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Human emotion perception is a part of affective computing, a branch of computing

that studies and develops systems and devices that can recognize, interpret, process,

and simulate human affects. Research in human emotion perception, however, has been

mostly restricted to psychology-based literature which explores the theoretical aspects of

emotion perception, but does not touch upon its practical applications. For instance,

human emotion perception plays a pivotal role in an extensive array of sophisticated

intelligent systems, encompassing domains such as behavior prediction, social robotics,

medicine, surveillance, and entertainment. In order to deploy emotion perception in these

applications, extensive research in psychology has demonstrated that humans not only

perceive emotions and behavior through diverse human modalities but also glean insights

from situational and contextual cues.

This dissertation not only enhances the capabilities of existing human emotion percep-

tion systems but also forges novel connections between emotion perception and multimedia

analysis, social media analysis, and multimedia forensics. Specifically, this work introduces

two innovative algorithms that revolutionize the construction of human emotion percep-

tion models. These algorithms are then applied to detect falsified multimedia, understand

human behavior and psychology on social media networks, and extract the intricate array



of emotions evoked by movies.

In the first part of this dissertation, we delve into two unique approaches to advance

emotion perception models. The first approach capitalizes on the power of multiple

modalities to perceive human emotion. The second approach leverages the contextual

information, such as the background scene, diverse modalities of the human subject,

and intricate socio-dynamic inter-agent interactions. These elements converge to predict

perceived emotions with better accuracy, culminating in the development of context-aware

human emotion perception models.

In the second part of this thesis, we forge connections between emotion perception

and three prominent domains of artificial intelligence applications. These domains include

video manipulations and deepfake detection, multimedia content analysis, and user be-

havior analysis on social media platforms. Drawing inspiration from emotion perception,

we conceptualize enriched solutions that push the conventional boundaries and redefine

the possibilities within these domains.

All experiments in this dissertation have been conducted on all state-of-the-art emotion

perception datasets, including IEMOCAP, CMU-MOSEI, EMOTIC, SENDv1, MovieGraphs,

LIRIS-ACCEDE, DF-TIMIT, DFDC, Intentonomy, MDID, and MET-Meme. In fact, we

propose three additional datasets to this list, namely GroupWalk, VideoSham, and In-

tentgram. In addition to providing quantitative results to validate our claims, we

conduct user evaluations where applicable, serving as a compelling testament to the re-

markable outcomes of our experiments.
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Chapter 1

Introduction

Prior work defines emotion perception as “the ability to appreciate the emotion informa-

tion conveyed by the face, body posture, voice, and contextual information, allowing us

to adapt and properly respond to environmental situation” (Nahi et al. 2022). Relatedly,

affective computing, a term coined by Dr. Rosalind Picard at MIT, entails developing

technologies that can understand, interpret and respond to human emotions (Rosalind W.

Picard 1995). Moreover, emotion perception is an important aspect of social cognition

and is essential for successful communication and interpersonal relationships. Recogniz-

ing and understanding perceived human emotions of others comes naturally to humans,

as humans are socially-aware. The overall goal of affective computing is to impart these

human emotion recognition capabilities to machines so that human-machine interaction

may feel more natural in the same way as human-human interactions do. This is becoming

increasingly important given the rise in the number of ways in which humans interact with

machines via phones, computers, and smart appliances. is a challenging enough task for

humans, let alone machines, due to the complexity and variability of emotions and their

expressions.

Furthermore, emotion perception has already penetrated into multiple aspects of our

daily lives. For instance, in the ongoing quest to make a smart assistant, there is a flood of
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emotion-equipped avatars and chatbots in the market. Amazon is making Alexa (Robitzski

2019) better understand the humans with whom it interacts by scanning people’s voices

for signs of emotions. Similarly, ElliQ robot (Marchese 2022) has been developed which

addresses the problem of loneliness and lack of social activity among ageing adults. It

uses speech, lighting, sound, images and movement to convey emotion and support.

Emotion perception ideas are also finding applications in digital health. For instance,

one specific use case is in designing specialized teaching methodologies for Autistic chil-

dren (Haber, Voss, and Wall 2020; Hebden 2015). Children with autistic spectrum disorders

often struggle to recognize and express emotions, making it difficult to behave appropri-

ately in social situations. They are also being deployed to provide mental health therapy

for people suffering from Alzheimer’s disease; by offering personalized, AI-curated playlists

of songs designed to help alleviate symptoms of depression, anxiety, stress, burnout, and

other neurocognitive conditions (Angus 2022; Labbe 2022).

Another interesting use case is the use of Emotion AI for driving applications; to mon-

itor the driver’s life signs and mental stress in real time in an effort to ensure driving

safety (McManus 2017; Times 2022). Emotion recognition can also be used to predict cus-

tomer behavior, improve customer experience, and increase sales (C. T. Allen, Machleit, and

Kleine 1992; Denham et al. 2000). In social and cultural domains, emotion recognition can be

used to synthesize and animate digital characters and avatars, enabling more realistic and

engaging communication (Roth et al. 2016; Heidicker, Langbehn, and Steinicke 2017). Emotion

recognition is also relevant in the fields of social robotics, where robots can recognize and

respond to human emotions in real-time, creating more personalized and engaging inter-

actions (Bauer et al. 2009; Narayanan et al. 2020). Emotion recognition has critical implications

in the field of surveillance, where it can be used to detect and prevent criminal activity,

identify potential threats, and improve security (Clavel et al. 2008a; Clavel et al. 2008b). In

the domain of digital teaching and counseling, emotion recognition can be used to per-

sonalize and enhance the learning and counseling experience, improving the effectiveness
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of therapy and education (Baur et al. 2013; Jamy Li et al. 2016).

Emotion perception is an interdisciplinary research area and involves contributions from

all fields such as psychology, computer science and social sciences. In psychology, emotion

perception involves the study of how people recognize and interpret emotional experiences.

The earliest study in emotion perception dates back to the 1920s, when for the first time

researchers showed images of faces of people to gather the perceived emotion labels. This

was shortly followed by Basic Emotions Theory proposed by Paul Ekman. The theory

suggested that there are six universal emotions that can be recognized across cultures:

happiness, sadness, anger, fear, disgust, and surprise (P. Ekman 1971). This is till date

a very common emotion label taxonomy used. Subsequently, there have been multiple

other theories that have been proposed to explain how humans process emotions (Zajonc

1980; LeDoux 1998). In the 2000s another theory, the theory of constructed emotion was

proposed which suggested that emotions are not 6 discrete categories (Barrett, Mesquita,

and E. R. Smith 2010).

In computer science the focus is on developing algorithms to recognize emotions from

various sources, including facial expressions, speech, and physiological data. For instance,

in the early days researchers relied on manual coding of facial expressions to identify

emotional states. One of the first systems for automatic emotion recognition was the

Facial Action Coding System (FACS), which allowed for automatic facial expression (P.

Ekman 1978). By 1980s and 1990s, various other modalities speech, text and physiological

signals such as heart rate and skin conductance had been modeled and used for emotion

perception (Rosalind W. Picard 1995). In the 1990s, Rosalind Picard introduced the concept

of affective computing, which involves the development of technologies that can recognize,

interpret, and respond to human emotions. And, as of today, we now have much more

advanced deep learning architectures for emotion perception.

Similarly, in social sciences various questions around emotion perception are being

explored since a long time. Some of these include understanding how emotions shape
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social interactions and relationships (Hochschild 1979); and the role of emotions in eco-

nomic decision-making (Davidson, K. Scherer, and Goldsmith 2003). More recently research is

on understanding how emotions can influence voting, public opinion, and social move-

ments (Jasper 1998) and how culture can influence emotional experiences (Markus and Ki-

tayama 1991).

Similarly, both ‘multimodal learning’ and ‘context-aware’ learning are both being used

to enrich machine learning algorithms today. Multimodal learning is an approach to ma-

chine learning that integrates information from multiple sensory modalities, such as vision,

speech, and text. A lot of prior work in focuses on unimodal emotion perception, which

considers only a single input modality and these algorithms do perform well. Several

studies in psychology (Aviezer, Trope, and Todorov 2012; Soleymani, Pantic, and Pun 2011; Pantic

et al. 2005), however, suggest that an ideal system for automatic human emotion recogni-

tion should be multimodal, simultaneously taking into account multiple cues from various

modalities. Multimodal emotion perception models have been shown to outperform uni-

modal models (S. Yoon et al. 2019; Gunes and Piccardi 2007; Majumder et al. 2018; A. B. Zadeh et al.

2018; Choi, Song, and C. W. Lee 2018; Sahay et al. 2018) as they make use of the complementary

nature of information from different cues, resulting in better inference models that are

also more robust to sensor noise. However, one of the longstanding challenges in devel-

oping multimodal emotion perception models is finding the most efficient mechanism for

combining or “fusing” multiple modalities (Baltrusaitis, Ahuja, and L. Morency 2017).

Context-aware learning take into account the context in which the data was gener-

ated or the task is being performed. And, hence context can mean different things in

different situations. Furthermore, intersecting studies in affective computing and psychol-

ogy (Barrett, Mesquita, and E. R. Smith 2010; Ledgerwood 2014; McNulty and Fincham 2012) also

suggest that emotional processes cannot be interpreted without context, and that context

not only produces emotion but also shapes how emotion is perceived. However, context

itself is quite subjective; with not much consensus in the literature. For instance, one
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organization of contextual features is in three levels, ranging from micro-level (person) to

macro-level (cultural) (Greenaway, Kalokerinos, and Williams 2018). Similarly, more literature

in emotion recognition suggests several broad categories of contextual features, includ-

ing person, and situation (Aldao 2013; Barrett, Mesquita, and Gendron 2011; Mesquita and Boiger

2014).

As AI continues to become more ubiquitous in our lives, it is increasingly important

to develop AI systems that can understand and respond to human emotions beyond the

applications that have already been explored. In this dissertation, we focus and explore our

attention on three such AI applications; i) video manipulations and deepfake detection;

ii) multimedia content analysis, and iii) user behavior analysis on social media platforms.

The availability of video editing software and artificial intelligence (AI) available to

common people has proliferated manipulated video content (Khelifi and Bouridane 2017; Y.

He et al. 2021) edited with malicious intent. These edits can be more traditional; copy-

move and splicing manipulations, aesthetic edits, and temporal edits; there is also a surge

of manipulated videos known as “deepfakes”. These are purely Ai generated videos with

manipulations focused on a single person. This calls for the need for detection methods

for flagging such videos. Prior work in video forensics is limited to very specific attack

methods with little benchmarking due to a lack of publicly available video manipulation

datasets. On the other hand, because deepfakes are synthesized using deep-learning-based

generative methods; the datasets are huge in magnitude. As a result, there are a lot of

deepfake detection methods that have been proposed in the last few years, however, these

are limited to relying on visual artifacts on faces that appear as a result of the synthesis

methods.

Perceiving emotions in images and videos is an integral aspect of affective computing

and has applications in various fields such as digital content management (D. Joshi et al.

2014; Y. Wang and B. Li 2015), marketing (McDuff, El Kaliouby, Cohn, et al. 2014; Hussain, Mingda

Zhang, X. Zhang, et al. 2017; Ye and Kovashka 2018), education (Downs and Strand 2008; Alqahtani
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and Ramzan 2019), and healthcare (Cohn et al. 2009). There is growing interest in dynamically

modeling emotions over time; also known as "time series emotion recognition." Several

time-series emotion datasets have been proposed to aid in solving this problem. While

most datasets focus on single-person emotional narratives in controlled settings, movie

databases are also being explored for time-series emotion perception tasks. The theory of

"emotional causality" (Coëgnarts and Kravanja 2016; Athanasiadou and Tabakowska 2010; Niemeier

and Dirven 1997; Kövecses 2003) has been developed to understand how humans reason and

interpret emotions, but it has been relatively unexplored in the context of time-series

emotion perception. To reason about emotions invoked in various clips of a movie, it is

important to develop a causal understanding of the story.

Finally, the popularity of social media platforms and their usage has increased dramat-

ically in recent years. Consequently, social media has become a rich source for researchers

to address a variety of societal problems. While a lot of these problem statements focus

on the content aspect of social media, given the increased popularity it is also important

to understand the impact social media can have on the users. There are two charac-

teristics of social media usage that make understanding their impact on users of grave

concern. Firstly, users often have little control over the content they consume on social

media feeds. And secondly, almost all conversations on social media are 1 : n. To this

end, it becomes important to understand the intent behind why users are sharing content

on social media; and to make users emotionally aware of the content they consume online.

A consequence of a vast number of 1 : n conversations is immense unidentified emotion

contagion. While detecting the occurrence of this contagion is a difficult problem to solve,

researchers have shown that contagion exists on specific platforms like Twitter, Facebook,

and, Weibo, and have also presented hypotheses on factors that tend to cause stronger

or weaker contagion on these platforms.

Main Contributions: Below we summarize our contributions presented in this disserta-

tion.
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1. Improved Emotion Perception Models: We develop two emotion perception

models; one uses multiple modalities to infer emotions and the other models’ various

definitions of context to infer perceived human emotion.

(a) We present M3ER, a multimodal emotion perception model that combines

input modalities in a multiplicative manner and is robust to sensor noise.

(b) We also present EmotiCon, a context-aware emotion perception model that

uses three definitions of context.

(c) Additionally, we also present GroupWalk dataset; captured in uncontrolled set-

tings with both faces and gaits that have emotion-label annotations. Group-

Walk dataset is a collection of 45 videos captured in multiple real-world settings

of people walking in dense crowd settings. The videos have about 3544 agents

annotated with their emotion labels.

2. Video Manipulation and Deepfake Detection Methods: We focus our at-

tention on both; more recent kind of AI-synthesized manipulated videos “deepfakes”

and the more traditional video manipulations.

