with losses in functional ability.  Although less studied than 

strength or power, a few studies have established a relationship between reduced muscle 

mass and impaired function (39, 67, 82, 98, 100).  In a study assessing sarcopenia in 

older adults, Janssen et al. (39) found that the likelihood of functional impairment and 

disability was 2-3 times greater in men and women with a skeletal muscle mass index 

(skeletal muscle mass/body mass × 100) below two standard deviations of values in 

young adults.  Using a less precise technique, Rolland et al. (82) reported that small calf-

circumference was associated with disability and self-reported physical function in a 

sample of 70-year old women.  Also, Visser et al. (100) reported that reduced midthigh 

muscle area was associated with poorer lower extremity performance, regardless of sex 

or race.  The relationship among losses in muscle mass and function is probably less 
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studied, primarily due to the higher expense and limited access of obtaining  accurate 

measurements of muscle mass.  

The feasibility and ease of obtaining accurate strength measurements has allowed 

for numerous investigations to establish relationships between muscle strength and 

functional ability.  Several studies have reported that reduced muscular strength in the 

elderly is closely associated with simulated daily tasks such as maximal walking speed 

and step tests (4, 91),  timed gait (44, 68, 98) ADL dependence (77), and chair stand (98, 

100),.  Brown et al (13) reported that when isometric hip extension, knee extension, and 

ankle plantar flexion strength were combined and normalized for body weight, a 

significant relationship was found for five chair-stand time.  Associations of strength and 

other functions other than those that mimic activities of daily living have also been 

discovered. For example, decreased strength has been correlated with dysfunction in 

manual dexterity and locomotion (36), falls (49, 50), and trips (70).  Conversely, a study 

by Danneskiold-Samsoe et al. (17) found very little correlation between functional tests 

and isokinetic contractions of the knee and ankle at varying speeds.  The only significant 

relationship was knee extension strength at 60 deg/s.  Recent studies have also sought to 

compare the influence of muscle mass and muscle strength on function.  Visser et al. 

(98), for example, found that both leg muscle mass and grip strength were significantly 

related to lower extremity performance, although, after adjustment for behavioral, 

physiological, and psychological factors, the association with muscle mass disappeared.  

However, it is unclear why handgrip strength was chosen as an indicator of muscle 

strength, when some measure of leg strength would have been more appropriate.  

Nevertheless, this result  is similar to another study by Visser et al. (99) comparing the 
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relationships of maximal isokinetic torque of the leg extensors and leg muscle mass to 

repeated timed chair stands.  Again, deficits in both variables were found to be associated

with poorer chair stand performance, but when modeled simultaneously, only leg 

extension torque was independently associated with performance.  Both of these studies 

show that low muscle strength is a stonger predictor of decreased functional ability in 

older adults than are losses in muscle mass. 

 Recently, investigations have focused on the relationship of impaired functional 

ability to reduced muscle power in older age.  Similar to strength measures, the power 

output of various muscle groups have been associated with activities of daily living tests, 

such as stair-climb time (5, 9, 10, 91), chair-stand time (5, 9, 88, 91), and walking speed 

(5, 9, 76).  Moreover, Skelton et al. (89) found a strong relationship between power and 

falls, where women with a history of falls were 24% less powerful than those with no 

reported falls.  Izquierdo et al. (37) indicated that deficits in the velocity component of 

power may be a possible cause of  falls by inhibiting response time and impairing speed 

of postural adjustments.  Since it has been previously established that muscle strength is 

more influential in functional ability than muscle mass, recent investigations have 

examined whether reduced muscle power may show an even greater association to losses 

in function. Bean et al.(9) reported that, although leg power and strength were highly 

correlated, leg power explained 8% more of the variance in measures of functional 

performance.  Even when using different instrumentation for measuring power, Bean et 

al. (10) again determined that leg power consistently explained more of the variance than 

strength in the functional performance variables of habitual gait speed, balance, chair rise 

time, and stair climb time in subjects over the age of 65.  Foldvari et al. (25) also reported 



43

that leg power had a stronger univariate correlation with self-reported functional status 

than did strength.  Conversely, Lauretani et al. (47) found that leg extension power was 

no better than knee extension torque or handgrip strength in the early identification of 

poor mobility.  However, in this study, muscle power values were normailized for body 

weight, while strength values were not, which may have affected the results.  

