
ABSTRACT 

Title of Dissertation: UREA HYDROLYSIS IN SOIL PROFILE 
TOPOSEQUENCES: MECHANISMS RELEVANT TO 
NITROGEN TRANSPORT AND WATER QUALITY 

Kristin A. Fisher, Doctor of Philosophy, 2014 

Dissertation Directed by: Professor Bruce R. James 
Department of Environmental Science & Technology 

ABSTRACT 

Urea has been linked to harmful algal blooms in surface waters, but numerous 

studies of its hydrolysis in agricultural soils have concluded that urea does not persist 

long enough to be transported to surface waters. This paradox in the published literature 

may be explained by our lack of knowledge regarding the soil chemical conditions that 

affect microbial urease activity in surface and subsurface horizons of soil profiles that lie 

between agricultural fields and surface waters, particularly in sandy Coastal Plain 

regions. Laboratory studies were conducted to determine the most influential soil 

chemical characteristics predicting rates of urea hydrolysis in six Maryland soils. Soils 

were sampled from both the A and B horizons of toposequences consisting of an 

agricultural field, a grassed field border, and a transitional zone adjacent to surface 

waters. A pH-adjustment experiment identified soil C and N as important predictors of 

urea hydrolysis. Analysis of microbial community composition and ureC genes across a 

toposequence found the greatest abundance of bacteria, fungi, and ureC genes in riparian 



 

A horizon soils, despite inhibitory conditions of low pH, low field-sampled moisture 

content, and high extractable metal concentrations. The high carbon content of A horizon 

riparian soils likely mediated these toxic characteristics. Of particular note was the 

significant correlation between ureC genes and rate of urea hydrolysis (r2 = 0.82), 

indicating that the presence of this gene may be useful as a biomarker for predicting rates 

of urea hydrolysis in other soils. An investigation into the effects of added C revealed that 

diverse soil C compounds influenced urea hydrolysis differently. In a 24 hr incubation, 

ascorbic and gallic acid acted as pro- and antioxidants with both enhancement and 

inhibition of hydrolysis, depending upon concentration, whereas benzoic and cinnamic 

acids likely enhanced hydrolysis as a result of being metabolized by soil microorganisms. 

A better understanding of the mechanisms controlling urea hydrolysis in diverse soils will 

help researchers and policymakers formulate defensible recommendations related to urea 

fertilizer and animal waste application so that urea-N can be efficiently used by crops and 

urea movement across the landscape and into surface waters can be minimized. 
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Chapter 1: Urea in Soils and Surface Waters  

 

Urea in Surface Waters: Natural Cycles, Eutrophication, and Harmful Algal Blooms 

 Urea (CO(NH2)2) is a naturally-occurring form of nitrogen (N) that is present in 

both aquatic and terrestrial environments. In the 1990s, researchers began to suspect that 

natural urea concentrations in surface waters were being increased by anthropogenic 

sources (Glibert and Terlizzi, 1999), and that higher levels of urea in coastal zones might 

be contributing to an increase in the frequency of harmful algal blooms (HABs) (Glibert 

et al., 2006). Historically, however, this form of N was not routinely measured in water 

samples; therefore, pinpointing the natural background concentration of urea was difficult 

in surface waters such as Chesapeake Bay (but see Lomas et al., 2002). Fluctuations in 

seasonal rainfall, mixing currents, and a salinity gradient from fresh to saltwater along the 

axes of many coastal bays makes these ecosystems dynamic and variable over space and 

time in both their physical and biological characteristics. Nevertheless, in recent years, 

researchers studying urea in Chesapeake Bay have identified annual mean concentrations 

in surface waters from 7 to 21 μg urea-N L-1 (Lomas et al., 2002; Glibert et al., 2005), 

with individual measurements as high as 336 μg urea-N L-1 (Glibert et al., 2005). A study 

in an isolated system of striped bass aquaculture ponds found that dinoflagellate blooms 

were associated with urea-N levels in excess of 21 μg L-1, whereas no dinoflagellate 

blooms occurred when urea concentrations were below this concentration (Glibert and 

Terlizzi, 1999). This same threshold has been exceeded immediately preceding harmful 

algal blooms events in Chesapeake Bay tributaries in the wake of heavy spring rains 

draining agricultural watersheds. During these events, urea-N levels have reached 
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between 112-196 μg urea-N L-1 (Glibert et al., 2001). Lower concentrations of urea (3.5 

μg urea-N L-1) were present during harmful algae blooms in Monterey Bay, California 

(Kudela et al., 2008). In the East China Sea and off the west coast of Florida, urea is 

believed to contribute to certain stages and types of harmful algae blooms, perhaps 

selecting for or being preferentially utilized by specific phytoplankton and cyanobacteria 

(Heil et al., 2007; Li et al., 2010). Understanding the sources of urea to coastal waters, 

and whether it is natural or anthropogenic, has become an important research goal. 

 In aquatic environments, urea is part of the dissolved organic N pool where it is 

produced by bacteria, fish, zooplankton, and numerous other organisms as a byproduct of 

metabolism. It can also be released from sediments (Therkildsen and Lomstein, 1994; 

Tyler et al., 2003) and arise from the microbial decomposition of organic substrates 

(Berman and Bronk, 2003). Its release from sediments is likely the reason for elevated 

urea concentrations in bottom waters (1 m above the sediment) relative to surface waters. 

Average annual surface water concentrations of urea in Chesapeake Bay have ranged 

from 6.9-13 μg urea-N L-1, whereas urea concentrations in samples taken in bottom 

waters were higher and more variable, with values ranging from 7-21 μg urea-N L-1 

(Lomas et al., 2002). The higher concentrations of urea found in bottom waters possibly 

results from the breakdown of recently settled particulate organic matter. Urea is 

consumed by bacteria and phytoplankton and is a valuable source of N for these 

organisms (Altman and Paerl, 2012). Researchers (e.g. Lomas et al., 2002) have observed 

a close relationship between the levels of urea in the Chesapeake Bay and the rate of urea 

uptake by the planktonic community, suggesting that urea is an important component of 

the N cycle in primary producers, averaging 18% of measured N uptake (among nitrate, 
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ammonium, and urea). In North Carolina’s Neuse River Estuary, urea accounted for 16-

45% of the total N taken up by the microbial community, despite its concentration 

remaining consistently below that of dissolved inorganic N (NH4
+ and NO3

-) (Twomey et 

al., 2005). Some of the species that have the ability to use urea as an N source can cause 

HABs, and sometimes toxins. For example, the HAB dinoflagellate Alexandrium 

catenella is capable of using urea as an N source and can produce a saxitoxin that causes 

paralytic shellfish poisoning (PSP) (Camargo and Alonso, 2006; Solomon et al., 2010). 

The preferential use of urea by different types of phytoplankton and under different 

environmental conditions has been documented (e.g. Li et al., 2012). However, urea is 

not the only source of N that can contribute to algal blooms and eutrophication; some 

toxin-producing phytoplankton are capable of growing on urea as well as other forms on 

N (NH4
+ and NO3

-) (Auro and Cochlan, 2013), and increased production of toxins has 

been measured in some phytoplankton grown on urea, NH4
+, or NO3

- as an N source 

(Leong et al., 2004; Howard et al., 2007; Adolf et al., 2009; Thessen et al., 2009). A 

simultaneous wordwide increase in both the use of urea fertilizer and the incidence of 

HABs and PSP in coastal areas has focused some attention on the effects of urea-N in 

aquatic systems (Glibert et al., 2006). Researchers suspect that urea, which is applied to 

agricultural fields as both a fertilizer and as a decomposition product of the uric acid in 

poultry litter, may be leaching from farmland and contributing to organic N enrichment 

and HABs in these waterways (Glibert et al., 2006).  

In some coastal areas, variations in the seasonal concentrations of urea in surface 

waters have helped researchers separate what is believed to be allochthonous from 

autochthonous urea. A study in the Neuse River Estuary of North Carolina did not detect 
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a seasonal pattern of urea concentration in that water body, and attributed the presence of 

urea to natural microbial mineralization of dissolved organic N (Twomey et al., 2005). In 

Chesapeake Bay, seasonal variability in urea concentration has been reported, with some 

years showing a peak in surface urea concentrations in the late winter/spring (Dec/April), 

and others showing a distinct peak in the summer due to differences in seasonal rainfall 

in the different years (Lomas et al., 2002). The winter/spring peak may not be solely a 

result of background urea regeneration resulting from bacterial processes, as this requires 

organic matter that is often produced during or after the spring bloom. In fact, the highest 

rates of urea regeneration are found in the fall (Lomas et al., 2002). Therefore, there is 

support for the assertions made (Glibert et al., 2006) that external and anthropogenic 

sources of unhydrolyzed urea are entering Chesapeake Bay. 

In the absence of the enzyme urease that catalyzes its hydrolysis, urea is stable in 

aqueous solutions between pH 2 and 12, with a half-life of 3.6 years at 38°C (Zerner, 

1991). Under these conditions, urea can slowly break down by an elimination reaction to 

produce NH3 and isocyanate (HNCO), by the mechanism shown in Eqn. 1.1 (Krajewska, 

2009): 

CO(NH2
)2→ HNCO+NH3

2H20
�⎯�  H2CO3+2NH3

  (Eqn. 1.1) 

Urea’s stability under these conditions may result from resonance, which donates 

electrons to the carbonyl carbon and causes it to be less subject to nucleophilic attack 

(Zerner, 1991). Therefore, in the absence of urease, urea may remain unhydrolyzed, 

soluble, and bioavailable in surface waters until environmental conditions for bacterial or 

algal growth are favorable for its hydrolysis. 
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Urea in Animal Wastes and Soils: Transformations and Pathways from Land to Surface 

Waters 

In terrestrial environments, urea is present as a result of both natural and 

anthropogenic processes. Urea is an intermediate of microbial metabolism, a component 

of mammalian urine, and a decomposition product of the uric acid excreted by birds, 

some amphibians, and most insects (Wright, 1995; Hasan, 2000).  It is present in the 

effluent of some sewage treatment plants (Cozzi et al., 2014), animal agriculture 

excrement, and is the dominant form of N fertilizer used in agriculture worldwide 

(Glibert et al., 2014).  It is also used in aquaculture to stimulate algal growth for fish or 

shrimp grazing and is spread on oil spills to stimulate the growth of bacteria that can 

break down the oil.  Urea is sometimes used as a feed additive for ruminants, is present in 

herbicides and pesticides, is used as a de-icer, and is used in the manufacture of plastics, 

paints, tobacco products, wine, and cosmetics (Glibert et al., 2006). The many sources of 

both anthropogenic and natural urea make this N source an important component of the N 

cycle in both terrestrial and downstream aquatic environments. 

In soils, urease hydrolyses urea into ammonia and carbamate (H2N-COOH), the 

latter of which spontaneously degrades into carbonic acid (H2CO3) and a second 

molecule of ammonia in the presence of water (Krajewska, 2009), by the pathways 

shown in Equations 1.2 and 1.3: 

 

(Eqn. 1.2) 

 

+   H2O  
Urea Ammonia and carbamate 

NH3  + 
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(Eqn. 1.3) 

  

Plants produce urea during the catabolism of arginine by the enzyme arginase, when N is 

remobilized from old leaves to provide necessary N for new growth and flower 

production (Witte, 2011). The N in urea can also be absorbed from the soil following 

microbial transformation to ammonium (NH4
+), or it can be absorbed by active or passive 

transport of unhydrolyzed urea by root cells, followed by hydrolysis within the plant cells 

(Witte, 2011). The expression of the active urea transporter in some plant roots can be 

increased by N-deficiency and decreased by application of NH4
+ or NO3

- (Kraiser et al., 

2011). However, some plants grown on urea, rather than nitrate or ammonium nitrate, 

had reduced growth and symptoms of N deficiency (Witte, 2011). Since little work has 

been done to assess the importance of the direct uptake and assimilation of urea by 

agricultural plants, the conditions under which unhydrolyzed urea contributes to the N 

nutrition of agricultural crops is not well understood (Witte, 2011; Andrews et al., 2013).  

Urea is capable of moving through soils because it is a soluble, nonionic 

compound, although it is often quickly hydrolyzed to ammonium and then converted to 

nitrate by soil microorganisms, and may leach in this form (Gould et al., 1986). In soils, 

urea is often hydrolyzed within a period of 1-14 days (Singh and Yadev, 1981; Yadev et 

al., 1987; Khakurai and Alva, 1995; Wali et al., 2003; Antil et al., 2006). Some field 

studies have shown that this process can take longer, although the distance that urea 

Carbamate 

+ H2O   H2CO3 + NH3 

Carbonic acid and ammonia 
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migrated through the soil was not measured (Singh and Yadev, 1981; Khakurai and Alva, 

1995). Most studies have focused on measuring soil ammonium or nitrate concentrations 

that result from urea application rather that urea leaching itself (Moe et al., 1968; Alva, 

2006; Aparicio et al., 2008), or have only measured trace amounts of urea leaching 

several centimeters in column and field studies using controlled release fertilizer or urea 

plus a urease inhibitor (Agrotain) (Singh and Yadev, 1981; Khakurai and Alva, 1995; 

Sato and Morgan, 2008; R.J. Kratochvil, personal communication, 2011; Dawar et al., 

2011) . Since information in the literature has focused on the rate of ammonia loss or the 

amount of nitrate leaching following urea fertilization, detailed information on the 

persistence of unhydrolyzed urea in soils is not complete.  

Agricultural urea fertilizer is available in prilled or granular form, or as liquid 

urea ammonium-nitrate (UAN) solution (28-32% N). The different forms of urea behave 

slightly differently after application to soils; solutions of urea hydrolyze more quickly 

than pelleted or prilled urea fertilizer, but in the laboratory, all forms completely 

hydrolyzed in 6-8 days (Gould et al., 1986). Soil column studies have shown that the rate 

of urea hydrolysis depends on application method, with urea incorporated into the soil 

hydrolyzing faster than banded urea. In addition, urea incorporated in moist soil 

hydrolyzed faster than the urea banded in dry soil (Gould et al., 1986). The ease of use, 

availability, and high N content (46% by weight) of urea have contributed to its 

popularity; urea is now estimated to make up over 50% of the world’s N fertilizer 

consumption (Glibert et al., 2006; Glibert et al., 2014).  

The hydrolysis of urea to NH3 can be problematic for agricultural producers under 

certain conditions. Losses in excess of 50% of applied N can result from NH3 
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volatilization if this fertilizer is surface-applied or incorporated into sandy soils under 

warm, dry conditions (Overrein and Moe, 1967; Terman, 1979). Ammonia accumulation 

in the soil can result in seed, seedling, and young plant damage (Bremner and Krogmeier, 

1989). Increases in soil pH that can occur as a result of hydrolysis and the accumulation 

of NH4
+ (Bremner, 1995) can also reduce the activity of Nitrobacter bacteria, the genus 

responsible for oxidation of nitrite to nitrate (Aleem and Alexander, 1960). The resulting 

build-up of nitrite in the soil can be toxic to plants and can pollute ground waters. Foliar 

application of urea is not an option as it often results in leaf burn and decreased yield 

(Bremner, 1995). To counter these problems with urea fertilizer use, urease inhibitors are 

sometimes added to fertilizers to reduce the rate at which urea hydrolysis occurs.  A 

recent study reported the effect of one of these compounds, N-(n-butyl) thiophosphoric 

triamide, or ‘Agrotain’, on surface-applied urea.  It delayed urea hydrolysis by about 

seven days and increased the distance that urea traveled in the soil profile, both vertically 

(down to 5 cm) and laterally (up to 6 cm) (Dawar et al., 2011). In contrast to chemical 

additives, Dong et al. (2009) found that soils amended with lignite-derived humic acids at 

the time of urea fertilization decreased urease activity and delayed the conversion of urea 

to NH4
+, also delaying nitrification. While the development and use of urease inhibitors 

have reduced some of the problems associated with the use of urea fertilizer, there is 

some concern that other problems, namely increased runoff of unhydrolyzed urea, may be 

more likely (Glibert et al., 2006). 

 In addition to the use of urea fertilizers, this form of N is also available as a 

decomposition product of uric acid, which is produced by birds, some reptiles and 

amphibians, and most insects as the major nitrogenous waste product (Wright, 1995). In 
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agricultural settings, uric acid represents as much as 70% of the total nitrogen in poultry 

feces depending on diet (Nahm, 2003), although when mixed with bedding, uric acid 

represents closer to 19% of the total N in the litter (Gordillo and Cabrera, 1997).  About 

25% of the bacteria in poultry litter decompose uric acid to urea, and only a few of these 

are capable of decomposing uric acid directly to NH3.  The majority of these microbes are 

aerobic (Schefferle, 1965). The pathway for the decomposition of uric acid, and the 

enzymes involved, is illustrated in Eqn. 1.4 (Nahm, 2003). Simple by-products including 

CO2 and H2O are not shown, to simplify the equation.  

(Eqn. 1.4) 

 

 C5H4N4O3 (uric acid) + O2 + 2H2O
Uricase
�⎯⎯⎯�  C4H6N4O3 (allantoin) + H2O

Allantoinase
�⎯⎯⎯⎯⎯⎯�    

 

 
(allantoic acid) + 2H2O

Allantoicase
�⎯⎯⎯⎯⎯⎯�  urea or NH3 + S-ureidoglycolic acid → 

 

 
r-and s-ureidoglycosase
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�(glycolic acid and urea) + H2O

urease
�⎯⎯�  2NH3 and CO2 

 

Some aerobic microorganisms including protozoa, algae, fungi, and bacteria 

produce uricase, an enzyme which decomposes uric acid into s(+)-allantoin (Vogels and 

Vanderdrift, 1976). An anaerobic pathway also exists, but it is much slower (Nahm, 

2003). Water is required for several steps in the aerobic decomposition pathway, so not 

surprisingly, broiler litter with the lowest water content of the samples tested was found 

to contain the most uric acid N, and the wettest had the least (Gordillo and Cabrera, 
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1997). Rothrock et al. (2010) made reference to urease activity being a limiting factor in 

the mineralization reaction of uric acid to ammonia. However, the paper they cited for 

that only refers to the second step of this decomposition reaction depending on urease 

activity, pH, and temperature (Nahm, 2003). Therefore, it is not clear whether the 

hydrolysis of urea is in fact a slower process than the hydrolysis of uric acid, and the 

implications for this potential bottleneck and build-up of urea in poultry-amended 

agricultural soils are unknown.  

 

Urease: Enzyme Structure, Variability, and Activity in Soils and Cells 

The urease enzyme exists both within living cells and as an extracellular enzyme 

released into the soil environment upon cell death (Krajewska, 2009). In most bacteria 

and plants, it is present in the cytoplasm. One exception to this occurs in the case of the 

bacteria Helicobacter pylori, a bacterium causing ulcers in humans, which is believed to 

contain some urease at the cell surface. However, the functionality of this extracellular 

urease has been the subject of much debate (Krajewska, 2009). Extracellular soil urease 

is stabilized by adsorption on soil colloids, particularly clays and organic matter, where it 

is resistant to microbial attack and continues to function (Krajewska, 2009). However, 

differentiating between intracellular and extracellular soil urease is challenging (Ciardi, 

1998).  Chloroform fumigation of soil samples, which lyses microbial cells, results in a 

total measurement of both intra- and extracellular urease activity, whereas measurement 

of urease activity without chloroform fumigation is assumed to represent extracellular 

urease activity. The difference between the two provides a measurement of urease 
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activity associated with the microbial community (Klose and Tabatabai, 1999; Qin et al., 

2010). However, this method assumes that jack bean urease activity interacts with 

chloroform fumigation the same way soil urease does, which may not be the case. One 

study looked at jack bean urease that was added to unsterilized soil and found that the 

jack bean urease did not persist for more than a few days (Zantua and Bremner, 1977). In 

the soils tested, the urease activity returned to its initial level within a maximum of 14 

days. Researchers concluded that soils have a natural saturation level of native 

extracellular urease that can be protected by associations with soil colloids (Zantua and 

Bremner, 1977). Using linear regression between urease activity and ATP content to 

identify intra- and extracellular components of urease activity has been attempted, but is 

not recommended because increases in ATP content are not always correlated with 

increases in enzyme activity (Ciardi, 1998). While differentiating between the two types 

of soil urease can be difficult, it is the combined activity of both intracellular and 

extracellular enzyme that is responsible for the hydrolysis of applied urea. 

Besides plants (Witte, 2011), soil organisms that produce urease include fungi 

(including ectomycorrhizal fungi), bacteria, actinomycetes, some yeasts, cyanobacteria 

(Hasan, 2000), and archaea (Tourna et al., 2011; Lu and Jia, 2013). The proportion of the 

soil community that is ureolytic is not well understood, although one study found that 17-

30% of the cultivable bacterial population sampled from six different soils was ureolytic 

(Lloyd and Sheaffe, 1973). Microbes regulate urease synthesis by three major pathways: 

1) synthesis of urease is repressed in the presence of NH3 and then turned on under N-

limiting conditions, 2) urease synthesis is induced by the presence of urea as a substrate, 

and 3) the production of urease occurs constantly and is not affected by levels of N 
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compounds in the environment (Mobley and Hausinger, 1989). These mechanisms are 

species-specific, although only a few dozen soil organisms have been investigated in 

detail. For example, urease production is repressible in the soil fungus Aspergillus 

nidulans, the soil bacteria Bacillus megaterium, and the denitrifying bacteria Paracoccus 

denitrificans. Inducible urease production is found in the soil bacteria Proteus vulgaris, 

which is also a human pathogen, and in the ruminal bacteria Selenomonas ruminantium. 

Constitutive urease production is found in the agriculturally relevant and pathogenic 

Agrobacterium tumefaciens that causes crown gall disease in fruit trees. It is also found in 

the N2-fixing bacteria Rhizobium leguminosarum and the soil bacterium Sporosarcina 

ureae (Mobley and Hausinger, 1989). Multiple pathways have been found in some 

species. For example, Selenomonas ruminatium is reported to have both inducible and 

repressible urease.  Variations in urease production have also been seen at different stages 

of microbial cellular differentiation. In particular, increased constitutive urease activity 

has been noted in swarm cells (Mobley and Hausinger, 1989; Mobley et al., 1995). 

However, since this knowledge is focused on individual species, further research is 

necessary to understand ureolytic microbial community dynamics in soils. 

The urease enzyme has subunits that are the same in plants and fungi.  Each of the 

subunits has a molecular mass of approximately 90 kDa.  The subunits are usually 

arranged into trimers or a homohexameric structure, with two Ni2+ per subunit. The total 

molar mass, including nickel ions, of a typical hexamer is approximately 550 kDa. In 

contrast, bacterial ureases are usually composed of three subunits, one of which is 

between 60-76 kDa, and the other two are smaller and between 6-21 kDa. Since these are 

usually found in trimers, the resultant molar masses of bacterial ureases are between 190-
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300 kDa (Krajewska, 2009). In spite of these differences, ureases from different 

organisms maintain highly conserved sequences of amino acids and are believed to all be 

derived from one ancestral enzyme. Following resolution of the crystal structure of two 

bacterial ureases, researchers found the active sites to be nearly superimposable, which 

provides further evidence for similarities among ureases from different sources 

(Krajewska, 2009).  Urease is composed of 51.6% C, 7.1% H, 16% N, and 1.2% S. The S 

is in the form of sulfhydryl groups (H-S-R), one of which is essential to urease activity 

while the other is not (Hasan, 2000).  The two nickel ions that are present in the active 

site are essential to the enzyme’s proper functioning, and they can be released from the 

enzyme under acid conditions, leading to irreversible loss of activity (Mobley et al., 

1995).  

The mechanism of urea hydrolysis at the active site has not been entirely 

elucidated, but it is believed that one of the two nickel ions is more electrophilic than the 

other.  During hydrolysis, the more electrophilic nickel ion may bind to the carbonyl 

oxygen of urea with the less electrophilic nickel ion binding to an amino N on urea, 

creating a carbonyl C that is more susceptible to nucleophilic attack by water. The 

tetrahedral intermediate structure that results from this reaction then decomposes to 

release NH3 and carbamate.  It is further believed that the proton-donor to the leaving 

NH3 molecules is either a bridging hydroxide or a histidine located in the active site.  A 

second possible mechanism suggests that urea is only bound to the first nickel ion and the 

second nickel ion delivers a nucleophilic water molecule to the bound urea (Karplus et 

al., 1997; Benini et al., 2001; Krajewska, 2009). 
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While the urease enzyme activity and active site characteristics have been found 

to be similar among different organisms, many different types of urease are recognized 

and isolated from different organisms, and only some of these have been investigated in 

enough detail to understand variations in the size, structure, and optimum environmental 

conditions for each (Mobley and Hausinger, 1989; Mobley et al., 1995). Purified 

enzymes such as jack bean urease have been studied in the laboratory but behave 

differently from the urease enzyme present in the soil environment. As mentioned earlier, 

jack bean urease that was added to unsterilized soil did not persist for more than a few 

days (Zantua and Bremner, 1977). Even when the jack bean urease was added to 

autoclaved soil that exhibited no native urease activity, the added jack bean urease 

activity declined to zero within two weeks (Zantua and Bremner, 1977). In addition, jack 

bean urease has been estimated to have a narrower pH optimum (6-7) than some soil 

urease (5-8), and is less stable than soil urease at temperatures of 4°C, 25°C, 37°C, 45°C 

and 70°C measured over a period of two weeks (Pettit et al., 1976). These factors warrant 

consideration when attempting to apply laboratory-based research to field situations. 

Soil urease inhibitors have been developed to reduce the rate of loss of NH3 from 

agricultural fields following urea fertilization.  These inhibitors fall into two categories: 

class competitive inhibitors that compete for the same active site on the enzyme and 

block it from reacting with urea, and non-competitive inhibitors that modify the structure 

of the enzyme and destroy its ability to react with urea. One type of non-competitive 

inhibitor interferes with the sulfhydryl group that is essential for the proper function of 

the enzyme, and another reacts with the nickel in the active site (Hasan, 2000). In 
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addition, urea may be coated with acidic materials to delay its hydrolysis and retain NH4
+ 

in the soil (Ahmed et al., 2008; Junejo et al., 2011). 

