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squarefree, then the roots of Sn form a system of fundamental units for its splitting
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Lecacheux [8], and later Washington [16], discovered a second one-parameter family
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squarefree, the roots of the polynomial form a system of fundamental units. Kishi [7]

found a third such family. In the following, we show that there are many, many more

families of cubics with this property. We generalize the model of Washington [16],

explicitly exhibit new families of cyclic cubic fields, and interpret all known and new

families as curves on the elliptic surface X(3).
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Chapter 1: Introduction

In [13], Shanks considered what he termed the “simplest cubic fields,” defined

as the splitting fields of the polynomials

Sn = X3 + (n+ 3)X2 + nX − 1. (1.1)

In particular, he showed that if the square root of the polynomial discriminant is

squarefree, then the roots of Sn form a system of fundamental units for its splitting

field. The analysis of this family was extended by Lettl [9] and Washington [15].

Lecacheux [8], and later Washington [16], discovered a second one-parameter family

with a similar property: if a certain specified chunk of the polynomial discriminant is

squarefree, the roots of the polynomial form a system of fundamental units. Kishi [7]

found a third such family.

It is the goal of this work to show that there are many, many more families of

cubics with this property. In the first part of the work, we generalize the model of

Washington [16], show that all known families fit into our framework, and explicitly

exhibit new families of cyclic cubic fields. In the second part, we interpret families

both known and new as divisors on the elliptic surface X(3) and compute their

Néron-Severi classes.
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Chapter 2: Families of Cyclic Cubic Fields

2.1 Introduction

Shanks [13] compares his “simplest cubic fields,” defined by

Sn = X3 + (n+ 3)X2 + nX − 1, n ∈ Z,

to the quadratic fields generated by

Qn = X2 − nX − 1.

The polynomial discriminant of Qn is D = n2 + 4; the larger root of Qn is

ε =

√
D + n

2
.

By construction ε is a unit in Q[
√
D]. If D is squarefree, ε in fact generates the group

of units. Since ε is so concrete, explicit analysis of the regulator – and therefore of

the class number – is feasible for these fields. The generalization of Qn for real

quadratic fields is given by Degert [5]: Q[
√
D] is said to be of Richaud-Degert type

if

D = n2 + r,−n < r ≤ n, and r|4n. (2.1)

(That is, Qn are the “simplest quadratic fields.”) The study of the class number 1

problem is complete for the quadratic fields of Richaud-Degert type assuming the
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Generalized Riemann Hypothesis [11].

A reasonable generalization of Richaud-Degert type to cyclic cubic fields gen-

erated by

X3 + aX2 + λX − 1

should involve some sort of relation between a and λ; imposing such a relation

should allow us to conclude that two of the roots will generate the unit group. In

the following, we present such a relation.

2.2 The Families

Let f(n) and g(n) be polynomials with integral coefficients, and assume that

the following condition holds:

λ =
f 3 + g3 + 1

fg
is a polynomial with integral coefficients. (2.2)

Examples will be given in Section 2.5. For now we remark only that this condition

implies that f |(g3 + 1) and g|(f 3 + 1); in particular, f and g have no common

factors. If Condition 2.2 is satisfied, the pair (f, g) determines a one-parameter

family of polynomials as follows:

Pf,g(X) = X3 + a(n)X2 + λ(n)X − 1, where

a = 3(f 2 + g2 − fg)− λ(f + g).

Note that Pf,g is symmetric in f and g, so we’ll assume that deg f ≤ deg g. If

this inequality is strict, then deg λ < deg a. Together with the rational root theorem,

this implies that Pf,g is irreducible for all but a small finite list of n ∈ Z. For the
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rest of this chapter, we will make the standing assumptions that deg f < deg g and

then fix an integer n for which Pf,g is irreducible. This is practical for theoretical

purposes, though we note that the case where both f and g are constant is also of

potential interest.

The discriminant of Pf,g is

DP = (f − g)2(3a+ λ2)2 6= 0,

so Pf,g determines a cyclic cubic field which we denote Kf,g (or sometimes just K).

Thus Pf,g has three real roots which we denote θ1, θ2, θ3. Since the constant term of

Pf,g is a unit in Z, these roots are units in the ring of integers OKf,g
.

Lemma 2.2.1. The Z3 action of the Galois group on the roots of Pf,g is given by

G(θ) =
fθ − 1

(f 2 + g2 − fg)θ − g
.

Proof. Assume P (θ) = 0. Since 1, θ, and θ2 are linearly independent over Q, we have

G(θ) 6= θ. A messy but straightforward calculation shows that P (G(θ)) = 0.

Condition 2.2 and Lemma 2.2.1 might seem a bit miraculous (or at least deeply

unmotivated). How could we have guessed that Condition 2.2 would lead to a cyclic

cubic whose roots are units in OK if we didn’t already know that it did? It’s possible

in retrospect to intuit this from the work of Kishi [7], but we originally discovered

it using the language of elliptic surfaces as follows.

If X3+aX2+λX−1 generates a cyclic cubic field, its discriminant is a square:

that is, there exists b ∈ Q such that

b2 = 4a3 + λ2a2 − 18λa− 4λ3 − 27. (2.3)
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If we fix λ ∈ Q, Equation 2.3 defines an elliptic curve on which (a, b) is a rational

point. Treating λ as a parameter in P 1(C) gives the equation of an elliptic surface

W . In homogeneous coordinates, W is

b2c = 4a3 + λ2a2c− 18λac2 − (4λ3 + 27)c3.

This surface is birationally equivalent to X(3), which is described homogeneously

as

x3 + y3 + z3 = λxyz.

Explicitly, the map1 from the homogeneous form of W to X(3) is given by
x

y

z

 =


−λ 1 −9

−λ −1 −9

6 0 2λ2




a

b

c

 . (2.4)

The inverse map from X(3) to W is given by
a

b

c

 =


−λ2 −λ2 −9

λ3 − 27 −λ3 + 27 0

3 3 λ




x

y

z

 . (2.5)

The coordinates of Shanks’s simplest cubics Sn (described by Equation 1.1) on

W are [a : b : c; λ] = [n+3 : n2+3n+9 : 1; n]. This is sent by the above map to the

constant section [x : y : z; λ] = [0 : −1 : 1; n] on X(3). We can do the same with

the family of Lecacheux [8] (presented here in the form given by Washington [16]):

Ln = X3 − (n3 − 2n2 + 3n− 3)X2 − n2X − 1.

1The observation that W is a model for X(3) is contained in unpublished notes of Washington.
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The W coordinates of Ln are

[a : b : c; λ] = [−n3 + 2n2 − 3n+ 3 : (n− 1)(n2 + 3)(n2 − 3n+ 3) : 1; −n2],

which are considerably simpler on X(3):

[x : y : z; λ] = [−1 : −n : 1; −n2].