(a) We present a novel approach that simultaneously exploits the audio (speech)

and video (face) modalities and the perceived emotion features extracted from

both modalities to detect any falsification or alteration in the input video.

(b) We also present a new manipulated high-resolution video dataset called VideoSham.

VideoSham consists of 823 videos that are manipulated using six spatial

and temporal attacks manipulating videos at the scene level targeting, not

just faces, but also the background context, text, and audio, aesthetic edits,

adding/removing entities, and temporal edits. We also present a user evalu-

ation to understand the kind of manipulated videos from VideoSham that

deceive humans and state-of-the-art methods. We also present some ideas
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from multimodal and affective models that can be used to flag such manipu-

lations.

3. Affective Analysis of Multimedia Content: To better understand the emotions

and affect presented in multimedia content, we present Affect2MM, a learning-based

method for capturing the dynamics of emotion over time. Affect2MM aligns with the

psychological theory of “emotional causality” to better model the emotions evoked

by each clip of a movie. To better model this temporal causality in movies for

long-range multimedia content like movies, we use attention methods and Granger

causality to explicitly model the temporal causality (between clips in movies).

4. User Behavior Analysis on Social Media Platforms: We focus on under-

standing how content shared on social media platforms impacts the users given the

increased amount of usage.

(a) We present Intent-o-meter, a learning-based model that can predict the

intent of users when they make a social media post. In addition to visual (im-

age) and textual (caption) features, the model leverages Theory of Reasoned

Action (TRA) factoring in (i) the creator’s attitude towards sharing a post,

and (ii) the social norm or perception towards the post in determining the cre-

ator’s intention. We also present Intentgram, an intent prediction dataset

curated from public Instagram profiles using Apify1. We also present a user

evaluation by integrating the intent prediction model with a web application

interface (similar to Instagram) to understand users’ feedback on the use of

such intent labels along with social media posts.

(b) We also present detailed analysis and insights into what are some factors

that could lead to stronger or weaker contagion on the popular social media

application, Instagram.
1https://apify.com
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Overview of the Thesis: We organize the material in the dissertation as follows; In

Chapter 2, we discuss our contributions to emotion perception models using multiple

modalities and contextual cues. We present our work on the use of affective computing and

multimodal learning in detecting video manipulations and deepfake detection in Chapter 3.

This is followed by a discussion on temporal affective analysis of multimedia content in

Chapter 4. In Chapter 5 we discuss the impact of social media platforms and their usage

on users. We identify two key characteristics and present a learning model, a dataset, a

user evaluation, and an analysis of this impact on users. We end this with a discussion of

limitations in our existing work and some directions for future work in Chapter 6.
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Chapter 2

Using Multiple Modalities

and Context for Emotion

Perception

One of the primary tasks in developing efficient multimodal systems for perceiving emo-

tions is to combine and collate information from the various modalities by which humans

express emotion. These modalities include but are not limited to, facial expressions, speech

and voice modulations, written text, body postures, gestures, and walking styles. Many

researchers have advocated combining more than one modality to infer perceived emotion

for various reasons, including:

(a) Richer information: Cues from different modalities can augment or complement

each other, and hence lead to more sophisticated inference algorithms.

(b) Robustness to Sensor Noise: Information on different modalities captured through

sensors can often be corrupted due to signal noise, or be missing altogether when

the particular modality is not expressed, or cannot be captured due to occlusion,

sensor artifacts, etc. We call such modalities ineffectual. Ineffectual modalities are
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especially prevalent in in-the-wild datasets.

However, combining multiple modalities for emotion recognition presents its own set

of challenges. One critical decision is determining which modalities should be integrated

and how. Some modalities tend to occur together more frequently than others and are

therefore more straightforward to collect and use in conjunction. For example, some of

the most widely used benchmark datasets for multimodal emotion recognition, including

IEMOCAP (Busso et al. 2008) and CMU-MOSEI (A. B. Zadeh et al. 2018), a feature commonly

co-occurring modalities, such as facial expressions, associated speech, and transcribed

text. As the volume of data available on social media sites and the internet continues to

grow (e.g., YouTube), it has become easier to obtain data for these three modalities, often

with the help of automatic caption generation. Many of the other existing multimodal

datasets (Ringeval et al. 2013; Dhall, Goecke, Lucey, et al. 2012) are also subsets of these three

modalities. Additionally, using information from body posture and gaits has also been

shown to be a promising cue to infer emotions (Kleinsmith and Bianchi-Berthouze 2012; Meeren,

Heijnsbergen, and Gelder 2005; Bhattacharya et al. 2020). In our work, we try and use all of these

modalities.

One additional challenge is the lack of consensus on the optimal method for combining,

or "fusing," multiple modalities (Baltrusaitis, Ahuja, and L. Morency 2017). Currently, the two

most commonly employed techniques are early fusion (also referred to as "feature-level"

fusion) and late fusion (also called "decision-level" fusion). Early fusion combines the input

modalities into a single feature vector, which is then used to make a prediction. In contrast,

late fusion methods use each of the input modalities to make an individual prediction,

which is subsequently combined for the final classification. Previous research on emotion

recognition has primarily investigated early fusion (Sikka et al. 2013) and late fusion (Gunes

and Piccardi 2007) techniques using additive combinations. Additive combinations assume

that every modality is potentially useful and thus should be incorporated into the joint

representation. However, this assumption is not ideal for in-the-wild datasets, which are
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more susceptible to sensor noise.

While modalities and cues extracted from a person can provide valuable information re-

garding perceived emotions, understanding the context in which the emotions are displayed

is equally important. Frege’s context principle (Resnik 1967) argues against interpreting the

meaning of a word in isolation, but rather within the context of a sentence. Similarly,

in the field of psychology, context plays a crucial role in emotion recognition. There are

different interpretations of the term ‘context’ among researchers, including:

(a) Context 1 (Multiple Modalities): Incorporating cues from different modalities was

one of the initial definitions of context (a.k.a multimodal emotion perception). As

already discussed, combining modalities provides complementary information, which

leads to better inference and also performs better on in-the-wild datasets. An ad-

ditional goal of this work is to make Emotion Recognition systems work for real-life

scenarios. This implies using modalities that do not require sophisticated equipment

to be captured and are readily available. Psychology researchers (Aviezer, Trope, and

Todorov 2012) have conducted experiments by mixing faces and body features cor-

responding to different emotions and found that participants guessed the emotions

that matched the body features. This is also because of the ease of “mocking”

one’s facial expressions. Subsequently, researchers (Kleinsmith and Bianchi-Berthouze

2012; Meeren, Heijnsbergen, and Gelder 2005) found the combination of faces and body

features to be a reliable measure of inferring human emotion. As a result, it would

be useful to combine such face and body features for context-aware emotion recog-

nition.

(b) Context 2 (Background Context): Semantic understanding of the scene from

visual cues in the image helps in getting insights about the agent’s surroundings

and activity, both of which can affect the perceived emotional state of the agent.

(c) Context 3 (Socio-Dynamic Inter-Agent Interactions): Researchers in psychology

suggest that the presence or absence of other agents affects the perceived emotional
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state of an agent. When other agents share an identity or are known to the agent,

they often coordinate their behaviors. This varies when other agents are strangers.

Such interactions and proximity to other agents have been less explored for perceived

emotion recognition.
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(a) M3ER: The proposed multimodal emotion recognition model uses a data-driven
multiplicative fusion technique to combine the three input modalities (face, text,
and speech).

(b) EmotiCon: The proposed context-aware emotion recognition model incorporates
three interpretations of context to perform emotion recognition from videos and
images.

Figure 2.1: Multimodal and Context-Aware Emotion Perception Models: We present
a multimodal emotion perception model, M3ER (Figure 2.1a), and a context-aware emotion
perception model, EmotiCon (Figure 2.1b) to improve the performance of emotion perception
models.

Towards this end, we propose a multimodal emotion perception model, M3ER (Fig-

ure 2.1a, Section 2.2), and a context-aware emotion perception model, EmotiCon (Fig-

ure 2.1b, Section 2.3) to improve performance of emotion recognition models. To sum-
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marize, we make the following main contributions.

1. We present M3ER (Figure 2.1a, Section 2.2), a multimodal emotion recognition

algorithm which uses a data-driven multiplicative fusion technique with deep neural

networks. Our input consists of the feature vectors for three modalities — face,

speech, and text. To make M3ER robust to noise, we propose a novel preprocessing

step where we use Canonical Correlational Analysis (CCA) (Hotelling 1936) to differ-

entiate between an ineffectual and effectual input modality signal. We also present

a feature transformation method to generate proxy feature vectors for ineffectual

modalities given the true feature vectors for the effective modalities. This enables

our network to work even when some modalities are corrupted or missing.

2. We also present EmotiCon (Figure 2.1b, Section 2.3), a context-aware multimodal

emotion recognition algorithm. Consistent with Ferge’s Context principle, in this

work, we try to incorporate three interpretations of context to perform emotion

recognition from videos and images. Though extendable to any number of modali-

ties, we release a new dataset GroupWalk for emotion recognition. To the best of

our knowledge, there exist very few datasets captured in uncontrolled settings with

both faces and gaits that have emotion-label annotations. To enable research in this

domain, we make GroupWalk publicly available with emotion annotations. Group-

Walk is a collection of 45 videos captured in multiple real-world settings of people

walking in dense crowd settings. The videos have about 3544 agents annotated

with their emotion labels.

For M3ER, we compare our work with prior methods by testing our performance on

two benchmark datasets IEMOCAP (Busso et al. 2008) and CMU-MOSEI (A. B. Zadeh et al.

2018) We report an accuracy of 82.7% on the IEMOCAP dataset and 89.0% on the

CMU-MOSEI dataset, which is a collective 5% accuracy improvement on the absolute

over prior methods. We show ablation experiment results on both datasets, where almost

75% of the data has at least one modality corrupted or missing, to demonstrate the
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importance of our contributions. As per the annotations in the datasets, we classify

IEMOCAP into 4 discrete emotions (angry, happy, neutral, sad) and CMU-MOSEI into 6

discrete emotions (anger, disgust, fear, happy, sad, surprise).

Similarly for EmotiCon, we compare our work with prior methods by testing our per-

formance on EMOTIC (Kosti, Jose M Alvarez, et al. 2017b), a benchmark dataset for context-

aware emotion recognition. We report an improved AP score of 35.48 on EMOTIC, which

is an improvement of 7− 8 over prior methods (Kosti, Jose M Alvarez, et al. 2019; Jiyoung Lee

et al. 2019; Minghui Zhang, Liang, and Ma 2019). We also report AP scores of our approach

and prior methods on the new dataset, GroupWalk. We perform ablation experiments

on both datasets, to justify the need for the three components of EmotiCon. As per the

annotations provided in EMOTIC, we perform a multi-label classification over 26 discrete

emotion labels. On GroupWalk too, we perform a multi-label classification over 4 discrete

emotions (anger, happy, neutral, sad).

The rest of the chapter is structured as follows: We discuss prior work in the domain

of multimodal and context-aware emotion perception in Section 2.1. Then in Section 2.2

and Section 2.3, we discuss M3ER, the multimodal emotion perception model, and Emoti-

Con, the context-aware emotion perception model respectively. We also elaborate on the

empirical analysis performed to evaluate the methods. We conclude with a discussion re-

garding limitations and some future directions in building more robust emotion perception

models in Section 2.4.

2.1 Prior Work in Emotion Perception Models

In this section, we give a brief overview of previous research in emotion recognition in

psychology (Section 2.1.1), and prior work in unimodal and multimodal emotion recogni-

tion (Section 2.1.2-2.1.3). We follow up with a discussion on context-aware emotion

recognition (Section 2.1.4) and existing context-aware datasets (Section 2.1.5). We

also discuss some of the existing fusion methods used in the emotion recognition lit-
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erature (Section 2.1.6) and conclude with a brief discussion on Canonical Correlational

Analysis (Section 2.1.7).

2.1.1 Emotion Recognition in Psychology Research

Understanding and interpreting human emotion is a fundamental area of interest in psy-

chology. Early attempts at predicting emotions solely based on facial expressions were

questioned for their limited reflection of the complex human sensory system (Russell, Ba-

chorowski, and Fernández-Dols 2003). Furthermore, relying solely on facial expressions can be

unreliable due to the ease of producing mocking expressions, especially in the presence of

an audience (P. Ekman 1993; Fernández-Dols and Ruiz-Belda 1995). Consequently, it is essential

to consider multiple cues to accurately predict human emotions. Research indicates that a

multimodal approach that considers various cues, such as body language, vocal tone, and

context, is more consistent with the human sensory system (Soleymani, Pantic, and Pun 2011;

Aviezer, Trope, and Todorov 2012; Pantic et al. 2005; Meeren, Heijnsbergen, and Gelder 2005). The sig-

nificance of contextual features in interpreting emotional processes cannot be overstated.

Researchers in psychology agree that emotions cannot be interpreted without context

and that context plays a crucial role in producing and shaping emotions (Barrett, Mesquita,

and E. R. Smith 2010; Ledgerwood 2014; McNulty and Fincham 2012; Aldao 2013; Barrett, Mesquita,

and Gendron 2011; Mesquita and Boiger 2014). Therefore, it is essential to consider various

contextual features, such as the person, situation, and broader cultural context (Green-

away, Kalokerinos, and Williams 2018; Martinez 2019). Experiments conducted by Martinez et

al.(Martinez 2019) demonstrated the necessity of context, as participants could infer affect

even when the faces and bodies were masked in silent videos. Greenway et al.(Greenaway,

Kalokerinos, and Williams 2018) organize contextual features into three levels, ranging from

micro-level features like the individual to macro-level features like culture. Situational

features, such as the presence and proximity of others, also play an essential role in elic-

iting emotions, as shown by research indicating that people express more emotion in the
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presence of others and especially in situations where they know each other (Yamamoto and

Suzuki 2006; Jakobs, Manstead, and Fischer 2001).