In contrast to urease inhibitors that were developed for the purpose, Todd and 

Hausinger (1989) looked at the inhibition of purified urease from Klebsiella aerogenes by 

phosphate. In laboratory studies, they found that phosphate competitively inhibits this 

urease between pH 5.0 and 7.0 and that the inhibition increases with an increase in pH in 

this range.  There are likely three groups that are protonated or deprotonated that are the 

reason for this pH effect: one at the active site with a pKa of 6.5, the protonation of which 

would allow for the entry of the phosphate monoanion (H2PO4
-); one associated with the 

deprotonation of H2PO4
- at pH 7.2 that would decrease the inhibition effect of phosphate; 

and the third associated with either the first deprotonation of H3PO4 or to the 

deprotonation of an active site residue (Todd and Hausinger, 1989; Krajewska and 

Zaborska, 1999; Benini et al., 2001).  Jack bean urease has also been shown to be 

inhibited by H2PO4- between the pH of 5.8 and 7.49 (Krajewska and Zaborska, 1999). 

Whether phosphate inhibits urease activity in soil and field settings is unknown. 

The natural factors that affect the activity of urease in soil are the same as those 

that affect aerobic microbial communities.  Urease activity follows Michaelis-Menten 

kinetics (Gould et al., 1986), increases with plant residue age and degree of 

decomposition (Hasan, 2000), the addition of N in the form of organic matter, 

temperature up to 35° C, and water potential up to field capacity ( 5-10 kPa) (Kumar and 

Wagenet, 1984; Yadev et al., 1987). Soil urease activity was higher under no-till and 

reduced tillage agriculture, compared to conventional moldboard plowing (Qin et al., 

2010). It also increased after manure application (Zaman et al., 2002) and as a result of 
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crop rotation (Klose and Tabatabai, 2000).  Soil urease activity has been positively 

correlated with clay content in soils, although this may have been due to higher organic 

matter content or cation exchange capacity associated with the clay (Yadev et al., 1987).  

Wali et al. (2003) reported that hydrolysis of urea increased with increasing soil organic 

matter and clay content.  In a comparison of urea hydrolysis of different organic manures, 

they found that urea hydrolysis was highest with poultry litter containing 40.1% organic 

C, the highest among the manures tested.  However, Kumar and Wagenet (1984) warned 

against attempting to correlate urease activity with natural soil physical or chemical 

properties such as cation exchange capacity (CEC), clay or sand content, or pH, as the 

soils in their study showed wide variability in the correlations among these factors and 

urease activity. Soil urease activity can be depressed in soils with elevated levels of 

heavy metals (Hasan, 2000; Antil et al., 2006), under alkaline and saline conditions, in 

some mineral horizons below 30 cm (Gould et al., 1986; Khakurai and Alva, 1995), 

under flooded conditions (Wali et al., 2003), at low soil temperatures (Gould et al., 1986; 

Yadev et al., 1987), after additions of CaCO3 (Kumar and Wagenet, 1984), when Ni 

levels are low (Mobley and Hausinger, 1989), following long-term N fertilization with 

NH4NO3 (Ajwa et al., 1999), and when soil temperatures exceed 60-70°C (Gould et al., 

1986; Hasan, 2000). Although there are some conflicting reports in the literature about 

optimum conditions for soil urease activity (Gould et al., 1986; Hasan, 2000), in general, 

warm, moist soils with near-neutral pH result in high urease activity. 
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Uncertainties in Understanding and Predicting Urea Persistence in Soils: Justification for 

My Research 

A wealth of information on urease activity in soils has come from researchers at 

universities in the U.S. such as Iowa State (Zantua and Bremner, 1975; Zantua and 

Bremner, 1976; Zantua and Bremner, 1977; McCarty and Bremner, 1991) and Purdue 

University (Overrein and Moe, 1967), but they used local soils in their experiments that 

may not be comparable to Mid-Atlantic soils from the Coastal Plain and Piedmont 

physiographic provinces of Maryland, which are in the watershed of the Chesapeake Bay 

and its freshwater tributaries  In 2006, Maryland consumed more than 7 thousand tonnes 

of urea, and more than 86 thousand tonnes of N solutions, approximately one third of 

which is urea (USDA-NASS, 2006). In addition, there are over 800,000 ha of farmland in 

Maryland, and almost half of it is located on the poultry-producing Coastal Plain region 

of Maryland’s Eastern Shore (USDA-NASS, 2012). Despite this, research on urea 

hydrolysis in Maryland soils is lacking. Those studies that have researched urea 

hydrolysis in soils outside of Maryland have usually only provided the textural class of 

the soil, although some studies specified using Mollisols (Kumar and Wagenet, 1984), 

Entisols (Kumar and Wagenet, 1984; Khakurai and Alva, 1995; Wali et al., 2003; Alva, 

2006), Spodosols (Khakurai and Alva, 1995; Sato and Morgan, 2008), Inceptisols 

(Kumar and Wagenet, 1984; Yadev et al., 1987; Wali et al., 2003; Antil et al., 2006; 

Dawar et al., 2011), Aridisols (Yadev et al., 1987; Wali et al., 2003), or Alfisols 

(Dunigan et al., 1976). The soils of the Coastal Plain and Piedmont regions of Maryland 

are dominated by Ultisols. These soils have highly weathered, 1:1 layer phyllosilicate 

clay minerals, principally kaolinite, and they have argillic horizons with higher clay 

contents than their surface horizons. They often have low base saturation and tend to be 
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naturally acidic. Subsurface horizons may have accumulations of iron oxides (Brady and 

Weil, 2008). No studies were found that looked at urea or uric acid hydrolysis in Ultisols. 

Ultisols may behave very differently from other soils due to differences in their texture, 

mineralogy, horizonation, low pH, hydrology and phosphate content, especially those that 

have been amended with poultry litter over many years on the Delmarva Peninsula of 

Maryland, Delaware, and Virginia (Codling et al., 2008). Some research suggests that 

urea can be weakly adsorbed to soil, mainly in complexes with soil organic acids (Chin 

and Kroontje, 1962). If this is the case, the low organic matter content found in many 

Coastal Plain Ultisols would not retain urea in the soil, which may result in unhydrolyzed 

urea leaching vertically through the profile. Agricultural fields that receive lime present 

an interesting conundrum, in that increasing the soil pH will likely improve urease 

activity, but the addition of 2, 4 or 8% CaCO3 by weight has been shown to result in 

significant reductions in urease activity (Kumar and Wagenet, 1984). However the 

authors of this study did not report changes in pH associated with these CaCO3 additions, 

and only speculated as to whether the decreased urease activity was due to elevated pH or 

effects of the CaCO3 itself.  The sandy soils of the Coastal Plain may have reduced urea 

hydrolysis due to the presence of phosphate (Benini et al., 2001), low organic C content, 

low surface area for adsorbing extracellular enzyme, smaller microbial populations to 

hydrolyze urea, lower pH, Fe(III)(hydr)oxides which may result in inhibition of urease by 

Fe(III) (Zaborska et al., 2004), or combinations of these characteristics and others yet to 

be explored.  

The finer-textured Ultisols of the Piedmont region provide a contrast to those of 

the Coastal Plain, while providing a regional comparison pertinent to the Chesapeake 
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Bay. Maryland’s Piedmont soils tend to be buffered to a greater extent against changes in 

pH due to higher organic C and clay content, and they also tend to have more micaceous 

rather than kaolinitic clays. However, they are subject to similar climatic weathering 

conditions and are also in close proximity to Chesapeake Bay tributaries. Since no studies 

have been found on urea and uric acid dynamics in Ultisols, research in this area is 

needed, and a contrast between Piedmont and Coastal Plain soils could determine key 

differences in soil chemical conditions or other factors that influence the fate and 

transport of urea in these landscapes.  

 Some of the contrasting information in the literature about the optimum 

parameters for urease activity may be a result of testing soils with inherently different 

microbial communities. Krajewska (2009) listed the activity of ureases derived from 

some plants, fungi, and bacteria that range from 14.5-180,000 μmol urea/min per mg of 

enzyme. Most papers do not take these variations into account. One paper by Rothrock et 

al. (2010) did track the microbiology in acidified poultry litter and found that hydrolysis 

of urea was delayed as the community shifted from bacterial- to fungal-dominated 

ureolytic organisms. However, since urease activities can vary by several orders of 

magnitude among bacteria alone, further work on the influence of specific community 

characteristics and urea hydrolysis in soils would be valuable. In addition, traditional 

urease enzyme assays take place in a pH and temperature-buffered solution with 

unlimited substrate concentration and provide a measure of potential enzyme activity 

rather than in situ activity under normal soil temperature, moisture, pH, and substrate 

concentration. The use of current technologies to target specific functional genes can help 

researchers investigate the genetic potential of a microbial population under natural soil 
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conditions as well as understand the conditions under which gene transcription takes 

place (Wallenstein and Weintraub, 2008). 

In order to address these gaps in the knowledge, laboratory studies were carried 

out to examine mechanisms of urea hydrolysis under different soil chemical conditions. 

We combined field sampling of toposequences, including soils from both A and B 

horizons, in order to evaluate differences in urea hydrolysis across the landscape and with 

depth in the soil profile. This provided a new and important lens through which to study 

urea dynamics in soils. If urea is leaching from agricultural soils to the Chesapeake Bay 

tributaries, it must travel by one of two routes: overland on soil surfaces across 

agricultural fields and through grassed buffer strips or riparian zones that often border 

nearby surface waters, or vertically and horizontally through the soil horizons and into 

the groundwater along a hydraulic gradient. However, no studies have been found that 

look at urea dynamics across a landscape that includes, but is not limited to, agricultural 

soils. Field sampling by landscape position and soil horizon allowed us to bridge the 

disciplines of pedology, soil fertility, microbial ecology and genomics, and soil chemistry 

(Fig. 1.1). Despite the fact that urea hydrolysis is influenced by many variables, as 

previously discussed, this kind of multi-discipline approach has not been found in the 

literature. 

We used a laboratory-based approach to study urea hydrolysis because it allowed 

us to control for many of the factors that influence this process. While some realism is 

sacrificed in laboratory-based settings compared to field studies, the control over 

environmental variables that is gained in a laboratory setting allowed for a mechanistic 

study of urea hydrolysis in our soils. The results of our studies can help inform future  
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Figure 1.1: The multi-discipline approach used in this research to investigate urea 

hydrolysis in soils. Pedalogical techniques were used for sampling soil in the field, soil 

chemical and microbiological methods were employed in experimental designs, and 

results relevant to soil fertility and water quality have been emphasized. 
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field-scale agronomic and soil fertility studies to determine whether mechanisms 

observed under controlled laboratory conditions are measureable against the natural 

background variability inherent in a field experiment.  

In conclusion, we investigated the following broad, working hypotheses in each 

of the following three chapters: 

1. We hypothesized that soil chemical conditions, namely pH, would have 

significant effects on urea hydrolysis and would explain landscape-scale 

differences in rates of urea hydrolysis. Toposequences provide a framework for 

studying urea hydrolysis in soils across an agricultural landscape and with depth 

in the soil profile. These landscape toposequences provide a gradient of pH and 

other soil chemical conditions that result from differences in land management. 

 

2. We hypothesized that soil microbial community composition would help to 

explain differences in rates of urea hydrolysis, both across the landscape and 

within a pH-adjustment experiment performed in the laboratory. Studies looking 

at ureolytic microorganisms and urea-N cycling by soil microbes are lacking in 

the literature. Examination of the microbial community composition and the 

presence of the urease gene in our soils, using genomic techniques, would provide 

new information on the microbial communities that are hydrolyzing urea in soils.  

 

3. We hypothesized that the correlations made between urease activity and soil C are 

related to specific fractions of soil organic matter, and certain labile organic acids 

would increase rates of urea hydrolysis over others. Soil C and soil organic matter 
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have both been correlated with urease activity. Different forms of C are known to 

affect different enzymes differently, with some compounds increasing activity and 

others decreasing activity. Plants exude different types of organic acids and other 

C compounds, but it is not known how different kinds of organic acids affect urea 

hydrolysis, and therefore how different vegetative communities might impact urea 

hydrolysis. 

 

Research Chapters  

 

Chapter 2: Soil C, N and metal effects on urea hydrolysis in soil profile toposequences of 

the Coastal Plain and Piedmont regions  

Much research has focused on urea hydrolysis in agricultural soils due to the 

importance of urea as a fertilizer. This research has focused mainly on surface horizons 

down to a 15 cm depth (Yadev et al., 1987; Khakurai and Alva, 1995; Wali et al., 2003; 

Antil et al., 2006; Dawar et al., 2011). However, few studies have looked at urea 

hydrolysis in lower soil horizons (exceptions include Alva (2006) and Khakurai and Alva 

(1995)), and no studies have been found that have looked at urea hydrolysis across 

toposequences that include, but are not limited to, agricultural soils. In addition, no 

studies have been found that look at urea hydrolysis in Maryland soils. This chapter 

explores these gaps in the literature by looking at a three-point toposequence in the 

Piedmont region and one in the Coastal Plain region in Maryland. The toposequences 

each include one soil profile within an active agricultural field, one at the grassed field 

border, and a third within a transitional/riparian zone adjacent to surface waters. Each 
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point also includes samples from both the A and B horizons. Studies have shown that 

urea hydrolysis is affected by organic C content (Kumar and Wagenet, 1984; Gould et al., 

1986) and pH (Gould et al., 1986; Hasan, 2000), and these two factors may vary 

considerably across a toposequence in Maryland. The first research chapter (Chap. 2) of 

my dissertation investigates how changes in pH affect urea hydrolysis in soils across the 

toposequences sampled in Maryland, and whether rates of urea hydrolysis can be 

predicted using soil chemical information including pH, total C and N, and total nutrients 

(N, P, K) and metals (Ca, Mg, Mn, Al, Fe). 

 

Chapter 3: Urease gene correlation with urea hydrolysis in soils across and agricultural-

riparian landscape and pH gradient  

Few studies looking at urea hydrolysis in soils have looked closely at the ureolytic 

microbial community composition. Rothrock et al. (2010) looked at ureolytic 

microorganisms in poultry litter that had been treated with different acidifying agents and 

found that the community shifted from bacteria-dominated to fungal-dominated as the pH 

of the litter declined.  Singh et al. (2009) studied the ureolytic microbial community in 

soils under heavily grazed pastures in the United Kingdom and found that bacterial 

communities shifted in response to sheep urine deposition, whereas fungal communities 

did not. The effect on the bacterial communities, however, was only temporary. Since the 

resident microbial population in soil has an effect on the soil’s ability to hydrolyze urea, 

and this population can change as a result of different soil conditions, it is important to 

understand how these communities change across a landscape.  Chapter 3 of this 

dissertation addresses the question of how changes in microbial populations may be 
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correlated with changes in urea hydrolysis in soils. This chapter investigates how 

microbial community composition, fungal:bacterial ratios, and total bacterial urease gene 

numbers vary across toposequences in Maryland soils and with the changes in pH and 

soil characteristics explored in Chapter 2. 

 

Chapter 4: Urea hydrolysis in soils: enhancement and inhibition by ascorbic, gallic, 

benzoic, and cinnamic acids. 

The type and quality of C compounds available in soil affects microbial 

community composition. Vegetation is a large source of these different C compounds, 

either through root exudates or detritus. Our study in transects pointed to C and N as 

predictors of rate of urea hydrolysis, with the riparian zone soils (RZ) responding the 

most to increases in pH, possibly as a result of C type present in this soil. Water soluble 

carbohydrates including glucose (Falih and Wainwright, 1996) and some organic acids 

(p-hydroxybenzoic acid > ferulic acid > vanillic acid > salicylic acid > cinnamic acid) 

(Lin et al., 2011) are reported to stimulate urease activity, but high levels of phenols and 

condensed tannins decreased urease activity (Suescun et al., 2012). Stimulation of urease 

activity in a sandy soil upon release of glucose, glutamate, citrate and oxalate were not 

statistically significant. This chapter investigates how specific types of C stimulate urea 

hydrolysis in Coastal Plain soils and at what C concentration these effects are detectable. 

This provides information on how hydrolysis of urea might be stimulated in degraded 

soils where urea runoff is a problem or where conversion for plant uptake is important.   
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Chapter 5: Urea hydrolysis in soils: pedological, chemical, and microbial controls  

The research presented in Ch. 2-4 provides evidence that soil horizon, total C and 

N content, soluble metals, soil pH, number of ureC genes present, and the type of C 

present can all influence the rate of hydrolysis of urea in Maryland soils. This final 

chapter summarizes findings and discusses the implications of this research for future 

studies affecting agriculture and water quality in the Chesapeake Bay watershed and 

elsewhere. 
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Chapter 2: Soil C, N, and metal effects on urea hydrolysis in soil profile 

toposequences from the Coastal Plain and Piedmont regions 

 

Introduction 

Urea (CO(NH2)2) is a form of nitrogen (N) that has both anthropogenic and 

natural sources. Worldwide consumption of urea fertilizer has increased from 

approximately 0.3 million tonnes in 1961 to over 40 million tonnes in 2002 (FAO, 2002), 

and is estimated to currently make up more than 50% of the world’s consumption of N 

fertilizer (Glibert et al., 2014). Aside from fertilizer production and use, urea is also used 

in some herbicides, pesticides, and de-icers, as well as in the manufacturing of plastics 

and other products. It is sometimes used in aquaculture to grow algae for shrimp grazing 

or spread on oil spills to grow bacterial populations capable of degrading the oil (Glibert 

et al., 2006). Urea is present in the effluent of some sewage treatment plants (Cozzi et al., 

2014) as well as in ruminant and poultry manures (Livingston et al., 1962; Nahm, 2003). 

Urea also occurs naturally in both aquatic and terrestrial environments in the excrement 

of mammals, some fish, zooplankton, and bacteria, and is a decomposition product of the 

uric acid produced by birds, some reptiles and amphibians, and most insects as their 

major nitrogenous waste product (Wright, 1995; Berman and Bronk, 2003). It is also 

released from the sediments in aquatic systems as a result of microbial decomposition of 

organic substrates (Berman and Bronk, 2003). The many sources of both anthropogenic 

and natural urea make this N source an important component of the N cycle in both 

terrestrial and aquatic environments. 
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In soils, urea is hydrolyzed to NH3 by the enzyme urease, a process that can take 

from 1-14 days depending upon application rate, soil characteristics, and environmental 

factors (Singh and Yadev, 1981; Yadev et al., 1987; Khakurai and Alva, 1995; Wali et 

al., 2003; Antil et al., 2006; Krajewska, 2009). The variability in urease activity measured 

in different soils has been difficult to explain using physical characteristics of the soil, 

although coarse texture and low organic C content have been correlated with low urease 

activity (Zantua et al., 1977; Singh and Yadev, 1981; Yadev et al., 1987; Wali et al., 

2003). The optimum pH for soil urease activity has been measured between 6-8 in a silt 

loam soil (Pettit et al., 1976), although others have found no correlation between pH and 

urease activity in a variety of soils from an area of the Midwestern United States 

dominated by Alfisols and Mollisols (Zantua et al., 1977). Urease activity increases with 

plant residue age and degree of decomposition (Hasan, 2000), the addition of N in the 

form of organic matter, temperature up to 35° C, and water potential up to field capacity 

(5-10 kPa) (Kumar and Wagenet, 1984; Yadev et al., 1987). Soil urease activity was 

higher under no-till and reduced tillage agriculture, compared to conventional moldboard 

plowing (Qin et al., 2010), and has been positively correlated with clay content in soils, 

although this may have been due to higher organic matter content or cation exchange 

capacity associated with the clay (Yadev et al., 1987). Low urease activity has been 

measured in alkaline and saline soils, in some mineral horizons below 30 cm (Gould et 

al., 1986; Khakurai and Alva, 1995), in flooded soils (Yadev et al., 1987; Wali et al., 

2003), at low soil temperatures (Gould et al., 1986; Yadev et al., 1987), after additions of 

CaCO3 (Kumar and Wagenet, 1984), when soil Ni levels are low (Mobley and Hausinger, 

1989), and following long-term N fertilization with NH4NO3 (Ajwa et al., 1999). 
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Although there are disagreements in the literature about optimum pH, temperature, and 

water content of the soil for urease activity (Gould et al., 1986; Hasan, 2000), in general, 

warm, moist soils with near-neutral pH result in high urease activity. 

Environmental concerns associated with the increased use of urea fertilizer are 

focused on the eutrophication that can result when excess N reaches aquatic systems 

(Glibert et al., 2014). The application of urea to soils often results in rapid hydrolysis to 

NH4
+ and further oxidation to NO3

- by soil bacteria and archaea (Yadev et al., 1987; 

Wessen et al., 2010). Most of the urea-N that is lost from soil is in the form of either NH3 

or NO3
- (Terman, 1979; Gould et al., 1986), but there is increasing concern that 

unhydrolyzed urea may be moving out of agricultural fields and contributing to the 

development of harmful algal blooms (HABs) in surface waters (Glibert et al., 2001; 

Glibert et al., 2006; Heil et al., 2007; Kudela et al., 2008). Urea is consumed by 

phytoplankton and is a valuable source of N for these organisms (Altman and Paerl, 

2012), averaging 18% of measured N uptake (among nitrate, ammonium, and urea) in the 

Chesapeake Bay (Lomas et al., 2002).  In North Carolina’s Neuse River Estuary, urea 

accounted for 16-45% of the total N taken up by the microbial community, despite its 

concentration remaining consistently below that of dissolved inorganic N (NH4
+ and 

NO3
-) (Twomey et al., 2005). Increased use of urea fertilizer has been correlated with a 

higher incidence of HABs throughout the world, and researchers are concerned that urea 

applied to agricultural fields may be entering surface waters and contributing to organic 

N enrichment and HABs in these waterways (Glibert et al., 2006).  

If urea is moving out of agricultural soils and into surface waters, it must travel by 

one of two routes: overland on soil surfaces across agricultural fields and through grassed 



 30 

buffer strips or riparian zones that often border nearby surface waters, or vertically and 

horizontally through the soil horizons and into the groundwater along a hydraulic 

gradient. However, no studies were found that look at urea dynamics in the Coastal Plain 

and Piedmont regions of Maryland across a landscape that includes, but is not limited to, 

agricultural soils. Some studies have investigated the potential for urea to migrate across 

agricultural soil surfaces in runoff water, but these values have been low (0.1-0.5% of 

applied urea-N) (Kibet et al., 2014) unless measured following a high rainfall event 

(Dunigan et al., 1976). Even in a study that included conditions that would be considered 

extreme in the area surrounding the Chesapeake Bay (13% slope and an application rate 

of 450 kg urea-N ha-1) (Moe et al., 1968), only 0.5% of the applied urea was lost in 

surface runoff. Groundwater losses of unhydrolyzed urea have not been directly 

investigated on the Coastal Plain of Maryland, although the estimated 2.5 year 

groundwater residence time in most of the areas of the Coastal Plain immediately 

adjacent to the Chesapeake Bay suggest that this route of loss may be minor (Sanford et 

al., 2012). However, to support algal blooms, it does not take more than micromolar 

levels of urea (Glibert et al., 2001). Further investigations into urea hydrolysis within soil 

profiles across toposequences are justified due to the proximity of both surface and 

groundwater in the Coastal Plain region, the uncertainties in the local variability of 

groundwater residence time (Sanford et al., 2012), the evidence that rates of urea 

hydrolysis decrease with depth in the soil profile (Myers and McGarity, 1968; Gould et 

al., 1973; Khakurai and Alva, 1995), and the lack of detailed studies assessing urea 

hydrolysis in the landscape surrounding the Chesapeake Bay.   
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The purpose of this research is to study the dynamics of urea hydrolysis in soil 

profile toposequences sampled from the Coastal Plain and Piedmont regions of Maryland 

in order to understand the controls governing this process both across a landscape and 

with depth in the soil profile. The soil master variable, pH, was investigated because of 

its importance to both agronomic productivity and microbial community composition 

(Pietri and Brookes, 2008; Pietri and Brookes, 2009). We hypothesized that urea 

hydrolysis would increase as soil pH increased and that pH, and possibly other factors, 

could be significant predictors of urea hydrolysis rate.  

 

Materials & Methods 

This study was conducted on soil materials sampled from two sites in two 

different locations in October, 2012 and from multiple sites within one location in 

October, 2013. In 2012, soils were sampled from the Wye Island Natural Resource 

Management Area in Queen Anne’s County, Maryland (38°54'11.97"N,  76° 8'12.20"W), 

located within the Coastal Plain (CP) physiographic region (Appendix A), and the 

University of Maryland’s Central Maryland Research and Education Center, Clarksville 

Facility in Howard County, Maryland (39°15'48.89"N,  76°55'31.78"W) located within 

the Piedmont (PM) physiographic province (Appendix A). In 2013, soils were sampled 

from multiple sites within the Wye Resource Management Area. 

Soils were sampled along a transect consisting of three points: an agricultural 

field (AG) actively farmed in a typical Maryland grain rotation of corn, wheat, and 

soybeans, a grassed field border (GB), and a transitional zone adjacent to surface waters. 



 32 

The point adjacent to surface water was located within a forested riparian zone (RZ) at 

the CP site and within an herbaceous wetland edge (WE) at the PM site. The soils were 

sampled both from the A horizon (0-15 cm) and at a depth representative of the B 

horizon, which varied from site to site based on differences observed in the soil profile. 

In 2012, one transect was sampled from the CP site and one was sampled from the PM 

site. In 2013, three transects were sampled from the CP site. 

At the CP sites sampled in both 2012 and 2013, the AG soil sample was from the 

Ingleside mapping unit (38°54'11.97"N,  76° 8'12.20"W), the GB soil was from the 

boundary of Ingleside and Longmarsh-Zekiah mapping units (38°54'10.37"N,  76° 

8'13.79"W), and the RZ soil was from the Longmarsh- Zekiah mapping unit 

(38°54'9.98"N,  76° 8'14.70"W); all of which were similar to the Ingleside series  (coarse-

loamy, siliceous, mesic Typic Hapludult). At the PM site sampled in 2012, the AG soil 

sample was from the Glenelg unit and the GB soil was from the Glenville-Baile unit; 

both similar to the Glenelg series (fine-loamy, mixed, semiactive, mesic Typic 

Hapludults). The WE soil was from the Hatboro-Codorus unit, similar to the Codorus 

series (fine-loamy, mixed, active, mesic Fluvaquentic Dystrudept). 

