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Offspring of depressed mothers are at increased risk for emotional and behavioral 
disorders and social impairment. One proposed mechanism of risk transmission is 
through exposure to maladaptive parenting styles, as depressed mothers display higher 
levels of hostility and lower levels of support than non-depressed mothers. Rodent 
models indicate that the early parenting environment programs the endogenous stress 
response system, the hypothalamic-pituitary-adrenal (HPA) axis, through a cascade of 
epigenetic processes, ultimately elevating levels of glucocorticoid stress hormones (i.e., 
cortisol in humans). Elevated cortisol levels have been linked to both structural and 
functional changes in the hippocampus, a medial temporal lobe structure implicated in 
regulation of the HPA axis and the pathophysiology of depressive disorders. Despite 
elucidation of the pathways through which parenting influences neurobiological 
development in rodents, research examining these associations in humans is only 
emerging. The present study aimed to translate the rodent literature by examining the 
effects of early and concurrent parenting on hippocampal structure and functional 
connectivity during childhood, with a specific emphasis on exploring the mediating role 
of cortisol reactivity, in a longitudinal sample of offspring of depressed mothers and a 
community comparison group. At 3-6 and 5-10 years, observational measures of 
parenting and children’s salivary cortisol responses to a laboratory stressor were assessed. 
At 5-10 years, children completed structural and resting-state functional MRI scans. 
Findings revealed timing- and region-dependent associations. Early positive parenting 
predicted larger hippocampal head volumes whereas concurrent positive parenting 
predicted smaller body volumes. Early cortisol reactivity predicted larger body volumes 
whereas concurrent cortisol reactivity predicted smaller tail volumes. Concurrent 
parenting (positive and negative) predicted hippocampus subregion connectivity with 
regions of the cerebellum. Early cortisol reactivity predicted increased hippocampal 



connectivity with the cuneus and regions of the cingulate gyrus. There was a significant 
indirect effect of greater T1 Negative Parenting on smaller left hippocampal tail volume 
through increased concurrent cortisol reactivity. Significant interactions with maternal 
depression were also observed. This research provides a necessary translation of the 
rodent literature and elucidates possible timing-dependent neurobiological pathways 
through which early experience may confer increased risk for poor outcomes in human 
offspring.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 

EFFECTS OF EARLY AND CONCURRENT PARENTING AND CHILD CORTISOL 
REACTIVITY ON HIPPOCAMPAL STRUCTURE AND FUNCTIONAL 

CONNECTIVITY DURING CHILDHOOD: A PROSPECTIVE, LONGITUDINAL 
STUDY 

 
by 
 

Sarah Louise Blankenship 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Lea Dougherty, Co-Chair 
Professor Tracy Riggins, Co-Chair 
Professor Luiz Pessoa 
Professor Erica Glasper 
Professor Donald Bolger (Dean’s Representative) 



 

 

 

 

 

 

 

 

 

 

© Copyright by 
Sarah Louise Blankenship 

2017 
 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Dedication 

 To two of the most important men in my life who were taken all too soon: my 

baby brother, Paul Allan Blankenship, Jr. (December 8, 1994 – May 22, 2015), and my 

Poppop, Robert Francis Hertzog (August 1, 1936 – May 31, 2014). I looked forward to 

having you both by my side as I accomplished this goal and embarked on the next steps 

of my life.   

Thank you both for always believing in me, encouraging me, and reminding me to 

keep things in perspective. Thank you for being my first inspiration into the power of 

family in shaping who we become. 

Poppop, thank you for encouraging my pursuit of new knowledge and 

experiences. Thank you for introducing me to new places and ideas and for being my 

greatest travel partner. Thank you for being my forever field-trip and science fair 

chaperone. Thank for being a source of stability and comfort when my mom got sick. 

Thank you for teaching me the healing power of cuddling and a good nap.  Without your 

unconditional love and support (and your occasional tough love), I would not be here 

today. Thank you for everything. 

I love you both, and I’m sorry you couldn’t be here to share this with me. 

 

 

 



iii 
 

Acknowledgements 

 I would like to express my deepest gratitude to my advisors, Lea and Tracy, for 
their mentorship, training, feedback, and encouragement over the past 6 years. It was an 
honor to have worked with you both. 
 Thank you to my committee, Luiz, Erica, and DJ, for teaching me and challenging 
me. Your guidance and suggestions were instrumental in the motivation for and 
completion of this project. 

A very special thank you to my grandmother. You are my rock and my greatest 
inspiration. None of this would have been possible without your eternal optimism, love, 
and encouragement. To my brother, Sam, and my sisters, Emily and Madeline, you are 
my daily motivation to do and be better. Your love and support kept me going in the 
toughest hours. Thank you for believing in me when I did not believe in myself. 

Thank you, Greg, for your understanding and unwavering patience. Your 
companionship throughout this process has meant the world. 
 Thank you to my cohort for your friendship and support throughout this journey: 
for commiserating in the challenges and rejoicing in the successes. 
 Thank you to Srikanth Padmala, Phil Spechler, Mihai Sirbu, Jennifer Stark, Jason 
Smith, Josh Kinnison, and Mahshid Najafi for teaching me everything I know about 
neuroimaging and your assistance with the revision of many, many pipelines. Without all 
of you, especially Srikanth, I never would have finished this project.  
 Thank you to my lab mates, Stephanie, Kal, Chelsey, Marissa, Victoria, and 
Lauren. Your contributions to this project and my graduate school experience have been 
invaluable. Additional thanks to Jon, Jenny, and Amna- the tireless undergraduates who 
helped double-check my data every step of the way. 
 Finally, thank you to the families whose gracious participation made this work 
possible. 
 

 

 

 

 

 

 

 

 

 



iv 
 

Table of Contents 

Dedication .................................................................................................................... ii 
Acknowledgements .................................................................................................... iii 
List of Tables .............................................................................................................. vi 
List of Figures ............................................................................................................. ix 
List of Abbreviations ................................................................................................ xii 
Chapter 1: Introduction ..............................................................................................1 

Maternal Depression and Parenting Behaviors .........................................................2 
Effects of Parenting on Offspring Development .......................................................4 
Neurobiological Pathways of Parenting ....................................................................6 
Hypothalamic-Pituitary-Adrenal (HPA) Axis. ..........................................................6 
Effects of cortisol on the hippocampus ...................................................................13 
Parenting and the Hippocampus ..............................................................................16 
Depression Risk and the Hippocampus ...................................................................19 
Considerations .........................................................................................................22 
Developmental Timing ............................................................................................22 
Literature Summary .................................................................................................26 
Gaps in the Literature ..............................................................................................27 

Chapter 2: Study Overview.......................................................................................32 
Prospective Design ..................................................................................................34 

Chapter 3: Aims & Significance ...............................................................................36 
Aim 1 .......................................................................................................................36 
Aim 2 .......................................................................................................................36 
Aim 3 .......................................................................................................................37 
Exploratory Aim ......................................................................................................38 
Significance .............................................................................................................39 

Chapter 4: Methods ...................................................................................................41 
Participants ..............................................................................................................42 
Measures ..................................................................................................................45 
Data Analytic Methods ............................................................................................57 

Chapter 5: Structural Results ...................................................................................64 
Covariates ................................................................................................................64 
Aim 1: Parenting and Hippocampal Volume ..........................................................66 
Aim 2: Cortisol Reactivity and Hippocampal Volume ...........................................68 
Aim 3: Mediation ....................................................................................................71 
Exploratory Aim: Role of Maternal Depression .....................................................72 

Chapter 6: Structural Discussion ...........................................................................104 
Chapter 7: Functional Results ................................................................................116 

Covariates ..............................................................................................................118 
Aim 1: Parenting and Hippocampal Connectivity ................................................118 
Aim 2: Cortisol Reactivity and Hippocampal Connectivity .................................123 
Aim 3: Mediation ..................................................................................................126 
Exploratory Aim: Role of Maternal Depression ...................................................128 

Chapter 8: Functional Discussion...........................................................................144 
Chapter 9: General Discussion ...............................................................................159 



v 
 

References .................................................................................................................166 
Supplementary Material .........................................................................................222 

Hippocampal Volume............................................................................................222 
Hippocampal Functional Connectivity ..................................................................250 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

List of Tables 

Table 1  Sample sizes (n) for functional and structural analyses. .................................... 41 

Table 2  Demographic characteristics of sample. ............................................................ 44 

Table 3  Descriptive statistics for primary study variables. ............................................. 48 

Table 4  Minimum cluster size (k) for pcorrected <.05 at puncorrected < .005. ........................ 55 

Table 5  Correlations between mean FD and independent variables of interest. ............ 57 

Table 6  Correlation table for all dependent, independent, and covariate variables. ...... 65 

Table 7  Associations between negative parenting and hippocampal volume. ................. 80 

Table 8  Associations between positive parenting and hippocampal volume. .................. 81 

Table 9  Main effects of total cortisol release, AUCg, on hippocampal volume. ............. 82 

Table 10  Main effects of total change in cortisol, AUCi, on hippocampal volume. ........ 83 

Table 11  Interactions between parenting and maternal depression on right hippocampal 

head volume. ......................................................................................................... 84 

Table 12  Interactions between parenting and maternal depression on right hippocampal 

body volume. ......................................................................................................... 85 

Table 13  Interactions between parenting and maternal depression on right hippocampal 

tail volume. ............................................................................................................ 86 

Table 14  Interactions between parenting and maternal depression on right total 

hippocampal volume. ............................................................................................ 87 

Table 15 Interactions between parenting and maternal depression on left hippocampal 

head volume. ......................................................................................................... 88 

Table 16  Interactions between parenting and maternal depression on left hippocampal 

body volume. ......................................................................................................... 89 



vii 
 

Table 17  Interactions between parenting and maternal depression on left hippocampal 

tail volume. ............................................................................................................ 90 

Table 18  Interactions between parenting and maternal depression on left total 

hippocampal volume. ............................................................................................ 91 

Table 19  Interactions between cortisol reactivity and maternal depression on right 

hippocampal head volume. ................................................................................... 92 

Table 20  Interactions between cortisol reactivity and maternal depression on right 

hippocampal body volume. ................................................................................... 93 

Table 21  Interactions between cortisol reactivity and maternal depression on right 

hippocampal tail volume. ...................................................................................... 94 

Table 22  Interactions between cortisol reactivity and maternal depression on right total 

hippocampal volume. ............................................................................................ 95 

Table 23  Interactions between cortisol reactivity and maternal depression on left 

hippocampal head volume. ................................................................................... 96 

Table 24  Interactions between cortisol reactivity and maternal depression on left 

hippocampal body volume. ................................................................................... 97 

Table 25  Interactions between cortisol reactivity and maternal depression on left 

hippocampal tail volume. ...................................................................................... 98 

Table 26  Interactions between cortisol reactivity and maternal depression on left total 

hippocampal volume. ............................................................................................ 99 

Table 27  Mediation of the association between parenting and hippocampal volume by 

cortisol reactivity. ............................................................................................... 100 



viii 
 

Table 28  Regions of hippocampal connectivity that vary as a function of T2 Negative 

Parenting, controlling for T1 Negative Parenting .............................................. 119 

Table 29  Regions of hippocampal connectivity that vary as a function of T1 AUCg, 

controlling for T2 AUCg ..................................................................................... 123 

Table 30  Mediation of the association between parenting and hippocampal resting-state 

functional connectivity by cortisol reactivity. ..................................................... 127 

Table 31  Main effect of maternal lifetime history of depressive disorders on anterior 

hippocampus connectivity. .................................................................................. 128 

Table 32  Regions where proportion of lifetime exposure to maternal depression 

moderated the association between posterior hippocampus connectivity with T1 

Positive Parenting, controlling for T2 Positive Parenting ................................. 131 

Table 33  Regions where maternal lifetime history of depressive disorders moderated the 

association between T1 Positive Parenting, controlling for T2 Positive Parenting, 

and posterior hippocampus connectivity. ........................................................... 133 

Table 34  Regions where maternal lifetime history of depressive disorders significantly 

moderated the association between T2 Positive Parenting, controlling for T1 

Positive Parenting, and posterior hippocampus connectivity ............................ 135 

Table 35  Regions where lifetime history of maternal depression significantly moderated 

the association between T2 AUCi, controlling for T1 AUCi, and bilateral 

posterior hippocampus connectivity. .................................................................. 141 

 
 
 
 
 
 



ix 
 

List of Figures 

Figure 1. Illustration of the epigenetic pathway through which the early parenting 

environment (LG behaviors) influences the developing HPA axis ........................ 8 

Figure 2. Study timeline. .................................................................................................. 33 

Figure 3. Theoretical model ............................................................................................. 39 

Figure 4. Histograms to display the distribution of independent variables of interest in the 

imaging subsample and the larger sample. ........................................................... 63 

Figure 5. Associations between T1 Positive Parenting and right head and left total 

hippocampal head volumes ................................................................................... 66 

Figure 6. Association between T2 Positive Parenting and left and right hippocampal body 

volume................................................................................................................... 67 

Figure 7. Associations between T1 AUCg and right and left body and total hippocampal 

volumes ................................................................................................................. 69 

Figure 8. Associations between T1 AUCi and left and right hippocampal body volumes

............................................................................................................................... 70 

Figure 9. Association between T2 AUCi and left hippocampal tail volume.................... 70 

Figure 10. Standardized regression coefficients for the association between T1 Negative 

Parenting and left hippocampus tail volume, as mediated by T2 AUCi ............... 72 

Figure 11. Interactions between T2 Positive Parenting and maternal lifetime history of 

depressive disorders on left and right hippocampal head volumes....................... 75 

Figure 12. Interaction between T1 Negative Parenting and cumulative exposure to 

maternal depression on right total hippocampus volume ..................................... 76 



x 
 

Figure 13. Interactions between T2 Negative Parenting and cumulative exposure to 

maternal depression on left tail and right total hippocampus volumes ................. 77 

Figure 14. Interaction between T2 AUCi and proportion lifetime exposure to maternal 

depression on right head, tail, and total hippocampal volumes ............................ 79 

Figure 15. T1 cortisol levels at baseline, 20-, 30-, 40-, and 50-minutes post-stressor. 

Individuals driving T1 AUCi findings are highlighted in red............................. 109 

Figure 16. Regions demonstrating significant associations between T2 Negative 

Parenting (controlling for T1 Negative Parenting, age, and mean FD) and (A) 

anterior and (B) posterior hippocampus connectivity ......................................... 121 

Figure 17. Regions demonstrating significant associations between T2 Positive Parenting 

(controlling for T1 Positive Parenting, age, and mean FD) and posterior 

hippocampus connectivity .................................................................................. 122 

Figure 18. Regions where T1 AUCg was significantly associated with (A) anterior and 

(B) posterior hippocampus connectivity after controlling for T2 AUCg, age, and 

mean FD .............................................................................................................. 125 

Figure 19. Main effect of maternal lifetime history of depressive disorders on anterior 

hippocampus connectivity .................................................................................. 129 

Figure 20. Regions where proportion lifetime exposure to maternal depression moderated 

the association between posterior hippocampus connectivity with T1 Positive 

Parenting, controlling for T2 Positive Parenting, age, and mean FD ................. 131 

Figure 21. Regions where maternal lifetime history of depressive disorders moderated the 

association between T1 Positive Parenting (controlling for T2 Positive Parenting, 

age, and mean FD) and posterior hippocampus connectivity ............................. 135 



xi 
 

Figure 22. Regions where maternal lifetime history of depressive disorders significantly 

moderated the association between T2 Positive Parenting (controlling for T1 

Positive Parenting, age, and mean FD) and posterior hippocampal connectivity

............................................................................................................................. 136 

Figure 23. Regions where the association between T1 AUCi (controlling for T2 AUCi, 

age, and mean FD) and anterior hippocampus connectivity was significantly 

moderated by proportion lifetime exposure to maternal depression ................... 138 

Figure 24. Regions where the association between T1 AUCg (controlling for T2 AUCg, 

age, and mean FD) and anterior hippocampus connectivity was significantly 

moderated by a maternal lifetime history of depressive disorders ..................... 140 

Figure 25. Regions where the association between T2 AUCi (controlling for T1 AUCi, 

age, and mean FD) and posterior hippocampus connectivity was significantly 

moderated by a maternal lifetime history of depressive disorders ..................... 142 

 

 

 

 

 

 

 

 

 

 



xii 
 

List of Abbreviations 

AUCg: Area under the curve with respect to ground, a measure of total magnitude of 
cortisol release 
 
AUCi: Area under the curve with respect to increase, a measure of total change in cortisol 
 
CRF: Corticotrophin release hormone/factor 
 
DMN: Default mode network, a network of brain regions that demonstrate high temporal 
coherence in the absence of an overt task (i.e., at rest) 
 
dlPFC: Dorsolateral prefrontal cortex 
 
FD: Framewise displacement, a measure of volume-to-volume movement calculated 
within as the Euclidean distance traveled from the previous volume 
 
MRI: Magnetic Resonance Imaging 
 
Rs-fcMRI: Resting-state functional connectivity Magnetic Resonance Imaging 
 
 
 
 
 
 
 
 
 
 



1 
 

Chapter 1: Introduction 

Decades of research has established that maternal depression is associated with 

poor offspring outcomes including increased risk for psychopathology, social difficulties, 

and cognitive deficits beginning in childhood and persisting into the adult years 

(Cummings & Davies, 1994; Goodman & Gotlib, 1999; Letourneau, Tramonte, & 

Willms, 2013; Weissman et al., 2006). For instance, compared to the offspring of non-

depressed mothers, the offspring of depressed mothers demonstrate higher rates of 

internalizing and externalizing disorders (Goodman et al., 2011), increased negative and 

decreased positive affect (Goodman et al., 2011), lower receptive vocabulary and IQ 

(Jensen, Dumontheil, & Barker, 2014; Letourneau et al., 2013), greater inattentiveness 

and lower inhibitory control (Jensen et al., 2014; Letourneau et al., 2013), and deficits in 

social cognition (Jensen et al., 2014). With over 10% of mothers in the United States 

experiencing a depressive episode each year (Ertel, Rich-Edwards, & Koenen, 2011), the 

association between maternal depression and negative offspring outcomes poses a 

significant public health concern.  

Identification of the mechanisms through which maternal depression affects child 

development will enable more targeted interventions and effective strategies for 

prevention. Unfortunately, at present, the mechanisms of transmission, that is, how 

maternal depression influences offspring outcomes, are poorly understood. Although 

many have searched for specific hereditary factors, genetic influences have not been able 

to fully predict the emergence of poor outcomes in high risk offspring (Cummings & 

Davies, 1994; Flint & Kendler, 2014). This has drawn researchers’ focus towards 

investigations of environmental mechanisms and gene x environment interactions. One 
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suggested environmental risk factor that has gained attention, and is the focus of this 

proposal, is the role of parenting in the intergenerational transmission of risk for poor 

psychosocial outcomes in high risk offspring of depressed mothers.  

Maternal Depression and Parenting Behaviors 

Parenting has been proposed as a potential environmental risk factor based on 

observational evidence that maternal depression is associated with maladaptive parenting 

practices (for review, see Goodman & Gotlib, 1999, 2002; Goodman, 2007; Lovejoy, 

Graczyk, O’Hare, & Neuman, 2000). For instance, currently depressed mothers 

demonstrate more hostility, more intrusiveness, and less support and warmth towards 

their children (Azak & Raeder, 2013; Beeber et al., 2014; Campbell, Matestic, von 

Stauffenberg, Mohan, & Kirchner, 2007; Goodman, 2007; Lovejoy et al., 2000; Murray, 

Fiori-Cowley, Hooper, & Cooper, 1996). Depressed mothers have been reported to talk, 

lay, and play with their children less frequently, with many choosing not to breastfeed, 

potentially leading to significant reductions in mother-child physical contact during early 

life (McLearn, Minkovitz, Strobino, Marks, & Hou, 2006). The interactions that do occur 

are marked by fewer affirmations and more criticisms (Murray et al., 1996). Additionally, 

depressed mothers are reported to be more disengaged and less responsive to child cues, 

which may have lasting effects on offspring cognition and emotion (Kiernan & Huerta, 

2008). Finally, depressed mothers are less likely to follow routines, resulting in less 

consistent, structured environments for children (Field, 2010; McLearn et al., 2006).  

In contrast to meta-analytic findings, which suggest maternal depression is 

associated with global deficits in parenting behaviors (i.e., increased negativity, 

decreased positivity, and increased withdrawal) (Lovejoy et al., 2000), some researchers 
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have proposed that depressed mothers’ parenting deficits may fall into discrete parenting 

profiles. For instance, Malphurs et al. (1996) proposed depressed mothers may either 

engage in withdrawn (e.g., low on both positive and negative interactions) or intrusive 

(e.g., high on negative interactions) interaction styles. Wang and Dix (2013) expanded 

upon this hypothesis and found that depressed mothers fall under three parenting profiles: 

high intrusive, high intrusive/high withdrawn, and low intrusive/low withdrawn. The 

potential utility of these distinctions is highlighted by evidence that the nature of the 

specific parenting behaviors may have unique effects on the developing child (Field, 

1998; for extended discussion, see section on Parenting Dimensions below). Despite 

inconsistent hypotheses regarding the generality or variations of parenting deficits 

observed in depressed parents, it remains clear that depression can influence the nature, 

quality, and frequency of a mother’s interactions with her children.  

Parenting behaviors characterized by increased hostility and decreased warmth 

are likely attributable to the cognitive-emotional processes implicated in the onset and 

maintenance of depressive symptoms. For instance, poor emotion regulation and deficits 

in inhibitory control may contribute to difficulties participating in consistent, responsive 

parenting practices (Goodman, 2007; Wang & Dix, 2013). Similarly, fatigue and 

irritability, which are hallmarks of depressive disorders, have been linked to both less 

positive involvement and increased hostility (Letourneau, Salmani, & Duffett-Leger, 

2010; Lovejoy et al., 2000; Murray, Cooper, & Hipwell, 2003). Interestingly, there is 

evidence that parenting deficits persist even during periods of remission (Hipwell, 

Goossens, Melhuish, & Kumar, 2000; Lovejoy et al., 2000), supporting the theory that 

individual personality characteristics such as neuroticism, agreeableness, and 
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extraversion, may simultaneously influence parenting behaviors and the onset of 

depressive disorders (McCabe, 2014). Whether through pre-existing personality-

dependent cognitive-emotional impairments or as a consequence of the depressive 

disorder itself, the experience of depressive symptoms is associated with compromised 

parenting abilities, resulting in more hostile, less warm, and less consistent parenting 

behaviors, which may be detrimental to overall child development and may play a role in 

the intergenerational transmission of risk.  

Links between maternal depressive symptoms and parenting behaviors have also 

been identified in rodent species. The rodent analogue of parenting behaviors relies on 

measuring the frequency of licking and grooming behaviors (LG), where greater 

frequency is associated with more attentive and nurturing parenting. Although naturally-

occurring variations in LG exist (Champagne, Francis, Mar, & Meaney, 2003), making it 

a valid model for studying individual differences in parenting behaviors on offspring 

outcomes, there is also evidence that LG may function as a model of maternal depression 

(Newport, Stowe, & Nemeroff, 2002; Pryce et al., 2005). For instance, rodent genetic 

models of depression display decreased LG (Lavi-Avnon, Yadid, Overstreet, & Weller, 

2005), induction of depressive symptoms via maternal separation results in simultaneous 

decreases in LG behaviors (Boccia et al., 2007), and experimentally manipulating LG by 

exogenously administering mothers with glucocorticoids induces impulsive symptoms in 

adult offspring (Brummelte, Pawluski, & Galea, 2006). Therefore, rodent LG behaviors 

serve as a useful model for examining the hypothesis that the altered parenting behaviors 

in maternal depression are associated with offspring outcomes. 

Effects of Parenting on Offspring Development 
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Understanding the links between parenting behaviors and child development has 

mesmerized academics for millennia (Cline, 2015). After all, it is a concept that has 

personal relevance to every human being on earth. Review of over a century of parenting 

research is beyond the scope of the present report, but suffice it to say, parenting 

behaviors have been linked to a host of child outcomes spanning cognitive, affective, 

social, and neurobiological domains (Belsky & de Haan, 2011; Borkowski, Ramey, & 

Brisol-Power, 2002). Despite abounding evidence that the early parenting environment is 

associated with offspring outcomes, what is of primary importance, here, is 

understanding how parenting affects the developing child.  

Before we can begin to address this question, it is necessary to briefly review the 

available empirical evidence, which enables us to confidently suggest parenting itself, 

rather than other experiential, contextual, or genetic factors, has specific effects on the 

developing child. Due to ethical concerns, human research cannot isolate specific effects 

of parenting through controlled experimental manipulations, forcing researchers to rely 

on correlational studies and special populations who naturally experience variations in 

parenting behaviors (e.g., abuse, neglect, institutional rearing, adoption; Belsky & de 

Haan, 2011; Marceau et al., 2013; McLaughlin et al., 2015). These studies have 

consistently reported links between extreme variations in early parenting behaviors and 

later cognitive, affective, social, and neural outcomes (e.g., Cicchetti & Toth, 2005; 

Kaplan, Pelcovitz, & Labruna, 1999; Trickett & McBride-Chang, 1995). Unfortunately, 

these methods cannot completely account for all variables confounded with parenting 

behaviors, such as household income, requiring the much-debated process of statistical 
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control of confounding variables (i.e., covariates). Therefore, the most compelling 

evidence has come from animal research.  

One of the most elegant designs that directly links parenting behaviors 

themselves, rather than previously theorized genetic mechanisms, to specific effects on 

developing offspring used a cross-fostering paradigm to isolate the effects of the 

postnatal parenting environment on offspring development. Liu and colleagues (2000) 

cross-fostered the biological offspring of naturally high- or low- LG mothers to dams 

demonstrating the opposite phenotype. By comparing the adult offspring’s behavioral 

phenotypes to controls, researchers were able to examine the effect of postnatal rearing 

on offspring development. Analyses revealed adult phenotypes of cross-fostered 

offspring were better predicted by the phenotype of their postnatal rearing mother than 

their biological mother. These results indicate that early postnatal parenting behaviors 

play a specific role in shaping maladaptive offspring behaviors.  

Neurobiological Pathways of Parenting 

Investigating how the early parenting environment “gets under the skin” (Fox, 

Levitt, & Nelson, 2010; McEwen, 2012) is paramount to understanding the role of early 

parenting behaviors in shaping offspring outcomes. Emerging work has focused on the 

neurobiological pathways through which parenting affects the developing child. The past 

two decades of carefully-designed rodent research and converging human evidence point 

to the role of the early parenting environment in the epigenetic programming of the 

developing hypothalamic-pituitary-adrenal (HPA) axis, an endogenous stress response 

system preserved across mammalian species.  

Hypothalamic-Pituitary-Adrenal (HPA) Axis.  
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The HPA axis is a regulatory feedback loop, which, as its name suggests, consists 

of nodes in the hypothalamus, the anterior pituitary, and the adrenal glands. When an 

organism is presented with a stressor, the amygdala processes the potential threat and 

disinhibits corticotropin-releasing factor (CRF) release from the paraventricular nucleus 

(PVN) of the hypothalamus, which stimulates the release of adrenocorticotropic hormone 

(ACTH) from the anterior pituitary, resulting in the release of the stress hormone cortisol 

(corticosterone in rodents) from the adrenal glands (Figure 1). Cortisol enables adaptive 

coping to stressors by regulating key biological systems including blood pressure, 

immune responses, and conserving energy stores. Circulating cortisol stimulates two 

receptors, expressed throughout the brain, but in relatively high densities within the 

hippocampus: the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). 

Activation of hippocampal GRs stimulates a negative feedback loop whereby CRF 

synthesis is inhibited, thus halting excess cortisol release (Jacobson & Sapolsky, 1991). 

Thus, the function of a healthy HPA response is heavily dependent on the actions of 

hippocampal GRs in shutting down the extended release of cortisol. However, with 

chronic or extreme stressors, the HPA axis can become dysregulated1, resulting in high 

                                                 
 

1 Associations between early parenting and offspring cortisol reactivity are discussed in terms of 
successful regulatory processes and dysregulation of these systems. It should be noted, however, that the 
use of “dysregulated” and “maladaptive” are relative terms. That is, the degree to which HPA function can 
be considered adaptive or regulated is dependent on its influence on the child’s healthy psychosocial 
functioning. From an evolutionary perspective supported by empirical evidence, the changes in HPA 
function associated with early experiences, both pre- and post-natally, may be the result of adaptive 
biological processes which have evolved over hundreds of thousands of years. Many hypotheses have been 
generated which emphasize that what may be adaptive in one context may be maladaptive in another. For 
example, according to the match-mismatch hypothesis (Oitzl, Champagne, van der Veen, & de Kloet, 
2010), although an exaggerated cortisol response may be maladaptive during low-stress cognitive tasks, 
offspring exposed to early negative parenting behaviors (low LG) fare better under high-stress cognitive 
challenges in comparison to their high LG counterparts (Champagne et al., 2008). Therefore, under high-
stress conditions, high stress reactivity provides offspring with a cognitive advantage; however, under low-
stress conditions, the offspring’s stress response may not be appropriately matched to the context and 
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and increasing or blunted cortisol levels in response to stress (Kudielka & Wüst, 2015; 

Sánchez, Ladd, & Plotsky, 2001).  

 

 

Figure 1. Illustration of the epigenetic pathway through which the early parenting 
environment (LG behaviors) influences the developing HPA axis. Greater frequency of 
LG (high LG) leads to the transcription of greater hippocampal GRs enabling more 
efficient cessation of the HPA response.  Low LG offspring lack appropriate 
hippocampal GR density to effectively stop cortisol release, resulting in high and 
increasing cortisol levels in response to a stressor. Blue lines represent positive feed-
forward or feedback loops.  Red lines represent negative feedback or inhibition. 

                                                 
 

deemed dysregulated. The differential susceptibility hypothesis (Belsky & Pluess, 2009) and the biological 
sensitivity to context model (Ellis & Boyce, 2008) further suggest that high stress reactivity may be a 
marker of global plasticity – making an individual both more sensitive to adverse environments and more 
likely to thrive in supportive environments. Therefore, the degree to which heightened stress reactivity may 
confer increased risk may be dependent on current contextual demands. Thus, it is important to keep in 
mind why these systems adapt and that the trends described herein may not be representative of faulty 
processes per se, but rather the unfortunate situation of having an adaptive biological system being poorly 
matched, or particularly sensitive, to the current context. 
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Parenting and HPA Dysregulation 

Rodents. Rodent work has demonstrated that the early parenting environment acts 

to program the developing HPA axis to adaptively respond to stressors. For instance, in 

their seminal paper, Liu and colleagues (1997) reported that offspring of low LG mothers 

demonstrated elevated corticosterone levels in response to acute stressors. Similarly, 

using a cross-fostering paradigm, Barha et al. (2007) reported that natural variations in 

maternal LG behaviors predicted female offspring corticosterone levels in response to an 

acute stressor. Moreover, it was found that the tactile stimulation of LG behaviors seems 

to be the critical factor: when stroked with a soft brush, offspring of low LG mothers 

have similar stress responses as offspring raised by high LG mothers (Hellstrom, Dhir, 

Diorio, & Meaney, 2012). Subsequent studies have replicated these results (Weaver et al., 

2004), and more importantly, have elucidated the entire biomolecular pathway through 

which the somatosensory stimulation of LG behaviors program the HPA axis.  

Evidence supports that parenting behaviors program the HPA axis through 

epigenetic mechanisms: processes which act upon the genome (e.g., to alter the 

functional or structural output of gene transcription), but do not make permanent changes 

to the DNA (Caldji, Hellstrom, Zhang, Diorio, & Meaney, 2011, for review). 

Specifically, the tactile stimulation evident in high LG postnatal environments stimulates 

serotonin (5-HT) release, leading to an increase in nerve growth factor-inducible protein 

A (NGFI-A) through cyclic adenosine monophosphate (cAMP)-dependent pathways. 

Increased binding of NGFI-A to the response element of the exon 17 promoter region of 

the GR gene – a gene which codes for glucocorticoid receptors - results in a cascade of 

acetylation and demethylation. Demethylation increases the affinity of the promoter 
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region for NGFI-A binding, ultimately resulting in increased gene transcription and a 

subsequent increase in GRs (Meaney & Szyf, 2005; Weaver et al., 2004). Therefore, 

increased circulating serotonin in response to tactile stimulation in high LG offspring sets 

an epigenetic cascade in motion, culminating in an increased density of hippocampal GRs 

(Weaver et al., 2004, 2007; see Figure 1, left panel). In contrast, low LG offspring do not 

receive this serotonin influx, which keeps the exon 17 methylated throughout 

development and results in relatively lower levels of GR transcription.  

Because of the critical role of hippocampal GRs in shutting down the HPA 

response to stress (Jacobson & Sapolsky, 1991), relative differences in hippocampal GR 

transcription among high- and low- LG offspring make them, respectively, more and less 

capable of regulating an HPA response. Thus, if an individual has lower GR expression 

in the hippocampus, they have greater feedback control over cortisol release via 

inhibition of CRF synthesis. Therefore, offspring from nurturing environments (with high 

GR expression) are better able to shut down their stress response and effectively cope, 

whereas offspring who receive less warmth and nurturance (with low GR concentrations) 

demonstrate exaggerated responses to stress marked by elevated and increasing cortisol 

levels. According to the glucocorticoid cascade hypothesis (Conrad, 2009; Sapolsky, 

Krey, & McEwen, 1986), disruptions of the HPA axis are perpetuated by a positive 

feedback loop whereby the amygdala becomes more sensitive to incoming stressors, 

effectively reducing the threshold for an HPA response which lacks an intact regulatory 

system, ultimately resulting in poorer hippocampal feedback and increased sensitivity to 

stress.  
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Humans. Human evidence has largely replicated the links between the early 

parenting environment and HPA axis programming, though with somewhat less 

consistent results. For example, while many have found associations between early 

maladaptive parenting practices and evidence of hypercortisolism (increased reactivity, 

higher basal cortisol, increased awakening responses) (Bugental, Martorell, & Barraza, 

2003; Ellenbogen & Hodgins, 2009; Kuhlman, Olson, & Lopez-Duran, 2014; Taylor et 

al., 2013), others have found evidence of hypocortisolism (Engert et al., 2010; Marsman 

et al., 2012; Narita et al., 2012; Zalewski, Lengua, Kiff, & Fisher, 2012). These 

inconsistencies may be due to methodological differences such as the method for 

measuring indices of parenting and HPA axis function as well as the age at which these 

measurements are taken. For instance, while Taylor et al. (2013) found that observational 

measures of intrusive-overcontrolling parenting at 30 months predicted increases cortisol 

reactivity at 72 months, Engert et al. (2010) found that retrospective questionnaire reports 

of parenting quality (collapsed across dimensions of control and warmth) in adults was 

associated with decreased cortisol reactivity. Use of different parenting measures 

(observational versus retrospective self-report) and different ages at cortisol measurement 

could explain these divergent results. Moreover, there is evidence that acute versus 

chronic exposure to stressors may differentially influence the developing HPA system, 

with chronic stress exposure related to lower cortisol levels (Fries, Hesse, Hellhammer, & 

Hellhammer, 2005; Kudielka & Wüst, 2015). Similarly, each cortisol metric (reactivity, 

baseline, diurnal slope) reflects a different aspect of HPA functioning and may have 

unique antecedents, effects, and developmental trajectories. For example, cortisol 

reactivity has been shown to undergo developmental change, with greater reactivity in 
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adolescence (Gunnar, Wewerka, Frenn, Long, & Griggs, 2009). Therefore, multiple 

methodological and developmental factors may contribute to observed inconsistencies in 

the direction of effects. However, despite these inconsistencies, HPA function has been 

consistently linked to parenting in human offspring. 

Evidence of associations between the early parenting environment and cortisol 

dysregulation is particularly important given observed links between HPA axis 

dysfunction and psychopathology. Of critical importance, HPA axis dysregulation is 

recognized as one of the most consistent biomarkers in depression (Pariante & Lightman, 

2008), with evidence of dysregulation in both adults (Varghese & Brown, 2001; 

Vreeburg et al., 2009) and children (Lopez-Duran et al., 2015; Luby et al., 2003) with 

depressive disorders, making it a popular index of risk in the parenting and maternal 

depression literatures. Patterns of HPA axis hyperactivity have been demonstrated in the 

pre-school aged (Dougherty, Klein, Rose, & Laptook, 2011; Dougherty et al., 2013; 

Lupien, King, Meaney, & McEwen, 2000) and adolescent (Barry et al., 2014; Halligan, 

Herbert, Goodyer, & Murray, 2004) offspring of depressed mothers, providing support 

for the hypothesis that associations between maternal depression and HPA dysregulation 

may be mediated by parenting behaviors. Interestingly, in two independent samples, 

Dougherty et al. (2011, 2013) found the combination of maternal depression history and 

current hostile parenting behaviors was associated with increased cortisol reactivity in 

preschool-aged children, and this effect was specific to the offspring who were exposed 

to maternal depression during their life. In contrast, Murray, Halligan, Goodyer, and 

Herbert (2010) reported postnatal withdrawal behaviors were associated with elevated 

morning cortisol at 13 years, even when controlling for postnatal maternal depression 
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exposure. Thus, although maternal depression has been linked to cortisol dysregulation, it 

remains uncertain how maternal depression status and parenting behaviors influence child 

outcomes, namely HPA axis function. It has been proposed that the links between HPA 

axis dysregulation and depressive symptoms and subsequent risk are the result of the 

effects of excess cortisol on developing neural substrates (Sapolsky, 2000).  

Effects of cortisol on the hippocampus 

Rodents. The inability to regulate the HPA axis can result in excessive release of 

cortisol, which has been associated with deleterious effects on neural structure and 

function (Sapolsky, Uno, Rebert, & Finch, 1990; Sapolsky, 1988; Sapolsky, 1987; Uno et 

al., 1994; for review see Conrad, 2009). The neurotoxicity hypothesis proposes that 

elevated levels of circulating glucocorticoids are associated with functional and structural 

alterations in neural regions that express glucocorticoid receptors (Virgin et al., 1991). 

Although effects have been found throughout the brain, given the high expression density 

of GRs in the hippocampus, the majority of rodent research and the attempts at human 

translations have focused on hippocampal indices. Woolley, Gould, and McEwen (1990) 

demonstrated glucocorticoid toxicity experimentally by injecting rodents with exogenous 

doses of glucocorticoids and measuring hippocampal changes. They found decreased 

dendritic branching, shorter dendritic lengths, and smaller cell bodies in apical CA3 

(hippocampal) pyramidal cells. Elevated corticosterone levels have also been associated 

with a host of other cellular changes within the hippocampus, including: a reduced 

hippocampal serotonin (5-HT) response (Joëls, Karten, Hesen, & de Kloet, 1997), 

reduced neurogenesis in the dentate gyrus (Gould & Tanapat, 1999), reduced BDNF 

expression in the dorsal hippocampus (Liu et al., 2000), and decreased neuronal 
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complexity in CA1 (Alfarez et al., 2009), with similar trends demonstrated in non-human 

primates (Uno et al., 1994). It is thought that these effects are not a direct result of 

glucocorticoids, but instead, excess glucocorticoids make neurons more susceptible to a 

range of metabolic insults (Sapolsky, 1987).  