Although power appears to be more closely associated with functional ability, 

interventions should be designed to improve muscle mass and strength, as well as power, 

in order to prevent functional dependence in older adults. Also, future investigations 

should further investigate movement velocity, the other component of power, and its 

influences on functional ability in older adults.

Sex and racial differences in muscle mass, strength, and power

The existing literature on muscle mass, strength, and power has also focused on 

differences between men and women and how the variations in these variables may affect 

functional ability later in life.  In this regard, it is well established that, even in the 

elderly, men have larger muscle mass and area than women (17, 27, 36, 42, 98, 99).   A 

study by Janssen et al. (40) using magnetic resonance imaging to determine skeletal 

muscle mass in men and women between the ages of 18-88 found that men had 

significantly more absolute muscle mass (33.0 vs. 21.0 kg) as well as muscle relative to 

body mass (38.4% vs. 30.6%) .  An even more detailed picture of sex differences in 

muscle mass and area was illustrated by Miller et al. (62) with the use of needle biopsies 

and computerized tomography.  Here, the women were observed to have 45, 41, 30, and 

25% smaller CSA for the biceps brachii, total elbow flexors, vastus lateralis, and total 
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knee extensors, respectively. Also, men had significantly larger type I and II fiber areas 

and mean fiber areas. 

The significance of the lower amount of muscle mass is the higher rates of 

sarcopenia seen in older women.  Janssen et al. (39) reported that the prevalence of class I 

and class II sarcopenia was significantly greater in older women than older men, and was 

also associated with a greater likelihood of functional impairment and disability.  With 

this in mind, some researchers have sought to examine sex differences in the rates of 

decline in muscle mass with aging.  One such study by Hughes et al (34) measured 

muscle mass in 120 men and women initially 46-78 years old and then reexamined them 

~10 years later.  Although both groups lost considerable amounts of muscle over the 

period, the percent changes were significantly greater in men (-12.9 ± 15.5%) than in 

women (-5.3 ± 18.2%).   This finding is similar to in a study by Lindle et al. (48) of men 

and women aged 20-93 years.  They found that in men, total body FFM was significantly 

lower in the two oldest age groups compared to the youngest group, however in women 

there was no significant difference between age groups.  Conversely, Frontera et al. (27)

showed that muscle mass in women in three age groups from youngest to oldest was 

66,63, and 59% that of the men.  This finding suggests that the rate of decline in muscle 

mass may be faster in women.   The different findings in these studies may reflect 

differences in research design and testing methodology, and need to be investigated 

further.

Research on strength differences between sexes has yielded results similar to 

those on muscle mass.  The existing literature is unanimous in concluding that, on 

average, men exhibit greater absolute strength than women of similar age (12, 17, 27, 36, 
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42, 48, 57, 62, 68, 88, 99).   For example, Lindle et al. (48) reported that peak torque 

values for men were significantly higher than women across all ages, velocities, and 

types of muscle action tested.  Several studies have also been in agreement that absolute 

strength in women is ~ 43- 68% that of men of similar age (27, 62, 88).  Only one study 

(17) reported no sex difference in the ankle dorsal and plantar flexors between sexes,  

although men were found to be significantly stronger in all other muscle groups tested.  

Although it is clear that men are stronger than women, there are conflicting reports on sex 

differences in the changes in strength with aging.  Akima et al. (1) reported that 

percentage decline in knee extension and flexion torque was higher in men than women 

(12% and 8%;  11% and 8%, respectively).  A longitudinal study by Hughes et al. (34)

demonstrated that women showed slower rates of decline in  the elbow flexors and 

extensors than men, but there was no difference in losses of knee extention and flexion 

after a 10 year follow-up.  Contradictory to these reports is Borges (12) who reported that 

the decrease in isokinetic knee extension torque from the ages of 20 to 70 was greater in 

women (69%) than in men (63%).  Similarly, Bassey et al. (6) reported that in subjects 

over the age of 65, grip strength had declined by 19% in women and only 12% in men 

after a 4 year follow-up.  Clearly, more longitudinal studies are needed to understand 

changes in strength between sexes.