In 2012, a 7.6-cm open-faced soil auger was used to sample four profiles from 

four different locations at each transect point. These four samples were combined to form 

one composite sample from each depth at each point along both transects. The deep 

sample in the RZ at the CP site, however, consisted of three auger holes because of a 

proliferation of tree roots that prevented additional sampling. In 2013, sampling followed 

the same methodology, except that three soil profiles from three different locations at 

each transect point were combined to form one composite sample for each soil horizon. 
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Each year, the soils were all sampled on the same day and stored in a cooler for fewer 

than 5 h before being brought back to the laboratory and allowed to equilibrate to room 

temperature (21-23 °C). The soils were sieved to pass a 4 mm screen and kept field-moist 

in double plastic bags in closed plastic buckets for 8 to 10 months during 

experimentation. Previous work monitored the rate of urea hydrolysis in soils stored over 

a period of 10 months (Appendix B, Fig. B.3) and found that while there was some 

variability in the rate of hydrolysis measured during the storage period, a distinct slow-

down in the hydrolysis rate was not measured until after 8 to 10 months of storage. These 

findings are consistent with those of Zantua and Bremner (1977), who determined that 

urease activity in was not affected by storing field-moist soils for up to six months at 

temperatures ranging from -10 to 40°C.  Sampling soils in the autumn may have resulted 

in sampling soils with lower seasonal urease activities (Kang et al., 2009) and therefore 

the rates of hydrolysis discussed in this work may be lower than those that would be 

measured in soils sampled in the spring.  Our method of sampling and storing soils was 

not designed to represent all soils in all field conditions, but rather to investigate the 

mechanisms underlying differences in rates of urea hydrolysis in the different landscape 

positions and soil horizons. 

Exchangeable cations, total C and N contents, pH, and soil moisture were 

determined on three analytical replicates per homogenized soil-horizon from each 

transect point. Exchangeable cations were operationally defined by ammonium acetate 

extraction (1.25 M; pH 4.8). For this analysis, the field moist equivalent of 2.5 g oven 

dried soil were extracted in 37.5-ml polycarbonate centrifuge tubes at a 10:1 solution:soil 

ratio, placed on an orbital shaker set at 800 cycles min-1 for 1 h, and then centrifuged at a 
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minimum of 17,000 x g. The supernatant liquid was diluted as necessary with 1.25 M 

ammonium acetate for determination of total soluble Al, Mn, Fe, Ca, Mg, and K by flame 

atomic absorption. The same soil extract was used to measure exchangeable P using the 

method of Murphy and Riley (1962). Percent C and N were determined using a LECO 

CHN 2000 Analyzer (LECO, St. Joseph, MI)(Bremner, 1996; Nelson and Sommers, 

1996). Field soil pH values were measured in the supernatant liquid of 0.01 M CaCl2 soil 

slurries (2:1 solution:soil ratio) after soil particles had settled following 10 min of 

vigorous shaking. The pH values measured during the pH experiments (designated as 

pHs) were measured in the supernatant liquid of 0.01 M CaCl2 soil slurries (10:1 

solution:soil ratio) after soil particles had settled after 30 min of vigorous shaking in the 

last h of each urea incubation. Soil moisture was determined after oven drying 

subsamples at 105° C for 24 h. Soil texture was calculated from duplicate analytical 

samples using the pipette method (Gee and Or, 2002). The mean of the analytical 

replicates was used for data analysis. 

Treatments for the determination of pH effects on urea hydrolysis were 

established by weighing out moist soil samples equivalent to 350-g oven-dried soil and 

equilibrating them with a solution of either 0.5 or 1.0M HCl or reagent grade CaCO3 to 

achieve a range of four pH values between 3.5 and 7.2. The soils were brought to a 

moisture content approximately equivalent to -10 kPa using 18 MΩ water or HCl 

solution, as necessary for the treatment. The soils were stored in the dark at room 

temperature (21-23° C) in plastic freezer bags and mixed by hand every few days for a 

month until the pH stabilized.  
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After pH equilibration, triplicate, moist soil samples equivalent to 2.5 g oven-

dried soil from each treatment were weighed into 37.5-mL polycarbonate centrifuge tubes 

in a randomized complete block design in the laboratory that investigated the variables of 

transect location, horizon, and pH. The soils were mixed with 22.5 mL of a 7.94 x 10-4 M 

urea-N solution in a background of 0.01 M CaCl2 and placed on an orbital shaker set at 

800 cycles min-1 that shook the tubes for 30 minutes each h. This treatment followed the 

method of Greenan and Mulvaney (1995) with modifications. Specifically, soils were 

incubated in a solution free of phenylmercuric acetate (PMA) to allow for microbial 

activity to take place during the incubation. Preliminary rate experiments were used to 

determine the appropriate time intervals for sampling the different soil treatments. At 

these time points, triplicate samples were removed from the shaker and 2.5 mL of 

concentrated PMA was added to halt microbial activity, such that the final concentration 

of PMA in each centrifuge tube was as described by Greenan and Mulvaney (1995) and 

each soil sample had received an initial total of 100 mg urea-N kg-1 soil. The samples 

where then shaken again for a minimum of 10 min to ensure distribution of PMA 

throughout the sample, and were centrifuged at a minimum of 17,000 x g. The 

supernatant liquid was removed and stored at 4°C for a maximum of three weeks 

(Douglas and Bremner, 1970). The urea incubations were conducted over a period of 48 – 

96 h, depending upon the treatment, and the slope of the line of disappearance of urea 

over time was used to determine a zero-order rate of hydrolysis at each site. The 

supernatant liquid of all samples was tested for urea using the colorimetric microplate 

method of Greenan and Mulvaney (1995). 
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Statistically significant differences between rates of urea hydrolysis in native 

(unamended soils in field condition, sieved to 4 mm) soils were determined using one-

way ANOVA (p < 0.05, and Tukey’s test, p < 0.05) and differences between A and B 

horizons were determined using an unpaired t-test in GraphPad Prism (Prism 6, 

GraphPad Software, Inc., La Jolla, CA). Pearson’s correlations and multiple regression 

(SPSS v.21, SPSS Inc., Chicago, IL) were used to determine the best linear combination 

of factors predicting rate of urea hydrolysis in soils (p < 0.05).  

 

Results & Discussion 

Urea hydrolysis in several native soil transects in the Coastal Plain  

 The changes in the concentration of urea over time in the native soils sampled 

from the four toposequences in 2012 and 2013 are summarized in Fig. 2.1 and show 

some variability within each horizon and transect location. When the data were grouped 

by toposequence position and horizon to provide four replicates for statistical analysis, 

the rates of urea hydrolysis in A horizon soils, calculated from the slopes of linear 

regression equations generated from data plotted in Fig. 2.1, were not significantly 

different among the three toposequence positions (AG, GB, RZ) (p = 0.28).  However, A 

horizons did hydrolyze urea significantly faster than B horizons (p = 0.0002). Among the 

B horizons, only the riparian BC soil had a rate of hydrolysis that was significantly faster 

than the other two B horizon soils (p ≤ 0.05). The similar A-horizon hydrolysis rates 

across transect locations, and the faster hydrolysis rates in the A-horizons compared to  
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Figure 2.1: Changes in the concentration of urea with time in native soil transects 

sampled in 2012 and 2013 from the Coastal Plain site. Transects consisted of AG 

(agricultural field), GB (grassed field border), and RZ (forested riparian zone) A and B 

horizon soils. SEM plotted, but some error bars fall within the symbol areas (n=3). Soil 

physical and chemical characteristics for the 2013 soil transects are summarized in Table 

B.1 in Appendix B. 
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the B-horizons derived from the four CP transects in Fig. 2.1, are consistent with the 

findings discussed in the next section, in which analyses were performed on one Coastal 

Plain transect sampled in 2012 and compared to one Piedmont transect sampled in 2012.  

 

Urea hydrolysis in native soil transects in the Coastal Plain and Piedmont   

The native soils sampled in 2012 varied in both their physical and chemical 

characteristics (Table 2.1). Of particular note are the large ranges in pH (3.6-5.9) and in 

extractable Mn (0.48-9.8 mg kg-1 soil) and Al (8.9-170 mg kg-1 soil) concentrations, 

which can reduce P, Ca, and Mg bioavailability or be toxic in solution, affecting 

microbial communities (Haynes and Mokolobate, 2001; Lauber et al., 2008). Despite 

these differences, the native rates of urea hydrolysis in soils from the Coastal Plain (CP) 

did not differ significantly across the landscape in the A horizon (Fig. 2.2), with a pooled 

rate of 1.08 mg urea-N kg-1 soil h-1. The B horizon data (Fig. 2.3) for the three CP 

topographic locations show very slow hydrolysis and nitrate accumulation for the AG Bt 

and GB Bt horizons, while the riparian zone (RZ) BC hydrolysis rate (Table 2.2) and 

nitrate accumulation was more than twice that of the two other B horizon soils at that site 

(Fig. 2.3).  

In the Piedmont (PM) toposequence soils, the urea hydrolysis rates in the Ap 

horizon at the wetland edge (WE) was statistically different from the Ap horizons from 

the two other toposequences points (Fig. 2.2), but this analysis depended heavily on rates 

derived from the first two data points (at 2 and 24 hr) for both the AG and GB soils. We  
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Table 2.1: Selected physical and chemical properties of soils sampled in 2012 along two transects consisting of an agricultural field  

(AG), a grassed field border (GB), and a riparian zone (RZ) in the Coastal Plain (CP) and a wetland edge (WE) in the Piedmont (PM).  

Site‡ Horizon 
Depth 
(cm) Sand Silt  Clay 

PSD
† pHs H2O C N C:N Mn Al Ca Mg K Fe P 

      ---------  %  ---------     ---- g kg-1 soil----   --------------------- mg kg-1 soil --------------------- 
CP AG Ap 0-15 64.4 28.9 6.7 SL 5.3 116 7.0 0.57 12 0.79   30   364   118   67   1.0  18  
CP GB Ap 0-15 74.1 21.2 4.8 SL 4.5 96.2 9.4 0.81 12  3.4   62   329   66.9   56   3.7  45  
CP RZ A1/A2 0-15 50.9 40.8 8.3 L 3.6 86.5 22 1.4 16  9.8   170   279   44.8   53   12  73  
CP AG Bt 45-60 56.0 28.2 15.8 SL 5.4 142 1.6 0.15 11  0.5   58   644   120   27   2.7  7.8  
CP GB Bt 65-80 51.2 39.6 9.3 L 5.0 123 3.6 0.22 16  0.5   40   320   53.5   30   1.7  7.3  
CP RZ BC 65-80 69.5 27.5 3.1 SL 3.9 49.7 5.2 0.22 24  1.2   160   28.5   7.6   18   5.7  16  
PM AG Ap 0-15 49.8 23.1 27.2 SCL 5.6 201 18 1.6 11  1.1   18  1,140   147   370   1.0  230  
PM GB Ap 0-15 46.7 32.2 21.1 L 4.7 236 21 1.9 11  3.8   41   944   200   220   21  150  
PM WE Ap 0-15 56.8 22.6 20.7 SCL 5.4 311 17 1.5 11  1.4   9.0  1,140   214   53   5.0  130  
PM AG Bt 35-50 60.3 4.7 35.1 SC 5.9 197 4.8 0.46 10  0.5   77   771   150   150   2.1  12  
PM GB Bt 30-45 42.6 30.6 26.9 L 5.4 165 4.1 0.34 12  1.1   56   806   172   57   8.0  2.2  
PM WE Bw 30-45 40.3 38.4 21.3 L 5.5 217 7.0 0.61 11  1.9   36   839   175   24   8.5  12  
†Particle size distribution 

                ‡CP (Coastal plain), PM (Piedmont), AG (agricultural field), GB (grassed border), RZ (riparian zone), WE (wetland edge) 
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Figure 2.2: Urea hydrolysis, ammonium generation, and nitrification in soils sampled  

from the A horizons of Coastal Plain (CP) and Piedmont (PM) transects consisting of an  

agricultural field (AG), a grassed field border (GB), and a riparian zone (RZ) in the CP  

and a wetland edge (WE) in the PM. SEM plotted (some error bars are within the  

symbols), n=3.  
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Figure 2.3: Urea hydrolysis, ammonium generation, and nitrification in soils sampled  

from the B horizons of Coastal Plain (CP) and Piedmont (PM) transects consisting of an  

agricultural field (AG), a grassed field border (GB), and a riparian zone (RZ) in the CP  

and a wetland edge (WE) in the PM. SEM plotted (some error bars are within the  

symbols), n=3.  
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Table 2.2: Rates of urea hydrolysis in native Coastal Plain and Piedmont transect soils  

(AG = agricultural field, GB = grassed field border, RZ = riparian zone, WE = wetland  

edge) based on zero-order kinetics.  

Site Horizon 
Rate of Hydrolysis 

(mg urea-N kg-1 h-1) 
   ----------------Coastal Plain---------------- 
   AG‡ Ap  1.09  a†  

  GB Ap  1.10  a 
   RZ A1/A2  1.04  a 
   AG Bt  0.0790  b 
   GB Bt  0.0619  b 
   RZ BC  0.206  c 
   ------------------Piedmont------------------ 
   AG Ap 2.71 d 
   GB Ap 2.36 d 
   WE Ap 1.83 e 
   AG Bt 0.770 f 
   GB Bt 0.449 g 
   WE Bw 0.531 h 
   †Rates with the same letter are not significantly different at p ≤ 0.05  

 ‡AG (agricultural field), GB (grassed border), RZ (riparian zone), WE (wetland edge) 
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consider the differences between toposequence A horizon locations to not be of practical 

significance, even though they reach the level of statistical significance. The Bt horizon 

in the PM soil AG location hydrolyzed 0.770 mg urea-N kg-1 soil h-1, which was the 

fastest rate of all the B horizon soils. However, all three B horizon rates in the PM 

transect were significantly different from each other (Table 2.2). 

The rates of urea hydrolysis in the PM site were faster than at the CP site (Table 

2.2), with the Ap horizons at the AG and GB locations more than twice the rates in the 

corresponding points in the CP transect. The rate of hydrolysis in Ap horizon of the PM 

WE was 75% faster than that in the A1/A2 horizon of the CP RZ. The same trend was 

also apparent between the B horizons in the PM compared to the CP transects, but the 

differences were greater due to the very slow B horizon hydrolysis rates in the CP (Fig. 

2.3 and Table 2.2).  

Within each toposequence, the rate of urea hydrolysis was substantially higher in 

the A horizons compared to the B horizons (Table 2.2). The greatest difference in 

hydrolysis rates between the A and B horizons was in the CP, where the rate in the AG 

and GB B horizons was less than 10% of that in the corresponding A horizons. The urea 

hydrolysis rate of the riparian zone BC horizon in the CP was higher, and equal to 20% 

that of the rate in the riparian zone A1/A2. In the PM toposequence, B horizon soils from 

all three toposequences positions had hydrolysis rates that were less than 30% of those in 

the corresponding A horizons (Table 2.2).  
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Relationships between native urea hydrolysis rates and soil properties 

Stepwise multiple regression was used to analyze rate of hydrolysis using pH, C, 

and N as possible predictors. Since pH influences extractable metal concentrations, pH 

and metal concentration were not evaluated in the same multiple regression analysis. 

Instead, the native urea hydrolysis rates were first compared with soil pH, C, and N 

contents. Then, correlations were run between pH and metals, and metals with significant 

correlations with pH were run in a separate regression model that excluded pH.  

The stepwise regression analysis of the native urea hydrolysis rates from all 

horizons, with heavy metals excluded, did not find a significant relationship (p = 0.75) 

between pH and urea hydrolysis. Instead, the stepwise regression analysis found that C 

and N were significantly (r2 = 0.90) related to hydrolysis. This is likely due to soil C and 

N levels being indirect measurements of soil organic matter, and organic matter has been 

correlated with urea hydrolysis in other work (Zantua et al., 1977; Kumar and Wagenet, 

1984). For example, Zantua et al. (1977) found that soil C and N were significant 

parameters in the models for predicting levels of urease activity in a range of Iowa soils. 

But, unlike the current results, Zantua et al. (1977) also found that within those multiple 

regression models, pH contributed a significant improvement.  

The stepwise regression analysis of the native urea hydrolysis rates from all 

horizons, with pH excluded and pH-correlated metals included (Mn, Al, Ca, Mg), found 

that N and Mn were significantly (r2 = 0.93) related to hydrolysis. Nitrogen is an indirect 

measure of organic matter, and organic matter can chelate metals such as Mn and reduce 

metal toxicity or keep metals from reacting with phosphate (Haynes and Mokolobate, 
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2001). The high soil C and N concentrations at the lowest pH, particularly in the Coastal 

Plain RZ soil, are indicative of high total organic matter which is likely buffering these 

systems against metal toxicities and nutrient limitations that might otherwise develop and 

affect microbial communities and their ability to hydrolyze urea (Haynes and 

Mokolobate, 2001). 

 

Urea hydrolysis in pH-adjusted toposequence soils 

Adjusting the native pH of the toposequences soils from both sites, by adding HCl 

or CaCO3, produced several anticipated changes in soil chemical properties that are 

summarized in Tables 2.3 to 2.6.  The soils that were treated with HCl to reduce the pH 

had higher concentrations of soluble Mn, Al, and Fe in both A and B horizons. Adding 

CaCO3 to increase pH increased extractable Ca (due to the addition of CaCO3) and 

soluble P compared to the concentrations of these nutrients found in the native soils. The 

B horizon soils within each transect point had higher soluble Al concentrations and lower 

soluble K and P concentrations than the corresponding A horizon soils (Tables 2.3-2.6).  

The rate of urea hydrolysis at each pH in all soils followed zero-order kinetics 

(Appendix B). This indicated that the concentration of urea did not control the rate of 

hydrolysis and that the process was first order in some other variable. The influence of 

pH on the rate of urea hydrolysis was summarized by plotting each rate against the pH at 

which it was measured, which provided a method to estimate the rate of change of urea 

hydrolysis with changes in pH from the slope of the lines (Fig. 2.4). As with native soil 

hydrolysis rates, multiple regression analysis was conducted using pH, C, and N as 
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Table 2.3: Soil chemical characteristics of Coastal Plain A horizon transect soils treated  

with diluted HCl or CaCO3 to achieve a range of pH values.  

    ------------------NH4OAc-Extractable (mg kg-1 soil)------------------ 
Treatment pHs Mn  Al Ca Mg K Fe P 
†AG Acid 3.3  48   340   401   130   76   29   39  
AG Native 5.4  0.79   30   364   120   67   1.0   18  
AG CaCO3 #1 6.5  1.5   23   604   110   66   0.89   27  
AG CaCO3 #2 6.8  1.8   23   704   100   65   0.89   27  
GB Native 4.0  3.4   62   329   67   56   3.7   45  
GB CaCO3 #1 5.9  1.2   22   721   60   51   1.3   54  
GB CaCO3 #2 6.6  2.6   23   941   57   52   1.9   120  
GB CaCO3 #3 6.9  3.2   24   1,200   52   48   2.1   140  
RZ Native 3.7  9.8   170   279   45   53   12   73  
RZ CaCO3 #1 5.1  0.86   76   896   37   42   5.1   62  
RZ CaCO3 #2 5.7  0.71   62   1,140   36   43   4.9   72  
RZ CaCO3 #3 6.3  1.1   54   1,340   33   45   5.0   80  
†AG (agricultural field, GB (grassed field border), RZ (riparian zone) 
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Table 2.4: Soil chemical characteristics of Coastal Plain B horizon transect soils treated  

with diluted HCl or CaCO3 to achieve a range of pH values.  

    ------------------NH4OAc-Extractable (mg kg-1 soil)------------------ 
Treatment pHs Mn  Al Ca Mg K Fe P 
†AG Acid 3.1  14   450   617   129   31.7   13   9.2  
AG Native 5.2  0.5   58   644   120   26.6   2.7   7.8  
AG CaCO3 #1 6.6  0.5   75   818   119   23.7   2.5   16.7  
AG CaCO3 #2 7.1  0.6   93   1,060   96.3   27.1   2.4   19.6  
GB Acid 3.6  24   170   311   49.6   33.5   8.1   14.4  
GB Native 5.0  0.5   40   320   53.5   30.0   1.7   7.3  
GB CaCO3 #1 6.2  0.6   35   459   46.2   27.7   1.4   20.1  
GB CaCO3 #2 6.9  1.1   42   666   39.4   31.2   2.0   22.4  
RZ Native 4.1  1.2   160   29   7.6   17.9   5.7   15.8  
RZ CaCO3 #1 4.9  0.5   93   216   6.7   17.3   2.6   15.3  
RZ CaCO3 #2 5.9  0.5   59   402   5.6   17.9   1.9   13.4  
RZ CaCO3 #3 6.6  0.6   49   552   1.7   15.6   2.2   25.7  
†AG (agricultural field, GB (grassed field border), RZ (riparian zone) 
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Table 2.5: Soil chemical characteristics of Piedmont A horizon transect soils treated with  

diluted HCl or CaCO3 to achieve a range of pH values.  

    ------------------NH4OAc-Extractable (mg kg-1 soil)------------------ 
Treatment pHs Mn  Al Ca Mg K Fe P 
†AG Acid 3.9  72.9   52.0   1,180   150   371   3.0   167  
AG Native 5.5  1.1   17.9   1,140   147   368   1.0   231  
AG CaCO3 #1 6.7  2.5   21.5   1,530   128   293   1.4   384  
AG CaCO3 #2 6.9  2.5   20.6   1,960   132   299   2.2   399  
GB Acid 3.7  42.3   67.2   966   176   220   33.7   188  
GB Native 4.5  3.8   41.2   944   200   219   21.0   153  
GB CaCO3 #1 6.2  0.8   22.3   1,260   171   202   9.0   227  
GB CaCO3 #2 6.7  1.9   23.2   1,750   207   199   9.9   363  
WE Acid 4.2  68.5   30.4   1,100   202   62.0   20.4   183  
WE Native 5.2  1.4   8.9   1,140   214   53.2   5.0   132  
WE CaCO3 #1 7.0  1.7   5.3   1,470   186   49.5   3.2   239  
WE CaCO3 #2 7.2  2.8   9.8   1,920   215   47.2   3.9   256  
†AG (agricultural field, GB (grassed field border), WE (wetland edge) 
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Table 2.6: Soil chemical characteristics of Piedmont B horizon transect soils treated with  

diluted HCl or CaCO3 to achieve a range of pH values.  

    ------------------NH4OAc-Extractable (mg kg-1 soil)------------------ 
Treatment pHs Mn  Al Ca Mg K Fe P 
†AG Acid #1 3.6  8.1   95.9   776   158   145   2.6   60.6  
AG Acid #2 4.7  2.0   70.8   799   192   153   2.3   44.7  
AG Native 6.1  0.5   77.1   771   150   147   2.1   12.1  
AG CaCO3 #1 7.2  0.7   109‡   1,630   159   136   1.9   13.0  
GB Acid 4.1  16.4   84.3   853   134   63.3   13.0   7.4  
GB Native 5.5  1.1   55.5   806   172   56.6   8.0   8.6  
GB CaCO3 #1 7.2  1.4   81.6   1,130   105   53.2   5.9   34.7  
GB CaCO3 #2 7.3  1.2   88.7   1,710   133   50.9   6.1   22.8  
WE Acid 3.9  73.3   86.1   883   159   28.6   20.0   14.2  
WE Native 5.7  1.9   35.8   839   175   23.9   8.5   21.1  
WE CaCO3 #1 7.2  1.8   41.2   1,090   124   20.8   5.7   35.1  
WE CaCO3 #2 7.3  2.1   47.5   1,690   147   21.8   6.4   32.6  
†AG (agricultural field, GB (grassed field border), WE (wetland edge) 
‡This value is recognized as an outlier but was re-checked and confirmed, so remains in 
the data set. 

 
  

   



 50 

  

Figure 2.4: Linear regression of rate of urea hydrolysis vs. pH in both the A (panels a  

and b) and B (panels c and d) horizons of the Coastal Plain (CP) and Piedmont (PM) soil  

transects consisting of an agricultural field (AG), a grassed field border (GB), and a  

riparian zone (RZ) in the CP and a wetland edge (WE) in the PM. Hydrolysis rates at the  

lowest pH values in the PM GB and WE Ap Horizon soils (symbols not connected to  

linear regression lines) were removed from the linear regression analysis because these  

data points were not linear. SEM plotted (some error bars are within the symbols), n=3.  
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predictor components. In contrast to native soils, pH was a significant contributor to the  

multiple regression models in these pH-adjusted soils. However, the fit of the model was  

substantially improved with the addition of C and/or N (Table 2.7), which highlights the  

importance of organic matter-related factors in predicting rates of urea hydrolysis in both  

native and pH-adjusted soils.   

The regression analyses for urea hydrolysis without pH indicated that extractable  

metals can also affect urea hydrolysis. However, the metal and nutrient ions selected for  

possible inclusion in the stepwise regressions were those that were significantly  

correlated with pH. The results of the stepwise multiple regressions without pH, but with  

metals, are shown in Table 2.7.  Six out of the seven models were improved (Table 2.7).  

Five out of these six improved models included Mn, the same metal ion that was  

predictive of urea hydrolysis rate in native soils. These results support the view that a  

combination of soil organic matter (C and/or N) and the extractable metals that might  

negatively affect soil microbial communities (Al, Mn, Fe) are controlling the rate of  

hydrolysis in native and pH-adjusted soils.  

The rate of change in urea hydrolysis as a result of changes in pH differed in soils  

from the different landscape positions, but in all cases, an increase in pH resulted in an  

increase in urea hydrolysis (Fig. 2.4). In the CP A-horizon soils, the hydrolysis rate in the  

RZ A1/A2 soil responded the most to an increase in pH with its rate of change of 0.54 mg  

urea-N kg-1 soil h-1 per pH unit being two to four times faster than in soils from the other  

two landscape positions (Table 2.8). The large response of the Coastal Plain RZ A1/A2  

soil to an increase in pH may be due to a reduction in the toxicity of metals, as shown by  

the soluble Al decreasing from 170 to 54 mg kg-1 soil and Mn decreasing from 9.8 to 1.1  
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Table 2.7: Multiple regression model components for pH-adjusted soils from the Coastal Plain (CP) and Piedmont (PM) soil transects.  

Site Horizon 
pH alone† 
Adjusted r2  Model† Adjusted r2 Model† Adjusted r2 

   
----Excluding Metals‡---- ------Including Metals§------ 

CP Ap + A1/A2 0.12 pH, C 0.89 N, Mn, C, Al 0.96 
CP Bt + BC 0.65 pH, C, N 0.93 Mn, C, Ca, Al 0.98 
PM Ap 0.50 N, pH 0.48 P, Mn, K, C 0.92 
PM Bt + Bw 0.23 pH, C, N 0.98 Fe 0.75 
CP + PM Ap + A1/A2 0.28 C, pH 0.76 Ca, Mn, C, N 0.83 
CP + PM Bt, Bw, BC 0.23 N, pH, C 0.49 N, Fe, C, Al 0.67 
CP + PM Ap, A1/A2, Bt, Bw, BC 0.11 C, pH 0.81 C, Mn, Ca 0.87 
†All model components and complete models significant at p < 0.05 

  ‡Model excluding metals, but including pH 
  §Model excluding pH, but including metals that are significantly correlated with pH 
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Table 2.8: Linear regression models for rate of urea hydrolysis (Y) vs. pH (X) in the pH-  

adjusted soils from the A and B horizons of the Coastal Plain and Piedmont soil transects  

consisting of an agricultural field (AG), a grassed field border (GB), and a riparian zone  

(RZ) in the Coastal Plain and a wetland edge (WE) in the Piedmont.  