 Humans. Emerging neuroimaging techniques provide a means to translate 

findings in rodents to human populations and to explore the effects of cortisol on neural 

structure and function in humans. The majority of studies have assessed associations 

between HPA axis function and hippocampal structure (for a review see Frodl & 

O’Keane, 2013). High cortisol levels following the dex/CRH test, higher evening 

cortisol, and increased morning cortisol have been associated with decreased 

hippocampal volumes in geriatric populations (Knoops, Gerritsen, van der Graaf, Mali, & 

Geerlings, 2010; Sudheimer et al., 2014). In contrast, in younger adults, greater cortisol 

release on the dex/CRH test (Narita et al., 2012), greater cortisol awakening response 

(Pruessner, Pruessner, Hellhammer, Bruce Pike, & Lupien, 2007; cf Dedovic et al., 2010) 

and greater cortisol reactivity to a social stressor (Pruessner et al., 2007) were associated 

with larger hippocampal volumes. In a sample of 7-12 year-old children, morning basal 

cortisol was not associated with total hippocampal volume, but was associated with 

regionally-specific inward and outward deformations in lateral and anterior regions of the 

hippocampus (Wiedenmayer et al., 2006). In a prospective longitudinal sample, early 

cortisol levels in children ages 3-6 years mediated the associations between both genetic 

risk (as determined by a genetic profile consisting of genes implicated in depression risk) 

and early life stress on later hippocampal volumes (7-12 year-olds), where higher cortisol 

levels were associated with decreased hippocampal volumes (Pagliaccio et al., 2014). 
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These patterns of results suggest an age-related change in the association between cortisol 

levels and hippocampal volume, with possible negative associations in childhood and old 

age and positive associations in mid-life adulthood. Similar anomalous findings in young 

adults have been demonstrated in associations between depression status and 

hippocampal volumes. For instance, children and middle-aged and older adults with 

depressive disorders demonstrated decreased hippocampal volumes whereas young adults 

showed no volume reduction (for a review see McKinnon, Yucel, Nazarov, & 

MacQueen, 2009). Thus, it is possible that glucocorticoids exert differential effects on 

neural substrates at different points in development (see Considerations section for 

extended discussion of Developmental Timing). Additionally, discrepancies in these 

studies may be attributable to sample demographics and selection criteria or sample size. 

For instance, Narita et al. (2012) excluded participants who demonstrated an elevated 

cortisol response on the dex/CRH test and Pagliaccio et al. (2014) used a sample of 

children in which 75% had a psychiatric diagnosis at the time of scanning.  

Most recently, studies have utilized resting-state functional connectivity metrics 

to explore associations between hippocampal function and HPA activity. The resting-

state functional connectivity magnetic resonance imaging (rs-fcMRI) method measures 

the coherence of spontaneous low-frequency oscillations in brain activity while an 

individual lies passively in the scanner. It is based on evidence that regions of the brain 

that are highly correlated at rest have a history of co-activation in task (Biswal, Yetkin, 

Haughton, & Hyde, 1995). In this way, the resting-state method allows for measurement 

of neural networks in the absence of an explicit task. Functional associations are expected 

given evidence from rodent models that cortisol causes alterations in dendritic arbors, the 
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site of long range connections, and reduces hippocampal long-term potentiation 

(Pavlides, Watanabe, & McEwen, 1993; Woolley et al., 1990). Moreover, because 

biological structure often dictate function, observations of altered hippocampal structure 

will likely be preceded by or follow functional changes. For example, in a sample of 7-15 

year-olds, Thomason, Tocco, Quednau, Bedway, and Carré (2013) reported greater 

cortisol reactivity at the time of scanning was associated with greater hippocampal 

resting-state connectivity with the default mode network (DMN), a network of distributed 

brain regions involved in the baseline processes of the resting brain (Greicius, Krasnow, 

Reiss, & Menon, 2003) which has been implicated in the pathophysiology of depressive 

disorders (Hamilton et al., 2011; Marchetti, Koster, Sonuga-Barke, & De Raedt, 2012; 

Sheline et al., 2009). In contrast, in a sample of young adults, cortisol reactivity in 

response to a social stressor was not associated with hippocampal connectivity within the 

DMN (Sripada, Swain, Evans, Welsh, & Liberzon, 2014), perhaps mirroring the age-

related results seen in structural studies. Additionally, in a small sample of young adult 

males, Kiem et al. (2013) found greater cortisol levels in response to the dex/CRH test 

(signaling cortisol hypersecretion) predicted lower left to right hippocampal connectivity, 

suggesting that hippocampal hemispheric asynchrony is associated with dysregulated 

HPA function. Together, these results suggest cortisol levels are associated with 

hippocampal functional connections throughout the brain, which likely influence 

information processing. 

Parenting and the Hippocampus 

As reviewed above, the rodent literature has characterized the pathway from early 

parenting to hippocampal alterations through HPA dysregulation. For example, Liu et al. 
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(1997) demonstrated that the early parenting environment altered the HPA response to 

stress and subsequent protein expression in the hippocampus. Additionally, high LG 

behaviors have been linked to increased hippocampal cholinergic innervation, NMDA 

receptor expression, and BDNF mRNA (Liu et al., 2000). Similarly, Champagne et al. 

(2008) demonstrated low LG behaviors were linked to shorter dendritic branches, small 

spine density, and reduced LTP in CA1 under basal conditions. However, to date, human 

examinations of the link between parenting and neural development are only emerging.  

In a recent review of the extant literature linking the early parenting environment 

to neural development in humans, Belsky and deHaan (2011) concluded that the majority 

of pre-existing human literature has exclusively focused on extreme forms of parenting 

such as maltreatment and neglect. Unsurprisingly, these studies largely replicate the 

rodent literature – with many reports of early physical and sexual abuse linked to 

hippocampal volume reductions in adulthood. For example, Teicher, Anderson, and 

Polcari (2012) found that childhood maltreatment was associated with volumetric 

reductions in adult hippocampal subfields (CA3, dentate gyrus, subiculum). Similarly, 

Stein, Koverola, Hanna, Torchia, and McClarty (1997) found that women who 

experienced sexual abuse had 5% hippocampal volume reductions in comparison to 

never-abused controls. Early maltreatment has also been associated with hippocampal 

functional deficits in emotion processing and olfaction (for review of neurofunctional 

deficits in maltreatment, see Hart & Rubia, 2012). For example, 9-18 year-old children 

exposed to deprivation and emotional neglect displayed greater hippocampal responses to 

fearful and angry faces (Maheu et al., 2010). It has been widely speculated that these 

hippocampal changes emerge as a result of glucocorticoid toxicity (Sapolsky, 2000). 
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Despite overwhelming behavioral evidence on the effects of individual differences in 

parenting on offspring development, to date, little efforts have been made towards 

elucidating the neurodevelopmental effects of less severe parenting practices. 

In the past few years, Belsky and de Haan’s call has been met with attempts to 

characterize the effects of individual differences in parenting on neural development; 

however, results have been equivocal. For instance, Rao et al. (2010) reported greater 

maternal nurturance at age 4 predicted smaller hippocampal volume in adolescence. In 

contrast, Luby et al.  (2012) reported greater maternal support in early childhood (3-6 

years) was associated with larger hippocampal volume at school age (4-7 years). Narita et 

al. (2012) did not find an association between retrospective perceived parenting 

(collapsed across overprotection and care) and hippocampal gray matter volume in adults, 

despite finding a positive association between parenting and cortisol. Similarly, Whittle 

and colleagues (2014) reported that the frequency of positive maternal behaviors during a 

conflict interaction at age 12 was not associated with hippocampal volumes at age 16. 

There are no straightforward interpretations of these data, but many factors may 

contribute to divergent findings (see Considerations for extended discussion). For 

instance, Luby et al. (2012) oversampled children with pediatric depression, Whittle et al. 

(2014) measured parenting behaviors relatively late in development (12 years), Narita et 

al. (2012) excluded participants who demonstrated hypercortisolism on the dex/CRH test, 

and Rao et al. (2011) used a sample which included children exposed to drugs prenatally. 

To date, no research has examined the effects of early parenting on hippocampal task-

based or resting-state function beyond what has been found in the maltreatment literature. 
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Together, these methodological differences make it difficult to form firm conclusions 

from the available evidence.  

Depression Risk and the Hippocampus 

HPA axis dysregulation has been identified as one of the most consistent 

biomarkers and risk factors for depressive disorders (Pariante & Lightman, 2008; 

Varghese & Brown, 2001; Vreeburg et al., 2009) and has been considered to be the 

source of hippocampal volume reductions commonly found in depressed adults 

(Campbell, Marriott, & Macqueen, 2004; Sapolsky, 2000). Similar evidence of 

hippocampal volume reductions have been reported in depressed adolescent populations 

(Chen, 2010; MacMaster & Kusumakar, 2004); however, investigations in pediatric 

samples are more rare and less consistent (Hulvershorn, Cullen, & Anand, 2011). In 

adults, volume reductions are associated with illness duration (McKinnon et al., 2009) 

and have been reversed with antidepressant treatment in humans (Arnone et al., 2013) 

and rodents (Malberg, Eisch, Nestler, & Duman, 2000) providing support for the notion 

that hippocampal changes are associated with depressive disorders and are possibly 

attributable to extended exposure to glucocorticoids (Sapolsky et al., 1990).  

Many researchers have moved towards neurocircuitry models of depression 

(Drevets, Price, & Furey, 2008; Hamilton et al., 2011; Peng et al., 2014; Price & Drevets, 

2010; Wang, Hermens, Hickie, & Lagopoulos, 2012; Wang et al., 2015; Zeng et al., 

2012), with an emphasis on dysregulated connectivity in large scale brain networks. For 

instance, Zeng et al. (2012) found that multivariate pattern analysis could reliably 

discriminate adults with depression based on patterns of resting-state functional 

connectivity. The authors concluded that given its high discriminative power, the 
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hippocampus likely plays a role in the pathophysiology of depressive disorders. McCabe 

and Mishor (2011) reported that hippocampal connectivity with the dorsomedial 

prefrontal cortex (DMPFC) was reduced with antidepressant treatment, perhaps 

suggesting that heightened connectivity may be a neural basis of depressive symptoms. 

Hippocampal connectivity findings have been reported in adolescents with depression, 

with reduced amygdala-hippocampal connectivity associated with greater depressive 

symptoms, dysphoria, and lassitude (Cullen et al., 2014). Additional evidence suggests 

depressed adolescents demonstrate increased connectivity, relative to controls, between 

the subgenual anterior cingulate cortex (sgACC) to a functional region encompassing the 

amygdala and extending into the hippocampus and parahippocampal gyrus (Connolly et 

al., 2013) . To our knowledge, no studies have used rs-fcMRI to examine pediatric 

depression in children younger than 13 years-old.  

Of relevance to the association between parenting and hippocampal development 

is a separate body of literature examining maternal depression and hippocampal 

development. If we accept the hypothesis that maternal depression alters parenting 

behaviors, the maternal depression literature may contribute to our understanding of the 

associations between early parenting experiences and hippocampal development (for 

review, see Foland-ross, Hardin, & Gotlib, 2013). Consistent with depressed adults, 

adolescents, and children, high familial risk for depression is associated with reduced 

hippocampal volumes during childhood (Chen, Hamilton, & Gotlib, 2010; Rao et al., 

2010), though this finding is inconsistent, with some reporting null associations between 

maternal depression and offspring hippocampal volume (Lupien et al., 2011). Similarly, 

never-depressed adult siblings (Baaré et al., 2010) and first-order relatives (Amico et al., 
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2011) of depressed individuals demonstrated decreased hippocampal volumes, suggesting 

that reduced hippocampal volumes may be a risk factor for depression, rather than a 

byproduct of depressive disorders. Men exposed to moderate levels of maternal 

depressive symptoms during development demonstrated increased amygdala to 

hippocampal ratio volumes (Gilliam et al., 2014). This increased amygdala volume 

coupled with decreased hippocampal volume is consistent with the glucocorticoid 

cascade hypothesis, which proposes that an epigenetic cascade results in increasingly 

larger and hyperactive amygdalae and increasingly smaller and hypoactive hippocampi 

(Lupien, McEwen, Gunnar, & Heim, 2009). Finally, de Geus et al. (2007) found that 

monozygotic twins who had differing risk for depression and anxiety (based on 

personality questionnaire metrics) showed differences in hippocampal volume, with the 

high-risk twin demonstrating reduced posterior hippocampal volume. Because 

differences in risk are presumably due to environmental versus genetic factors in the twin 

study design, the authors concluded that observed hippocampal differences were likely 

induced by experience rather than genetic factors. Despite the existence of some null 

associations (e.g., Lupien et al., 2011), the majority of evidence suggests that having 

familial risk for depression is linked to reduced hippocampal volumes, though it remains 

unclear whether these effects are induced by genetic predispositions or environmental 

factors (such as exposure to maladaptive parenting practices). To date, task-based fMRI 

investigations in high-risk offspring have focused on emotion regulation (Joormann, 

Cooney, Henry, & Gotlib, 2012) and reward processing (Henry & Joormann, 2010; 

Kujawa, Proudfit, & Klein, 2014; Olino et al., 2013; Sharp et al., 2014) in adolescent 
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populations. However, no fMRI studies have examined tasks-based or resting-state 

hippocampal function in high-risk offspring.  

Considerations 

As highlighted above, in comparison to the rodent literature, human research is 

riddled with many inconsistencies regarding the direction of effects: in some cases early 

parenting behaviors are associated with high and increasing cortisol responses (Bugental 

et al., 2003; Ellenbogen & Hodgins, 2009; Kuhlman et al., 2014; Taylor et al., 2013) and 

in others they are associated with low and blunted responses (Engert et al., 2010; 

Marsman et al., 2012; Narita et al., 2012; Zalewski et al., 2012); similarly, in some 

situations the early parenting environment is associated with increased hippocampal 

volumes (Luby et al., 2012) and in others it is associated with reduced volumes (Rao et 

al., 2010); moreover, cortisol levels have been linked to increased (e.g., Pruessner et al., 

2007), decreased (e.g., Knoops et al., 2010), or unchanged hippocampal volumes (e.g., 

Kremen et al., 2010). Two factors that may account for these divergent findings are 

Developmental Timing and Parenting Dimensions.  

Developmental Timing 

Perhaps the most important factor to consider is the effect of timing on neural 

development. Failure to account for timing, both in terms of the timing of early 

experiences and in the timing of cortisol and hippocampal measurements, likely accounts 

for many of the inconsistencies in the literature reviewed above. 

Wiesel & Hubel (1965) were the first to establish that sensitive periods, phases 

during which neural substrates are more sensitive to certain modalities of sensory 

information, exist throughout development. Decades of research have replicated this 
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finding in different sensory systems, in different species, and in different neural regions 

(for a review see Knudsen, 2004). Sensitive periods are likely induced by periods of 

neurodevelopmental plasticity during which discrete brain regions may be more 

susceptible to both positive and negative experiences. That is to say, regions that are 

undergoing rapid neurodevelopmental change may be the most susceptible to the effects 

of environmental inputs. This is important to consider in the present investigation in light 

of evidence that the hippocampus is undergoing structural (Demaster, Pathman, Lee, & 

Ghetti, 2014) and functional maturation (Blankenship, Redcay, Dougherty, & Riggins, 

2016) during early childhood. Many sources of research suggest sensitive periods and 

developmental timing are especially relevant to the investigation of the effects of early 

experience on the epigenetic programming of the HPA axis and the developing 

hippocampus (Sánchez et al., 2001; Tottenham & Sheridan, 2009). For instance, in a 

rodent model, offspring separated from their mothers at postnatal day 3 exhibited HPA 

axis hyperresponsivness to stressors whereas offspring separated at postnatal day 11 

demonstrated HPA axis hyporesponsiveness (van Oers, de Kloet, & Levine, 1997). This 

evidence has strong implications for inconsistencies in the human literature regarding 

whether adverse parenting is associated with an increased or decreased cortisol response. 

In a human sample of institutionalized Romanian children, a context characterized by low 

quality of caregiving, only those children who were placed into foster care (i.e., improved 

caregiving environment) before 24 months showed normative HPA axis function in 

response to a social stressor (McLaughlin et al., 2015), suggesting a sensitive period 

during which the caregiving environment has maximal effects on the development of the 

stress response system. This finding is consistent with additional lines of research, which 
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indicate the effects of maternal depression on offspring cortisol function and behavior are 

specific to exposure during early development (Barry et al., 2014; Brennan, Pargas, 

Walker, Green, & Newport, 2008; Dougherty et al., 2013). The maltreatment literature 

has mirrored these effects, with reports of abuse occurring between 3-5 years associated 

with adult hippocampal volume reductions; however, when abuse occurred between 14-

15 years, adults displayed no differences in hippocampal volume, but demonstrated 

decreased frontal gray matter volumes (Andersen et al., 2008), suggesting early 

childhood may be a period of hippocampal sensitivity to adverse experience. Together, 

this evidence highlights that consideration of the timing of early experiences may have 

drastic effects on predicted outcomes.  

Additionally, the timing of measurement may influence experimental results and 

conclusions. One of the most surprising findings from the maltreatment literature is that 

despite consistent findings of hippocampal volume reductions in adults who experienced 

childhood trauma, little evidence exists to suggest this volumetric reduction is evident 

during childhood (for review, see Frodl & O’Keane, 2013). This finding converges with 

evidence from the depression literature which reports hippocampal reductions more 

consistently in adults with depressive disorders than children (Hulvershorn, Cullen, & 

Anand, 2011 cf. Campbell et al., 2004). Three possible, though not mutually-exclusive, 

explanations for this finding are outlined below. First, these findings may be a 

consequence of the limitations of human neuroimaging methods. It is possible that early 

differences exist, but current neuroimaging methods do not have the resolution to capture 

subtle volumetric differences, especially in small high-risk child and adolescent 

populations. Second, the volumetric reductions reported in depressive disorders and in 
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association with dysregulated HPA responses may emerge as a consequence of the 

cumulative exposure to elevated glucocorticoid levels across development. Therefore, it 

is only after decades of exposure that reductions emerge. Finally, the emergence of 

hippocampal volume reductions later in development may be explained by sleeper effects 

(Maurer, Mondloch, & Lewis, 2007), whereby observable effects emerge after prolonged 

delays. Evidence for this latter hypothesis comes from Andersen and Teicher (2004) who 

found that maternal separation in rat pups had a delayed effect on hippocampal structure 

in comparison to non-separated controls. Specifically, synaptic density was equivalent to 

non-separated controls until day 35, at which point, CA1 and CA3 densities dropped 

more than ~30% that which was observed in control animals. In addition, in a recent 

review, Tottenham and Sheridan (2009) concluded that the effects of early life stressors 

are more immediately observable in the amygdala whereas hippocampal changes may be 

more protracted. Similar concerns of measurement timing may be relevant to cortisol 

metrics, as cortisol reactivity responses appear to change across development with the 

greatest increase occurring in adolescence (Gunnar et al., 2009). In sum, the timing of 

hippocampal and cortisol measurements may influence the interpretation of results in the 

extant literature. Therefore, it is important to consider both the timing of the adverse 

experience as well as the timing of measurements within its developmental context. Null 

findings should be interpreted with caution, as failure to find an association does not 

necessarily indicate that associations do not exist, but rather that associations may not 

exist yet.  

Parenting Dimensions 
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As noted above, there is evidence that the parenting deficits induced by maternal 

depression may present in two ways: as increased hostility and intrusiveness or as 

decreased warmth and withdrawal. Important to note, these behaviors may not exist on 

opposite ends of a continuum (i.e., lack of warmth does not imply high hostility), and 

rather, may represent two orthogonal dimensions or parenting behaviors. The importance 

of this theoretical distinction is highlighted by a recent proposal by Sheridan and 

McLaughlin (2014; McLaughlin, Sheridan, & Lambert, 2014), which hypothesizes that 

the neurocognitive effects of early adversity can be best explained when the nature of the 

adverse experiences are classified along the dimensions of deprivation and threat. 

Similarly, Field (1998) reported maternal withdrawal and negative control are associated 

with unique and divergent child outcomes. This theory highlights how the absence of 

expectable positive inputs (e.g., maternal warmth, support) can have drastically different 

effects on a developing child than the presence of harmful stimulation (e.g., maternal 

hostility). Failure to recognize and account for these dimensions may contribute to 

inconsistencies in the literature. For example, Engert et al. (2010) collapsed across 

warmth and control dimensions and found reduced cortisol reactivity whereas Taylor et 

al. (2013) exclusively examined overcontrolling-intrusive parenting behaviors and found 

increased cortisol reactivity. Therefore, operationalization of parenting behaviors should 

be carefully considered, as these may have significant effects on observed outcomes. 

Literature Summary 

• Maternal depression is associated with multiple negative offspring outcomes. 

• Depressed mothers demonstrate impaired parenting practices.  
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• The effects of parenting on offspring’s developing stress response system and the 

downstream effects on neural architecture have been clearly defined in the animal 

literature, with consistent effects documented in the hippocampus. 

• Emerging evidence suggests similar patterns of effects observed in animal models 

may also be present in human populations, particularly with respect to linking 

parenting and maternal depression to offspring’s HPA axis function and 

hippocampal structure. 

• Moreover, similar neuroendocrine and hippocampal differences are evident in 

depressed adults, providing support for the hypothesis that these neurobiological 

factors may put an individual at increased risk for poor outcomes. 

• Neuroimaging investigations are beginning to address these associations in young 

human populations; however many gaps remain. 

Gaps in the Literature 

Despite rapid advances in the examination of the effects of parenting on brain 

development, major gaps in our knowledge remain. First, although studies have examined 

pairwise comparisons between parenting, neuroendocrine functioning, and brain structure 

in a piecemeal fashion, no study has examined the full model in a young longitudinal 

population. Therefore, the interconnectedness of all variables within a single human 

sample is currently unknown. This marks a clear deficit in directly translating the animal 

literature to human populations. 

Second, investigations of the effects of individual differences in negative 

parenting behaviors on the offspring’s brain is only emerging – most pre-existing 

literature has focused solely on extreme versions of parenting including abuse and 
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neglect. With an entire body of rodent literature and an emerging human literature 

suggesting variations in parenting behavior are associated with child neurobiological 

functioning, this critical gap demands addressing.  

Finally, and critically, no study to date has used a multimodal imaging approach 

to investigate associations between the early parenting environment and hippocampal 

development. The majority of studies have used metrics of hippocampal volume to 

characterize the neural effects of maternal depression, parenting, and HPA dysregulation; 

however, it remains difficult to interpret inconsistencies between studies due to 

variability in populations (e.g., pediatric depression, prenatal drug exposure), timing of 

measurements (e.g., adolescence, adulthood), and independent measures (e.g., cortisol 

reactivity vs. basal cortisol; maternal hostility vs. low maternal warmth). Replications are 

necessary to help elucidate mechanisms and trends, which are currently obscured in the 

extant human literature. 

Although structural data provide important insight into gross neural changes, as 

briefly discussed above, due to constraints on the resolution of the technology or the 

timing of the emergence of structural changes, structural imaging techniques may not 

capture early-emerging differences. Moreover, given the reciprocal nature of biological 

structure-function relationships, it is likely that functional changes may emerge before 

and may even drive the emergence of gross morphological changes, making the use of 

functional imaging methods critical to the investigation of the effects of the early 

parenting environment and cortisol reactivity on the developing hippocampus. Task-

based paradigms are the most popular method of measuring functional brain differences; 

however, this method has a number of limitations, which make it poorly equipped to 
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address the aims of the present proposal. First, task-based investigations require targeted 

hypotheses regarding specific cognitive processes. For instance, a task-based paradigm 

would be well-suited for research motivated by the hypothesis that episodic memory 

performance is impaired in individuals with a history of maltreatment. In this way, 

researchers can design a task aimed to engage episodic memory and compare neural 

activation between maltreated individuals and controls. However, this method fails in the 

absence of a directed hypothesis regarding a cognitive process. Second, differences in 

neural activation elicited from task-based studies are constrained by the specifics of the 

experimental paradigm. For instance, in an episodic memory paradigm, the nature of the 

stimuli presented (e.g., auditory vs visual) may differentially influence the evoked neural 

response, making comparisons between studies more challenging. Finally, of particular 

concern in high-risk samples, performance on a given task and the neural responses 

which are elicited may be confounded by factors associated with an individual’s risk 

status. For example, in offspring of depressed mothers, deficits in executive function 

(Hughes, Roman, Hart, & Ensor, 2013) may induce attentional difficulties which alter 

task performance and patterns of neural activation between groups. This may lead 

researchers to incorrectly conclude that fundamental differences in episodic memory 

exist.  

One method for circumventing the challenges and limitations imposed by task-

based analyses is resting-state functional connectivity MRI (rs-fcMRI). Rs-fcMRI allows 

participants to lie passively in a scanner while functional imaging data are collected. This 

method reduces the cognitive demands placed on the child and mitigates potential effects 

of executive functioning on performance (though, it should be noted, differences in 
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executive function may influence a child’s ability to remain motionless in the scanner, 

thus still influencing experimental results), making it a method well-suited for 

investigations in young children. The greatest strength of rs-fcMRI is that it enables 

examination of task-independent whole-brain functional connectivity. Instead of being 

limited to examining hippocampal function within an experimental context, as in task-

based studies, rs-fcMRI allows examination of the full range of hippocampal connections 

spanning the many cognitive processes that engage the hippocampus (e.g., HPA 

regulation, episodic memory, fear learning, and spatial navigation). Therefore, resting-

state functional connectivity may unveil altered functional connections that may represent 

early biomarkers for disrupted cognitive processes. For example, increased hippocampal 

connectivity with the amygdala may signal an early marker of heightened attention to and 

memory for affectively-charged information, a cognitive bias which has been 

documented in individuals with (Disner, Beevers, Haigh, & Beck, 2011) and at risk for 

(Joormann, Talbot, & Gotlib, 2007) depressive disorders. Identifying these regions of 

differing connectivity in rs-fcMRI may stimulate hypotheses best tested in a task-based 

approach, providing complementary indices of neural function. In this way, resting-state 

MRI is a more appropriate method when wide-spread context-independent neural activity 

is of interest, whereas task-based imaging is most fruitful when the approach is motivated 

by a specific cognitive deficit. Because no study, to date, has examined hippocampal 

function in a young high-risk sample, inclusion of rs-fcMRI will fill a prominent gap in 

the literature and expand upon pre-existing structural findings. This multi-method 

approach is critical to fully capturing the neurobiological effects of the early parenting 

environment on offspring hippocampal development as it may provide greater sensitivity 
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to early-emerging hippocampal changes as well as provide insight into the neural basis of 

later cognitive, affective, and behavioral difficulties. 
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Chapter 2: Study Overview 

The present proposal seeks to address the current gaps in the literature with an 

overarching aim of investigating the association between parenting and cortisol reactivity 

on hippocampal structure and function in a high risk longitudinal sample of offspring of 

depressed mothers and a non-depressed comparison group drawn from the same 

community. Oversampling for mothers with a lifetime history of depressive disorders 

provides greater variability in predictor (e.g., parenting, cortisol) and outcome (e.g., 

hippocampal structure and function) variables in the present design. At Time 1, parents 

and their preschool-aged children (ages 3-6 years) completed an observational assessment 

of parenting, and children were exposed to a laboratory-based, standardized stressor 

paradigm during which five salivary cortisol levels were collected to assess early cortisol 

reactivity. Approximately three years later (Time 2) when children were 5-10 years-old, 

children completed another battery of parent-child interaction tasks, a new laboratory 

stressor, and a neuroimaging assessment during which structural MRI and resting state 

functional MRI data were collected (Figure 2).  
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Figure 2. Study timeline. 
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Prospective Design  

The present proposal aimed to investigate the association between early (3-6 

years) and concurrent (5-10 years) parenting and cortisol reactivity on later hippocampal 

development (5-10 years). A prospective longitudinal approach was chosen based on the 

likely contribution of timing to observed hippocampal effects. The extant literature 

suggests that the hippocampus may be differentially susceptible to stressors at different 

developmental times (Tottenham & Sheridan, 2009). In particular, the maltreatment 

literature suggests childhood (3-5 years) may be a period when the hippocampus is 

particularly sensitive to the effects of environmental stressors (Andersen et al., 2008). If 

we are to assume that the parenting environment may serve as an early life stressor or 

represent a sensitive period whereby hippocampal development relies on expectable 

inputs from the parenting environment, it remains that 3-6 years may be the optimal time 

to assess the prevalence of these stressors in a child’s life. Thus, our measurements of 

parenting and cortisol in preschool-aged children represent a time when the parenting 

environment and excess glucocorticoids may have the most pronounced effects on the 

developing hippocampus. Moreover, the effects of these early insults may only be 

manifest as volumetric reductions when measured at points later in development 

(Andersen & Teicher, 2004). Therefore, measurements of hippocampal volume 3 years 

after the hypothesized stressor (at 5-10 years-old) may enable greater sensitivity than 

studies that have used concomitant measures of stress and hippocampal volume. Finally, 

by including measurements of early (3-6 years) and later (5-10 years) parenting and 

cortisol reactivity, we can begin to piece apart the timing-dependent nature of these 

factors on hippocampal structure and function during middle to late childhood (5-10 
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years). Therefore, the present sample is optimized for measuring the effects of early 

stressors at a proposed point of peak hippocampal sensitivity as well as for measuring 

hippocampal indices at a later developmental period. 
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Chapter 3: Aims & Significance 

Aim 1: Examine the timing-dependent associations between early (3-5 years) and 

concurrent (5-10 years) parenting on hippocampal volume and functional connectivity at 

5-10 years (Figure 3).  

Working Hypothesis: Early (3-5 years), but not concurrent (5-10 years), 

maladaptive parenting (high hostility, low warmth) will be associated with smaller 

hippocampal volumes and differences in hippocampal functional connectivity at school 

age (5-10 years). This hypothesis is driven by evidence of volume reductions in 

maltreated children, individuals with depressive disorders, and animal work suggesting 

early parenting deficits are associated with hippocampal volume reductions. Early, but 

not concurrent, associations are hypothesized given evidence of a possible sensitive 

period in hippocampal development that occurs between 3-5 years of age (Andersen et 

al., 2008). Due to the relative dearth of literature examining the association between 

parenting on hippocampal structure and function in humans, a priori region of interest 

(ROI) analyses are not possible. Drawing from literature on early life stress (McLaughlin 

et al., 2014) and depressed adults, it is possible altered connectivity will be evident 

between the hippocampus and nodes of the fear learning and reward circuits, the default 

mode network, and regions involved in episodic memory.  

Aim 2: Examine the timing-dependent associations between early (3-6 years) and 

concurrent (5-10 years) cortisol reactivity on hippocampal volume and functional 

connectivity at 5-10 years (Figure 3). 

Working Hypothesis: Greater early (3-6 years) and concurrent (5-10 years) 

cortisol reactivity 3-6 will be associated with smaller hippocampal volumes and 
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differences in hippocampal functional connectivity at school age (5-10 years). It is 

hypothesized that more elevated levels of cortisol in response to a stressor will be 

associated with neurotoxic effects associated with extreme levels of circulating 

glucocorticoids as evidenced in the rodent literature (Sapolsky, Krey, & McEwen, 1985). 

Because individual differences in cortisol have been linked to concurrent changes in 

neural functioning (e.g., Kiem et al., 2013), a timing-dependent effect is not 

hypothesized. A longitudinal association is predicted given evidence that detectable 

hippocampal morphologic changes emerge after prolonged exposure to glucocorticoids 

(for extended discussion, see Timing). Glucocorticoid effects have been linked to the 

prefrontal cortex, orbitofrontal cortex, and amygdala, making these viable structures to 

demonstrate altered hippocampal connectivity.  

Aim 3: Test the full mediation model examining whether cortisol reactivity  

mediates the association between parenting and hippocampal structure and function (ages 

5-10 years) (Figure 3).  

Working Hypothesis: Early cortisol reactivity will mediate the association 

between early parenting and school age hippocampal structure and function, with 

maladaptive parenting predicting increased cortisol reactivity and smaller hippocampal 

volumes and altered connectivity. This aim seeks to test the full pathway, as 

demonstrated in the rodent literature, whereby parenting causes HPA Axis dysregulation 

and hippocampal atrophy. Only partial mediation is expected in light of evidence that 

maternal depression status (Dougherty et al., 2011) and genetics (Dougherty, Klein, 

Congdon, Canli, & Hayden, 2010; Hayden et al., 2010), as well as other factors, may 

moderate these hypothesized associations. 
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Exploratory Aim: Explore the role of maternal depression status on associations 

between parenting and children’s cortisol reactivity and hippocampal structure and 

function. 

The present proposal aims to elucidate the mechanisms through which maternal 

depression may confer increased risk for developing children with an emphasis on the 

role of the early parenting environment. The sample used in the present study was over-

selected for mothers with a history of depression, with 60.3% of mothers in the imaging 

subsample with a lifetime history of depressive disorders, which affords us the ability to 

study a range of parenting behaviors on cortisol reactivity and hippocampal indices. 

However, the role of maternal depression on the hypothesized associations in Aims 1-3 is 

unknown. Some research suggests maternal depression may moderate the association 

between parenting and offspring cortisol (Dougherty et al., 2013, 2011), whereas others 

have proposed parenting may mediate the association between maternal depression and 

offspring cortisol reactivity (Murray et al., 2010). Although there are numerous ways 

maternal depression could be hypothesized to influence observed associations, due to 

limitations of low power, the purpose of this aim is to explore the role maternal 

depression may play in moderating the associations between parenting and cortisol 

reactivity with hippocampal structure and functional connectivity. In offspring of 

depressed mothers, the effects of parenting and cortisol reactivity on hippocampal 

volume and functional connectivity are hypothesized to resemble hippocampal structural 

and functional changes observed in depressed adults. 
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Figure 3. Theoretical model. Solid lines demonstrate the hypothesized model. Gray 
dashed line represents the full mediation model tested in Aim 3. Green lines represent 
hypothesized positive associations. Red line represent hypothesized negative 
associations. 
 
Significance 

The present research provides multiple novel and significant contributions to the 

literature. First, the present research strategy aims to translate our understanding of the 

effects of parenting and the HPA axis on neural development gained from rodent research 

to the examination of human development. In particular, despite piecemeal associations 

between each factor within the model (e.g., HPA axis, parenting, hippocampal 

development; Figure 3), no study, to date, has examined the full model in a young 

sample. Second, the longitudinal nature of the sample is well-suited to answer these 

questions. Given what we know about the timing effects of stress and the hippocampus in 

humans, the present research is well-equipped to answer questions about longitudinal 

associations between parenting and cortisol reactivity with brain development. Third, the 

present study has a larger sample of children than most other human neuroimaging work 

investigating the effects of parenting on brain development, providing increased power to 

detect neural effects. Fourth, the present study can examine associations with multiple 
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parenting dimensions. Most previous work has combined parenting behaviors into a 

single factor encompassing dimensions of deprivation (i.e., decreased warmth) and threat 

(i.e., increased hostility). Finally, and critically, the present proposal demonstrates the 

first attempt to examine the effects of the early parenting environment and cortisol 

reactivity on hippocampal functional connectivity. This is a critical contribution to the 

literature as functional differences may be detectable before structural differences. 

Additionally, examination of alterations in functional connectivity may provide greater 

insight into neural sources underlying the cognitive, behavioral, and affective deficits 

associated with exposure to early negative parenting practices.  
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Chapter 4: Methods 

The present analyses were performed on a subset of children (n’s=41-59) from a 

longitudinal dataset (N=175) of high-risk offspring of depressed mothers and a non-

depressed community comparison group (see Dougherty et al., 2013 for a full description 

of the sample). At Time 1, children and their parents completed two laboratory 

behavioral sessions and a phone interview (see Figure 2 for the study timeline). At Time 

2, children and their parents completed one behavioral visit during which parenting and 

cortisol reactivity data were collected, followed by a neuroimaging session at the 

Maryland Neuroimaging Center (MNC). Sample sizes vary for each analysis, as some 

children did not provide data on all measures (Table 1).  

Table 1  
Sample sizes (n) for functional and structural analyses. 
Hippocampal Volume Analyses 
 1 2 3 4 5 6 7 8 
1.       T1 Parenting 60 - - - - - - - 
2.       T2 Parenting 59 59 - - - - - - 
3.       T1 & T2 Parenting 59 59 59 - - - - - 
4.       T1 Cortisol Reactivity 56 55 55 59 - - - - 
5.       T2 Cortisol Reactivity 59 58 55 58 62 - - - 
6.       T1 & T2 Cortisol Reactivity 55 54 54 58 58 58 - - 
7.       Cumulative Exposure 59 58 58 58 61 57 57 - 
8.       Maternal Lifetime History of 

Depressive Disorders 
60 59 59 59 62 58 57 63 

Functional Connectivity Analyses 
 1 2 3 4 5 6 7 8 

1.       T1 Parenting 45 - - - - - - - 
2.       T2 Parenting 44 44 - - - - - - 
3.       T1 & T2 Parenting 44 44 44 - - - - - 
4.       T1 Cortisol Reactivity 43 42 42 46 - - - - 
5.       T2 Cortisol Reactivity 44 43 42 45 47 - - - 
6.       T1 & T2 Cortisol Reactivity 42 41 41 45 45 45 - - 
7.       Cumulative Exposure 44 43 43 45 46 44 47 - 
8.       Maternal Lifetime History of 

Depressive Disorders 
45 44 44 46 47 45 47 48 
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Participants 

Recruitment. Participants (N=175) were recruited through flyers distributed to 

local schools, daycares, and healthcare providers (73.1%) and through a commercial 

mailing list (26.9%). A subset of children were targeted based on a maternal history of 

lifetime depression via advertisements. At Time 1, eligible children were between three 

to five years of age; had an English-speaking biological parent with at least 50% legal 

custody; had no parent-reported history of significant medical conditions or 

developmental disabilities; and had biological parents without a history of bipolar or 

psychotic disorders. 174 families seen at Time 1 were invited to participate in Time 2 

approximately 3 years later to capture the transition to primary school entry (one family 

was not invited to participate due to the child’s inability to speak or understand English). 

Families who completed the Time 2 behavioral session (n=104) were invited to complete 

the neuroimaging visit; of these, 64 chose to participate. A total of 63 completed scanning 

and contributed possible data for analysis (1 child did not complete any scans due to 

claustrophobia).  