In order to accurately draw conclusions on sex differences in strength, the 

individual differences in muscle mass must be taken into account.  It has been argued that 

sex differences in absolute muscle strength reflect differences in muscle quantity rather 

than architectural characteristics or metabolic function of the muscles in use (58).  

Therefore, past investigations have used indexes of muscle strength referred to as specific 
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strength or muscle quality to make more accurate descriptions of differences in muscle 

strength between sexes.  A study by Maughan et al. (57) reported that although men had 

significantly greater absolute strength values, when strength was adjusted for CSA of 

knee extensor muscles, the difference between groups was no longer statistically 

significant.  This is similar to the findings of Lindle et al. (48) who reported that the 

gender difference diminished from 37% to 9% when concentric peak torque was 

expressed relative to thigh nonosseous FFM.   Frontera et al. (27) also described that 

absolute strength in women ranged from 42.2 to 62.8% that of men, but when expressed 

per kg of muscle mass, the sex differences were smaller and/or not present.  Only one 

study (42) indicated that specific strength tended to be higher in young and older men, 

however, this finding did not reach statistical significance (P < 0.08).  Therefore, it 

appears when strength is normalized per unit of muscle and expressed as specific strength 

or muscle quality, sex differences in strength are no longer apparent.  Also of interest are 

findings that suggest muscle quality is preserved longer in women during aging than in 

men.  A study by Akima et al. (1) that examined muscle function in 164 men and women 

aged 20-84 found that the force/CSA of the knee extensors exhibited a significant 

decrease with age in men, but not in women.  Although Lynch et al. (51) found that the 

rate of decline in leg muscle quality was the same between sexes, the age-associated 

decrease in arm muscle quality was steeper in men.  Although these findings would 

suggest lower muscle function in older men, they may only be influenced by the overall 

higher values in men, as they do not correspond to sex differences observed in functional 

ability.  
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Although investigations have concluded that women do not show significantly 

lower muscle quality than men of similar age, reduced muscle mass, strength, and power 

in older women is thought to put them at greater risk for successfully managing simple 

everyday activities (15).  In studies that have examined functional differences between 

sexes, women tend to perform worse than men on tests of functionality.  For example, 

Kwon et al. (44) showed that women took longer and required more steps on the walk-

turn-walk test and were slower in both normal and rapid gait tests.  Similarly, Visser et al. 

(99) reported that women had poorer lower extremity performance as assessed by a 

timed, repeated chair-stands test.  Samson et al. (84) also reported that older women 

performed worse on functioal mobility tests.  A study by Janssen et al. (39) determined 

that reduced muscle mass was significantly and independently associated with functional 

impairment and disability, and that the likelihood of impairment was greater in older 

women.  These observed differences in tests that mimic everday tasks may help explain 

higher fall rates seen among older women.  A study by de Renkiere et al (19) found that 

older adults that reported at least one fall within a year tended to be female and have 

lower leg strength, poorer balance, slower 400-meter walk time and lower muscle mass.  

Similarly, Suzuki et al. (90) reported higher fall rates in institutionalized elderly women.  

A possible explanation for the higher incidence of falls in older women is provided by 

Wojcik et al. (101).  In this study, they found that older women were less able to recover 

balance during a fall due to limitations in the maximum speeds at which they moved their 

swing foot during recovery.  This finding of reduced movement speed is supported by 

Krivickas et al. (43) who found that older women exhibited lower absolute unloaded 

shortening velocity of type I and II skeletal muscle fibers.  Despite the fact that women 
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clearly are at greater risk for functional impairment, the loss of functional ability is a 

concern for the entire aged population.  It also appears that the factors that cause these 

impairments may be sex-specific, and need to be verified in future studies in order to 

design interventions to improve function in the elderly

Although sex differences among these variables have commonly been examined, 

there is very little existing literature on muscle mass, strength, and power between racial 

groups.  For the purpose of this review, only comparisons between African Americans 

and Caucasians will be reported.  In this regard, some studies have examined differences 

in muscle mass between races.  Studies by Newman et al.(66, 67) reported greater lower 

extremity lean mass and appendicular lean mass divided by height, respectively, in 

African-Americans as assessed by DXA.  Also, Visser et al (100) used computed 

tomography to report larger CSA of the midthigh in African Americans, while Aloia et al. 