  
Site† Horizon Linear Regression Model r2 Value 

  Coastal Plain AG Ap Y = 0.2705*X - 0.8153 0.94 
  Coastal Plain GB Ap Y = 0.1620*X + 0.02693 0.99 
  Coastal Plain RZ A1/A2 Y = 0.5433*X - 0.9512 0.86 
  Coastal Plain AG Bt Y = 0.04631*X - 0.1280 0.95 
  Coastal Plain GB Bt Y = 0.07724*X - 0.2760 0.97 
  Coastal Plain RZ BC Y = 0.04947*X - 0.04133 0.99 
  Piedmont AG Ap Y = 0.7006*X - 2.033 0.98 
  Piedmont GB Ap Y = 0.2373*X + 0.2097 0.99 
  Piedmont WE Ap Y = 0.08264*X + 1.105 1.0 
  Piedmont AG Bt Y = 0.1213*X + 0.1103 0.93 
  Piedmont GB Bt Y = 0.1117*X - 0.2381 0.96 
  Piedmont WE Bw Y = 0.1247*X - 0.3970 0.96 
  †AG (agricultural field), GB (grassed border), RZ (riparian zone), WE (wetland edge) 
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mg kg-1 soil. The RZ A1/A2 soil also had a starting C content 3.1 times greater than that 

in the Coastal Plain AG Ap and 2.3 times greater than that in the Coastal Plain GB Ap 

horizons, which probably buffered the RZ soil from the toxic effects of higher native 

metal concentrations. In addition, this soil may contain a larger and more diverse 

microbial community (see Chap. 3). In contrast, the Piedmont AG Ap horizon soil had 

the greatest response in hydrolysis to an increase in pH at that site, with a rate of change 

three times that of the GB Ap and more than eight times that of the WE Ap soil at the 

same site. This may indicate that the Piedmont AG Ap soil contained a greater proportion 

of ureolytic microbes that were able to respond to urea-N inputs and an increase in pH 

favored their growth (see Chap. 3). The low rate of change measured in the Piedmont WE 

Ap soil may be a result of its landscape position and the frequency of flooding. 

Reductions in rates of urea hydrolysis in flooded soils have been reported (Yadev et al., 

1987; Wali et al., 2003), and while the WE soil was not flooded at the time of sampling, 

its landscape position and the redox features observed in the profile suggest that this soil 

is periodically flooded. These conditions may limit the establishment of aerobic ureolytic 

microbes.  It is also interesting to note that the two soils that showed the greatest increase 

in urea hydrolysis with an increase in pH, (the Coastal Plain RZ A1/A2 and the Piedmont 

AG Ap) are also the two soils with the highest native P levels (Table 2.1). The phosphate 

anion has been shown to inhibit a form of purified urease in a laboratory experiment 

(Todd and Hausinger, 1989), but in soils, this nutrient is essential for the growth of 

microbial biomass. Its availability may have contributed to microbial respiration in these 

soils or be reflective of general soil fertility and cropping history influences on other soil 

properties not measured here. 
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Differences in the native C content of the soils from the two transects may help 

explain why the rates of urea hydrolysis in some soils were dramatically decreased at low 

pH, while others were not. In the A horizon soils at both sites, a pH near 4 resulted in a 

marked decrease in urea hydrolysis, relative to higher pHs (Fig. 2.4). However, a pH of 4 

in the Coastal Plain RZ A1/A2 soil did not prevent urea hydrolysis, whereas a similar pH 

in the Coastal Plain AG Ap, which had a lower C content, nearly stopped hydrolysis. The 

differences in the responses of these soils to pH may lie in the differences in C and 

associated organic acids that are capable of chelating metals and preventing the 

development of toxic Al and Mn concentrations in the soil solution (Haynes and 

Mokolobate, 2001). A pH of 4 in low-C soils may indicate the point at which organic 

acids have been saturated with H+, and Al3+ is released from complexing organic ligands 

and becomes toxic in solution or binds with P and prevents microbial activity. 

Alternatively, a pH this low may be killing ureolytic microbes or denaturing extracellular 

urease. Some microbial ureases are reported to denature below pH 5 (Mobley et al., 

1995). 

The rates of change in urea hydrolysis with an increase in pH were higher in A 

horizon soils than they were in B horizon soils (Fig. 2.4 and Table 2.8). In the A horizons 

of soils at both locations, a pH at or below 4 caused a rapid decrease in rates of urea 

hydrolysis, while the B horizon soils at both locations had smaller and more linear 

responses to changes in pH. The slow hydrolysis of urea in B horizon soils is in 

agreement with previously published works (Myers and McGarity, 1968; Gould et al., 

1973). There was less C and N in B horizon soils, and this likely supported a smaller 

microbial community. The hydrolysis that is taking place in B horizons may be 
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predominantly resulting from extracellular urease that is stabilized on the clay fractions in 

the soil (Krajewska, 2009). 

 

Conclusions 

This study looked at urea hydrolysis in both native and pH-adjusted soil profile 

toposequences from the Coastal Plain and Piedmont regions of Maryland. In native soils, 

urea hydrolysis was slower in the soils sampled from the Coastal Plain compared to the 

Piedmont, but was always significantly faster in A horizons compared to B horizons. 

These differences were explained (r2 ≥ 0.90) by differences in soil C, N and/or Mn. 

Within the Coastal Plain toposequences, the rate of urea hydrolysis was not significantly 

different across the landscape in A horizons soils, but was significantly faster in riparian 

zone BC soils compared to B horizons from the other two landscape positions. In pH-

adjusted soils, a combination of organic matter (total C and N), pH and extractable metals 

significantly predicted rates of change in urea hydrolysis with changes in pH.  These 

findings support the conclusion that increasing soil organic matter content and pH may 

improve rates of urea hydrolysis in these soils. In addition, urea that is transported from 

agricultural fields in surface runoff has the potential to be hydrolyzed in soils in the 

grassed or forested buffer strips that often border agricultural fields. If urea does leach 

into B horizons, the rate of hydrolysis will be slower. However, the significantly faster 

hydrolysis in the riparian buffer BC compared to other B horizon soils indicates that 

landscapes that include riparian buffer zones may hydrolyze more urea than landscapes 

that do not. Field-scale studies of urea hydrolysis in the Coastal Plain and Piedmont 
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regions would be valuable to confirm the mechanisms described here and to further 

address the question of whether unhydrolyzed agricultural urea fertilizer has the potential 

to contaminate surface waters. 
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Chapter 3: Urease gene number correlation with urea hydrolysis in soils across an  

agricultural – riparian landscape and pH gradient  

  

Introduction  

 Molecular techniques have been used to investigate the link between functional  

microbial genes and N cycling in many agricultural and non-agricultural soils. Dominant  

among these studies are investigations into the genes responsible for N2 fixation (Morales  

et al., 2010), nitrification (Hallin et al., 2009; Placella and Firestone, 2013), and  

denitrification (Hallin et al., 2009; Morales et al., 2010; Wu et al., 2012). Potential  

denitrification rates in soil have been correlated with copy numbers of the gene coding  

for nitrous oxide (N2O) reductase (nosZ), but not with the genes coding for nitrite (NO2
-)  

reductase (nirS and nirK) (Hallin et al., 2009).  Similarly, Wu et al. (2012) found no  

linear correlation between nirS and nirK gene copies and either the rate of nitrate loss or  

N2O production. However, Morales et al. (2010) found a significant correlation between  

N2O emissions and the difference between nirS-nosZ genes, suggesting that the presence  

of nitrite reducing nirS in the absence of nitrous oxide-reducing nosZ is a good predictor  

of the loss of N2O emissions from soils. Others have found that potential NH3 oxidation  

rates have been correlated with the size of the ammonia oxidizing archaeal community,  

but not with the size of the ammonia oxidizing bacterial community (Hallin et al., 2009).  

While molecular techniques have helped to uncover some aspects of N cycling in soils,  

further work is necessary to fully understand the link between functional genes and  

biogeochemical cycling of N.  



 59 

In contrast to the relatively large number of studies investigating the genes  

responsible for nitrification and denitrification, few studies in soils have investigated the  

functional gene responsible for producing ammonia from urea by the following  

hydrolysis reaction (for examples of urease work in aquatic systems, see:  Collier et al.,  

1999; Solomon et al., 2010).   

CO(NH2)2 + 2H2O  CO2 + H2O + 2NH3    (Eqn. 3.1)  

Urea is ubiquitous in soil environments as both a natural nitrogenous waste product and  

as an agricultural fertilizer, and the enzyme urease is responsible for hydrolyzing urea  

into NH3 (Mobley and Hausinger, 1989; Glibert et al., 2006). Urease is present in plants,  

bacteria, fungi, and archaea and exists both within cells and as an extracellular enzyme  

released into the soil environment upon cell death (Hasan, 2000; Krajewska, 2009;  

Tourna et al., 2011; Witte, 2011; Lu and Jia, 2013). Outside the cell, soil urease is  

stabilized by soil colloids, particularly clays and organic matter, and can continue to  

function in this state (Krajewska, 2009). Some soil organisms have urease activities  

ranging from 14.5 to 7,100 μmol urea min-1 mg enzyme-1 (Krajewska, 2009). Despite this  

wide range, no studies have investigated how differences in the microbial community  

composition affect urea hydrolysis in soils, and whether changes in community structure  

can explain variations in observed rates of urea hydrolysis in different soils.   

Despite growing concerns regarding agricultural urea fertilizer contamination of  

surface waters and its role in harmful algal blooms (Glibert et al., 2001; Lomas et al.,  

2002; Glibert et al., 2005; Heil et al., 2007; Kudela et al., 2008; Li et al., 2010), no  

studies have been found that investigated ureolytic microbial communities and urea-N  
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cycling in agricultural soils. Some studies have quantified the bacterial ureC gene, which  

codes for one of three structural subunits in the urease enzyme (Mobley et al., 1995).  

These studies have investigated the potential for urea hydrolysis to induce calcite  

precipitation and stabilize liquefiable soils (Burbank et al., 2011) or cause the  

precipitation or co-precipitation of metals with carbonates (Gresham et al., 2007).  

However, the only N-cycling studies found were those of Rothrock et al. (2008; 2010),  

who developed new primers to detect ureC genes in a group of microbes present only in  

poultry litter, and then investigated the ureolytic microbial community composition in  

acidified poultry litters.   

If unhydrolyzed urea is leaching from agricultural soils to surface waters, it must  

travel by one of two flow paths: overland on soil surfaces across agricultural fields and  

through grassed buffer strips or riparian zones that often border nearby surface waters; or  

vertically and horizontally through the soil horizons and into groundwater along a  

hydraulic gradient. Soil chemical conditions such as pH and organic C content vary  

across a landscape as a result of agricultural liming and tilling practices (Murty et al.,  

2002), and the use of toposequences provides an opportunity to investigate community  

ecology along natural gradients, an approach that has been called for by McGill et al.  

(2006). In addition, microbial community dynamics below the “plow layer” (i.e., the top  

15-20 cm of soil) are not well documented (Kramer et al., 2013), but may be important in  

explaining the slow rate of urea hydrolysis reported in deeper soil horizons in some  

studies (see Chap. 2; Khakurai and Alva, 1995).   

In a companion experiment, significant differences were found in the response of  

urea hydrolysis in soils to a pH change imposed in the laboratory (Chap. 2). Specifically,  
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these soils were sampled along a transect that included a site in an active agricultural  

field, one in a grassed field border, and one within a riparian zone. Soils from the A  

horizons hydrolyzed urea more rapidly than soils from the B horizons, and the riparian  

zone A horizon soil had the greatest increase in hydrolysis rate with an increase in pH.  

Multiple regression analysis indicated that soil C and N helped to explain how soils  

brought to the same pH could have different rates of urea hydrolysis. These results  

indicated that soil organic matter content, and possibly the associated microbial  

community, are important predictors of urea hydrolysis rates in the soils sampled across  

these agricultural landscapes.  

In this study, we quantified the microbial community composition across an  

agricultural landscape from an agricultural field through forested or grassed riparian  

zones adjacent to surface waters, and included soils from both the A and B horizons. We  

chose a sampling site on the Coastal Plain of Maryland’s Eastern Shore because many  

agricultural fields in this region are composed of sandy soils that are either adjacent to  

surface waters or have been ditched and drained to lower a high water table. The  

dynamics of urea hydrolysis in these systems are important to understand because of the  

high permeability of the soil and the proximity of ground and surface waters leading to  

the Chesapeake Bay. The soil master variable, pH, was investigated because of its  

importance to both agronomic productivity and microbial community composition (Pietri  

and Brookes, 2008; Pietri and Brookes, 2009). We hypothesized that in native soils, 1)  

patterns of gene type and copy number would be similar among sites with similar urea  

hydrolysis rates, 2) the fungal:bacterial ratio would be lowest in active agricultural fields  

due to the near-neutral pH, and would increase in edge of field and riparian zones where  
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the soils were more acidic, and 3) total urease gene numbers would follow the  

distribution of bacteria and be highest in agricultural fields, and decrease in grassed field  

border soils and riparian zones. In pH-adjusted soils, we further hypothesized that  

bacteria would be highest in high pH treatments, fungi would be higher in the acidic  

treatments, and that ureC gene copy number would be significantly correlated with urea  

hydrolysis rate. The results of this study were somewhat unexpected: the native soils had  

similar hydrolysis rates but very different microbial community composition; the highest  

gene numbers were found in the riparian soil; and bacteria were the main contributors to  

urea hydrolysis. Of particular note were the strong, positive, statistically significant  

correlations between ureC gene copy number and urea hydrolysis rate, indicating that the  

presence of this gene may be useful as a biomarker for predicting rates of urea hydrolysis  

in soils.  

  

Materials & Methods  

Site description and soil collection  

 This study was conducted using soils sampled in October, 2012 at the Wye Island  

Natural Resource Management Area in Queen Anne’s County, Maryland  

(38°54'11.97"N,  76° 8'12.20"W), located within the Coastal Plain physiographic  

province of the Mid-Atlantic region of the USA (Appendix A). Soils were sampled along  

a transect consisting of three sampling locations running from an active agricultural field  

(AG) used to grow maize (Zea mays L.) and soybean (Glycine max L.), through a grassed  

field border (GB) of tall fescue (Festuca arundinacea Schreb.), to a forested riparian  
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zone (RZ) of sassafras (Sassafras albidum Nutt.), southern red oak (Quercus falcata  

Michx), black cherry (Prunus serotina Ehrh.), red maple (Acer rubrum L.), and black  

walnut (Juglans nigra L.), with under story vegetation composed of multiflora rose (Rosa  

multiflora Thunb.), sumac (L.), trumpet creeper (Catalpa radicans L. Seem.), common  

greenbrier (Smilax rotundilia L.), Virginia creeper (Parthenocissus quinquefolia), and  

honeysuckle (Lonicera japonica Thunb.). The soils were sampled both from the A  

horizon (0-15 cm) and at a depth representative of the B horizon. In the AG, this depth  

was between 45-60 cm, and in the GB and RZ, the sample was taken between 65-80 cm  

due to differences observed in the soil profile. The AG soil was sampled from the  

Ingleside mapping unit (38°54'11.97"N,  76° 8'12.20"W), the GB soil sampled from the  

boundary of Ingleside and Longmarsh & Zekiah mapping units (38°54'10.37"N,  76°  

8'13.79"W), and the RZ soil was sampled from the Longmarsh & Zekiah mapping unit  

(38°54'9.98"N,  76° 8'14.70"W); all of which were similar to the Ingleside series  (coarse-  

loamy, siliceous, mesic Typic Hapludult). Sampling soils in the autumn may have  

resulted in sampling soils with lower seasonal urease activities (Kang et al., 2009) and  

therefore the rates of hydrolysis discussed in this work may be lower than those that  

would be measured in soils sampled in the spring.  

 A 7.6-cm diameter, open-faced soil auger was used to obtain four subsamples  

which were combined to form one composite sample from each depth at each point along  

the transect. The BC horizon sample in the RZ, however, consisted of three auger holes  

because a proliferation of tree roots prevented additional sampling.  The soils were  

sampled on the same day and stored in a cooler for fewer than 5 h before being brought  

back to the laboratory. Subsamples weighing a minimum of 80 g and providing analytical  
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replicates for DNA analysis were then immediately frozen in separate bags at -20°C for a  

period of less than 11 months. Each individual sample was homogenized by hand mixing  

before DNA analysis. The rest of the soil was allowed to equilibrate to room temperature  

(21-23 °C), sieved to pass a 4 mm screen, and kept field-moist in double plastic bags in  

closed plastic buckets until used.  

  

Determination of pH effects on urea hydrolysis  

The determination of pH effects on urea hydrolysis is described in the Materials  

& Methods section of Chap. 2. After pH equilibration, the moist equivalent of 2.5-g  

oven-dried soil from each pH treatment was frozen at -20°C for future DNA extraction.  

Each urea rate incubation experiment also included a set of triplicate samples that were  

not treated with phenylmercuric acetate at the end of the incubation, but rather were  

brought to volume with 0.01M CaCl2, centrifuged, and the resulting soil pellet was frozen  

at -20°C for DNA extraction.  

  

DNA extraction   

 Total genomic DNA was operationally defined by extraction from each soil using  

a PowerSoil DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA, USA) following the  

manufacturer’s instructions with the exception that the soils were homogenized using a  

FastPrep-24 (45 sec at 6 m s-1; MP Biomedicals, LLC, Solon, OH). The DNA in all  

extracted solutions was quantified using a Qubit 1.0 Fluorometer (Life Technologies,  



 65 

Grand Island, NY, USA). Extracted DNA was stored at -20˚ C for fewer than three  

months while analyses were completed. DNA extracts were diluted to 2.5 ng µL-1 in  

preparation for quantitative PCR (qPCR) amplification of bacterial ureC gene copy  

numbers and 1.25 ng µL-1 for qPCR amplification of bacterial and archaeal 16S rRNA  

and fungal ITS.  

  

Standard preparation and quantitative-PCR amplification (QPCR)  

 Quantitative PCR was used to estimate bacterial and archaeal 16S rRNA, fungal  

ITS, and bacterial ureC genes.  Standard clones for Eub16S rRNA, Arc16S rRNA, ITS,  

and ureC were created from stock cultures of Escherichia coli, Sulfolobus solfataricus,  

Haematonectria haematococca, and Pseudomonas aeruginosa, respectively, and total  

genomic DNA was isolated using the DNEasy Tissue and Blood Extraction kit (Qiagen  

Sciences, Germantown, MD, USA). Target inserts were amplified using forward and  

reverse primers for Eub16S (Eub338F, Eub518R)(Pietri and Brookes, 2008; Pietri and  

Brookes, 2009), Arc16S (A915, Arc1059) (Fierer et al., 2005), ITS (5.8S, ITS1f)(Yu et  

al., 2005) and ureC (ureC-F, ureC-R)(Fierer et al., 2005). Isolates were generated using a  

Topo TA cloning kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s  

instructions.  Plasmids were purified using GenElute Plasmid Miniprep Kit (Sigma  

Aldrich, St. Louis, MO, USA). Prior to analysis, standards were linearized using ECO-  

RV (Promega, Madison, WI, USA) and cleaned up using the UltraClean PCR clean-up  

kit (Mo Bio Laboratories, Carlsbad, CA). Standards were quantified using a Qubit 1.0  

Fluorometer (Life Technologies, Grand Island, NY, USA) and a 10-fold dilution series  
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was generated. An equimolar soil standard dilution series was used to relativize plasmid  

curves for sample-specific inhibition (Hargreaves et al., 2013).    

 Soil DNA extracts and standards were run in triplicate 20 μL reactions with 10.0  

μL of SYBR Green qPCR mastermix (Life Technologies), 0.5 μM final concentration of  

the forward and reverse primer each, and 2.5 ng template DNA for community  

composition or 5 ng of template DNA for functional gene quantification. In some cases,  

soil DNA was below these concentrations, and these were run at stock DNA  

concentrations and calculations were adjusted accordingly. All reactions were run on the  

StepOne Plus real-time PCR instrument (Applied Biosystems, Foster City, CA). With  

two exceptions, thermocycler conditions were the following for amplification of all  

genes: heat inactivation at 95°C for 5 min, followed by 40 cycles of 95°C for 5 s  

(denaturation), 55°C for 15 s (annealing), and 72°C for 10 s (extension and acquisition).  

SYBR Green was quantified during the 72°C elongation step. The amplification of  

archaeal 16S rRNA required an annealing temperature of 57°C to avoid non-specific  

amplification in samples with low copy numbers. The amplification of bacterial ureC  

genes used a 58°C annealing temperature. Melt curve analysis was performed following  

every run to confirm product specificity. A double melt curve was observed with some  

ITS runs, but specificity was confirmed by gel electrophoresis. Data was extracted from  

runs with standard curves having r2 values >0.98 and efficiency values between 100-  

101% for ureC, between 92-96% for ITS, and between 96-101% for bacterial and  

archaeal 16S rRNA.  
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Soil properties  

Exchangeable cations, total C and N, pH, and water content were calculated as  

described in Chapter 2.   

  

Statistical analyses  

Statistically significant differences among the rates of urea hydrolysis in soils and  

gene abundances were determined using one-way ANOVA (p < 0.05, and Tukey’s test, p  

< 0.05) in GraphPad Prism (Prism 6, GraphPad Software, Inc., La Jolla, CA). Multiple  

regression analysis (SPSS v.21, SPSS Inc., Chicago, IL) was used to determine the best  

linear combination of factors predicting the rate of urea hydrolysis in soils (p > 0.05).  

Correlations and Pearson correlation coefficients (p < 0.05) were computed using  

GraphPad Prism (Prism 6, GraphPad Software, Inc., La Jolla, CA).  

  

Results & Discussion  

  

Analyses of freshly sampled soil   

The native soils sampled in this study varied in both their physical and chemical  

characteristics (Coastal Plain soils data listed in Table 2.1). Of particular note are the  

large ranges in pH (3.6-5.4) and in extractable Mn (0.48-9.8 mg kg-1 soil) and Al (30 -170  

mg kg-1 soil) concentrations, which can reduce P, Ca, and Mg bioavailability or be toxic  

in solution, affecting microbial communities (Haynes and Mokolobate, 2001; Lauber et  
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al., 2008). In addition, gene copy numbers for archaea, fungi, bacteria, and ureC varied  

significantly across the landscape (Table 3.1). In particular, the RZ A1/A2 soil contained  

significantly more fungi, bacteria, and ureC than all other A and B horizon soils. Despite  

this variation in soil chemical properties and gene copy numbers across the landscape, the  

native rates of urea hydrolysis did not differ significantly in the A horizons (Table 3.2).   

These findings do not support our first hypothesis, that patterns in gene type and  

copy number would be similar among sites with similar urea hydrolysis rates. Since we  

quantified DNA rather than RNA, we can only measure genetic potential in the soil,  

rather than the real-time expression of genes by the microbial community (Saleh-Lakha et  

al., 2005). As a result, we can conclude that in these native soils, the urea hydrolysis rate  

is not easily explained by the genetic potential of the microbial community as measured  

by the numbers of bacterial (Eub 16S), archaeal (Arc 16S), fungal (ITS), and ureC  

(urease) genes. In measuring ureC, we measured all organisms carrying the gene, even  

those who were not actively expressing it. Therefore, it is possible that only a subset of  

the population carrying the ureC gene is active and contributing to the measured rates of  

urea hydrolysis.  The wide rates of urease activity measured in some soil organisms (14.5  

to 7,100 μmol urea min-1 mg enzyme-1) (Krajewska, 2009) could explain how relatively  

few microbes could be doing the majority of the urea hydrolysis measured in these soils.   

The RZ BC soil had significantly faster urea hydrolysis than did the AG Bt and  

GB Bt soils (Table 3.2). This may be a result of the higher C content and higher C:N ratio  

in the RZ soil indicating a N-deficient environment that quickly responded to N inputs   
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Table 3.1: Gene abundances in native Coastal Plain transect soils. AG (agricultural  

field), GB (grassed field border), RZ (riparian zone), n = 3.  

  Arc 16S‡ ITS Eub 16S ureC 

 
----------------------------------genes g-1 soil------------------------------------ 

AG Ap 6.73E+08 b† 5.96E+07 bcd 1.08E+10 c 2.00E+08 c  
GB Ap 8.32E+08 a 8.15E+07 b 1.65E+10 b 2.96E+08 b 
RZ A1/A2 3.27E+08 d 9.22E+08 a 2.19E+10 a 3.32E+08 a 
AG Bt 6.66E+07 e 1.88E+06 d 6.02E+08 e 1.05E+07 e 
GB Bt 4.54E+08 c 4.51E+06 cd 2.78E+09 de 3.97E+07 d 
RZ BC 4.17E+08 c 7.00E+07 bc 4.16E+09 d 4.16E+07 d 
†Means within the same column sharing a letter are not significantly different at p<0.05  
‡Arc 16S (total archaea), ITS (total fungi), Eub 16S (total bacteria), ureC (urease gene)   
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Table 3.2: Rates of urea hydrolysis in native Coastal Plain transect soils. AG  

(agricultural field), GB (grassed field border), RZ (riparian zone).  

Site Horizon 
Rate of Urea Hydrolysis 
(mg urea-N kg-1 h-1)† 

AG Ap  1.1  a 
GB Ap  1.1  a 
RZ A1/A2  1.0  a 
AG Bt  0.079  c 
GB Bt  0.062  c 
RZ BC  0.21  b 

†Rates with the same letter are not significantly different at p < 0.05.   
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when urea was added during the experiment.  

The calculated fungal-to-bacterial gene copy ratios (Table 3.3) supported our 

second hypothesis that this ratio would be lowest in the AG soil and would increase in the 

RZ soil. The RZ A1/A2 soil had a significantly higher fungal-to-bacterial ratio than the 

other A horizon soils, and the RZ BC soil had a significantly higher fungal-to-bacterial 

ratio than the other two B horizon soils. The fact that the AG and GB soils did not differ 

from each other in this ratio may indicate a legacy of agricultural management and 

nutrient inputs at these two landscape positions. Bacteria are thought to have higher 

nutrient requirements than fungi, as a result of the lower C:N ratio found in their biomass 

(3-6), as compared to fungi (5-15) (Strickland and Rousk, 2010). In soils where N is not 

limiting, a shift toward bacterial dominance in soil is expected. In contrast, the RZ soils 

had the highest fungal-to-bacterial gene copy ratios and the highest C:N ratios (Table 

2.1). The high numbers of fungi in the RZ are likely a result of mycorrhizal associations 

with the plants in the riparian area, including documented arbuscular mycorrhizal 

associations with black walnut (Juglans nigra L.) and red maple trees (Acer rubrum L.) 