Demographics and Descriptive Statistics. Demographic data are reported in 

Table 2 on the sample of 63 children (32 girls, 50.8%) who may be included in the 

present neuroimaging analyses. During the Parent-Child Interaction task during Time 1, 

participants were between 3-5 years of age (M = 4.23 ± .84 years, range = 3.00-5.96 

years). Children completed the stressor task approximately 28 days later (M = 27.77 ± 

18.21, range = -8-110 days; M = 4.31 ± 0.85, range = 3.11 – 6.10 years-old), with one 

child completing the Parent-Child Interaction task 8 days after the stressor task. The Time 

2 behavioral assessment occurred approximately 3 years later (M = 2.91 ± .45, range = 
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2.09–3.90 years; 7.20 ± .89, range = 5.57–10.00 years-old). The neuroimaging session 

occurred approximately 3 months after the Time 2 behavioral assessment (M = 103.06 ± 

102.85 days, range = 8-438 days) when children were 5-10 years old (M = 7.48 ± .88 

years, range = 5.85-10.24 years). Participants were racially diverse, household income 

ranged from <$20,000 to >$100,000 per year, and the majority of children had at least 

one parent with a 4-year college degree. Thirty-eight (60.3%) mothers had a lifetime 

history of depressive disorders (major depressive disorder and/or dysthymic disorder). 
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Table 2  
Demographic characteristics of sample. 
Demographic variable  
Child age (in years) at T1 Parenting Assessment, [Mean (SD)] 4.22 (0.84) 
Child age (in years) at T1 Cortisol Assessment, (n=60) [Mean (SD)] 4.31 (0.85) 
Child age (in years) at T2 Assessment, [Mean (SD)] 7.20 (0.89) 
Child age (in years) at Scan, [Mean (SD)] 7.48 (0.88) 
Child sex, [n (%)]  

Male 31(49.2%) 
Child race [n (%)]  

White, European-American 30 (47.6%) 
African-American 22 (34.9%) 
Asian 0 (0%) 
Multi-Racial/Other 11 (17.4%) 

Child ethnicity (n=62) [n (%)]  
Hispanic/Latino descent 9 (14.5%) 

Single parent household [n (%)]  
Lives with only one parental figure 15 (23.8%) 

Family income [n (%)]  
<$20,000 5 (7.9%) 
$20,001 to $40,000 4 (6.3%) 
$40,001 to $70,000 13 (20.6%) 
$70,001 to $100,000 15 (23.8%) 
>$100,000 26 (41.3%) 

Parental education [n (%)]  
At least one parent with a four-year college degree 47 (74.6%) 

Maternal lifetime history of depressive disorders [n (%)]  
Lifetime history present 38 (60.3%) 

Any lifetime exposure to maternal depressive disorders (n=62) [n (%)] 29 (46%) 
Proportion of total months from birth to present exposed to  

maternal DD (n=62) [Mean (SD)] 0.19 (0.31) 
Note. n=63 unless otherwise noted; DD = Depressive Disorders, including Major 
Depressive Disorder or Dysthymic Disorder; T1: Time 1; T2: Time 2 

 

The subsample of children included in the present analyses did not significantly 

differ from the full Time 1 sample on gender (χ2(1, N=175)<.001, p=.990), income (χ2(4, 

N=170)=.89, p=.926), race (χ2(4, N=171)=5.78, p=.216), ethnicity (χ2(1, N=170)=.91, 

p=.341), parental education (χ2(2, N=173)=.87, p=.647), maternal lifetime history of 
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depressive disorders (χ2(1, N=167)=3.15, p=.076), proportion of total months exposed to 

maternal depressive disorders, t(107)=-0.91, p=.364, age (in months) at Time 1 parenting 

assessment, t(102)=0.26, p=.795, or age (in months) at Time 2 behavioral assessment, 

t(102)=1.70, p=.091). 

Measures 

 Maternal Depression.  

At Time 1, mothers completed the Structured Clinical Interview for DSM-IV 

Disorders (SCID) (First, Spitzer, Gibbon, & Williams, 1996) over the phone with a 

trained masters-level diagnostician to assess a lifetime history of depressive disorders 

(i.e., major depressive disorder or dysthymic disorder). Phone interviews provide 

diagnoses consistent with in-person interviews (Rohde, Lewinsohn, & Seeley, 1997). For 

mothers who completed a T1 SCID, a follow-up SCID was conducted at Time 2 to assess 

any new depressive episodes. If a mother did not complete a SCID at Time 1, she 

completed the full SCID at Time 2. Data from T1 and T2 were combined to yield a 

dichotomous variable of lifetime maternal depression (i.e., present or not present). Inter-

rater agreement based on 7 interviews from T2 resulted in a κappa (κ) of 1.00. 

Additionally, at T1 and T2 mothers reported the total number of months they were 

depressed during each year of their child’s lifetime. These scores were converted into a 

measure reflecting the cumulative proportion of the child’s lifetime (in months) during 

which they were exposed to maternal depression.  

 Observed Parenting Behavior. 

During the first laboratory visits at Time 1 and Time 2, children and their parents 

worked together to complete standardized tasks, modified from the Teaching Tasks 
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Battery (Egeland et al., 1995), which were designed to elicit a range of emotions and 

behaviors from parents and their children. At Time 1, the five episodes (i.e., tasks) were: 

(1) Book reading: parents were instructed to read a picture book to their children (2) 

Wheels: assisted their children in naming as many objects with wheels as possible (3) 

Maze: parents guided their children through completing an Etch A Sketch® maze without 

touching any of the lines (4) Story: with the aid of their parents, children arranged cards 

depicting an action sequence in the correct temporal order and (5) Tangoes: children 

positioned geometric puzzle pieces to match a predetermined shape. At Time 2, the 

episodes were: (1) Guessing game: parents guide their children in guessing an image on 

an unseen card (2) Traffic: with their parents’ help, children are required to shift cars 

up/down and left/right on a board to clear a path (3) Maze: parent and child are required 

to both collaboratively and competitively to direct a marble into holes on a wooden 

labyrinth board and (4) Block Buddies: parents and children work together to put together 

plastic shapes to match designs shown on cards. 

Each episode was coded on the following five measures: (1) Maternal Support, a 

measure of the mother’s expression of positive regard and emotional support towards the 

child; (2) Maternal Intrusiveness, characterized by parenting behaviors that interfere with 

a child’s autonomy. Mothers scoring high on this measure demonstrate pervasive 

intrusions which challenge the child’s self-directed efforts. (3) Maternal Hostility is 

characterized by expressions of anger, frustration, annoyance, or rejection. (4) Maternal 

Positive Affectivity and (5) Maternal Negative Affectivity are measures of the frequency 

and intensity of facial, bodily, and vocal displays of positive and negative affect, 

respectively. All measures were coded on a 5-point scale with the exception of Maternal 
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Positive and Negative Affectivity, which were scored on 3-point scales (Table 3). Each 

measure was averaged across tasks and z-scored. 

To account for possible divergent effects of the dimensions of deprivation and 

threat on outcome measures, present analyses used two constructs at Time 1 and Time 2 

to measure parenting behaviors (Table 3). A Negative Parenting Composite was created 

by averaging the above measures of Maternal Intrusiveness, Maternal Hostility, and 

Maternal Negative Affectivity. A Positive Parenting Composite was created by averaging 

z-scored measures of Maternal Support and Maternal Positive Affectivity. Internal 

consistencies (α) and intraclass correlation coefficients (ICC) for composite and subscale 

measures can be found in Table 3. Resulting values for each measure were z-scored 

according to the larger sample that successfully completed this task with their mother 

(n=161 at Time 1, n=97 at Time 2). 
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Table 3  
Descriptive statistics for primary study variables. 
 n Meana SDa Mina Maxa ZMina ZMaxa αb ICCb 
Independent Variables          

T1 Negative Parenting 60 0.10 0.94 -0.66 3.75 -0.80 4.38 0.75 0.97 
Maternal Intrusiveness  1.68 0.55 1.00 3.00 - - 0.66 0.91 
Maternal Hostility  1.19 0.36 1.00 2.60 - - 0.76 0.89 
Maternal Negative Affect  1.05 0.15 1.00 1.80 - - 0.67 0.85 

T1 Positive Parenting 60 -0.03 0.94 -2.44 1.57 -2.62 1.67 0.88 0.96 
Maternal Support  4.00 0.87 1.40 5.00 - - 0.88 0.96 
Maternal Positive Affect  1.86 0.28 1.00 2.40 - - 0.74 0.81 

T2 Negative Parenting 59 -0.01 0.79 -0.58 2.50 -0.69 2.85 0.73 0.96 
Maternal Intrusiveness  1.42 0.45 1.00 2.75 - - 0.49 0.91 
Maternal Hostility  1.18 0.37 1.00 3.00 - - 0.84 0.96 
Maternal Negative Affect  1.05 0.14 1.00 1.75 - - 0.76 0.97 

T2 Positive Parenting 59 -0.11 0.97 -4.46 1.39 -5.28 1.66 0.85 0.91 
Maternal Support  4.32 0.75 1.50 5.00 - - 0.81 0.92 
Maternal Positive Affect  1.96 0.18 1.25 2.50 - - 0.18 0.85 

T1 AUCg (log10) 59 1.08 0.28 0.60 2.30 -1.70 4.47 - - 
T1 AUCi (log10) 59 1.88 0.08 1.52 1.97 -1.87 0.50 - - 
T2 AUCg (log10) 62 1.07 0.28 0.52 2.36 -2.03 4.87 - - 
T2 AUCi (log10) 62 1.31 0.10 1.07 1.66 -1.94 2.96 - - 

Dependent Measures c          
Right Hippocampal Total 63 4269.87 308.68 3522.63 4960.80 - - - - 

Right Hippocampal Head  2121.41 276.61 1574.82 2771.44 - - - .97 
Right Hippocampal Body  1455.43 173.56 1055.44 1892.07 - - - .78 
Right Hippocampal Tail  693.03 119.72 377.36 980.84 - - - .87 

Left Hippocampal Total 63 4180.49 314.87 3511.95 5154.20 - - - - 
Left Hippocampal Head  1970.35 292.45 1431.12 2842.79 - - - .97 
Left Hippocampal Body  1551.78 214.72 1001.79 2019.07 - - - .87 
Left Hippocampal Tail  658.37 125.58 297.70 973.72 - - - .86 

aMeans, standard deviations, and ranges are reported for the subsample included in the present analyses. b T1 parenting internal 
consistencies (α) and intraclass correlation coefficients (ICC) for inter-rater reliability were based on n=174 and n=38, 
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respectively. T2 parenting α and ICC were based on n=103 and n=28, respectively. Hippocampal volume intraclass correlation 
coefficients were derived from the full sample, n=63.  c Volume, measured in mm3. 
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 Cortisol Reactivity.  

During the second visit at Time 1, 156 children provided salivary cortisol samples 

before and after a stressful task. Of the 156 children, 59 children also participated in the 

neuroimaging assessment at Time 2. Salivary cortisol samples were collected by dipping 

a cotton roll in a small amount of Kool Aid and placing it in the child’s mouth until 

saturated with saliva. This method, which does not influence cortisol assays if used 

sparingly and consistently, stimulates saliva production and makes the sampling 

procedure more pleasant for children (Talge, Donzella, Kryzer, Gierens, & Gunnar, 

2005). The baseline saliva sample was collected after a 30-minute period of quiet play 

(e.g., coloring, watching movies). The laboratory stress paradigm used a task developed 

by Kryski, Smith, Sheikh, Singh, and Hayden (2011), which was an adapted version of 

Lewis and Ramsay's (2002) paradigm. The task is a developmentally-appropriate 

laboratory stressor, which required children to pair animal pictures with colored chips 

within 3 minutes. The experimenter manipulated a timer so the child failed to complete 

the task three times. After the third failed trial, the experimenter informed the child that 

the timer was broken, praised the child’s performance, and presented the child with a 

desired prize (for a complete description of the task, see Dougherty, Tolep, et al., 2013; 

Tolep & Dougherty, 2014). This task has been successful in eliciting a cortisol response 

in preschool-aged children (Kryski et al., 2011).  

At Time 2, children completed a modified version of the Trier Social Stress Task 

for Children (TSST-C; Buske-Kirschbaum et al., 1997) followed by a puzzle. During the 

task, children were instructed to tell a 4.5-minute story about an unfamiliar picture book 

after 30 seconds of preparation. After completion of the task, children were instructed to 
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complete an unsolvable puzzle within 3 minutes (for a complete description of the tasks, 

see Leppert, Kushner, Smith, Lemay, & Dougherty, 2016).  

At Time 1 and Time 2, children were told that the tasks they were completing 

were very easy for young children and that they would receive a prize based on their 

performance. Additionally, to elicit feelings of social evaluation, the experimenter 

pretended to take notes on the child’s performance. 

At both Time 1 and Time 2, salivary cortisol samples were collected at baseline 

and 20-, 30-, 40-, and 50-minutes post-stressor, frozen at -20°C, and assayed in duplicate 

using a time-resolved fluorescence immunoassay with fluorometric end-point detection 

(DELFIA) at the Biochemical Laboratory at the University of Trier, Germany. Inter- and 

intra- assay coefficients of variation ranged between 7.1-9.0% and 4.0-6.7%, 

respectively. Measures of cortisol reactivity were derived from the trapezoid formula 

from the 5 individual cortisol samples at each timepoint (Pruessner, Kirschbaum, 

Meinlschmid, & Hellhammer, 2003). The area under the curve with respect to ground 

(AUCg), a measure of the magnitude of total cortisol secretion across the 5 samples, as 

well as the area under the curve with respect to increase (AUCi), a measure of total 

cortisol change, are included in analyses (Table 3). Two participants had one sample 

exceeding 44nmol/L so these extreme values were discarded and the missing data points 

were interpolated using the average of five multiple imputations.  

Neuroimaging Assessment.  

Sixty-four children from the original sample completed the neuroimaging session 

at Time 2, of which, 63 provided scan data for analysis (1 child did not complete any 

scans due to claustrophobia). During the session, children completed a 30-60 minute 
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mock scanner training to become acclimated to the scanner environment and receive 

feedback regarding motion. Participants were scanned in a Siemens 3.0-T scanner 

(MAGNETOM Trio Tim System, Siemens Medical Solutions, Erlangen, Germany) using 

a 12-channel coil.  

Hippocampal Structure. Children watched a video of their choosing while 

structural data were collected using a high-resolution T1 magnetization-prepared rapid 

gradient-echo (MPRAGE) sequence consisting of 176 contiguous sagittal slices (1.0 × 

1.0 × 1.0 mm voxel dimensions; 1900 ms TR; 2.52ms TE; 900ms inversion time; 9° flip 

angle; pixel matrix= 256 x 256). T1 images were analyzed in Freesurfer (Version 5.1.0), 

an automatized segmentation package (surfer.nmr.mgh.harvard.edu). Resulting 

hippocampal segmentations were visually checked and manual edits were performed 

(n=7), as necessary, to correct for gross over- or under-inclusions.  

Given evidence that subregions of the hippocampus (i.e., head, body, tail) may be 

differentially susceptible to early insults and specific hippocampal subfields (e.g., dentate 

gyrus and the cornu ammonis areas 1-4) are differentially distributed along the 

longitudinal axis of the hippocampus, the Freesurfer hippocampal volumes were 

segmented into head, body, and tail subregions. This was achieved by aligning Freesurfer 

volumes to the anterior commissure-posterior commissure to eliminate distortions 

introduced by reorientation (Poppenk & Moscovitch, 2011). The anterior boundary of the 

hippocampal head was identified using the most anterior slice of the hippocampus 

identified by Freesurfer. The posterior boundary of the hippocampal head was identified 

as the last coronal slice in which the uncal apex is visible (Riggins, Blankenship, 

Mulligan, Rice, & Redcay, 2015; Weiss, Dewitt, Goff, Ditman, & Heckers, 2005). The 
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anterior boundary of the hippocampal tail was identified as the slice at which the fornix 

separates from the hippocampus and becomes clearly visible (Riggins et al., 2015; 

Watson et al., 1992). The posterior boundary of the hippocampal tail was identified by 

Freesurfer. The hippocampal body was identified as the area between these regions. 

These divisions were identified twice for each participant (n=63) by independent raters 

with a high degree of consistency between raters (intraclass correlation coefficients 

(ICCs) for the posterior boundary of the right and left head and the anterior boundary of 

the right and left tail were .92, .94, .90, and .88, respectively). Final unilateral 

hippocampal total, head, body, and tail volumes were adjusted for total intracranial 

volume (ICV) to ensure all observed associations were not confounded by differences in 

total brain volume (Raz et al., 2005), and are used as dependent measures in structural 

analyses (Table 3).  

Hippocampal Functional Connectivity. Metrics of hippocampal connectivity 

were derived from a 6-minute resting-state scan during which children viewed abstract 

shapes (similar to screen savers). Use of abstract shapes has become a common 

methodological choice in pediatric neuroimaging because it reduces participant motion 

while not significantly compromising patterns of resting-state network activity 

(Blankenship et al., 2016; Riggins, Geng, Blankenship, & Redcay, 2016; Vanderwal, 

Kelly, Eilbott, Mayes, & Castellanos, 2015). Data were collected with the following scan 

parameters: 180 EPI volumes consisting of 36 oblique interleaved slices with a 3.0 x 3.0 

x 3.0 mm voxel size; 2s TR; 24 ms TE; 3mm slice thickness; 90° flip angle; 64x64 pixel 

matrix.  
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Functional images were slice-time corrected in the Analysis of Functional 

Neuroimages (AFNI; Version 16.0.00) software package (Cox, 1996). All functional 

images were aligned to the first volume using rigid-body motion-correction and 

registered to both the T1 structural images and the Freesurfer subcortical segmentations 

(i.e., asegs) using the Advanced Normalization Tools (ANTs; version 1.9.v4) software 

(http://stnava.github.io/ANTs/). The data were then bandpass filtered at .009<f<.08 and 

nuisance regressed. Nuisance regression included 21 regressors: 6 motion parameters and 

their 6 temporal derivatives, baseline, linear, quadratic, and cubic drift, as well as 

separate timeseries for left and right hemisphere white matter, left and right hemisphere 

lateral ventricles, and the corpus callosum2. Timepoints where the framewise 

displacement exceeded 1mm were excluded, along with the previous volume, using 

censor files. Participants who had more than 10% of their total volumes censored were 

excluded from group analyses (n=9). Average unilateral anterior and posterior 

hippocampal timeseries were extracted from the nuisance-regressed and filtered data. 

Functional volumes were then normalized to a 4.5-8.5 year symmetrical MNI 

Child Template (Fonov et al., 2011) with an multivariate transformation in ANTS. Data 

were smoothed using a 6mm Gaussian kernel within a whole brain mask. Whole brain 

connectivity analyses were run for unilateral hippocampal anterior and posterior seeds 

using the 3dDeconvolve t command in AFNI. The resulting R2 values were converted to 

Pearson’s r and then to z-scores using a Fisher’s r-to-z transformation. Individual 

                                                 
 

2 Two participants’ lateral ventricles were too small to generate lateral ventricle masks that did not intersect 
with surrounding neural tissue. Nuisance regression for these two participants did not include CSF 
regressors. 
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subjects’ z-scored connectivity maps were entered into the group analysis. To control for 

multiple comparisons, 10,000 Monte Carlo simulations were be run on the residual 

timeseries of each analysis using AFNI’s 3dClustSim for analysis-specific cluster-

corrected p-values of p<.05 (Table 4). 

 
Table 4  
Minimum cluster size (k) for pcorrected <.05 at puncorrected < .005. 

Independent Variables 
 Anterior 

Hippocampus 
(k) 

 Posterior 
Hippocampus 

(k) 
Negative Parenting  68  68 
Positive Parenting  68  69 
AUCg  70  70 
AUCi  69  69 
Maternal Lifetime Depressive Disorder  69  68 
Cumulative Exposure to Maternal Depression  68  69 
Cumulative Exposure x Negative Parenting  67  66 
Cumulative Exposure x Positive Parenting  70  69 
Cumulative Exposure x AUCg  70  69 
Cumulative Exposure x AUCi  69  68 
Maternal Lifetime Depressive Disorder x Negative Parenting  68  67 
Maternal Lifetime Depressive Disorder x Positive Parenting  68  70 
Maternal Lifetime Depressive Disorder x AUCg  70  70 
Maternal Lifetime Depressive Disorder x AUCi  70  71 

 

Masks. Freesurfer segmentation files (described above) were used to generate 

subject-specific masks for hippocampal and nuisance signal timeseries extraction. Given 

the small volume of the hippocampal tail and lack of evidence for differential 

connectivity in the posterior regions of the hippocampus (i.e., between the body and tail; 

Poppenk, Evensmoen, Moscovitch, & Nadel, 2013), left and right hippocampal bodies 

and tails were collapsed to create a functional seed for bilateral posterior hippocampus. 

The bilateral anterior seed corresponds to the left and right hippocampal heads used in 

structural analyses. Bilateral seeds are a common methodological choice when no 
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differences in functional lateralization are hypothesized and limit the number of analyses 

run in under-powered samples. Additional masks were created for left and right 

hemisphere white matter, corpus callosum, and left and right lateral ventricles. Each 

mask was resampled to functional resolution and clipped at 100%, 50%, 80%, and 90%, 

respectively, for cerebral white matter, corpus callosum, lateral ventricles, and all 

hippocampal seeds.  

Motion. Motion has been shown to have significant deleterious effects on resting-

state analyses, especially in young children who may be susceptible to more frequent and 

larger movements than adults (Power et al., 2013, 2014; Power, Schlaggar, & Petersen, 

2015; Satterthwaite et al., 2012; Van Dijk, Sabuncu, & Buckner, 2012). To mitigate any 

possible effects of motion on our results, a number of precautions were taken: (1) Only 

participants who showed < 3mm of movement from a reference volume throughout the 

entire scan were included3. (2) Volumes demonstrating >1mm of framewise displacement 

(FD), calculated as the Euclidean distance from the previous volume, along with the 

previous volume, were censored. (3) Participants were excluded if >10% of volumes 

were censored (4) Mean (FD) was calculated for each individual and included in all 

analyses as a covariate. (5) We ensured that mean FD did not correlate with age, 

independent variables of interest, including parenting (positive and negative dimensions) 

and cortisol reactivity (AUCg, AUCi), or either measure of maternal depression status 

(i.e., maternal lifetime history of depressive disorders, cumulative lifetime exposure to 

maternal depression (Table 5). 

 
                                                 
 

3 One participant had a mean FD value of 3.02 and was included in present analyses. 
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Table 5  
Correlations between mean FD and independent variables of interest. 
 r p 
Scan Age -.10 .519 
T1 Negative Parenting .01 .970 
T1 Positive Parenting .07 .668 
T2 Negative Parenting -.09 .580 
T2 Positive Parenting .13 .408 
T1 AUCg -.13 .395 
T1 AUCi <.01 .977 
T2 AUCg .07 .663 
T2 AUCi -.13 .393 
Maternal Lifetime History of Depressive Disorders .17 .249 
Cumulative Lifetime Exposure to Maternal Depressive Disorders -.03 .851 

 

Data Analytic Methods 

The overarching aim of the present investigation is to examine timing-dependent 

differences in the associations between early and concurrent parenting and cortisol 

reactivity with hippocampal volume and functional connectivity. To make claims about 

the relative significance of the timing of experience, both T1 and T2 measures of 

parenting or cortisol reactivity were entered into each model. For results of analyses 

investigating T1 or T2 parenting and cortisol reactivity (i.e., without controlling for 

shared variance), please refer to the Supplementary Material. 

Aim 1: Examine the timing-dependent associations between early (ages 3-5 

years) and concurrent (5-10 years) parenting behaviors with hippocampal structure 

and functional connectivity at 5-10 years.  

Structure. To examine associations between early and concurrent parenting and 

hippocampal structure at follow-up, separate multiple regression analyses were run for 

each unilateral hippocampal whole and subregion volume with negative or positive T1 



58 
 

and T2 parenting composite scores and covariates (see Covariates, below) entered as 

independent variables. 

Function. To examine associations between early and concurrent parenting and 

hippocampal functional connectivity, individual subjects’ z-scored whole-brain 

hippocampal functional connectivity maps were entered into AFNI’s 3dttest++ with T1 

and T2 negative or positive parenting as the predictors, controlling for appropriate 

covariates (see Covariates, below). Separate analyses were run for positive and negative 

parenting dimensions. 

Aim 2: Examine the timing-dependent associations between early (ages 3-6 

years) and concurrent (5-10 years) cortisol reactivity3-6 with hippocampal volume 

and functional connectivity (5-10 years).  

 Structure. As above, to examine associations between early and concurrent 

cortisol reactivity with hippocampal structure, separate multiple regression analyses were 

run for each unilateral hippocampal whole and subregion volume with T1 and T2 

measures of each measure of cortisol reactivity (AUCg or AUCi) and covariates (see 

Covariates below) entered as independent variables. 

Function. To examine associations between early and concurrent cortisol 

reactivity with whole-brain hippocampal functional connectivity, analyses were 

conducted as above, with T1 and T2 AUCg or AUCi as independent variables in separate 

models. 

Aim 3: Determine whether cortisol reactivity mediates the association 

between parenting and hippocampal volume and functional connectivity (5-10 

years).  



59 
 

Structure. Mediation analyses will be conducted within a regression framework 

using the Hayes’ SPSS PROCESS macro for mediation (Hayes, 2013). In contrast to the 

traditional Baron and Kenny (1986) step-wise method of mediation, Hayes’ approach 

uses a regression approach to examine the magnitude difference between the effect of the 

independent measure (T1 or T2 positive or negative parenting) on the dependent measure 

(hippocampal volume) when the mediator (T1 or T2 cortisol reactivity) is or is not 

controlled. Use of the Hayes’ method enables investigation of indirect effects in the 

absence of statistical significance in the association between parenting behavior and 

hippocampal volume (Aim 1) while controlling for other factors (see Covariates, below). 

As recommended by Hayes (2013), significance of the indirect effect will be tested using 

bias-corrected bootstrapped confidence intervals determined by 10,000 samples with 

replacements. This method of significance testing does not require assumptions about the 

underlying distribution and is recommended for use in small samples (Hayes, 2013).  

Function. To test the partial mediation model, average connectivity z-scores were 

extracted from regions with a significant main effect of T1 or T2 Positive or Negative 

Parenting (from Aim 1). For each significant region, mediation was tested using the 

Hayes PROCESS macro in SPSS with the appropriate z-scores entered as the dependent 

variable in separate regression models.  

Exploratory Aim: Explore the role of maternal depression on observed 

associations. 

The present proposal investigated the effects of the early parenting environment 

on subsequent cortisol reactivity and hippocampal structure and functional connectivity 

in a sample of children over-selected for maternal depression. Although over-selection 
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equipped the present analyses with a more distributed range of parenting behaviors, 

maternal depression may confound observed effects. The goal of this exploratory aim 

was to examine the role maternal depression status may play in observed associations in 

Aims 1-3 (see Figure 3). Follow-up analyses were run to determine significant main 

effects of maternal depression on hippocampal structure and function as well as whether 

maternal depression (i.e., maternal lifetime history of depression or cumulative lifetime 

exposure to maternal depression) significantly moderated the associations between 

independent variables of interest (i.e., parenting and cortisol reactivity) and hippocampal 

structure and function.  

Moderation was tested for both maternal lifetime history of depression and 

cumulative lifetime exposure to maternal depression as each of these indices may capture 

distinct risk factors associated with maternal depressive disorders, despite high 

correlations (Table 5).  In particular, maternal lifetime history of depression may reflect 

genetic, environmental, or a combination of genetic and environmental factors associated 

with maternal depression.  In contrast, cumulative exposure to maternal depression 

captures the additive consequence of long-term or repeated exposure to a depressed 

mother, reflecting, to some degree, an environmental risk that may or may not be 

compounded by a genetic risk.    

Significant interactions were probed using simple slopes analyses (±1 SD), 

outlined by Aiken and West (1991). For structural analyses using a continuous moderator 

(i.e., cumulative lifetime exposure to maternal depression), the Johnson-Neyman 

procedure (Johnson & Fay, 1950) was run to determine at which levels of the moderator 

the effects were significant. Significant interactions in the functional analyses were 
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probed as above by limiting probe analyses (i.e., masking) to regions where the 

interaction was significant. Probed results were thresholded at p<.005, and considered 

significant at ± 1 SD above the mean if k>20. 

Independent Variables. 

T1 and T2 Positive and Negative Parenting as well as T1 and T2 AUCg and 

AUCi are the predictors of interest in both functional and structural analyses.  In all 

analyses reported below, independent variables are z-scored values from the larger 

available sample (sample sizes vary, see Figure 4). 

Covariates.  

Hypothesized associations in the current models may be confounded by other 

factors. To account for this possibility, variables that were considered as potentially 

confounding factors included: child’s gender, parent education (at least one parent with a 

four-year college degree or not), child’s age at T2 scan, maternal lifetime history of 

depressive disorders (present or not), and proportion of the child’s life from birth until 

present (i.e., mid- to late-childhood) exposed to maternal depression (in months) (Table 

5). Where appropriate, independent samples t-tests, One-Way ANOVAs, or Pearson’s 

correlations were run to determine significant differences among levels of possible 

covariates. Determination of inclusion in final structural analyses was established based 

on a significant difference between levels of potential covariates on the dependent 

measures (i.e., hippocampal volumes). Consistent with previous research standards, child 

age at the time of the T2 scan as well as mean FD displacement (see Motion, above) were 

entered as covariates in all functional connectivity analyses. 

Outliers. 
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Limiting analyses to participants who provided imaging data resulted in reduced 

variability and non-normal distributions within some predictor variables.  In all cases, the 

data from the imaging subsample reflected the distributions of the larger sample (Figure 

4). Because potential outliers were not data measurement errors and reflected true 

variations in parenting or cortisol reactivity, it was not justified to remove outliers from 

any analysis.  Where it appears that a result was driven by an outlier, we advise caution in 

interpreting the results, analyses were re-run without the outlier included, and the results 

of these follow-up analyses are included within the text or in a footnote. 
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Figure 4. Histograms to display the distribution of independent variables of interest in the 
imaging subsample and the larger sample.
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Chapter 5: Structural Results 

Covariates 

Bilateral hippocampal head volume differed between genders (Table 6), with males 

having larger right (male: M=2197.82, SD=276.13, range = 1649.32-2771.44 mm3; female: 

M=2047.39, SD=260.27, range=1574.82-2649.33 mm3) and left (male: M=2058.50, SD=318.17, 

range= 1431.12-2842.79 mm3; female: M=1884.96, SD=240.39; range=1455.03-2527.68 mm3) 

hippocampal heads. As such, gender was entered as a covariate in all analyses of left or right 

hippocampal head. 

Scan age predicted right hippocampal body (Table 6), with older age predicting larger 

volume, and is included as a covariate in all subsequent analyses of right hippocampal body. 
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Table 6  
Correlation table for all dependent, independent, and covariate variables. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 
Dependent Variables                     

1. Right Hippocampal Head                     
2. Right Hippocampal Body -.45***                    
3. Right Hippocampal Tail .21+ .05                   
4. Right Hippocampal Total .74*** .16 .60***                  
5. Left Hippocampal Head .78*** -.39** .14 .54***                 
6. Left Hippocampal Body -.28* .62*** -.03 .09 -.45***                
7. Left Hippocampal Tail .09 .17 .54*** .39** .17 -.09               
8. Left Hippocampal Total .54*** .16 .32* .68*** .67*** .23+ .50***              

Independent Variables                     
9. T1 Negative Parentinga -.13 .10 .05 -.07 -.14 .01 .05 -.03             
10. T1 Positive Parentinga .30* -.01 -.16 .22 .28* .04 <.01 .25+ -.50***            
11. T2 Negative Parentinga -.18 .31* -.02 <.01 -.17 .13 .04 -.01 .68*** -.25+           
12. T2 Positive Parentinga .18 -.29* -.20 -.06 .17 -.26+ -.23+ -.15 -.49*** .34** -.64***          
13. T1 AUCg (log10)a .13 .26* .33* .38** .05 .25+ .17 .27+ -.01 .13 -.14 -.10         
14. T1 AUCi (log10)a .11 -.45*** -.16 -.21 .12 -.36** -.16 -.19 .07 -.13 .08 .13 -.57***        
15. T2 AUCg (log10)a .05 -.15 -.20 -.12 -.08 .07 -.26* -.11 .27* -.18 .08 -.07 -.10 .11       
16. T2 AUCi (log10)a -.07 .03 -.19 -.17 -.17 .13 -.35** -.17 .28* -.03 .12 .01 .05 .12 .53***      

Potential Covariates                     
17. Maternal Lifetime DD .04 -.01 -.16 -.04 .20 -.11 -.04 .11 .02 -.03 .17 .05 -.02 .02 -.09 -.16     
18. Percent exposure to DD -.12 .14 -.04 -.05 -.03 -.07 .06 -.04 .24+ -.17 .41** -.19 <-.01 -.08 -.01 -.12 .51***    
19. Child gender -.27* .21 .01 -.16 -.30* .21 <.01 -.06 -.03 -.05 -.17 -.09 .15 .07 -.14 .06 -.15 .07   
20. Child’s age at scan -.14 .27* -.14 -.02 -.01 .04 -.06 -.05 -.24+ -.21 .06 .08 -.16 .13 -.02 -.05 .02 .04 -.06  
21. Parent Education .15 -.04 .10 .18 .14 -.04 .14 .10 -.43** .28* -.43** .21 .13 -.09 -.21+ -.21+ -.11 -.11 .15 .17 
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Aim 1: Associations between Parenting and Children’s Hippocampal Volume 

T1 Negative Parenting, controlling for T2 Negative Parenting, did not predict any 

whole or segmented hippocampal volume at T2 (Table 7). T2 Negative Parenting, 

controlling for T1 Negative Parenting, did not significantly predict any whole or 

segmented hippocampal volume at T2 (Table 7). 

Greater T1 Positive Parenting, controlling for T2 Positive Parenting, significantly 

predicted larger right head and left total hippocampus volume and marginally predicted 

larger left hippocampal head at T2 (Table 8, Figure 5). Greater T2 Positive Parenting, 

controlling for T1 Positive Parenting, predicted smaller bilateral body and left total 

hippocampus volumes at T2 (Table 8, Figure 6)4.  

 
Figure 5. Associations between T1 Positive Parenting and right head and left total 
hippocampal head volumes. Note: Scatterplots depict bivariate correlations between the 
predictor and dependent variable and are not adjusted for additional factors included in 
the statistical models. 
 

                                                 
 

4 No effects between T2 Positive Parenting and bilateral body or left total volumes remained significant 
when the one individual with extremely low Positive Parenting was removed from the analysis. 



67 
 

 

Figure 6. Association between T2 Positive Parenting and left and right hippocampal body 
volume. Note: Scatterplots depict bivariate correlations between the predictor and 
dependent variable and are not adjusted for additional factors included in the statistical 
models. 
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Aim 2: Associations between Children’s Cortisol Reactivity and Hippocampal 

Volume  

The magnitude of the cortisol response to stress at T1 (AUCg), controlling for 

AUCg at T2, predicted larger T2 bilateral hippocampal body and bilateral total volumes 

(Table 9, Figure 7)5. In contrast, greater change in cortisol (AUCi) at T1, controlling for 

AUCi at T2, predicted smaller T2 bilateral bodies (Table 10, Figure 8).  

Greater T2 change in cortisol (AUCi), controlling for T1 AUCi, significantly 

predicted smaller left hippocampal tail volume (Table 10, Figure 9). The association 

between the magnitude of the cortisol response (AUCg) at T2, controlling for T1 AUCg, 

and left tail was marginally significant, with greater T2 AUCg predicting smaller left tail 

volume (Table 9).  

                                                 
 

5 The effects between T1 AUCg and bilateral body volumes remained significant when the one participant 
with high T1 AUCg was removed from analyses. The effects between T1 AUCg and bilateral total volumes 
were no longer significant when this individual was excluded. 
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Figure 7. Associations between T1 AUCg and right and left body and total hippocampal 
volumes. Note: Scatterplots depict bivariate correlations between the predictor and 
dependent variable and are not adjusted for additional factors included in the statistical 
models. 
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Figure 8. Associations between T1 AUCi and left and right hippocampal body volumes. 
Note: Scatterplots depict bivariate correlations between the predictor and dependent 
variable and are not adjusted for additional factors included in the statistical models. 
 

 

Figure 9. Association between T2 AUCi and left hippocampal tail volume. Note: 
Scatterplot depicts bivariate correlation between the predictor and dependent variable and 
is not adjusted for additional factors included in the statistical model. 
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Aim 3: Mediation of Association between Parenting and Hippocampal Volume by 

Cortisol Reactivity 

As seen in Table 3, parenting did not significantly predict children’s cortisol 

reactivity. Nevertheless, using Preacher and Hayes’ bootstrap method (Hayes, 2013), we 

tested whether cortisol reactivity (T1 or T2; AUCg or AUCi) mediated associations 

between any parenting composite (T1 or T2; Positive or Negative) and hippocampal 

subregion volume.  

There was a significant indirect effect of T1 Negative Parenting on T2 left 

hippocampal tail through T2 AUCi (Table 27). As Figure 10 illustrates, greater T1 

Negative Parenting significantly predicted greater T2 total change in cortisol (a=0.20, 

p=.038), and greater T2 change in cortisol significantly predicted smaller left 

hippocampal tail volume (b=-55.89, p=.009). The bootstrapping method (Hayes, 2013) 

indicated that the indirect effect (ab = (.20)(-55.89) = -11.18) was significant, with a 

boot-strapped confidence interval range of (-34.49, -0.35), indicating that greater T1 

Negative Parenting predicts increased T2 AUCi which, in turn, predicts smaller left 

hippocampal tail volumes. T1 Negative Parenting did not significantly predict left 

hippocampal tail volume independent of its effects on T2 AUCi (c’ = 18.37, p=.372, CI = 

-22.57, 59.32).  

No other mediation models were statistically significant. 
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Figure 10. Standardized regression coefficients for the association between T1 Negative 
Parenting and left hippocampus tail volume, as mediated by T2 AUCi. * p <.05 
 
 
Exploratory Aim: Role of Maternal Depression 

 Main Effects of Maternal Depression. 

Neither lifetime history of maternal depression or lifetime exposure to maternal 

depression significantly predicted any hippocampal subregion volume (Table 6). 

 Interactions with Maternal Depression. 

Exploratory analyses were run to assess the potential moderating role of maternal 

lifetime history of depression or cumulative exposure to maternal depression on the 

associations between T1 and T2 parenting or cortisol reactivity and hippocampus 

subregion volume. All models tested included: both T1 and T2 measures of the 

independent variable of interest (positive or negative parenting, AUCg or AUCi), the 

maternal depression index (cumulative lifetime exposure to maternal depression or 

maternal lifetime history of depressive disorders), two interaction terms (between each 

measure of the independent variable and the maternal depression index), and any 

additional covariates as determined above. 

Interactions between Parenting and Maternal Depression.  
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Neither maternal lifetime depression status nor cumulative exposure to maternal 

depression significantly moderated the associations between T1 Positive Parenting, 

controlling for T2 Positive Parenting, and any whole or segmented hippocampal volume 

at T2 (Table 11-Table 18).  

Maternal lifetime history of depressive disorders interacted with T2 Positive 

Parenting, while controlling for T1 Positive Parenting, to predict bilateral hippocampal 

head volumes at T2 (Table 11, Table 15, Figure 11)6. Specifically, in offspring without a 

maternal lifetime history of depression, greater T2 Positive Parenting, controlling for T1 

Positive Parenting, predicted larger left (β =.63 b=159.71, SE=65.28, pr=.32, p=.018) and 

right (β = .57 b = 139.28, SE = 63.80, pr = .29, p=.034) hippocampal head volumes. This 

association was not significant in offspring with a lifetime history of maternal depression 

for left (β =-.14 b=-34.83, SE=37.27, pr=-.13, p=.354) or right (β =-.09 b=-22.46, 

SE=36.43, pr=-.09, p=.540) head.  

T1 Negative Parenting, controlling for T2 Negative Parenting, interacted with 

cumulative exposure to maternal depression in predicting right total hippocampal volume 

(Table 14, Figure 12). In offspring with high exposure to maternal depression, greater T1 

Negative Parenting predicted smaller right total hippocampal volumes (β =-.70 b=-

192.27, SE=89.83, pr=-.29, p=.037), significant at standardized exposure values greater 

than .61 (25.86% of the sample). This association was not significant in offspring with 

low exposure to maternal depression (β = .26 b=69.62, SE=73.78, pr=.13, p=.350).  