(2) also observed greater whole body muscle mass in African-Americans estimated from 

total body potassium.  Similarly, Gallagher et al. (28) found greater appendicular muscle 

mass and total body potassium in African Americans after adjustment for height, stature, 

and age.  Although few studies are available and some have used different 

methodologies, all are in agreement that, on average, African Americans have greater 

muscle mass than Caucasians.  

These documented differences have led investigators to examine if the larger 

muscle mass in African Americans corresponds to increased force production 

capabilities.   However, unlike muscle mass, studies on strength between races have not 

been in agreement.  Using isokinetic dynamometry, Newman et al. (66) reported greater 

muscle strength in African Americans.  However, using a similar method, Ostchega et al. 
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(68) observed no difference in concentric peak torque between races.  Rantanen et al. (79)

also reported no differences in strength among races.  However, in this study the force 

was recorded as the greatest force the tester had to apply to break the subject’s isometric 

contraction, and the validity of this measurement is unknown.  Even more unexpected is a 

study by Means et al (59), which found that African American women had less muscle 

strength than their Caucasian counterparts, although the validity of the strength 

measurement in this study is questionable.  They used a physical therapist to manually 

test muscle strength, and is therefore not a reliable index of maximal voluntary force 

production.  Due to the small amount of available literature and wide variety of testing 

procedures, strength differences between African Americans and Caucasians remains 

inconclusive.  

Only one study has considered both of the previously discussed variables and 

examined muscle quality between races.  As noted earlier, Newman et al. (66) reported 

greater muscle mass and strength in African Americans.  However, when the ratio of 

muscle strength to muscle mass was examined, leg muscle quality tended to be lower in 

African Americans than Caucasians.  This unique discovery demonstrates that racial 

differences in muscle function are multi-dimensional, and needs to be pursued further.  In 

this regard, there is no existing literature that has focused on racial differences in the 

combination of muscular strength and movement velocity, or muscle power.  Clearly, all 

of these variables and their relationships with each other must be examined in order to 

fully understand racial differences in muscle function.  

The importance of understanding racial differences in muscle mass, strength, and 

power is that it relates to differences in functional performance among these groups.  
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Although there appears to be racial differences in functional abilities with aging, the 

current literature is conflicting.   When examining falls in an elderly population both de 

Rekeneire et al. (19) and Hanlon et al (32) concluded that elderly Caucasians, particularly 

women, were at a greater risk than African Americans.  Also, in the de Rekeneire study 

(19) risk of falls was associated with poorer performance on functional tasks such as 6-

and 400- meter walk time, standing and walking balance, and inability to perform five 

chair stands.  Contradictory to these reports are others that have shown African 

Americans to perform worse on measures of functional performance.  Means et al. (59)

demonstrated that  older African American women exhibited poorer balance, mobility, 

and obstacle course performance than Caucasian women.  Also, Visser et al (100)

reported that African Americans showed poorer lower extremity performance on a 

battery of tests that included the 6-meter walk and five chair stands.  Newman et al. (67)

also noted that African American women were more likely to have lower physical 

function, despite the fact that less likely to be classified as sarcopenic in comparison to 

their Caucasian counterparts.  The conflicting reports in all of the previously described 

studies indicates that in order to truly understand racial differences, muscle mass, 

strength, power, and their relationships to functional ability must be determined.

Assessment of muscle power and movement velocity

Results that have been previously reported in the literature have likely been 

influenced by differences in methodologies, which may help explain discrepencies with 

regards to age- and gender- associated differences in muscular power and movement 

velocity.  
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One of the most commonly used methods of assessing power and movement 

velocity has been the flywheel, or “Nottingham” rig.  The feasibility and reliability of this 

instrument was first reported by Bassey et al in 1990 (7), and has been replicated in 

numerous other investigations since then (5, 10, 72, 88, 89).  This apparatus is designed 

to measure leg extensor power and consists of a footplate connected through a lever and 

chain to a flywheel.  Briefly, subjects are asked to apply maximal force to push the 

footplate away, accelerating the flywheel from rest.  Velocity of the flywheel is estimated 

by interruption of an infra-red opto-switch to the nearest millisecond.  Average power is 

calculated using this estimated velocity and constants for, moment of inertia, angular 