(Wang and Qiu, 2006). This hypothesis is supported by a more than 80% decrease in ITS 

copy numbers measured in stored RZ A1/A2 horizon soil relative to freshly sampled soil 

(Appendix C), a change that could be explained by the disappearance of mycorrhizal 

fungi dependent on living plants that are not present in stored soils. The high 

concentration of bacteria in RZ soils compared to the other transect points was 

unexpected since bacterial numbers are thought to decrease as pH decreases (Rousk et al., 

2010; Rousk et al., 2011), but some studies have found that bacterial communities shift in 
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Table 3.3: Fungal-to-bacterial gene copy ratios in native transect soils. AG (agricultural 

field), GB (grassed field border), RZ (riparian zone). 

 

Site Horizon Fungal:Bacterial ±SD   
   AG Ap 5.52E-03 2.69E-04 c† 
  GB Ap 5.16E-03 3.57E-05 c 
   RZ A1/A2 4.13E-02 3.84E-03 a 
   AG Bt 3.13E-03 5.81E-06 c 
   GB Bt 1.60E-03 6.00E-05 c 
   RZ BC 1.68E-02 5.21E-04 b 
   †Means with same letter are not significantly different at p<0.05 
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composition at low pH, with some taxa increasing in number (Lauber et al., 2008; Pietri 

and Brookes, 2009). Some authors have hypothesized that the increase in extractable Al 

as pH decreases explains some observed decreases in microbial biomass and activity 

(Pietri and Brookes, 2008), while others have found Al toxicity effects on bacteria to be 

minimal (Rousk et al., 2010). Nevertheless, the high C levels measured at the lowest pH 

in the transect may be providing a C source for heterotrophic microorganisms and 

buffering these systems against metal toxicities and nutrient limitations that might 

otherwise develop (Haynes and Mokolobate, 2001). Therefore, nutrient inputs from 

agricultural management in the AG and GB locations contrasted with high soil C in the 

RZ may explain the patterns of bacterial and fungal dominance measured across this 

transect.  

 The RZ A1/A2 soil had the lowest pH, lowest field-sampled moisture content, and 

highest concentrations of soluble Al, Mn, and Fe (Table 2.1), but also contained the 

highest numbers of ureC genes among the A horizon soils transect points (Fig. 3.1 and 

Table 3.1). The pattern is the same in the B horizon soils, except that the RZ BC horizon 

and GB Bt do not differ in the number of ureC genes extracted. These data do not support 

our third hypothesis; while ureC gene copy numbers did follow the distribution of Eub 

16S genes, both sets of genes were highest in the RZ soil and lower in the GB and AG 

soils, which was the opposite of what we predicted. This may be a result of a large 

microbial community capable of growing in the RZ soil due to the presence of available 

C and the associated ameliorating effects against metal toxicity and high (H+) discussed 

previously. 
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Figure 3.1: Genes extracted from the native agricultural field (AG), grassed field border  

(GB), and riparian zone (RZ) soils in both the a) A and b) B horizons. Error bars  

represent the SEM among triplicate analytical replicates, and in some cases are within the  

margins of the bar graph.  
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Archaea were most prevalent in the GB Ap soil. In soils, some archaea are 

capable of urea hydrolysis and ammonia oxidation (Hatzenpichler, 2012), and have been 

found across a gradient of soil pH from 3.75 to >8 (Hu et al., 2013; Lu and Jia, 2013). 

For example, the ammonia-oxidizing archaea (AOA) phylum Thaumarchaeota has been 

reported to decrease with increasing soil pH, but its relative abundance, compared with 

other measured archaea, increased across the same range, indicating the potential 

importance of this phylum over a wide range of soil pH (Hu et al., 2013). In other work, 

AOA abundance was negatively correlated with the availability of organic C and the C:N 

ratio, possibly as a result of competition with heterotrophs (Wessen et al., 2010). Based 

on our findings, we can speculate that the intermediate C:N ratio and pH of the GB soil in 

this transect may provide a combination of soil conditions that is preferable for these 

organisms. 

The A horizon soils contained more bacteria, archaea, and ureC genes than did B 

horizon soils across all three transect points (Table 3.1). ITS gene copies were more 

varied, with fewer statistical differences between A and B horizons (Table 3.1). However, 

the most striking difference was the significantly higher numbers of ITS in the RZ A1/A2 

soil compared to all other soils (Fig 3.1). These findings agree with other studies that 

have found a decrease in both C concentration and microbial abundance with depth in the 

soil profile (Eilers et al., 2012; Kramer et al., 2013), presumably due to less total and 

bioavailable C in lower soil horizons. 

DNA extracted from the native soils indicated that between 1.5 – 20% of the 

bacterial community contains the ureC gene and is capable of urea hydrolysis, assuming 

that each bacterium carries between 1 and 10 copies of the 16S rRNA gene (Klappenbach 
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et al., 2000) and one copy of the ureC gene (Srivatsan et al., 2008; Burbank et al., 2011). 

This proportion of ureolytic bacteria was consistent across the different landscape 

positions and in both the A and B horizon soils sampled, and is similar to the range of 17-

30% found by Lloyd and Sheaffe (1973), who used a dilution-plate method and urea agar 

containing the indicator phenol red to calculate the proportion of ureolytic bacteria in 

their soils. The faster rate of urea hydrolysis measured in the RZ B horizon (Table 3.2) 

compared to other B horizon soils may therefore be due to a greater proportion of 

ureolytic bacteria actively expressing the ureC gene relative to the soils from the other 

landscape positions. However, field replicates and mRNA analyses were not available to 

test these different possibilities. The RZ A1/A2 and BC soils had the highest C:N ratio of 

their respective transect points (Table 2.1), indicating that this soil may be N-limited and 

that the urea-N supplied during the experiment to determine hydrolysis rate provided a 

limited nutrient and resulted in rapid uptake and metabolism.  

 

Analyses of soils treated in the laboratory to achieve a range in pH   

Adjusting the native pH of the toposequences soils from both sites, by adding HCl 

or CaCO3, produced several anticipated changes in soil chemical properties that were 

likely to affect the activity of the microbial community (Chap. 2, Tables 2.3 to 2.6). The 

soils that were treated with HCl to reduce the pH had higher concentrations of potentially 

toxic soluble metals (Mn, Al, and Fe) in both A and B horizons. Adding CaCO3 to 

increase pH increased extractable Ca (due to the addition of CaCO3) and soluble P 

compared to the concentrations of these essential nutrients found in the native soils. The 
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B-horizon soils within each transect had less favorable conditions for microbial growth, 

including higher soluble Al concentrations and lower soluble K and P concentrations than 

the corresponding A-horizon soils (Tables 2.3-2.6). Multiple regression analysis 

determined that a model that included both pH and C explained 89% of the variability in 

the rates of urea hydrolysis in pH-manipulated Coastal Plain A horizon soils, and a model 

including pH, C, and N explained 93% of the variability in the rate of urea hydrolysis in 

pH-adjusted Coastal Plain B horizon soils (Chap.2, Table 2.7).  

 An increase in pH corresponded to an increase in the rate of urea hydrolysis in all 

soils and all horizons (Chap. 2, Fig 2.2). The most dramatic increase in urea hydrolysis 

with increasing pH occurred in the RZ A1/A2 soil, possibly due to this soil having the 

largest ureolytic microbial community of all the field soils sampled (Table 3.1), and both 

the highest C content and the highest C:N ratio. These factors may indicate an N-limited 

environment in which microbes were able to quickly metabolize added urea-N. The RZ 

A1/A2 soil was also the only A horizon soil that had a significant increase in Eub16S 

genes in the CaCO3 treatments relative to the control pH treatments (Fig. 3.2). Lowering 

pH resulted in a large and significant increase in ITS in the acidified AG Ap soil and the 

acidified GB Bt soil (Fig. 3.3). Although not consistent across all soils, these data support 

our fourth hypothesis, that bacteria would be highest in high pH treatments and that fungi 

would be most numerous in low pH treatments. The optimum range of pH for fungi has 

been reported to be wide, while the pH optima for bacteria tends to be constrained by the 

soil conditions in which the population has become established (Strickland and Rousk, 

2010), indicating that large changes in pH imposed by the addition of acid and base likely 

affected bacteria more than they did fungi. Low fungal growth at high pH has been  
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Figure 3.2: Eub 16S genes in pH-adjusted A horizon soils following the addition of urea  

during the urea hydrolysis rate experiment. Hollow symbols denote native soils, and error  

bars indicate ± SEM (n=3).  
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Figure 3.3: ITS genes in pH-adjusted A and B horizon soils following the addition of  

urea during the urea hydrolysis rate experiment. Hollow symbols denote native soils, and  

error bars indicate ± SEM (n=3).  
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reported, and has been found to be due to bacterial competition rather than lack of 

substrate for the fungi (Rousk et al., 2010). 

 An increase in the rate of urea hydrolysis was significantly correlated with an 

increase in Eub 16S gene copies in the pH A horizon soils both before and after urea was 

added (Fig. 3.4). The correlation improved after urea was added to the system (r2 of 0.79 

increased to 0.91). This suggests that the presence of urea resulted in the growth of an 

ureolytic bacterial population, and therefore hydrolysis is occurring mainly through the 

activity of the live microbial biomass in A horizon soils. In contrast to the A horizon 

soils, the B horizon soils did not show a significant correlation between urea hydrolysis 

rate and Eub16S numbers. This suggests that either the bacterial community in the B 

horizon was composed mostly of non-ureolytic bacteria, the ureC primers used in this 

study did not capture all urease enzyme present in the soil, or that some other sub-

population of microorganisms, or possibly extracellular urease, is responsible for urea 

hydrolysis in these lower mineral horizons. In some soils, extracellular urease has been 

reported to contribute to over half of the observed activity. In this form, it is protected by 

soil clays and colloids against thermal and proteolytic degradation and continues to 

function (Pettit et al., 1976; Klose and Tabatabai, 1999).  The higher clay content of both 

the AG and GB Bt soils (Table 2.1) may therefore contain greater amounts of bound and 

active extracellular urease, or greater amounts relative to the corresponding Ap soils. 

Neither A nor B horizon soils showed significant correlations between urea hydrolysis 

rate and ITS or Arc16S genes, indicating that bacteria are the principal microbial taxon 

responsible for urea hydrolysis in these soils.  
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Figure 3.4: An increase in the rate of urea hydrolysis was significantly correlated with 

Eub 16S gene copies in the pH-adjusted A horizon soils both a) before and b) after 

incubation with urea (p < 0.05). AG Ap (circles), GB Ap (squares), and RZ A1/A2 

(triangles) plotted. Hollow symbols denote native soils (n=3). 
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 The correlation between urea hydrolysis rate and ureC genes was significant in both 

A and B horizon soils, supporting our fifth hypothesis in this study, that ureC gene copy 

number would be significantly correlated with urea hydrolysis rate.  The correlation 

coefficient remained consistent both before and after urea was added to the system (Fig. 

3.5), potentially indicating that a consistent proportion of the urease activity is 

attributable to live biomass, as opposed to extracellular enzyme activity. In addition, 

there were significant correlations between Eub16S and ureC genes in both A and B 

horizons (Fig. 3.6). The correlation improved in the A horizon after urea was added (r2 of 

0.70 improved to 0.91), but this pattern was not apparent in B horizon soils. These 

findings further support the conclusion that bacteria were the greatest contributors to urea 

hydrolysis in A horizon soils. 

 

Conclusions 

 Analysis of microbial community composition and ureC genes across an 

agricultural field-riparian zone landscape toposequence, in A and B horizons, and over a 

range of soil pH, allowed us to investigate the influence of soil chemical factors on both 

microbial community composition and urea hydrolysis. The most important result was 

that the native RZ A1/A2 soil contained the greatest abundance of bacteria, fungi, and 

ureC genes, despite what might be considered an unfavorable environment of low pH, 

low field-sampled moisture content, and high extractable Al and Mn. The high C content 

and high C:N ratio of the RZ soil likely mediated these potentially toxic characteristics 

and supported a microbial community that could hydrolyze urea when it was supplied  
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Figure 3.5: Significant correlations between urea hydrolysis rate and genes in both A (a and b) and B (c and d) horizons, before (a and  

c) and after (b and d) urea added (p < 0.05). AG Ap (circles), GB Ap (squares), and RZ A1/A2 (triangles) plotted. Hollow symbols  

denote native soils (n=3).  
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Figure 3.6: Significant correlations between Eub 16S and ureC genes in both A (a and b) and B (c and d) horizons, before (a and c)  

and after (b and d) urea added (p < 0.05). Addition of urea improved r2 in A horizon (a and b). AG Ap (circles), GB Ap (squares), and  

RZ A1/A2 (triangles) plotted. Hollow symbols denote native soils (n=3).  
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from an external source. We found that the ureC gene was significantly correlated with 

urea hydrolysis rate in an incubation experiment with soil pH lowered or raised. Further 

studies of urea hydrolysis across a wider soil landscape are necessary to determine 

whether this gene can be used as a biomarker for ureolytic microbial activity in soils. A 

better understanding of ureolytic microbial composition in soils, and the factors that 

influence its activity across an agricultural-riparian landscape, will help researchers make 

recommendations related to urea fertilizer application so that urea-N can be efficiently 

used by crops and urea movement across the landscape and into surface waters can be 

minimized. 
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Chapter 4: Urea hydrolysis in soils: enhancement and inhibition by ascorbic, gallic, 

benzoic, and cinnamic acids. 

Introduction 

Urea is an organic N-containing fertilizer that is hydrolyzed to NH4
+ by soil 

microbes and extracellular urease (Krajewska, 2009). The rate of this hydrolysis reaction 

varies across both natural soil landscapes and in laboratory studies of pH-adjusted soils, 

and soil C has been identified as an important variable for predicting urease activity 

(Zantua et al., 1977; Saviozzi et al., 2001; Yin et al., 2014). However, these studies have 

not looked at the components of soil C, especially reducing and metal-complexing 

organic acid fractions of soil C, that are influential in increasing or decreasing the rate of 

urea hydrolysis. The type of C incorporated into soils through plant material deposition, 

agricultural soil amendments and root exudates has been found to influence microbial 

community composition and affect enzyme activities, including that of urease (Zaman et 

al., 2002; Renella et al., 2007; Chen et al., 2014; Yin et al., 2014). Whether the 

stimulatory effects of soil C are due to increased substrate for heterotrophic 

microorganisms, improved metal chelation and associated reductions in toxicity, or other 

factors, is poorly understood. However the increased urease activity following the 

addition of glucose to soils appears to be a straightforward result of increased microbial 

use of an accessible C source (Falih and Wainwright, 1996). Since microbial 

communities, and bacteria specifically (Ch. 3), are important mediators of urea hydrolysis 

in soils, further investigation into the effect of different C amendments on urea hydrolysis 

is warranted. 
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Carbon enters the soil environment through C-fixation by photosynthetic plants, 

plant root exudates, and the decomposition of organic materials (Kalbitz et al., 2000; 

McDowell, 2003). These processes and materials provide a complex mixture of C 

compounds to the soil environment, including cellulose, hemicellulose, lignin, condensed 

and hydrolysable tannins, phenols, organic acids, amino acids, and water-soluble 

carbohydrates (Cook and Allan, 1992a; Kraus et al., 2003; Suescun et al., 2012) that vary 

in their bioavailability. Renella et al. (2007) measured a significant increase in double-

stranded DNA in a clayey soil treated with glucose and glutamate, and in a sandy soil 

treated with the organic acid oxalate, indicating that these C compounds stimulated 

microbial growth. Lin et al. (2011) found that the application of the phenolic compounds 

p-hydroxybenzoic acid, ferulic acid, vanillic acid, salicylic acid, and cinnamic acid 

increased microbial biomass C and microbial respiration, in the order listed. Other types 

of C have differing effects on microbial growth based on the complexity of the C 

structure; tannin monomers and dimers can be used as microbial C substrates, whereas 

polymerized condensed tannins can inhibit growth (Kanerva et al., 2006). 

The dynamic complexity of soil organic C, its variability across soil types, 

vegetative cover, and bioavailability to different microorganisms, has made it difficult to 

completely understand the complex interactions between soil C and the soil biotic 

community, and the effects of different types of soil C on biogeochemical cycling 

(Chantigny, 2003; Chen et al., 2014; Yin et al., 2014).  A clear understanding of the 

effects of organic C on urease activity in soils is complicated by the use of different 

methodologies for extracting and measuring soluble C in soils. Concentrations of 

dissolved organic matter (DOM), dissolved organic C (DOC), water extractable organic 
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matter (WEOM), and water extractable organic C (WEOC) are all reported in the 

literature and vary in their components based on the size of the membrane used to filter 

soil extracts, whether C or organic matter were quantified, and the method by which the 

leachate was extracted from the soil (Chantigny, 2003). Nevertheless, a review of just 

those papers reporting DOC or WSOC indicates that the level of C in soil extracts can 

vary by several orders of magnitude depending on past land management and vegetative 

cover. Soils sampled from previously cultivated agricultural fields after 12 to 62 yr of 

secondary succession contained between 6 – 16 g total C kg-1 soil, of which 0.07 - 0.1 % 

was dissolved organic C (9 to 12 mg kg-1 soil) (Cook and Allan, 1992b). In a grassland 

soil, tillage resulted in water extractable organic C concentrations ranging from 50-90 mg 

kg-1 soil (Chantigny, 2003). In one study, the rooting zones of legumes contained greater 

concentrations of WSOC than those of non-legumes, although all measured values were 

in the range of 40-75 mg kg-1 soil (Chantigny, 2003). The application of sugar beet to 

soils at a rate simulating that of pockets of decomposing root left in the soil after harvest 

and equivalent to 20,000 mg C kg soil-1, stimulated enzyme and microbial activities in an 

agricultural soil (Falih and Wainwright, 1996). Renella et al. (2007) studied the effects of 

glucose, citrate, oxalate or glutamate added to soils at a rate of 300 mg C kg-1 soil to 

simulate plant root exudation into the rhizosphere. WSOC can be quite high in different 

types of manures and composts. Prost et al. (2013) studied the effects of composting 

manure with different types of biochar, a type of organic material that is pyrolyzed to 

produce a carbonaceous compound that is used to improve soil fertility and sequester C 

when added to the soil. They found that WSOC increased as a result of the added biochar, 

presumably due to sorption effects, with the final product containing 3,500-7,000 mg 
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water-extractable organic C kg-1 compost. The application of composts and manures to 

soils will of course result in the dilution of these nutrients, but stratification can result 

from surface application, resulting in locally high concentrations of WSOC. Following 10 

yr of a long-term poultry litter and chemical fertilizer application experiment, WSOC 

concentrations were measured at 780 mg kg-1 soil between 0-2.5 cm depth, 517 mg kg-1 

soil between 2.5-5 cm depth, decreasing to 168 mg kg-1 soil at a depth of 15-30 cm 

(Zhang et al., 2011).  

Knowledge of the naturally or agriculturally relevant concentration range of 

soluble C in soils is not enough; different components of total soluble C can have varying 

effects on soil biological properties. In a study comparing cultivated, forested, and 

grassland soils, the concentration of WSOC was not different among the sites (900 mg C 

kg-1 soil), but the quality of the different fractions of WSOC differed, with greater 

concentrations of labile carbohydrates and phenolics in the non-cultivated soils (Saviozzi 

et al., 2001). This correlated with higher enzyme activities (including urease) in the 

grassland site and lower activities in the agricultural site. Investigations into the fractions 

of soluble organic C that are most highly correlated with urease activity may help explain 

conflicting reports in the literature regarding the correlation of urease activity with total 

soil C. The results of Chap. 2 and the work of others (Yin et al., 2014) found total C to be 

predictive of urease activity in soils, but others have not found the same correlation 

(Hassan et al., 2013).  

Despite soluble C concentrations ranging from 10-20,000 mg C kg-1 soil, several 

studies investigating the effects of C on enzyme activities were based on only one level 

of added C. Lin et al. (2011) studied the application of different phenolic acids to soil at a 
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rate of 500 mg phenolic acid kg-1 soil and found that these compounds stimulated urease 

activity in the order: p-hydroxybenzoic acid > ferulic acid > vanillic acid > salicylic acid 

> cinnamic acid. The addition of glucose from sugar beets was investigated only at the 

concentration of 20,000 mg C kg-1 soil and found to stimulate urease activity (Falih and 

Wainwright, 1996). Others have found that unidentified components of the residues of 

the aromatic herbs basil and savory stimulate soil enzyme activities, including that of 

urease (Chen et al., 2014). However, no literature has been found that looks at ranges of 

specific components of added C sources to obtain information about the threshold at 

which stimulatory effects may be seen. Since C can be used by heterotrophic 

microorganisms, can be involved in metal chelation and solubility (Haynes and 

Mokolobate, 2001), can influence pH (Saviozzi and Cardelli, 2014), and since all of these 

effects may be concentration-dependent, additional information is needed on the 

concentration effects of added fractions of soil organic C. 

 The objective of this study, therefore, was to evaluate the effects of specific types 

of added C on urea hydrolysis in soils. Sites with different soil and plant management 

histories were chosen to understand how this factor might influence our results; soils 

were sampled from the Ap and Bt horizons of an active agricultural field and from the 

A1/A2 and BC horizons of a forested riparian buffer adjacent to the agricultural field. To 

address previously mentioned gaps in the literature, we evaluated a range of added C 

from 0 – 10,000 mg C kg-1 soil that was representative of the values already discussed 

and found in natural and agricultural settings. The C sources chosen for evaluation were 

benzoic (BA), trans-cinnamic (CA), ascorbic (AA), and gallic acids GA), all of which 

occur naturally in plants (Hoskins, 1984; Brewer, 2011). BA and CA have been found to 
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serve as C substrates for soil microorganisms (Hoskins, 1984; Lin et al., 2011). 

Cinnamates are deamination products of phenylalanine and its derivatives and can be 

used by plants to synthesize lignin (Hoskins, 1984). CA can also be microbially 

metabolized to BA before being converted to other metabolic compounds (Gibson, 1968). 

There are both aerobic and anaerobic pathways for the catabolism of BA by microbes 

(Ismail and Gescher, 2012). In contrast to these more labile C sources, AA and GA were 

chosen to investigate the effects of added C sources that are known antioxidants and 

reducing agents (Alamed et al., 2009; Brewer, 2011). Understanding the link between 

these types of organic C and rates of urea hydrolysis can provide valuable information for 

land managers to use when making decisions related to improving N cycling and C 

dynamics in agricultural settings or in degraded, low C soils. 

 

Materials & Methods 

This study was conducted on soil materials sampled from one transect in October, 

2013 from the Wye Island Natural Resource Management Area in Queen Anne’s County, 

Maryland (38°54'11.97"N,  76° 8'12.20"W), located within the Coastal Plain (CP) 

physiographic region (Fig. A.1). The sampling consisted of a transect of two locations: 

one in an agricultural field (AG) and the other in a forested riparian zone (RZ) adjacent to 

surface water. The soils were sampled both from the A horizon (0-15 cm) and the B 

horizon (45-60 cm). The AG soil sample was from the Ingleside mapping unit 

(38°54'11.97"N,  76° 8'12.20"W) and the RZ soil was from the Longmarsh- Zekiah 

mapping unit (38°54'9.98"N,  76° 8'14.70"W); both of which were similar to the 
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Ingleside series  (coarse-loamy, siliceous, mesic Typic Hapludult). A 7.6-cm open-faced 

soil auger was used to obtain three subsamples, which were combined to form one 

composite sample from each depth at each point from the two sampling locations. The 

soils were all sampled on the same day and stored in a cooler for fewer than 5 h before 

being brought back to the lab and allowed to equilibrate to room temperature (21-23 °C). 

The soils were sieved to pass a 4 mm screen and kept field-moist in double plastic bags in 

closed plastic buckets until used.  

Exchangeable cations, total C and N contents, pH, soil moisture and texture were 

determined as previously described in Chap. 2. 

Treatments for the determination of organic acid effects on urea hydrolysis were 

established using solutions of ascorbic (C6H8O6), benzoic (C7H6O2), trans-cinnamic 

(C9H8O2), and gallic (C7H6O5-H2O) acids made equivalent on a C-basis. Moist soil 

samples equivalent to 2.5 g oven-dried soil from each location/horizon were weighed into 

37.5-mL polycarbonate centrifuge tubes in a randomized complete block design in the 

laboratory that investigated the variables of transect location, horizon, organic acid, and 

organic acid concentration. Triplicate samples of each soil from each location and 

horizon received 0, 100, 400, 1000, 4000, or 10,000 mg C kg-1 soil from each organic 

acid C source and a final concentration of 100 mg urea-N kg-1 soil in a background of 

0.01 M CaCl2. One exception to this occurred in the case of cinnamic acid; because it is 

only sparingly soluble in water, the treatments were limited to concentrations of 100, 400, 

and 1,000 mg C kg-1 soil. The samples were placed on an orbital shaker set at 800 cycles 

min-1 that shook the tubes for 30 min each hour for a total of 24 h, and were analyzed for 

urea-N as previously described in Chap. 2. The pH and Eh values measured during the 
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experiments were measured in the supernatant liquid of 0.01 M CaCl2 soil slurries (10:1 

solution:soil ratio) after soil particles had settled after 30 min of vigorous shaking in the 

last h of each urea incubation. The Mn, Al, and Fe measured in the different organic acid 

treatments were measured using flame atomic absorption in the 0.01M-CaCl2-PMA 

extract described in Chap. 2.   

Statistically significant differences among treatments were determined using one-

way ANOVA (p < 0.05). Tukey’s test (p < 0.05) was used for identifying significant 

differences among all treatments, while Dunnett’s test (p < 0.05) was used for comparing 

individual treatments with the control (Prism 6, GraphPad Software, Inc., La Jolla, CA).  

 

Results & Discussion 

 The soils sampled in this study varied in both their physical and chemical 

characteristics (Table 4.1). All soils sampled were sandy loams with the exception of the 

RZ A1/A2, which had a finer silt loam texture. The finer texture in the RZ A1/A2 may be 

a result of decades of soil eroding from the upslope agricultural field and settling in the 

vegetated riparian buffer. The RZ A1/A2 and BC horizons had field pH values of 4.5 and 

4.0, respectively, which were lower than those of the AG Ap (5.3) and Bt (4.8) horizons. 