2.1.2 Unimodal Emotion Recognition

Most of the initial efforts in recognizing human emotions have been focused on a single

modality. Facial expressions have been the most commonly explored modality in this do-

main, owing to the availability of facial expression datasets and advancements in computer

vision methods (Saragih, Lucey, and Cohn 2009; Akputu, Seng, and Y. L. Lee 2013). However, re-

searchers have also explored other modalities such as speech or voice expressions (Klaus

R Scherer, Johnstone, and Klasmeyer 2003), body gestures (Navarretta 2012), and physiological

signals like respiratory and heart signals (Knapp, Jonghwa Kim, and André 2010).

2.1.3 Multimodal Emotion Recognition

Initially, multimodal emotion recognition was explored using classifiers such as Support

Vector Machines, linear regression, and logistic regression, particularly when the size of

the datasets was less than 500 (Sikka et al. 2013; Gunes and Piccardi 2007; Castellano, Kessous,

and Caridakis 2008). However, with the development of bigger datasets, researchers started

exploring deep learning architectures for multimodal emotion recognition (S. Yoon et al. 2019;

Gunes and Piccardi 2007; Majumder et al. 2018; A. B. Zadeh et al. 2018; Choi, Song, and C. W. Lee

2018; Sahay et al. 2018). In all the multimodal approaches, feature extraction is performed

on each of the input modalities using either hand-crafted formulations or deep learning

architectures. Some of the architectures that have been explored include Bi-Directional

Long Short Term Memory (BLSTM) networks (S. Yoon et al. 2019), Deep Belief Networks

(DBNs) (Gunes and Piccardi 2007), Convolutional Neural Networks (Choi, Song, and C. W. Lee

2018), hierarchical networks (Majumder et al. 2018), and Relational Tensor Networks (Sahay

et al. 2018).
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Table 2.1: Summary of Context-Aware Emotion Recognition Datasets: We com-
pare GroupWalk dayaset with existing context-rich emotion recognition datasets such as
EMOTIC (Kosti, Jose M Alvarez, et al. 2017a), AffectNet (Mollahosseini, Hasani, and Mahoor 2019),
CAER and CAER-S (Jiyoung Lee et al. 2019), and AFEW (Dhall, Goecke, Lucey, et al. 2012).

Data type Dataset Dataset Size Agents Annotated Setting Emotion Labels Context

Images

EMOTIC 18,316 images 34,320 Web 26 Categories Yes
(Kosti, Jose M Alvarez, et al. 2017a)

AffectNet 450,000 images 450,000 Web 8 Categories No
(Mollahosseini, Hasani, and Mahoor 2019)

CAER-S 70,000 images 70,000 TV Shows 7 Categories Yes
(Jiyoung Lee et al. 2019)

Videos

AFEW 1,809 clips 1,809 Movie 7 Categories No
(Dhall, Goecke, Lucey, et al. 2012)

CAER 13,201 clips 13,201 TV Show 7 Categories Yes
(Jiyoung Lee et al. 2019)

IEMOCAP 12 hrs - TV Show 4 Categories Yes
(Busso et al. 2008)
GroupWalk 45 clips(10 mins each) 3544 Real Settings 4 Categories Yes

2.1.4 Context-Aware Emotion Recognition

Recent advancements in context-aware emotion recognition have been achieved through

deep-learning network architectures. Kosti et al. (Kosti, Jose M Alvarez, et al. 2019) and

Lee et al. (Jiyoung Lee et al. 2019) propose similar architectures that consist of two-stream

networks followed by a fusion network. One stream focuses on a specific modality such as

the face (Jiyoung Lee et al. 2019) or body posture (Kosti, Jose M Alvarez, et al. 2019), while the

other captures contextual information. Lee et al. (Jiyoung Lee et al. 2019) consider everything

except the face as context and mask the face in the image, while (Kosti, Jose M Alvarez,

et al. 2019) uses a Region Proposal Network (RPN) to extract contextual elements from

the image. These elements form nodes in an affective graph, which is then encoded using

a Graph Convolution Network (GCN) to capture the context. Additionally, group emotion

recognition has also been explored (Garg 2019; K. Wang et al. 2018), where the goal is to label

the emotion of the entire group of individuals in a frame under the assumption that they

share some social identity.

2.1.5 Context-Aware Emotion Recognition Datasets

In the past, emotion recognition datasets have often focused on only one modality, such as

faces or body features, or have been collected in controlled environments. For instance, the
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GENKI database (Whitehill et al. 2009) and the UCDSEE dataset (Tracy, Robins, and Schriber

2009) concentrate primarily on facial expressions collected in lab settings. The Emotion

Recognition in the Wild (EmotiW) challenges (Dhall, Goecke, J. Joshi, et al. 2016) contains

three databases: the AffectNet database (Mollahosseini, Hasani, and Mahoor 2019) (which com-

prises facial expressions from the wild), SFEW (a subset of AFEW with only face frames

annotated), and HAPPEI database, which aims to estimate group-level emotions. Some

recent works have acknowledged the potential of using context for emotion recognition

and pointed out the scarcity of such datasets. For instance, the Context-Aware Emotion

Recognition (CAER) dataset (Minghui Zhang, Liang, and Ma 2019) is a collection of TV show

clips with 7 discrete emotion annotations. The EMOTIC dataset (Kosti, Jose M Alvarez,

et al. 2019) is a collection of images from datasets such as MSCOCO (T.-Y. Lin et al. 2014)

and ADE20K (B. Zhou et al. 2019), along with images downloaded from web searches. The

dataset consists of 23, 571 images, with approximately 34, 320 people annotated for 26

discrete emotion classes. We have summarized and compared these datasets in Table 2.1.

2.1.6 Combination of Multiple Modalities

Previous studies in emotion recognition (Sikka et al. 2013; Gunes and Piccardi 2007; Castel-

lano, Kessous, and Caridakis 2008; S. Yoon et al. 2019; Gunes and Piccardi 2007) have relied on

additive combinations using either early or late fusion techniques. However, in the real

world, every modality is not equally reliable for every data point due to factors like sen-

sor noise, occlusions, etc. To address this, recent works have explored more sophisticated

data-driven (Choi, Song, and C. W. Lee 2018), hierarchical (Majumder et al. 2018), and attention-

based (S. Yoon et al. 2019; Choi, Song, and C. W. Lee 2018) fusion techniques. Multiplicative

combination methods (Kuan Liu et al. 2018) explicitly model the relative reliability of each

modality, where more reliable modalities are assigned a greater weight in the joint predic-

tion. Additionally, the reliability of modalities may vary from sample to sample, making

it crucial to learn which modalities are more reliable for each sample. This approach has
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been successful in tasks like user profiling and physical process recognition (Kuan Liu et al.

2018).

2.1.7 Canonical Correlational Analysis (CCA)

The main goal of Canonical Correlation Analysis (CCA) (Hotelling 1936) is to project input

vectors onto a common space to maximize their component-wise correlation. To improve

the performance of CCA, several extensions have been proposed, such as Deep CCA (An-

drew et al. 2013), Generalized CCA (Kettenring 1971), and Kernel CCA (Welling 2005). These

extensions learn non-linear transformations of the input vectors to maximize their correla-

tion. CCA-based approaches have also been employed in the field of multimodal emotion

recognition (Shan, Gong, and McOwan 2007), to obtain highly correlated feature vectors from

each input modality prior to their fusion. In our study, we utilize CCA to assess the

correlation between input modalities and identify effective and ineffective modalities.

2.2 M3ER: Multimodal Emotion Perception Model

In this section, we go over the proposed multimodal emotion perception model, M3ER.

We formulate the problem in Section 2.2.1. We then explain the three components in

detail in M3ER in Section 2.2.2. In Section 2.2.3 we discuss the implementation details

and end with the experiments conducted to evaluate and analyze the performance of

M3ER in Section 2.2.4.

2.2.1 Problem Formulation

We denote the set of speech, text, and facial modality tuples as M = {(s, t, f)}, where

each tuple corresponds to a data sample, such as a video or an image. For a particular

data sample with the modality tuple m = (s, t, f) ∈ M, the feature vector for each

modality is denoted as fi, i ∈ m. We denote the set of predicted emotions as E =

{happy, sad, angry, neutral}. The proxy feature vectors generated for speech, text, and
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Figure 2.2: M3ER Model Architecture: We use three modalities, speech, text, and facial
features. We first extract features to obtain fs, ft, ff from the raw inputs, is, it and if (purple
box). The feature vectors then are checked if they are effective. We use an indicator function
Ie (Equation 2.2) to process the feature vectors (yellow box). These vectors are then passed into
the classification and fusion network of M3ER to get a prediction of the emotion (orange box).
At the inference time, if we encounter a noisy modality, we regenerate a proxy feature vector (ps,
pt or pf ) for that particular modality (blue box).

face vectors are represented by ps, pt, pf , respectively. Finally, we define an indicator

function, Ie(f) that outputs either a vector of zeros or ones of the same dimension as f ,

depending on the conditions of the function definition.

Problem 2.2.1. Given a tuple m ∈ M represented as (s, t, f), our goal is to compute

em = argmax
e∈E

P(emotion = e|m) (2.1)

where P(a|b) denotes the conditional probability of a given b.

We present an overview of our multimodal perceived emotion recognition model in

Figure 2.2. During training, we first extract feature vectors (fs, ft, ff ) from raw inputs

(is, it, if ) (purple box in the Figure 2.2). These are then passed through the modality

check step (yellow box in the Figure 2.2) to distinguish between effective and ineffectual

signals, and discarding the latter if any (See Section 2.2.2.1). The feature vectors as

returned by the modality check step go through three deep-layered feed-forward neural

network channels (orange box in Figure 2.2). Finally, we add our multiplicative fusion

layer to combine the three modalities (Section 2.2.2.3). At test time, the data point
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once again goes through the modality check step. If a modality is deemed ineffectual, we

regenerate a proxy feature vector (blue box in Figure 2.2) which is passed to the network

for the emotion classification (Section 2.2.2.2).

2.2.2 Approach

There are three main components to M3ER: Modality Check Step, Regenerating Proxy

Feature Vectors, and Multiplicative Fusion.

2.2.2.1 Modality Check Step

To enable perceived emotion recognition in real-world scenarios, where sensor noise is

inevitable, we introduce the Modality Check step which filters ineffectual data. It has been

observed in emotion prediction studies (Shan, Gong, and McOwan 2007), that for participants

whose emotions were predicted correctly, each of their corresponding modality signals

correlated with at least one other modality signal. We directly exploit this notion of

correlation to distinguish between features that could be effective for emotion classification

(effective features) and features that are noisy (ineffectual features).

More concretely, we use Canonical Correlation Analysis (CCA) to compute the corre-

lation score, ρ, of every pair of input modalities. We compare the correlation against a

heuristically chosen threshold, τ , and introduce the following indicator function,

Ie(fi) =


0 ρ(fi, fj) < τ, (i, j) ∈ M, i ̸= j,

1 else.

(2.2)

For all features, we apply the following operation, Ie(f) ⊙ f , which discards ineffectual

features and retains the effective ones. Here, ⊙ denotes element-wise multiplication.

We show how to compute the correlation score between two modality feature vectors.

Given a pair of feature vectors, fi, fj, with i, j ∈ M, we first compute the the projective
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transformations, H i
i,j and Hj

i,j, for both feature vectors, respectively. Also note that these

feature vectors fi, fj are reduced to the same lower dimensions (100, here). We obtain the

projected vector by applying the projective transformation. Thus, in our example above,

f
′

i = H i
i,jfi,

and,

f
′

j = Hj
i,jfj,

Finally, we can compute the correlation score for the pair {fi, fj} using the formula:

ρ(f
′

i , f
′

j) =
cov(f ′

i , f
′
j)

σf
′
i
σf

′
j

and check them against an empirically chosen threshold (τ). ∀i ∈ m, we check

ρ(f
′

i , f
′

j) < τ,

where ∀ (i, j) ∈ M, i ̸= j.

For implementation purposes, we keep the Hj
i,j for all pairs of modalities precomputed

based on the training set. At inference time, we simply compute the projected vectors

f
′
i , f

′
j and ρ(f

′
i , f

′
j).

2.2.2.2 Regenerating Proxy Feature Vectors

When one or more modalities have been deemed ineffectual at test time in the modality

check step, we generate proxy feature vectors for the ineffectual modalities using the

following equation, pi = T fi, where i ∈ M and T is any linear transformation. We

illustrate the details below.

Generating exact feature vectors for missing modalities is challenging due to the non-

linear relationship between the modalities. However, we empirically show that by relaxing
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the non-linear constraint, there exists a linear algorithm that approximates the feature

vectors for the missing modalities with high classification accuracy. We call these resulting

vectors: proxy feature vectors.

Suppose that during test time, the feature vector for the speech modality is corrupt

and identified as ineffectual, while ff is identified as effective during the Modality Check

Step. Our aim is then to regenerate a proxy feature vector, ps, for the speech modality.

More formally, we are given, say, a new, unseen face modality feature vector, ff , the set

of observed face modality vectors, F = {f1, f2, . . . , fn}, and the set of corresponding

observed speech modality vectors, S = {s1, s2, . . . , sn}. Our goal is to generate a proxy

speech vector, ps, corresponding to ff .

We begin by preprocessing the inputs to construct bases, Fb = {v1, v2, . . . , vp} and

Sb = {w1, w2, . . . , wq} from the column spaces of F and S. Under the relaxed constraint,

we assume there exists a linear transformation, T : Fb → Sb. Our algorithm proceeds

without assuming knowledge of T :

1. The first step is to find vj = argminj d(vj, ff ), where d is any distance metric. We

chose the L2 norm in our experiment s. We can solve this optimization problem

using any distance metric minimization algorithm such as the K-nearest neighbors

algorithm.

2. Compute constants ai ∈ R by solving the following linear system, ff =
∑p

i=1 aivi.