distance (rads), average force of the return spring, pedal movement (meters), and 

frictional loss (7).  Although this method has been reported to be a reliable measurement 

of muscular power, it is not valid by itself for assessing power differences between age 

groups and/or sexes.  This is because it requires each subject to overcome the same fixed 

inertia and does not account for individual variations in strength.  Therefore, when 

assessing power differences between young and old subjects, the older and presumably 

weaker subjects are forced to use a greater percentage of strength, and thus working in a 

less favorable portion of the force-velocity curve.  The same argument can be made for 

assessing power differences between sexes, where on average, women have less absolute 

strength than men and would be using a larger percentage of their maximum force-

generating capacity.  

The second most commonly used method for measurement of power and velocity 

is the standing force jump plate.  This method, first described by Davies and Rennie 

(1968), requires a vertical jump on a force platform and has been widely used to measure 
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explosive or instantaneous power in a wide rage of populations (15, 18, 21, 22, 37, 76, 

78, 87).  Power output during the jump is calculated by multiplying the vertical velocity 

of displacement of the body’s center of gravity and the vertical force measured by the 

platform.  Also taken into account in this equation is the vertical acceleration imposed by 

muscle contraction, body mass of the subject, and acceleration of gravity (18).  Although 

this method does have the ability to extract a maximal force and maximal velocity to 

determine the maximal power attained during each repetition, it has some limitations that 

must be accounted for.  First, when examining explosive power in older adults, actions 

such as jumping may be accompanied by an increased the risk of injury during the test.  

Thus, safety may be a concern for testing older adults.  With respect to age, it has a 

similar disadvantage as the flywheel rig in that the validity of making age comparisons 

has been questioned (54).  Jumping requires a large amount of force production and in the 

elderly would require a greater percentage of strength than in younger people, thus 

compromising movement velocity.  A study by Rantanen and Avela attempted to account 

for the safety issue by using a sledge ergometer and had subjects extend their legs 

powerfully, “as if trying to jump” (76).  However, the mass of the chair attached to the 

ergometer added an extra 27.7 kg, which would require the older subjects to use an even 

larger percentage of strength to produce the desired movement.   A few studies using the 

vertical jump plate have also reported “peak” power in older adults (15, 20, 22).  

However, because of the considerations previously described, these measurements should 

not be reported as peak power.  These older subjects are likely not working in the optimal 

range of force and velocity needed to attain peak power output.  What is actually being 

measured in these studies are the maximal power values achieved during the movement.  
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It is reasonable to assume that these subjects could attain higher power values if they 

were working in a portion of the force-velocity curve that is more favorable for 

optimizing peak power.

A less common method currently for assessing power output, but more common 

in earlier investigations, is isokinetic dynamometry.  Previous studies have used this 

equipment to test knee extension power at various speeds in an attempt to determine peak 

power (29, 86).  Gauchard et al. used isokinetic testing to measure power in adults over 

the age of 60 (29). However, they tested knee extensor power only at 90 deg/s, which is 

too slow for most people to achieve the optimal velocity component of power. Other 

studies (45, 86) have used higher velocities (up to 400 deg/s), but this speed may be 

above optimal for some and below optimal for others.  Perrine et al. (73)estimated that 

unloaded movement of the human limbs could reach 832 deg/s.  Thus, one problem with 

the use of isokinetic testing to assess muscle power is that a specific velocity is imposed 

on everyone being tested, but the optimal velocity for eliciting maximal (peak) power is 

likely different among individuals.  Other studies have also used this equipment to 

measure the maximal isometric strength and then use the “isotonic” mode to optimize the 

load during the contraction (53).  This allows for the measurement of maximal movement 

velocity during the movement.  However, the sampling rate of isokinetic equipment is 

typically 100Hz, which may be too short to capture the true peak achieved, but could 

provide an accurate measure of average power throughout the range of motion.  Further 

research would be needed to validate the use of isokinetic dynamometers in assessing 

peak power output.
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A more recent method for examining power output uses pneumatic (compressed 

air) resistance equipment interfaced to a computer.  The advantage of this equipment is 

that the velocity component is controlled by the subject.  This allows for the optimal 

velocity for peak power production to be attained, which may not have occurred with the 

use of the equipment previously discussed.  The pneumatic resistance also provides the 

ability to control for individual differences by optimizing the load relative to the subjects’ 

one repetition maximum (1RM) (2, 9, 25, 41, 86, 92).  Therefore, by testing at numerous 

percentages of one’s 1RM, it may be possible to optimize the strength component of 

power as well, thus providing the most accurate representation of muscular power to date. 