Kishi’s [7] family Kn also takes a simple form on X(3):

[x : y : z; λ] = [−n : −n2 − n− 1 : 1; −n3 − 2n2 − 3n− 3].

The key observation here is that on X(3), each of Sn, Ln, and Kn are of the form

[x : y : z; λ] = [f(n) : g(n) : 1; λ] for some polynomials f and g. Further, on X(3)

we can solve explicitly for λ:

λ =
f 3 + g3 + 1

fg
.

Condition 2.2 is exactly what we need to reverse this process. In this language,

when f, g, and λ are polynomials with integral coefficients, [f(t) : g(t) : 1; λ]

determines an algebraic curve on X(3). Translating back to Weierstrass form gives

a family of integral points [a : b : 1; λ]: that is, it gives a family of polynomials

Pf,g = X3 + aX2 + λX − 1 with integral coefficients and square discriminants.

For a general X3 + aX2 + λX − 1 generating a cyclic cubic field, the Galois

group is generated by the fractional linear transformation

G =

 f −h

(f 2 + g2 − fg)/h −g
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for some integers f, g, h, since these represent all elements G ∈ PGL2(Q) for which

G3 = I. Conversely, if we fix f, g, h with fgh 6= 0, we can reconstruct

Pf/h,g/h = X3 +
3(f 2 + g2 − fg)− λh(f + g)

h2
X2 +

f 3 + g3 + h3

fgh
X − 1;

that is,

f 3 + g3 + h3 = λfgh.

This shows that the equivalence of W with X(3) is actually a consequence of the

structure of the Galois action. This also shows that, unless h = 1 and Condition 2.2

is satisfied, there’s no guarantee that the roots of the associated polynomial will be

algebraic integers.

2.3 The Discriminant

In this section we analyze the discriminant of Kf,g. A prime number p 6= 3

contributes a factor of exactly p2 to the discriminant if and only if p ramifies (and

therefore ramifies tamely) in Kf,g. If 3 ramifies, it contributes a factor of exactly 34.

The only primes that can ramify are those that divide the polynomial discriminant

of Pf,g: that is, those dividing

√
DP = (f − g)(3a+ λ2).
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In fact, the discriminant factors further:

√
DP = (f − g)ABCf−2g−2, where

A = f 2 + g2 − f − g + 1,

B = (f + 1)2 + g2 − (f + 1)g, and

C = (g + 1)2 + f 2 − (g + 1)f.

It’s mostly possible to analyze the contributions of each of these factors separately,

following Washington [16] or Kishi [7]. Unfortunately this approach runs into prob-

lems in the general setting, especially for primes that divide both fg and
√
DP . The

core issue is that while Condition 2.2 implies that f 2g2|ABC, we have very little

control over in which of A,B,C this divisibility happens.

Q

Q(ω) Kf,g

Q(ω, 3
√
α)

Instead of the direct approach we do the following.

Let ω be a primitive cube root of unity. Then Pf,g deter-

mines a Kummer extension of Q(ω): that is, an extension

of the form Q(ω, 3
√
α) for some α ∈ Q(ω). From there we

will descend to Kf,g.

A Kummer generator α0 is constructed as follows:

let θ be a root of Pf,g, so the other two roots are G(θ)

and G2(θ). Then

α0 = (θ + ωG(θ) + ω2G2(θ))3.

This gives a massive rational function in θ, f, and g that we can reduce using the

fact that θ satisfies Pf,g(θ) = 0. When we reduce the numerator and denominator to

degree 2 functions of θ, the vast majority of the terms cancel and leave an expression
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in f and g. We have that

3a+ λ2 = ββ, where β = λ− 3f − 3ω(f − g),

and a long and painful calculation (made possible by PARI/GP [14]) shows that

α0 = (f + ωg)3(3a+ λ2)β = (f + ωg)3β2β.

Since (f + ωg)3 is a perfect cube in Q(ω), we choose the Kummer generator

α = α0(f + ωg)−3 = β2β.

If p - 3 is any prime in Q(ω), p ramifies in Q(ω, 3
√
α) if and only if vp(α) is not

a multiple of 3: that is, if and only if p divides α to a non-cube power. Thus we

need to consider only those p dividing β or β. Together with the knowledge of the

decomposition of rational primes in Q(ω), we can compute D(Kf,g). We begin with

the following special case.

Theorem 2.3.1. Let Kf,g be as in Section 2.2. If 3a+ λ2 is squarefree, then

D(Kf,g) = (3a+ λ2)2.

Proof. The prime 3 is special, so we deal with it first. If 3|(3a+ λ2), then 3|λ. The

definition of a shows that v3(a) ≥ 1, so v3(3a+λ2) ≥ 2 and 3a+λ2 is not squarefree.

If 3 - 3a + λ2 and 3 ramifies in Kf,g, then f ≡ g mod 3 since D(Kf,g) divides DP .

If f ≡ 0, then (f, g) does not satisfy Condition 2.2. If f ≡ 1, then 3|(3a+λ2) which

we already assumed it did not. If f ≡ 2, then

Pf,g ≡ X3 +X2 −X − 1 ≡ (X − 1)(X + 1)2 mod 3,
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so the roots are not all congruent mod the prime above 3 and therefore cannot

possibly be fixed by the Galois action. So 3 is unramified and contributes nothing

to D(Kf,g).

Since |β|2 = 3a+λ2, a rational prime p 6= 3 ramifies in Kf,g only if p|(3a+λ2).

In this case, there is a p above p for which p|β. Since p is unramified in Q(ω) and

3a + λ2 is squarefree, vp(β) = 1, vp(β) = 0, and vp(α) = 2. Therefore p ramifies in

Kf,g.

Because α is so explicit, we can do much better. The prime p = 3 is badly

behaved, but it can be dealt with directly (as in [16] or [7]) when we’re actually

given a fixed family (f, g). If a prime p 6= 3 ramifies in Kf,g, it divides 3a + λ2. If

p ≡ 2 mod 3, p is inert in Q(ω). Let pm||β; then pm||β, so p3m is a removable cube

in α. If p ≡ 1 mod 3, p splits as pp in Q(ω); we choose p so that p|β. From here

we have two cases: either p|β or it does not. If p - β and m is the exact power of

p dividing 3a+ λ2, then the p-part of α equals p2mpm, which is a removable cube if

and only if 3|m. This leaves us to deal with the case where p ≡ 1 mod 3 and p|β.