Then,

ps = T ff =

p∑
i=1

aiT vi =

p∑
i=1

aiwi.

Our algorithm can be extended to generate proxy vectors from effective feature vectors

corresponding to multiple modalities. In this case, we would apply the steps above to each

of the effective feature vectors and take the mean of both the resulting proxy vectors.
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2.2.2.3 Multiplicative Modality Fusion

The key idea in the original work (Kuan Liu et al. 2018) for multiplicative combination is to

explicitly suppress the weaker (not so expressive) modalities, which indirectly boost the

stronger (expressive) modalities. They define the loss for the ith modality as follows.

c(y) = −
M∑
i=1

∏
j ̸=i

(
1− p

(y)
j

)β/(M−1)

log p
(y)
i (2.3)

where y is the true class label, M is the number of modalities, β is the hyperparameter

that down-weights the unreliable modalities and p
(y)
i is the prediction for class y given

by the network for the ith modality. This indirectly boosts the stronger modalities. In

our approach, we reverse this concept and propose a modified loss. We explicitly boost

the stronger modalities in the combination network. The difference is subtle but has

key significance on the results. In the original formulation, the modified loss was given

by Equation 2.3. We empirically show that the modified loss gives better classification

accuracies than the originally proposed loss function in Section 2.2.4. The original loss

function tries to ignore or tolerate the mistakes of the modalities making wrong predictions

by explicitly suppressing them, whereas, in our modified version, we ignore the wrong

predictions by simply not addressing them and rather focusing on modalities giving the

right prediction. In the original loss, calculating the loss for each modality depends on

the probability given by all the other modalities. This has a higher computation cost due

to the product term. Furthermore, if either of the input modalities produces an outlier

prediction due to noise in the signal, it affects the prediction of all other modalities. Our

proposed modified loss is as follows:

c(y) = −
M∑
i=1

(
p
(y)
i

)β/(M−1)

log p
(y)
i (2.4)

This fusion layer is applied to combine the three input modalities.
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M3ER is a modular algorithm that can work on top of existing networks for multimodal

classification. Given a network for multiple modalities, we can replace the fusion step and

incorporate the modality check and proxy vector regeneration of the M3ER and improve

classification accuracies. In the next section, we demonstrate this point by incorporating

M3ER in state-of-the-art networks for two datasets, IEMOCAP and CMU-MOSEI.

2.2.3 Implementation Details

In this section, we discuss the datasets (Section 2.2.3.1) that we use to evaluate our

method, M3ER, followed with feature extraction (Section 2.2.3.2) and network architec-

ture (Section 2.2.3.3) details. We end with mentioning training and hyperparameters

used to obtain the results on the CMU-MOSEI dataset and the IEMOCAP dataset (Sec-

tion 2.2.3.4).

2.2.3.1 Datasets

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset (Busso et al. 2008)

consists of text, speech, and face modalities of 10 actors recorded in the form of con-

versations using a Motion Capture camera. The conversations include both scripted and

spontaneous sessions. The labeled annotations consist of four emotions — angry, happy,

neutral, and sad. The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-

MOSEI) (A. B. Zadeh et al. 2018) contains 23, 453 annotated video segments from 1, 000

distinct speakers and 250 topics acquired from social media channels. The labels in this

dataset comprise six emotions —angry, disgust, fear, happy, sad, and surprise.

2.2.3.2 Feature Extraction

CMU-MOSEI Dataset: To extract ft from the CMU-MOSEI dataset, we use the

300-dimensional pre-trained GloVe word embeddings (Pennington, Socher, and Manning 2014).

To compute fs from the CMU-MOSEI dataset, we follow the approach of Zadeh et
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al. (A. B. Zadeh et al. 2018) and obtain the 12 Mel-frequency cepstral coefficients, pitch,

voiced/unvoiced segmenting features, glottal source parameters among others. Lastly,

to obtain ff , we use the combination of face embeddings obtained from state-of-the-art

facial recognition models, facial action units, and facial landmarks for CMU-MOSEI.

IEMOCAP Dataset: We use the 300 dimensional pre-trained GloVe word embed-

dings (Pennington, Socher, and Manning 2014) to extract ft for the IEMOCAP dataset. To

compute fs for IEMOCAP, we follow Chernykh et al. (Chernykh and Prikhodko 2017a) and

use 34 acoustic features. Lastly, to obtain ff , IEMOCAP captures facial data comprising

189 facial expressions using a Motion Capture camera.

2.2.3.3 Classification Network Architecture Details

CMU-MOSEI Dataset: For training on the CU-MOSEI dataset, we integrate our multi-

plicative fusion layer into Zadeh et al. (A. Zadeh et al. 2018b) memory fusion network (MFN).

Each of the input modalities is first passed through single-hidden-layer LSTMs, each of

output dimension 32. The outputs of the LSTMs, along with a 128-dimensional memory

variable initialized to all zeros (yellow box in the network Figure 2.2), are then passed

into an attention module as described by the authors of MFN. The operations inside the

attention module are repeated for a fixed number of iterations t, determined by the max-

imum sequence length among the input modalities (t = 20 in our case). The outputs at

the end of every iteration in the attention module are used to update the memory variable

as well as the inputs to the LSTMs. After the end of t iterations, the outputs of the 3

LSTMs are combined using multiplicative fusion to a 32 dimensional feature vector. This

feature vector is concatenated with the final value of the memory variable, and the resul-

tant 160 dimensional feature vector is passed through a 64 dimensional fully connected

layer followed by a 6 dimensional fully connected to generate the network outputs.

IEMOCAP Dataset: For M3ER-IEMOCAP, we use Tripathi et al.’s (Samarth Tripathi,

Sarthak Tripathi, and Beigi 2018) multiple fully connected layers of dimensions 128, 64 and 4
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before a softmax for the speech input as can be seen in Figure 2.3. However, as opposed

to multiple LSTM layers, we use a single LSTM layer with 64 hidden units before two

dense layers of dimensions 64 and 4 followed by a softmax layer for the text modality.

For the facial input, we use three convolutional layers with filter sizes 32, 64, and 128 all

with a stride length of 2. These convolutional layers are followed by two fully connected

layers (dimensions 64 and 4) succeeded by a softmax layer. All three softmax layers then

go into the multiplicative layer (shown in orange in Figure 2.3).

2.2.3.4 Training Details

CMU-MOSEI Dataset: For training with M3ER on the CMU-MOSEI dataset, we split

the CMU-MOSEI dataset into training (70%), validation (10%), and testing (20%) sets.

We use a batch size of 256 and train it for 500 epochs. We use the Adam optimizer (Kingma

and Ba 2014) with a learning rate of 0.01. All our results were generated on an NVIDIA

GeForce GTX 1080 Ti GPU.

IEMOCAP Dataset: For training M3ER-IEMOCAP, we split the IEMOCAP dataset

into training (85%) and testing (15%) sets. We use a batch size of 128 and train it for

100 epochs. We use the Adam optimizer (Kingma and Ba 2014) with a learning rate of

0.001. All our results were generated on an NVIDIA GeForce GTX 1080 Ti GPU.

2.2.4 Experiments and Results

In this section, we list the state-of-the-art algorithms with which we compare M3ER us-

ing standard classification evaluation metrics in Section 2.2.4.1. We also discuss the

performance of M3ER on these state-of-the-art datasets (Section 2.2.4.2). We perform

exhaustive ablation experiments to motivate the benefits of our contributions and discuss

these ablation experiments in Section 2.2.4.3.

29



Figure 2.3: M3ER Model Architecture (IEMOCAP Dataset): We use three modalities,
speech, text, and facial features for evaluating M3ER on IEMOCAP dataset too. We use a
variety of layers, fully-connected (purple), softmax (cyan), LSTM (green), and convolutional
layers (red). The multiplicative layer is shown in orange.

Table 2.2: Ablation Experiments on M3ER: We remove one component of M3ER at a time,
and report the F1 and MA scores on the IEMOCAP and the CMU-MOSEI datasets, to showcase
the effect of each of these components. Modifying the loss function leads to an increase of 6-7%
in both F1 and MA. Adding the modality check step on datasets with ineffectual modalities leads
to an increase of 2-5% in F1 and 4-5% in MA, and adding the proxy feature regeneration step
on the same datasets leads to a further increase of 2-7% in F1 and 5-7% in MA.

(a) Ablation Experiments performed on IEMOCAP Dataset.
Ineffectual Experiments Angry Happy Neutral Sad Overall
modalities? F1 MA F1 MA F1 MA F1 MA F1 MA

No
Original Multiplicative Fusion 0.794 80.6% 0.750 76.9% 0.695 68.0% 0.762 80.8% 0.751 76.6%

(Kuan Liu et al. 2018)

M3ER 0.862 86.8% 0.862 81.6% 0.745 74.4% 0.828 88.1% 0.824 82.7%

Yes
M3ER– Modality Check Step – Proxy Feature Vector 0.704 71.6% 0.712 70.4% 0.673 64.7% 0.736 79.8% 0.706 71.6%

M3ER– Proxy Feature Vector 0.742 75.7% 0.745 73.7% 0.697 66.9% 0.778 84.0% 0.741 75.1%

M3ER 0.799 82.2% 0.743 76.7% 0.727 67.5% 0.775 86.3% 0.761 78.2%

(b) Ablation Experiments performed on CMU-MOSEI Dataset.
Ineffectual Experiments Angry Disgust Fear Happy Sad Surprise Overall
modalities? F1 MA F1 MA F1 MA F1 MA F1 MA F1 MA F1 MA

No
Original Multiplicative Fusion 0.889 79.9% 0.945 89.6% 0.963 93.1% 0.587 55.8% 0.926 85.3% 0.949 90.0% 0.878 82.3%

(Kuan Liu et al. 2018)

M3ER 0.919 86.3% 0.927 92.1% 0.904 88.9% 0.836 82.1% 0.899 89.8% 0.952 95.0% 0.902 89.0%

Yes
M3ER– Modality Check Step – Proxy Feature Vector 0.788 73.3% 0.794 80.0% 0.843 85.0% 0.546 55.7% 0.832 79.5% 0.795 80.1% 0.764 75.6%

M3ER– Proxy Feature Vector 0.785 77.8% 0.799 83.2% 0.734 77.5% 0.740 77.1% 0.840 86.0% 0.781 83.5% 0.783 80.9%

M3ER 0.816 81.3% 0.844 86.8% 0.918 89.4% 0.780 75.7% 0.873 86.1% 0.932 91.3% 0.856 85.0%
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Figure 2.4: Analysis of M3ER’s performance using a Confusion Matrix: For each emotion
class, we show the percentage of inputs belonging to that class that was correctly classified by
M3ER (dark green cells) and the percentage of inputs that were misclassified into other classes
(pale green and white cells) for both the datasets. Left: Confusion matrix for classification on
IEMOCAP dataset. Right: Confusion matrix for classification on CMU-MOSEI dataset.

2.2.4.1 Evaluation Metrics and Methods

We use two standard metrics, F1 scores and mean classification accuracies (MAs), to

evaluate all the methods. However, some prior methods have not reported MA, while

others have not reported F1 scores. We, therefore, leave out the corresponding numbers

in our evaluation as well and compare the methods with only the available numbers. For

the IEMOCAP dataset, we compare our accuracies with the following state-of-the-art

methods.

(a) Yoon et al. (S. Yoon et al. 2019) use only two modalities of the IEMOCAP dataset,

text and speech, using an attention mechanism that learns to align the relevant text

with the audio signal instead of explicitly combining outputs from the two modalities

separately. The framework uses two Bi-linear LSTM networks.

(b) Kim et al. (Y. Kim, H. Lee, and Provost 2013) focus on feature selection parts and hence

use DBNs which they claim are better equipped at learning high-order non-linear

relationships. They empirically show that non-linear relationships help in emotion
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Figure 2.5: Example Misclassification by M3ER: This is the text and face input of a ‘happy’
data point from CMU-MOSEI dataset that our model, M3ER misclassifies as ‘angry’. IN this
example, the man is giving a funny speech with animated and exaggerated facial looks which
appear informative but lead us to a wrong class label.

recognition.

(c) Majumdar et al. (Majumder et al. 2018) recognize the need for a more explainable and

intuitive method for fusing different modalities. They propose a hierarchical fusion

that learns bimodal and trimodal correlations for data fusion using deep neural

networks.

For the CMU-MOSEI dataset, we compare our F1 scores with the following state-of-

the-art methods.

(a) Zadeh et al. (A. B. Zadeh et al. 2018) propose a Dynamic Fusion Graph (DFG) for

fusing the modalities. The DFG can model n-modal interactions with an efficient

number of parameters. It can also dynamically alter its structure and choose a

fusion graph based on the importance of each n-modal dynamics. They claim that

this is a more interpretable fusion as opposed to naive late fusion techniques.

(b) Choi et al. (Choi, Song, and C. W. Lee 2018) use the text and speech modality of the

CMU-MOSEI dataset. They extract feature vectors for text and speech spectro-
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Table 2.3: Comparing M3ER’s Performance with SOTA methods: We compare the F1
scores and the mean classification accuracies (MA) of M3ER on the two datasets, IEMOCAP and
CMU-MOSEI, with three prior state-of-the-art methods. Numbers not reported by prior methods
are marked with ‘-’. We observe around 5-10% increase in MA and 1-23% increase in F1 score.

Dataset Method F1 MA

IEMOCAP

Kim et al. (Y. Kim, H. Lee, and Provost 2013) - 72.8%
Majumdar et al. (Majumder et al. 2018) - 76.5%

Yoon et al. (S. Yoon et al. 2019) - 77.6%

M3ER 0.824 82.7%

CMU-MOSEI

Sahay et al. (Sahay et al. 2018) 0.668 -
Zadeh et al. (A. B. Zadeh et al. 2018) 0.763 -

Choi et al. (Choi, Song, and C. W. Lee 2018) 0.895 -

M3ER 0.902 89.0%

grams using Convolutional Neural Networks (CNNs) architectures. They then use

a trainable attention mechanism to leaner the non-linear dependence between the

two modalities.