Also, these isotonic contractions are believed to closely resemble normal muscular 

contraction where the muscle is maximally loaded at one point in the range of motion, 

and therefore may be a more functionally relevant measure of power.  During a 

repetition, the computer software calculates work and power by sampling the pressure at 

the air cylinder 400 times per second and records distance traveled by the piston shaft.  In 

order to account for slower speeds encountered due to inertial forces needed to overcome 

forces at the beginning of the movement and the co-contraction of the antagonist muscles 

the end of the movement, these studies excluded the first and last 5% of the motion.  

However, some of these studies report this measurement as “peak” power (2, 9, 25).  In 

reality, these investigations are reporting the highest average power observed during the 

test.  A true peak power would likely reflect the point in the range of motion where 

optimal force and optimal velocity occur simultaneously, which has yet to be reported.
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Summary

It is clear that with aging, there are significant losses in muscle mass, strength, 

and power.   Deficits in each of these variables have been linked to impaired functional 

ability in the eldery, and it appears that losses in muscular power may be the most 

influential.  However, the importance of each in contributing to functional dependence 

may be sex- and/or race-specific and have important implications for designing 

interventions to counteract losses in functional ability.  In this regard, older women have 

been shown to possess less muscle mass, strength, and power than older men, all of 

which contribute to poorer functional performance and higher risk of falls.  However, 

when considering the amount of muscle mass, strength differences between the sexes 

narrow and are non-significant.  This indicates a need to normalize all measures of 

muscle function for individual differences in muscle mass and suggests that other non-

muscular factors may contribute to the disability process.  Although less studied, there 

are also differences in muscle mass and strength between races.  African Americans 

typically have greater muscle mass, but results on race differences in strength, muscle 

quality, and functional ability remain controversial.   Currently, there is no existing 

literature on race differences in power and movement velocity.  Future studies in this area 

may assist to solidify our understanding of racial differences in muscle function.  Finally, 

findings regarding age, sex, and race differences in power and its relationship to function 

may also be greatly influenced by testing methodology, and must be considered in order 

to make accurate conclusions.  
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APPENDIX C: FORMS AND FIGURE

Informed consent
1RM testing form

Power testing form
Sample figure of MatLab power curve
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APPENDIX C

FORMS AND FIGURE

Informed consent

CONSENT TO PARTICIPATE IN A RESEARCH PROJECT

Project Title:  Effects of Gene Variations on Age- and Strength Training-Induced 
Changes in Muscular Strength, Body Composition, Blood Pressure, Glucose Metabolism, 
and Lipoprotein-lipid Profiles

I state that I am over 18 years of age, in good physical health, and have elected to 
participate in a program of research being conducted by Dr. Ben Hurley in the 
Department of Kinesiology at the University of Maryland, College Park, MD 20742.

I understand that the primary purpose of this study is to assess the role that genetics 
may play in causing losses of muscular strength and muscle mass with age and gains in 
strength and muscle mass as a result of strength training.  I understand that another 
purpose of the study will be to assess the influence of genes on changes in body 
composition, blood pressure, blood sugar metabolism, blood fats muscle power, and 
performance of common physical tasks with age and strength training.

I understand that the procedures involve three phases.  During the first phase, I will 
undergo   testing, which will include a blood draw to analyze my DNA (genetic material), 
blood sugar and fats, and other blood proteins.  My blood pressure, body composition, 
bone mineral density, leg muscle volume, muscle strength, muscle power, and ability to 
complete selected tasks similar to common activities of daily living will also be assessed 
during this first phase.  The second phase of the study involves my participation in a 
strength training program three times a week for approximately six months.  The third 
and final phase will be a repeat of all previously taken measures, except analysis of my 
DNA, which will not need to be repeated.  Some of the tests will be repeated both after ~ 
10 weeks of training and again after the entire training program.  These repeat tests will 
include blood pressure, strength, power, muscle volume and body composition.  Other 
tests will be repeated only after the entire training program. 