But in this case the rational prime p = pp divides β = λ − 3f − 3ω(f − g). Since

{1, ω} is a Z-basis for Z[ω], we must have p|(f − g). Since f and g have no common

factors, p - f . Substituting f ≡ g in 3a+ λ2 implies

(f 3 − 1)2

f 4
≡ 0 mod p,

so we conclude that p|(f 3 − 1) and p|(g3 − 1), so p| gcd (f 3 − 1, g3 − 1). If the

polynomial resultant of f 3 − 1 and g3 − 1 is nonzero (which seems always to be

the case in examples), this last condition is satisfied only for the finite collection of
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p|res(f 3−1, g3−1). Therefore, for a family given by polynomials f, g, there are only

finitely many rational primes p with p|β, and these must be treated individually.

The remaining primes ramify if and only if they divide 3a+λ2 to a non-cube power.

An example using this discussion to compute D(Kf,g) exactly for a specific family

will be given in Section 2.5.

2.4 The Regulator and Fundamental Units

In this section, we temporarily drop the standing assumption that we have

fixed an integer n and once again treat f and g as polynomials for which deg f <

deg g. This implies

deg λ = 2 deg g − deg f and

deg a = 3 deg g − deg f, so

deg (3a+ λ2) = 4 deg g − 2 deg f.

Since deg a > deg λ, we have

Pf,g(−a− 1) = −a2 + o(a2) and

Pf,g(−a+ 1) = a2 + o(a2).
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If n is sufficiently large we can choose θ1 to be a root of Pf,g for which −a − 1 <

θ1 < −a+ 1. Since we know the Galois action, we get bounds on all the roots:

log |θ1| ≈ log a(n) ≈ deg a log n = (3 deg g − deg f) log n,

log |θ2| = log
fθ1 − 1

(f 2 + g2 − fg)θ1 − g
≈ (deg f − 2 deg g) log n,

log |θ3| = − log |θ1||θ2| ≈ − deg g log n.

(These approximations are accurate to o(log n).) The polynomial regulator RP is

RP =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
log |θ1| log |θ2|

log |θ2| log |θ3|

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ ≈ (7 deg2 g − 5 deg g deg f + log2 f) log2 n.

Using a result of Cusick [4], we can bound RK , the regulator of OKf,g
, in terms

of the discriminant D(Kf,g). If 3a+ λ2 is squarefree, we can apply Theorem 2.3.1:

RK ≥
1

16
log2 (D(Kf,g)/4) ≈ (4 deg2 g − 4 deg g deg f + deg2 f) log2 n. (2.6)

Take EK to be the group of units of Kf,g and EP to be the subgroup of EK generated

by {±1, θ1, θ2} (and θ3 = (θ1θ2)
−1). For ε > 0 and sufficiently large n,

[EK : EP ] =
RP

RK

<
7 deg2 g − 5 deg g deg f + deg2 f

4 deg2 g − 4 deg g deg f + deg2 f
+ ε.

Set deg f = ρ deg g for 0 ≤ ρ < 1; then for sufficiently small ε,

[EK : EP ] <
7− 5ρ+ ρ2

4− 4ρ+ ρ2
+ ε < 3,

so [EK : EP ] = 1 or 2. But the index must be a norm from Z[ω] by [16, p. 412], so

it can’t be 2. We have proved:

Theorem 2.4.1. Let Kf,g be as in Section 2.2. Assume that deg f < deg g, that

3a+ λ2 is squarefree, and that n is sufficiently large. Then {θ1, θ2} forms a system

of fundamental units for Kf,g.
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2.5 Examples

The machinery of the previous sections applies to all published families of

cubic polynomials whose roots form systems of fundamental units. The data of

these families are summarized in the following table.

Table 2.1: Previously-known one-parameter families.

f g λ 3a+ λ2 Ref.

Sn 0 −1 n n2 + 3n+ 9 [13], [15]

Ln −1 −n −n2 (n2 + 3)(n2 − 3n+ 3) [8], [16]

Kn −n −n2 − n− 1 −n3 − 2n2 − 3n− 3 n6 + o(n6) [7]

K ′n −n n3 − 1 −n5 + 2n2 n10 + o(n10) [7]

Shanks’s simplest cubic fields Sn are degenerate in multiple ways. Condition

2.2 gives 0/0, but if we define λ to be any polynomial, the machinery works. We

choose λ = n since any other choice is a subparametrization of this one. The previous

section’s bound for the index [EK : EP ] also gives 0/0, but (excellent) bounds for

the regulator of Sn are given in [13].

The above table suggests that there might be a family with f = −n2, and in

fact there is. Take (f, g) = (−n2, n3 − 1). Then λ = n3 − 4n and Pf,g is

Bn = X3 + (n7 + 2n6 + 3n5 − n4 − 3n3 − 3n2 + 3n+ 3)X2 + (−n4 + 3n)X − 1.

Since deg f and deg g are coprime, Bn is not simply a subparametrization of Sn, Ln,

or Kn. The discriminant is the square of

√
DP = (n3 + n2 − 1)(n4 − 3n+ 3)(n4 + 3n3 + 6n2 + 6n+ 3).
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The first factor is g − f , and the product of the last two is 3a + λ2. By Theorem

2.3.1, whenever 3a+ λ2 is squarefree,

D(Bn) = (n4 − 3n+ 3)2(n4 + 3n3 + 6n2 + 6n+ 3)2.

For 0 < n < 104, it turns out that 3a + λ2 is squarefree 14.8% of the time. This is

perfectly fine, but we can do better. Following the discussion after Theorem 2.3.1,

we have an algorithm that completely determines D(Bn). Write 3a+ λ2 = bc3 with

b cubefree and take p|(3a + λ2). If p = 3k + 2, then p is unramified. For primes of

the form p = 3k+ 1, we need to take special care only if p|res(f 3− 1, g3− 1) = −53,

which never happens. Therefore p = 3k + 1 ramifies iff p|b.

We can also deal with p = 3 (though admittedly in a more ad hoc manner).

Straightforward calculations show that

3|DP ⇐⇒ v3(3a+ λ2) > 0 ⇐⇒ 3|n ⇐⇒ v3(3a+ λ2) = 2 ⇐⇒ 3|b.

Thus 3 ramifies only if 3|b. Conversely, writing out B3k(X+1) shows that it satisfies

Eisenstein’s criterion, so 3 ramifies if 3|b. We have shown the following.

Theorem 2.5.1. Write (n4−3n+3)(n4 +3n3 +6n2 +6n+3) = bc3 with b cubefree.

Then

D(Bn) = 81δ
∏

p|b,p=3k+1

p2,

where δ = 1 if 3|b and δ = 0 otherwise.

To bound the regulator, we have roots of order approximately n7, n−4, and n−3.