(c) Sahay et al. (Sahay et al. 2018) propose a tensor fusion network that explicitly models

n-modal inter-modal interactions using an n-fold Cartesian product from modality

embeddings.

Figure 2.6: M3ER’s Step 2 Visualization (Regenerating Ineffectual Feature Vector): We
show the quality of the regenerated proxy feature vectors for each of the three modalities. For
the three graphs, we demonstrate the original feature vector (blue), the ineffectual version of the
modality because of added white Gaussian noise (red), and the regenerated feature vector (green).
The mean L2 norm distance between the original and the regenerated vector for the speech, text,
and face modality are all around 0.01% of the L2 norm of the respective data.

2.2.4.2 Experimental Analysis

We discuss and analyze the results of various experiments below.

33



Figure 2.7: M3ER’s Qualitative Results on CMU-MOSEI Dataset: We qualitatively show
data points correctly classified by M3ER from all the 6 class labels of CMU-MOSEI. The labels
as classified by M3ER in row order from top left, are Anger, Disgust, Fear, Happy, Sad, Surprise.

1. Comparison with state-of-the-art: Evaluation of F1 scores and MAs of all the

methods is summarized in Table 2.3. We observe an improvement of 1-23% in F1

scores and 5-10% in MAs when using our method.

2. Confusion Matrix: We also show the confusion matrix (Figure 2.4) to analyze the

per-class performance of M3ER on IEMOCAP and CMU-MOSEI. We observe that

more than 73% of the samples per class were correctly classified by M3ER. We see

no confusion (0%) between some emotion labels in the two confusion matrices, for

instance, ‘sad’ and ‘happy’ in IEMOCAP and ‘fear’ and ‘surprise’ in CMU-MOSEI.

Interestingly, we see a small set of data points getting confused between ‘happy’ and

‘angry’ labels for both datasets. We reason that this is because, in both situations,

people often tend to exaggerate their cues.

3. Qualitative Results: Additionally, we show one sample per class from the CMU-

MOSEI dataset that was correctly classified by M3ER in Figure 2.7.

4. Failure Case: We also qualitatively show a data point in Figure 2.5 where

M3ER fails to classify correctly. We observe that exaggerations of facial expressions

and speech have led to a ‘happy’ sample being classified by our model as ‘angry’, a

pattern also observed from the confusion matrices.

34



2.2.4.3 Ablation Experiments

We explain and list down the ablation experiments conducted to validate M3ER below-

1. Original vs M3ER Multiplicative Fusion Loss: We first compare the original

multiplicative fusion loss (Kuan Liu et al. 2018) (Equation 2.3) with our modified loss

(Equation 2.4 on both IEMOCAP and CMU-MOSEI. As shown in Table 2.2, using

our modified loss results in an improvement of 6-7% in both F1 score and MA. Next,

to motivate the necessity of checking the quality of signals from all the modalities

and implementing corrective measures in the case of ineffectual features, we corrupt

the datasets by adding white Gaussian noise with a signal-to-noise ratio of 0.01 to

at least one modality in approximately 75% of the samples in the datasets. We then

compare the performance of the various ablated versions of M3ER as summarized

in Table 2.2 and detailed below.

2. M3ER – Modality Check Step – Proxy Feature Vector: This version simply

applies the multiplicative fusion with the modified loss on the datasets. We show

that this results in a drop of 4-12% in the overall F1 score and 9-12% in the overall

MA from the non-ablated version of M3ER.

3. M3ER – Proxy Feature Vector: In this version, we perform the modality check

step to filter out the ineffectual modality signals. This results in an improvement

of 2-5% in the overall F1 score and 4-5% in the overall MA from the previous

version. However, we do not replace the filtered-out modalities with generated

proxy features, thus having fewer modalities to work with. This results in a drop

of 2-7% in the overall F1 score and 5-7% in the overall MA from the non-ablated

version of M3ER. Finally, with all the components of M3ER in place, we achieve an

overall F1 score of 0.761 on IEMOCAP and 0.856 on CMU-MOSEI, and an overall

MA of 78.2% on IEMOCAP and 85.0% on CMU-MOSEI. Additionally, we also show

in Figure 2.6 that the mean L2 norm distance between the proxy feature vectors
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Figure 2.8: EmotiCon Model Architecture: We use three interpretations of context. We first
extract features for the two modalities to obtain f1 and f2 and inputs Imask and Idepth from the
raw input image, I. These are then passed through the respective neural networks to obtain h1,
h2 and h3. To obtain h1, we use a multiplicative fusion layer (red color) to fuse inputs from
both modalities, faces, and gaits. h1, h2 and h3 are then concatenated to obtain hconcat.

regenerated by M3ER in and the ground truth data is around 0.01% of the L2 norm

of the respective data.

2.3 EmotiCon: Context-Aware Emotion Perception

In this section, we go over the proposed context-aware emotion perception model, Emoti-

Con. We formulate the problem in Section 2.3.1. We then explain the three interpretations

of context used in detail in EmotiCon in Section 2.3.2. In Section 2.3.3 we discuss the

implementation details and end with the experiments conducted to evaluate and analyze

the performance of EmotiCon in Section 2.3.4.

2.3.1 Problem Formulation

Our input consists of an RGB image, I. We process I to generate the input data for each

network corresponding to the three contexts. The network for Context 1 consists of n

streams corresponding to n distinct modalities denoted as m1,m2, . . . ,mn. Each distinct
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layer outputs a feature vector, fi. The n feature vectors f1, f2, . . . , fn are combined via

multiplicative fusion (Mittal, Bhattacharya, et al. 2020b) to obtain a feature encoding, h1 =

g(f1, f2, . . . , fn), where g(·) corresponds to the multiplicative fusion function. Similarly,

h2, and h3 are computed through the networks corresponding to the second and third

Contexts. h1, h2, and h3 are concatenated to perform multi-label emotion classification.

We are presented with the following problem formulation:

Problem 2.3.1. Given a data sample I as input, e.g. a video frame or an image, along

with a list of m context features, h1, h2, . . . , hm, our goal is to predict the most likely

emotions e1, e2, ..., ek present in I.

We present an overview of our context-aware multimodal emotion recognition model,

EmotiCon, in Figure 2.8.

2.3.2 Approach

EmotiCon models three definitions of context. We go over them in detail in this section.

2.3.2.1 Context 1 (Multiple Modalities)

In real life, people appear in a multi-sensory context that includes a voice, a body, and a

face; these aspects are also perceived as a whole. Combining more than one modality to

infer emotion is beneficial because cues from different modalities can complement each

other. They also seem to perform better on in-the-wild datasets (Mittal, Bhattacharya, et al.

2020b) than other unimodal approaches. Our approach is extendable to any number of

modalities available. To validate this claim, other than EMOTIC and GroupWalk, which

have two modalities, faces, and gaits, we also show results on the IEMOCAP dataset

which is face, text, and speech as three modalities. From the input image I, we obtain

m1,m2, . . . ,mn using processing steps as explained in Section 2.3.3. These inputs are

then passed through their respective neural network architectures to obtain f1, f2, . . . , fn.
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To make our algorithm robust to sensor noise and averse to noisy signals, we combine

these features multiplicatively to obtain h1. As shown in previous research (Kuan Liu et

al. 2018; Mittal, Bhattacharya, et al. 2020b), multiplicative fusion learns to emphasize reliable

modalities and to rely less on other modalities. To train this, we use the modified loss

function proposed previously (Mittal, Bhattacharya, et al. 2020b) defined as:

Lmultiplicative = −
n∑

i=1

(pei )
β

n−1 log pei (2.5)

where n is the total number of modalities being considered, and pei is the prediction for

emotion class, e, given by the network for the ith modality.

2.3.2.2 Context 2 (Situational/Background Context)

Our goal is to identify semantic context from images and videos to perform perceived

emotion recognition. Semantic context includes the understanding of objects –excluding

the primary agent– present in the scene, their spatial extents, keywords, and the activity

being performed. For instance, in Figure 2.1b, the input image consists of a group of

people gathered around with drinks on a bright sunny day. The “bright sunny day”, “drink

glasses”, “hats” and “green meadows” constitute semantic components and may affect the

judgment of one’s perceived emotion.

Motivated by multiple approaches in the computer vision literature (Zheng et al. 2019;

Fukui et al. 2019) surrounding semantic scene understanding, we use an attention mechanism

to train a model to focus on different aspects of an image while masking the primary agent,

to extract the semantic components of the scene. The mask, Imask ∈ R224×224, for an

input image I is given as

Imask =


I(i, j) if I(i, j) ̸∈ bboxagent,

0 otherwise.
(2.6)
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where bboxagent denotes the bounding box of the agent in the scene.

2.3.2.3 Context 3 (Inter-Agent Interactions/Socio-Dynamic Context)

When an agent is surrounded by other agents, their perceived emotions change. When

other agents share an identity or are known to the agent, they often coordinate their

behaviors. This varies when other agents are strangers. Such interactions and proximity

can help us infer the emotion of agents better.

Prior experimental research has used walking speed, distance, and proximity features

to model socio-dynamic interactions between agents to interpret their personality traits.

Some of these algorithms, like the social force model (Helbing and Molnar 1995), are

based on the assumption that pedestrians are subject to attractive or repulsive forces that

drive their dynamics. Non-linear models like RVO (Yeh et al. 2008) aim to model collision

avoidance among individuals while walking to their individual goals. But, both of these

methods do not capture cohesiveness in a group.

We propose an approach to model these socio-dynamic interactions by computing

proximity features using depth maps. The depth map, Idepth ∈ R224×224, corresponding

to input image, I, is represented through a 2D matrix where,

Idepth(i, j) = d(I(i, j), c) (2.7)

d(I(i, j), c) represents the distance of the pixel at the ith row and jth column from the

camera center, c. We pass Idepth as input depth maps through a CNN and obtain h3.

In addition to depth map-based representation, we also use Graph Convolutional Net-

works (GCNs) to model the proximity-based socio-dynamic interactions between agents.

GCNs have been used to model similar interactions in traffic networks (Yan, Y. Xiong, and D.

Lin 2018) and activity recognition (S. Guo et al. 2019). The input to a GCN network consists

of the spatial coordinates of all agents, denoted by X ∈ Rn×2, where n represents the

number of agents in the image, as well as the unweighted adjacency matrix, A ∈ Rn×n,
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of the agents, which is defined as follows,

A(i, j) =


e−d(vi,vj) if d(vi, vj) < µ,

0 otherwise.
(2.8)

The function f = e−d(vi,vj) (Belkin and Niyogi 2003) denotes the interactions between any

two agents.

2.3.3 Implementation Details

In this section, we discuss the datasets (Section 2.3.3.1) that we use to evaluate our

method, EmotiCon, followed with feature extraction and data processing (Section 2.3.3.2)

and network architecture (Section 2.3.3.3) details. We end with mentioning training and

hyperparameters used to obtain the results on the EMOTIC dataset and the Group-

Walk dataset (Section 2.3.3.4).

2.3.3.1 Datasets

We use two datasets for experimentation.

1. EMOTIC Dataset: The EMOTIC dataset contains 23,571 images of 34,320

annotated people in unconstrained environments. The annotations consist of the

apparent emotional states of the people in the images. Each person is annotated

for 26 discrete categories, with multiple labels assigned to each image.

2. GroupWalk Dataset: GroupWalk consists of 45 videos that were captured using

stationary cameras in 8 real-world setting including a hospital entrance, an insti-

tutional building, a bus stop, a train station, a marketplace, a tourist attraction,

a shopping place and more. The annotators annotated agents with clearly visible

faces and gait across all videos. 10 annotators annotated a total of 3544 agents.

The annotations consist of the following emotion labels– Angry, Happy, Neutral,
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and Sad. Efforts to build on this dataset are still ongoing. To prepare train and test

splits for the dataset, we randomly selected 36 videos for the training and 9 videos

for testing.

While perceived emotions are essential, other affects such as dominance and friend-

liness are important for carrying out joint and/or group tasks. Thus, we additionally

label each agent for dominance and friendliness. More details about the annotation

process, labelers, and label processing are presented below.

(i) Annotation Procedure: Annotators were allowed to view the videos as many

times as they wanted and had to categorize the emotion they perceived look-

ing at the agent into 7 categories - "Somewhat Happy", "Extremely Happy",

"Somewhat Sad", Extremely Sad", "Somewhat Angry", "Extremely Angry",

"Neutral". In addition to perceived emotions, the annotators were also asked

to annotate the agents in terms of dominance (5 categories- "Somewhat Sub-

missive", "Extremely Submissive", "Somewhat Dominant", "Extremely Dom-

inant", "Neutral" ) and friendliness (5 categories- "Somewhat Friendly", "Ex-

tremely Friendly", "Somewhat Unfriendly", "Extremely Unfriendly", "Neu-

tral"). Attempts to build the dataset are still ongoing. For the sake of

completeness, we show the friendliness label distribution and dominance label

distribution for every annotator in Figure 2.11 and Figure 2.12 respectively.

(ii) Labels Processing: 4 major labels that have been considered are Angry, Happy,

Neutral, and Sad. One can observe that the annotations are either "Extreme"

or "Somewhat" variants of these major labels (except Neutral). Target labels

were now generated for each agent. Each of them is of the size 1 x 4 with the

4 columns representing the 4 emotions being considered and are initially all 0.

For a particular agent id, if the annotation by an annotator was an "Extreme"

variant of Happy, Sad, or Angry, 2 was added to the number in the column

representing the corresponding major label. Otherwise, for all the other cases,
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1 was added to the number in the column representing the corresponding major

label. Once we have gone through the entire dataset, we normalize the target

label vector so that vector is a combination of only 1s and 0s.