I understand that the blood draw will require providing about 2 to 3 tablespoons of 
blood.  I understand that there is a risk of bruising, pain and, in rare cases, infection or 
fainting as a result of blood sampling.  However, these risks to me will be minimized by 
allowing only qualified people to draw my blood.  A portion of this blood sample will be 
sent to the University of Pittsburgh to analyze my DNA.  I understand that the remainder 
will be stored at the University of Maryland for later analysis of my blood sugar, the 
hormone that regulates my blood sugar (insulin), blood fats, and other blood proteins.  I 
understand that a portion of this sample may also be used for potential future studies, but 
only as such studies examine strength, body composition (i.e., fat, muscle & bone), 
metabolism of blood sugar, and blood pressure.  I understand that I may contact the 
principal investigator at any future point in time to request that any stored blood sample 
be destroyed immediately. 
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I understand that while I am lying on a padded table, my leg muscle and fat mass 
will be measured by computed tomography (CT).  The CT scan will be performed at the 
Washington Adventist Hospital.  My percent body fat and bone mineral density 
measurements will be performed at the United States Department of Agriculture in 
Beltsville, Maryland by dual-energy x-ray absorptiometry (DXA).  This will require my 
lying still on a padded exam table wearing metal-free clothing for about 10 minutes at a 
time, totaling less than 30 total minutes for the entire procedure.  

I understand that there will be a total radiation dose of approximately 1 Rem to the 
whole body (effective dose equivalent) from each CT scan.  This amount is well below 
the maximal annual radiation dose (5 Rems) allowed for exposure in the workplace.  The 
body composition and bone density testing completed by DXA involves a small radiation 
exposure.  The radiation exposure I will receive from DXA is equal to an exposure of less 
than 50 millirems to the whole body.  Naturally occurring radiation (cosmic radiation, 
radon, etc.) produces whole body radiation of about 300 millirems per year.  Therefore, 
the total dose of radiation exposure due to the DXA measurement is minimal and the 
combined dose of DXA and CT is considered low.  The major risk from high radiation 
exposure is passing on damaged genes (genetic mutations) to offspring. Consequently, 
this risk is typically of less concern to those who are beyond childbearing age.

I understand that strength and power assessments will be performed on machines that 
measure how much force and how fast I can exert force through a typical range of knee 
extension motion.  Strength testing will also be performed on the same exercise machines 
used for training by measuring the maximal amount of force that I can move through the 
full range of an exercise. During each strength training session I will be asked to exercise 
on machines which offer resistance against extending and flexing my arms, legs, and 
trunk region for approximately 40 minutes or less a day, three times a week for up to six 
months.  I understand that I may experience some temporary muscle soreness as a result 
of the testing sessions. There is also a risk of muscle or skeletal injury from strength and 
power testing, as well as from strength training. The investigators of this study will use 
procedures designed to minimize this risk.

I understand that I will be asked to complete some tasks to measure my ability to 
carry out normal daily activities.  These tasks include rising from a chair, short brisk 
walks and climbing a flight of stairs.  Any risk of injury during the completion of these 
tasks will be minimized by having all sessions supervised by an exercise physiologist 
qualified to direct this type of testing and wearing a safety harness during the short brisk 
walks and climbing a flight of stairs.  

I understand that it is also possible that heart or blood vessel problems could arise 
during my participation in the testing or training involved in this study.  Although 
unusual, it is possible that these problems could lead to a heart attack or even death.  
Therefore, prior evaluation and permission from my physician will be required to 
participate in this study.  I also understand that it is possible that these risks will not be 
eliminated completely, even with a medical evaluation prior to participation in the study.  
However, we believe the risk of harm from study participation is small and that the 
benefits of the study will likely outweigh any probable risks.

I understand that this study is not designed to help me personally, but may help the 
investigators better understand who is likely to be most and least susceptible to losing 
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strength, power, and muscle mass with advanced age and who is most and least likely to 
benefit from strength training.  