The lower pH values in the RZ soils are likely a result of greater concentrations of 

organic acids in the RZ soils and the absence of regular liming practices. Sandy soils with 

low C content are poorly buffered against the acidifying effects of rainfall and N fertilizer 

application, which helps to explain the relatively low pH that is present over the entire 
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Table 4.1: Selected physical and chemical properties of soils sampled along a transect consisting of an agricultural field (AG) and a 

riparian zone (RZ) in the Coastal Plain region of Maryland’s Eastern Shore. 

Site‡ Horizon 
Depth 

(cm) Sand Silt  Clay PSD† pHs H2O C N C:N Mn Al Fe Ca Mg K 
      --------  %  --------     ---- g kg-1 soil----   -------------- mg kg-1 soil ------------ 
AG Ap 0-15 59.9 30.0 10.2 SL 5.3 154 7.7 0.59 13  0.89   52   0.87  393 125 61 
RZ A1/A2 0-15 24.1 56.1 19.9 SiL 4.5 249 21 1.8 12 0.0  110   4.0  782 200 91 

                  
AG Bt 45-60 58.3 22.3 19.4 SL 4.8 156 1.7 0.091 19  3.2   96   3.4  587 122 28 
RZ BC 45-60 54.8 37.0 8.2 SL 4.0 76.7 6.2 0.39 16  2.0   170   7.3  173 41 34 
†Particle size distribution 

              ‡AG (agricultural field), RZ (riparian zone) 
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landscape. The field-sampled moisture content of the RZ BC soil, at 76.7 g kg-1 soil, was 

much lower than that of the other three horizons (150-250 g kg-1 soil). Since low water 

content was also observed in this horizon in a previous sampling in the fall of 2012 

(Chap. 2, Table 2.1), we suggest that the combination of coarse soil texture and the 

prevalence of live trees roots in the RZ BC soil resulted in rapid percolation and uptake 

of water from this soil horizon. The concentrations of soil C measured in the RZ A1/A2 

(21 g kg-1) and BC (6.2 g kg-1) were much higher than those measured in the AG Ap (7.7 

g kg-1) and Bt (1.7 g kg-1) soils, likely due to the presence of perennial vegetation in the 

forested riparian zone. However, the C:N ratio of the A horizons (12 and 13) and B 

horizons (16 and 19) were similar across both soil sampling sites. Soluble Al and Fe were 

highest in the RZ A1/A2 (110 mg kg-1 and 4.0 mg kg-1, respectively) and lowest in the 

AG Ap (52 mg kg-1 and 0.87 mg kg-1, respectively). This is probably due to lower pH in 

the RZ A1/A2, which results in greater solubility of Al and Fe. The concentrations of 

other measured cations varied by horizon (Table 4.1).  

 The addition of the four organic acids (Fig. 4.1) to all of the soils resulted in a 

steady decline in pH as added C increased (Appendix D). The effect was most 

pronounced for ascorbic and gallic acids in the AG soils, probably as a result of lower 

soil C content and associated buffering capacity in the AG soils, compared to the riparian 

zone soils. 
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Figure 4.1: Structural formulas for the four organic acids tested in this study. Gallic and 

ascorbic acids contain resonance-stabilized –OH groups, which makes them effective 

reducing agents and anti-oxidants. Benzoic and cinnamic acids do not donate electrons 

and therefore do not act as reducing agents (Alamed et al., 2009; Brewer, 2011). 
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Ascorbic and Gallic Acids 

Ascorbic acid (AA)-treated A horizon soils from both locations and the AG Bt 

soil (Fig. 4.2 a, b, c) had similar responses to increasing levels of this added C source. 

The lowest levels of added AA (100 and 400 mg C kg-1 soil) resulted in an increase in 

urea hydrolysis over the control, but the intermediate level of 1000 mg C kg-1 soil either 

inhibited urea hydrolysis (Fig. 4.2 a and c) or was not different from the control (Fig. 

4.2b). The highest levels of added AA (4,000 and 10,000 mg C kg-1 soil in AG Ap and Bt 

and 10,000 mg C kg-1 soil in RZ A1/A2) resulted in an increase in hydrolysis over the no 

C-added control. Others have observed similar concentration-dependent effects of AA. 

Yen et al. (2002) reported that increasing concentrations of AA between 0.004 – 0.24 

mM AA (equivalent to 3 – 160 mg C kg-1 soil in our study) corresponded with increasing 

oxidative damage to DNA. Damage peaked at 1.65 mM AA (1,070 mg C kg-1 soil), 

above which damage decreased with increasing concentration of AA. They postulated 

that this resulted from the AA-induced reduction of Fe3+ to Fe2+, which stimulated OH 

formation and free radical damage to DNA at low concentrations, but which was 

overcome by the anti-oxidant OH-scavenging activity of AA at higher concentrations. 

The concentrations at which Yen et al. (2002) report oxidative damage by AA correspond 

to our treatments of up to 1,000 mg C kg-1 soil, which was the treatment with the most 

inhibition in the AG Ap and Bt, and the treatment that was not different from the control 

in the RZ A1/A2 (Fig. 4.2). The damaging oxidative effects of AA observed by Yen et al. 

(2002) below this threshold were not observed in our study; in fact, urea hydrolysis was 

enhanced at 100 and 400 mg C kg-1 soil (Fig. 4.2 a, b and c). However, it is important   
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Figure 4.2: Effects of added ascorbic acid-C on urea hydrolysis and soluble metal concentration, relative to the control treatment, in 

each soil and horizon. Letters that are not different within the same soil horizon are not significantly different in the amount of urea-N 

hydrolyzed (p < 0.05). †Indicates treatment is not significantly different from the control treatment for that soil horizon. AG: 

agricultural field, RZ: riparian zone. SEM plotted (n = 3; n = 2 in urea-N in RZ BC 4,000 mg C kg-1 soil). 
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to note that our study took place in unbuffered soil suspensions with varying 

concentrations of metals, whereas that of Yen et al. (2002) was conducted using a 

controlled and buffered deoxyribose assay. Fenton reactions (Eqn. 4.1), in which Fe2+ 

catalyzes the decomposition of hydrogen peroxide to OH- and hydroxyl radical (OH) 

with the production of ferric iron (Fe3+), are the basis for the oxidative damage that can 

result from low concentrations of AA (Decker and Hultin, 1992; Bradshaw et al., 2011): 

 

Fe2+ + H2O2  Fe3+ + OH- + OH     (Eqn. 4.1) 

 

The presence of a reducing agent, such as AA, reduces Fe3+ back to Fe2+ and maintains 

the Fenton reaction in a continuous cycle (Eqn. 4.2): 

 

2Fe3+ + ascorbate (C6H7O6
-)  2Fe2+ + dehydroascorbic acid (C6H6O6) + H+      (Eqn 4.2) 

 

While low concentrations of AA are known to promote lipid oxidation by reducing 

metals in this manner and higher concentrations can prevent damage by scavenging free 

radicals, the concentrations at which these thresholds are met are dependent upon the 

concentration of Fe (Decker and Hultin, 1992). The low concentrations of soluble Fe 

present at 100-400 mg kg-1 added AA-C (Fig. 4.2 a, b, and c) may have resulted in low 

levels of this Fe-dependent oxidative damage. Instead of causing problems these 

concentrations, AA may have been chelating other metals (Brewer, 2011), such as the 
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soluble Mn2+ that was present (Fig. 4.2 and 4.3a). The position of all C-treated soils 

below the MnOOH-Mn2+ equilibrium lines (Fig 4.3) indicates that the reduced species, 

Mn2+, is likely in soil solution, either as a result of pH- or ligand- induced reductive 

dissolution (Rajapaksha et al., 2012). AA is capable of chelating bivalent metals (Brewer, 

2011) and may be binding with Mn2+ to reduce its toxicity and provide a net benefit to 

the system that allowed for enhanced hydrolysis to take place. Excess Mn2+ can be toxic 

to plants as a result of increased oxidative stress and the production of reactive oxygen 

species, increased lipid peroxidation, and protein oxidation (Srivastava and Dubey, 

2011). Similar toxicities may develop for soil microorganisms and lead to lowered 

activity and reduced urea hydrolysis. 

Why the RZ BC soil exhibited an essentially opposite response to increasing 

levels of AA remains unclear (Fig 4.2d). Based on previous work (see Chap. 3), we 

concluded that the majority of the urea hydrolysis that takes place in the A horizons of 

our soils is the result of the activity of live microbial biomass, whereas the hydrolysis in 

B horizons may be influenced to a greater degree by extracellular urease that is sorbed to 

and stabilized by clay materials (Krajewska, 2009). Microbial cell membranes and 

enzymatic DNA would all be hypothetically susceptible to oxidative damage, and the 

concentration-dependent inhibition of urea hydrolysis in both A horizons and the AG Bt 

horizon soils (Fig. 4.2 a, b, and c) can be postulated to result from interactions between 

live cells, DNA, and the pro- (causing oxidative damage) and antioxidant effects of added 

AA at different concentrations described by Yen et al. (2002). The input of C into the RZ 

BC may be composed of different organic acids than is found in the other soil horizons, 

since this horizon is the only one with a prevalence of perennial tree roots. Some organic 
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Figure 4.3: pe-pH diagrams for each organic acid showing FeOOH-Fe2+ ((red)/(ox)=10-4; dashed line) and MnOOH-Mn2+ ((red)/(ox) 

= 10-4; solid line) equilibria. AG: agricultural field, RZ: riparian zone. Treatments corresponding to those below the FeOOH-Fe2+ 

equilibrium line are listed in Appendix D.



 102 

acids, such as tartaric and malic acids, preferentially chelate Fe(III) over Fe(II), which 

would affect the redox equilibrium between these two forms of iron and encourage the 

oxidation of Fe(II) to the less soluble Fe(III) form (Bradshaw et al., 2011). If this redox 

shift occurred in the RZ BC, the organic acids in solution may have reversed the negative 

effects of the AA-induced reduction of Fe(III) such that the damaging effects of added 

AA up to 4,000 mg kg-1 C were not apparent, and enhancement of urea hydrolysis took 

place as a result of both Fe and Mn chelation, as discussed previously. At the highest 

concentration of added AA (10,000 mg C kg-1 soil), the Fe(II) in solution increased and 

the ameliorating effects of natural organic acids may have been overcome by the 

reductive power of AA. Indeed, the enhancement of urea hydrolysis in the RZ BC at the 

highest level of added AA is not different from that found at the same level of added AA 

in the AG Bt (p < 0.05).  

Gallic acid (GA)-treated soils had similar patterns of enhancement and inhibition 

of urea hydrolysis (Fig 4.4) as was found in AA-treated soils (Fig. 4.2). Yen et al. (2002) 

also investigated the concentration-dependent pro- and antioxidant effects of GA and 

found that damage to DNA increased with increasing concentrations of GA between 

0.004 – 0.82 mM (equivalent to 3 – 620 mg C kg-1 soil in our study). Damage peaked 

above 1.65 mM GA (1,250 mg C kg-1 soil) but then decreased with further increases in 

GA concentration. However, the damage induced by GA was less than that induced by 

AA. The explanation for these concentration effects was again based on the reduction of 

Fe3+ to Fe2+ stimulating OH formation and free radical damage to DNA at low 

concentrations, with the anti-oxidant OH-scavenging activity of GA overcoming this 

process at higher concentrations. The concentrations at which Yen et al. (2002) report 
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Figure 4.4: Effects of added gallic acid-C on urea hydrolysis and soluble metal concentration, relative to the control treatment, in each 

soil and horizon. Letters that are not different within the same soil horizon are not significantly different in the amount of urea-N 

hydrolyzed (p < 0.05). †Indicates treatment is not significantly different from the control treatment for that soil horizon. AG: 

agricultural field, RZ: riparian zone. SEM plotted (n = 3). 
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oxidative damage resulting from added GA again corresponded to our treatments of 100-

1,000 mg C kg-1 soil. Again, the addition of 1,000 mg GA-C kg-1 soil was the treatment 

with the least urea hydrolysis in the AG Ap and RZ A1/A2 (not different from the 

control), which supports the conclusion that GA caused free radical formation and 

damage to microbial membranes and enzymatic DNA that resulted in decreased urea 

hydrolysis in these soils. Interestingly, both B horizons responded similarly to the 

addition of GA, in a manner that was opposite to the patterns measured in the A horizon 

soils. This may be explained by the substantially lower concentrations of Fe in solution in 

the GA-treated soils (25-70 mg kg-1 soil) compared with the AA-treated soils (390-1,000 

mg kg-1 soil), and less corresponding oxidative damage associated with Fenton reactions 

(Eqn. 4.1). As a further benefit, GA has a greater free radical scavenging ability than AA 

(Alamed et al., 2009; Brewer, 2011). Less reductive dissolution of Fe(III) to Fe(II) would 

correspond to less free radical formation and less damage to DNA, with greater 

scavenging of the free radicals that did form. This may have resulted in enhancement of 

hydrolysis in the B horizons because there is a smaller microbial community in B horizon 

soils (Chap. 3), and less respiration would result in less free radical formation. In 

addition, Fe(III) is an inhibitor of jack bean urease (Zaborska et al., 2004).  Jack bean 

urease is not an ideal model for soil urease (see Chap. 1), but it may indicate that 

extracellular urease could be more active in soil environments with low levels of free 

Fe(III). Therefore, while pro-oxidant effects may be the explanation for patterns of urea 

hydrolysis measured in the middle concentrations of added C in the A horizons, the 

enhancement in urea hydrolysis measured at the same concentrations of added GA-C in 

the B horizon soils may be a result of less overall Fe in solution compared to AA 
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treatments. The measured enhancement in urea hydrolysis may be the result of less 

Fe(III) in solution affecting extracellular urease or less Fe(II) in solution forming fewer 

free radicals. Since GA is a better free radical scavenger than AA, the net effect may be a 

system in which GA is able to lend other benefits to the system, such as metal chelation 

(Brown and Kelly, 2007), including that of potentially toxic Mn2+ that was in solution 

(Fig. 4.3).  

 

Benzoic and Cinnamic Acids 

 In contrast to the resonance-stabilized O functional groups of ascorbic and gallic 

acids (Fig. 4.1), which makes them effective as reducing agents, benzoic (BA) and 

cinnamic acids (CA) are not redox-active. The BA and CA-treated soils maintained 

positions above the FeOOH-Fe2+ equilibrium line irrespective of added C (Fig. 4.3 b and 

d), indicating that the treatments did not result in the reductive dissolution of Fe2+ (Figs. 

4.5 and 4.6). Neither BA nor CA are capable of acting as antioxidants (Kim and Lee, 

2004). The enhancement of urea hydrolysis measured with additions of these C sources 

therefore appears to be a simple interaction between the increased availability of a 

bioavailable C source for heterotrophic microbes and the negative effects associated with 

decreased pH at the highest levels of added C (Appendix D; Figs. 4.5 and 4.6). Additions 

of BA to the AG Ap soil resulted in an increase in urea hydrolysis (Fig. 4.5). This was 

also true for the RZ A1/A2 soil, except that at the highest level of C added (10,000 mg C 

kg-1 soil), the enhancement decreased to that measured upon addition of 1,000 mg C kg-1 

soil (Fig. 4.5b). This maximum rate of urea hydrolysis at 4,000 mg kg-1 added BA-C in 
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Figure 4.5: Effects of added benzoic acid-C on urea hydrolysis and soluble metal concentration, relative to the control treatment, in 

each soil and horizon. Letters that are not different within the same soil horizon are not significantly different in the amount of urea-N 

hydrolyzed (p < 0.05). †Indicates treatment is not significantly different from the control treatment for that soil horizon. AG: 

agricultural field, RZ: riparian zone. SEM plotted (n = 3). 
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Figure 4.6: Effects of added cinnamic acid-C on urea hydrolysis and soluble metal concentration, relative to the control treatment, in 

each soil and horizon. Letters that are not different within the same soil horizon are not significantly different in the amount of urea-N 

hydrolyzed (p < 0.05). †Indicates treatment is not significantly different from the control treatment for that soil horizon. AG: 

agricultural field, RZ: riparian zone. SEM plotted (n = 3). 
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the RZ A1/A2 may have been due to a pH that fell to 3.0 (Appendix D), the lowest pH of 

all the BA-treated soils. At this level of soil acidity, the bacteria primarily responsible for 

urea hydrolysis in these soils (see Ch. 3) may be unable to function as a result of high 

concentrations of H+ that protonate organic acid functional groups or cation exchange 

sites on soil and force unchelated Al3+ into solution. The lower levels of Al present in this 

horizon (Fig. 4.5b) compared to the others tested (Fig. 4.5) may explain why hydrolysis 

continued, even under these conditions of low pH. At soil pH values below 5.5, 

unchelated Al3+ present in the soil solution can bind with soil P and reduce the 

bioavailability of this essential nutrient (Haynes and Mokolobate, 2001). While ascorbic 

and gallic acids both are capable of metal chelation (Brown and Kelly, 2007; Brewer, 

2011), the chelating ability of benzoic and cinnamic acids were not found in the 

literature. Therefore, the soils treated with cinnamic and benzoic acids reached pH values 

below 3.5, possibly without the addition of a C source capable of chelating the Al that 

became soluble under these conditions. The greater enhancement in urea hydrolysis in the 

RZ A1/A2 compared with the AG Ap, may be due to a larger and more diverse microbial 

population (see Chap. 3) capable of metabolizing BA, or a broader range of natural 

organic acids present in the soil that conferred some protection against metal toxicities 

(Haynes and Mokolobate, 2001). 

 In B horizon soils (Fig. 4.5 c and d), the enhancement in urea hydrolysis occurred 

at lower levels of added BA-C (400 mg kg-1 in AG Bt and 100-1000 mg kg-1 in RZ BC). 

This effect may be the result of adding a labile C source to soil with lower total C (Table 

4.1), the stimulatory effects of which reached a threshold after 400 mg C kg-1, when 

increased free Al3+ in solution slowed or inhibited hydrolysis (Fig. 4.5 c and d). These 
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effects may not have been observed in the A horizon soils as quickly due to the Al-

chelating effects of higher total C in those soils. BA is metabolized by microbes and can 

be converted into several other metabolic compounds including succinate and acetyl 

CoA, pyruvic acid, and acetaldehyde (Gibson, 1968). There are both aerobic and 

anaerobic pathways for the microbial catabolism of BA (Ismail and Gescher, 2012).  

The addition of CA to soil resulted in a similar pattern of urea hydrolysis 

enhancement (Fig. 4.6) as seen with added BA (Fig. 4.5). Although the highest 

concentrations of added C could not be added in a solution of CA due to its low 

solubility, the addition of 400 and 1,000 mg C kg-1 soil increased hydrolysis in the AG 

Ap and Bt as well as the RZ A1/A2 soils (Fig. 4.6 a, b, and c). The only difference 

observed in the RZ BC soil was some inhibition of hydrolysis with the addition of 400 

mg C kg-1 soil. This was the only soil with measureable soluble Al, and the lowest pH 

range (3.8-4.0) across the range of C additions, which could have adversely affected 

microbial hydrolysis of urea by the presence of free Al3+ and possibly a reduction in the 

availability of P, as discussed earlier. Again, there was greater enhancement in the AG Bt 

(Fig. 4.6c) compared to the AG Ap (Fig. 4.6a), possibly due to the addition of a labile C 

source to the low-C AG Bt soil. 

Our findings for cinnamic acid agree with those of Lin et al. (2011), who found 

that the application of cinnamic acid at a rate of 360 mg C kg-1 soil stimulated urease 

activity 56% over the control. This stimulation was much higher than that measured in 

our soils at approximately the same C application rate (Fig 4.6), although they used re-

wetted air-dried soils, which may have resulted in the amplification of the effect (Bartlett 

and James, 1980). The soils studied by Lin et al. (2011) increased in both microbial C 
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and microbial respiration as a result of CA treatment. CA is a byproduct of the 

deamination of phenylalanine, which is mediated by the enzyme phenylalanine ammonia 

lyase, which is found in many higher plants, fungi, and yeasts. CA can be utilized in the 

synthesis of lignin (Hoskins, 1984), or metabolized to benzoic acid before being 

converted to catechol and other metabolic compounds (Gibson, 1968).  

Conclusions 

Urea-N fertilizer is used extensively in agricultural settings, and the rate of its 

hydrolysis in soils has been tied to the total organic C content of the soil. Analysis of 

soils from A and B horizons of both agricultural and riparian soils treated with a range of 

added C in the form of ascorbic, gallic, benzoic, or cinnamic acid allowed us to 

investigate the effects of specific C fractions and concentrations on urea hydrolysis. We 

found that ascorbic and gallic acids exhibit both oxidative and antioxidant effects in soils, 

which resulted in both increased and decreased urea hydrolysis, depending upon 

concentration. The effects were similar across both agricultural and riparian soils, but 

differed between A and B horizons. These differences were likely due to interactions 

between native C content of the soil and soluble metal activity. In contrast to the 

complicated effects of added ascorbic and gallic acids, benzoic and cinnamic acids 

appeared to have less complex effects in the soils. The measured enhancement of urea 

hydrolysis for these sources of C were likely a result of the addition of a labile C source 

that enhanced microbial activity and urea hydrolysis up to a threshold at which pH 

dropped and metals came into solution. Further studies will need to be completed to 
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confirm the mechanisms behind the observed patterns, but this study provides important 

preliminary information for explaining how different fractions of soil C could have 

differing effects on important microbial processes in soils.  
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Chapter 5: Urea hydrolysis in soils: pedological, chemical, and microbial controls 

 

Maryland’s Coastal Plain soils: an exception to the general knowledge on urea 
hydrolysis? 

 

Urea is the most popular type of N fertilizer used worldwide, in part because it 

has a high N content (46% by weight) and is easy to transport. Plants can take up urea in 

its unhydrolyzed form or after its conversion to NH3/NH4
+ by soil microorganisms. This 

conversion, or hydrolysis reaction, takes place in soils through the action of both 

extracellular urease enzyme and the live microbial community. Most agronomic research 

has focused on the rate of urea hydrolysis in agricultural soils to better understand and 

control for the potential loss of N by volatilization of NH3 or the loss of NO3
- following 

nitrification by soil microorganisms. In addition, there has been extensive research into 

developing urease inhibitors that are able to slow the action of the urease enzyme, 

thereby reducing the rate of urea hydrolysis and allowing for increased plant uptake of 

the N supplied by this type of fertilizer. The paucity of information in the literature on the 

activity of unhydrolyzed urea in soils reflects this focus on N movement as NH3 or NO3
-. 

In many soils, this focus is reasonable because the rates of urea hydrolysis are high 

enough to result in conversion to ammonia in 1-3 days. This appears to be the case for the 

soils used in this dissertation research that were sampled from the Piedmont region in 

Maryland. However, coastal areas that are dominated by coarsely textured sandy soils 

may behave differently. Not only do these soils tend to be lower in carbon, lower in 

surface area, and possibly support smaller microbial communities, they can have high 

infiltration rates as well as poor buffering capacity that result in soil pH values between 3 
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and 6. Agricultural fields in these areas are often farmed and fertilized within a few dozen 

meters of surface waters or drainage ditches leading to surface waters. Grassed or riparian 

buffers often lie between farm fields and surface waters, but rates of urea hydrolysis soils 

from these landscape positions have not been investigated in detail. Therefore, it is 

unknown whether urea that moves off of agricultural fields would be subject to faster, 

slower, or comparable rates of hydrolysis in these bordering landscape soils. Since 

micromolar concentrations of urea can result in harmful algal blooms in surface waters, 

concentrations of N that agronomists consider inconsequential in agricultural applications 

have the potential to negatively affect aquatic environments. Therefore, it is imperative 

that the disciplines of agronomy and aquatic ecology learn to better understand the 

subtleties of each other’s discipline so that the importance and implications of these kinds 

of differences can be appreciated. In particular, the dynamics of urea fertilizer in sandy 

soils in humid temperate regions such as the mid-Atlantic region of the United States 

deserve special attention and should not be directly compared to soils from other regions 

that have different physical and chemical characteristics. 

 

Addressing gaps in the literature: important findings of this dissertation research 

The research presented in this dissertation addresses gaps in the already extensive 

literature on urea hydrolysis by providing data on how hydrolysis changes across an 

entire agricultural landscape, including those positions outside of the agricultural field 

and along the possible flow paths to nearby surface waters. Surface runoff from an 

agricultural field would have to cross grassed and/or forested riparian buffers before 
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reaching surface waters, and any water that leaches through the A horizons and into B 

horizons would have to move laterally through these deeper soil horizons along flow 

paths to surface waters. Much research in agronomy and soil science has focused on the 

dynamics of urea hydrolysis in the upper 15 cm of agricultural soils. This is appropriate 

for many areas in which rapid infiltration is not a concern and where surface waters are 

not in close proximity to agricultural fields. However, sandy Coastal Plain soils such as 

those on the Eastern Shore of Maryland can exhibit rapid infiltration, and the research 

presented in this dissertation shows that urea that leaches below the microbially rich 

agronomic root zone (0-15cm) has a greater potential to remain in the soil without being 

converted to NH3/NH4
+. This is because both the C content and the size of the microbial 

community decreases with depth in the soil profile. Cooler soil temperatures found 

deeper in soil profiles can also slow this process. Since this dissertation research was 

conducted in the laboratory and focused on mechanisms associated with rates of urea 

hydrolysis in soils, field-based research is necessary to confirm these mechanisms and to 

determine whether rates of runoff or groundwater movement are likely to result in the 

delivery of unhydrolyzed urea to nearby surface waters. 

To address the question of overland flow of urea-containing runoff, we 

investigated dynamics of hydrolysis in A horizons across agricultural landscapes. Our 

data indicate that rates of hydrolysis in A horizons do not vary significantly across the 

landscape in the Coastal Plain, but are higher in A horizons than in B horizons (Chap. 2). 

In addition, riparian zone BC horizon soils hydrolyzed urea faster than soils sampled 

from the B horizons in the other two landscape positions, likely as a result of the presence 

perennial vegetation and the higher numbers of associated microbes in this soil. These 
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findings indicate that landscapes that include forested riparian zones may be hydrolyzing 

more urea than landscapes that do not. In addition to providing erosion control, the faster 

rates of hydrolysis in the lower mineral horizons of these zones may provide a buffer 

strip in which urea that runs off of or percolates out of agricultural fields is converted to 

NH4
+. The riparian zone A horizons soils had delayed nitrification (Fig. 2.2c), probably 

as a result of low pH. Therefore, the conversion to NH4
+ would mean that N would have 

the potential to be retained, at least temporarily, on cation exchange sites, possibly 

allowing time for perennial plants to take up NH4
+ and incorporate it into more complex 

and less-easily leached forms of organic N. Field-based research investigating surface 

runoff and groundwater leaching from agricultural fields, as well as studies investigating 

nutrient uptake dynamics in riparian buffers, the age at which newly planted buffers 

begin to provide these benefits, the types of trees or plants that are most effective at 

building a ureolytic microbial community, and ways in which nutrients may be harvested 

and removed from the system to reduce N movement to surface waters, would be 

important follow-up work.  