(iii) Analysis: We show the emotion label distribution for every annotator in Fig-

ure 2.9. To understand the trend of annotator agreement and disagreement

across the 10 annotators, we gather agents labeled similarly in majority (more

than 50% of annotators annotated the agent with the same labels) and then

study the classes they were confused most with. We show this pictorially for

two classes Happy and Sad in Figure 2.10. For instance, we see that Happy

and Sad labels are often confused with the label ‘Neutral’. In addition, we

also show the label distributions for every annotator for Friendliness as well as

Dominance in Figure 2.11 and Figure 2.12 respectively.

2.3.3.2 Data Processing

We discuss the data processing for all three context definitions.

(a) Context1: We use OpenFace (Baltrušaitis, Robinson, and L.-P. Morency 2016) to extract

a 144-dimensional face modality vector, m1 ∈ R144 obtained through multiple facial

landmarks. We compute the 2D gait modality vectors, m2 ∈ R25×2 using Open-

Pose (Z. Cao et al. 2017) to extract 25-coordinates from the input image I. For each

coordinate, we record the x and y pixel values.

(b) Context2: We use RobustTP (Chandra et al. 2019), which is a pedestrian tracking

method to compute the bounding boxes for all agents in the scene. These bounding

boxes are used to compute Imask according to Equation 2.6.

(c) Context3: We use Megadepth (Z. Li and Snavely 2018) to extract the depth maps

from the input image I. The depth map, Idepth, is computed using Equation 2.7.
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Figure 2.9: Annotator Annotations of GroupWalk Dataset: We depict the emotion class
labels for GroupWalk by 10 annotators. A total of 3544 agents were annotated from 45 videos.

Figure 2.10: Annotator Agreement/Disagreement in Labeling of GroupWalk Dataset:
For two emotion classes (Happy and Sad), we depict the trend of annotator disagreement.

2.3.3.3 Network Architecture Details

We discuss the network architecture for all three context definitions.

(a) Context1: Given a face vector, m1, we use three 1D convolutions (depicted in

light green color in Figure 2.8) with batch normalization and ReLU non-linearity.

This is followed by a max pool operation and three fully-connected layers (cyan color

in Figure 2.8) with batch normalization and ReLU. For m2, we use the ST-GCN

architecture proposed by (Bhattacharya et al. 2020), which is currently the state-of-

the-art network for emotion classification using gaits. Their method was originally

designed to deal with 2D pose information for 16 body joints. We modify their
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setup for 2D pose inputs for 25 joints. We show the different layers and hyper-

parameters used in Figure 2.8. The two networks give us f1 and f2, which are then

multiplicatively fused (depicted in red color in Figure 2.8) to generate h1.

(b) Context2: For learning the semantic context of the input image I, we use the

Attention Branch Network (ABN) (Fukui et al. 2019) on the masked image Imask.

ABN contains an attention branch that focuses on attention maps to recognize

and localize important regions in an image. It outputs these potentially important

locations in the form of h2.

(c) Context3: We perform two experiments using both a depth map and a GCN. For

a depth-based network, we compute the depth map, Idepth, and pass it through a

CNN. The CNN is composed of 5 alternating 2D convolutional layers (depicted in

dark green color in Figure 2.8) and max pooling layers (magenta color in Figure 2.8).

This is followed by two fully connected layers of dimensions 1000 and 26 (cyan color

in Figure 2.8).

For the graph-based network, we use two graph convolutional layers followed by two

linear layers of dimension 100 and 26.

(d) Fusing Context Interpretations: To fuse the feature vectors from the three

context interpretations, we use an early fusion technique. We concatenate the

feature vectors before making any individual emotion inferences.

hconcat = [h1, h2, h3]

We use two fully connected layers of dimensions 52 and 26, followed by a softmax

layer. This output is used for computing the loss and the error, and then back-

propagating the error back to the network.

(e) Loss Function: Our classification problem is a multi-label classification problem

where we assign one or more than one emotion label to an input image or video.
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To train this network, we use the multi-label soft margin loss function and denote it

by Lclassification. The loss function optimizes a multi-label one-versus-all loss based

on max-entropy between the input x and output y.

So, we combine the two loss functions, Lmultiplicative (from Eq. 2.5) and Lclassification

to train EmotiCon.

Ltotal = λ1Lmultiplicative + λ2Lclassification (2.9)

Figure 2.11: Friendliness Labeler Annotations of GroupWalk Dataset: We depict the
friendliness labels for GroupWalk by 10 labelers. A total of 3341 agents were annotated from 45
videos.

Figure 2.12: Dominance Labeler Annotationsof GroupWalk Dataset: We depict the dom-
inance labels for GroupWalk by 10 labelers. A total of 3341 agents were annotated from 45
videos.
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2.3.3.4 Training Details

For training EmotiCon on the EMOTIC dataset, we use the standard train, validation, and

test split ratios provided in the dataset. For GroupWalk, we split the dataset into training

(85%) and testing (15%) sets. In GroupWalk each sample point is an agent ID; hence

the input is all the frames for the agent in the video. To extend EmotiCon on videos, we

perform a forward pass for all the frames and take an average of the prediction vector

across all the frames and then compute the AP scores and use this for loss calculation

and backpropagating the loss. We use a batch size of 32 for EMOTIC and a batch size

of 1 for GroupWalk. We train EmotiCon for 75 epochs. We use the Adam optimizer with

a learning rate of 0.0001. All our results were generated on NVIDIA GeForce GTX 1080

Ti GPU. All the code was implemented using PyTorch (Paszke et al. 2017).

2.3.4 Experiments and Results

In this section, we list the state-of-the-art algorithms against which we compare Emoti-

Con’s performance (Section 2.3.4.1). We discuss and analyze some qualitative and quan-

titative experiments and results in Section 2.3.4.2. In the end, we perform exhaustive

ablation experiments to motivate the benefits of our contributions and discuss these ab-

lation experiments in Section 2.3.4.3.
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Figure 2.13: EmotiCon’s Qualitative Results on the EMOTIC and GroupWalk Dataset:
We show the classification results on three examples, each from the EMOTIC dataset (left) and
GroupWalk Dataset (right), respectively. In the top row example (left) and middle row example
(right), the depth map clearly marks the tennis player about to swing to convey anticipation,
and the woman coming from the hospital to convey sadness, respectively. In the bottom row
(left) and bottom row (middle) examples, the semantic context of the coffin and the child’s kite
is clearly identified to convey sadness and pleasure, respectively.

Figure 2.14: Example Misclassification by EmotiCon: We show two examples where M3ER in-
correctly classifies the labels. In the first example, EmotiCon is confused about the prediction
due to lack of any context. In the second example, there are a lot of contexts available, which
also becomes confusing.
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Table 2.4: Comparing EmotiCon’s Performance with SOTA methods: We report the
AP scores on the EMOTIC and the GroupWalk datasets. EmotiCon outperforms all the three
methods for most of the classes and also overall.

(a) AP Scores for EMOTIC Dataset.
Labels Kosti et al. Zhang et al. Lee et al. EmotiCon

(Kosti, Jose M Alvarez, et al. 2017a) (Minghui Zhang, Liang, and Ma 2019) (Jiyoung Lee et al. 2019) GCN-Based Depth-Based
Affection 27.85 46.89 19.9 36.78 45.23
Anger 09.49 10.87 11.5 14.92 15.46
Annoyance 14.06 11.23 16.4 18.45 21.92
Anticipation 58.64 62.64 53.05 68.12 72.12
Aversion 07.48 5.93 16.2 16.48 17.81
Confidence 78.35 72.49 32.34 59.23 68.65
Disapproval 14.97 11.28 16.04 21.21 19.82
Disconnection 21.32 26.91 22.80 25.17 43.12
Disquietment 16.89 16.94 17.19 16.41 18.73
Doubt/Confusion 29.63 18.68 28.98 33.15 35.12
Embarrassment 03.18 1.94 15.68 11.25 14.37
Engagement 87.53 88.56 46.58 90.45 91.12
Esteem 17.73 13.33 19.26 22.23 23.62
Excitement 77.16 71.89 35.26 82.21 83.26
Fatigue 09.70 13.26 13.04 19.15 16.23
Fear 14.14 4.21 10.41 11.32 23.65
Happiness 58.26 73.26 49.36 68.21 74.71
Pain 08.94 6.52 10.36 12.54 13.21
Peace 21.56 32.85 16.72 35.14 34.27
Pleasure 45.46 57.46 19.47 61.34 65.53
Sadness 19.66 25.42 11.45 26.15 23.41
Sensitivity 09.28 5.99 10.34 9.21 8.32
Suffering 18.84 23.39 11.68 22.81 26.39
Surprise 18.81 9.02 10.92 14.21 17.37
Sympathy 14.71 17.53 17.125 24.63 34.28
Yearning 08.34 10.55 9.79 12.23 14.29
mAP 27.38 28.42 20.84 32.03 35.48

(b) AP Scores for GroupWalk Dataset.
Labels Kosti et al Zhang et al Lee et al. EmotiCon

(Kosti, Jose M Alvarez, et al. 2017a) .(Minghui Zhang, Liang, and Ma 2019) (Jiyoung Lee et al. 2019) GCN-Based Depth-Based
Anger 58.46 - 42.31 65.13 69.42
Happy 69.12 - 56.79 72.46 73.18
Neutral 42.27 - 39.24 44.51 48.51
Sad 63.83 - 54.33 68.25 72.24
mAP 58.42 - 48.21 62.58 65.83

2.3.4.1 Evaluation Metrics and Methods

We use the standard metric Average Precision (AP) to evaluate all our methods. For

both EMOTIC and GroupWalk datasets, we compare our methods with the following

state-of-the-art methods.

(a) Kosti et al. (Kosti, Jose M Alvarez, et al. 2019) propose a two-stream network followed by

a fusion network. The first stream encodes context and then feeds the entire image

as input to the CNN. The second stream is a CNN for extracting body features.
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Table 2.5: Ablation Experiments on EmotiCon: Keeping the Context interpretation 1
throughout, we remove the other two Context interpretations one by one and compare the
AP scores for emotion classification on both the datasets.

(a) Ablation Experiments performed on the EMOTIC Dataset.

Labels Context Interpretations
Only 1 Only 1 and 2 Only 1 and 3 1, 2 and 3

Affection 29.87 41.83 30.15 45.23
Anger 08.52 11.41 8.36 15.46
Annoyance 09.65 17.37 12.91 21.92
Anticipation 46.23 67.59 60.53 72.12
Aversion 06.27 11.71 09.46 17.81
Confidence 51.92 65.27 59.63 68.85
Disapproval 11.81 17.35 15.41 19.82
Disconnection 31.74 41.46 32.56 43.12
Disquietment 07.57 12.69 12.24 18.73
Doubt/Confusion 21.62 31.28 29.51 35.12
Embarrassment 08.43 10.51 12.25 14.37
Engagement 78.68 84.62 81.51 91.12
Esteem 18.32 18.79 09.42 23.62
Excitement 73.19 80.54 76.14 83.26
Fatigue 06.34 11.95 14.15 16.23
Fear 14.29 21.36 22.29 23.65
Happiness 52.52 69.51 71.51 74.71
Pain 05.75 09.56 11.10 13.21
Peace 13.53 30.72 30.15 34.27
Pleasure 58.26 61.89 59.81 65.53
Sadness 19.94 19.74 22.27 23.41
Sensitivity 03.16 04.11 8.15 8.32
Suffering 15.38 20.92 12.83 26.39
Surprise 05.29 16.45 16.26 17.37
Sympathy 22.38 30.68 22.17 34.28
Yearning 04.94 10.53 9.82 14.29
mAP 24.06 31.53 29.63 35.48

(b) Ablation Experiments performed on the GroupWalk Dataset.

Labels Context Interpretations
Only 1 Only 1 and 2 Only 1 and 3 1, 2 and 3

Anger 58.51 63.83 66.15 69.42
Happy 61.24 64.16 68.87 73.18
Neutral 40.36 41.57 44.15 48.51
Sad 62.17 67.22 70.35 72.24
mAP 55.57 59.20 62.38 65.83
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The fusion network combines features of the two CNNs and estimates the discrete

emotion categories.

(b) Zhang et al. (Minghui Zhang, Liang, and Ma 2019) build an affective graph with nodes

as the context elements extracted from the image. To detect the context elements,

they use a Region Proposal Network (RPN). This graph is fed into a Graph Convo-

lutional Network (GCN). Another parallel branch in the network encodes the body

features using a CNN. The outputs from both branches are concatenated to infer

an emotion label.

(c) Lee et al. (Jiyoung Lee et al. 2019) present network architecture, CAER-Net consisting

of two subnetworks, a two-stream encoding network, and an adaptive fusion network.

The two-stream encoding network consists of a face stream and a context stream

where facial expression and context (background) are encoded. An adaptive fusion

network is used to fuse the two streams.

We use the publicly available implementation for Kosti et al. (Kosti, Jose M Alvarez,

et al. 2019) and train the entire model on GroupWalk. Both Zhang et al. (Minghui Zhang,

Liang, and Ma 2019) and Lee et al. (Jiyoung Lee et al. 2019) do not have publicly available

implementations. We reproduce the method by Lee et al. (Jiyoung Lee et al. 2019) to the

best of our understanding. For Zhang et al. (Minghui Zhang, Liang, and Ma 2019), while we

report their performance on the EMOTIC dataset, with limited implementation details, it

was difficult to build their model to test their performance on GroupWalk.

2.3.4.2 Analysis and Discussion

We summarize our experiments and results below-

1. Comparison with state-of-the-art: We summarize the evaluation of the APs

for all the methods on the EMOTIC and GroupWalk datasets in Table 2.4. For

EmotiCon, we report the AP scores for both GCN-based and Depth Map-based
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implementations of Context 3. On both the EMOTIC and GroupWalk datasets,

EmotiCon outperforms the state-of-the-art.