Numerical calculation shows that we get an index of less than 3 whenever |n| > 4,

and computing the regulators of K(Bn) for |n| ≤ 4 individually by computer shows
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that we need only restrict to n 6= −1. (The roots of B−1 = X3 − 3X2 − 4X − 1

generate an index 3 subgroup of the full unit group. Since 3a+λ2 = 7 is squarefree,

the restriction is in fact necessary.) We have shown the following.

Theorem 2.5.2. Let n ∈ Z with n 6= −1, and suppose 3a+ λ2 is squarefree. Then

{±1, θ1, θ2} generate the unit group of the ring of integers of K(Bn).

For this theorem to be useful, we’d like to know that it gives units other than

those produced by Sn, Ln, or Kn. Consider B2 = X3 + 309X2 − 10X − 1. The

regulator of K(B2) is approximately 24.733. Equation 2.6 tells us that we only need

to check the regulators of K(Ln) and K(Kn) for |n| < 10. Shanks [13] computes that

the regulator of K(Sn) is log2 |n|+ o(1), which is greater than K(B2) for |n| > 150.

Checking the regulators for small n in PARI/GP shows that the regulator of the

units produced by B2 is not a regulator produced by Sn, Ln, or Kn. Therefore, these

units are new. (We are not claiming that the field K(B2) is necessarily distinct from

K(Sn), K(Ln), and K(Kn) for all n, just that the units are new. It is possible that

K(B2) is somehow isomorphic to one of these fields, but that the units produced

there are not fundamental.)

At this point one might suspect that these families are abundant and go

hunting for (f, g) with f = −n3. As we’ve said before, Condition 2.2 implies

that g|(f 3 + 1). This limits the search considerably: a given f determines a fi-

nite list of possible g. For f = −n3, the only potential candidates for g are

±(n − 1),±(n2 + n + 1), and ±(n6 + n3 + 1). Of these, the only pair satisfying

Condition 2.2 is (−n3,−n6 − n3 − 1) = Kn3 . Actually, an argument using the fac-
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Figure 2.1: Integral points (x, y) on X(3) satisfying Condition 2.2. Note the sym-

metry about y = x. Points on Lecacheux’s family Ln are suppressed. The purple

parabolas are Kishi’s family Kn; the green twisted cubics are the family Bn.

16



torization of n3k ± 1 shows that this is always the case: if k > 2, any family of the

form (±nk, g) is a subparametrization of the families Kn or K ′n = (−n, n3 − 1).

This raises the question of whether all families might be subparametrizations

of some finite list. This isn’t right either:

Theorem 2.5.3. Assume (f, g) satisfy Condition 2.2 and f 6= 0. Then (g, k), where

k = (g3 +1)/f , also satisfy Condition 2.2. If deg f and deg g are coprime, then deg g

and deg k are coprime.

Proof. A calculation shows that

g3 + k3 + 1

gk
=
f 3 + (g3 + 1)2

f 2g
.

Since f |(g3 + 1), g|(f 3 + 1), and f is coprime to g, we have f 2g|(f 3 + (g3 + 1)2). The

second part of the theorem follows from the fact that deg k = 3 deg g − deg f .

We can apply Theorem 2.5.3 to Ln, Kn, or Bn repeatedly to produce any

number of new families. Since the construction is asymmetric in f and g, we can also

run it backwards by applying it to (g, f). For example, applying the construction

forwards iteratively to Bn (more precisely, to (f, g) = (−n2, n3 − 1)) produces

(g, k1) = (n3 − 1,−n7 + 3n4 − 3n),

(k1, k2) = (−n7 + 3n4 − 3n,−n18 + o(n18)),

(k2, k3) = (−n18 + o(n18), n47 + o(n47), ...

(Incidentally the ratio deg g/ deg f approaches 3+
√
5

2
= φ + 1 = φ2 as we iterate;

this is true in general and a consequence of the degree calculation.) Running Bn
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backwards gives B−n. Running Ln backwards gives Sn (which has f = 0, so we

stop there), while running it forwards gives K ′n and then new families. Running Kn

backwards gives the family corresponding to (−n, n− 1) and then Kn again, while

running it forwards gives new families. The families K ′n and K−n,n−1 are discussed

briefly in Kishi [7]; the rest, as far as I know, are all completely new. K−n,n−1 is

badly behaved; it has λ = 3 and always produces units of index 3 in the full unit

group. (This does not contradict Theorem 2.4.1 since deg f = deg g.) Note that we

claim only that the families themselves are new. I do not know whether these new

families all produce new units, or even whether they all generate distinct fields.

We might ask if all families of cyclic cubic fields are of the form Pf,g for the

right choice of (f, g). Here the answer is also negative. For instance, plotting the

pairs of (a, λ) for which the discriminant of X3 + aX2 + λX − 1 is a square reveals

(among other things) a parabola in the second quadrant. Computation shows that

this is the family X3 + (−n2 + 2n − 6)X2 + (n2 + 5)X − 1. The Galois group is

generated by the fractional linear transformation n2 − n+ 1 −(n2 + n+ 1)

n2 − 3n+ 3 −2

 ,
which cannot possibly come from f, g ∈ Z[n]. In the language of elliptic surfaces,

this is the family [n2−n+1 : 2 : n2 +n+1; n2 +5] on the homogeneous coordinates

for X(3). As it happens, we know this family already. Begin with Sn, Shanks’

simplest cubic fields. If we square the roots (which are units) we get another family

S2
n, and that family is the one above.
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2.6 The Order Z[θ1, θ2]

The referee of the paper [2] asked if Theorem 2.4.1 could be strengthened to

the statement that {θ1, θ2} generate the unit group of the order Z[θ1, θ2] ⊃ Z[θ1]. In

fact, this is true:

Theorem 2.6.1. Assume (f, g) satisfy Condition 2.2, that deg f < deg g, and that

n is sufficiently large. Then {θ1, θ2} forms a system of fundamental units for the

order Z[θ1, θ2].

Note that, unlike Theorem 2.4.1, this theorem does not make any assumptions

on the discriminant of Z[θ1, θ2]. The core difference is that knowing the discriminant

of Kf,g requires knowing which primes ramify, whereas the discriminant of Z[θ1, θ2]

can be computed directly from the polynomial Pf,g.

The most technical part of the proof of Theorem 2.6.1 is the following:

Lemma 2.6.2. Assume (f, g) satisfy Condition 2.2. Then [Z[θ1, θ2] : Z[θ1]] =

|f(n)− g(n)|.

The proof of the lemma is at the end of this section. Assuming it for the

moment, we have

Corollary 2.6.3. The discriminant of Z[θ1, θ2] is (3a+ λ2)2.

Proof. The discriminant of Z[θ1] is the polynomial discriminant DP = (f −g)2(3a+

λ2)2. Since the ratio of order discriminants is the square of the index of the orders,

19



Lemma 2.6.2 implies that

D(Z[θ1, θ2]) =
D(Z[θ1])

[Z[θ1, θ2] : Z[θ1]]2
=

(f − g)2(3a+ λ2)2

(f − g)2
= (3a+ λ2)2.