Despite the fact that urea hydrolysis in soils is the product of past and present 

microbial communities, very little work has been done to understand how microbial 

community dynamics influence urea-N cycling in soils. While many organisms are 

known to carry the urease enzyme, little is understood about which groups of microbes 

are responsible for the majority of the urease activity in soils. Since members of the 

bacterial, archaeal, and fungal communities are known to contain the urease gene, 

knowledge about which microbial community is most influential for this process is 

important for improving N cycling in degraded soils and managing landscapes for the 
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efficient use of this type of popular fertilizer. This work found that ureolytic bacteria 

were largely responsible for rates of hydrolysis in native and pH-adjusted soils sampled 

from a soil profile toposequences on the Coastal Plain of Maryland, and that the ureC 

gene may be a useful biomarker for predicting rates of urea hydrolysis in soils. This work 

will hopefully open the door for additional studies of microbially mediated urea 

hydrolysis in more soils from different landscapes. If found to apply on a larger scale 

than investigated in this dissertation research, the quantification of ureC may be a useful 

biomarker for predicting rates of urea hydrolysis in soils and could potentially be used to 

identify “agricultural fields of concern” in which urea hydrolysis is slow. With proper 

field studies to develop it, a quick test could be established using ureC as the variable-of-

interest to identify the “problem sites” most likely to be leaching urea to surface waters. 

Recommendations could then be tailored specifically to the operation managing those 

hectares to improve urea hydrolysis within the bigger picture of N biogeochemical 

cycling in those soils. In addition, further work is necessary to understand the conditions 

under which ureolytic microbes express the urease gene. In soils, it is largely unknown 

whether urease is induced by the presence of urea as a substrate, repressed by elevated 

concentrations of its product, NH3/NH4
+, or continually expressed irrespective of 

environmental conditions. Knowing more about these processes would help managers 

understand how to manage soils to promote or reduce the activities of certain broad 

groups of microorganisms, and possibly how to manage agricultural fertilizer 

applications for specific outcomes. For example, knowing that bacteria are mostly 

responsible for urea hydrolysis in soils could lead to management of pH or plant species 

known to promote the growth and activity of these organisms.  
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Soil C is an important predictor of rate of urea hydrolysis, but whether this is tied 

to microbial biomass C, labile C fractions, antioxidant C, good chelating C, or other 

factors is unknown. Chap. 4 showed that both labile C and antioxidant C stimulate urea 

hydrolysis, likely by different mechanisms, but that the effect is concentration-dependent. 

The combined influence of plant exudates and other rhizosphere C sources, below-ground 

biomass decomposition, above-ground C inputs through leaf litter, fallen wood, animal 

excrement and biomass decomposition provide a complex mixture of C to the soil 

environment and makes analysis of C effects on urea hydrolysis difficult to parse out. 

The research in this dissertation singled out four different C sources to understand their 

individual effects on urea hydrolysis in natural soils. With further research on other C 

sources, we will begin to have a database for concentrations at which enhancement and 

inhibition of urea hydrolysis is likely, which may be helpful in applied settings. For 

example, in housing developments where A horizons have been stripped back for 

construction purposes and only partially or incompletely restored, B horizon soils are 

exposed and expected to grow lawns and other perennial vegetation. As presented in this 

dissertation, B horizons hydrolyze urea much more slowly than A horizons. However, the 

amendment of these soils with labile C fractions, such as the gallic acid treatments shown 

in Chap. 4, can greatly enhance urea hydrolysis in B horizon soils, and possibly start to 

build back the microbial biomass C that is essential for proper N cycling. Knowledge of 

which types of C will promote these processes most rapidly will help landscape architects 

and managers restore these landscapes, which will result in greater plant establishment, 

less soil erosion, and the restoration of biogeochemical N cycling. These principles can 

also apply to mine reclamation sites or other projects in which soils have been severely 
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impacted and are in the process of being restored to functional ecosystems. Knowledge of 

C exuded by plants or that are present in decomposing plant material would also help 

guide decisions for the types of crops to plant in agricultural crop rotations or in 

vegetated buffer strips adjacent to agricultural fields to improve urea-N cycling across an 

agricultural landscape. 

 

Implications of this research for agronomy and water quality 

 

Assuming that the mechanisms explored in this dissertation research apply on a 

field scale, the agronomic implications for Coastal Plain-type agriculture would vary 

depending on the goals and field conditions of different agricultural operations. As 

previously mentioned, a urea hydrolysis “quick test” could be investigated in more detail 

for future development, which would enable landscape nutrient managers to identify 

“fields of concern” for targeted application of new technology and best management 

practices. Assuming that the application of urea fertilizer to sandy soils adjacent to 

surface waters would be the fields in which these recommendations would be focused, 

increasing hydrolysis without losing N to NH3 volatilization would be a goal. 

Recommendations for this type of situation would likely include 1) applying urea-N as 

late as possible in the spring, once soil had warmed up and the rate of hydrolysis had 

increased (see Appendix E for temperature effects on urea hydrolysis), 2) splitting 

applications of urea fertilizer as much as possible to reduce loss of N as both urea and 

NH3, 3) liming poorly buffered sandy agricultural fields more often to increase both pH 

and the rate of urea hydrolysis, 4) occasional liming of grassed buffers to keep hydrolysis 
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in this zone high, 5) injecting urea into the soil instead of applying it to the surface of 

soils where hydrolysis is fastest and risk of NH3 volatilization is greatest, 6) possibly 

installing or expanding grassed or riparian buffer strips between agricultural fields and 

surface waters, 7) surface-applying fertilizer before light, but not heavy, rain, to increase 

movement of urea into the soil and below the surface where NH3 loss is a concern, 8) 

increasing C content of soils by planting high residue crops and planting cover crops 

regularly, and 9) increasing specific fractions of soil C based on future research into the C 

content of both plants and their root exudates. While each of these recommendations may 

not be practical for all producers, it is important for nutrient management advisors, 

farmers, and agronomists to incorporate the dynamics of urea into the larger N cycle to 

understand how management changes would impact the hydrolysis and movement of this 

form of N in addition other, more commonly managed forms of N such as nitrate-N. 

 

Conclusions 

 Maryland’s sandy Coastal Plain soils are dominated by agriculture, and their 

physical and chemical properties may make them more susceptible to loss of 

unhydrolyzed urea-N fertilizer than other, more intensively studied soils from other 

regions of the U.S. In addition, the proximity of surface waters in this region means that 

heavy rain may result in the loss of urea via surface runoff. The high infiltration rates of 

these sandy soils may also make it more possible for urea to percolate into B horizons 

without being hydrolyzed. Once in B horizons, the movement of unhydrolyzed urea to 

surface waters may be possible. The likelihood of these routes of urea movement cannot 
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be confirmed without field-based studies that include the actual measurement of 

percolation, infiltration, leaching, and runoff from agricultural fields. However, the data 

in this dissertation indicate that the mechanisms influencing urea hydrolysis in different 

soil horizons make it possible for hydrolysis to be delayed, and provides justification for 

future field-based studies. Whether these mechanisms continue to function against a 

background of variable temperature, microbial community distribution, macropore flow, 

pH, infiltration, wetting and drying cycles, and organic matter decomposition, remains to 

be seen. However, greater attention to regional differences in soil chemical and physical 

factors is warranted for evaluating urea-N dynamics in soils. In addition, the proximity of 

sensitive aquatic environments and the rates of movement of both surface and 

groundwater should be evaluated on a field scale. It would appear that “one size does not 

fit all” in terms of the dynamics of urea fertilizer application to soils, and careful 

comparisons must be made between studies to maximize our understanding of these 

dynamics.  
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Appendix A: Soil sampling locations  

  

Figure A.1: Transect sampling points at the Wye Island Natural Resource Management  

Area within the Coastal Plain physiographic province, consisting of an agricultural field  

(AG), a grassed field border (GB), and a riparian zone (RZ). The red transect was  

sampled in October, 2012 and the blue transects were sampled in October, 2013. AG soil  

sample was from the Ingleside mapping unit (IgB) (38°54'11.97"N,  76° 8'12.20"W), the  

GB soil was from the boundary of Ingleside and Longmarsh-Zekiah (LZ) mapping units  

(38°54'10.37"N,  76° 8'13.79"W), and the RZ soil was from the Longmarsh- Zekiah  

mapping unit (38°54'9.98"N,  76° 8'14.70"W); all of which were similar to the Ingleside  

series  (coarse-loamy, siliceous, mesic Typic Hapludult). Photo obtained using Google  

Earth (Version 7.1.2.2041).  

AG GB 

R
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Figure A.2: Transect sampling points at the Central Maryland Research and Education  

Center, Clarksville Facility, in the Piedmont physiographic province consisting of an  

agricultural field (AG), a grassed field border (GB), and a wetland edge (WE). The AG  

soil sample was from the Glenelg unit (GgB) and the GB soil was from the Glenville-  

Baile unit (GnB); both similar to the Glenelg series (fine-loamy, mixed, semiactive,  

mesic Typic Hapludults). The WE soil was from the Hatboro-Codorus unit, similar to the  

Codorus series (fine-loamy, mixed, active, mesic Fluvaquentic Dystrudept). Photo  

obtained using Google Earth (Version 7.1.2.2041).  

    

AG 

GB 

WE 
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Appendix B: Additional data and information related to findings in Chapter 2  

  

Figure B.1: First-order kinetics in Coastal Plain (CP or Wye) pH-manipulated transect  

soils, consisting of an agricultural field (AG), a grassed field border (GB), and a riparian  

zone (RZ) sampled from both A and B horizons. SEM plotted (some error bars are within  

symbols), n=3.  
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Figure B.2: First-order kinetics in Piedmont (PM or Clarksville) pH-manipulated transect  

soils, consisting of an agricultural field (AG), a grassed field border (GB), and a wetland  

edge (WE) sampled from both A and B horizons. SEM plotted (some error bars are  

within symbols), n=3.  
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Figure B.3: Soils sampled in July 2012 from the Ap and Bt horizons of grassy areas near agricultural fields at both the Piedmont (PM)  

and Coastal Plain (CP) sites were used to monitor the stability of urea hydrolysis rate in soils stored field-moist in the laboratory  

(†Due to differences in field sampled moisture content, final concentrations of added N varied; CP Ap received 113 mg urea-N kg-1  

soil, CP Bt received 110 mg urea-N kg-1 soil, PM Ap received 114 mg urea-N kg-1 soil, and CP Bt received 121 mg urea-N kg-1 soil  
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Table B.1: Selected physical and chemical properties of soils sampled in 2013 along three transects consisting of an agricultural field  

(AG), a grassed field border (GB), and a riparian zone (RZ) in the Coastal Plain.  

Transect† Horizon 
Depth 
(cm) Sand Silt Clay 

PSD
‡ pHs H2O C N C:N Mn Al Ca Mg K Fe P  

   
----------%---------- 

  
-----g kg-1 soil---- 

 
--------------------mg kg-1 soil----------------- 

AG 1 Ap 0-15 64.4 25.4 10.3 SL 4.3 127 4.9 0.30 16 1.0 61 242 71 61 1.7 16 
GB 1 Ap 0-15 52.2 34.0 13.8 L 4.6 178 11 0.80 14 1.1 52 532 138 100 5.6 21 
RZ 1 A1/A2 0-15 51.2 34.9 13.9 L 3.7 195 20 1.5 14 8.2 179 359 89 42 20 35 
AG 2 Ap 0-15 57.3 32.2 10.6 SL 5.3 160 7.7 0.50 15 1.0 34 415 122 100 0.6 10 
GB 2 Ap 0-15 71.8 19.6 8.7 SL 3.7 130 8.6 0.60 14 4.0 100 195 61 28 13 18 
RZ 2 A1/A2 0-15 54.5 34.4 11.2 SL 3.3 138 21 1.2 17 3.3 210 164 27 49 23 48 
AG 3 Ap 0-15 59.9 30.0 10.2 SL 5.3 154 7.7 0.59 13 0.9 52 393 125 61 0.9 25 
GB 3 Ap 0-15 48.4 36.0 15.7 L 4.7 161 9.0 0.70 13 1.2 45 579 140 57 3.1 41 
RZ 3 A1/A2 0-15 24.1 56.1 19.9 SiL 4.5 249 21 1.8 12 3.2 110 782 200 91 4.0 28 
AG 1 Bt 45-60 68.4 16.1 15.6 SL 4.9 134 1.3 0.03 43 0 56 541 88 25 2.5 17 
GB 1 Bt 45-60 48.4 31.6 20.0 L 4.8 170 1.7 0.10 17 0 86 715 144 32 3.0 32 
RZ 1 BC 45-60 55.2 29.9 15.0 SL 4.1 104 3.7 0.28 13 1.2 119 543 170 18 3.8 26 
AG 2 Bt 45-60 48.6 29.4 22.1 L 5.0 162 1.5 0.07 21 0 77 696 128 25 2.6 17 
GB 2 Bt 45-60 63.8 21.0 15.3 SL 4.1 140 1.7 0.05 35 0.7 150 459 163 33 3.5 22 
RZ 2 BC 45-60 73.9 20.4 5.8 SL 3.6 68.3 4.2 0.16 26 0.8 170 18 16 21 7.9 48 
AG 3 Bt 45-60 58.3 22.3 19.4 SL 4.8 156 1.7 0.13 13 0 96 587 122 28 3.4 110 
GB 3 Bt 45-60 50.9 30.8 18.4 L 5.4 157 1.8 0.09 20 0 65 660 143 27 2.9 46 
RZ 3 BC 45-60 54.8 37.0 8.2 SL 4.0 76.7 6.2 0.39 16 2 170 173 41 34 7.3 44 

†Transects sampled in 2013 consisting of an agricultural field (AG), grassed field border (GB), and riparian zone (RZ) and numbered 1 – 3.  
‡Particle size distribution  
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Table B.2: Date for rates of urea hydrolysis in native Coastal Plain A and B horizon soils  

plotted in Figure 2.1. Three replicates per soil for each time are listed from the AG  

(agricultural field ), GB (grassed field border), and RZ (riparian zone) transect points  

sampled in 2013. Data for the 2012 transect is included in Tables B.2 and B.3.  

 
2013 AG Ap 

Time (h) Transect 1 Transect 2 Transect 3 

 
-----------------------------mg urea-N kg-1 soil--------------------------------- 

1 104.7 103.9 112.9 106.3 105.3 103.4 103.0 103.5 104.8 
5 105.9 100.0 101.3 104.7 102.8 101.3 100.2 104.7 105.6 

20 96.6 95.3 94.8 89.1 86.9 85.8 
   24 

   
  

 
  94.598 96.581 96.146 

48 87.4 86.8 86.2 61.0 65.6 64.8 82.6 87.1 89.5 
72 92.8 76.3 81.9 38.3 34.0 33.5 68.6 68.1 74.0 

 
2013 GB Ap 

1 102.1 104.5 103.7 95.2 101.6 101.3 105.1 107.2 106.3 
5 97.6 97.4 97.3 98.0 101.3 95.7 97.2 104.9 102.1 

24 62.8 71.0 67.3 87.9 94.4 89.8 69.7 73.0 70.1 
48 32.8 29.7 31.7 72.2 77.8 72.7 34.7 37.3 41.2 
72 0.0 0.0 0.0 59.6 64.5 62.4 0.0 0.0 8.7 

 
2013 RZ A1/A1 

1 90.4 89.3 84.9 92.4 88.7 87.7 96.2 96.2 95.4 
5 87.9 84.0 83.1 85.7 82.5 86.1 84.2 85.4 83.0 

24 63.5 63.1 56.2 60.5 63.8 59.8 27.7 27.0 27.4 
48 38.4 32.8 34.5 35.1 37.3 37.6 0.0 0.0 0.0 
72 17.4 19.2 17.0 26.2 22.2 24.4       
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Table B.3: Data for rates of urea hydrolysis in native Coastal Plain A horizon transect  

soils sampled in 2012 and plotted in Fig. 2.2. Three replicates per soil at each time are  

listed from the AG (agricultural field), GB (grassed border), and RZ (riparian zone) A  

horizon soils.  

Time (h) AG Ap GB Ap RZ A1/A2 

 
-----------------------mg urea-N kg-1 soil---------------------- 

0 0 0 0 0 0 0 0 0 0 
2 109 108 112 95.9 92.0 95.4 81.6 82.4 77.9 
24 112 88.9 89.1 67.8 66.1 65.1 40.9 43.5 45.2 
48 57.0 58.3 57.8 36.8 36.8 39.8 18.2 18.5 20.6 
72 37.0 37.4 40.0 18.5 16.9 17.9 5.7 7.0 9.0 
96 11.9 11.7 10.8 0.0 0.0 0.0 6.4 5.9 5.7 
168 0 0 0 0 0 0 0 0 0 

 
-------------------mg NH4

+-N kg-1 soil------------------- 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 2.5 1.7 2.8 2.7 2.8 2.9 10.4 5.2 5.6 
24 15.6 16.9 15.7 24.8 24.6 25.4 51.1 48.2 46.6 
48 30.0 30.4 30.8 45.3 43.5 42.3 73.4 77.1 81.1 
72 40.5 41.7 40.6 61.9 60.6 60.8 95.4 92.9 91.4 
96 48.3 48.1 48.1 70.7 70.1 73.8 98.3 103.5 103.7 
168 11.4 12.6 13.1 61.8 59.2 62.5 110.6 119.9 113.7 

 
----------------------mg NO3

--N kg-1 soil----------------------- 
0 5.3 5.2 5.5 8.9 8.9 8.9 0.0 0.0 0.0 
2 5.4 5.2 5.3 9.3 8.9 9.3 0.0 0.0 0.0 
24 7.7 7.9 8.3 11.7 11.4 12.1 0.0 0.0 0.0 
48 12.4 12.1 12.1 14.3 14.2 14.6 0.0 0.0 0.0 
72 17.4 17.8 17.6 17.3 17.2 16.9 0.0 0.0 0.0 
96 27.3 27.1 28.8 21.0 21.3 19.2 0.0 0.0 0.0 
168 88.5 86.4 85.4 39.0 36.8 36.0 0.0 0.0 0.0 
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Table B.4: Data for rates of urea hydrolysis in native Coastal Plain B horizon transect  

soils sampled in 2012 and plotted in Fig. 2.3. Three replicates per soil at each time are  

listed from the AG (agricultural field), GB (grassed border), and RZ (riparian zone) B  

horizon soils.  

Time (h) AG Bt GB Bt RZ BC 

 
-----------------------mg urea-N kg-1 soil---------------------- 

0 0 0 0 0 0 0 0 0 0 
2 114 105 102 105 102 103 112 110 107 
24 100 99.0 99.4 99.3 97.1 97.7 108 103 104 
48 95.9 97.3 97.3 97.1 94.1 93.4 99.8 101 101 
72 98.3 97.3 96.7 89.5 87.7 88.4 98.2 95.6 96.9 
96 88.9 85.9 86.7 95.2 91.9 92.8 86.7 90.5 85.4 
168 93.7 91.0 96.3 92.0 93.1 90.8 75.7 73.7 78.2 

 
-------------------mg NH4

+-N kg-1 soil------------------- 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
24 0.0 0.0 0.0 0.0 0.0 0.0 7.8 8.9 8.0 
48 6.3 2.8 3.4 6.1 6.0 6.5 15.4 15.4 15.9 
72 5.4 4.3 5.1 14.1 13.1 14.1 19.9 22.4 19.7 
96 11.6 12.0 12.0 7.2 8.4 6.9 29.6 27.2 30.2 
168 7.8 8.3 7.7 12.9 12.8 13.7 41.2 43.4 37.6 

 
----------------------mg NO3

--N kg-1 soil----------------------- 
0 1.8 1.8 1.7 1.2 1.1 1.0 0.5 0.4 0.4 
2 1.8 1.8 1.7 1.0 0.9 1.0 0.4 0.4 0.3 
24 1.7 1.7 1.7 1.0 1.0 1.0 0.4 0.4 0.3 
48 1.8 1.8 1.7 1.0 0.9 1.0 0.4 0.4 0.4 
72 1.7 1.7 1.8 1.2 1.2 1.3 0.4 0.4 0.4 
96 2.3 2.2 2.1 1.0 1.0 1.0 0.4 0.4 0.4 
168 1.7 1.8 1.8 1.0 1.0 1.1 0.4 0.4 0.4 
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Table B.5: Data for rates of urea hydrolysis in native Piedmont A horizon transect soils,  

plotted in Fig. 2.2. Three replicates per soil at each time are listed from the AG  

(agricultural field), GB (grassed border), and WE (wetland edge) A horizon soils.  

Time (h) AG Ap GB Ap WE Ap 

 
-----------------------mg urea-N kg-1 soil----------------------         

0 0 0 0 0 0 0 0 0 0 
2 92.9 96.4 95.2 94.2 93.4 98.3 89.3 90.2 90.1 
24 32.3 36.5 36.7 46.1 42.0 41.9 41.2 39.7 44.9 
48 0 0 0 0 0 0 5.41 6.42 5.11 
72 0 0 0 0 0 0 0 0 0 
96 0 0 0 0 0 0 0 0 0 
168 0 0 0 0 0 0 0 0 0 

 
-------------------mg NH4

+-N kg-1 soil------------------- 
0 7.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 5.8 6.5 7.1 6.0 5.2 5.4 3.2 3.3 3.6 
24 43.1 41.9 42.4 40.7 43.6 42.8 27.2 24.8 24.5 
48 52.3 50.1 55.1 65.7 64.6 64.5 33.9 33.8 35.1 
72 35.6 34.0 34.4 56.3 58.3 59.0 25.0 26.1 28.1 
96 15.4 14.3 19.2 51.4 52.1 52.8 15.5 13.5 13.7 
168 0.0 0.0 0.0 27.3 29.1 31.9 0.0 0.0 0.0 

 
----------------------mg NO3

--N kg-1 soil----------------------- 
0 9.6 10.0 10.1 17.5 17.0 17.2 7.3 7.0 7.1 
2 11.8 11.9 10.8 17.6 17.0 17.0 8.4 8.5 8.5 
24 24.6 23.6 24.6 23.6 25.4 24.9 26.6 26.9 25.6 
48 39.4 42.3 41.5 32.9 36.1 33.8 49.6 46.3 47.8 
72 59.5 62.2 62.4 43.5 43.1 43.6 68.6 66.7 66.4 
96 85.1 88.9 79.9 51.0 49.6 51.8 88.1 83.7 83.6 
168 108.5 109.6 108.3 80.9 78.5 85.5 106.9 106.0 104.9 
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Table B.6: Data for rates of urea hydrolysis in native Piedmont B horizon transect soils,  

plotted in Fig. 2.3. Three replicates per soil at each time are listed from the AG  

(agricultural field), GB (grassed border), and WE (wetland edge) B horizon soils.  

Time (h) AG Bt GB Bt WE Bw 

 
-----------------------mg urea-N kg-1 soil---------------------- 

0 0 0 0 0 0 0 0 0 0 
2 98.3 97.5 96.8 96.3 96.4 99.2 97.4 97.1 99.9 
24 82.9 84.8 82.9 87.6 89.6 90.8 87.9 85.6 88.6 
48 68.7 67.7 64.6 76.3 75.9 79.8 77.1 75.6 75.7 
72 55.9 50.2 45.5 69.0 66.3 64.9 66.0 66.5 62.1 
96 22.7 22.7 24.3 53.3 53.3 51.3 55.5 54.6 51.9 
168 0 0 0 26.4 20.2 26.8 8.06 12.8 6.41 

 
-------------------mg NH4

+-N kg-1 soil------------------- 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
24 15.3 14.7 16.5 10.4 9.8 10.1 11.2 11.3 10.9 
48 29.1 30.3 31.0 21.0 20.7 20.3 18.8 19.7 20.3 
72 38.3 42.3 45.9 27.4 29.9 31.0 26.5 26.1 28.3 
96 55.9 57.6 57.0 38.3 38.9 39.4 32.4 32.8 33.9 
168 53.3 62.7 57.7 49.5 52.3 49.1 41.4 41.6 41.7 

 
----------------------mg NO3

--N kg-1 soil----------------------- 
0 2.7 2.9 2.9 1.2 1.3 1.3 3.6 3.5 3.4 
2 2.5 2.4 2.3 1.2 1.1 1.2 3.4 3.8 3.5 
24 3.7 3.7 3.8 2.0 1.7 1.8 5.2 5.7 5.3 
48 5.2 5.5 5.3 3.9 3.3 3.1 7.6 7.7 8.4 
72 6.6 6.8 7.1 4.1 4.9 4.6 9.7 9.0 10.4 
96 10.8 10.1 10.3 6.6 6.2 6.5 11.8 12.2 11.3 
168 19.7 17.2 19.0 11.3 13.8 12.9 23.3 19.3 21.6 
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Table B.7: Data for rate of urea hydrolysis in pH-manipulated Coastal Plain A horizon  

transect soils plotted in Fig. 2.4a. AG (agricultural field), GB (grassed border), and RZ  

(riparian zone) soils listed. Each mean and SEM derived from three replicates.  

 
AG Ap GB Ap RZ A1/A2 

 

------------------Rate of Urea Hydrolysis-------------------  
(mg urea-N kg-1 soil h-1) 

pH Mean SEM Mean SEM Mean SEM 
3.3 0.0172 0.0252     

  3.7 
  

    0.926 0.0356 
4.0 

  
0.683 0.0290 

  5.1 
  

    1.99 0.0388 
5.4 0.807 0.0151     

  5.7 
  

    2.38 0.0475 
5.9 

  
0.956 0.0120 

  6.3 
  

    2.20 0.0933 
6.5 0.891 0.0175     

  6.6 
  

1.11 0.0362 
  6.8 0.974 0.0248     
  6.9     1.15 0.0312     
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Table B.8: Data for rate of urea hydrolysis in pH-manipulated Coastal Plain B horizon  

transect soils plotted in Fig. 2.4c. AG (agricultural field), GB (grassed border), and RZ  

(riparian zone) soils listed. Each mean and SEM derived from three replicates.  