                                                 
 

6 The interaction between T2 Positive Parenting and maternal lifetime history of depressive disorders in 
predicting bilateral hippocampal head volumes remained significant when the one individual with 
extremely low T2 Positive Parenting was excluded from analysis. 
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Moreover, controlling for the effects of T1 Negative Parenting, greater T2 Negative 

Parenting interacted with cumulative exposure to maternal depression in predicting right 

total (Table 14) and left tail volumes (Table 17, Figure 13). In offspring with values of 

cumulative exposure to maternal depression one standard deviation above the mean, 

greater T2 Negative Parenting marginally predicted larger right total volumes (β = .57 

b=192.76, SE=100.30, pr=.26, p=.060). The effect was significant at standardized 

exposure levels greater than 1.20 (17.24% of the sample), and there was no association in 

offspring with low exposure to maternal depression (β =-.22 b=-75.54, SE=98.65, pr=-

.11, p=.447). The interaction for the left tail was not significant when probed at ± 1 SD 

above the mean of cumulative exposure (β = .39 b=53.63, SE=41.37, pr=.18, p=.201 and 

β = -.43 b=-59.64, SE=40.69, pr=-.20, p=.149, respectively). To further explore this 

interaction, T2 Negative Parenting was probed as the moderator between cumulative 

lifetime exposure and left tail volume. This analysis revealed that high (+1 SD above the 

mean) T2 Negative Parenting marginally predicted greater left tail volume (β = .46 

b=55.71, SE=30.28, pr=.25, p=.071). This effect was significant at standardized values of 

T2 Negative Parenting greater than 1.55 (5.17% of the sample). There was no effect in 

offspring with low T2 Negative Parenting (β = -.48 b=-57.56, SE=34.51, pr=-.23, 

p=.101). 
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Figure 11. Interactions between T2 Positive Parenting and maternal lifetime history of 
depressive disorders on left and right hippocampal head volumes. Note: Scatterplots 
depict bivariate correlations between the predictor and dependent variable and are not 
adjusted for additional factors included in the statistical models. 
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Figure 12. Interaction between T1 Negative Parenting and cumulative exposure to 
maternal depression on right total hippocampus volume. Note: Scatterplot depicts 
bivariate correlation between the predictor and dependent variable and is not adjusted for 
additional factors included in the statistical model. 
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Figure 13. Interactions between T2 Negative Parenting and cumulative exposure to 
maternal depression on left tail and right total hippocampus volumes. Note: Scatterplots 
depict bivariate correlations between the predictor and dependent variable and are not 
adjusted for additional factors included in the statistical models. 
 

Interactions between Cortisol Reactivity and Maternal Depression.  

Neither maternal lifetime history of depression nor cumulative exposure to 

maternal depression significantly interacted with either measure of T1 cortisol reactivity 

to predict any whole or segmented hippocampal volume (Table 19-Table 26). There were 

significant interactions between lifetime exposure to maternal depression and T2 total 

change in cortisol (AUCi), controlling for T1 AUCi, in predicting right hippocampal head 

(Table 19), tail (Table 21), and total (Table 22) volumes (Figure 14). Specifically, in 

offspring with high exposure to maternal depression, greater T2 AUCi significantly 

predicted smaller right tail (β = -.53 b=-70.62, SE=24.41, pr=-.38, p=.006; significant at 

standardized values of exposure greater than .36, 22.81% of the sample), and total 

volumes (β = -.57 b=-202.10, SE=64.54, pr=-.40, p=.003; significant at standardized 
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values of exposure greater than .38, 22.81% of the sample) and marginally predicted 

smaller right hippocampal head (β = -.36 b=-114.99, SE=62.82, pr=-.25, p=.073; this 

effect was significant at standardized values of exposure greater than 2.79, 1.75% of the 

sample). In offspring with low lifetime exposure to maternal depression, T2 AUCi did 

not significantly predict right head (β = .28, b=90.95, SE=71.55, pr=.18, p=.210), tail (β 

= .30, b=39.74, SE=27.72, pr=.20, p=.158), or total volumes (β = .41 b = 144.76, SE = 

73.28, pr = .27, p = .054). 
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Figure 14. Interaction between T2 AUCi and proportion lifetime exposure to maternal 
depression on right head, tail, and total hippocampal volumes. Note: Scatterplots depict 
bivariate correlations between the predictor and dependent variable and are not adjusted 
for additional factors included in the statistical models. 
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Table 7  
Associations between negative parenting and hippocampal volume. 

Model IV β IV b(SE) IV pr IV p 
DV: Right Hippocampus Head     

T1 Negative Parenting  .02 5.45(43.99)  .02 .902 
T2 Negative Parenting -.24 -73.52(55.26) -.18 .189 
Gender -.28 -153.58(72.06) -.28 .038 

     
DV: Right Hippocampus Body     

T1 Negative Parenting -.09 -13.65(28.55) -.06 .634 
T2 Negative Parenting  .35 68.29(34.46)  .26 .052 
Scan Age  .20 39.23(26.14)  .20 .139 

     
DV: Right Hippocampus Tail     

T1 Negative Parenting  .07 7.54(19.16)  .05 .695 
T2 Negative Parenting -.03 -3.81(23.74) -.02 .873 

     
DV: Right Hippocampus Total     

T1 Negative Parenting -.13 -37.04(50.91) -.10 .470 
T2 Negative Parenting  .09 31.94(63.09)  .07 .615 

     
DV: Left Hippocampus Head     

T1 Negative Parenting -.02 -3.99(45.55) -.01 .930 
T2 Negative Parenting -.21 -68.84(57.21) -.16 .234 
Gender -.31 -177.64(74.60) -.31 .021 

     
DV: Left Hippocampus Body     

T1 Negative Parenting -.12 -23.61(35.05) -.09 .503 
T2 Negative Parenting  .22 52.10(43.44)  .16 .235 

     
DV: Left Hippocampus Tail     

T1 Negative Parenting  .04 4.60(20.67)  .03 .825 
T2 Negative Parenting  .01 1.81(25.62)  .01 .944 

     
DV: Left Hippocampus Total      

T1 Negative Parenting -.05 -13.87(52.03) -.04 .791 
T2 Negative Parenting  .02 8.19(64.48)  .02 .899 
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Table 8  
Associations between positive parenting and hippocampal volume. 

Model IV β IV b(SE) IV pr IV p 
DV: Right Hippocampus Head     

T1 Positive Parenting   .27    73.04 (36.19)  .26 .048 
T2 Positive Parenting   .07    18.02 (32.28)  .08 .579 
Gender -.22 -120.40 (69.18) -.23 .087 

     
DV: Right Hippocampus Body     

T1 Positive Parenting   .05     8.06 (22.78)  .05 .725 
T2 Positive Parenting -.33   -49.73 (19.89) -.32 .015 
Scan Age  .26    49.96 (24.63)  .26 .047 

     
DV: Right Hippocampus Tail     

T1 Positive Parenting -.10   -11.83 (15.88) -.10 .459 
T2 Positive Parenting -.16   -16.34 (14.14) -.15 .253 

     
DV: Right Hippocampus Total     

T1 Positive Parenting   .27    82.44 (41.89)  .25 .054 
T2 Positive Parenting -.15   -40.17 (37.29) -.14 .286 

     
DV: Left Hippocampus Head     

T1 Positive Parenting   .25   72.23 (37.75)  .25 .061 
T2 Positive Parenting   .06   14.70 (33.67)  .06 .664 
Gender -.25 -146.00 (72.17) -.26 .048 

     
DV: Left Hippocampus Body     

T1 Positive Parenting   .13   27.69 (28.87)  .13 .342 
T2 Positive Parenting -.30  -56.80 (25.70) -.28 .031 

     
DV: Left Hippocampus Tail     

T1 Positive Parenting   .09   10.70 (17.04)  .08 .533 
T2 Positive Parenting -.26  -28.16 (15.17) -.24 .069 

     
DV: Left Hippocampus Total      

T1 Positive Parenting   .35 107.31 (41.24)   .33 .012 
T2 Positive Parenting -.27  -73.96 (36.71) -.26 .049 
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Table 9  
Main effects of total cortisol release, AUCg, on hippocampal volume. 

Model IV β IV b(SE) IV pr IV p 
DV: Right Hippocampus Head     

T1 AUCg .15 41.88(36.67) .15 .258 
T2 AUCg .05 11.63(33.24) .05 .728 
Gender -.26 -139.63(72.89) -.25 .061 

     
DV: Right Hippocampus Body     

T1 AUCg .37 61.09(19.84) .39 .003 
T2 AUCg -.13 -18.88(27.87) .14 .295 
Scan Age .36 66.30(22.11) .38 .004 

     
DV: Right Hippocampus Tail     

T1 AUCg .26 28.99(14.54) .26 .051 
T2 AUCg -.17 -17.61(13.25) -.18 .189 

     
DV: Right Hippocampus Total     

T1 AUCg .36 112.02(39.19) .36 .006 
T2 AUCg -.07 -20.11(35.71) -.08 .576 

     
DV: Left Hippocampus Head     

T1 AUCg .08 24.88(39.50) .09 .531 
T2 AUCg -.11 -30.29(35.81) -.11 .401 
Gender -.31 -184.92(78.53) -.31 .022 

     
DV: Left Hippocampus Body     

T1 AUCg .31 64.13(26.90) .31 .021 
T2 AUCg .10 18.90(24.52) .10 .444 

     
DV: Left Hippocampus Tail     

T1 AUCg .13 15.65(15.73) .13 .324 
T2 AUCg -25 -27.37(14.33) -.25 .061 

     
DV: Left Hippocampus Total      

T1 AUCg .27 86.64(41.14) .27 .040 
T2 AUCg -.07 -21.22(37.49) -.08 .574 
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Table 10  
Main effects of total change in cortisol, AUCi, on hippocampal volume. 

Model IV β IV b(SE) IV pr IV p 
DV: Right Hippocampus Head     

T1 AUCi .11 70.43(88.93) .11 .432 
T2 AUCi -.08 -24.28(42.56) -.08 .571 
Gender -.23 -127.29(71.75) -.24 .082 

     
DV: Right Hippocampus Body     

T1 AUCi -.53 -211.90(44.69) -.54 <.001 
T2 AUCi .04 8.13(21.22) .05 .703 
Scan Age .37 69.29(20.40) .42 .001 

     
DV: Right Hippocampus Tail     

T1 AUCi -.14 -37.42(36.44) -.14 .309 
T2 AUCi -.18 -23.75(17.44) -.18 .179 

     
DV: Right Hippocampus Total     

T1 AUCi -.19 -144.60(100.23) -.19 .155 
T2 AUCi -.12 -44.01(47.97) -.12 .363 

     
DV: Left Hippocampus Head     

T1 AUCi .12 90.14(94.06) .13 .342 
T2 AUCi -.19 -65.03(45.02) -.19 .154 
Gender -.29 169.12(75.89) -.29 .030 

     
DV: Left Hippocampus Body     

T1 AUCi -.39 -198.91(63.14) -.39 .003 
T2 AUCi .18 43.62(30.22) .19 .155 

     
DV: Left Hippocampus Tail     

T1 AUCi -.11 -33.59(37.16) -.12 .370 
T2 AUCi -.35 -49.17(17.78) -.35 .008 

     
DV: Left Hippocampus Total      

T1 AUCi -.17 -134.12(102.09) -.17 .194 
T2 AUCi -.14 -51.12(48.86) -.14 .300 
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Table 11  
Interactions between parenting and maternal depression on right hippocampal head volume. 

 β b (SE) pr p 
Model 1     

Gender -.31  -171.43 (74.83) -.30 .026 
T1 Negative Parenting  .21      52.67 (59.66)  .12 .381 
T2 Negative Parenting -.51 -157.79 (114.04) -.19 .172 
Maternal Lifetime Depressive Disorder     .05      29.92 (79.07)  .05 .707 
T1 Negative Parenting x Maternal DD -.34  -108.05 (92.35) -.16 .247 
T2 Negative Parenting x Maternal DD  .41 142.17 (136.10)  .14 .301 

Model 2     
Gender -.29  -162.46 (74.18) -.29 .033 
T1 Negative Parenting -.05    -13.52 (45.10) -.04 .766 
T2 Negative Parenting -.19    -57.04 (67.78) -.12 .404 
Percent Exposure to Maternal DD -.04      -9.33 (38.55) -.03 .810 
T1 Negative Parenting x Exposure to Maternal DD -.57  -106.16 (57.16) -.25 .069 
T2 Negative Parenting x Exposure to Maternal DD .58    109.91 (58.48) -.26 .066 

Model 3     
Gender -.24 -131.15 (68.36) -.26 .061 
T1 Positive Parenting <-.01     -0.18 (52.32) <.01 .997 
T2 Positive Parenting  .57  139.28 (63.80)  .29 .034 
Maternal Lifetime Depressive Disorder    -.06   -33.99 (71.44) -.07 .636 
T1 Positive Parenting x Maternal DD  .31   119.25 (71.71)  .23 .102 
T2 Positive Parenting x Maternal DD -.57 -161.74 (73.58) -.29 .032 

Model 4     
Gender -.21 -115.81 (71.94) -.22 .114 
T1 Positive Parenting  .24 64.75 (38.12)  .23 .095 
T2 Positive Parenting  .16 38.18 (40.96)  .13 .356 
Percent Exposure to Maternal DD -.07 -18.42 (37.64) -.07 .627 
T1 Positive Parenting x Exposure to Maternal DD  .03 8.72 (37.66)  .03 .818 
T2 Positive Parenting x Exposure to Maternal DD -.14 -18.70 (22.14) -.12 .402 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 12  
Interactions between parenting and maternal depression on right hippocampal body volume. 

 β b (SE) pr p 
Model 1     

Scan Age  .19 37.40(26.97)  .19 .171 
T1 Negative Parenting -.07 -11.46(37.06) -.04 .758 
T2 Negative Parenting  .52 99.52(69.78)  .19 .160 
Maternal Lifetime Depressive Disorder    -.03 -9.92(48.48) -.03 .839 
T1 Negative Parenting x Maternal DD -.05 -9.14(55.85) -.02 .871 
T2 Negative Parenting x Maternal DD -.15 -31.78(82.18) -.05 .701 

Model 2     
Scan Age  .19 36.59(26.67)  .19 .176 
T1 Negative Parenting -.12 -18.18(29.62) -.09 .542 
T2 Negative Parenting  .39 73.44(42.37)  .24 .089 
Percent Exposure to Maternal DD  .02 3.92(23.51)  .02 .868 
T1 Negative Parenting x Exposure to Maternal DD -.22 -25.73(35.12) -.10 .467 
T2 Negative Parenting x Exposure to Maternal DD  .19 22.08(35.76)  .09 .540 

Model 3     
Scan Age  .25 48.23(25.00)  .26 .059 
T1 Positive Parenting  .23 38.70(33.90) -.15 .267 
T2 Positive Parenting -.58 -88.14(40.71) -.29 .035 
Maternal Lifetime Depressive Disorder     .08 28.87(45.28)  .09 .527 
T1 Positive Parenting x Maternal DD -.22 -51.43(45.85) -.15 .267 
T2 Positive Parenting x Maternal DD  .29 50.66(46.83)  .15 .284 

Model 4     
Scan Age  .25 47.23(25.25)  .25 .067 
T1 Positive Parenting  .07 10.75(23.75)  .06 .653 
T2 Positive Parenting -.31 -45.63(25.06) -.25 .075 
Percent Exposure to Maternal DD  .08 13.74(23.16)  .08 .556 
T1 Positive Parenting x Exposure to Maternal DD -.06 -10.55(23.09) -.06 .650 
T2 Positive Parenting x Exposure to Maternal DD  .02 1.18(13.52)  .01 .931 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 13  
Interactions between parenting and maternal depression on right hippocampal tail volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting .06 6.04(25.80) .03 .816 
T2 Negative Parenting .16 20.90(49.12) .06 .672 
Maternal Lifetime Depressive Disorder    -.12 -28.20(34.88) -.11 .422 
T1 Negative Parenting x Maternal DD -.02 -1.99(40.09) -.01 .961 
T2 Negative Parenting x Maternal DD -.17 -24.07(59.10) -.06 .685 

Model 2     
T1 Negative Parenting .04 4.40(20.33) .03 .829 
T2 Negative Parenting -.04 -5.32(29.85) -.03 .859 
Percent Exposure to Maternal DD -.05 -5.01(17.29) -.04 .773 
T1 Negative Parenting x Exposure to Maternal DD -.14 -11.03(25.83) -.06 .671 
T2 Negative Parenting x Exposure to Maternal DD .22 17.35(26.30) .09 .512 

Model 3     
T1 Positive Parenting -.25 -28.95(23.79) -.17 .229 
T2 Positive Parenting -.16 -16.42(29.00) -.08 .574 
Maternal Lifetime Depressive Disorder    -.09 -20.80(32.18) -.09 .521 
T1 Positive Parenting x Maternal DD .21 33.29(32.61) .14 .312 
T2 Positive Parenting x Maternal DD <.01 0.29(33.36) <.01 .993 

Model 4     
T1 Positive Parenting -.13 -14.47(16.84) -.12 .394 
T2 Positive Parenting -.12 -12.05(18.10) -.09 .509 
Percent Exposure to Maternal DD -.08 -9.31(16.63) -.08 .578 
T1 Positive Parenting x Exposure to Maternal DD .02 2.55(16.64) .02 .879 
T2 Positive Parenting x Exposure to Maternal DD -.09 -4.87(9.77) -.07 .620 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 14  
Interactions between parenting and maternal depression on right total hippocampal volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting -.03 -7.73(68.73) -.02 .911 
T2 Negative Parenting .11 36.35(130.85) .04 .782 
Maternal Lifetime Depressive Disorder    -.01 -3.50(92.91) -.01 .970 
T1 Negative Parenting x Maternal DD -.20 -73.29(106.78) -.09 .495 
T2 Negative Parenting x Maternal DD .07 27.27(157.41) .02 .863 

Model 2     
T1 Negative Parenting -.23 -61.33(50.85) -.17 .233 
T2 Negative Parenting .17 58.61(74.63) .11 .436 
Percent Exposure to Maternal DD -.07 -21.12(43.23) -.07 .627 
T1 Negative Parenting x Exposure to Maternal DD -.64 -130.94(64.59) -.27 .048 
T2 Negative Parenting x Exposure to Maternal DD .65 134.15(65.77) .27 .046 

Model 3     
T1 Positive Parenting .08 24.11(62.57) .05 .701 
T2 Positive Parenting .14 37.06(76.27) .07 .629 
Maternal Lifetime Depressive Disorder    -.01 -3.24(84.65) -.01 .970 
T1 Positive Parenting x Maternal DD .23 100.08(85.78) .16 .249 
T2 Positive Parenting x Maternal DD -.33 -103.84(87.75) -.16 .242 

Model 4     
T1 Positive Parenting .25 72.89(43.26) .23 .098 
T2 Positive Parenting -.04 -10.41(46.49) -.03 .824 
Percent Exposure to Maternal DD -.04 -11.43(42.71) -.04 .790 
T1 Positive Parenting x Exposure to Maternal DD .02 6.34(42.73) .02 .883 
T2 Positive Parenting x Exposure to Maternal DD -.16 -23.14(25.09)) -.13 .361 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 15 
Interactions between parenting and maternal depression on left hippocampal head volume. 

 β b (SE) pr p 
Model 1     

Gender -0.30 -173.29(76.79) -.30 .028 
T1 Negative Parenting -.01 -2.65(61.21) -.01 .966 
T2 Negative Parenting -.51 -165.85(117.02) -.19 .162 
Maternal Lifetime Depressive Disorder    .19 112.38(81.13) .19 .172 
T1 Negative Parenting x Maternal DD .06 18.56(94.76) .03 .846 
T2 Negative Parenting x Maternal DD .25 90.30(139.66) .09 .521 

Model 2     
Gender -.34 -197.09(78.08) -.33 .015 
T1 Negative Parenting -.05 -14.21(47.47) -.04 .766 
T2 Negative Parenting -.30 -98.21(71.34) -.19 .175 
Percent Exposure to Maternal DD .07 20.52(40.58) .07 .615 
T1 Negative Parenting x Exposure to Maternal DD -.27 -53.71(60.16) -.12 .376 
T2 Negative Parenting x Exposure to Maternal DD .40 79.73(61.55) .18 .201 

Model 3     
Gender -.26 -152.20(69.94) -.29 .034 
T1 Positive Parenting .12 34.95(53.54) .09 .517 
T2 Positive Parenting .63 159.71(65.28) .32 .018 
Maternal Lifetime Depressive Disorder    .07 42.41(73.09) .08 .564 
T1 Positive Parenting x Maternal DD .11 45.85(73.37) .09 .535 
T2 Positive Parenting x Maternal DD -.66 -194.54(75.29) -.34 .013 

Model 4     
Gender -.26 -150.52(74.71) -.27 .049 
T1 Positive Parenting .24 67.54(39.59) .23 .094 
T2 Positive Parenting .17 44.07(42.54) .14 .305 
Percent Exposure to Maternal DD -.02 -4.58(39.08) -.02 .907 
T1 Positive Parenting x Exposure to Maternal DD -.07 -19.16(39.11) -.07 .626 
T2 Positive Parenting x Exposure to Maternal DD -.17 -23.39(23.00) -.14 .314 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 16  
Interactions between parenting and maternal depression on left hippocampal body volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting -.21 -39.91(46.68) -.12 .396 
T2 Negative Parenting .60 143.54(88.86) .22 .112 
Maternal Lifetime Depressive Disorder    -.17 -76.44(63.09) -.16 .231 
T1 Negative Parenting x Maternal DD .10 25.09(72.52) .05 .731 
T2 Negative Parenting x Maternal DD -.41 -108.87(106.90) -.14 .313 

Model 2     
T1 Negative Parenting -.14 -27.01(36.75) -.10 .466 
T2 Negative Parenting .21 50.12(53.94) .13 .358 
Percent Exposure to Maternal DD -.15 -31.92(31.25) -.14 .312 
T1 Negative Parenting x Exposure to Maternal DD .05 7.17(46.68) .02 .879 
T2 Negative Parenting x Exposure to Maternal DD .08 11.49(47.54) .03 .810 

Model 3     
T1 Positive Parenting .31 66.41(42.91) .21 .128 
T2 Positive Parenting -.62 -117.51(52.31) -.30 .029 
Maternal Lifetime Depressive Disorder    -.05 -19.98(58.05) -.05 .732 
T1 Positive Parenting x Maternal DD -.22 -65.29(58.83) -.15 .272 
T2 Positive Parenting x Maternal DD .37 82.24(60.18) .18 .178 

Model 4     
T1 Positive Parenting .12 24.93(29.91) .12 .408 
T2 Positive Parenting -.24 -45.79(32.14) -.19 .160 
Percent Exposure to Maternal DD -.17 -34.93(29.53) -.16 .242 
T1 Positive Parenting x Exposure to Maternal DD -.18 -37.07(29.54) -.17 .215 
T2 Positive Parenting x Exposure to Maternal DD -.09 -9.00(17.34) -.07 .606 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 17  
Interactions between parenting and maternal depression on left hippocampal tail volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting .15 16.93(27.77) .08 .545 
T2 Negative Parenting .11 15.06(52.86) .04 .777 
Maternal Lifetime Depressive Disorder    -.06 -16.36(37.53) -.06 .665 
T1 Negative Parenting x Maternal DD -.23 -33.83(43.14) -.11 .436 
T2 Negative Parenting x Maternal DD .01 1.65(63.59) <.01 .979 

Model 2     
T1 Negative Parenting -.04 -4.82(20.97) -.03 .819 
T2 Negative Parenting -.02 -3.00(30.78) -.01 .923 
Percent Exposure to Maternal DD -.01 -0.93(17.83) -.01 .959 
T1 Negative Parenting x Exposure to Maternal DD -.52 -43.83(26.64) -.22 .106 
T2 Negative Parenting x Exposure to Maternal DD .66 56.64(27.13) .28 .042 

Model 3     
T1 Positive Parenting -.03 -3.82(25.20) -.02 .880 
T2 Positive Parenting -.49 -54.08(30.72) -.24 .084 
Maternal Lifetime Depressive Disorder    -.01 -3.21(34.10) -.01 .925 
T1 Positive Parenting x Maternal DD .20 34.01(34.55) .13 .330 
T2 Positive Parenting x Maternal DD .26 33.80(35.35) .13 .343 

Model 4     
T1 Positive Parenting .08 9.39(17.97) .07 .604 
T2 Positive Parenting -.24 -26.18(19.32) -.19 .181 
Percent Exposure to Maternal DD .03 3.66(17.75) .03 .837 
T1 Positive Parenting x Exposure to Maternal DD .08 9.60(17.76) .08 .591 
T2 Positive Parenting x Exposure to Maternal DD -.02 -1.07(10.42) -.01 .918 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 18  
Interactions between parenting and maternal depression on left total hippocampal volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting -.07 -18.71(70.32) -.04 .791 
T2 Negative Parenting .17 58.17(133.86) .06 .666 
Maternal Lifetime Depressive Disorder    .05 29.91(95.05) .04 .754 
T1 Negative Parenting x Maternal DD .05 18.46(109.24) .02 .866 
T2 Negative Parenting x Maternal DD -.19 -75.95(161.04) -.07 .639 

Model 2     
T1 Negative Parenting -.23 -35.88(52.55) -.09 .498 
T2 Negative Parenting .01 1.60(77.13) <.01 .984 
Percent Exposure to Maternal DD -.09 -28.04(44.68) -.09 .533 
T1 Negative Parenting x Exposure to Maternal DD -.42 -88.27(66.76) -.18 .192 
T2 Negative Parenting x Exposure to Maternal DD .59 124.57(67.98) .25 .073 

Model 3     
T1 Positive Parenting .32 99.78(62.19) .22 .115 
T2 Positive Parenting -.11 -29.62(75.81) -.05 .698 
Maternal Lifetime Depressive Disorder    .07 46.49(84.13) .08 .583 
T1 Positive Parenting x Maternal DD .02 7.59(85.26) .01 .929 
T2 Positive Parenting x Maternal DD -.19 -60.56(87.21) -.10 .490 

Model 4     
T1 Positive Parenting .33 100.13(41.96) .31 .021 
T2 Positive Parenting -.15 -40.56(45.10) -.12 .373 
Percent Exposure to Maternal DD -.12 -36.10(41.43) -.12 .388 
T1 Positive Parenting x Exposure to Maternal DD -.15 -44.62(41.45) -.15 .287 
T2 Positive Parenting x Exposure to Maternal DD -.17 -24.82(24.34) -.14 .313 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 19  
Interactions between cortisol reactivity and maternal depression on right hippocampal head volume. 

 β b (SE) pr p 
Model 1     

Gender -.24 -128.58(76.14) -.23 .097 
T1 AUCg .09 23.61(29.21) .04 .767 
T2 AUCg .19 46.89(58.24) .11 .424 
Maternal Lifetime Depressive Disorder    .07 37.31(75.42) .07 .623 
T1 AUCg x Maternal DD .05 19.63(89.31) .03 .827 
T2 AUCg x Maternal DD -.16 -49.73(71.39) -.10 .489 

Model 2     
Gender -.23 -127.41(75.29) -.23 .097 
T1 AUCg .15 40.77(37.52) .15 .282 
T2 AUCg .07 16.97(34.79) .07 .628 
Percent Exposure to Maternal DD -.05 -14.83(39.31) -.05 .708 
T1 AUCg x Exposure to Maternal DD -.12 -37.75(43.42) -.12 .389 
T2 AUCg x Exposure to Maternal DD -.12 -35.45(41.16) -.12 .393 

Model 3     
Gender -.23 -22.25(77.00) -.22 .119 
T1 AUCi .14 91.54(142.80) .09 .524 
T2 AUCi .12 37.46(65.80) .08 .572 
Maternal Lifetime Depressive Disorder    .08 40.95(75.86) .08 .592 
T1 AUCi x Maternal DD -.06 -55.53(190.60) -.04 .772 
T2 AUCi x Maternal DD -.25 -112.27(88.41) -.18 .210 

Model 4     
Gender -.20 -109.55(72.04) -.21 .135 
T1 AUCi .06 37.59(90.70) .06 .680 
T2 AUCi -.04 12.02(44.16) -.04 .787 
Percent Exposure to Maternal DD -.08 -22.17(38.40) -.08 .566 
T1 AUCi x Exposure to Maternal DD .03 28.24(121.22) .03 .817 
T2 AUCi x Exposure to Maternal DD -.28 -102.97(50.83) -.28 .048 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 20  
Interactions between cortisol reactivity and maternal depression on right hippocampal body volume. 

 β b (SE) pr p 
Model 1     

Scan Age .36 65.72(22.05) .39 .004 
T1 AUCg .60 99.45(41.68) .32 .021 
T2 AUCg .04 6.41(30.44) .03 .834 
Maternal Lifetime Depressive Disorder    -.10 -33.76(39.08) -.12 .392 
T1 AUCg x Maternal DD -.28 -51.75(47.26) -.15 .279 
T2 AUCg x Maternal DD -.23 -43.33(37.64) -.16 .255 

Model 2     
Scan Age .35 63.60(22.68) .37 .007 
T1 AUCg .38 61.63(20.03) .40 .003 
T2 AUCg -.14 -20.37(18.46) -.15 .275 
Percent Exposure to Maternal DD -.03 -4.96(21.11) -.03 .815 
T1 AUCg x Exposure to Maternal DD .03 5.67(23.48) .03 .810 
T2 AUCg x Exposure to Maternal DD -.03 -5.29(22.00) -.03 .811 

Model 3     
Scan Age .38 69.8(21.11) .42 .002 
T1 AUCi -.40 -161.90(70.21) -.31 .025 
T2 AUCi .01 1.26(32.64) .01 .969 
Maternal Lifetime Depressive Disorder    -.11 -34.76(37.19) -.13 .354 
T1 AUCi x Maternal DD -.16 -86.00(91.58) -.13 .352 
T2 AUCi x Maternal DD .01 1.43(44.95) <.01 .975 

Model 4     
Scan Age .38 68.49(21.04) .42 .002 
T1 AUCi -.53 -209.06(46.67) -.54 <.001 
T2 AUCi .02 3.00(22.58) .02 .895 
Percent Exposure to Maternal DD -.06 -10.68(19.71) -.08 .590 
T1 AUCi x Exposure to Maternal DD <-.01 -0.96(62.09) <-.01 .988 
T2 AUCi x Exposure to Maternal DD <.01 0.91(26.18) .01 .972 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 21  
Interactions between cortisol reactivity and maternal depression on right hippocampal tail volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .67 75.70(30.74) .32 .017 
T2 AUCg -.13 -13.41(22.44) -.08 .553 
Maternal Lifetime Depressive Disorder    -.11 -24.46(28.83) -.12 .400 
T1 AUCg x Maternal DD -.47 -60.55(34.82) -.23 .088 
T2 AUCg x Maternal DD -.08 -10.63(27.76) -.05 .703 

Model 2     
T1 AUCg .25 27.93(14.46) .26 .059 
T2 AUCg -.16 -16.60(13.46) -.17 .223 
Percent Exposure to Maternal DD -.10 -11.51(15.36) -.10 .457 
T1 AUCg x Exposure to Maternal DD -.26 -33.67(16.96) -.27 .053 
T2 AUCg x Exposure to Maternal DD -.07 -8.38(16.04) -.07 .604 

Model 3     
T1 AUCi -.33 -91.26(57.15) -.22 .116 
T2 AUCi -.06 -7.68(26.38) .16 .250 
Maternal Lifetime Depressive Disorder    -.14 -31.89(30.28) -.15 .297 
T1 AUCi x Maternal DD .24 86.63(74.41) .16 .250 
T2 AUCi x Maternal DD -.17 -31.79(35.76) -.12 .378 

Model 4     
T1 AUCi -.21 -56.68(35.17) -.22 .113 
T2 AUCi -.12 -15.44(17.11) -.13 .371 
Percent Exposure to Maternal DD -.18 -20.73(14.93) -.19 .171 
T1 AUCi x Exposure to Maternal DD .14 51.95(46.95) .15 .274 
T2 AUCi x Exposure to Maternal DD -.37 -55.18(19.73) -.37 .007 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 22  
Interactions between cortisol reactivity and maternal depression on right total hippocampal volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .61 188.72(83.72) .30 .028 
T2 AUCg .15 42.52(61.12) .10 .490 
Maternal Lifetime Depressive Disorder    <.01 0.95(78.54) <.01 .990 
T1 AUCg x Maternal DD -.30 -103.81(94.85) -.15 .279 
T2 AUCg x Maternal DD -.29 -100.39(75.62) -.18 .190 

Model 2     
T1 AUCg .37 112.75(38.16) .38 .005 
T2 AUCg -.06 -15.14(35.53) -.17 .229 
Percent Exposure to Maternal DD -.10 -30.46(40.54) -.11 .456 
T1 AUCg x Exposure to Maternal DD -.16 -54.53(44.77) -.17 .229 
T2 AUCg x Exposure to Maternal DD -.18 -58.40(42.34) -.19 .174 

Model 3     
T1 AUCi -.27 -202.34(156.34) -.18 .201 
T2 AUCi .15 54.93(72.16) .11 .450 
Maternal Lifetime Depressive Disorder    -.01 -5.71(82.84) -.01 .945 
T1 AUCi x Maternal DD .07 65.76(203.58) .05 .748 
T2 AUCi x Maternal DD -.37 -185.55(97.83) -.25 .063 

Model 4     
T1 AUCi -.27 -200.11(92.97) -.29 .036 
T2 AUCi -.08 -28.67(45.23) -.09 .529 
Percent Exposure to Maternal DD -.17 -52.03(39.46) -.18 .193 
T1 AUCi x Exposure to Maternal DD .07 66.16(124.11) .07 .596 
T2 AUCi x Exposure to Maternal DD -.43 -173.43(52.17) -.42 .002 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 23  
Interactions between cortisol reactivity and maternal depression on left hippocampal head volume. 

 β b (SE) pr p 
Model 1     

Gender -.27 -159.78(80.84) -.27 .054 
T1 AUCg -.02 -6.78(84.09) -.01 .936 
T2 AUCg <.01 0.67(61.82) <.01 .991 
Maternal Lifetime Depressive Disorder    .19 111.33(80.07) .19 .170 
T1 AUCg x Maternal DD .11 36.23(94.81) .05 .704 
T2 AUCg x Maternal DD -.11 -35.94(75.79) -.07 .637 

Model 2     
Gender -.31 -186.13(81.52) -.31 .027 
T1 AUCg .08 23.52(40.62) .08 .565 
T2 AUCg -.14 -37.33(37.67) -.14 .326 
Percent Exposure to Maternal DD .07 20.40(42.56) .07 .634 
T1 AUCg x Exposure to Maternal DD -.05 -17.02(47.01) -.05 .719 
T2 AUCg x Exposure to Maternal DD .12 38.03(44.57) .12 .398 

Model 3     
Gender -.27 -159.06(80.77) -.27 .05 
T1 AUCi .21 153.89(149.78) .14 .309 
T2 AUCi -.05 -17.96(69.02) -.04 .796 
Maternal Lifetime Depressive Disorder    .19 112.22(79.56) .19 .164 
T1 AUCi x Maternal DD -.13 -120.84(199.91) -.08 .548 
T2 AUCi x Maternal DD -.15 -73.86(92.73) -.11 .429 

Model 4     
Gender -.26 -155.42(78.48) -.27 .053 
T1 AUCi .10 73.73(98.81) .11 .459 
T2 AUCi -.15 -53.27(48.11) -.16 .273 
Percent Exposure to Maternal DD -.01 -1.82(41.84) -.01 .966 
T1 AUCi x Exposure to Maternal DD .06 54.38(132.05) .06 .682 
T2 AUCi x Exposure to Maternal DD -.16 -62.81(55.37) -.16 .262 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 24  
Interactions between cortisol reactivity and maternal depression on left hippocampal body volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .21 42.99(57.85) .10 .461 
T2 AUCg .14 25.39(42.24) .09 .535 
Maternal Lifetime Depressive Disorder    -.18 -75.41(54.27) -.19 .171 
T1 AUCg x Maternal DD .11 26.03(65.54) .06 .693 
T2 AUCg x Maternal DD -.07 -15.69(52.26) -.04 .765 

Model 2     
T1 AUCg .31 64.08(26.99) .32 .021 
T2 AUCg .09 16.72(25.13) .09 .509 
Percent Exposure to Maternal DD -.23 -48.92(28.67) -.23 .094 
T1 AUCg x Exposure to Maternal DD .03 7.25(31.66) .03 .820 
T2 AUCg x Exposure to Maternal DD <.01 0.60(29.94) <.01 .984 

Model 3     
T1 AUCi -.38 -195.09(99.65) -.26 .056 
T2 AUCi .05 11.82(45.99) .04 .798 
Maternal Lifetime Depressive Disorder    -.18 -75.38(52.80) -.19 .159 
T1 AUCi x Maternal DD <.01 1.42(129.76) <.01 .991 
T2 AUCi x Maternal DD .14 45.92(62.36) .10 .465 

Model 4     
T1 AUCi -.42 -213.01(64.65) -.42 .002 
T2 AUCi .16 37.76(31.46) .17 .236 
Percent Exposure to Maternal DD -.26 -55.51(27.44) -.27 .048 
T1 AUCi x Exposure to Maternal DD .01 8.62(86.31) .01 .921 
T2 AUCi x Exposure to Maternal DD -.09 -25.67(36.28) -.10 .482 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 25  
Interactions between cortisol reactivity and maternal depression on left hippocampal tail volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .12 14.49(34.52) .06 .676 
T2 AUCg -.26 -28.22(25.20) -.15 .268 
Maternal Lifetime Depressive Disorder    -.01 -3.11(32.38) -.01 .924 
T1 AUCg x Maternal DD .01 1.55(39.11) .01 .969 
T2 AUCg x Maternal DD .01 1.16(31.18) .01 .970 

Model 2     
T1 AUCg .12 14.89(15.66) .13 .346 
T2 AUCg -.26 -28.74(14.58) -.27 .054 
Percent Exposure to Maternal DD .06 7.11(16.63) .06 .671 
T1 AUCg x Exposure to Maternal DD -.21 -28.89(18.37) -.22 .122 
T2 AUCg x Exposure to Maternal DD .02 2.06(17.37) .02 .906 

Model 3     
T1 AUCi -.17 -49.26(59.29) -.11 .410 
T2 AUCi -.21 -29.71(27.36) -.15 .283 
Maternal Lifetime Depressive Disorder    -.04 -9.36(31.41) -.04 .767 
T1 AUCi x Maternal DD .05 20.09(77.20) .04 .796 
T2 AUCi x Maternal DD -.19 -37.67(37.10) -.14 .315 

Model 4     
T1 AUCi -.13 -37.99(38.15) -.14 .324 
T2 AUCi -.33 -45.81(18.56) -.33 .017 
Percent Exposure to Maternal DD -.03 -3.37(16.20) -.03 .836 
T1 AUCi x Exposure to Maternal DD .10 38.26(50.93) .11 .456 
T2 AUCi x Exposure to Maternal DD -.15 -24.20(21.41) -.16 .264 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 26  
Interactions between cortisol reactivity and maternal depression on left total hippocampal volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .06 18.14(88.19) .03 .838 
T2 AUCg .13 38.54(64.38) .08 .552 
Maternal Lifetime Depressive Disorder    .11 70.83(82.73) .12 .396 
T1 AUCg x Maternal DD .23 85.52(99.91) .12 .407 
T2 AUCg x Maternal DD -.23 -83.47(79.66) -.14 .300 

Model 2     
T1 AUCg .27 84.16(40.52) .28 .043 
T2 AUCg -.11 -31.84(37.73) -.12 .403 
Percent Exposure to Maternal DD -.07 -21.55(43.05) -.07 .619 
T1 AUCg x Exposure to Maternal DD -.15 -52.44(47.54) -.15 .275 
T2 AUCg x Exposure to Maternal DD .11 37.05(44.96) .12 .414 

Model 3     
T1 AUCi -.17 -127.89(162.67) -.11 .435 
T2 AUCi .01 3.55(75.08) .01 .962 
Maternal Lifetime Depressive Disorder    .11 67.75(86.19) .11 .435 
T1 AUCi x Maternal DD -.03 -27.05(211.82) -.02 .259 
T2 AUCi x Maternal DD -.18 -92.39(101.79) -.13 .368 

Model 4     
T1 AUCi -.22 -165.12(99.64) -.23 .104 
T2 AUCi -.11 -39.72(48.48) -.11 .416 
Percent Exposure to Maternal DD -.17 -55.41(52.30) -.18 .196 
T1 AUCi x Exposure to Maternal DD .15 151.83(133.02) .16 .259 
T2 AUCi x Exposure to Maternal DD -.27 -110.31(55.92) -.27 .054 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic Disorder 
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Table 27  
Mediation of the association between parenting and hippocampal volume by cortisol reactivity. 