The regulator-discriminant bounds of Cusick [4] apply to any order (maximal

or not). Therefore, by replacing Theorem 2.3.1 with Corollary 2.6.3 in Section 3,

Theorem 2.6.1 is proved.

If 3a+λ2 happens to be squarefree, then D(Kf,g) = D(Z[θ1, θ2]), so Z[θ1, θ2] =

OK . Thus Theorem 2.6.1 is a generalization of Theorem 2.4.1 – it shows that {θ1, θ2}

generates the group of units of some order, which may or may not be maximal.

Proof of Lemma 2.6.2. Denote by T1 the matrix that represents θ1 by its action

on the basis {1, θ1, θ21} – that is, the companion matrix for Pf,g in this basis:

T1 =


0 0 1

1 0 −λ

0 1 −a

 .

Since we know the Galois action G, we can apply G to T1 to obtain

T2 = G(T1) = (fT1 − I3)((f 2 + g2 − fg)T1 − gI3)−1.

The coefficients of the matrix T2 are predictably messy, but they explicitly represent

the action of θ2 in terms of the basis {1, θ1, θ21}. In particular, the first column of

T2 gives the coefficients of θ2 as a linear combination of {1, θ1, θ21}. Repeated use of
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Condition 2.2 eventually tells us that

(f − g)θ2 = A+Bθ1 + Cθ21, where (2.7)

A = −af − 2,

B = λ− fgλ2 + 3f 4 − 6gf 3 + 9g2f 2 − 6g3f + 3g4 + g,

C = f 2 + g2 − fg.

The explicit coefficients A,B,C are unenlightening, but all that matters for now is

their integrality. If p|(f − g), then C ≡ g2 mod p. But we already know that f − g

is coprime to g, so f − g is coprime to C. Therefore, if M is the lattice

M = Z + Zθ1 + Zθ21 + Zθ2,

then [M : Z[θ1]] = |f − g| as lattices. To conclude the lemma, we need to show that

M = Z[θ1, θ2]. That is, we need to show that {θ22, θ1θ2, θ21θ2, θ1θ22, θ21θ22} ⊂M .

Here’s the argument for θ22. When we write out (using PARI) the matrix T 2
2 ,

we see once again that the first column (which represents the action of θ22) becomes

integral after clearing a denominator of f − g, so (f − g)θ22 ∈ M . Unfortunately,

this only immediately tells us that (f − g)2|[M +Zθ22 : Z[θ1]], so we need to be more

careful. Write

θ22 =
1

f − g
[A′(f, g) +B′(f, g)θ1 + C ′(f, g)θ21],

where A′, B′, C ′ ∈ Z[f, g]. Since A′(f, g) ≡ A′(g, g) mod (f − g), we can write

θ22 = m+
1

f − g
[A′(g, g) +B′(g, g)θ1 + C ′(g, g)θ21]

for some m ∈M . Evaluating A′, B′, and C ′ at f = g and simplifying yields

θ22 −m =
g3 + 1

f − g
· [g2 − (g3 + 1)θ1 + gθ21].
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A similar calculation, starting with (2.7), tells us that

θ2 −m1 =
g

f − g
· [g2 − (g3 + 1)θ1 + gθ21]

for some m1 ∈M . Combining the previous two equations,

g(θ22 −m) = (g3 + 1)(θ2 −m1),

so gθ22 ∈M . Since (f−g)θ22 ∈M and g is coprime to f−g, we conclude that θ22 ∈M .

A similar argument works for each of the remaining generators of Z[θ1, θ2].
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Chapter 3: Calculations on X(3)

The goal of this chapter is to compute intersection data for families of curves

on the elliptic surface X(3). Each family described in Section 2.5 is a divisor on

the surface, and therefore an element of the Néron-Severi group of divisors modulo

algebraic equivalence. As such, understanding the various Néron-Severi classes gives

an understanding how the families relate on X(3). This chapter is intended to be

read somewhat independently of the previous one, so some objects and arrows will

be redefined as needed for readability.

3.1 The Néron-Severi Group

Our model is

µ(x3 + y3 + z3) = λxyz, (3.1)

where [x : y : z;λ : µ] ∈ P 2(C)× P 1(C) gives explicit coordinates for the fibration.

We immediately drop the µ and write our coordinates as [x : y : z;λ] on the surface

x3 + y3 + z3 = λxyz

with the understanding that λ = ∞ means that [µ : λ] = [0 : 1]. The standard

name for this projective surface is the Hesse pencil, and an elliptic curve in the
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form x3 + y3 + 1 = λxy is said to be in Hessian form. Schütt and Shioda [12]

survey general results on elliptic surfaces, Beauville [3] first classified semi-stable

elliptic surfaces with four singular fibers (including X(3)), and Artebani [1] surveys

the geometry of the Hesse pencil. In the following theorems, we summarize the

particular geometrical properties of X(3) needed to compute intersection data. As

a reminder, we fix a primitive cube root of unity ω = e2πi/3.

Theorem 3.1.1. The Hesse pencil (3.1) is a rational model for X(3), the compact-

ified modular curve of level 3. Said differently, the nonsingular fibers of the Hesse

pencil parametrize elliptic curves with a chosen basis for their 3-torsion.

Proof. This is classical; see, for example, Miranda and Persson [10].

We fix the following notation:

O = [−1 : 1 : 0;λ],

S = [0 : −1 : 1;λ],

N = [0 : −ω : 1;λ].

Each ofO, S, andN is a global section onX(3). In the language of intersection

theory, these are known as the horizontal divisors. We take O to be the origin of

the group law on X(3); explicit computations show that 〈S〉 ⊕ 〈N〉 ∼= Z3 ⊕ Z3. In

fact (see Artebani [1]) it turns out that this is the full Mordell-Weil group for X(3),

so we have the following 9 horizontal divisors:
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+ O S 2S

O [−1 : 1 : 0] [0 : −1 : 1] [−1 : 0 : 1]

N [−1 : ω : 0] [0 : −1 : ω] [−1 : 0 : ω]

2N [−1 : ω2 : 0] [0 : −1 : ω2] [−1 : 0 : ω2]

(3.2)

Although we do not need it, the following gives another characterization of

the global sections. (This would be useful for computing self-intersections.)

Theorem 3.1.2. The Hesse pencil has 9 base points given by the 9 global sections.

Proof. This follows the discussion in Example 3.2 of [12]: our model for X(3) is

exactly the cubic pencil formed from the homogeneous cubics x3 + y3 + z3 and xyz.