  AG Bt GB Bt RZ BC 

 

-------------------Rate of Urea Hydrolysis------------------- 
(mg urea-N kg-1 soil h-1) 

pH Mean SEM Mean SEM Mean SEM 
3.1 0.004026 0.0159     

  3.6 
  

-0.0136 0.004115 
  4.1 

  
    0.1632 0.0108 

4.9 
  

    0.2008 0.006483 
5.0 

  
0.139 0.006216 

  5.2 0.141 0.0133     
  5.9 

  
    0.2453 0.005176 

6.2 
  

0.198 0.005868 
  6.5 0.159 0.0264     
  6.6 

  
    0.2891 0.0104 

6.9 
  

0.249 0.006093 
  7.1 0.198 0.00922         
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Table B.9: Data for rate of urea hydrolysis in pH-manipulated Piedmont A horizon  

transect soils plotted in Fig. 2.4b. AG (agricultural field), GB (grassed border), and WE  

(wetland edge) soils listed. Each mean and SEM derived from three replicates.  

  AG Ap GB Ap WE Ap 

 

---------------------Rate of Urea Hydrolysis--------------------- 
(mg urea-N kg-1 soil h-1) 

pH Mean SEM Mean SEM Mean SEM 
3.7 

  
†0.169 0.0196 

  3.9 0.616 0.04486     
  4.2 

  
    †0.348 0.0341 

4.5 
  

1.29 0.0366 
  5.2 

  
    1.53 0.0563 

5.5 1.99 0.05078     
  6.2 

  
1.65 0.0382 

  6.7 2.70 0.06134 1.83 0.0485 
  6.9 2.67 0.07144     
  7.0 

  
    1.69 0.0407 

7.2         1.69 0.0531 
†These values excluded from linear regression plotted in Fig. 2.2b 
because they are not linear. 
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Table B.10: Data for rate of urea hydrolysis in pH-manipulated Piedmont B horizon  

transect soils plotted in Fig. 2.4d. AG (agricultural field), GB (grassed border), and WE  

(wetland edge) soils listed. Each mean and SEM derived from three replicates.  

  AG Bt GB Bt WE Bw 

 

---------------------Rate of Urea Hydrolysis--------------------- 
(mg urea-N kg-1 soil h-1) 

pH Mean SEM Mean SEM Mean SEM 
3.7 0.509 0.01912     

  3.9 
  

    0.07036 0.0118 
4.1 

  
0.200 0.00823 

  4.7 0.751 0.0280     
  5.5 

  
0.414 0.00750 

  5.7 
  

    0.357 0.0177 
6.1 0.847 0.02543     

  7.2 
  

0.533 0.0234 0.457 0.0277 
7.3 0.978 0.01289 0.593 0.0115 0.533 0.0165 
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Appendix C: Additional data and information related to findings in Chapter 3  

Table C.1: Data for numbers of Eub 16S genes in pH-manipulated soils presented in Fig. 3.2. AG (agricultural field), GB (grassed  

border), and RZ (riparian zone) A horizon soils listed.  

  AG Ap GB Ap RZ A1/A2 
pH ----------------------------------------------Eub 16S gene copies g-1 soil------------------------------------------------ 
3.3 1.21E+09 1.18E+09 8.02E+08 

      3.7 
      

8.67E+09 1.48E+10 1.38E+10 
4.0 

   
3.94E+09 6.43E+09 8.78E+09 

   5.1 
      

1.65E+10 2.27E+10 2.28E+10 
5.4 7.84E+09 1.97E+10 1.14E+10 

      5.9 
   

1.57E+10 6.01E+09 1.25E+10 
   6.3 

      
3.23E+10 2.80E+10 2.24E+10 

6.8 8.36E+09 5.19E+09 9.25E+09 
      6.9       1.77E+10 1.28E+10 1.12E+10       
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Table C.2: Data for numbers of ITS genes in pH-manipulated soils presented in Fig. 3.3. AG (agricultural field), GB (grassed border),  

and RZ (riparian zone) A and B horizon soils listed.  

  AG Ap GB Ap RZ A1/A2 
pH -------------------------------------------------gene copies g-1 soil-------------------------------------------------- 
3.3 1.17E+09 9.94E+08 6.90E+08 

      3.7 
      

1.29E+08 2.01E+08 1.42E+08 
4.0 

   
1.57E+07 2.93E+07 5.96E+07 

   5.1 
      

2.16E+08 1.60E+08 1.77E+08 
5.4 4.15E+07 9.20E+07 3.22E+07 

      5.9 
   

5.55E+07 4.00E+07 5.48E+07 
   6.3 

      
2.59E+08 2.07E+08 1.20E+08 

6.8 3.34E+07 1.98E+07 3.53E+07 
      6.9       7.42E+07 5.16E+07 4.04E+07       

  

  AG Bt GB Bt RZ BC 
pH -------------------------------------------------gene copies g-1 soil-------------------------------------------------- 
3.1 2.36E+06 

 
4.40E+05 

      3.6 
   

2.52E+08 3.31E+08 2.96E+08 
   4.1 

      
7.81E+07 1.38E+08 7.14E+07 

4.9 
      

5.85E+07 1.31E+08 6.82E+07 
5.0 

   
1.51E+07 2.51E+07 2.46E+07 

   5.2 5.54E+05 7.82E+05 5.18E+05 
      6.6 

      
7.65E+07 1.30E+08 1.09E+08 

6.9 
   

2.57E+07 2.70E+07 1.49E+07 
   7.1 2.85E+06 3.23E+06 4.58E+06             
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Table C.3: Data for numbers of Eub 16S genes in pH-manipulated soils presented in Fig. 3.4. AG (agricultural field), GB (grassed  

border), and RZ (riparian zone) A horizon soils listed.  

  Urea Hydrolysis Rate ------------No urea------------ -------------+urea------------ 

 
(mg urea-N kg-1 h-1) ---------------------1010 Eub 16S copies g-1 soil--------------------- 

CP AG Acid (~3.3) 0.0172 0.0742   0.0678 0.121 0.118 0.0802 
CP AG Native (~5.4) 0.807 1.08 1.10 1.09 0.784 1.97 1.14 
CP AG CaCO3 #2 (~6.8) 0.974 0.974 1.05 0.901 0.836 0.519 0.925 
CP GB Native (4.0) 0.683 1.14 1.19 1.11 0.394 0.643 0.878 
CP GB CaCO3#1 (5.9) 0.956 1.23 1.05 1.36 1.57 0.601 1.25 
CP GB CaCO3#3 (6.9) 1.15 1.29 1.24 1.26 1.77 1.28 1.12 
CP RZ Native (3.7) 0.926 1.70 1.73 1.70 0.867 1.48 1.38 
CP RZ CaCO3 #1 (5.1) 1.99 1.40 1.37 

 
1.65 2.27 2.28 

CP RZ CaCO3 #3 (6.3) 2.20 1.93 1.92 1.87 3.23 2.80 2.24 
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Table C.4: Data for numbers of ureC genes and rate of urea hydrolysis in pH-manipulated soils presented in Fig. 3.5. AG (agricultural  

field), GB (grassed border), and RZ (riparian zone) A and B horizon soils listed.  

  Urea Hydrolysis Rate No urea +urea 

 
(mg urea-N kg-1 h-1) ------------------------108 ureC copies g-1 soil------------------------- 

CPAG Ap Acid (~3.3) 0.0172 0.0127 0.0117 0.0113 0.00238 0.0036 0.0017 
CP AG Ap Native (~5.4) 0.807 1.49 1.48 1.47 1.73 2.42 1.31 
CP AG Ap CaCO3 #2 (~6.8) 0.974 1.93 1.88 1.81 1.07 0.777 1.43 
CP GB Ap Native (4.0) 0.683 1.11 1.13 1.13 0.52 0.654 0.649 
CP GB Ap CaCO3#1 (5.9) 0.956 1.48 1.48 1.43 1.64 1.36 1.18 
CP GB Ap CaCO3#3 (6.9) 1.15 1.51 1.45 1.40 1.85 1.32 1.23 
CP RZ A1/A2 Native (3.7) 0.926 2.44 2.30 2.32 1.83 3.09 2.03 
CP RZ A1/A2 CaCO3 #1 (5.1) 1.99 3.21 3.10 3.16 2.89 2.46 2.48 
CP RZ A1/A2 CaCO3 #3 (6.3) 2.20 2.74 2.82 2.70 3.73 2.91 3.24 
CP AG Bt Acid (3.1) 0.00402 0.00071 0.000674 0.000654 0.00197 

 
0.0004 

CP AG Bt Native (5.2) 0.141 0.0874 0.0843 0.0877 0.0385 0.0451 0.0514 
CP AG Bt CaCO3 #2 (7.1) 0.198 0.0881 0.0960 0.102 0.157 0.145 0.196 
CP GB Bt Acid (~3.6) 0.0136 0.00899 0.00868 0.00882 0.0403 0.0613 0.0319 
CP GB Bt Native (5.0) 0.139 0.343 0.352 0.334 0.471 0.535 0.547 
CP GB Bt CaCO3#2 (6.9) 0.249 0.388 0.374 0.372 0.849 0.858 0.719 
CP RZ BC Native (4.1) 0.163 0.350 0.345 0.334 0.578 0.520 0.518 
CP RZ BC CaCO3 #1 (4.9) 0.201 0.392 0.389 0.389 0.329 0.689 0.464 
CP RZ BC CaCO3 #3 (6.6) 0.289 0.598 0.599 0.600 0.967 1.15 1.32 
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Table C.5: Data for the correlation between numbers of ureC and Eub 16S genes in pH-manipulated soils before urea was added.  

Presented in Fig. 3.6 a and c. AG (agricultural field), GB (grassed border), and RZ (riparian zone) A and B horizon soils listed.  

  No urea added 

 
------108 ureC copies g-1 soil------ ------1010 Eub 16S copies g-1 soil------ 

CPAG Ap Acid (~3.3) 0.0127 0.0117 0.0113 0.0742   0.0678 
CP AG Ap Native (~5.4) 1.49 1.48 1.47 1.08 1.10 1.09 
CP AG Ap CaCO3 #2 (~6.8) 1.93 1.88 1.81 0.974 1.05 0.901 
CP GB Ap Native (4.0) 1.11 1.13 1.13 1.14 1.19 1.11 
CP GB Ap CaCO3#1 (5.9) 1.48 1.48 1.43 1.23 1.05 1.36 
CP GB Ap CaCO3#3 (6.9) 1.51 1.45 1.40 1.29 1.24 1.26 
CP RZ A1/A2 Native (3.7) 2.44 2.30 2.32 1.70 1.73 1.70 
CP RZ A1/A2 CaCO3 #1 (5.1) 3.21 3.10 3.16 1.40 1.37 

 CP RZ A1/A2 CaCO3 #3 (6.3) 2.74 2.82 2.70 1.93 1.92 1.87 
CP AG Bt Acid (3.1) 0.000710 0.000674 0.000654 0.000017 0.0000157 0.0000158 
CP AG Bt Native (5.2) 0.0874 0.0843 0.0877 0.0459 0.0455 0.0448 
CP AG Bt CaCO3 #2 (7.1) 0.0881 0.0960 0.102 0.0524 0.0513 0.0523 
CP GB Bt Acid (~3.6) 0.00899 0.00868 0.00882 0.119 0.114 0.118 
CP GB Bt Native (5.0) 0.343 0.352 0.334 0.297 0.296 0.299 
CP GB Bt CaCO3#2 (6.9) 0.388 0.374 0.372 0.323 0.329 0.315 
CP RZ BC Native (4.1) 0.350 0.345 0.334 0.371 0.353 0.351 
CP RZ BC CaCO3 #1 (4.9) 0.392 0.389 0.389   0.536 0.514 
CP RZ BC CaCO3 #3 (6.6) 0.598 0.599 0.600 0.462 0.452 0.470 
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Table C.6: Data for the correlation between numbers of ureC and Eub 16S genes in pH-manipulated soils after urea was added.  

Presented in Fig. 3.6 b and d. AG (agricultural field), GB (grassed border), and RZ (riparian zone) A and B horizon soils listed.  

  After urea added 

 
-------108 ureC copies g-1 soil------ ---1010 Eub 16S copies g-1 soil--- 

CPAG Ap Acid (~3.3) 0.00238 0.00360 0.00170 0.121 0.118 0.0802 
CP AG Ap Native (~5.4) 1.73 2.42 1.31 0.784 1.97 1.14 
CP AG Ap CaCO3 #2 (~6.8) 1.07 0.777 1.43 0.836 0.519 0.925 
CP GB Ap Native (4.0) 0.52 0.654 0.649 0.394 0.643 0.878 
CP GB Ap CaCO3#1 (5.9) 1.64 1.36 1.18 1.57 0.601 1.25 
CP GB Ap CaCO3#3 (6.9) 1.85 1.32 1.23 1.77 1.28 1.12 
CP RZ A1/A2 Native (3.7) 1.83 3.09 2.03 0.867 1.48 1.38 
CP RZ A1/A2 CaCO3 #1 (5.1) 2.89 2.46 2.48 1.65 2.27 2.28 
CP RZ A1/A2 CaCO3 #3 (6.3) 3.73 2.91 3.24 3.23 2.80 2.24 
CP AG Bt Acid (3.1) 0.00197 

 
0.000400 0.0000703   0.0000347 

CP AG Bt Native (5.2) 0.0385 0.0451 0.0514 0.00952 0.0177 0.0132 
CP AG Bt CaCO3 #2 (7.1) 0.157 0.145 0.196 0.0667 0.0750 0.119 
CP GB Bt Acid (~3.6) 0.0403 0.0613 0.0319 0.196 0.259 0.230 
CP GB Bt Native (5.0) 0.471 0.535 0.547 0.429 0.423 0.469 
CP GB Bt CaCO3#2 (6.9) 0.849 0.858 0.719 0.699 0.670 0.532 
CP RZ BC Native (4.1) 0.578 0.520 0.518 0.508 0.512 0.481 
CP RZ BC CaCO3 #1 (4.9) 0.329 0.689 0.464 0.339 0.566 0.437 
CP RZ BC CaCO3 #3 (6.6) 0.967 1.15 1.32 0.417 0.636 0.665 
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Table C.7: ITS gene copy numbers in freshly-sampled vs. stored soils from the agricultural field (AG), grassed field border (GB), and  

riparian zone (RZ) A and B horizons. Measurements for triplicate samples presented.  

  Fresh Stored 

 
----------------------------ITS gene copies g-1 soil-------------------------- 

AG Ap 5.86E+07 6.05E+07 5.99E+07 3.87E+07 3.58E+07 3.80E+07 
GB Ap 8.25E+07 7.81E+07 8.40E+07 6.17E+07 6.24E+07 6.00E+07 
RZ A1/A2 8.53E+08 9.51E+08 9.64E+08 1.76E+08 1.69E+08 1.55E+08 
AG Bt 1.90E+06 1.87E+06 1.85E+06 1.50E+06 1.47E+06 1.40E+06 
GB Bt 4.60E+06 4.30E+06 4.30E+06 5.20E+06 5.08E+06 5.14E+06 
RZ BC 6.95E+07 7.04E+07 7.00E+07 2.81E+07 2.84E+07 2.47E+07 
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Appendix D: Additional data and information related to findings in Chapter 4 

 

Table D.1: Chemical characteristics of AG Ap soil treated with different types and 

concentrations of added C. 

Site Horizon 
Organic 
Acid C added †Urea-N  Fe Mn Al pH Eh pe 

  
   

---------------mg kg-1 soil--------------- 
     AG Ap Ascorbic 0 90.7 0 0 0 5.2 449 7.6 

  AG Ap Ascorbic 100 70.5 0 26 0 5.2 443 7.5 
  AG Ap Ascorbic 400 82.5 2.7 100 8.6 4.9 432 7.3 
  AG Ap Ascorbic 1,000 106 18 160 42 4.1 416 7.0 
  AG Ap Ascorbic 4000‡ 72.1 240 210 82 4.0 130 2.2 
  AG Ap Ascorbic 10000‡ 38.7 390 230 130 3.5 149 2.5 
  AG Ap Gallic 0 85.3 0 0 0 5.1 482 8.1 
  AG Ap Gallic 100 68.0 0 32 0 5.3 459 7.7 
  AG Ap Gallic 400 69.4 0 73 0 5.2 288 4.9 
  AG Ap Gallic 1,000 87.7 5 110 6.7 4.5 272 4.6 
  AG Ap Gallic 4000‡ 74.7 30 170 71 3.7 303 5.1 
  AG Ap Gallic 10000‡ 51.0 50 200 140 3.4 319 5.4 
  AG Ap Benzoic 0 91.0 0 0.0 0 5.1 519 8.8 
  AG Ap Benzoic 100 93.0 0 0.4 0 5.1 496 8.4 
  AG Ap Benzoic 400 92.4 0 0.3 0 4.5 536 9.0 
  AG Ap Benzoic 1,000 85.0 0 0.3 0.98 4.1 560 9.5 
  AG Ap Benzoic 4,000 73.8 0 1.5 18 3.5 587 9.9 
  AG Ap Benzoic 10,000 78.1 0 3.3 44 3.2 607 10.3 
  AG Ap Cinnamic 0 96.1 0 0.0 0 5.0 491 8.3 
  AG Ap Cinnamic 100 96.9 0 0.0 0 4.8 478 8.1 
  AG Ap Cinnamic 400 89.6 0 0.2 0 4.6 480 8.1 
  AG Ap Cinnamic 1,000 84.1 0 0.7 0 4.2 517 8.7 
  †Remaining after 24 hour incubation; 100 mg N kg-1 soil added initially 

    ‡Treatments that resulted in values beneath the FeOOH  Fe2+ redox line on the pe/pH  
diagram (Fig. 4.3), indicating the presence of reduced Fe. 
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Table D.2: Chemical characteristics of AG Bt soil treated with different types and  

concentrations of added C.  

Site Horizon 
Organic 
Acid C added †Urea-N  Fe Mn Al pH Eh pe 

  
   

-----------------mg kg-1 soil----------------- 
     AG Bt Ascorbic 0 88.7 0 0 0 5.1 377 6.4 

  AG Bt Ascorbic 100 74.2 0 4.7 0 4.8 389 6.6 
  AG Bt Ascorbic 400 84.0 10 8.7 0 4.5 330 5.6 
  AG Bt Ascorbic 1,000 94.8 51 9.7 2.2 4.3 287 4.9 
  AG Bt Ascorbic 4000‡ 77.4 330 13 80 3.4 246 4.2 
  AG Bt Ascorbic 10000‡ 38.2 980 18 130 3.4 165 2.8 
  AG Bt Gallic 0 82.2 0 0 0 5.0 503 8.5 
  AG Bt Gallic 100 65.8 0 4.6 0 5.0 499 8.4 
  AG Bt Gallic 400 43.3 0 7.8 0 4.9 484 8.2 
  AG Bt Gallic 1,000 8.79 0.35 10 0 4.8 401 6.8 
  AG Bt Gallic 4000‡ 24.7 13 10 41 3.8 283 4.8 
  AG Bt Gallic 10,000 70.3 32 11 87 3.4 320 5.4 
  AG Bt Benzoic 0 89.4 0 0 0 5.3 477 8.1 
  AG Bt Benzoic 100 72.3 0 0.58 0 5.2 482 8.1 
  AG Bt Benzoic 400 59.1 0 1.8 0 5.1 482 8.1 
  AG Bt Benzoic 1,000 99.8 0 0 0 4.1 525 8.9 
  AG Bt Benzoic 4,000 98.6 0 0.22 13 3.6 547 9.2 
  AG Bt Benzoic 10,000 98.2 0 0.75 31 3.2 559 9.4 
  AG Bt Cinnamic 0 95.9 0 0 0 5.3 496 8.4 
  AG Bt Cinnamic 100 85.7 0 0 0 5.2 494 8.4 
  AG Bt Cinnamic 400 55.8 0 0.12 0 5.2 482 8.1 
  AG Bt Cinnamic 1,000 68.3 0 0.15 0 4.6 498 8.4 
  †Remaining after 24 hour incubation; 100 mg N kg-1 soil added initially 

    ‡Treatments that resulted in values beneath the FeOOH  Fe2+ redox line on the pe/pH  
diagram (Fig. 4.3), indicating the presence of reduced Fe. 
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Table D.3: Chemical characteristics of RZ A1/A2 soil treated with different types and  

concentrations of added C.  

Site Horizon 
Organic 
Acid 

C 
added †Urea-N  Fe Mn Al pH Eh pe 

  
   

---------------mg kg-1 soil--------------- 
     RZ A1/A2 Ascorbic 0 58.7 1.1 2.8 0 4.2 435 7.3 

  RZ A1/A2 Ascorbic 100 44.3 0.34 51 0 4.4 444 7.5 
  RZ A1/A2 Ascorbic 400 44.8 3.1 110 12 4.3 447 7.5 
  RZ A1/A2 Ascorbic 1,000 58.2 14 140 64 3.6 431 7.3 
  RZ A1/A2 Ascorbic 4000‡ 47.7 230 150 75 3.5 249 4.2 
  RZ A1/A2 Ascorbic 10000‡ 21.7 500 160 110 3.5 168 2.8 
  RZ A1/A2 Gallic 0 45.0 0 2.4 0 4.2 536 9.1 
  RZ A1/A2 Gallic 100 35.8 0 61 0 4.4 523 8.8 
  RZ A1/A2 Gallic 400 37.0 0.6 110 0 4.2 448 7.6 
  RZ A1/A2 Gallic 1,000 44.5 3.3 120 7.8 4.0 334 5.6 
  RZ A1/A2 Gallic 4000‡ 29.2 14 140 44 3.5 336 5.7 
  RZ A1/A2 Gallic 10000‡ 19.9 25 150 84 3.3 346 5.9 
  RZ A1/A2 Benzoic 0 50.2 0.08 2.6 0 4.3 525 8.9 
  RZ A1/A2 Benzoic 100 46.6 0 9.8 0 4.4 521 8.8 
  RZ A1/A2 Benzoic 400 35.5 0 7.8 0 4.3 521 8.8 
  RZ A1/A2 Benzoic 1,000 24.4 0 4.2 1.7 4.1 531 9.0 
  RZ A1/A2 Benzoic 4,000 0.0 0 6.6 10 3.6 550 9.3 
  RZ A1/A2 Benzoic 10,000 27.8 0 11 28 3.3 564 9.5 
  RZ A1/A2 Cinnamic 0 52.6 0 2.5 0 4.0 530 8.9 
  RZ A1/A2 Cinnamic 100 44.7 0 2.8 0 4.1 528 8.9 
  RZ A1/A2 Cinnamic 400 24.6 0 2.7 0 4.1 528 8.9 
  RZ A1/A2 Cinnamic 1,000 17.6 0 3.0 0 4.1 534 9.0 
  †Remaining after 24 hour incubation; 100 mg N kg-1 soil added initially 

    ‡Treatments that resulted in values beneath the FeOOH  Fe2+ redox line on the pe/pH  
diagram (Fig. 4.3), indicating the presence of reduced Fe.  
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Table D. 4: Chemical characteristics of RZ BC soil treated with different types and  

concentrations of added C.  

Site Horizon 
Organic 
Acid 

C 
added †Urea-N  Fe Mn Al pH Eh pe 

  
   

---------------mg kg-1 soil---------------- 
     RZ BC Ascorbic 0 87.3 0.61 1.1 10 4.0 447 7.5 

  RZ BC Ascorbic 100 52.5 0.51 40 9.2 4.2 457 7.7 
  RZ BC Ascorbic 400 43.4 3.6 77 11 4.3 455 7.7 
  RZ BC Ascorbic 1,000 37.7 36 91 21 4.3 314 5.3 
  RZ BC Ascorbic 4000‡ 18.9 310 99 88 4.0 170 2.9 
  RZ BC Ascorbic 10000‡ 28.3 750 110 220 3.2 167 2.8 
  RZ BC Gallic 0 71.7 0 1.0 9.2 4.0 537 9.1 
  RZ BC Gallic 100 54.7 0 46 5.7 4.2 525 8.9 
  RZ BC Gallic 400 51.0 1.0 68 5.0 4.3 454 7.7 
  RZ BC Gallic 1,000 23.2 4.2 76 5.0 4.4 347 5.9 
  RZ BC Gallic 4000‡ 41.2 35 88 110 3.6 273 4.6 
  RZ BC Gallic 10000‡ 59.7 68 96 170 3.2 325 5.5 
  RZ BC Benzoic 0 78.2 0.20 0.89 11 4.1 537 9.1 
  RZ BC Benzoic 100 61.8 0 2.8 11 4.1 535 9.0 
  RZ BC Benzoic 400 50.2 0 7.2 11 4.2 535 9.0 
  RZ BC Benzoic 1,000 63.9 0 3.8 31 3.7 540 9.1 
  RZ BC Benzoic 4,000 73.3 0.20 2.3 75 3.2 557 9.4 
  RZ BC Benzoic 10,000 89.5 0 3.6 120 3.0 570 9.6 
  RZ BC Cinnamic 0 76.4 0.10 1.0 11 4.1 531 9.0 
  RZ BC Cinnamic 100 72.3 0.20 1.4 11 4.2 527 8.9 
  RZ BC Cinnamic 400 90.6 0 1.3 19 3.9 539 9.1 
  RZ BC Cinnamic 1,000 78.7 0 1.3 24 3.8 548 9.3 
  †Remaining after 24 hour incubation; 100 mg N kg-1 soil added initially 

    ‡Treatments that resulted in values beneath the FeOOH  Fe2+ redox line on the pe/pH  
diagram (Fig. 4.3), indicating the presence of reduced Fe.  
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Appendix E: Additional data and information related to discussion in Chapter 5. 

 

Figure E.1: Temperature effects on urea hydrolysis in Coastal Plain (CP) and Piedmont 

(PM) A horizon soils. AG (agricultural field), GB (grassed field border), RZ (riparian 

zone), WE (wetland edge) soils plotted. SEM plotted, error bars may be within symbol 

area (n=3).   
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Appendix F: Studies of effects of added P on soil urea hydrolysis  

 

Figure F.1: Urea hydrolysis in soils sampled from the Wye Research and Education 

Center, which have a history of different levels of P2O5 application. Lack of evidence of 

inhibition of urea hydrolysis by soil P directed research toward soil C (Chap. 4). 
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Figure F.2: Urea hydrolysis in soils treated with varying concentrations of NaCl and Na2HPO4. Wye (or Coastal Plain) agricultural 

field, transect 1 (WA1), Wye grassed field border, transect 1 (WEOF1), and Wye riparian zone, transect 1 (WR1) values plotted. 

Results of this work and that presented in Figure F.1 directed future research toward soluble C effects on soil urea hydrolysis.
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