Dependent 
Measure Predictor Covariate Mediator Total 

Effect 
Direct 
Effect 

Indirect 
Effect SE Lower 

CI 
Upper 

CI  

Right Head T1 Positive Parenting Gender, T2 Positive Parenting T1 AUCg 56.01 45.55 6.87 10.83 -5.47 37.59    
Gender, T2 Positive Parenting T1 AUCi 56.01 54.07 2.73 8.32 -5.59 33.35    
Gender, T2 Positive Parenting T2 AUCg 74.57 77.98 -3.37 7.88 -23.04 9.74    
Gender, T2 Positive Parenting T2 AUCi 74.57 73.78 0.78 5.61 -7.62 19.51    

 
 

        
T1 Negative Parenting Gender, T2 Negative Parenting T1 AUCg 25.07 25.56 -0.33 5.66 -11.67 11.31    

Gender, T2 Negative Parenting T1 AUCi 25.07 23.95 2.05 3.78 -2.13 15.42    
Gender, T2 Negative Parenting T2 AUCg 2.87 0.74 1.33 11.63 -22.10 29.44    
Gender, T2 Negative Parenting T2 AUCi 2.87 11.47 -6.59 12.81 -46.05 10.03    

 
 

        
T2 Positive Parenting Gender, T1 Positive Parenting T2 AUCg 17.28 17.62 -1.17 5.21 -24.18 3.03    

Gender, T1 Positive Parenting T2 AUCi 17.28 17.26 0.24 4.77 -6.41 11.38    
 

 
        

T2 Negative Parenting Gender, T1 Negative Parenting T2 AUCg -73.88 -72.41 0.47 7.80 -7.77 32.05    
Gender, T1 Negative Parenting T2 AUCi -73.88 -77.57 -3.65 9.03 -39.12 5.92    

 
 

       
Right Body T1 Positive Parenting Scan Age, T2 Positive Parenting T1 AUCg 21.24 9.53 6.83 8.88 -6.09 33.30    

Scan Age, T2 Positive Parenting T1 AUCi 21.24 28.71 -12.07 17.47 -55.62 14.51    
Scan Age, T2 Positive Parenting T2 AUCg 6.72 0.75 6.24 5.39 -0.44 21.38    
Scan Age, T2 Positive Parenting T2 AUCi 6.72 6.71 0.07 2.86 -5.29 7.69    

 
 

        
T1 Negative Parenting Scan Age, T2 Negative Parenting T1 AUCg -17.80 -20.26 -0.43 6.30 -13.02 12.68    

Scan Age, T2 Negative Parenting T1 AUCi -17.80 -10.12 -5.67 4.88 -15.02 4.50    
Scan Age, T2 Negative Parenting T2 AUCg -11.71 2.92 -9.15 9.72 -38.42 0.20    
Scan Age, T2 Negative Parenting T2 AUCi -11.71 -9.12 -2.08 7.11 -20.39 8.35  
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T2 Positive Parenting Scan Age, T1 Positive Parenting T2 AUCg -48.59 -48.89 2.17 4.16 -2.71 14.30    
Scan Age, T1 Positive Parenting T2 AUCi -48.59 -48.59 0.02 2.49 -4.91 3.53    

 
 

        
T2 Negative Parenting Scan Age, T1 Negative Parenting T2 AUCg 71.01 61.82 -3.25 7.32 -25.15 6.09    

Scan Age, T1 Negative Parenting T2 AUCi 71.01 70.00 -1.15 5.05 -17.75 4.07    
 

 
       

Right Tail T1 Positive Parenting T2 Positive Parenting T1 AUCg -23.66 -32.13 5.63 6.54 -4.73 21.66    
T2 Positive Parenting T1 AUCi -23.66 -21.81 -2.58 5.79 -23.41 14.09    
T2 Positive Parenting T2 AUCg -9.79 -14.36 4.66 3.70 -0.12 15.08    
T2 Positive Parenting T2 AUCi -9.79 -10.55 0.76 3.54 -6.04 9.71    

 
 

        
T1 Negative Parenting T2 Negative Parenting T1 AUCg 12.89 8.27 -0.30 3.81 -7.73 8.76    

T2 Negative Parenting T1 AUCi 12.89 13.58 -1.63 2.16 -7.09 1.51    
T2 Negative Parenting T2 AUCg 4.76 14.25 -6.35 6.58 -29.74 0.23    
T2 Negative Parenting T2 AUCi 4.76 14.83 -7.79 7.07 -30.58 0.21    

 
 

        
T2 Positive Parenting T1 Positive Parenting T2 AUCg -17.75 -17.98 1.62 3.11 -2.29 10.99    

T1 Positive Parenting T2 AUCi -17.75 -17.75 0.23 3.21 -5.52 7.66    
 

 
        

T2 Negative Parenting T1 Negative Parenting T2 AUCg -5.86 -11.59 -2.25 4.99 -16.25 3.55    
T1 Negative Parenting T2 AUCi -5.86 -10.02 -4.32 6.00 -23.85 1.71    

 
 

       
Left Head T1 Positive Parenting Gender, T2 Positive Parenting T1 AUCg 62.90 55.62 4.78 9.73 -4.21 38.44    

Gender, T2 Positive Parenting T1 AUCi 62.90 60.83 2.91 9.65 -7.94 34.08    
Gender, T2 Positive Parenting T2 AUCg 72.56 70.89 1.65 7.17 -9.11 21.10    
Gender, T2 Positive Parenting T2 AUCi 72.56 71.13 1.41 7.86 -9.24 25.57    
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T1 Negative Parenting Gender, T2 Negative Parenting T1 AUCg 10.98 7.90 -0.23 4.62 -10.71 8.11    

Gender, T2 Negative Parenting T1 AUCi 10.98 9.73 2.27 4.32 -3.26 15.16    
Gender, T2 Negative Parenting T2 AUCg -4.71 4.03 -5.47 11.05 -35.47 9.15    
Gender, T2 Negative Parenting T2 AUCi -4.71 11.52 -12.43 15.71 -60.00 6.97    

 
 

        
T2 Positive Parenting Gender, T1 Positive Parenting T2 AUCg 14.53 14.37 0.57 4.09 -4.71 15.35    

Gender, T1 Positive Parenting T2 AUCi 14.53 14.50 0.43 6.92 -8.67 16.69    
 

 
        

T2 Negative Parenting Gender, T1 Negative Parenting T2 AUCg -68.94 -75.01 -1.94 8.04 -29.40 6.65    
Gender, T1 Negative Parenting T2 AUCi -68.94 -75.90 -6.89 11.31 -57.45 5.26    

 
 

       
Left Body T1 Positive Parenting T2 Positive Parenting T1 AUCg 48.81 38.72 6.71 8.18 -4.82 29.47    

T2 Positive Parenting T1 AUCi 48.81 56.57 -10.82 17.31 -59.13 11.14    
T2 Positive Parenting T2 AUCg 26.01 28.30 -2.33 5.15 -14.06 6.97    
T2 Positive Parenting T2 AUCi 26.01 26.95 -0.94 5.39 -17.47 6.52    

 
 

        
T1 Negative Parenting T2 Negative Parenting T1 AUCg -32.47 -39.55 -0.45 7.11 -13.33 16.14    

T2 Negative Parenting T1 AUCi -32.47 -30.43 -4.85 4.48 -14.01 3.62    
T2 Negative Parenting T2 AUCg -21.01 -27.14 4.10 8.26 -9.60 26.83    
T2 Negative Parenting T2 AUCi -21.01 -33.37 9.57 11.86 -6.15 44.85    

 
 

        
T2 Positive Parenting T1 Positive Parenting T2 AUCg -55.64 -55.53 -0.81 3.57 -14.86 2.94    

T1 Positive Parenting T2 AUCi -55.64 -55.64 -0.28 4.93 -13.97 6.19    
 

 
        

T2 Negative Parenting T1 Negative Parenting T2 AUCg 54.02 57.73 1.46 6.04 -5.03 23.73    
T1 Negative Parenting T2 AUCi 54.02 59.12 5.30 9.78 -3.75 46.29    

 
 

       
Left Tail T1 Positive Parenting T2 Positive Parenting T1 AUCg -6.25 -10.60 2.90 5.62 -2.72 20.54  
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T2 Positive Parenting T1 AUCi -6.25 -4.82 -1.98 5.29 -21.39 3.47    
T2 Positive Parenting T2 AUCg 11.28 5.86 5.52 4.81 -0.38 20.52    
T2 Positive Parenting T2 AUCi 11.28 10.21 1.07 4.67 -8.41 10.68    

 
 

        
T1 Negative Parenting T2 Negative Parenting T1 AUCg 15.94 13.18 -0.18 2.86 -6.13 6.19    

T2 Negative Parenting T1 AUCi 15.94 16.49 -1.31 2.13 -7.28 1.73    
T2 Negative Parenting T2 AUCg 3.92 16.68 -8.54 7.97 -34.90 0.35    
T2 Negative Parenting T2 AUCi 3.92 18.37 -11.18 8.62 -34.49 -0.35    

 
 

        
T2 Positive Parenting T1 Positive Parenting T2 AUCg -28.56 -28.83 1.92 3.80 -2.19 15.03    

T1 Positive Parenting T2 AUCi -28.56 -28.56 0.32 4.29 -7.57 10.10    
 

 
        

T2 Negative Parenting T1 Negative Parenting T2 AUCg 1.30 -6.41 -3.03 6.59 -24.56 4.39    
T1 Negative Parenting T2 AUCi 1.30 -4.66 -6.20 8.04 -32.03 3.20    
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Chapter 6: Structural Discussion 

 The present study sought to investigate the longitudinal associations between 

early (3-6 years) and concurrent (5-10 years) parenting and cortisol reactivity with 

hippocampal volumes at 5-10 years. Results revealed timing- and region-dependent 

associations between parenting and the cortisol response to stress on hippocampal 

subregion volume that were, in some cases, moderated by a maternal history of 

depressive disorders. The discussion below will focus on significant effects identified in 

hippocampal subregions; effects of whole hippocampal volumes will be omitted because 

they did not prove informative over the results from subregion analyses. 

Parenting 

Results revealed timing and region-dependent associations between parenting and 

hippocampal volume with greater early (T1) positive parenting predicting larger right 

hippocampal head volume and greater later (T2) positive parenting predicting smaller 

bilateral hippocampal body volumes. Not only does this pattern of results imply that 

hippocampal subregions have different developmental sensitivities to the parenting 

environment, but they may be affected in different ways.  

Maternal lifetime history of depressive disorders moderated the association 

between T2 Positive Parenting and bilateral hippocampal head volumes. Specifically, in 

offspring without a maternal lifetime history of depression, greater T2 Positive Parenting 

predicted larger left head volumes. There was no association in offspring with a maternal 

lifetime history of depression. Coupled with the main effects described above, this pattern 

of results suggests that during the preschool years, children, regardless of maternal 

depression status, are sensitive to the effects of positive parenting; however, the 
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sensitivity of the hippocampal head to positive parenting behaviors decreases over time in 

offspring of depressed mothers. Considered differently, the left hippocampal heads of 

offspring of non-depressed mothers may remain sensitive to the parenting environment 

longer than those of offspring with a maternal history of depression. No associations 

between T1 or T2 Negative Parenting and hippocampal subregion volume were 

significantly moderated by maternal depression status. However, in the left tail, high T2 

Negative Parenting moderated the association between cumulative lifetime exposure to 

maternal depression and left hippocampal tail volume. This association was only 

significant at extreme high values of T2 Negative Parenting and should be interpreted 

with caution. 

In contrast to what may be hypothesized based on research in maltreatment and 

neglect (e.g., Andersen et al., 2008; Belsky & de Haan, 2011), in the present study, the 

effects of parenting on hippocampal volume appeared to be largely driven by positive, 

and not negative, parenting behaviors. This suggests that during the early to middle 

childhood period, the hippocampus is more sensitive to the mother’s positive supportive 

presence versus the presence of negative behaviors such as hostility and intrusiveness. 

This is largely consistent with what has been reported in the rodent literature and in 

previous human studies. For instance, both studies which found significant effects 

between hippocampal volume and variations in parenting behaviors used measures of 

parental nurturance (Rao et al., 2010) or support (Luby et al., 2012). Moreover, the 

licking and grooming paradigm frequently used to test caregiving behaviors in rodent 

models may more closely mirror the construct of positive parenting as low licking and 

grooming represents the absence of developmentally-appropriate (i.e., positive) inputs 
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and not the presence of harsh or developmentally-stressful (i.e., negative) inputs. Despite 

these consistencies with the established parenting literature, it should be noted that 1) no 

previous study investigating the effects of parenting on brain development in human 

children has investigated a measure of negative parenting and 2) the current measure of 

Negative Parenting does not tap extreme forms of negative parenting and lacks 

considerable variability. There was only one significant interaction between Negative 

Parenting and cumulative lifetime exposure to maternal depression in predicting 

hippocampal subregion volume, and it was driven by the most extreme cases (top %5, 

approximately 3 children) of observed Negative Parenting. Therefore, effects of negative 

parenting on hippocampal volume during childhood may only emerge in in more extreme 

cases and in the presence of multiple risk factors (e.g., exposure to maternal depression). 

This possibility should be addressed by future research with greater variability in 

observed negative parenting. 

These findings lend important insights into existing contradictions in the literature 

regarding associations between parenting behaviors and hippocampal volumes. 

Specifically, of the three studies which have examined positive parenting and whole 

hippocampal volume, one found a positive association between maternal support at 3-6 

years and volume at 7-13 years (Luby et al., 2012), one found a negative association 

between maternal nurturance at age 4 and volume at 14 years (Rao et al., 2010), and one 

failed to find a significant association between warm and supportive parenting at 12 years 

and volume at 16 years (Whittle et al., 2014). The present results indicate that the effects 

of parenting on hippocampal volume are regionally-specific and may be obscured by use 

of whole hippocampal volumes. In many of the present analyses, we fail to find 
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significant main effects of parenting on whole hippocampal volume despite significant 

subregion associations. This highlights the utility of incorporating hippocampal subregion 

metrics into analyses of hippocampal structural development as use of the full 

hippocampal volume may obscure more nuanced, regionally-specific differences. By 

using measure of hippocampus head, body, and tail, we were better able to identify 

regionally-specific changes in hippocampal volume that previous studies failed to explore 

(Luby et al., 2012; Rao et al., 2010; Whittle et al., 2014). Additionally, the present results 

add to a growing body of literature which suggests that the hippocampus may be 

particularly sensitive to the parenting environment during childhood (Luby et al., 2012; 

Rao et al., 2010)  versus adolescence (Whittle et al., 2014). The exact timing and 

significance of this developmental sensitivity should be addressed by future research. 

Moreover, to our knowledge, this is the first study to find that the hippocampus 

may be sensitive to later, concurrent parenting behaviors and not only behavior during the 

preschool and early childhood periods. Only one previous study to our knowledge 

assessed developmentally-specific differences in parenting on hippocampal volume, and 

found that early (4 years), but not later (8 years), maternal nurturance predicted smaller 

hippocampal volumes (Rao et al., 2010). This is in contrast to the present results which 

show that early positive parenting predicted larger head volumes and later positive 

parenting predicted smaller body volumes. This suggests that hippocampal sensitivity to 

the parenting environment may last longer than previously expected. The timing and 

specificity of this sensitivity should be explored by future work as previous research 

suggests this sensitivity may end by age 12 years (Whittle et al., 2014). 
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Cortisol Reactivity 

 Similar timing- and region-dependent patterns of effects were observed between 

cortisol reactivity and hippocampal volume. Early (T1) cortisol reactivity was associated 

with left and right body volumes whereas later (T2) cortisol reactivity predicted left tail 

volumes. Total amount of cortisol released in response to a stressor (AUCg) at T1 and 

total change in cortisol (AUCi) at T1 had inverse associations with hippocampal body 

volumes: greater T1 cortisol volume release (AUCg) predicted larger body volumes 

whereas greater T1 change in cortisol (AUCi) predicted smaller body volumes. At face 

value, this suggests that different metrics of the cortisol response to stress may be 

differentially associated with hippocampal volumes. However, upon closer inspection, it 

appears that the association between T1 AUCi and bilateral body volumes appears to be 

driven by three individuals with high baseline cortisol levels which declined over time 

(i.e., a blunted cortisol response; Fairchild et al., 2008; Figure 15). Therefore, taken 

together, these effects may indicate that hippocampal body volume is affected by high T1 

cortisol levels (at baseline or in response to stress). This is in contrast to what would be 

predicted from the glucocorticoid neurotoxicity hypothesis (Conrad, 2009; Sapolsky et 

al., 1990; Sapolsky, 1988; Uno et al., 1994) and should be explored in greater detail. 

Greater change in cortisol in response to a stressor (AUCi) at T2 was associated with 

reduced left hippocampal tail volume. Mirroring the effects found with parenting, in 

addition to T1 and T2 cortisol reactivity predicting different hippocampal subregion 

volumes, the direction of these associations were also different: while early (T1) cortisol 

reactivity predicted larger body volumes, later (T2) cortisol reactivity predicted smaller 

tail volumes.  
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Figure 15. T1 cortisol levels at baseline, 20-, 30-, 40-, and 50-minutes post-stressor. 
Individuals driving T1 AUCi findings are highlighted in red. 
 

Cumulative lifetime exposure to maternal depression significantly moderated 

associations between cortisol reactivity and hippocampal volume.  

In offspring with high exposure to maternal depression, greater cortisol change in 

in response to a stressor (AUCi) at T2 predicted reduced right hippocampal head and tail 

volumes at T2. There was no significant effect of T2 AUCi (total change in cortisol) on 

right head or right tail volume in offspring without exposure to maternal depression. This 

suggests that offspring exposed to high degrees of maternal depression during their 

lifetime have greater right head and tail susceptibility to T2 AUCi. This may indicate that 

high lifetime exposure to a depressed mother may make a child more susceptible to the 

damaging effects of high cortisol reactivity during later childhood. 

To our knowledge, no existing work has examined the possible timing-dependent 

effects of cortisol on hippocampal volume. Evidence of increased T1 cortisol reactivity 

predicting increased hippocampal body volume aligns with evidence of associations 
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between cortisol and hippocampal structure in young adults (Narita et al., 2012; 

Pruessner et al., 2007), but fails to integrate well with evidence in children (Pagliaccio et 

al., 2015; Wiedenmayer et al., 2006), older adults (Knoops et al., 2010; Sudheimer et al., 

2014), or a considerable body of literature in rodents (Conrad, 2009, for review) and non-

human primates (Uno et al., 1994). Consistent with the vast body of literature supporting 

the neurotoxicity hypothesis, T2 total change in cortisol in response to a stressor (AUCi) 

predicted reduced tail volumes at T2. Therefore, this may reflect a developmental trend 

that has yet to be explored whereby cortisol reactivity interacts with different 

developmental mechanisms to predict unique hippocampal subregion volumes. 

Additional research is needed to explore these potential timing and regionally-dependent 

effects.  

Mediation 

This was the first study to examine whether cortisol reactivity mediates the 

association between parenting and hippocampal volume in a young human population. 

Results indicated that T2 total change in cortisol, AUCi, significantly mediated the 

association between T1 Negative Parenting and left hippocampal tail volume. Consistent 

with the original hypothesis derived from the rodent literature, greater T1 Negative 

Parenting predicted increased T2 AUCi, which, in turn, predicted smaller left 

hippocampal tail volumes. This is the first evidence that this pathway exists in human 

children. Significant mediation highlights the utility of rodent model systems for the 

investigation of risk transmission, and provides support for the assumption that similar 

cellular mechanisms may be driving these cross-species effects. 
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General Discussion 

This is the first study to investigate the longitudinal associations between 

hippocampal subregion (i.e., head, body, tail) volume and early parenting or cortisol 

reactivity in a young human population. Using this methodology has provided many 

benefits, but produced many challenges in relating the present results to the extant 

literature. 

All previous human literature examining the associations between parenting or 

cortisol reactivity and hippocampal volume have used whole hippocampal volume as the 

dependent measure of interest (Luby et al., 2012; Narita et al., 2012; Pagliaccio et al., 

2014; Pruessner et al., 2007; Rao et al., 2010; Whittle et al., 2014) . While these studies 

have provided important first passes at identifying important effects, this method 

disregards the internal functional organization of the hippocampus and may have driven 

many inconsistencies between studies. For instance, Rao et al. (2010) found that greater 

maternal nurturance at 4 years-old predicted smaller hippocampal volumes at age 14 

whereas Luby and colleagues (2012) found that greater maternal support at 3-6 years-old 

predicted increased hippocampal volumes at 7-13 years of age. It is possible that these 

inconsistencies may reflect subtle regionally-specific changes within the hippocampus 

that may or may not be specific to sample demographics. 

 The hippocampus, in both rodents and humans, is composed of five subfields (i.e., 

the cornu ammonis regions CA1-3, dentate gyrus, and subiculum) that have distinct 

cytoarchitectures and are integrated into unique circuits that perform specific neural 

computations. In the human hippocampus, these subfields are distributed along the 

longitudinal axis – the very axis which is sliced coronally to designate head, body, and 
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tail subregions - resulting in varied proportions of each subfield within each subregion 

(i.e., head, body, tail). In order to link the current findings to the established rodent 

literature, it is necessary to consider the relative distributions of subfields within the 

hippocampal subregions included in the present findings. One study in adults found that 

the greatest proportion of the dentate gyrus was located within the hippocampal body and 

tail, the greatest proportion of regions CA1-3 were in the head and tail, and the largest 

portions of the subiculum were found in the hippocampal head and body (Malykhin et al., 

2010). Therefore, in the present results, individual differences in hippocampal head 

volume may reflect underlying changes in CA1-3 or the subiculum whereas differences 

in hippocampal body volume may reflect changes in dentate gyrus or subiculum, and 

differences in hippocampal tail volume may reflect changes in CA1-3 or the dentate 

gyrus. Unfortunately, these subregion-subfield mappings must be applied with caution to 

the present results as they were generated from adults and may not accurately reflect 

hippocampal subfield distributions in the developing brain. 

Given that the hippocampus undergoes known developmental change, the present 

results must be considered in light of typical developmental trajectories and the 

mechanisms which shape them. While there is some disagreement between sources 

(Giedd et al., 1996; Hu, Pruessner, Coupé, & Collins, 2013; Uematsu et al., 2012; 

Wierenga et al., 2014; Yang, Goh, Chen, & Qiu, 2013), there is evidence that, throughout 

the lifespan, the anterior hippocampus (i.e., head) decreases in volume while the posterior 

hippocampus (i.e., body and tail) increases in volume (Gogtay et al., 2006). The exact 

timing or the mechanisms driving these changes are not currently well understood; 

however, this typical developmental trajectory highlights the possible pitfalls of buying 
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into a blanket “bigger is better” interpretation of brain development: at a given point in 

time, larger volumes may be indicative of better outcomes while at a later point in 

development, larger volumes may be associated with poorer cognitive or affective 

outcomes. The interpretability of whether an increase or decrease in volume is beneficial 

will be dependent on the region and the period of development in which it is measured.  

It is a common theme in developmental neuroscience that regions undergoing 

developmental change are more susceptible to the effects of environmental perturbations 

– for better or for worse – coincidentally or by design (Pechtel & Pizzagalli, 2011). In the 

current dataset, the hippocampal head appears preferentially sensitive to the early 

parenting environment, the hippocampal body is sensitive to the later parenting 

environment and early cortisol reactivity, and the hippocampal tail is sensitive to later 

cortisol reactivity. Differences in the trajectories of hippocampal subregion development 

are likely interacting with early or late parenting and cortisol reactivity to drive the 

region-, timing-, and input-specific effects observed in the present report. The findings 

that greater T1 positive parenting predicts increased hippocampal head volumes and 

greater T2 cortisol reactivity (AUCg, AUCi) predicts reduced hippocampal tail volumes 

are consistent with what would be hypothesized from the glucocorticoid neurotoxicity 

hypothesis. The unexpected findings that larger hippocampal body volumes are predicted 

by lower T2 positive parenting and higher T1 cortisol reactivity may indicate that the 

hippocampal body, or its likely subregions, the subiculum and the dentate gyrus, respond 

differently to these inputs than other regions. Moreover, this differential sensitivity may 

be activating distinct mechanisms that drive unique intra- or extra-cellular forces. 

Structural MRI has the ability to measure global changes in brain volume; however, it 
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lacks the resolution to precisely measure specific brain tissues. In fact, observed 

volumetric associations could be attributed to changes in the number, size, or complexity 

of neurons, synapses, and/or glia (Willard, Hemby, Register, McIntosh, & Shively, 

2014). While this is a limitation of the current method, it provides impetus for future 

research to examine these questions using technologies better suited for measuring 

cellular changes.  

 Individual differences in hippocampal subregion volumes may be linked to 

differences in cognitive abilities. In 6-, but not 4-year-olds, larger hippocampal heads are 

associated with greater episodic memory performance (Riggins et al., 2015); however, 

this trend appears to reverse with age: smaller hippocampal head volumes are associated 

with improved statistical learning and associative inferences in adolescence (Schlichting, 

Guarino, Schapiro, Turk-Browne, & Preston, 2016) and with better episodic memory 

performance in adults (Demaster et al., 2014). This reflects a timing-dependent change 

that is consistent with the expected developmental trajectory of the hippocampal head, as 

described above. Specifically, in childhood, a larger anterior hippocampus, presumably 

with more connections, is beneficial to memory (Lee, Ekstrom, & Ghetti, 2014; Riggins 

et al., 2015), but, with age, unnecessary connections are pruned away, at which point a 

smaller, but more efficient anterior hippocampus is associated with better memory 

performance (Demaster et al., 2014; cf Van Petten, 2004). Therefore, the current pattern 

of results may suggest that early positive parenting facilitates improved memory 

performance in later childhood. In adults, a larger hippocampal body predicts better 

episodic memory performance (Demaster et al., 2014), suggesting that, at least in 

adulthood, larger body volumes are associated with better cognitive outcomes. The 
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association in the present dataset which implicates greater early cortisol reactivity with 

increased hippocampal body volume during mid- to late-childhood may suggest that early 

stress reactivity accelerates the development of the hippocampal body (Bath, Manzano-

Nieves, & Goodwill, 2016; for evidence of developmental acceleration due to stress in 

the amygdala, see Gee et al., 2013 and Gee & Casey, 2015), that acute stress reactivity 

during early childhood facilitates increased neurogenesis within the dentate gyrus (Kirby 

et al., 2013), or, possibly, that early stress disrupts normative pruning processes 

(Andersen & Teicher, 2004; Liu et al., 2016; Wei, Simen, Mane, & Kaffman, 2012). It is 

possible that, like adults, in children, an enlarged hippocampal body is associated with 

improved memory performance or, alternatively, the association between the 

hippocampal body and memory performance may mirror the developmental changes 

identified in the hippocampal head with greater body volume during childhood associated 

with reduced memory performance during childhood. Finally, the hippocampal tail has 

been linked to spatial navigation in older adults (Chen, Chuah, Sim, & Chee, 2010) and, 

in children, larger hippocampal tail volume is associated with increased episodic memory 

performance (Demaster et al., 2014). Therefore, in the present report, reduced left 

hippocampal tail volumes with greater T2 cortisol reactivity may predict poorer episodic 

memory performance or spatial navigation skills. 

  Hippocampal volume has also been linked to affective functioning and the 

pathophysiology of many psychological disorders, including depression (Bremner et al., 

2000; Videbech, Ravnkilde, & Ph, 2004). Hippocampal volume was found to be 

approximately 54% genetically inherited (Lyons, Yang, Sawyer-Glover, Moseley, & 

Schatzberg, 2001) and offspring with a familial risk for depression demonstrate reduced 
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volumes (Chen et al., 2010). Smaller hippocampal volumes partially mediate the 

association between early life adversity and depression in later life (Rao et al., 2010), 

predicts poorer long-term outcomes in depressed adults (MacQueen & Frodl, 2011), and 

increases an individual’s risk for developing a stress-related psychopathology (Gilbertson 

et al., 2002).  A large meta-analysis of 726 depressed adults and 795 healthy controls 

found that reduced episodic memory functioning was the most consistent cognitive 

deficit in depression (Zakzanis, Leach, & Kaplan, 1998). Investigations directly testing 

hippocampal volume in these disorders and specific non-memory cognitive and affective 

outcomes are sparse and inconsistent. 

Some research suggests that smaller hippocampal volumes are associated with 

increased depressive symptoms (Brown et al., 2014), greater apathy (Lavretsky et al., 

2008), and reduced cognitive functioning across domains (O’Brien, Lloyd, McKeith, 

Gholkar, & Ferrier, 2004; Sawyer, Corsentino, Sachs-Ericsson, & Steffens, 2012), 

including poorer executive functioning (Frodl et al., 2006). Reduced hippocampal 

volume has also been linked to greater functional activations during viewing of negative 

(versus neutral) faces (Suzuki et al., 2013).  However, many other investigations have 

found the opposite pattern of effects, with greater hippocampal volumes predicting poorer 

outcomes, such as increased trait anxiety (Rusch, Abercrombie, Oakes, Schaefer, & 

Davidson, 2001), higher behavioral inhibition (Cherbuin et al., 2008), and reduced 

emotional memory (Matsuoka et al., 2007). 

Many of these inconsistencies may be attributed to universal use of a whole 

hippocampal seed that may obscure regionally-specific changes or differences in the age 

of studied populations. As reviewed above, hippocampal volume – function associations 
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may change throughout development (Demaster et al., 2014). Additionally, it is possible 

that changes in hippocampal volume do not have direct effects on other (i.e., non-

memory) cognitive systems, but rather, changes in hippocampal volume may simply 

reflect a history of HPA axis function. Therefore, associations between hippocampal 

volume and the symptomatology of psychological disorders may be indirect, acting 

through the functions of cortisol. Future research is needed to explore these possibilities 

and identify the non-memory cognitive processes that changes in hippocampal volume 

may impact.  
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Chapter 7: Functional Connectivity Results 

Covariates 

Mean framewise displacement (FD) and scan age were entered as covariates in all 

functional analyses to mitigate the effects of individual differences in motion on 

connectivity metrics and to control for known differences in network connectivity across 

age. 

Aim 1: Associations between Parenting and Children’s Hippocampal Connectivity 

There were no significant associations between T1 Negative or T1 Positive 

Parenting and bilateral anterior or posterior hippocampal connectivity when controlling 

for T2 Negative and T2 Positive Parenting, respectively. 

Controlling for T1 Negative Parenting, greater T2 Negative Parenting predicted 

reduced bilateral anterior (Figure 16A; Table 28) and posterior (Figure 16B; Table 28) 

hippocampal connectivity with regions of left and right cerebellum. Consistent with these 

results, when controlling for T1 Positive Parenting, greater T2 Positive Parenting 

predicted increased posterior hippocampal connectivity with a region of left cerebellum 

(k=142, [-22 -74 -45], t=3.64; Figure 17)7. There was no significant association between 

T2 Positive Parenting and anterior hippocampal connectivity when controlling for T1 

Positive Parenting. 

 

                                                 
 

7 This effect remained significant when the one individual with an extremely low T2 Positive Parenting 
score was excluded from analysis. 
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Table 28  
Regions of hippocampal connectivity that vary as a function of T2 
Negative Parenting, controlling for T1 Negative Parenting 

Region k x y z t 
Anterior Hippocampus      

Right Cerebellum 191 20 -83 -39 -3.55 
Left Cerebellum 139 -25 -77 -39 -3.40 

Posterior Hippocampus      
Left Cerebellum 249 -28 -71 -36 -3.50 
Right Cerebellum 115 26 -71 -30 -3.44 
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Figure 16. Regions demonstrating significant associations between T2 Negative 
Parenting (controlling for T1 Negative Parenting, age, and mean FD) and (A) anterior 
and (B) posterior hippocampus connectivity. Note: Scatterplots depict bivariate 
correlations between the predictor and connectivity and are not adjusted for covariates 
included in the statistical models. 
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Figure 17. Regions demonstrating significant associations between T2 Positive Parenting 
(controlling for T1 Positive Parenting, age, and mean FD) and posterior hippocampus 
connectivity. Note: Scatterplot depicts the bivariate correlation between the predictor and 
connectivity and is not adjusted for covariates included in the statistical model. 
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Aim 2: Associations between Children’s Cortisol Reactivity and Hippocampal 

Connectivity 

 Controlling for T2 total cortisol volume (AUCg), greater T1 AUCg predicted 

increased anterior hippocampal connectivity with bilateral precuneus and bilateral middle 

cingulate cortex and increased posterior hippocampal connectivity with bilateral 

precuneus and posterior cingulate cortex (Table 29; Figure 18). T1 total change in 

cortisol (AUCi) was not significantly associated with either anterior or posterior 

hippocampal connectivity when controlling for T2 AUCi.  

 

Table 29  
Regions of hippocampal connectivity that vary as a function of T1 AUCg, controlling for 
T2 AUCg 

Region k x y z t 
Anterior Hippocampus      

Right Precuneus 141 8 -71 39 3.38 
Left Precuneus      

Left Middle Cingulate Cortex 75 -7 -17 30 3.42 
Right Middle Cingulate Cortex       

Posterior Hippocampus      
Right Precuneus 178 2 -80 45 3.53 

Left Precuneus          
Left Posterior Cingulate Cortex 112 -13 -44 33 3.38 

Right Posterior Cingulate Cortex          
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Figure 18. Regions where T1 AUCg was significantly associated with (A) anterior and 
(B) posterior hippocampus connectivity after controlling for T2 AUCg, age, and mean 
FD. Note: Scatterplots depict bivariate correlations between the predictor and 
connectivity and are not adjusted for covariates included in the statistical models. 
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There were no significant associations between T2 change in cortisol (AUCi) or 

total cortisol response (AUCg) and bilateral anterior or posterior hippocampal 

connectivity after controlling for T1 AUCi and T1 AUCg, respectively. 

Aim 3: Mediation Association between Parenting and Hippocampal Connectivity by 

Cortisol Reactivity 

There were five regions for which parenting significantly predicted hippocampal 

connectivity. The raw connectivity scores of each these regions for each participant were 

entered as the dependent variables in separate mediation models with T2 AUCg and T2 

AUCi entered as the mediator and T2 Positive Parenting or T2 Negative Parenting 

entered as the predictor. Significant mediation was not observed in any model (Table 30). 
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Table 30  
Mediation of the association between parenting and hippocampal resting-state functional connectivity by cortisol reactivity. 

Predictor Dependent Variable Mediator Covariates Total 
Effect 

Direct 
Effect 

Indirect 
Effect SE CI p 

T2 Positive 
Parenting 

Posterior Connectivity 
with Left Cerebellum  

T2 AUCg Age, Mean FD, 
T1 Positive Parenting -0.16 -0.16 <-0.01 0.05 [-0.11 0.09] .980 

  T2 AUCi Age, Mean FD, 
T1 Positive Parenting -0.16 -0.19 0.03 0.08 [-0.05 0.31] .747 

T2 Negative 
Parenting 

Anterior Connectivity 
with Right Cerebellum 

T2 AUCg Age, Mean FD, 
T1 Negative Parenting -0.69 -0.87 -0.10 0.15 [-0.04 0.64] .502 

  T2 AUCi Age, Mean FD, 
T1 Negative Parenting -0.69 -0.83 0.04 0.09 [-0.02 0.42] .684 

 Anterior Connectivity 
with Left Cerebellum 

T2 AUCg Age, Mean FD, 
T1 Negative Parenting -2.28 -2.23 -0.09 0.21 [-0.77 0.20] .639 

  T2 AUCi Age, Mean FD, 
T1 Negative Parenting -2.38 -2.43 0.01 0.09 [-0.09 0.22] .894 

 Posterior Connectivity 
with Left Cerebellum 

T2 AUCg Age, Mean FD, 
T1 Negative Parenting -0.02 -0.03 <0.01 0.14 [-0.31 0.31] .989 

  T2 AUCi Age, Mean FD, 
T1 Negative Parenting -0.02 -0.08 0.01 0.07 [-0.04 0.25] .882 

 Posterior Connectivity 
with Right Cerebellum 

T2 AUCg Age, Mean FD, 
T1 Negative Parenting 0.07 0.25 -0.10 0.21 [-0.80 0.17] .596 

  T2 AUCi Age, Mean FD, 
T1 Negative Parenting 0.07 0.04 0.01 0.07 [-0.09 0.21] .924 

Note. CI = Confidence Interval; SE = Standard Error; FD = Framewise Displacement.
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 Exploratory Aim: Role of Maternal Depression 

 Main Effects of Maternal Depression. There was a significant main effect of 

maternal lifetime history of depressive disorders on anterior hippocampal connectivity 

(Table 31, Figure 19). Specifically, offspring with a maternal history of depressive 

disorders demonstrated increased anterior hippocampal connectivity with the left 

posterior hippocampus and parahippocampal gyrus. There was no significant main effect 

of proportion lifetime exposure to maternal depression on anterior or posterior 

hippocampal connectivity.  

 
Table 31  
Main effect of maternal lifetime history of depressive disorders on anterior hippocampus 
connectivity. 
Region k x  y z t 
Left Parahippocampal Gyrus 103 -25  -50 0 3.58 

Left Posterior Hippocampus       
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Figure 19. Main effect of maternal lifetime history of depressive disorders on anterior 
hippocampus connectivity. Note: Plots are not adjusted for covariates included in the 
statistical model (i.e., age, mean FD). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



130 
 

Interactions with Maternal Depression. 

As an exploratory aim, the moderating influence of maternal depression on the 

associations between T1 and T2 parenting (positive or negative) or cortisol reactivity 

(AUCg or AUCi) and hippocampal functional connectivity (anterior or posterior) was 

tested.  Each model tested includes Time 1 and Time 2 independent variables (positive or 

negative parenting, AUCg or AUCi), an index of maternal depression (maternal lifetime 

history of depressive disorders or cumulative lifetime exposure to maternal depression), 

two interaction terms (between T1 and T2 independent variables and the maternal 

depression index), and covariates (mean FD, scan age). 