Explicitly, define a map P 2 → P 1 by [x : y : z] 7→ [x3 + y3 + z3 : xyz]. This map is

well-defined everywhere except when x3 + y3 + z3 = xyz = 0. Setting z = 0 gives

x3 = −y3; since [x : y : z] ∈ P 2, x 6= 0. When we deprojectivize by choosing x = 1

we get the singular points [1 : −1 : 0], [1 : −ω : 0], and [1 : −ω2 : 0]. The cases x = 0

and y = 0 follow by symmetry to give a total of 9 singular points. The Hesse pencil

is therefore the blowup of P 2 in these nine points.

Next, we analyze the vertical divisors – that is, the components of the singular

fibers on X(3).

Theorem 3.1.3. X(3) has exactly four singular fibers: λ = 3, 3ω, 3ω2,∞. Each

fiber has type I3 in Kodaira’s classification [12].
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Proof. When λ =∞, the Hesse pencil reduces to

0 = xyz.

This is a fiber of type I3 – that is, a triangle of pairwise transverse lines intersecting

at the sections O,S, and 2S.

Now assume λ ∈ C and the fiber x3 + y3 + z3 = λxyz is singular. Consider the

affine patch [x : y : 1], on which the singular fibers will be given by the simultaneous

vanishing of the partials. That is, we have

x3 + y3 + 1 = λxy,

3x2 = λy,

3y2 = λx.

Solving for λ gives λ3 = 27. Further, for each of these three values, the equation

defining the curve factors:

0 = x3 + y3 + z3 − 3xyz = (x+ y + z)(x+ ωy + ω2z)(x+ ω2y + ωz),

0 = x3 + y3 + z3 − 3ωxyz = (x+ y + ωz)(x+ ωy + z)(x+ ω2y + ω2z),

0 = x3 + y3 + z3 − 3ω2xyz = (x+ y + ω2z)(x+ ωy + ωz)(x+ ω2y + z).

As with λ =∞, each of these varieties is a triangle whose vertices are base points.

Again, for bookkeeping purposes, we give names to the twelve components of

the singular fibers:
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A3 λ = 3, x+ y + z = 0

B3 λ = 3, x+ ωy + ω2z = 0

C3 λ = 3, x+ ω2y + ωz = 0

A3ω λ = 3ω, x+ y + ωz = 0

B3ω λ = 3ω, x+ ωy + z = 0

C3ω λ = 3ω, x+ ω2y + ω2z = 0

A3ω2 λ = 3ω2, x+ y + ω2z = 0

B3ω2 λ = 3ω2, x+ ωy + ωz = 0

C3ω2 λ = 3ω2, x+ ω2y + z = 0

A∞ λ =∞, x = 0

B∞ λ =∞, y = 0

C∞ λ =∞, z = 0

(3.3)

We’re almost ready to compute intersections. The following theorem tells us

the work we need to do:

Theorem 3.1.4. The Néron-Severi lattice of X(3) has rank 10. It is generated as

a Z-module by the divisor classes of F , O, and any pair of lines in each of the four

singular fibers.

Proof. By Theorem 3.1.1, X(3) is a rational elliptic surface. Section 8 of Schütt and

Shioda [12] surveys results on the intersection theory of rational elliptic surfaces,

from which this theorem follows. The sum of divisors given by adding the three
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lines of a singular triangle is clearly algebraically equivalent to F , which explains

why the third line is redundant.

Corollary 3.1.5. Let D be a divisor on X(3). Then the Néron-Severi class of D,

written NS(D), is determined by the following table of intersections:

A3 B3 C3 A3ω B3ω C3ω A3ω2 B3ω2 C3ω2 A∞ B∞ C∞ O F

D − − − − − − − − − − − − − −

where each empty space is the intersection of D with the fiber component in its

column.

As written, NS(D) is a vector in Z14, but Theorem 2.4 tells us that there are

four redundancies:

D.F = D.A3 +D.B3 +D.C3

= D.A3ω +D.B3ω +D.C3ω

= D.A3ω2 +D.B3ω2 +D.C3ω2

= D.A∞ +D.B∞ +D.C∞.

This is useful for checking for errors. Rather than making arbitrary choices, we’ll

give the full vector and understand that the Néron-Severi lattice is a 10-dimensional

subspace of Z14.

Finally, each family of cyclic cubic fields defined in the previous chapter deter-

mines and is determined by a divisor on X(3). First, we have the following named
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families, each of which have roots that give the full unit group under mild conditions.

S = [0 : −1 : 1; n]

L = [−1 : −n : 1; −n2]

K = [−n : −n2 − n− 1 : 1; −n3 − 2n2 − 3n− 3]

B = [−n2 : n3 − 1 : 1; −n4 + 3n]

Given a family on F whose associated cubic polynomial is (x−θ1)(x−θ2)(x−

θ3), we can generate infinitely many curves on X(3) by setting F k to be the family

associated with (x−θk1)(x−θk2)(x−θk3). The roots of F multiply to 1, so this process

does in fact generate a family. By construction these are new curves that generate

finite-index subgroups of the unit group of F . Unlike F , they’re not guaranteed

to be cut out by polynomials on the affine patch z = 1. Here are some of these,

explicitly:

S2 = [n2 + 3n+ 3 : 2 : n2 + n+ 1;n2 + 2n+ 6]

S3 = [9 : −n4 − 6n3 − 18n2 − 27n− 18 : n4 + 3n3 + 9n2 + 9n+ 9;n3 + 3n2 + 9n+ 3]

L2 = [n2 − n+ 3 : n4 − n3 + 3n2 − 2n+ 2 : n2 + n+ 1;n4 − 2n3 + 4n2 − 6n+ 6].

(Not surprisingly, the coefficients grow quickly and are pretty unenlightening.)

We also have the trick that given a family [f : g : 1] on X(3), we get another

family [g : (g3 + 1)/f : 1]. This gives rise to the following families:

L′ = [−n : n3 − 1 : 1;−n5 + 2n2]

K ′ = [−n2 − n− 1 : n5 + 3n4 + 6n3 + 7n2 + 6n+ 3 : 1;−n8 + ...]
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With all this in place, we’re ready to compute intersections. We illustrate the

process with the following extended calculation:

Theorem 3.1.6. NS(K) is determined by the following data:

A3 B3 C3 A3ω B3ω C3ω A3ω2 B3ω2 C3ω2 A∞ B∞ C∞ O F

K 1 1 1 1 2 0 1 0 2 2 0 1 0 3

Proof. In homogeneous coordinates on X(3),

K = [x : y : z;λ] = [−n : −n2 − n− 1 : 1; −n3 − 2n2 − 3n− 3].