2. Generalize to more Modalities: A major factor for the success of EmotiCon is

its ability to combine different modalities effectively via multiplicative fusion. Our

approach learns to assign higher weights to more expressive modalities while sup-

pressing weaker ones. For example, in instances where the face may not be visible,

EmotiCon infers the emotion from context (See Figure 2.13, middle row(right)).

This is in contrast to Lee et al. (Jiyoung Lee et al. 2019), which relies on the avail-

ability of face data. Consequently, they perform poorly on both the EMOTIC and

GroupWalk datasets, as both datasets contain many examples where the face is not

visible clearly.

3. GCN versus Depth Maps: GCN-based methods do not perform as well as depth-

based but are a close second. This may be due to the fact that on average most

images of the EMOTIC dataset contain 5 agents. GCN-based methods in the

literature have been trained on datasets with a lot more agents in each image or

video. Moreover, with a depth-based approach, EmotiCon learns a 3D aspect of the

scene in general and is not limited to inter-agent interactions.

4. Failure Cases: We show two examples from EMOTIC dataset in Figure 2.14

where EmotiCon fails to classify correctly. We also show the ground truth and

predicted emotion labels. In the first image, EmotiCon is unable to gather any

context information. On the other hand, in the second image, there is a lot of

context information like the many visual elements in the image and multiple agents.

This leads to an incorrect inference of the perceived emotion.

5. Qualitative Results: We show qualitative results for three examples, each from

both the datasets, respectively, in Figure 2.13. The first column is the input image

marking the primary agents, the second column shows the corresponding extracted

face and gait, the third column shows the attention maps learned by the model,
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and lastly, in the fourth column, we show the depth map extracted from the input

image.

The heatmaps in the attention maps indicate what the network has learned. In

the bottom row (left) and bottom row (middle) examples, the semantic context of

the coffin and the child’s kite is clearly identified to convey sadness and pleasure,

respectively. The depth maps corresponding to the input images capture the idea

of proximity and inter-agent interactions. In the top row example (left) and middle

row example (right), the depth map clearly marks the tennis player about to swing

to convey anticipation, and the woman coming from the hospital to convey sadness,

respectively.

2.3.4.3 Ablation Results

To motivate the importance of Context 2 and Context 3, we run EmotiCon on both

EMOTIC and GroupWalk dataset removing the networks corresponding to both contexts,

followed by removing either of them one by one. The results of the ablation experiments

have been summarized in Table 2.5. We choose to retain Context 1 in all these runs

because it is only Context 1 that is capturing information from the agent itself.

We observe from the qualitative results in Figure 2.13 that Context 2 seems more

expressive in the images of EMOTIC dataset, while Context 3 is more representative in

GroupWalk. This is supported by the results reported in Table 2.5, columns 2 and 3.

To understand why this happens, we analyze the two datasets closely. EMOTIC dataset

was collected for the task of emotion recognition with context. it is a dataset of pictures

collected from multiple datasets and scraped from the Internet. As a result, most of these

images have a rich background context. Moreover, we also found that more than half

the images of EMOTIC contain at most 3 people. These are the reasons we believe that

interpretation 2 helps more in EMOTIC than interpretation 3. In the GroupWalk Dataset,

the opposite is true. The number of people per frame is much higher. This density gets
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captured best in interpretation 3 helping the network to make a better inference.

2.4 Conclusion, Limitations and Future Work

We presented M3ER, a multimodal emotion recognition model that uses a multiplicative

fusion layer and EmotiCon, a context-aware emotion recognition model. M3ER is robust

to the sensor because of a modality check step that distinguishes between good and bad

signals to regenerate a proxy feature vector for bad signals. We use multiplicative fusion

to decide on a per-sample basis which modality should be relied on more for making a

prediction. Currently, we have applied our results to databases with three input modal-

ities, namely face, speech, and text. EmotiCon borrows and incorporates three context

interpretations from psychology. We use multiple modalities (faces and gaits), situational

context, and also socio-dynamic inter-agent context information. We make an effort to

use easily available modalities that can be easily captured or extracted using commodity

hardware (e.g., cameras). To foster more research on emotion recognition with naturalistic

modalities, we also release a new dataset called GroupWalk dataset. The dataset consists

of 45 videos that were captured using stationary cameras in 8 real-world setting including

a hospital entrance, an institutional building, a bus stop, a train station, a marketplace, a

tourist attraction, a shopping place and more.

Our models have limitations and often confuse certain class labels. Further, we cur-

rently perform binary classification per class; however, human perception is rather subjec-

tive in nature and would resemble a probability distribution over these discrete emotions.

Thus, it would be useful to consider multi-class classification in the future. Further,

we currently perform multi-class classification over discrete emotion labels for both the

models; it would be useful to move towards the continuous model of emotions (Valence,

Arousal, and Dominance).

Using multiplicative fusion was one approach towards optimally fusing various modali-

ties; however using more more elaborate fusion techniques can help improve the accuracies
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further. It would be further useful to extend M3ER for more than three modalities and

use more than three definitions of context for EmotiCon.

54



Chapter 3

Video Manipulation and

Deepfake Detection Using

Affective Cues

The proliferation of accessible video editing software and artificial intelligence (AI) tools

has led to an increase in manipulated video content (Khelifi and Bouridane 2017; Y. He et

al. 2021). While digital manipulation is commonplace in the creative process, in some

cases video manipulation has malicious intent. Social media often amplifies such false

information through the circulation of manipulated videos (Anderson 2018; Figueira and L.

Oliveira 2017). A recent survey by Pew Research Center showed that exposure to such false

information is of widespread concern (Silver 2020). Therefore, there has been a significant

increase in cases of misinformation, fraud, and cybercrimes in the last decade. Such

video manipulations pose a great threat to politics and can manipulate elections (Watts,

Rothschild, and Mobius 2021; J. Allen et al. 2020), alter political narratives, weaken the public’s

trust in a country’s leadership, and an increasing hatred among various social groups.

Another common occurrence is corporate fraud and scams where people use altered audio
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(a1) The original photo, from
Getty Images shows an armed
man parked in front of a car.

(b1) This is an original clip of a
presidential candidate addressing
public in the US state, Minnesota.

(c1) An original image shows
three missiles being launched by
Iran’s government.

(a2) The photo above was altered
by digitally placing the armed
man in front of a peaceful protest,
insinuating violence.

(b2) The clip above is altered
by changing the location and the
signs on the podium to a different
US state, Florida.

(c2) In an altered image released
on Iran’s Revolutionary Guards
website, claimed that 4 missiles
were launched simultaneously.

Figure 3.1: Instances of Real-world Video Manipulations: (a) (Brunner 2020), (b) (News
2020), and (c) (NPR 2008) are all examples of videos on social media spatially manipulated with
the intent to mislead the public. Similar such instances also occur for temporally manipulated
videos; but it was not feasible to depict them here.

to impersonate other people to extort cash and other resources. Lastly, many video

manipulations often result in numerous cybercrimes (Harris 2018; Spivak 2018; Botha and

Pieterse 2020). To further illustrate our motivations in this work, we depict such instances

of video manipulations in Figure 3.1.

Recent advances in computer vision and deep learning techniques have enabled the

creation of sophisticated and compelling forged versions of social media images and

videos (also known as “deepfakes”). Some of the common deepfake generation tools

and libraries include, FaceSwap 1, FakeApp 2, DeepFaceLab 3, DFaker 4, and, FaceSwap-

GAN 5. Due to the surge in AI-synthesized deepfake content, multiple attempts have been
1FaceSwap: https://github.com/deepfakes/faceswap
2FakeApp: https://www.malavida.com/en/soft/fakeapp/gref
3DeepFaceLab: https://github.com/iperov/DeepFaceLab
4DFaker: https://github.com/dfaker/df
5FaceSwap-GAN: https://github.com/shaoanlu/faceswap-GAN.
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Table 3.1: Summary of Characteristics of Video Manipulation Datasets: We compare
VideoSham with state-of-the-art video manipulation datasets.

Faces Datasets Release Date # Videos Source Attacks Human Context Modality

Real Fake Original Manipulated Density Visual Audio
O

nl
y

UADFV Nov-18 49 49 YouTube Deep Learning 3 1 ✗ ✓ ✗

(X. Yang, Y. Li, and Lyu 2019)
DF-TIMIT Dec-18 640 320 VidTIMIT Deep Learning 3, 4 1 ✗ ✓ ✓

(Korshunov and Marcel 2018a) (Sanderson 2002)
FaceForensics++ Jan-19 1000 4000 YouTube Deep Learning 3, 4 1 ✗ ✓ ✗

(Rossler et al. 2019)
DFD† Sep-19 0 3000 YouTube Deep Learning 3 1 ✗ ✓ ✗

CelebDF Nov-19 5907 5639 YouTube Deep Learning 3 1 ✗ ✓ ✗

(Y. Li, X. Yang, et al. 2019)
DFDC Oct-21 23654 104, 500 Actors Unknown 3 1 ✗ ✓ ✗

(Dolhansky et al. 2019)
DeeperForensics 1.0 Jan-21 50, 000 10, 000 Actors Deep Learning 3 1 ✗ ✓ ✗

(L. Jiang et al. 2020)
WildDeepFake Jan-21 3, 805 3, 509 Internet Internet 3, 4, 5 1 ✗ ✓ ✗

(Zi et al. 2020)
KoDF Aug-21 62, 166 175, 776 Actors Deep Learning 3, 4, 5 1 ✗ ✓ ✓

(Kwon et al. 2021)
FakeAVCeleb Sep-21 490+ 20, 000+ VoxCeleb2 Deep Learning 3, 4 1 ✗ ✓ ✓

(Khalid, Tariq, and Woo 2021) (Chung, Nagrani, and Zisserman 2018)
ForgeryNet July-21 91, 630 121, 617 Multiple Deep Learning 3, 4 1 ✗ ✓ ✓

(Y. He et al. 2021)
SR-DF Apr-21 1, 000 4, 000 YouTube Deep Learning 3, 4 1 ✗ ✓ ✓

(J. Wang et al. 2021)
Khelifi et al. Jan-19 200 200 Multiple User Generated 6, 7 1 ✗ ✓ ✗

(Khelifi and Bouridane 2017)

B
ey

on
d

MTVFD 2016 30 30 YouTube User Generated 1, 2 ≤ 1 ✓ ✗ ✗

(Al-Sanjary, Ahmed, and Sulong 2016)
Liao et al 2013 10 8 Multiple User Generated 1 ≤ 1 ✓ ✓ ✗

(Liao and T.-Q. Huang 2013)
Su et al 2015 7 7 SONY DSCP10 User Generated 1 ≤ 1 ✓ ✓ ✗

(Su, T. Huang, and J. Yang 2015)

Ours Nov-21 413 413 Online Videos User Generated upto 40 ✓ ✓ ✓

† Google AI blog.

made to release benchmark datasets (Korshunov and Marcel 2018a; Rossler et al. 2019; AI n.d.;

Dolhansky et al. 2019) and algorithms (P. Zhou, X. Han, et al. 2017; Afchar et al. 2018; X. Yang,

Y. Li, and Lyu 2019; Y. Li and Lyu 2018; Matern, Riess, and Stamminger 2019; Rossler et al. 2019;

H. H. Nguyen, Fang, et al. 2019; H. H. Nguyen, Yamagishi, and Echizen 2019; Sabir et al. 2019; Güera

and Delp 2018; Verdoliva and Bestagini 2019) for deepfake detection. We summarize some of

these deepfake datasets in Table 3.1. DeepFake detection methods classify an input video

or image as “real” or “fake”.

Prior methods exploit only a single modality, i.e., only the facial cues from these videos

either by employing temporal features or by exploring the visual artifacts within frames.

Other than these modalities, multimodal approaches have also exploited the contextual

information in video data to detect fakes (Papadopoulou et al. 2017). There are many other

applications of video processing that use and combine multiple modalities for audio-visual

speech recognition (Gurban et al. 2008), emotion recognition (Mittal, Bhattacharya, et al. 2020b;

A. B. Zadeh et al. 2018), and language and vision tasks (Hodosh, Young, and Hockenmaier 2013;
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Bigham et al. 2010). These applications show that combining multiple modalities can provide

complementary information and lead to stronger inferences. Even for detecting deepfake

content, we can extract many such modalities like facial cues, speech cues, background

context, hand gestures, and body posture and orientation from a video. When combined,

multiple cues or modalities can be used to detect whether a given video is real or fake.

But facial manipulations represent only a fraction of all manipulated content cir-

culated on social media. For example, modifications also include changing the back-

ground context (Figure 3.1(b)), text and audio (Figure 3.1(c)) in media, aesthetic edits,

adding/removing entities (Figure 3.1(a)), and temporal edits (Figure 3.1(d)). These ma-

nipulations can be performed in a matter of clicks due to the availability of state-of-the-art

video editing tools like Adobe AfterEffectsTM, Adobe PremiereProTM, Filmora, GIMP, and

many others. To our knowledge, no benchmark video dataset exists that extends beyond

deepfake-only facial manipulations to include the vast range of manipulations described

above.

Main Contributions: Towards this problem of manipulated videos, our contributions

are two-fold. In our first work, we present an audio-visual deepfake detection method and

in the second work, we expand the scope and look at more generic video manipulations.

More formally, the following are our main contributions in this domain-

1. We present a novel approach that simultaneously exploits the audio (speech) and

video (face) modalities and the perceived emotion features extracted from both

modalities to detect any falsification or alteration in the input video. To model

these multimodal features and the perceived emotions, our learning method uses a

Siamese network-based architecture. At training time, we pass a real video along

with its deepfake through our network and obtain modality and perceived emotion

embedding vectors for the face and speech of the subject. We use these embedding

vectors to compute the triplet loss function to minimize the similarity between the

modalities from the fake video and maximize the similarity between modalities for
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the real video.