Interactions between Parenting and Maternal Depression. Cumulative lifetime 

exposure to maternal depression moderated the association between T1 Positive 

Parenting and bilateral posterior hippocampal connectivity with a region spanning left 

and right cuneus (Table 32, Figure 20). Specifically, in children with high exposure to 

maternal depression, greater T1 Positive Parenting was associated with increased 

connectivity between posterior hippocampus and bilateral cuneus. Offspring with low 

exposure to maternal depression demonstrated the opposite trend: greater T1 Positive 

Parenting predicted decreased posterior hippocampus connectivity with this region. The 

interaction between cumulative lifetime exposure to maternal depression and T2 Positive 

Parenting in predicting posterior hippocampus connectivity was not significant. 
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Table 32  
Regions where proportion of lifetime exposure to maternal depression moderated the 
association between posterior hippocampus connectivity with T1 Positive Parenting, 
controlling for T2 Positive Parenting 

Region k x y z t 
Left Cuneus* 130 -7 -92 36 3.22 

Right Cuneus      
*Significant connectivity for offspring with high and low cumulative exposure to 
maternal depression. 

 
 

 
 

Figure 20. Regions where proportion lifetime exposure to maternal depression moderated 
the association between posterior hippocampus connectivity with T1 Positive Parenting, 
controlling for T2 Positive Parenting, age, and mean FD. Note: Scatterplot depicts 
bivariate correlations between the predictor and connectivity and is not adjusted for 
covariates included in the statistical model. 
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Maternal lifetime history of depression significantly moderated the associations 

between T1 and T2 Positive Parenting with posterior hippocampus connectivity.  

Maternal lifetime history of depression moderated the association between T1 Positive 

Parenting and bilateral posterior hippocampus connectivity with a large region of 

bilateral lingual gyri extending into bilateral fusiform gyri as well as regions of left and 

right middle occipital gyrus, left inferior temporal gyrus, right cerebellum, left inferior 

parietal lobule, and left precuneus (Table 33, Figure 21). In all regions, in offspring with 

a maternal history of depressive disorders, greater T1 Positive Parenting was associated 

with greater posterior hippocampal connectivity and in offspring without a maternal 

history of depressive disorders, greater T1 Positive Parenting was only associated with 

lower bilateral posterior hippocampal connectivity with the left and right middle occipital 

gyrus, left inferior temporal gyrus, and left precuneus. The association between T1 

Positive Parenting and posterior hippocampus connectivity was not significant in 

offspring with a maternal history of depressive disorders in any other regions. 

Additionally, maternal lifetime history of depression moderated the association between 

T2 Positive Parenting and posterior hippocampus connectivity with a region of left 

lingual gyrus extending into bilateral calcarine gyri (Table 34, Figure 22). In offspring 

without a maternal history of depression, greater T2 Positive Parenting was associated 

with increased connectivity whereas offspring without a maternal history of depression 

do not demonstrate an association. This result should be interpreted with caution, as the 

interaction is driven by one child with a maternal history of depression with an extremely 
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low positive parenting score8. Inspection of the raw data suggests offspring with and 

without a maternal history of depressive disorders demonstrate increased connectivity 

with this region with greater T2 Positive Parenting.  

 

 

Table 33  
Regions where maternal lifetime history of depressive disorders moderated the 
association between T1 Positive Parenting, controlling for T2 Positive Parenting, and 
posterior hippocampus connectivity. 
Region k x y z t 
Left Lingual Gyrus 448 -28 -53 -6 3.38 

Left Fusiform Gyrus 
    

 
Right Lingual Gyrus 

    
 

Right Fusiform Gyrus 
    

 
Left Middle Occipital Gyrus* 248 -37 -77 24 3.67 
Left Inferior Temporal Gyrus* 208 -49 -56 -9 3.45 

Left Middle Temporal Gyrus 
    

 
Right Middle Occipital Gyrus* 134 38 -80 27 3.46 
Right Cerebellum 116 32 -56 -21 3.30 

Right Fusiform Gyrus 
    

 
Left Inferior Parietal Lobule 96 -43 -38 45 3.25 
Left Precuneus* 77 -4 -59 -57 3.44 
*Significant connectivity for offspring with and without maternal 
lifetime history of depressive disorders. Unmarked regions are only 
significant for offspring with a maternal lifetime history of depressive 
disorders. 

 

 

 
 
 
 

                                                 
 

8 This effect did not remain significant when the one individual with an extremely low T2 Positive 
Parenting was excluded from analyses. 



134 
 

 



135 
 

Figure 21. Regions where maternal lifetime history of depressive disorders moderated the 
association between T1 Positive Parenting (controlling for T2 Positive Parenting, age, 
and mean FD) and posterior hippocampus connectivity. Note: Scatterplots depict 
bivariate correlations between the predictor and connectivity and are not adjusted for 
covariates included in the statistical models. 
 
Table 34  
Regions where maternal lifetime history of depressive disorders significantly moderated 
the association between T2 Positive Parenting, controlling for T1 Positive Parenting, and 
posterior hippocampus connectivity 
Region k x y z t 
Left Lingual Gyrus 135 -7 -68 6 -3.40 

Left Calcarine Gyrus      
Right Calcarine Gyrus      
Left Cuneus      
Right Cuneus      
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Figure 22. Regions where maternal lifetime history of depressive disorders significantly 
moderated the association between T2 Positive Parenting (controlling for T1 Positive 
Parenting, age, and mean FD) and posterior hippocampal connectivity. Note: Scatterplot 
depicts bivariate correlations between the predictor and connectivity and is not adjusted 
for covariates included in the statistical model. 
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No other interactions between T1 or T2 Positive or Negative Parenting and either 

index of maternal depression significantly predicted anterior or posterior hippocampus 

connectivity. 

 
Interactions between Cortisol Reactivity and Maternal Depression. Exposure to 

early maternal depression moderated the association between T1 AUCi and bilateral 

anterior hippocampus connectivity with right superior orbital gyrus (k=83, [26 -55-6], t=-

3.44; Figure 23), with greater exposure associated with decreased connectivity and lower 

exposure associated with increased connectivity in this region9. The interaction between 

cumulative lifetime exposure and T2 AUCi in predicting anterior hippocampus 

connectivity was not significant. 

 

                                                 
 

9 This effect remained significant when one or both individuals with low T1 AUCi were removed from 
analyses. 
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Figure 23. Regions where the association between T1 AUCi (controlling for T2 AUCi, 
age, and mean FD) and anterior hippocampus connectivity was significantly moderated 
by proportion lifetime exposure to maternal depression. Note: Scatterplot depicts 
bivariate correlation between the predictor and connectivity and is not adjusted for 
covariates included in the statistical model. 
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There was a significant interaction between maternal lifetime history of 

depression and T1 AUCg in predicting bilateral anterior hippocampus connectivity with 

the left middle frontal gyrus (k=80, [-28 37 21], t=3.46; Figure 24). In offspring with a 

maternal lifetime history, greater T1 AUCg was associated with greater bilateral head 

connectivity with the left middle frontal gyrus. In offspring without a lifetime history, 

greater T1 AUCg was associated with reduced connectivity in this region. The interaction 

between maternal lifetime history of depression and T2 AUCg in predicting anterior 

hippocampus connectivity was not significant. 
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Figure 24. Regions where the association between T1 AUCg (controlling for T2 AUCg, 
age, and mean FD) and anterior hippocampus connectivity was significantly moderated 
by a maternal lifetime history of depressive disorders. Note: Scatterplot depicts bivariate 
correlation between the predictor and connectivity and is not adjusted for covariates 
included in the statistical model. 
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There was a significant interaction between maternal lifetime history of 

depression and T2 AUCi in predicting bilateral posterior hippocampus connectivity with 

the right inferior frontal gyrus, the right fusiform gyrus, and the right middle temporal 

gyrus (Table 35, Figure 25). In each of these regions, maternal history of depressive 

disorders was associated with greater T2 AUCi predicted increased connectivity while no 

maternal history was associated with a negative association between T2 AUCi and 

connectivity. The interaction between maternal lifetime history of depression and T2 

AUCi in predicting posterior hippocampus connectivity was not significant.  

Table 35  
Regions where lifetime history of maternal depression significantly moderated the 
association between T2 AUCi, controlling for T1 AUCi, and bilateral posterior 
hippocampus connectivity. 

Region k x y z t 
Right Inferior Frontal Gyrus (pars Triangularis) 101 47 16 18 3.47 

Right Inferior Frontal Gyrus (pars Opercularis) 
     

Right Fusiform Gyrus 71 38 -74 -18 3.45 
Right Inferior Temporal Gyrus 

     

Right Middle Temporal Gyrus 71 53 -41 -9 3.33 
Right Inferior Temporal Gyrus 
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Figure 25. Regions where the association between T2 AUCi (controlling for T1 AUCi, age, and mean FD) and posterior hippocampus 
connectivity was significantly moderated by a maternal lifetime history of depressive disorders. Note: Scatterplots depict bivariate 
correlations between the predictor and connectivity and are not adjusted for covariates included in the statistical models. 
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 Neither maternal lifetime history of depression nor cumulative lifetime exposure 

to   maternal depression significantly moderated any other associations between T1 or T2 

AUCg or AUCi and any region of anterior or posterior hippocampus connectivity.
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Chapter 8: Functional Connectivity Discussion 

 This was the first study to investigate the longitudinal associations between early 

and concurrent parenting and cortisol reactivity on anterior and posterior hippocampal 

functional connectivity at rest in a young human population. Analyses revealed that later 

parenting (both positive and negative) predicted hippocampal connectivity with regions 

of the cerebellum whereas total cortisol released in response to a stressor (AUCg) during 

preschool (T1) predicted increased connectivity with the cuneus and regions of the 

cingulate gyrus. This suggests that hippocampal network architectures may be selectively 

sensitive to early stress and later parenting behaviors. 

 Both T2 negative and T2 positive parenting predicted hippocampal connectivity 

with regions of the cerebellum. As would be expected, positive and negative parenting 

were associated with inverse effects on hippocampal connectivity: greater T2 negative 

parenting predicted reduced anterior and posterior hippocampus connectivity with 

regions of left and right cerebellum whereas greater T2 positive parenting predicted 

increased posterior hippocampus connectivity with a region of left cerebellum. There 

were no specific effects of early parenting above and beyond later parenting in predicting 

hippocampal connectivity (though see Supplementary Material). This pattern of results 

suggests that hippocampal functional connections with the cerebellum are particularly 

sensitive to both negative and positive concurrent parenting behaviors.  

Reciprocal connections have been reported between the hippocampus and the 

cerebellum (Heath, Dempesy, Fontana, & Myers, 1978; Newman & Reza, 1979; Sang et 

al., 2012), with evidence that the cerebellum modulates hippocampal activity under a 

variety of conditions (Onuki, Van Someren, De Zeeuw, & Van der Werf, 2015; Yu & 
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Krook-Magnuson, 2015). Recent evidence suggests that these functional connections 

increase during childhood (Blankenship et al., 2016). Thus, the current findings may 

indicate that concurrent maladaptive parenting behaviors (i.e., low positive and high 

negative parenting) may compromise the functional integrity of hippocampal-cerebellum 

communication.  

Although the cerebellum has historically been considered to play an exclusive 

role in motor coordination, emerging evidence suggests diverse cognitive and affective 

functions that may be affected in depressive disorders, including verbal and temporal 

memory (Onuki et al., 2015; Rubia & Smith, 2004), attention (Schmahmann, Weilburg, 

& Sherman, 2007), specifically as it applies to oculomotor movements (Sweeney, 

Strojwas, Mann, & Thase, 1998), as well as, emotion regulation (Schutter & van Honk, 

2005), emotion processing (Baumann & Mattingley, 2012; Turner et al., 2007), and fear 

conditioning (Sacchetti, Scelfo, Tempia, & Strata, 2004). Increased hippocampal-

cerebellar connectivity has been linked to successful memory formation (Ranganath, 

Heller, Cohen, Brozinsky, & Rissman, 2005). Structural and functional changes in the 

cerebellum have been linked to depressive disorders (Canli et al., 2004; Guo et al., 2015; 

Konarski, McIntyre, Grupp, & Kennedy, 2005) and extreme parenting behaviors such as 

abuse (Hart & Rubia, 2012). In fact, cerebellar activity can be used to discriminate 

between adults with and without depression (Zeng et al., 2012), and there is evidence that 

differences in cerebellum connectivity with the hippocampus, in particular, may be a 

distinguishing neural characteristic of individual with depressive disorders (Liu et al., 

2012). These individual differences in network connectivity may be linked to 

glucocorticoid activity as both the hippocampus and cerebellum have high densities of 
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glucocorticoid receptors (Pavlík & Buresová, 1984) and have a demonstrated sensitivity 

to exogenous elevations in corticosterone levels in the rat (Howard, 1968). As there are 

known increases in this connectivity during childhood, and the degree of connectivity is 

associated with improved memory performance in adults, the present finding that low 

positive and high negative parenting predict decreased hippocampal-cerebellar 

connectivity may signal atypical development, decreased functioning in the cognitive and 

affective domains mentioned above, and may indicate an early marker of increased risk 

for later depressive disorders.  

Early (T1) AUCg, a measure of the total amount of cortisol released in response 

to a stressor, predicted increased anterior and posterior hippocampus connectivity with 

the precuneus and distinct regions of the cingulate cortex. Recent evidence suggests that 

hippocampal connectivity with the precuneus and the cingulate cortex increases during 

childhood (Blankenship et al., 2016). Therefore, evidence that greater total cortisol 

release is associated with increased connectivity between these regions may indicate that 

early cortisol in response to a stressor may accelerate, a pre-existing developmental 

process. 

Both the precuneus and the cingulate cortex are important nodes in the default 

mode network (Fransson & Marrelec, 2008), and increased connectivity between these 

regions and the DMN have been implicated in the etiology of depression (Greicius et al., 

2007; Sambataro, Wolf, Pennuto, Vasic, & Wolf, 2014). In particular, the DMN has been 

implicated in self-referential processing (Davey, Pujol, & Harrison, 2016; Sheline et al., 

2009) and ruminative behaviors (Berman et al., 2011; Hamilton et al., 2011; Hamilton, 

Farmer, Fogelman, & Gotlib, 2015). Among DMN nodes, the precuneus and posterior 
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cingulate appear to play a particular role in self-referential processing (Northoff et al., 

2006).  

Additionally, the DMN has been linked to autobiographical (Philippi, Tranel, 

Duff, & Rudrauf, 2015; Spreng & Grady, 2010) and episodic memory performance 

(Riggins et al., 2016; Wang et al., 2010). In particular, greater hippocampal connectivity 

to the precuneus and cingulate gyrus in adults (Wang et al., 2010) and the precuneus in 6-

year-olds (Riggins et al., 2016) has been linked to improved episodic memory 

performance. Moreover, both the anterior hippocampus and the cingulate gyrus have 

been widely implicated in the processing of and memory for emotional stimuli 

(Maddock, Garrett, & Buonocore, 2003; Maddock & Maddock, 1999; Poppenk et al., 

2013). The anterior hippocampus has been linked to generalized memories versus 

memory for specific details – a function attributed to the posterior hippocampus 

(Evensmoen et al., 2013; Poppenk et al., 2013) though other theories of anterior-posterior 

functional distinction exist (see: Fanselow & Dong, 2010; Poppenk et al., 2013; Strange, 

Witter, Lein, & Moser, 2014). Taken together, increased anterior hippocampus 

connectivity with these regions of the DMN may indicate a tendency for over-generalized 

self-referential memories – a cognitive deficit common in adults with depressive 

disorders (Gibbs & Rude, 2004; Söderlund et al., 2014; Sumner, Griffith, & Mineka, 

2010; Williams et al., 2007). Therefore, early cortisol reactivity may drive increased 

hippocampal connectivity to DMN nodes, leading to improvements in episodic memory 

and self-referential processing which may reflect a sensitivity to recalling personally-

relevant (i.e., autobiographical memories) or emotional events and a propensity to 
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ruminate on those events, two defining features of depressive disorders (Disner et al., 

2011; Nolen-Hoeksema & Susan, 2000).  

There was a main effect of maternal lifetime history of depressive disorders on 

anterior hippocampus connectivity with a region of the left posterior parahippocampal 

gyrus extending into the left hippocampal tail, with offspring with a maternal lifetime 

history of depression demonstrating increased anterior hippocampus connectivity with 

these regions. There is abundant evidence of functional segregation between anterior and 

posterior subregions of the hippocampus (e.g., Fanselow & Dong, 2010; Poppenk et al., 

2013; Strange, Witter, Lein, & Moser, 2014). Findings of increased functional 

connectivity between anterior and posterior segments may indicate normative processes 

driving longitudinal functional segregation are altered in offspring with a maternal 

lifetime history of depressive disorders. Although there are no previous reports of direct 

anterior hippocampus – posterior parahippocampal gyrus connectivity to our knowledge, 

both regions are widely implicated in emotional memory formation (Smith, Henson, 

Dolan, & Rugg, 2004; Van den Stock, Vandenbulcke, Sinke, & de Gelder, 2014) and 

have demonstrated increased activity to the processing of novel scenes (Köhler, Crane, & 

Milner, 2002). A meta-analysis of twenty functional MRI studies found that the anterior 

hippocampus and the posterior parahippocampal gyrus, along with other regions, are 

consistently activated during successful encoding of emotional images (Murty, Ritchey, 

Adcock, & LaBar, 2010). Therefore, increased connectivity between these regions may 

indicate an increased propensity for emotional memories in offspring of depressed 

mothers. Despite no evidence to our knowledge indicating that anterior hippocampus-

posterior parahippocampal gyrus connectivity may be altered in depressive disorders, 



149 
 

both structures have been implicated in the pathophysiology of anxiety disorders (Kent & 

Rauch, 2003; Liotti et al., 2000). Therefore, the present findings may be driven by 

comorbidities between maternal depressive and anxiety disorders. Combining these 

disparate functions, perhaps increased anterior hippocampus connectivity with the 

posterior hippocampus in offspring of depressed mothers may facilitate increased ease of 

encoding novel scenes (Köhler et al., 2002), particularly when they are emotionally 

valenced.  

There was also evidence that measures of maternal lifetime depression status and 

cumulative exposure to maternal depression moderated the associations between 

parenting and cortisol reactivity with hippocampal connectivity. The discussion below 

will focus on interactions that remained significant when multivariate outliers were 

removed. 

Associations between T1 positive parenting and posterior hippocampal 

connectivity were moderated by measures of maternal depression. In offspring with a 

maternal lifetime history of depression, greater T1 positive parenting predicted increased 

posterior hippocampus connectivity with a number of regions (lingual gyrus, middle 

occipital gyrus, inferior temporal gyrus, cerebellum, inferior parietal lobule, precuneus, 

and cuneus), many of which are involved in the default mode network (Buckner, 

Andrews-Hanna, & Schacter, 2008; Fransson, 2005; Utevsky, Smith, & Huettel, 2014). 

As a general trend, in offspring without a maternal lifetime history, greater T1 Positive 

Parenting predicted reduced connectivity, though this effect was not significant in all 

regions. Similarly, in offspring with high exposure to maternal depression, greater T1 

positive parenting predicted increased posterior hippocampus connectivity with the 



150 
 

cuneus, a region where the association between T1 positive parenting and posterior 

hippocampal connectivity was also moderated by a maternal lifetime history of 

depression (above). This effect was not significant in offspring with low cumulative 

exposure to maternal depression. 

Nearly all of the regions demonstrating this effect demonstrate gray-matter 

reductions (Grieve, Korgaonkar, Koslow, Gordon, & Williams, 2013) and differences in 

functional activation during rumination (Cooney, Joormann, Eugène, Dennis, & Gotlib, 

2010) in depressed adults. Moreover, many of these regions have also been identified as 

key nodes through which a pattern classification algorithm can distinguish between 

depressed and non-depressed adults while watching sad faces (Fu et al., 2008). In 

addition to the implications to rumination and self-referential processing described above, 

hippocampal connectivity to the DMN has been linked to episodic memory performance. 

Findings in adults have suggested that high hippocampal-DMN connectivity at rest 

predicts reduced hippocampal-cortical recruitment during memory encoding, and 

ultimately poorer memory performance (Salami, Pudas, & Nyberg, 2014). Therefore, it is 

possible that in offspring of depressed mothers, greater positive parenting facilitates 

increased resting-state connectivity which prevents appropriate task-based use of 

hippocampal networks. Considered differently, in offspring with high risk for depression, 

perhaps greater positive parenting is causing the hippocampus to become more tightly 

coupled to the DMN, effectively improving memory for self-referential events. 

Therefore, in offspring of depressed mothers, high early positive parenting predicting 

greater connectivity at rest may facilitate increased ruminative behaviors and self-

referential autobiographical memories but may impair more general episodic memory 
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performance. The opposite may be true in offspring without a maternal lifetime history of 

depression: greater T1 Positive Parenting may facilitate improved episodic memory, but 

reduced self-referential processing. The present results indicate that hippocampal 

networks of offspring with or without a familial risk for depression may be differentially 

affected by early positive parenting. Moreover, greater self-referential processing or 

outwardly focused episodic memory abilities may be adaptive depending on genetic or 

environmental risk factors associated with maternal depression. The validity of this 

speculation and the cognitive consequences of increased or decreased hippocampal 

connectivity with the DMN should be explored.  

Together, this pattern of effects suggests that posterior hippocampal connectivity 

is particularly sensitive to the interaction between the presence of early positive parenting 

behaviors and maternal depression status. 

 Maternal depression status moderated the association between early (T1) cortisol 

reactivity and anterior hippocampus connectivity, and the associations between later (T2) 

cortisol reactivity and posterior hippocampus connectivity. Despite early cortisol being 

linked to anterior connectivity with the prefrontal cortex, different aspects of the cortisol 

response (i.e., total magnitude of cortisol release: AUCg versus total change in cortisol 

over time: AUCi) are associated with different prefrontal regions, in different directions, 

and moderated by different measures of maternal depression. Specifically, in offspring 

with high exposure to maternal depression, greater T1 AUCi, a measure of total cortisol 

change, predicted decreased anterior hippocampal connectivity with the right superior 

orbital cortex. In contrast, in offspring with a maternal lifetime history of depression, 

greater T1 AUCg, a measure of total cortisol secreted, predicted increased anterior 



152 
 

hippocampal connectivity with the left dorsolateral prefrontal cortex (dlPFC). This 

suggests timing- and region-dependent patterns in the interaction between maternal 

depression and cortisol reactivity in predicting anterior hippocampus connectivity. 

The different pattern of effects between these two regions may be attributed to 

different aspects of the cortisol response or different mechanisms. The prefrontal cortex, 

like the cerebellum and hippocampus, has a high density of glucocorticoid receptors 

(Perlman, Webster, Herman, Kleinman, & Weickert, 2007), making it particularly 

sensitive to the effects of increased cortisol. Interestingly, there is evidence that different 

regions of prefrontal cortex may be differentially responsive to cortisol: in some regions, 

increased cortisol is associated with cell death and in other cases there is just a structural 

reorganization (Wellman, 2001). These differential effects of cortisol depending on 

prefrontal region may be contributing to the divergent effects we find between measures 

of cortisol reactivity and hippocampal connectivity with prefrontal cortex. Additionally, 

the aspect of the cortisol response being tapped by each measure (i.e., AUCg, AUCi) may 

have different cellular and molecular effects on prefrontal cortical regions. Finally, the 

observed effects may be a consequence of different measures of maternal depression: 

greater cumulative exposure to maternal depression may tap more experiential or chronic 

risk factors associated with maternal depression whereas moderation by lifetime history 

of maternal depression may reflect more genetically-mediated mechanisms. 

The hippocampus has known reciprocal connections with the orbitofrontal cortex 

(Catenoix et al., 2005; Cavada, Compañy, Tejedor, Cruz-Rizzolo, & Reinoso-Suárez, 

2000). The strength of this connectivity has been linked to successful memory formation 

in healthy adults and may be particularly important for memory of rewarding social 
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stimuli (Tsukiura et al., 2011; Tsukiura & Cabeza, 2008). Moreover, orbitofrontal volume 

reductions have been reported in adults with depressive disorders (J Douglas Bremner et 

al., 2002; Drevets, 2007), in individuals from low SES backgrounds (Holz et al., 2015), 

and in individuals who have experienced early life stress, broadly defined (Hanson et al., 

2010), suggesting this volumetric change may be driven by stress.  Moreover, differences 

in hippocampal – orbitofrontal connectivity can reliably distinguish depressed from non-

depressed adults (Cao et al., 2014). The present finding that greater cortisol reactivity 

predicts decreased hippocampal-orbitofrontal connectivity in offspring with a maternal 

risk for depression may reflect decreased memory for rewarding stimuli. A reduced 

capability for processing rewarding stimuli may have important implications for the 

development of anhedonia, a central symptom of depressive disorders (Pizzagalli, 2014). 

In offspring without a lifetime history, greater T1 total change in cortisol appears to 

facilitate development of healthy (i.e., increased) connectivity between the anterior 

hippocampus and orbitofrontal cortex. This may indicate an interaction between genetics 

and stress reactivity in shaping development of neural networks implicated in depressive 

disorders.  

Greater total cortisol secreted in response to a laboratory stressor predicted 

increased anterior hippocampal connectivity with the left dorsolateral prefrontal cortex 

(dlPFC). The dlPFC is a prefrontal region implicated in executive control processes and 

has been linked to many functional domains including episodic memory (Demaster & 

Ghetti, 2013; Ghetti & Bunge, 2012; Ofen et al., 2007), possibly for personally-

meaningful information (Keenan, Wheeler, Gallup, & Pascual-Leone, 2000), working 

memory (Curtis & D’Esposito, 2003; Owen, 1997; Smith & Jonides, 1999), voluntary 
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emotion regulation (Golkar et al., 2012), emotion recognition (Scheuerecker et al., 2010), 

and reward processing (Zhang et al., 2013). Increased hippocampal-dlPFC connectivity 

has been linked to developmental increases in episodic memory (Menon, Boyett-

Anderson, & Reiss, 2005) and problem-solving skills (Cho et al., 2012) during childhood. 

Thus, in offspring with a maternal history of depression, the effects of early cortisol 

reactivity may support better cognitive functioning whereby the effects of cortisol 

reactivity on hippocampal-dlPFC connectivity in offspring with no maternal risk may be 

linked to deleterious effects on cognition. 

Additionally, dlPFC structural and functional changes have been consistently 

associated with the effects of stress in depressed (Phillips, Ladouceur, & Drevets, 2008) 

and non-depressed (Philip et al., 2014) adults and individuals with a familial risk for 

depression (Amico et al., 2011). Individuals with a family history of depression and 

emotional abuse have the most profound effects on dlPFC (Carballedo et al., 2012), 

suggesting a particular sensitivity to the combinatorial effects of genetic risk and 

environmental stressors. dlPFC resting-state activity significantly differs between 

depressed and non-depressed adults (Hwang et al., 2015; Peters, Burkhouse, Feldhaus, 

Langenecker, & Jacobs, 2016; Sheline, Price, Yan, & Mintun, 2010) and individuals with 

depression demonstrate increased dlPFC activity in response to social threat words (Canli 

et al., 2004). In healthy adults, the hippocampus is linked to automatic regulation of 

emotion, whereas the dlPFC is involved with the voluntary top-down regulation of 

emotion. Depressed adults, however, appear to recruit the dlPFC more during tasks of 

automatic emotion regulation (Rive et al., 2013). Therefore, in offspring with a maternal 

history of depression, greater cortisol reactivity may be affecting the functional 
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connections between the hippocampus and dlPFC, perhaps reflecting increased dlPFC 

involvement in automatic regulation of emotions or a reduced ability to exert top-down 

influences on emotional responses. An alternative possibility is that increased 

hippocampal-dlPFC connectivity in offspring of depressed mothers may reflect 

compensatory mechanisms whereby greater connectivity is necessary to achieve the same 

level of cognitive functioning. For instance Harvey and colleagues (2005) found that 

depressed individuals demonstrated increased dlPFC activation despite maintaining 

similar levels of performance on a working memory task. The authors interpreted this to 

mean that the depressed individuals needed to dedicate more neural resources to 

accomplish the same level of cognitive performance. Similar processes may be at play in 

offspring of depressed mothers. 

Later (T2) total change in cortisol in response to stress (AUCi) interacted with a 

maternal lifetime history of depression to predict increased posterior hippocampus 

connectivity with dorsolateral prefrontal cortex and temporal lobe structures including the 

fusiform gyrus. In all regions, greater change in the cortisol response to stress predicted 

increased connectivity in offspring with a maternal lifetime history of depression and 

decreased connectivity in offspring without maternal depression.  

The middle temporal gyrus, inferior frontal gyrus (dlPFC), and the hippocampus 

are all linked to autobiographical memory (Fink et al., 1996; Greenberg et al., 2005; 

Piefke, Weiss, Markowitsch, & Fink, 2005; Piefke, Weiss, Zilles, Markowitsch, & Fink, 

2003) the episodic memory network (Jeong, Kee Chung, Sic Kim, & Marinazzo, 2015) 

and are often found to have altered connectivity in depression (Guo et al., 2014; Ma et al., 

2012). Moreover, greater connectivity between these regions and the hippocampus has 



156 
 

been linked to poorer episodic memory performance in a sample of typically-developing 

6-year-olds (Riggins et al., 2016).  

In depressive disorders, inferior frontal gyrus and middle temporal gyrus show 

increased connectivity with each other (Zhang et al., 2011), altered connectivity within 

the DMN (Hwang et al., 2016), and similar response to rewards and threats (Canli et al., 

2004). Specifically, in depressed adults, both regions demonstrate reduced activity in 

response to happy faces but increased activity to physical threat (Mather et al., 2004). 

Similar directions of effects are apparent in the fusiform gyrus of depressed individuals: 

heightened activity in response to negative faces with reduced activation to happy faces 

(Stuhrmann et al., 2011). During recognition of previously encoded faces following a 

social stressor, adults demonstrated increased activity in the left inferior frontal gyrus and 

the hippocampus in response to fearful faces and decreased activity to neutral faces (Li, 

Weerda, Milde, Wolf, & Thiel, 2014), indicating a link between activation of these 

regions during fearful face processing and stress. In healthy individuals, the fusiform 

gyrus, along with the hippocampus and lingual gyrus, appears to be part of a network of 

regions involved in the encoding of novel images and faces whereby greater activity 

facilitates better encoding (Stern et al., 1996). Additionally, one study found that all four 

regions (the hippocampus, fusiform gyrus, inferior frontal gyrus, and middle temporal 

gyrus) were implicated in facial emotion perception in depressed women (Briceño et al., 

2013).  

Considered together, these findings may provide a neurobiological explanation for 

behavioral evidence that at-risk and depressed individuals have a selective memory bias 

for negative faces and events and tend to forget positive events (i.e., a positive blockade; 



157 
 

Disner et al., 2011) (Gupta & Kar, 2012; Guyer, Choate, Grimm, Pine, & Keenan, 2011). 

If these regions are tightly coupled with the hippocampus, but are not being appropriately 

activated during positive events and are being overly activated during negative events, 

the hippocampus may not be receiving the necessary signals for successful encoding of 

positive events, but heightened activity for negative events. Thus, in offspring with a 

maternal  lifetime history of depression, greater cortisol reactivity predicting increased 

hippocampal connectivity with regions involved with memory may mirror network 

architectures similar to adults with depressive disorders and, moreover, these differences 

may reflect compromised episodic memory, particularly for positive faces, during 

childhood. In offspring of depressed mothers, greater cortisol reactivity may activate an 

epigenetic cascade that prepares children to function in stressful environments where 

faces are salient environmental features that require increased attentional processing 

(Joormann et al., 2007) and network connectivity; however, this increased connectivity 

may come at the expense of other cognitive functions such as episodic memory (Bai et 

al., 2009; Dietsche et al., 2014; Rao et al., 2016) or memory for positive or neutral faces. 

In summary, the present study found evidence that the development of 

hippocampal network architectures may be shaped by the parenting environment and the 

neuroendocrine response to stress. Moreover, the present findings provide evidence that 

these factors may interact with additional genetic or environmental factors associated 

with maternal depression status. Critically, all regions demonstrating individual 

differences in hippocampal connectivity in the present study have been linked to the 

etiology of depressive disorders in adults. Specifically, we’ve demonstrated that early and 

concurrent experiences shape hippocampal networks involved in reward processing, 
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emotion recognition, episodic and autobiographical memory, and self-referential 

processing; all domains which are compromised in depression. Therefore, this study 

provides preliminary evidence that, perhaps in conjunction with other environmental or 

genetic risks, early parenting and neuroendocrine experiences can shape hippocampal 

network architectures, possibly putting individuals at increased risk for later depressive 

disorders.
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Chapter 9: General Discussion 

The present investigation examined the longitudinal associations between 

children’s early (3-6 years) and concurrent (5-10 years) cortisol reactivity and observed 

parenting on children’s hippocampal structure and functional connectivity at 5-10 years 

of age. Results revealed both timing- and region-dependent associations. Greater early 

(T1) positive parenting predicted larger hippocampal head volumes, whereas later (T2) 

positive parenting predicted smaller hippocampal body volumes. Early (T1) total cortisol 

release predicted larger body volumes and early total change in cortisol was associated 

with smaller body volumes. Later (T2) total change in cortisol predicted smaller tail 

volumes. Later T2 positive and negative parenting predicted increased and decreased 

anterior and posterior hippocampus connectivity, respectively, with the cerebellum, and 

early (T1) cortisol reactivity, as indexed by the total volume of cortisol (AUCg), 

predicted increased anterior and posterior connectivity with the cuneus and distinct 

regions of the cingulate gyrus. Significant mediation was observed, with greater T1 

Negative Parenting predicting greater T2 change in cortisol (AUCi), which, in turn, 

predicted reduced hippocampal tail volume. We also found evidence that maternal 

lifetime history of depression and cumulative exposure to maternal depression moderated 

many associations between parenting and cortisol reactivity with indices of hippocampal 

structure and function indicating that the effects of these childhood experiences may 

differentially affect high- and low-risk children. 

This is the first study in a young human population to find support for the 

hypothesis, derived from evidence in rodents, that the early caregiving environment 

shapes hippocampal structure and function by programming the HPA Axis response to 
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stress.  The present study has many strengths that expand upon and make valuable 

contributions to the existing literature. First, use of a longitudinal sample afforded the 

capability to probe timing-dependent effects of early and concurrent parenting and 

cortisol reactivity on hippocampal structure and function. Second, unlike previous studies 

examining the effects of parenting on hippocampal development in children, the present 

study used observational measures of both positive and negative parenting behaviors. 

Evidence suggests that these measures may not exist on a continuum and, rather, 

represent two orthogonal indices that may correspond to different developmental 

outcomes (McLaughlin et al., 2014; Sheridan & McLaughlin, 2014). Testing both 

positive and negative indices of parenting enabled the evaluation of potential 

development differences in their effects on hippocampal structure and function. 

Moreover, observational measures provide more ecologically valid measurements of 

parenting behaviors and reduce the effects of the self-report bias common to 

questionnaires (van de Mortel, 2008). Third, the present investigation examined two 

measures of cortisol reactivity, total change in cortisol and total cortisol release. This 

methodological choice allowed for exploration of unique and potentially divergent effects 

of distinct aspects of the HPA response to stress on hippocampal development.  Fourth, 

measuring maternal depression status by clinical interview at each time point allowed for 

accurate estimates of lifetime depression as well as total number of months the child was 

exposed to maternal depression. Fifth, this is the first study to assess associations 

between parenting and hippocampal subregion volumes. Investigation of subregions 

provides the advantage of determining region-specific differences in hippocampal 

volume that may be obscured by use of a whole hippocampal segmentation. Finally, and 
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most critically, the present study is the first to examine the effects of parenting and 

cortisol reactivity on hippocampal functional connectivity in childhood. Although 

previous studies have found that positive parenting predicts hippocampal volume during 

late childhood (Luby et al., 2012; Rao et al., 2011), network and volume changes may  be 

driven by distinct mechanisms that are differentially affected by external inputs 

throughout the childhood period. Exploring the longitudinal associations between 

parenting and cortisol reactivity with hippocampal functional connectivity provides 

greater understanding how early experiences may shape the hippocampal network and 

provides greater insight into the cognitive systems that may be differentially affected. 

The present study provides great advances to our knowledge of how and when the early 

environment may alter developing neural networks and provides insight into the neural 

changes that may underlie the etiology of later impairments.  

Despite providing necessary insights into how the early parenting environment 

and a child’s neurobiological response to stress may shape neural architectures, the 

conclusions which can be drawn from the present results are restricted by a few critical 

methodological limitations. First, the present investigation may not have had sufficient 

power. Despite 103 children and families participating in the T2 behavioral assessments, 

MR contraindications and participant (parent and/or child) interest in participating in the 

MRI assessment significantly reduced the number of mother-child dyads included in the 

present analyses. Low power in the present analyses may have impaired our ability to 

detect effects (i.e., increasing the type II error rate), especially as it applies to statistical 

tests of mediation and moderation. It should be noted, however, that despite low power, 

there was evidence for significant mediation in the current sample. Furthermore, the 
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limited power afforded by the sample size precluded analysis of more complex models 

that incorporated the moderating effects of maternal depression, such as moderated 

mediation. Additionally, a small sample resulted in limited variability in the predictor 

variables of interest. In particular, in the present imaging subsample, high levels of 

negative parenting behaviors were rare, resulting in skewed distributions, limited ability 

to detect potentially meaningful effects, and an increased likelihood that effects may be 

driven or obscured by statistical outliers. Therefore, the significance of negative 

parenting in shaping hippocampal structure and functional connectivity remains an open 

question for future investigation. 

Second, although longitudinal measures of parenting and cortisol reactivity were 

collected, the present investigation only acquired neuroimaging data at T2. A single 

timepoint of neuroimaging data does not allow for the determination of the temporal 

relations between variables. It is unknown whether or not baseline differences were 

present earlier in life, at what point in development individual differences emerged, and 

how these associations and the underlying neural substrates may change throughout 

development. Additionally, because imaging data was only collected at T2, it is 

impossible to make claims about how permanent observed effects are or how they may 

continue to change throughout development. Moreover, although there are ethical 

constraints to manipulating early parenting or stress reactivity, greater temporal 

resolution of brain indices would provide greater support for a causal association between 

variables.  Future studies should strive to include multiple data points of longitudinal 

neuroimaging data in order to draw conclusions regarding developmental change or long-

term outcomes of childhood experiences on brain development. 
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Despite these limitations, the present study provides a critical foundation on 

which future research can expand upon. Specifically, future investigations should use 

larger longitudinal samples with more variability and more frequent imaging and 

behavioral measures. Larger samples with more frequent data acquisition will provide 

greater sensitivity to detect possible sensitive periods and the onset of individual 

differences in outcome measures as well as increased statistical power to test more 

sophisticated and nuanced models (e.g., mediated moderation). There is evidence that the 

true relations between variables in the present model (i.e., parenting, cortisol reactivity, 

hippocampal structure and function) may be better captured by more complex models 

that incorporate possible moderating influences of maternal lifetime depression status 

(Dougherty et al., 2013), exposure to maternal depression (Lupien et al., 2011), gender 

(Miller et al., 2002; Oomen et al., 2009; Teicher et al., 2003; Weinstock, 2007), genetics 

(Frodl et al., 2010; Gotlib, Joormann, Minor, & Hallmayer, 2008; Hayden et al., 2010; 

Thomason, Yoo, Glover, & Gotlib, 2009; Wiggins et al., 2012), or interactions between 

parenting and stress reactivity (Buodo, Moscardino, Scrimin, Altoè, & Palomba, 2013; 

Kopala-Sibley et al., 2015; Sheikh et al., 2014). Additionally, there is evidence that the 

influence of parenting behaviors on long-term developmental outcomes may be 

moderated by race and socioeconomic status, with children from certain 

sociodemographic backgrounds responding more positively to some parenting behaviors 

than others. Therefore, the effects of parenting or cortisol reactivity on hippocampal 

development may not be universal and may be more nuanced to the actual or perceived 

quality and demands of an environment. Thus, the influence of sociocultural context on 

observed associations should be explored by future research. Finally, future 



164 
 
 

investigations of the effects of parenting on brain development would benefit from 

intervention designs (Belsky & de Haan, 2011). Specifically, by training parents to 

interact with their children in less hostile or more supportive ways at different points in 

development, direct causal links can be made between the timing and quality of parenting 

experiences and brain structure and function. 