Because deg λ = 3, a fiber in general position intersects K transversely at 3 different

points, so K.F = 3. Also, K can only possibly intersect O when n = ∞, and

evaluating at infinity (more on this in a bit) gives [0 : −1 : 0] 6= [−1 : 1 : 0], so

K.O = 0.

Near λ = 3, X(3) is a surface inside C3 with local coordinates (x/z, y/z, λ).

The λ-coordinate for K is −n3− 2n2− 3n− 3; λ− 3 = (n+ 2)(n+
√
−3)(n−

√
−3).

At n = −2, K = [2 : −3 : 1; 3]. This point is on the fiber component x+ y + z = 0

and is not on the other two, so the contribution made by the intersection of K with

the fiber λ = 3 at n = −2 is [k, 0, 0] where k ≥ 1 is yet to be determined. Evaluating

at n = ±
√
−3 gives intersections with the other two fibers, so K.F = 3 implies that

we must have intersection data [1, 1, 1] at λ = 3.

This last step illustrates a general phenomenon: if λ−3 has no repeated roots,

K is not parallel to the surface λ = 3 (here thought of as living in affine complex
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3-space) at any of its intersections with the fiber. Since each of the fiber components

certainly is parallel to this surface, we must have that each point of intersection is

transverse and thus contributes exactly 1 to the total intersection number. This

seems to be a common phenomenon in practice and is quickly checked with the

resultant of λ− 3 and its derivative (that is, the discriminant of λ− 3). The same

is true of λ− 3ω and λ− 3ω2, neither of which have repeated roots.

We still have to check λ = ∞. Setting n = 1/t and homogenizing λ to

[λ : µ] gives local parameter µ = 1/λ = t3/(−3t3 − 3t2 − 2t − 1), which vanishes

to order 3 at t = 0. This means that we’ll actually need to worry about higher

tangencies. Near infinity, K = [−t : −t2 − t − 1 : t2; t3/(−3t3 − 3t2 − 2t − 1)].

At t = 0 this is [0 : 1 : 0; 0], so K intersects both the x- and z-axes. This

means that we don’t have a choice of coordinates for affine space: we must use

(x/y, z/y, µ) = (−t/(−t2 − t − 1), t2/(−t2 − t − 1), µ). In this system, the tangent

vector to K at t = 0 is (1, 0, 0). Since this is parallel to the x-axis and transverse

to the z-axis, we must have intersection data [k, 0, 1] for k > 1. Again, the total

intersection must be 3, so we conclude that k = 2. If we didn’t have this piece of

data, we could compute k directly by expanding the parameters in a Taylor series:

K = (t− t2 +O(t3),−t2 +O(t3),−t3 +O(t4)).
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Similar calculations yield the following intersection data:

Table 3.1: Intersection data for known families.

A3 B3 C3 A3ω B3ω C3ω A3ω2 B3ω2 C3ω2 A∞ B∞ C∞ O F

S 1 0 0 0 0 1 0 1 0 1 0 0 0 1

L 0 1 1 1 0 1 1 1 0 1 0 1 0 2

K 1 1 1 1 2 0 1 0 2 2 0 1 0 3

B 0 2 2 2 2 0 2 0 2 3 0 1 0 4

L′ 1 2 2 2 2 1 2 1 2 2 0 3 0 5

Some obvious symmetries appear in the table. This is a consequence of the

fact that none of our families involve complex coefficients:

Theorem 3.1.7. Let F be a divisor on X(3) defined over R. Then

F.A3ω = F.A3ω2

F.B3ω = F.C3ω2

F.C3ω = F.B3ω2

Proof. Each pair of fibers is permuted by complex conjugation.

Theorem 3.1.8. The families Sn generate a subgroup of rank at least 6 in the

Néron-Severi group of X(3).

Proof. The following table of NS(Sn) shows explicitly that the rank of their span

is at least 6.
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Figure 3.1: Successive powers of Shanks on the affine patch z = 1, graphed in red,

blue, orange, purple, black, and green. Note that (1, 0) is not a point on X(3) on

this affine patch: S2n meets the y-axis at λ =∞.

33



Table 3.2: Intersection data for powers of Shanks’s family.

A3 B3 C3 A3ω B3ω C3ω A3ω2 B3ω2 C3ω2 A∞ B∞ C∞ O F

S 1 0 0 0 0 1 0 1 0 1 0 0 0 1

S2 2 0 0 1 0 1 1 1 0 0 2 0 0 2

S3 1 1 1 3 0 0 3 0 0 3 0 0 0 3

S4 4 0 0 3 1 0 3 0 1 0 4 0 0 4

S5 5 0 0 4 1 0 4 0 1 5 0 0 0 5

S6 4 1 1 6 0 0 6 0 0 0 6 0 0 6

Conjecture. Based on our calculations for powers of Shanks’s family, we conjecture

the following general formula. This is only conjectural and the explicit algebraic

equivalencies implied by this formula is a topic of future research. If the conjecture

is true, one consequence will be that the powers of Shanks generate a subgroup of

the Néron-Severi group of rank exactly 6.

A3 B3 C3 A3ω B3ω C3ω A3ω2 B3ω2 C3ω2 O F

S3n 3n− 2 1 1 3n 0 0 3n 0 0 0 3n

S3n+1 3n+ 1 0 0 3n 1 0 3n 0 1 0 3n+ 1

S3n+2 3n+ 2 0 0 3n+ 1 0 1 3n+ 1 1 0 0 3n+ 2

A∞ B∞ C∞

S2n 0 2n 0

S2n+1 2n+ 1 0 0
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3.2 Tripling on the Hesse pencil

In this section we prove an unpublished remark of Washington which was

noticed during computations: “The map from cyclic cubic polynomials to the points

on the elliptic surface W has an inverse that can be described as follows. Let PW =

(x, y, λ) be a rational point on W . Consider the field generated over Q by
√
−3 and

the coordinates of 1
3
PW . Often, this will contain a unique cyclic extension of Q. This

will correspond to the original polynomial. More precisely, let x1, ..., x9 be the x-

coordinates of the various choices of PW/3. Then (x1+x2+x3)/(−9), under a suitable

numbering (corresponding to PW/3 and its translates by plus/minus the nonrational

3-torsion point above) seems to satisfy the original cubic polynomial.” (Notation

has been changed from the original remark to match this work’s conventions.)

Rather than computing 1
3
PW on the Weierstrass form, we exploit the group

structure of X(3) to vastly simplify calculations.

Theorem 3.2.1. Let [f, g] = [f : g : 1;λ] on X(3). Then

3[f, g] = [−f 3g6 + (3f 3 − 1)g3 − f 6 :

− g6 + (−f 6 + 3f 3)g3 − f 3 :

fg(−g6 − f 6 + f 3g3 + g3 + f 3 − 1)],

where 3[f, g] represents tripling via the group law on X(3).