I understand that my decision of whether or not to participate in this study is 
voluntary.  I understand that I am free to ask questions about this study before I decide 
whether or not to  participate in this study.  I understand that if I consent to participate in 
the study, I am free to withdraw from participation at any time without penalty or 
coercion, or without any requirement that I provide an explanation to anyone of my 
decision to withdraw.  In addition, I understand that refusal to participate will not involve 
a penalty or loss of benefit to which a volunteer would ordinarily be entitled at that time.  
I understand that all information collected in this study is confidential.  For my 
participation in the study I will receive information after the study is completed about my 
blood pressure, blood test results, bone mineral density, body composition, and functional 
ability, free of charge. However, I understand that I will not receive any financial 
compensation in exchange for my participation in this study.

In the event of physical injury resulting from participation in this study, upon my 
consent, emergency treatment will be available at the medical center of Washington 
Adventist Hospital with the understanding that any injury that requires medical attention 
becomes my financial responsibility.  I understand that the University of Maryland at 
College Park will not provide any medical or hospitalization insurance coverage for 
participants in this research study, nor will they provide compensation for any injury 
sustained as a result of this research study, except as required by law.

I understand that I can discuss this research study at any time with the principal 
investigator, Dr. Ben Hurley at (301) 405-2486 or with the study coordinator, Matt 
Delmonico, at (301) 405-2569. 

I have read and understand the above information and have been given an adequate 
opportunity to ask the investigators any questions I have about the study.  My questions, 
if any, have been answered by the investigators to my satisfaction.  By my signature I am 
indicating my decision to consent to participate voluntarily in this study.

Principal investigator: Ben Hurley, Ph.D., Dept of Kinesiology, HLHP Building, 
University of Maryland, College Park, MD 20742-2611, Ph: (301) 405-2486.

Printed Name of Subject___________________________

Signature of Subject__________________________  Date_____________

Contact information of Institutional Review Board:  If you have questions about your 
rights as a research subject or wish to report a research-related injury, please contact:  
Institutional Review Board Office, University of Maryland, College Park, MD  20742; e-
mail, irb@deans.umd.edu; telephone, 301-405-4212
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1RM testing form

University of Maryland / National Institute on Aging
GUSTO

Symptom-limited Baseline Knee Extension 1-RM

Examiners Name________________________
Name_________________________________ Date________________________

Time _________________________________ Location_____________________  

Body weight_____________    Age_______      Predicted 1-RM______________      

Seat_____ Leg_____ Blood Pressure___________        Right leg / Left leg

Resistance  P/D scale        RPE scale
Rest ___-----___          ______________________            ________

Set 1 ___0_____          ______________________        ________

Set 2 _________          ______________________              ________

Set 3 _________          ______________________              ________

Set 4 _________               ______________________        ________

Set 5 _________          ______________________        ________

Set 6 _________          ______________________        ________

Set 7 _________          ______________________        ________

Set 8 _________          ______________________        ________

Set 9 _________          ______________________        ________

Set 10 _________          ______________________        ________

Set 11  _________          ______________________        ________

Set 12 _________          ______________________        ________

    Most severe P/D:  ______  Subject’s initials:  _______

Post BP____________ 3 min. post BP___________           Valid Invalid

If invalid, please explain: ___________________________________________________
________________________________________________________________________

Arms across chest         _____
Seat Belt          _____
Remember to breathe    _____
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Power testing form

Name _______________________________  Date ____________________
Tester _______________________________  Time ____________________  

Baseline: Power Test #1

Resting BP: ___/___mmHg   

Seat Position:____ 1-RM R:_____      Dominant Leg:  R  L Order of Testing:  __R  __L
1-RM L :_____

30% I-RM R____Practice P/D:_____________ 30% I-RM L____ Practice P/D:_______________

% 
1-
RM

Right
Resistance

Test 
#

P/D & 
Locatio
n
(0-6)

Imme
d
dissi
p
(Y/N)

Left
Resistance

Test 
#

P/D & 
Location
(0-6)

Imme
d
dissip
(Y/N)

File 
Name
Initials 
number 
P1 %1-
RM.txt

50
50
50
60
60
60
70
70
70

____1P
_506070
scan.txt
____1P
_506070
graf.txt

Immediate BP: ___/___mmHg Constant Reminders:  Back against seat
   Look straight ahead

3 min BP: ___/___mmHg    Breathe Normally

General Comments:________________________________________________
________________________________________________________________

Test Comment
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Sample figure of MatLab power curve
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