The field would also greatly benefit from designing and incorporating more 

advanced imaging technologies, such as high-resolution medial temporal lobe structural 

scans, to capture neural changes at higher resolutions (i.e., at the subfield level) to enable 

greater ease in comparing cross-species literatures. Moreover, additional work in human 

and other mammalian species is necessary to characterize the mechanistic processes that 

are driving the observed effects in the present study. Although we report individual 

differences in hippocampal connectivity, the current methods make it impossible to draw 

firm conclusions on the direction of information flow, whether the “target” region and not 

the hippocampus is the primary source of altered connectivity, or whether there are larger 

brain-wide network changes beyond the hippocampus. These questions of causality and 

brain-wide network changes should be addressed by advanced analytic techniques such 

as Granger causality and dynamic causal modeling (Bressler & Seth, 2011; Friston, 

Kahan, Biswal, & Razi, 2013; Friston, Moran, & Seth, 2013; Kim, Kim, Ahmad, & Park, 

2013; Roebroeck, Formisano, & Goebel, 2005) and graph theory metrics (Bullmore & 

Sporns, 2009; Bullmore & Bassett, 2011; Power, Fair, Schlaggar, & Petersen, 2010).   

Finally, and most critically, additional research is necessary to explore the 

immediate and long-term cognitive and behavioral implications of observed individual 

differences in hippocampal volume and resting-state functional connectivity. This will be 
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necessary to determine how neural changes may be associated with behavioral or 

cognitive deficits and risk for later psychopathology.  

This is the first study to find evidence that the early parenting environment shapes 

brain development through programming of the HPA axis response to stress. The present 

investigation found that childhood experiences of parenting and stress reactivity are 

associated with individual differences in children’s hippocampal structure and functional 

connectivity. Observed timing- and region- dependent changes of early parenting and 

stress reactivity on hippocampal structure and function may reflect increased risk for or 

resilience to later cognitive, emotional, and behavioral difficulties. Given the hypothesis 

that early parenting and cortisol reactivity play a role in the intergenerational 

transmission of depression, the present findings may provide important insights into the 

neurobiological underpinnings of depression risk. Identification of the early factors that 

shape neurobiological development can inform the development of more effective 

clinical interventions. Specifically, interventions designed to address the presence and 

quality of these factors during childhood may have great potential for improving 

developmental outcomes.  
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Supplementary Material 

Analyses provided in the main text test timing-dependent associations between 

parenting and cortisol reactivity on hippocampal structure and volume. To this end, all 

analyses included in the main text include both T1 and T2 measurements of each 

independent variable. This effectively answers the question: does T1 parenting/cortisol 

reactivity significantly predict hippocampal volume above and beyond T2 

parenting/cortisol reactivity? This method disregards any shared variance between T1 and 

T2 measures. The supplementary materials contained below evaluate the non-specific 

effects of each independent variable on hippocampal structure and functional 

connectivity. 

Hippocampal Volume 

 Aim 1: Associations between Parenting and Children’s Hippocampal Volume 

T1 Negative Parenting did not predict any whole or segmented hippocampal 

volume at T2 (Supplementary Table 1). Greater T1 Positive Parenting predicted larger 

bilateral head and left total hippocampal volume at T2 (Supplementary Table 1). Greater 

T2 Negative Parenting predicted larger right hippocampal body (Supplementary Table 1). 

Inversely, greater T2 Positive Parenting predicted smaller bilateral body volumes 

(Supplementary Table 1).  

 Aim 2: Associations between Children’s Cortisol Reactivity and 

Hippocampal Volume  

Greater T1 AUCg predicted larger right hippocampal body, tail, and bilateral total 

volume (Supplementary Table 2). In contrast, greater T1 AUCi predicted smaller bilateral 
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body (Supplementary Table 2). Both greater T2 AUCi and T2 AUCg predicted smaller 

left hippocampal tail volume (Supplementary Table 2).  

 Aim 3: Mediation of Association between Parenting and Hippocampal 

Volume by Cortisol Reactivity 

As seen in Table 3, parenting did not significantly predict children’s cortisol 

reactivity. Nevertheless, using Preacher and Hayes’ bootstrap method (Hayes, 2013), we 

tested whether cortisol reactivity (T1 or T2; AUCg or AUCi) mediated associations 

between any parenting composite (T1 or T2; Positive or Negative) and bilateral whole or 

segmented hippocampal volume (Supplementary Table 3). Results revealed that both T2 

AUCg and T2 AUCi mediated the association between T1 Negative Parenting and right 

hippocampal tail volume and T1 AUCi mediated the association between T1 Negative 

Parenting and left hippocampal tail volume (Supplementary Figure 1). 
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Supplementary Figure 1. Models of significant mediation of the association between T1 
Negative Parenting and hippocampal subregion volume by T2 cortisol reactivity. *p<.05. 

 

Greater T1 Negative Parenting significantly predicted greater T2 AUCg (a = .25, 

p  = .038). T2 AUCg did not significantly predict right tail volume (b = -23.63, p = .102). 

Hayes bootstrapping method revealed that T2 AUCg significantly mediated the 

association between T1 Negative Parenting and right hippocampal tail volume (ab = -

6.02, CI = -29.75, -0.03) (Supplementary Figure 1). The direct effect of T1 Negative 

Parenting on right hippocampal tail volume was not significant (c’ = 7.81, p = .561). 

Greater T1 Negative Parenting significantly predicted greater T2 AUCi (a = .20, p 

= .034) which, in turn, significantly predicted smaller right hippocampal tail volume (b = 
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-37.62, p = .041) (Supplementary Figure 1). This indirect effect was significant using the 

Hayes’ (2013) bootstrapping method (ab = -7.62, CI = -30.78, -0.07). T1 Negative 

Parenting did not significantly predict right tail volume independently of its effects on T2 

AUCi (c’ = 9.41, p = .480). 

Greater T1 Negative parenting significantly predicted greater T1 AUCi (a = .20, p 

= .034) which, in turn, predicted smaller left hippocampal tail volume (b = -54.52, p = 

.009) (Supplementary Figure 1). The bootstrapping method found this indirect effect to 

be statistically significant (ab = -11.04, CI = -40.47, -1.22).  T1 Negative Parenting did 

not significantly predict left tail volume independently of its effects on T2 AUCi (c’ = 

16.15, p = .281). 

 Exploratory Aim: Role of Maternal Depression 

Interactions Between Parenting and Maternal Depression. Neither maternal 

lifetime depression status nor proportion of lifetime exposed to maternal depression 

(Table 6) or their interactions (Supplementary Table 4-Supplementary Table 11) with 

either parenting composite  predicted whole or segmented hippocampal volume at T2. 

Maternal lifetime history of depressive disorders interacted with T2 Positive 

Parenting to predict left hippocampal head volume (Supplementary Table 8). 

Specifically, in offspring without a maternal lifetime history of depression, greater T2 

Positive Parenting predicted larger left hippocampal head volumes (β =.70, b=178.02, 

SE=59.58, pr=-.38, p=.004). This association was not significant in offspring with a 

lifetime history of maternal depression (β =-.07, b=-16.78, SE=35.86, pr=-.06, p=.642). 

This effect was in the same direction, but only reached marginal significance in the right 

head (Supplementary Table 4). No other significant interactions were observed. 
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Interactions Between Cortisol Reactivity and Maternal Depression. There was a 

significant interaction between proportion lifetime exposure to maternal depression and 

T1 AUCg in predicting right hippocampal tail volume (Supplementary Table 14).  

Specifically, in offspring with low exposure to maternal depression, greater T1 AUCg 

predicted larger right hippocampal tail (β =.62, b=72.60, SE=21.86, pr=.41, p=.002). This 

effect was not significant in offspring with high exposure to maternal depression (β =.01, 

b=1.14, SE=23.39, pr=.01, p=.961). Results of the Johnson-Neyman procedure indicated 

that this effect was significant for values of exposure less than 0.18 (72.41% of the 

sample). 

There were significant interactions between lifetime exposure to maternal 

depression and child T2 AUCi in predicting right hippocampal head (Supplementary 

Table 12), tail (Supplementary Table 14), and total (Supplementary Table 15) volumes. 

Specifically, in offspring with high exposure to maternal depression, greater T2 AUCi 

predicted smaller right hippocampal head (β =-.42, b=-138.97, SE=54.87, pr=-.32, 

p=.014; significant at standardized levels of exposure  0.60 (24.59% of the sample)), tail 

(β =-.50, b=-67.74, SE=23.14, pr=-.36, p=.005; significant at standardized levels of 

exposure greater than 0.28 (27.87% of the sample)), and total volumes (β =-.57, b=-

206.49, SE=59.45, pr=-.42, p=.001; significant at standardized levels of exposure greater 

than 0.25 (27.87% of the sample)). In offspring with low lifetime exposure to maternal 

depression, T2 AUCi did not significantly predict right head (β =.32, b=107.14, 

SE=66.06, pr=.21, p=.110, tail (β =.19, b=25.49, SE=27.71, pr=.12, p=.361, or total 

volumes (β =.30, b=110.34, SE=71.19, pr=.20, p=.127. 
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Supplementary Table 1 
Associations between T1 and T2 parenting and hippocampal volume 

Dependent 
Variable Predictor (IV) Covariate IV β IV b(SE) IV pr IV p 

Right Head       
Model 1 T1 Negative Parenting Gender -.14 -34.84(31.83) -.14 .278 
Model 2 T2 Negative Parenting Gender -.22 -68.81(39.76) -.23 .089 
Model 3 T1 Positive Parenting Gender  .29 79.80(33.53)  .30 .021 
Model 4 T2 Positive Parenting Gender  .16 39.98(31.22) .17 .206 

Right Body       
Model 5 T1 Negative Parenting Scan Age  .16 25.78(20.51)  .16 .214 
Model 6 T2 Negative Parenting Scan Age  .29 56.49(23.88)  .30 .021 
Model 7 T1 Positive Parenting Scan Age -.06 -10.09(22.54) -.06 .656 
Model 8 T2 Positive Parenting Scan Age -.31 -47.39(18.61) -.32 .014 

Right Tail       
Model 9 T1 Negative Parenting -  .05 5.64(13.75) .05 .683 

Model 10 T2 Negative Parenting - -.02 2.57 (17.22) .02 .882 
Model 11 T1 Positive Parenting - -.16 -18.21(14.85) -.16 .225 
Model 12 T2 Positive Parenting - -.20 -19.92 (13.24) -.20 .138 

Right Total        
Model 13 T1 Negative Parenting - -.07 -20.23(36.65) -.07 .583 
Model 14 T2 Negative Parenting - <.01 0.61(45.91) <.01 .990 
Model 15 T1 Positive Parenting - .22 67.66(39.13) .22 .089 
Model 16 T2 Positive Parenting - -.06 -15.22(35.94) -.06 .674 

Left Head       
Model 17 T1 Negative Parenting Gender -.15 -40.45(33.05) -.16 .226 
Model 18 T2 Negative Parenting Gender -.22 -72.29(41.16) -.23 .084 
Model 19 T1 Positive Parenting Gender .27 76.48(35.16) .28 .034 
Model 20 T2 Positive Parenting Gender .14 36.41(32.45) .15 .267 

Left Body       
Model 21 T1 Negative Parenting - .01 2.83(26.11) .01 .914 
Model 22 T2 Negative Parenting - .13 32.13(31.59) .13 .313 
Model 23 T1 Positive Parenting - .04 7.74(28.50) .04 .787 
Model 24 T2 Positive Parenting - -.26 -48.42(24.15) -.26 .050 

Left Tail       
Model 25 T1 Negative Parenting - .05 6.05(14.87) .05 .686 
Model 26 T2 Negative Parenting - .04 5.70(18.56) .04 .760 
Model 27 T1 Positive Parenting - <-.01 -0.42(16.26) <-.01 .979 
Model 28 T2 Positive Parenting - -.23 -24.92(14.19) -.23 .084 

Left Total       
Model 29 T1 Negative Parenting - -.03 -9.26(37.32) -.03 .805 
Model 30 T2 Negative Parenting - -.01 -3.54(46.73) -.01 .940 
Model 31 T1 Positive Parenting - .25 78.89(39.44) .25 .050 
Model 32 T2 Positive Parenting - -.15 -41.48(36.23) -.15 .257 
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Supplementary Table 2 
Main effects of cortisol reactivity on hippocampal volume. 

Dependent 
Variable 

Predictor 
(IV) 

Covariate IV β IV b(SE) IV pr IV p 

Right Head       
Model 1 T1 AUCg Gender .17 45.12(34.88) .17 .201 
Model 2 T1 AUCi Gender .09 61.48(87.41) .09 .485 
Model 3 T2 AUCg Gender .02 3.94(33.17) .02 .906 
Model 4 T2 AUCi Gender -.09 -29.54 (41.65) -.09 .481 

Right Body       
Model 5 T1 AUCg Scan Age .32 52.29(20.14) .33 .012 
Model 6 T1 AUCi Scan Age -.50 -207.05(45.31) -.52 <.001 
Model 7 T2 AUCg Scan Age -.15 -24.14(20.07) -.16 .234 
Model 8 T2 AUCi Scan Age -.02 -3.00(25.86) -.02 .908 

Right Tail       
Model 9 T1 AUCg - .33 38.75(14.77) - .011 

Model 10 T1 AUCi - -.16 -46.99(38.59) - .228 
Model 11 T2 AUCg - -.20 -21.09(13.57) - .125 
Model 12 T2 AUCi - -.19 -26.27(17.28) - .134 

Right Total       
Model 13 T1 AUCg - .38 116.91(37.46) - .003 
Model 14 T1 AUCi - -.21 -158.83 (99.14) - .115 
Model 15 T2 AUCg - -.12 -35.10(37.38) - .351 
Model 16 T2 AUCi - -.17 -61.53(47.23) - .198 

Left Head       
Model 17 T1 AUCg Gender .09 26.50(37.71) .09 .485 
Model 18 T1 AUCi Gender .10 73.91(93.43) .11 .432 
Model 19 T2 AUCg Gender -.13 35.06(34.63) -.13 .316 
Model 20 T2 AUCi Gender -.19 -65.33(43.22) -.19 .136 

Left Body       
Model 21 T1 AUCg - .25 50.70(26.56) - .061 
Model 22 T1 AUCi - -.36 -184.51(64.00) - .006 
Model 23 T2 AUCg - .07 13.22(25.98) - .613 
Model 24 T2 AUCi - .13 33.59(32.83) - .310 

Left Tail       
Model 25 T1 AUCg - .17 20.06(15.49) - .200 
Model 26 T1 AUCi - -.16 -46.88(38.79) - .232 
Model 27 T2 AUCg - -.26 -30.94(14.85) - .041 
Model 28 T2 AUCi - -.35 -53.22(18.31) - .005 

Left Total       
Model 29 T1 AUCg - .27 82.74(39.45) - .040 
Model 30 T1 AUCi - -.19 146.22(100.52) - .151 
Model 31 T2 AUCg - -.11 -33.55(38.43) - .386 
Model 32 T2 AUCi - -.17 -64.65(48.47) - .187 
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Supplementary Table 3 
Mediation of the association between parenting and hippocampal volume by cortisol reactivity 

Dependent 
Measure Predictor Mediator Covariate Total 

Effect 
Direct 
Effect 

Indirect 
Effect SE Lower 

CI 
Upper 

CI p 

Right Head T1 Positive Parenting T1 AUCg Gender 65.26 58.74 6.51 9.95 -4.65 36.17 .514   
T1 AUCi Gender 65.26 62.38 2.88 8.37 -5.94 32.08 .719   
T2 AUCg Gender 81.03 84.35 -3.32 8.43 -25.68 10.85 .687   
T2 AUCi Gender 81.03 80.15 0.88 5.57 -6.33 19.83 .883     

        
T1 Negative Parenting T1 AUCg Gender -21.26 -21.12 -0.14 6.53 -12.38 13.83 .987   

T1 AUCi Gender -21.26 -23.14 1.88 3.90 -2.51 14.14 .782   
T2 AUCg Gender -37.53 -40.98 3.45 11.37 -16.82 31.29 .734   
T2 AUCi Gender -37.53 -32.10 -5.44 12.82 -44.92 10.38 .605     

        
T2 Positive Parenting T2 AUCg Gender 39.73 40.14 -0.41 5.51 -19.19 6.29 .936   

T2 AUCi Gender 39.73 39.46 0.27 5.25 -8.21 14.14 .962     
        

T2 Negative Parenting T2 AUCg Gender -71.42 -71.78 0.36 6.96 -5.35 24.87 .952   
T2 AUCi Gender -71.42 -68.05 -3.36 9.41 -39.40 5.67 .682     

       
Right Body T1 Positive Parenting T1 AUCg Scan Age 9.80 0.41 9.38 10.22 -3.64 39.73 .301   

T1 AUCi Scan Age 9.80 20.49 -10.70 18.25 -53.76 19.09 .443   
T2 AUCg Scan Age -11.01 -16.53 5.53 5.36 -0.51 21.38 .391   
T2 AUCi Scan Age -11.01 -11.04 0.03 2.82 -5.97 5.80 .992     

        
T1 Negative Parenting T1 AUCg Scan Age 6.11 9.07 -2.95 -0.02 -19.12 4.20 .699   

T1 AUCi Scan Age 6.11 14.95 -8.83 5.93 -22.72 0.74 .484   
T2 AUCg Scan Age 29.07 39.04 -9.98 11.26 -51.37 0.18 .199   
T2 AUCi Scan Age 29.07 32.34 -3.27 7.65 -27.34 5.84 .604 
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T2 Positive Parenting T2 AUCg Scan Age -46.63 -48.67 2.05 4.44 -3.26 15.78 .679   
T2 AUCi Scan Age -46.63 -46.63 <0.01 2.67 -6.59 3.19 >.999     

        
T2 Negative Parenting T2 AUCg Scan Age 60.92 64.27 -3.35 7.43 -27.93 4.26 .609   

T2 AUCi Scan Age 60.92 62.38 -1.46 5.90 -21.11 4.33 .756     
       

Right Tail T1 Positive Parenting T1 AUCg - -34.28 -40.32 6.04 6.68 -4.71 21.85 .376   
T1 AUCi - -34.28 -31.49 -2.80 5.79 -23.28 3.21 .514   
T2 AUCg - -16.77 -21.36 4.59 3.75 -0.04 15.58 .314   
T2 AUCi - -16.77 -17.59 0.83 3.56 -5.09 10.13 .841     

        
T1 Negative Parenting T1 AUCg - 14.94 15.23 -0.29 3.81 -8.22 7.22 .957   

T1 AUCi - 14.94 16.58 -1.64 2.17 -7.67 1.25 .686   
T2 AUCg - 1.79 7.81 -6.02 6.28 -29.75 -0.03 .220   
T2 AUCi - 1.79 9.41 -7.62 6.94 -30.78 -0.07 .154     

        
T2 Positive Parenting T2 AUCg - -20.73 -22.20 1.47 3.08 -2.09 11.95 .659   

T2 AUCi - -20.73 -20.96 0.23 3.19 -5.64 7.90 .951    
         

T2 Negative Parenting T2 AUCg - -1.86 0.08 -1.94 4.05 -14.37 2.82 .638   
T2 AUCi - -1.86 2.03 -3.88 5.63 -23.07 1.76 .448     

       
Right Total T1 Positive Parenting T1 AUCg - 55.36 38.92 16.44 18.26 -11.50 62.31 .377   

T1 AUCi - 55.36 66.37 -11.01 19.62 -75.04 12.16 .445   
T2 AUCg - 69.05 62.75 6.30 11.27 -6.78 41.14 .526   
T2 AUCi - 69.05 66.93 2.13 9.46 -12.22 29.04 .844     
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T1 Negative Parenting T1 AUCg - -19.88 -18.96 -0.92 11.90 -24.45 22.70 .956   

T1 AUCi - -19.88 -15.23 -4.65 5.79 -19.05 3.01 .681   
T2 AUCg - -23.92 -13.32 -10.59 16.52 -69.17 5.48 .396   
T2 AUCi - -23.92 -5.72 -18.20 17.52 -74.00 0.46 .200     

        
T2 Positive Parenting T2 AUCg - -15.92 -19.03 3.11 8.32 -3.90 35.67 .697   

T2 AUCi - -15.92 -16.52 0.60 8.58 -14.08 22.79 .952     
        

T2 Negative Parenting T2 AUCg - -3.29 1.02 -4.30 12.49 -45.19 5.29 .673   
T2 AUCi - -3.29 6.90 -10.18 15.00 -62.20 4.58 .460     

       
Left Head T1 Positive Parenting T1 AUCg Gender 71.89 67.46 4.44 9.31 -5.38 33.47 .634   

T1 AUCi Gender 71.89 68.72 3.18 9.76 -6.85 34.21 .710   
T2 AUCg Gender 76.72 74.42 2.30 7.27 -7.75 22.70 .787   
T2 AUCi Gender 76.72 75.18 1.53 7.62 -9.35 25.14 .852     

        
T1 Negative Parenting T1 AUCg Gender -35.60 -35.50 -0.10 5.53 -10.49 11.31 .989   

T1 AUCi Gender -35.60 -37.72 2.12 4.54 -3.61 15.38 .773   
T2 AUCg Gender -41.07 -37.29 -3.78 11.28 -37.62 10.56 .722   
T2 AUCi Gender -41.07 -30.19 -10.89 14.99 -58.88 7.58 .353     

        
T2 Positive Parenting T2 AUCg Gender 36.38 34.84 1.55 5.30 -3.42 22.10 .790   

T2 AUCi Gender 36.38 35.91 0.47 7.35 -11.99 16.96 .952     
        

T2 Negative Parenting T2 AUCg Gender -72.99 -71.62 -1.38 7.05 -24.40 5.57 .843   
T2 AUCi Gender -72.99 -66.34 -6.64 11.26 -51.03 4.26 .526     

       
Left Body T1 Positive Parenting T1 AUCg - 33.28 25.86 7.42 8.41 -5.78 27.88 .439 
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T1 AUCi - 33.28 44.62 -11.34 17.21 -57.91 12.28 .395   
T2 AUCg - 6.48 9.52 -3.05 5.22 -16.75 5.18 .654   
T2 AUCi - 6.48 7.40 -0.92 5.08 -16.64 5.52 .870     

        
T1 Negative Parenting T1 AUCg - -21.33 -20.91 -0.42 5.65 -12.59 10.28 .959   

T1 AUCi - -21.33 -16.36 -4.97 4.60 -14.28 2.57 .649   
T2 AUCg - 6.24 2.61 3.63 8.70 -9.02 27.95 .664   
T2 AUCi - 6.24 -1.70 7.93 11.54 -7.72 44.73 .379     

        
T2 Positive Parenting T2 AUCg - -47.74 -47.22 -0.53 3.64 -15.58 3.16 .890   

T2 AUCi - -47.74 -47.46 -0.28 4.97 -13.24 7.08 .957     
        

T2 Negative Parenting T2 AUCg - 36.35 35.49 0.87 5.69 -4.55 25.63 .866   
T2 AUCi - 36.35 32.03 4.33 9.16 -4.14 43.91 .558     

       
Left Tail T1 Positive Parenting T1 AUCg - -20.64 -24.21 3.57 6.41 -2.90 24.24 .468   

T1 AUCi - -20.64 -18.37 -2.28 5.85 -26.41 3.71 .577   
T2 AUCg - -0.04 -5.54 5.49 4.77 -0.44 20.45 .308   
T2 AUCi - -0.04 -1.20 1.15 4.61 -7.19 11.65 .835     

        
T1 Negative Parenting T1 AUCg - 18.38 18.55 -0.17 2.84 -6.81 4.91 .963   

T1 AUCi - 18.38 19.68 -1.30 2.26 -7.84 1.60 .715   
T2 AUCg - 5.11 13.51 -8.39 8.48 -41.34 0.01 .164   
T2 AUCi - 5.11 16.15 -11.04 8.73 -40.47 -1.22 .105     

        
T2 Positive Parenting T2 AUCg - -25.14 -27.11 1.97 4.16 -2.75 16.14 .644   

T2 AUCi - -25.14 -25.46 0.33 4.39 -7.68 10.57 .949     
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T2 Negative Parenting T2 AUCg - 4.60 7.26 -2.67 5.96 -21.89 3.92 .617   

T2 AUCi - 4.60 10.26 -5.66 7.47 -29.22 3.11 .415     
       

Left Total T1 Positive Parenting T1 AUCg - 78.85 65.48 13.37 18.38 -5.73 72.29 .402   
T1 AUCi - 78.85 88.33 -9.48 17.90 -77.09 9.66 .470   
T2 AUCg - 78.74 77.24 1.49 10.09 -12.24 30.67 .869   
T2 AUCi - 78.74 77.56 1.17 7.00 -8.33 23.43 .876     

        
T1 Negative Parenting T1 AUCg - -11.55 -10.77 -0.78 10.28 -24.29 17.18 .957   

T1 AUCi - -11.55 -7.75 -3.80 5.98 -21.51 2.99 .703   
T2 AUCg - -8.67 -3.41 -5.26 16.73 -63.05 12.99 .663   
T2 AUCi - -8.67 2.08 -10.75 16.63 -64.32 8.49 .407     

        
T2 Positive Parenting T2 AUCg - -41.36 -42.97 1.61 6.87 -5.76 27.60 .799   

T2 AUCi - -41.36 -41.71 0.35 6.32 -9.77 17.11 .961     
        

T2 Negative Parenting T2 AUCg - -2.79 -0.81 -1.98 10.10 -33.25 9.55 .807   
T2 AUCi - -2.79 3.10 -5.89 11.21 -50.01 5.16 .583 

CI = Confidence Interval; SE = Standard Error 
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Supplementary Table 4 
Interactions between parenting and maternal depression on right hippocampal head volume. 

 β b (SE)  pr p 
Model 1      

T1 Negative Parenting .04 10.26(50.66)  .03 .840 
Maternal Lifetime Depressive Disorder      -.01 -7.05(7310)  -.01 .924 
Gender -.27 -148.06(71.87)  -.27 .044 
T1 Negative Parenting x Maternal DD -.23 -75.68(66.00)  -.15 .256 

Model 2      
T1 Negative Parenting -.07 -16.97(35.76)  -.06 .637 
Percent Exposure to Maternal DD -.04 -9.53(36.89)  -.04 .797 
Gender -.24 -131.14(71.64)  -.24 .073 
T1 Negative Parenting x Exposure to Maternal DD -.15 -28.66(27.77)  -.14 .307 

Model 3      
T1 Positive Parenting .18 48.58(48.17)  .14 .318 
Maternal Lifetime Depressive Disorder      -.01 -4.13(70.77)  -.01 .954 
Gender -.22 -121.61(68.93)  -.23 .083 
T1 Positive Parenting x Maternal DD .16 61.60(67.77)  .12 .367 

Model 4      
T1 Positive Parenting  .03 77.12(34.92)  .29 .031 
Percent Exposure to Maternal DD -.05 -13.56(35.68)  -.05 .705 
Gender -.21 -115.66(69.65)  -.22 .103 
T1 Positive Parenting x Exposure to Maternal DD .02 4.13(36.16)  .02 .910 

Model 5      
T2 Negative Parenting -.34 -105.79(97.58)  -.15 .283 
Maternal Lifetime Depressive Disorder      .03 14.56(77.03)  .03 .851 
Gender -.28 -154.33(72.75)  -.28 .038 
T2 Negative Parenting x Maternal DD .13 43.84(106.80)  .06 .683 

Model 6      
T2 Negative Parenting -.28 -86.82(55.11)  -.21 .121 
Percent Exposure to Maternal DD -.02 -5.31(38.84)  -.02 .892 
Gender -.27 -151.47(74.45)  -.27 .047 
T2 Negative Parenting x Exposure to Maternal DD .10 19.27(32.36)  .08 .554 

Model 7      
T2 Positive Parenting .57 139.35(59.73)  .30 .023 
Maternal Lifetime Depressive Disorder      -.07 -40.38(73.76)  -.07 .586 
Gender -.25 -137.62(70.69)  -.26 .057 
T2 Positive Parenting x Maternal DD -.48 -135.10(69.82)  -26 .058 

Model 8      
T2 Positive Parenting .26 62.88(38.63)  .22 .109 
Percent Exposure to Maternal DD -.11 -29.85(36.61)  -.11 .419 
Gender -.22 -120.24(72.58)  -.22 .103 
T2 Positive Parenting x Exposure to Maternal DD -.19 -24.21(21.61)  -.15 .268 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 5 
Interactions between parenting and maternal depression on right hippocampal body volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting .09 14.77(32.41) .06 .650 
Maternal Lifetime Depressive Disorder      .01 2.97(45.96) .01 .949 
Scan Age .28 55.16(26.17) .27 .040 
T1 Negative Parenting x Maternal DD .09 18.21(41.33) .06 .661 

Model 2     
T1 Negative Parenting .10 16.10(22.96) .10 .486 
Percent Exposure to Maternal DD .08 13.26(22.92) .08 .565 
Scan Age .26 50.51(25.97) .26 .057 
T1 Negative Parenting x Exposure to Maternal DD .08 8.45(17.20) .08 .585 

Model 3     
T1 Positive Parenting .06 9.51(32.40) .04 .770 
Maternal Lifetime Depressive Disorder      .01 4.52(46.21) .01 .922 
Scan Age .25 48.55(26.27) .24 .070 
T1 Positive Parenting x Maternal DD -.16 -37.88(44.72) -.11 .401 

Model 4     
T1 Positive Parenting  -.03 -4.35(22.93) -.03 .850 
Percent Exposure to Maternal DD .10 16.74(23.03) .10 .471 
Scan Age .25 47.29(25.97) .24 .074 
T1 Positive Parenting x Exposure to Maternal DD -.09 -14.66(23.23) -.09 .531 

Model 5     
T2 Negative Parenting .46 87.74(58.91) .20 .142 
Maternal Lifetime Depressive Disorder      -.02 -7.80(46.66) -.02 .868 
Scan Age .22 42.82(24.59) .23 .087 
T2 Negative Parenting x Maternal DD -.18 -37.66(64.80) -.08 .564 

Model 6     
T2 Negative Parenting .28 53.23(32.27) .22 .105 
Percent Exposure to Maternal DD .04 5.75(23.14) .03 .805 
Scan Age .22 41.85(24.57) .23 .094 
T2 Negative Parenting x Exposure to Maternal DD <-.01 -0.40(19.46) <-.01 .984 

Model 7     
T2 Positive Parenting -.45 -68.65(36.84) -.25 .068 
Maternal Lifetime Depressive Disorder      .07 25.83(44.91) .08 .568 
Scan Age .27 52.15(24.39) .28 .037 
T2 Positive Parenting x Maternal DD .16 28.20(42.83) .09 .513 

Model 8     
T2 Positive Parenting -.28 -41.50(23.14) -.24 .079 
Percent Exposure to Maternal DD .09 14.68(21.87) .09 .505 
Scan Age .25 48.44(24.29) .26 .051 
T2 Positive Parenting x Exposure to Maternal DD -.01 -0.95(12.87) -.01 .942 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 



236 
 
 

Supplementary Table 6 
Interactions between parenting and maternal depression on right hippocampal tail volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting .12 12.02(21.93) .07 .586 
Maternal Lifetime Depressive Disorder      -.09 -21.08(31.49) -.09 .506 
T1 Negative Parenting x Maternal DD -.08 -10.33(28.38) -.05 .717 

Model 2     
T1 Negative Parenting .05 5.46(15.67) .05 .729 
Percent Exposure to Maternal DD -.03 -3.86(16.10) -.03 .812 
T1 Negative Parenting x Exposure to Maternal DD .02 1.78(12.14) .02 .884 

Model 3     
T1 Positive Parenting -.31 -35.03(21.18) -.22 .104 
Maternal Lifetime Depressive Disorder      -.09 -21.37(30.78) -.09 .490 
T1 Positive Parenting x Maternal DD .20 32.67(29.77) .15 .277 

Model 4     
T1 Positive Parenting  -.17 -18.97(15.52) -.16 .227 
Percent Exposure to Maternal DD -.04 -4.89(15.86) -.04 .759 
T1 Positive Parenting x Exposure to Maternal DD <-.01 -0.46(16.06) <-.01 .977 

Model 5     
T2 Negative Parenting .20 26.50(42.15) .08 .532 
Maternal Lifetime Depressive Disorder      -.12 -29.78(33.48) -.12 .378 
T2 Negative Parenting x Maternal DD -.18 -26.20(46.40) -.08 .575 

Model 6     
T2 Negative Parenting -.03 -4.02(23.52) -.02 .865 
Percent Exposure to Maternal DD -.04 -4.89(16.92) -.04 .774 
T2 Negative Parenting x Exposure to Maternal DD .11 8.47(14.13) .08 .552 

Model 7     
T2 Positive Parenting -.31 -31.46(26.11) -.16 .233 
Maternal Lifetime Depressive Disorder      -.08 -18.58(31.96) -.08 .563 
T2 Positive Parenting x Maternal DD .14 16.32(30.43) .07 .594 

Model 8     
T2 Positive Parenting -.17 -17.63(16.70) -.14 .296 
Percent Exposure to Maternal DD -.07 -7.83(15.82) -.07 .623 
T2 Positive Parenting x Exposure to Maternal DD -.06 -3.19(9.33) -.05 .734 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 7 
Interactions between parenting and maternal depression on right total hippocampal volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting <-.01 -.40(58.66) <-.01 .995 
Maternal Lifetime Depressive Disorder      <-.01 -.52(84.25) <-.01 .995 
T1 Negative Parenting x Maternal DD -.10 -33.17(75.92) -.06 .664 

Model 2     
T1 Negative Parenting -.06 -16.60(40.76) -.06 .685 
Percent Exposure to Maternal DD -.01 -1.58(41.88) -.01 .970 
T1 Negative Parenting x Exposure to Maternal DD -.04 -7.57(31.58) -.03 .811 

Model 3     
T1 Positive Parenting .13 38.18(56.42) .09 .501 
Maternal Lifetime Depressive Disorder      <.01 1.69(81.99) <.01 .984 
T1 Positive Parenting x Maternal DD .14 58.23(79.31) .10 .466 

Model 4     
T1 Positive Parenting  .23 68.65(39.93) .23 .091 
Percent Exposure to Maternal DD <.01 0.49(40.79) <.01 .990 
T1 Positive Parenting x Exposure to Maternal DD -.02 -4.77(41.31) -.02 .908 

Model 5     
T2 Negative Parenting .08 29.18(113.23) .04 .798 
Maternal Lifetime Depressive Disorder      -.01 -4.00(89.96) -.01 .965 
T2 Negative Parenting x Maternal DD -.09 -34.86(124.67) -.04 .781 

Model 6     
T2 Negative Parenting -.05 -15.97(61.30) -.04 .795 
Percent Exposure to Maternal DD -.04 -12.28(44.09) -.04 .782 
T2 Negative Parenting x Exposure to Maternal DD .09 19.43(36.83) .07 .600 

Model 7     
T2 Positive Parenting .18 49.59(70.62) .09 .485 
Maternal Lifetime Depressive Disorder      -.02 -10.99(86.43) -.02 .899 
T2 Positive Parenting x Maternal DD -.28 -88.14(82.29) -.14 .289 

Model 8     
T2 Positive Parenting .07 17.52(43.78) .05 .691 
Percent Exposure to Maternal DD -.08 -23.55(41.48) -.08 .573 
T2 Positive Parenting x Exposure to Maternal DD -.21 -29.60(24.45) -.16 .231 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 8 
Interactions between parenting and maternal depression on left hippocampal head volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting -.17 -43.91(53.67) -.11 .408 
Maternal Lifetime Depressive Disorder      .14 81.70(76.00) .14 .287 
Gender -.27 -154.58(74.72) -.27 .043 
T1 Negative Parenting x Maternal DD .01 4.77(68.62) .01 .945 

Model 2     
T1 Negative Parenting -.14 -37.60(37.61) -.14 .322 
Percent Exposure to Maternal DD .05 13.81(38.80) .05 .723 
Gender -.29 -167.53(75.34) -.29 .030 
T1 Negative Parenting x Exposure to Maternal DD -.06 -11.08(29.21) -.05 .706 

Model 3     
T1 Positive Parenting .31 89.28(50.23) .23 .081 
Maternal Lifetime Depressive Disorder      .14 84.80(73.81) .15 .256 
Gender -.25 -144.75(71.89) -.26 .049 
T1 Positive Parenting x Maternal DD -.06 -22.60(70.67) -.04 .750 

Model 4     
T1 Positive Parenting  .28 80.94(36.61) .29 .031 
Percent Exposure to Maternal DD .02 4.35(37.40) .02 .908 
Gender -.27 -157.00(73.02) -.28 .036 
T1 Positive Parenting x Exposure to Maternal DD -.09 -24.76(37.91) -.09 .516 

Model 5     
T2 Negative Parenting -.52 -168.64(98.87) -.23 .094 
Maternal Lifetime Depressive Disorder      .19 113.51(78.04) .19 .152 
Gender -.30 -175.10(73.70) -.31 .021 
T2 Negative Parenting x Maternal DD .30 106.59(108.20) .13 .329 

Model 6     
T2 Negative Parenting -.37 -119.38(56.59) -.28 .040 
Percent Exposure to Maternal DD .08 23.13(39.88) .08 .564 
Gender -.33 -192.98(76.45) -.33 .015 
T2 Negative Parenting x Exposure to Maternal DD .17 33.35(33.22) .14 .320 

Model 7     
T2 Positive Parenting .70 178.02(59.58) .38 .004 
Maternal Lifetime Depressive Disorder      .06 34.96(73.57) .07 .637 
Gender -.27 -157.86(70.51) -.29 .029 
T2 Positive Parenting x Maternal DD -.66 -194.80(69.64) -.36 .007 

Model 8     
T2 Positive Parenting .28 70.18(40.10) .23 .086 
Percent Exposure to Maternal DD -.03 -9.67(38.00) -.04 .800 
Gender -.26 -153.11(75.34) -.27 .047 
T2 Positive Parenting x Exposure to Maternal DD -.23 -32.05(22.43) -.19 .159 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 9 
Interactions between parenting and maternal depression on left hippocampal body 
volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting -.04 -8.00(41.50) -.03 .848 
Maternal Lifetime Depressive Disorder      -.13 -56.57(59.61) -.13 .347 
T1 Negative Parenting x Maternal DD .07 19.05(53.71) .05 .724 

Model 2     
T1 Negative Parenting -.04 -7.58(29.09) -.04 .795 
Percent Exposure to Maternal DD -.13 -27.21(29.89) -.12 .367 
T1 Negative Parenting x Exposure to Maternal DD .20 29.25(22.54) .17 .200 

Model 3     
T1 Positive Parenting .13 28.17(40.79) .09 .493 
Maternal Lifetime Depressive Disorder      -.13 -56.10(59.27) -.13 .348 
T1 Positive Parenting x Maternal DD -.14 -41.73(57.33) -.10 .470 

Model 4     
T1 Positive Parenting  .05 9.82(29.00) .05 .736 
Percent Exposure to Maternal DD -.13 -28.31(29.62) -.13 .344 
T1 Positive Parenting x Exposure to Maternal DD -.21 -45.99(30.00) -.20 .131 

Model 5     
T2 Negative Parenting .44 106.54(76.76) .18 .171 
Maternal Lifetime Depressive Disorder      -.15 -65.59(60.98) -.14 .287 
T2 Negative Parenting x Maternal DD -.32 -84.54(84.51) -.13 .322 

Model 6     
T2 Negative Parenting .13 30.02(42.66) .10 .485 
Percent Exposure to Maternal DD -.15 -30.43(30.68) -.13 .326 
T2 Negative Parenting x Exposure to Maternal DD .10 15.30(25.63) .08 .553 

Model 7     
T2 Positive Parenting -.44 -82.99(47.48) -.23 .086 
Maternal Lifetime Depressive Disorder      -.06 -25.58(58.12) -.06 .662 
T2 Positive Parenting x Maternal DD .22 47.97(55.33) .12 .390 

Model 8     
T2 Positive Parenting -.19 -35.80(30.02) -.16 .238 
Percent Exposure to Maternal DD -.14 -29.53(28.44) -.14 .304 
T2 Positive Parenting x Exposure to Maternal DD -.15 -15.32(16.77) -.12 .365 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 10 
Interactions between parenting and maternal depression on left hippocampal tail volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting .19 21.86(23.67) .12 .360 
Maternal Lifetime Depressive Disorder      -.04 -9.11(33.99) -.04 .790 
T1 Negative Parenting x Maternal DD -.18 -26.30(30.63) -.11 .394 

Model 2     
T1 Negative Parenting .04 3.97(16.79) .03 .814 
Percent Exposure to Maternal DD .04 4.54(17.25) .04 .793 
T1 Negative Parenting x Exposure to Maternal DD .02 1.44(13.01) .02 .912 

Model 3     
T1 Positive Parenting -.19 -23.42(23.15) -.13 .316 
Maternal Lifetime Depressive Disorder      -.04 -9.18(33.63) -.04 .786 
T1 Positive Parenting x Maternal DD .26 45.16(32.53) .18 .171 

Model 4     
T1 Positive Parenting  <.01 .01(16.82) <.01 .999 
Percent Exposure to Maternal DD .07 8.43(17.18) .07 .626 
T1 Positive Parenting x Exposure to Maternal DD .06 7.11(17.40) .06 .684 

Model 5     
T2 Negative Parenting .22 30.76(45.59) .09 .503 
Maternal Lifetime Depressive Disorder      -.08 -21.73(36.22) -.08 .551 
T2 Negative Parenting x Maternal DD -.18 -28.50(50.20) -.08 .572 

Model 6     
T2 Negative Parenting -.11 -15.51(24.82) -.09 .535 
Percent Exposure to Maternal DD .01 1.01(17.85) .01 .955 
T2 Negative Parenting x Exposure to Maternal DD .23 19.51(14.91) .18 .196 

Model 7     
T2 Positive Parenting -.51 -56.07(27.70) -.26 .048 
Maternal Lifetime Depressive Disorder      -.02 -4.28(33.91) -.02 .900 
T2 Positive Parenting x Maternal DD .33 42.65(32.28) .18 .192 

Model 8     
T2 Positive Parenting -.21 -22.68(17.80) -.17 .208 
Percent Exposure to Maternal DD <.01 -0.03(16.87) <.01 .998 
T2 Positive Parenting x Exposure to Maternal DD -.02 -0.99(9.94) -.01 .921 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 11 
Interactions between parenting and maternal depression on left total hippocampal volume. 