Proof. A calculation with the usual chord-and-tangent formula for addition of points

on X(3) tells us that

2[f : g : 1] = [g(f 3 − 1) : f(g3 − 1) : g3 − f 3].
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Adding this to [f : g : 1] gives the conclusion. Expressions for the full group law on

X(3) are worked out in [6] using slightly different methods.

Corollary 3.2.2. Let [f, g] ∈ X(3). Then

P3[f,g] = (x− fg)(x− f/g2)(x− g/f 2).

Proof. This is a direct computation using the previous theorem and the birational

transformation.

This is enough to prove Washington’s remark. We need the following table:

+ O S 2S

O [f : g : 1] [g/f : 1/f : 1] [1/g : f/g : 1]

N [ωf : ω2g : 1] [ωg/f : ω2/f : 1] [ω/g : ω2f/g : 1]

2N [ω2f : ωg : 1] [ω2g/f : ω/f : 1] [ω2/g : ωf/g : 1]

(3.4)

An element in the following table is [f : g : 1] plus the section in its row plus the

section in its column – for example, [f : g : 1] +O +N = [ωf : ω2g : 1].

We begin with a polynomial factored over C:

h(x) = (x− r)(x− s)(x− t).

Assume that h(x) defines a point on the elliptic surface W – that is, rst = 1 and

h(x) generates a cyclic cubic field. Then h(x) determines a point P on X(3). Now

we define f and g implicitly by the equations

fg = r

f/g2 = s.
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By construction, 3[f, g] = P . The ambiguity in our choice of f and g is annihilated

by the 3-torsion on X(3). That is, the nine points on X(3) which triple to the point

P on X(3) are exactly those in the previous table, so we have found all nine values

of 1
3
P explicitly. Each of these nine points then determines a point (xij, yij) on the

Weierstrass model W via the birational transformation. A calculation in PARI/GP

shows that adding xij down each column in the table gives −9r,−9s,−9t. This

proves the conjecture.

We illustrate this process with a worked example. Consider

B2(x) = x3 + 309x2 − 10x− 1,

which corresponds to the point (309, 11297) on the Weierstrass form of the elliptic

surface and the point P = (−4, 7) on X(3). (Note that λ = −10 on both surfaces,

though we do not need this.) The roots of B2 are −309.0324, 0.0753, and 0.0430.

Solving for f and g gives (−16.0094, 19.3031) (and its eight conjugates in the table

above); this is 1
3
P . The x-coordinates of those nine points in Weierstrass form and

their sums follow:

2846.7739 + 0.000i −8.5348 + 0.000i −5.5751 + 0.000i

−32.7414− 3.6350i 3.9285− 13.6680i 2.9809 + 9.4113i

−32.7414 + 3.6350i 3.9285 + 13.6680i 2.9809− 9.4113i

2781.2911 −0.6778 0.3867

Dividing the last line by -9 gives the three roots of B2.
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Appendix A: PARI/GP Script

Many of the calculations in this dissertation would have been impossible (at

least for the author) without the following PARI/GP script. The functions have been

checked thoroughly for accuracy and I strongly recommend that any computations

confirming or extending the results of this work begin with this .gp file.

/* Steve Balady */

/* May 2017 */

/* PARI/GP script for calculations on X(3) */

/* definitions of the Hesse pencil X(3) */

/* and the coordinates of the Weierstrass form W */

w = exp(2*Pi*I/3);

XH = x^3+y^3+z^3-L*x*y*z;

X = subst(XH,z,1);

XW = -y^2 + 4*x^3 + L^2*x^2 - 18*L*x + (-4*L^3 - 27);

Aw = -(a^4+b^4+(a-b)^4+2*a+2*b)/2/a/b;

Bw = (-b^7 + 4*a*b^6 - 9*a^2*b^5 + (13*a^3 - 2)*b^4

+ (-13*a^4 + 5*a)*b^3 + 9*a^5*b^2

+ (-4*a^6 - 5*a^3 - 1)*b + (a^7 + 2*a^4 + a))/(a^2*b^2);

/* Note: Bw factors completely into linear */

/* and quadratic terms of multiplicity 1 */

Lw = (a^3+b^3+1)/a/b;

/* the birational map: toFamily: X(3) \to W, toX: W \to X(3) */

ToW = [-L^2,-L^2,-9;L^3-27,-(L^3-27),0;3,3,L]; /* L = \lambda */

ToX = [-L,1,-9;-L,-1,-9;6,0,2*L^2];

toFamily(V) = {

local(A,L);
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A = subst(subst(Aw,a,V[1]),b,V[2]);L=subst(subst(Lw,a,V[1]),b,V[2]);

return(x^3+A*x^2+L*x-1);

}

toX(f) = {

local(aa,bb,ll,XX,yy);

aa = polcoeff(f,2);

ll = polcoeff(f,1);

XX = subst(ToX,L,ll);

bb = truncate(sqrt(poldisc(f)));

yy = ToX*[aa;bb;1];

yy = subst(yy,L,ll);

yy = yy/yy[3,1];

yy = yy*denominator(yy[1,1]);

return([yy[1,1],yy[2,1],yy[3,1]]);

}

/* doubling on the affine patch z=1 */

a2=b*(a^3-1)/(b^3-a^3);

b2=-a*(b^3-1)/(b^3-a^3);

/* tripling on z=1 */

a3 = -a^3*b^6+(3*a^3-1)*b^3-a^6;

b3 = -b^6+(-a^6+3*a^3)*b^3-a^3;

c3 = a*b*(-b^6-a^6+a^3*b^3+b^3+a^3-1);

/* known families */

S = [0,-1];

LL = [-1,-n];

K = [-n,-n^2-n-1];

B = [-n^2,n^3-1];

B56 = [-n^5-n^4-3*n^3-2*n^2-2*n, -n^6-n^5-4*n^4-2*n^3-4*n^2-1];

Sfam = x^3 +(n+3)*x^2+n*x-1; /* toFamily degenerates on S */

/* generating new families */

fgtrick(V) = {[V[2],(V[2]^3+1)/V[1]]};

unitpow(f,n) = minpoly(matcompanion(f)^n);

fampow(V,n) = toX(unitpow(toFamily(V),n));

/*components of the singular fibers on X(3) */

t1 = [1,1,1];

t2 = [1,w,w^2];

t3 = [1,w^2,w];

tw1 = [1,1,w];

tw2 = [1,w,1];
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tw3 = [1,w^2,w^2];

tww1 = [1,1,w^2];

tww2 = [1,w,w];

tww3 = [1,w^2,1];

inf1 = [0,-1,1];

inf2 = [-1,0,1];

inf3 = [-1,1,0];
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