 β b (SE) pr p 
Model 1     

T1 Negative Parenting -.01 -4.00(59.70) -.01 .947 
Maternal Lifetime Depressive Disorder      .07 43.45(85.74) .07 .614 
T1 Negative Parenting x Maternal DD -.03 -9.51(77.26) -.02 .903 

Model 2     
T1 Negative Parenting -.05 -14.07(41.56) -.05 .736 
Percent Exposure to Maternal DD -.05 -16.17(42.71) -.05 .706 
T1 Negative Parenting x Exposure to Maternal DD .07 13.63(32.20) .06 .674 

Model 3     
T1 Positive Parenting .29 89.34(56.95) .21 .122 
Maternal Lifetime Depressive Disorder      .07 45.77(82.76) .07 .582 
T1 Positive Parenting x Maternal DD -.05 -19.49(80.05) -.03 .808 

Model 4     
T1 Positive Parenting  .28 84.81(39.62) .28 .037 
Percent Exposure to Maternal DD -.06 -17.58(40.48) -.06 .666 
T1 Positive Parenting x Exposure to Maternal DD -.19 -58.54(40.99) -.19 .159 

Model 5     
T2 Negative Parenting .12 40.82(114.84) .05 .724 
Maternal Lifetime Depressive Disorder      .05 35.22(91.24) .05 .701 
T2 Negative Parenting x Maternal DD -.15 -58.82(126.45) -.06 .644 

Model 6     
T2 Negative Parenting -.13 -44.34(61.75) -.10 .476 
Percent Exposure to Maternal DD -.08 -22.43(44.41) -.07 .616 
T2 Negative Parenting x Exposure to Maternal DD .23 47.68(37.08) .17 .204 

Model 7     
T2 Positive Parenting .08 22.24(71.00) .04 .755 
Maternal Lifetime Depressive Disorder      .05 33.20(86.90) .05 .704 
T2 Positive Parenting x Maternal DD -.27 -88.01(82.74) -.14 .292 

Model 8     
T2 Positive Parenting -.01 -1.60(43.77) -.01 .971 
Percent Exposure to Maternal DD -.13 -39.77(41.47) -.13 .342 
T2 Positive Parenting x Exposure to Maternal DD -.27 -39.28(24.44) -.21 .114 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 12  
Interactions between cortisol reactivity and maternal depression on right hippocampal head volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .10 26.41(77.58) .05 .735 
Maternal Lifetime Depressive Disorder      .04 24.00(72.32) .05 .741 
Gender -.27 -144.12(72.19) -.26 .051 
T1 AUCg x Maternal DD .08 23.49(86.74) .04 .788 

Model 2     
T1 AUCg .16 43.31(35.59) .17 .229 
Percent Exposure to Maternal DD -.02 -5.57(37.27) -.02 .882 
Gender -.26 -140.72(71.97) -.26 .056 
T1 AUCg x Exposure to Maternal DD -.10 -32.56(41.82) -.11 .440 

Model 3     
T1 AUCi .17 114.48(137.30) .11 .408 
Maternal Lifetime Depressive Disorder      .05 28.64(73.00) .05 .696 
Gender -.25 -136.73(74.50) -.24 .072 
T1 AUCi x Maternal DD -.10 -91.70(184.71) -.07 .622 

Model 4     
T1 AUCi  .10 69.41(89.80) .11 .443 
Percent Exposure to Maternal DD -.01 -2.12(37.87) -.01 .956 
Gender -.22 -121.40(72.49) -.22 .100 
T1 AUCi x Exposure to Maternal DD .09 79.90(119.26) .09 .506 

Model 5     
T2 AUCg .18 46.09(57.74) .11 .428 
Maternal Lifetime Depressive Disorder      .02 12.13(72.81) .02 .868 
Gender -.25 -138.28(71.74) -.25 .059 
T2 AUCg x Maternal DD -.20 -62.85(70.45) -.12 .376 

Model 6     
T2 AUCg .04 10.33(34.28) .04 .764 
Percent Exposure to Maternal DD -.14 -36.56(35.34) -.14 .305 
Gender -.23 -127.03(71.33) -.23 .080 
T2 AUCg x Exposure to Maternal DD -.14 -40.08(39.52) -.13 .315 

Model 7     
T2 AUCi .14 45.67(62.24) .10 .466 
Maternal Lifetime Depressive Disorder      .03 14.90(72.46) .03 .838 
Gender -.25 -138.86(69.76) -.26 .051 
T2 AUCi x Maternal DD -.30 -138.61(84.25) -.21 .105 

Model 8     
T2 AUCi -.05 -15.92(40.84) -.05 .698 
Percent Exposure to Maternal DD -.15 -40.11(32.72) -.16 .225 
Gender -.21 -117.51(66.70) -.23 .084 
T2 AUCi x Exposure to Maternal DD -.34 -123.05(44.94) -.34 .008 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 



243 
 
 

Supplementary Table 13 
Interactions between cortisol reactivity and maternal depression on right hippocampal 
body volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .60 99.64(175.76) .30 .027 
Maternal Lifetime Depressive Disorder      -.06 -21.23(40.56) -.07 .603 
Scan Age .35 66.22(23.18) .36 .006 
T1 AUCg x Maternal DD -.32 -60.22(49.27) -.16 .227 

Model 2     
T1 AUCg .33 53.39(20.21) .34 .011 
Percent Exposure to Maternal DD -.04 -6.06(21.22) -.04 .776 
Scan Age .35 64.86(23.54) .35 .008 
T1 AUCg x Exposure to Maternal DD .06 10.76(23.98) .06 .655 

Model 3     
T1 AUCi -.39 -161.58(69.50) -.30 .024 
Maternal Lifetime Depressive Disorder      -.08 -26.29(36.89) -.10 .479 
Scan Age .38 71.61(20.94) .42 .001 
T1 AUCi x Maternal DD -.15 -80.46(91.47) -.12 .383 

Model 4     
T1 AUCi  -.51 -206.48(45.86) -.53 <.001 
Percent Exposure to Maternal DD -.08 -13.26(19.30) -.09 .495 
Scan Age .38 70.26(21.05) .42 .002 
T1 AUCi x Exposure to Maternal DD -.01 -4.03(60.44) -.01 .947 

Model 5     
T2 AUCg .04 7.00(34.77) .03 .841 
Maternal Lifetime Depressive Disorder      -.04 -14.44(43.51) -.04 .741 
Scan Age .27 51.40(24.01) .27 .037 
T2 AUCg x Maternal DD -.24 -48.30(42.78) -.15 .264 

Model 6     
T2 AUCg -.17 -26.48(20.43) -.17 .200 
Percent Exposure to Maternal DD .14 23.29(21.21) .15 .277 
Scan Age .25 47.24(23.88) .26 .053 
T2 AUCg x Exposure to Maternal DD <.01 0.56(23.80) <.01 .981 

Model 7     
T2 AUCi -.06 -12.94(39.54) -.04 .745 
Maternal Lifetime Depressive Disorder      -.05 -16.47(45.23) -.05 .717 
Scan Age .27 52.36(25.14) .27 .042 
T2 AUCi x Maternal DD .06 16.00(57.56) .04 .770 

Model 8     
T2 AUCi -.04 -8.81(26.20) -.05 .738 
Percent Exposure to Maternal DD .15 24.96(20.96) .16 .239 
Scan Age .27 51.88(24.19) .28 .036 
T2 AUCi x Exposure to Maternal DD .15 32.81(29.05) .15 .264 
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Supplementary Table 14 
Interactions between cortisol reactivity and maternal depression on right hippocampal 
tail volume. 

 β b (SE) Pr p 
Model 1     

T1 AUCg .64 75.35(32.30) .30 .023 
Maternal Lifetime Depressive Disorder      -.12 -29.46(29.88) -.13 .329 
T1 AUCg x Maternal DD -.35 -46.53(36.25) -.17 .205 

Model 2     
T1 AUCg .31 36.87(14.59) .33 .014 
Percent Exposure to Maternal DD -.06 -7.45(15.44) -.07 .631 
T1 AUCg x Exposure to Maternal DD -.26 -35.73(17.31) -.27 .044 

Model 3     
T1 AUCi -.32 -95.21(59.16) -.21 .113 
Maternal Lifetime Depressive Disorder      -.15 -36.92(34.45) -.16 .246 
T1 AUCi x Maternal DD .21 82.29(77.92) .14 .296 

Model 4     
T1 AUCi  -.15 -42.84(38.78) -.15 .274 
Percent Exposure to Maternal DD -.06 -7.42(16.42) -.06 .653 
T1 AUCi x Exposure to Maternal DD .22 86.49(51.53) .22 .099 

Model 5     
T2 AUCg -.12 -12.36(23.45) -.07 .600 
Maternal Lifetime Depressive Disorder      -.15 -33.55(29.36) -.15 .258 
T2 AUCg x Maternal DD -.12 -15.46(28.85) -.07 .594 

Model 6     
T2 AUCg -.20 -21.19(14.19) -.19 .141 
Percent Exposure to Maternal DD -.07 -8.08(14.72) -.07 .585 
T2 AUCg x Exposure to Maternal DD -.03 -2.99(16.47) -.02 .857 

Model 7     
T2 AUCi -.13 -17.66(25.81) -.09 .496 
Maternal Lifetime Depressive Disorder      -.16 -35.58(29.74) -.16 .236 
T2 AUCi x Maternal DD -.12 -22.48(35.08) -.08 .524 

Model 8     
T2 AUCi -.15 -21.13(17.20) -.16 .224 
Percent Exposure to Maternal DD -.12 -13.00(13.76) -.12 .349 
T2 AUCi x Exposure to Maternal DD -.31 -46.62(18.86) -.31 .016 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 15 
Interactions between cortisol reactivity and maternal depression on right total 
hippocampal volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .62 189.83(83.21) .29 .026 
Maternal Lifetime Depressive Disorder      -.01 -5.46(76.99) -.01 .944 
T1 AUCg x Maternal DD -.27 -92.00(93.40) -.13 .329 

Model 2     
T1 AUCg .39 116.26(36.86) .39 .003 
Percent Exposure to Maternal DD -.05 -15.53(39.00) -.05 .692 
T1 AUCg x Exposure to Maternal DD -.13 -45.52(43.75) -.14 .303 

Model 3     
T1 AUCi -.23 -174.15(155.01) -.15 .266 
Maternal Lifetime Depressive Disorder      -.03 -17.84(82.41) -.03 .829 
T1 AUCi x Maternal DD .03 25.90(204.17) .02 .900 

Model 4     
T1 AUCi  -.20 -145.22(98.40) -.20 .146 
Percent Exposure to Maternal DD -.06 -17.71(41.65) -.06 .672 
T1 AUCi x Exposure to Maternal DD .16 160.21(130.75) .16 .226 

Model 5     
T2 AUCg .16 45.15(64.13) .09 .484 
Maternal Lifetime Depressive Disorder      -.02 -14.57(80.31) -.02 .857 
T2 AUCg x Maternal DD -.34 -123.08(78.92) -.20 .124 

Model 6     
T2 AUCg -.11 -30.52(37.57) -.11 .420 
Percent Exposure to Maternal DD -.10 -29.00(39.00) -.10 .460 
T2 AUCg x Exposure to Maternal DD -.17 -56.13(43.62) -.17 .203 

Model 7     
T2 AUCi .09 32.81(69.55) .06 .639 
Maternal Lifetime Depressive Disorder      -.02 -12.93(80.15) -.02 .872 
T2 AUCi x Maternal DD -.35 -180.21(94.54) -.24 .062 

Model 8     
T2 AUCi -.13 -48.08(44.20) -.14 .281 
Percent Exposure to Maternal DD -.12 -34.45(35.35) -.13 .334 
T2 AUCi x Exposure to Maternal DD -.40 -158.41(48.45) -.40 .002 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 16 
Interactions between cortisol reactivity and maternal depression on left hippocampal head volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg -.02 -7.16(82.16) -.01 .931 
Maternal Lifetime Depressive Disorder      .19 113.38(76.60) .20 .145 
Gender -.27 -155.82(76.46) -.27 .046 
T1 AUCg x Maternal DD .13 42.16(91.87) .06 .648 

Model 2     
T1 AUCg .09 25.16(38.70) .09 .518 
Percent Exposure to Maternal DD .04 11.35(40.52) .04 .781 
Gender -.29 -170.37(78.25) -.29 .034 
T1 AUCg x Exposure to Maternal DD -.07 -24.05(45.47) .07 .599 

Model 3     
T1 AUCi .20 143.83(143.69) .14 .321 
Maternal Lifetime Depressive Disorder      .20 119.61(76.40) .21 .123 
Gender -.27 -155.80(77.97) -.26 .051 
T1 AUCi x Maternal DD -.12 -115.61(193.31) -.08 .552 

Model 4     
T1 AUCi  .12 85.62(95.88) .12 .376 
Percent Exposure to Maternal DD .05 15.87(40.43) .05 .696 
Gender -.26 -153.50(77.39) -.26 .053 
T1 AUCi x Exposure to Maternal DD .12 112.88(127.33) .12 .379 

Model 5     
T2 AUCg <.01 -0.05(59.81) <.01 .999 
Maternal Lifetime Depressive Disorder      .15 91.95(75.41) .16 .228 
Gender -.28 -165.15(74.30) -.28 .030 
T2 AUCg x Maternal DD -.13 -45.42(72.96) -.08 .536 

Model 6     
T2 AUCg -.15 -41.49(36.23) -.15 .257 
Percent Exposure to Maternal DD .01 3.03(37.35) .01 .936 
Gender -.32 -185.21(75.37) -.31 .017 
T2 AUCg x Exposure to Maternal DD .10 31.02(41.76) .10 .461 

Model 7     
T2 AUCi <-.01 -1.17(64.69) <-.01 .986 
Maternal Lifetime Depressive Disorder      .16 92.40(75.31) .16 .225 
Gender -.27 -159.31(72.51) -.28 .032 
T2 AUCi x Maternal DD -.21 -103.33(87.57) -.15 .243 

Model 8     
T2 AUCi -.15 -54.57(44.39) -.16 .224 
Percent Exposure to Maternal DD -.06 -15.66(35.57) -.06 .661 
Gender -.27 -161.15(72.50) -.29 .030 
T2 AUCi x Exposure to Maternal DD -.21 -83.06(48.86) -.22 .095 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 17 
Interactions between cortisol reactivity and maternal depression on left hippocampal 
body volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .21 43.67(58.73) .10 .460 
Maternal Lifetime Depressive Disorder      -.16 -66.88(53.34) -.16 .224 
T1 AUCg x Maternal DD .03 8.00(65.93) .02 .904 

Model 2     
T1 AUCg .25 51.97(26.31) .26 .053 
Percent Exposure to Maternal DD -.24 -51.86(27.84) -.25 .068 
T1 AUCg x Exposure to Maternal DD .05 12.07(31.23) .05 .701 

Model 3     
T1 AUCi -.37 -189.02(98.46) -.25 .060 
Maternal Lifetime Depressive Disorder      -.17 -71.65(52.34) -.18 .177 
T1 AUCi x Maternal DD .01 4.97(129.68) .01 .970 

Model 4     
T1 AUCi  -.38 -192.92(63.20) -.38 .004 
Percent Exposure to Maternal DD -.27 -58.20(26.75) -.28 .034 
T1 AUCi x Exposure to Maternal DD <-.01 -2.86(83.98) -.01 .973 

Model 5     
T2 AUCg .13 26.98(45.08) .08 .552 
Maternal Lifetime Depressive Disorder      -.12 -53.33(56.46) -.12 .349 
T2 AUCg x Maternal DD -.10 -24.39(55.48) -.06 .662 

Model 6     
T2 AUCg .05 10.06(27.09) .05 .712 
Percent Exposure to Maternal DD -.05 -11.22(28.11) -.05 .691 
T2 AUCg x Exposure to Maternal DD .04 8.95(31.45) .04 .777 

Model 7     
T2 AUCi -.04 -9.51(49.11) -.03 .847 
Maternal Lifetime Depressive Disorder      -.14 -58.19(56.59) -.13 .308 
T2 AUCi x Maternal DD .20 71.07(66.75) .14 .291 

Model 8     
T2 AUCi .11 27.29(34.40) .10 .431 
Percent Exposure to Maternal DD -.05 -9.35(27.52) -.05 .735 
T2 AUCi x Exposure to Maternal DD .05 15.04(37.71) .05 .691 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 18 
Interactions between cortisol reactivity and maternal depression on left hippocampal tail 
volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .12 13.75(34.70) .05 .693 
Maternal Lifetime Depressive Disorder      .01 1.12(32.10) .01 .972 
T1 AUCg x Maternal DD .06 7.97(38.95) .03 .839 

Model 2     
T1 AUCg .16 18.83(15.34) .17 .225 
Percent Exposure to Maternal DD .06 7.26(16.23) .06 .657 
T1 AUCg x Exposure to Maternal DD -.22 -30.17(18.21) -.22 .103 

Model 3     
T1 AUCi -.22 -64.50(60.61) -.14 .292 
Maternal Lifetime Depressive Disorder      -.01 -1.21(32.22) -.01 .970 
T1 AUCi x Maternal DD .08 30.58(79.83) .05 .703 

Model 4     
T1 AUCi  -.13 -39.37(38.91) -.14 .316 
Percent Exposure to Maternal DD .06 7.24(16.47) .06 .662 
T1 AUCi x Exposure to Maternal DD .19 75.41(51.70) .20 .150 

Model 5     
T2 AUCg -.24 -28.02(25.98) -.14 .285 
Maternal Lifetime Depressive Disorder      -.05 -12.90(32.54) -.05 .693 
T2 AUCg x Maternal DD -.04 -5.28(31.97) -.02 .869 

Model 6     
T2 AUCg -.28 -32.68(15.37) -.27 .038 
Percent Exposure to Maternal DD .06 7.46(15.95) .06 .642 
T2 AUCg x Exposure to Maternal DD .02 2.30(17.84) .02 .898 

Model 7     
T2 AUCi -.23 -35.10(27.50) -.17 .207 
Maternal Lifetime Depressive Disorder      -.07 -17.34(31.69) -.07 .586 
T2 AUCi x Maternal DD -.18 -37.23(37.37) -.13 .323 

Model 8     
T2 AUCi -.34 -51.44(18.75) -.34 .008 
Percent Exposure to Maternal DD <.01 0.39(15.00) <.01 .979 
T2 AUCi x Exposure to Maternal DD -.15 -25.09(20.56) -.16 .227 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Supplementary Table 19 
Interactions between cortisol reactivity and maternal depression on left total 
hippocampal volume. 

 β b (SE) pr p 
Model 1     

T1 AUCg .06 19.14(87.13) .03 .827 
Maternal Lifetime Depressive Disorder      .12 74.41(80.62) .12 .360 
T1 AUCg x Maternal DD .23 81.15(97.81) .11 .410 

Model 2     
T1 AUCg .27 81.27(38.84) .27 .041 
Percent Exposure to Maternal DD -.10 -31.65(41.10) -.10 .445 
T1 AUCg x Exposure to Maternal DD -.16 -56.63(46.10) -.17 .225 

Model 3     
T1 AUCi -.16 -126.07(156.15) -.11 .423 
Maternal Lifetime Depressive Disorder      .12 73.48(83.01) .12 .380 
T1 AUCi x Maternal DD -.03 -32.08(205.66) -.02 .877 

Model 4     
T1 AUCi  -.18 -132.25(98.51) -.18 .185 
Percent Exposure to Maternal DD -.10 -32.33(41.70) -.11 .442 
T1 AUCi x Exposure to Maternal DD .22 222.86(130.89) .23 .094 

Model 5     
T2 AUCg .13 38.79(66.09) .08 .560 
Maternal Lifetime Depressive Disorder      .11 68.83(82.76) .11 .409 
T2 AUCg x Maternal DD -.29 -105.66(81.32) -.17 .199 

Model 6     
T2 AUCg -.15 -45.29(39.17) -.15 .252 
Percent Exposure to Maternal DD -.01 -4.19(40.65) -.01 .918 
T2 AUCg x Exposure to Maternal DD .12 39.84(45.47) .12 .385 

Model 7     
T2 AUCi -.03 -10.43(72.93) -.02 .887 
Maternal Lifetime Depressive Disorder      .10 61.54(84.04) .10 .467 
T2 AUCi x Maternal DD -.17 -91.46(99.13) -.12 .360 

Model 8     
T2 AUCi -.16 -59.99(48.38) -.16 .220 
Percent Exposure to Maternal DD -.08 -25.28(38.70) -.09 .516 
T2 AUCi x Exposure to Maternal DD -.24 -96.54(53.04) -.23 .074 

Note. DD = Depressive Disorder, including Major Depressive Disorder or Dysthymic 
Disorder 
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Hippocampal Functional Connectivity 

Aim 1: Associations between Parenting and Children’s Hippocampal Connectivity 

Greater T1 Positive Parenting was associated with increased bilateral posterior 

hippocampus connectivity with a region spanning the right anterior hippocampus into the 

right inferior temporal gyrus and temporal pole (k=110, [32 -8 -24], t=3.59; 

Supplementary Figure 2).  T1 Negative Parenting was not significantly associated with 

anterior or posterior hippocampus connectivity. 
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Supplementary Figure 2. Regions demonstrating significant associations between T1 
Positive Parenting and posterior hippocampus connectivity. 
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Greater T2 Positive Parenting predicted increased bilateral posterior hippocampus 

connectivity with left cerebellum (k=161, [-40 -71 -39], t=3.58; Supplementary Figure 3).  

Greater T2 Negative Parenting was associated with reduced bilateral anterior 

hippocampus connectivity with the right cerebellum (k=87, [8 -89 -30], t=-3.34; 

Supplementary Figure 3) and reduced bilateral posterior hippocampus connectivity with 

the left cerebellum and a region of bilateral posterior cingulate gyrus (Supplementary 

Table 20, Supplementary Figure 5).   
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Supplementary Figure 3. Regions demonstrating significant posterior hippocampus 
connectivity that varies as a functional of T2 Positive Parenting. 
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Supplementary Figure 4. Region where bilateral anterior hippocampus connectivity 
significantly varies as a function of T2 Negative Parenting. 
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Supplementary Table 20  
Regions where bilateral posterior hippocampus connectivity significantly varied as a 
function of T2 Negative Parenting.  

Region k x y z t 
Left Cerebellum 111 -28 -77 -36 -3.43 
Right Posterior Cingulate Cortex 81 5 -47 27 -3.38 

Left Posterior Cingulate Cortex 
     

 
Supplementary Figure 5. Regions demonstrating significant associations between T2 
Negative Parenting  posterior hippocampus connectivity.  
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Aim 2: Associations between Children’s Cortisol Reactivity and Hippocampal 

Connectivity 

 Greater T1 AUCg significantly predicted increased bilateral posterior 

hippocampus connectivity with a region of bilateral precuneus (Supplementary Table 21, 

Supplementary Figure 6).  T1 AUCi was not significantly associated with anterior or 

posterior hippocampus connectivity. 

 
Supplementary Table 21. Regions where bilateral posterior hippocampus connectivity 
significant varied as a function of T1 AUCg. 
Region k x y z t 
Right Precuneus 99 2 -80 45 3.50 

Left Precuneus 
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Supplementary Figure 6. Regions where T1 AUCg was significantly associated with 
posterior hippocampus connectivity.  
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Neither T2 AUCg or AUCi was significantly associated bilateral anterior or 

posterior hippocampus connectivity. 

Aim 3: Mediation of Associations between Parenting and Hippocampal Connectivity 

by Cortisol Reactivity 

There were five regions where parenting significantly predicted hippocampal 

connectivity. Neither T2 AUCg or T2 AUCi significantly mediated the association 

between parenting and hippocampal connectivity in any of these regions (Supplementary 

Table 22). 
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Supplementary Table 22  
Mediation of the association between parenting and hippocampal resting-state functional connectivity by cortisol reactivity. 

Predictor Dependent Variable Mediator Covariates Total 
Effect 

Direct 
Effect 

Indirect 
Effect SE CI p 

T2 Positive 
Parenting 

Posterior Connectivity 
with Left Cerebellum  

T2 AUCg Age, 
Mean FD -0.11 -0.10 <-0.01 0.06 [-0.18, 0.08] .929 

  T2 AUCi Age, 
Mean FD -0.11 -0.16 0.05 0.08 [-0.03, 0.40] .630 

T2 Negative 
Parenting 

Anterior Connectivity 
with Right Cerebellum 

T2 AUCg Age, 
Mean FD -0.32 -0.39 0.07 0.12 [-0.06, 0.54] .596 

  T2 AUCi Age, 
Mean FD -0.32 -0.36 0.04 0.08 [-0.02, 0.42] .696 

 Anterior Connectivity 
with Left Cerebellum 

T2 AUCg Age, 
Mean FD -2.05 -1.95 -0.10 0.21 [-0.82, 0.17] .579 

  T2 AUCi Age, 
Mean FD -2.05 -2.06 0.01 0.09 [-0.12, 0.19] .933 

 Posterior Connectivity 
with Left Cerebellum 

T2 AUCg Age, 
Mean FD 0.26 0.27 -0.02 0.14 [-0.38, 0.23] .898 

  T2 AUCi Age, 
Mean FD 0.26 0.25 0.01 0.06 [-0.04, 0.20] .898 

 Posterior Connectivity 
with Right Cerebellum 

T2 AUCg Age, 
Mean FD -0.18 -0.10 -0.08 0.19 [-0.72, 0.15] .647 

  T2 AUCi Age, 
Mean FD -0.18 -0.20 0.02 0.07 [-0.05, 0.27] .888 

CI = Confidence Interval; SE = Standard Error; FD = Framewise Displacement 
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Exploratory Aim: Role of Maternal Depression 

Interactions between Parenting and Maternal Depression.  

Lifetime exposure to maternal depression moderated the association between T1 

Negative Parenting and posterior hippocampus connectivity with left inferior frontal 

gyrus (pars Opercularis) (k=107, [-61 13 15], t=3.50; Supplementary Figure 7).  In 

individuals with low exposure to maternal depression, greater T1 Negative Parenting was 

associated with reduced hippocampal connectivity with left inferior frontal gyrus.  In 

individuals with high exposure to maternal depression, greater T1 Negative Parenting 

was associated with increased hippocampal connectivity with this region. 
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Supplementary Figure 7. Regions where proportion lifetime exposure to maternal 
depression moderated the association between posterior hippocampus connectivity with 
T1 Negative Parenting. Note: Scatterplot depicts bivariate correlations between the 
predictor and connectivity and is not adjusted for covariates included in the statistical 
model. 
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Maternal lifetime depression status significantly moderated the association 

between T1 Positive Parenting and posterior hippocampus connectivity with left middle 

occipital gyrus (k=219, [-37 -80 24], t=3.62; Supplementary Figure 8).  Specifically, in 

children with no maternal lifetime history of depressive disorders, greater T1 Positive 

Parenting was associated with reduced posterior hippocampus connectivity with the left 

middle occipital gyrus.  In contrast, in offspring with a maternal lifetime history of 

depression, greater T1 Positive Parenting was associated with increased posterior 

hippocampus connectivity with this region. 
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Supplementary Figure 8. Regions where maternal lifetime history of depressive disorders 
moderated the association between T1 Positive Parenting and posterior hippocampus 
connectivity. Note: Scatterplots depict bivariate correlations between the predictor and 
connectivity and are not adjusted for covariates included in the statistical models. 
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Maternal lifetime history of depressive disorders moderated the association 

between T2 Positive Parenting and posterior hippocampus connectivity with left 

cerebellum (k=77, [-19 -62 -37], t=3.49; Supplementary Figure 9).  Specifically, in 

offspring without a maternal lifetime history of depression, greater T2 Positive Parenting 

was associated with decreased posterior hippocampus connectivity with the left 

cerebellum while in offspring with a maternal lifetime history of depression, greater T2 

Positive Parenting was associated with reduced posterior hippocampus connectivity in 

this region. 
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Supplementary Figure 9. Regions where maternal lifetime history of depressive disorders 
significantly moderated the association between T2 Positive Parenting and posterior 
hippocampal connectivity. Note: Scatterplot depicts bivariate correlations between the 
predictor and connectivity and is not adjusted for covariates included in the statistical 
model. 
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Interactions Between Maternal Depression and Cortisol Reactivity. 

The association between T1 AUCi and anterior hippocampus connectivity was 

moderated by lifetime exposure to maternal depression.  Specifically, in offspring with 

low exposure, greater T1 AUCi predicted increased anterior hippocampus connectivity 

with the right superior orbital gyrus (k=70, [29 64 -3], t=-3.31; Supplementary Figure 

10).  In offspring with high exposure, greater T1 AUCi was associated with reduced 

anterior hippocampal connectivity with the right superior orbital gyrus. 
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Supplementary Figure 10. Regions where the association between T1 AUCg and anterior 
hippocampus connectivity was significantly moderated by lifetime exposure to maternal 
depressive disorders. Note: Scatterplot depicts bivariate correlation between the predictor 
and connectivity and is not adjusted for covariates included in the statistical model. 
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Lifetime exposure to maternal depression significantly moderated the 

association between T1 AUCi and posterior hippocampus connectivity with right 

superior parietal lobule (k=75, [14 -71 51], t=-3.42; Supplementary Figure 11). In 

children with low exposure, greater T1 AUCg was associated with increased posterior 

hippocampus connectivity with right superior parietal lobule while children with high 

exposure demonstrated reduced posterior hippocampus connectivity with this region 

as T1 AUCi increased. 
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Supplementary Figure 11. Regions where the association between T1 AUCi and anterior 
hippocampus connectivity was significantly moderated by proportion lifetime exposure 
to maternal depression. Note: Scatterplot depicts bivariate correlation between the 
predictor and connectivity and is not adjusted for covariates included in the statistical 
model. 
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Maternal lifetime depression status moderated the associated with T1 AUCg 

and anterior hippocampus connectivity with left middle frontal gyrus (k=88, [-28 37 

21], t=-3.31; Supplementary Figure 12). Specifically, in offspring without a maternal 

lifetime history of depression, greater T1 AUCg was associated with decreased 

anterior hippocampus connectivity with the left middle frontal gyrus.  In offspring 

with a maternal lifetime history of depression, greater T1 AUCg was associated with 

increased anterior hippocampal connectivity in this region. 
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Supplementary Figure 12. Regions where the association between T1 AUCg and anterior 
hippocampus connectivity was significantly moderated by a maternal lifetime history of 
depressive disorders. Note: Scatterplot depicts bivariate correlation between the predictor 
and connectivity and is not adjusted for covariates included in the statistical model. 
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Maternal lifetime depression status moderated the association between T1 AUCg 

and posterior hippocampus connectivity with a region of the right fusiform gyrus, the 

right supramarginal gyrus, and the left middle frontal gyrus (Supplementary Table 23, 

Supplementary Figure 13).  In all regions, the same trend was evident:  in offspring 

without a maternal lifetime history of depressive disorders, greater T1 AUCg was 

associated with reduced connectivity while in offspring with a maternal lifetime history 

of depressive disorders greater T1 AUCg predicted increased connectivity with these 

regions. 

 

Supplementary Table 23 
Regions where the association between T1 AUCg and posterior hippocampus 
connectivity was significantly moderated by a maternal lifetime history of depressive 
disorders. 
Region k x y z t 
Right Fusiform Gyrus 109 38 -23 -21 3.42 

Right Inferior Temporal Gyrus 
     

Right Middle Temporal Gyrus 
     

Left Middle Frontal Gyrus 82 -22 10 63 3.58 
Right SupraMarginal Gyrus 72 68 -23 36 3.46 



273 
 
 



274 
 
 

Supplementary Figure 13. Regions where the association between T1 AUCg and 
posterior hippocampus connectivity was significantly moderated by a maternal lifetime 
history of depressive disorders. Note: Scatterplots depict bivariate correlations between 
the predictor and connectivity and are not adjusted for covariates included in the 
statistical models. 
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Maternal lifetime history of depression also moderated the association between 

T2 AUCg and posterior hippocampus connectivity with four regions: left inferior 

temporal gyrus, left inferior occipital gyrus, right superior frontal gyrus, and right middle 

temporal gyrus (Supplementary Table 24, Supplementary Figure 14).  As at T1, all 

regions demonstrated the same direction of effects: in offspring without a maternal 

lifetime history of depression, greater T2 AUCg was associated with reduced 

hippocampus connectivity in these regions while in offspring with a maternal lifetime 

history of depression, greater T2 AUCg was associated in increased posterior 

hippocampus connectivity in these regions. 

 
Supplementary Table 24 
Regions where the association between T2 AUCg and posterior hippocampus 
connectivity was significantly moderated by a maternal lifetime history of depressive 
disorders. 
Region k x y z t 
Right Superior Frontal Gyrus 172 20 43 45 3.48 
Left Inferior Occipital Gyrus 128 -46 -86 -9 3.38 

Left Fusiform Gyrus 
     

Left Inferior Temporal Gyrus 99 -49 -5 -39 3.64 
Right Middle Temporal Gyrus 78 62 -62 21 3.5 
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Supplementary Figure 14. Regions where the association between T2 AUCg and 
posterior hippocampus connectivity was significantly moderated by a maternal lifetime 
history of depressive disorders. Note: Scatterplots depict bivariate correlations between 
the predictor and connectivity and are not adjusted for covariates included in the 
statistical models. 
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There was a significant interaction between maternal lifetime depression status 

and T2 AUCi in predicted anterior hippocampus connectivity with regions of right and 

left inferior frontal gyrus (Supplementary Table 25, Supplementary Figure 15).  For both 

regions, in offspring with no maternal lifetime history of depressive disorders, greater T2 

AUCi was associated with reduced anterior hippocampus connectivity and in offspring 

with a maternal lifetime history of depressive disorders, greater T2 AUCi was associated 

with increased anterior hippocampus connectivity with these regions.  

Supplementary Table 25 
Regions where the association between T2 AUCi and anterior hippocampus 
connectivity was significantly moderated by a maternal lifetime history of depressive 
disorders. 

Region k x y z t 
Right Inferior Frontal Gyrus (p. Opercularis) 93 38 13 24 3.37 
Left Inferior Frontal Gyrus (p. Triangularis) 91 -52 37 9 3.50 
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Supplementary Figure 15. Regions where the association between T2 AUCi and anterior 
hippocampus connectivity was significantly moderated by a maternal lifetime history of 
depressive disorders. Note: Scatterplots depict bivariate correlations between the 
predictor and connectivity and are not adjusted for covariates included in the statistical 
models. 
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Maternal lifetime history of depression significantly moderated the association 

between T2 AUCi and posterior hippocampus connectivity with the right fusiform gyrus 

and the right inferior frontal gyrus (Supplementary Table 26, Supplementary Figure 16). 

Specifically, in offspring with a maternal lifetime history of depression, greater T2 AUCi 

predicted increased posterior hippocampus connectivity with right fusiform gyrus and 

right inferior frontal gyrus while in offspring without a maternal lifetime history of 

depression, greater T2 AUCi was associated with reduced posterior hippocampal 

connectivity with these regions. 

 
 
Supplementary Table 26 
Regions where the association between T2 AUCi and posterior hippocampus connectivity 
was significantly moderated by a maternal lifetime history of depressive disorders. 
Region k x y z t 
Right Fusiform Gyrus 171 38 -74 -18 3.40 

Right Inferior Temporal Gyrus 
     

Right Middle Temporal Gyrus 
     

Right Inferior Frontal Gyrus (p. Opercularis) 97 47 16 18 3.42 
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Supplementary Figure 16. Regions where the association between T2 AUCi and posterior 
hippocampus connectivity was significantly moderated by a maternal lifetime history of 
depressive disorders. Note: Scatterplots depict bivariate correlations between the 
predictor and connectivity and are not adjusted for covariates included in the statistical 
models. 
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