2. We release a new manipulated high-resolution video dataset called VideoSham (Fig-

ure 3.2). VideoSham offers several benefits over existing manipulated video

datasets. Firstly, the videos in VideoSham are manipulated using six spatial and

temporal attacks (See Table 3.2) manipulating videos at the scene level targeting,

not just faces, but also the background context, text, and audio, aesthetic edits,
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Figure 3.2: VideoSham Dataset’s Qualitative Examples: We present a series of frames, both
for real and manipulated videos for the 4 spatial attacks. In ATTACK 1, we add ducks in the
water behind the person talking in the microphone. In ATTACK 2, we remove the man in the
black shirt to the right corner. In ATTACK 3, we change the color of the walls to yellow. And,
finally, in ATTACK 4, we alter the name of the person talking. We were not able to add examples
of the 2 temporal attacks (ATTACK 5, ATTACK 6) here.
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adding/removing entities, and temporal edits. Secondly, although there exist image

manipulation datasets that go beyond faces, they cannot be used to detect video

manipulations, which require dedicated video datasets. The latter, however, is hard

to create due to the manual labor involved. In this work, we go beyond images to

release the first video manipulation dataset containing beyond-face manipulations.

We validate our audio-visual deepfake detection model on two benchmark deepfake

detection datasets, DeepFakeTIMIT Dataset (Korshunov and Marcel 2018a), and DFDC (Dol-

hansky et al. 2019). We report the Area Under Curve (AUC) metric on the two datasets for

our approach and compare with several prior works. We report the per-video AUC score

of 84.4%, which is an improvement of about 9% over SOTA on DFDC, and our network

performs at par with prior methods on the DF-TIMIT dataset.

VideoSham consists of 413 real-world videos and their corresponding manipulated

versions (total of 826 videos). The videos have diverse scene backgrounds, are context-

rich, and contain up to 9 subjects on average. VideoSham is the largest dataset con-

taining manipulated videos generated by professional video editors with varied attacks. A

user study was conducted on Amazon Mechanical Turk (AMT) to understand the kind of

attack methods that mislead humans the most. In addition, we analyze the performance

of existing state-of-the-art deepfake detection algorithms and video forensics algorithms

on VideoSham. We find that these techniques are less than 50% effective in distin-

guishing between a real and a manipulated video. We also discuss some promising ideas

from multimodal learning and affective computing that could be helpful in detecting some

of these attacks.

The rest of the chapter is structured as follows: We discuss prior work in the domain of

video manipulation techniques and detection methods in Section 3.1. Then in Section 3.2

we go over the proposed audio-visual deepfake detection method that uses the correlation

between the modality embeddings and the emotion embeddings to detect a deepfake

video. And, finally in Section 3.3, we discuss our contribution, the VideoSham dataset.
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We elaborate on the characteristics of the dataset and the various experiments conducted

to anlayze the dataset further. We conclude with a discussion regarding limitations and

some future directions in building more robust video manipulation detection methods in

Section 3.4.

3.1 Prior Work in Video Manipulation Detection

In this section, we discuss previous works in detection of manipulated and deceptive

media content. To begin with, we first discuss the video manipulation techniques used

to create such fake videos in Section 3.1.1. Then in Section 3.1.2, we summarize various

datasets and benchmarks for video manipulations. We also survey different techniques

used for detecting deepfake videos in Section 3.1.3 and generic video forensic methods in

Section 3.1.4.

Table 3.2: Summary of Attacks Used to Manipulate Videos: We summarize the various
attacks that have been explored in prior literature for manipulating images and videos.

S.No. Attack Method/Software Description

Spatial

1 Copy-Move and Splicing Adobe PhotoshopTM, AfterEffectsTM Select and copy-paste

2 Retouching/Lighting Adobe Lightroom TM Change Brightness and Contrast
Median Filter

3 Face Swapping (FS)

FakeApp, FaceSwap (Korshunova et al. 2017)

Face transferFaceShifter (L. Li et al. 2019)
FSGAN (Nirkin, Keller, and Hassner 2019)
DeepFaceLab (Perov et al. 2020)

4
Face Re-enactment (FR)

Neural Textures (Thies, Zollhöfer, and Nießner 2019)

Guided face deformationsFirst-Order-Motion (Siarohin et al. 2019)
Face2Face (Thies, Zollhofer, et al. 2016)
IcFace (Tripathy, Kannala, and Rahtu 2020)
FSGAN (Nirkin, Keller, and Hassner 2019)

5 Audio-driven FR (AFR) Wav2Lip (Prajwal et al. 2020) Audio-guided face reenactment
Audio-driven FR (AFR) APB2FACE (Jiangning Zhang et al. 2020)
ATFHP (R. Yi et al. 2020)

Temporal 6 Temporal Adobe Lightroom
TM Frame Dropping, Frame Insertion

Shifting in time, Frame Swapping

Geometric 7 Geometric Adobe Lightroom TM Cropping, Resizing
Rotation, Shifting

3.1.1 Video Manipulation Techniques/Attacks

Manipulation techniques, or attacks, are broadly categorized as spatial (Amerini et al. 2011),

temporal (Khelifi and Bouridane 2017), and geometric (Khelifi and Bouridane 2017) in the litera-
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ture (see Table 3.2). Basic examples of spatial attacks include copy-move and image/video

splicing which correspond to spatially or temporally shifting an object to a different lo-

cation in the same video or a different video, respectively. Retouching, another common

attack, involves aesthetic edits like adjusting brightness, contrast, and other parameters

of digital content. More recently, people have used AI to alter facial features to create

deepfake videos. AI-based techniques are comprised of two major attack approaches, Face

Swapping (Nirkin, Keller, and Hassner 2019; Perov et al. 2020) and Face Re-enactment (Thies,

Zollhofer, et al. 2016; Thies, Zollhöfer, and Nießner 2019; Siarohin et al. 2019). Face Swapping

switches the subject’s face with the face of another person and Face Re-enactment alters

the subject’s facial expressions. Temporal attacks involve swapping, duplicating, inserting,

and deleting frames of video, giving the impression that the video has been sped up or

slowed down. Finally, geometric attacks include operations like cropping and rotations.

3.1.2 Video Manipulation Datasets

Creating benchmarks of video manipulations is a challenging task as this may require per-

frame manipulations. Some of the datasets (like Khelifi et al. (Khelifi and Bouridane 2017),

MTVFD (Al-Sanjary, Ahmed, and Sulong 2016), Liao et al. (Liao and T.-Q. Huang 2013), Su et

al. (Su, T. Huang, and J. Yang 2015), Media Forensics Challenge (Guan et al. 2019)) are very small

in volume containing 7−200 videos each, these datasets are also not publicly available.

Most of these videos have 0 or 1 subjects present in the frame with very little background

context. More recently, AI-synthesized attacks like face swapping, face re-enactment, and

audio-driven face re-enactment have led to the creation of datasets like UADFV (X. Yang,

Y. Li, and Lyu 2019), FaceForensics++ (Rossler et al. 2019), DeeperForensics1.0 (L. Jiang et al.

2020), WildDeepFake (Zi et al. 2020). Because these datasets are generated using learning

methods; some of these datasets have upto 100k videos. However all of these datasets

have strictly 1 subject per video with the face being predominant part of the frame with no

background context at all. Many datasets are missing audio except DFDC (Dolhansky et al.
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2019), DF-TIMIT (Korshunov and Marcel 2018a), KoDF (Kwon et al. 2021), FakeAVCeleb (Khalid,

Tariq, and Woo 2021), ForgeryNet (Y. He et al. 2021) and SR-DF (J. Wang et al. 2021).

3.1.3 Deepfake Detection Methods

The goal of the deepfake detection approaches is to algorithmically distinguish fake videos

from real videos.

Unimodal Methods: Most prior work in deepfake detection decompose videos into frames

and explore visual artifacts across frames. For instance, Li et al. (Y. Li and Lyu 2018) propose

a Deep Neural Network (DNN) to detect fake videos based on artifacts observed during

the face warping step of the generation algorithms. Similarly, Yang et al. (X. Yang, Y. Li, and

Lyu 2019) look at inconsistencies in the head poses in the synthesized videos and Matern

et al. (Matern, Riess, and Stamminger 2019) capture artifacts in the eyes, teeth and facial

contours of the generated faces. Prior works have also experimented with a variety of

network architectures. For instance, Nguyen et al. (H. H. Nguyen, Yamagishi, and Echizen 2019)

explore capsule structures, Rossler et al. (Rossler et al. 2019) use the XceptionNet, and Zhou

et al. (P. Zhou, X. Han, et al. 2017) use a two-stream Convolutional Neural Network (CNN)

to achieve SOTA in general-purpose image forgery detection. Previous researchers have

also observed and exploited the fact that temporal coherence is not enforced effectively

in the synthesis process of deepfakes. For instance, Sabir et al. (Sabir et al. 2019) leveraged

the use of spatio-temporal features of video streams to detect deepfakes. Likewise, Guera

and Delp et al. (Güera and Delp 2018) highlight that deepfake videos contain intra-frame

consistencies and hence use a CNN with a Long Short Term Memory (LSTM) to detect

deepfake videos.

Multimodal Methods: While unimodal DeepFake Detection methods have focused only

on the facial features of the subject, there has not been much focus on using the multiple

modalities that are part of the same video. Jeo and Bang et al. (Jeon, Y. Bang, and Woo 2019)

propose FakeTalkerDetect, which is a Siamese-based network to detect the fake videos
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generated from the neural talking head models. They perform a classification based on

distance. However, the two inputs to their Siamese network are a real and fake video.

Korshunov et al. (Korshunov and Marcel 2018b) analyze the lip-syncing inconsistencies using

two channels, the audio and visual of moving lips. Krishnamurthy et al. (Krishnamurthy

et al. 2018) investigated the problem of detecting deception in real-life videos, which is very

different from deepfake detection. They use an MLP-based classifier combining video,

audio, and text with Micro-Expression features. Our approach to exploiting the mismatch

between two modalities is quite different and complimentary to these methods. However,

it is clear that due to the nature of the datasets (single-person, face-centered videos),

these approaches focus only on facial cues and audio cues.

3.1.4 Video Forensic Methods

Developments in video forensics literature focus on two specific attacks; Copy-Move and

Splicing (Row 1 in Table 3.2) and Temporal attacks (Row 6 in Table 3.2). Most conven-

tional copy-move forgery detection methods mainly consist of three components (Cozzolino,

Poggi, and Verdoliva 2015): (1) feature extraction, (2) matching, and (3) post-processing. A

variety of features have been explored, e.g., DCT (Discrete Cosine Transform) (Mahmood

et al. 2016), DWT (Discrete Wavelet Transform) and KPCA (Kernel Principal Component

Analysis) (Bashar et al. 2010), Zernike moments (Ryu et al. 2013). Consequently, some end-

to-end deep learning based copy-move forgery detection methods were proposed (Yue Wu,

Abd-Almageed, and Natarajan 2018a; Yue Wu, Abd-Almageed, and Natarajan 2018b; Y. Li and Lyu

2019). However these efforts are limited to images. Another interesting development, still

in naive stages is deep learning methods to detect inpainting in videos (P. Zhou, Yu, et al.

2021). Some of the methods in detecting temporal attacks (also called intra-frame ma-

nipulations) use the consistency of velocity field (Yuxing Wu et al. 2014) and optical flow (Q.

Wang et al. 2014). These methods can recognize frame insertion and frame deletion attacks.

Similarly, Zhao et al. (D.-N. Zhao, R.-K. Wang, and Lu 2018) use inter-frame similarity analysis
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Table 3.3: Notations Used for our Audio-Visual Deepfake Detection Method: We
highlight the notation and symbols used in the paper.

Symbol Description

xy

x ∈ {f, s} denote face and speech features extracted from OpenFace and pyAudioAnalysis.
y ∈ {real, fake} indicate whether the feature x is real or fake.
E.g. freal denotes the face features extracted from a real video using OpenFace.

abc

a ∈ {e,m} denote emotion embedding and modality embedding.
b ∈ {f, s} denote face and speech cues.
c ∈ {real, fake} indicate whether the embedding a is real or fake.
E.g. mf

real denotes the face modality embedding generated from a real video.

ρ1 Modality Embedding Similarity Loss (Used in Training)
ρ2 Emotion Embedding Similarity Loss (Used in Training)

dm Face/Speech Modality Embedding Distance (Used in Testing)
de Face/Speech Emotion Embedding Distance (Used in Testing)

to detect frame duplications in the videos. Finally, Long et al. (Long et al. 2019) propose a

coarse-to-fine framework based on deep Convolutional Neural Networks (CNN) to detect

potential frame duplications.

3.2 Audio-Visual Deepfake Detection Method

In this section, we present our multimodal approach to detecting deepfake videos. We

briefly describe the problem statement and give an overview of our approach in Sec-

tion 3.2.1. We also elaborate on how our approach is similar to a Siamese Network

architecture. We then explain our approach in Section 3.2.2. We elaborate on the modal-

ity embeddings and the perceived emotion embedding, the two main components and also

explain the similarity score and modified triplet losses used for training the network. We

then explain the implementation details in Section 3.2.3 and the experimental results in

Section 3.2.4.

3.2.1 Problem Statement and Overview

Problem 3.2.1. Given an input video with audio modality s and visual modality f , our

goal is to detect if it is a deepfake video.
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(a) Training Routine: (left) We extract facial and speech features from the raw videos (each
subject has a real and fake video pair) using OpenFace and pyAudioAnalysis, respectively. (right)
The extracted features are passed to the training network that consists of two modality embedding
networks and two perceived emotion embedding networks.

(b) Testing Routine: At runtime, given an input video, our network predicts the label (real or
fake).

Figure 3.3: Audio-Visual Deepfake Detection Model Architecture: We present an overview
diagram for both the training and testing routines of our model. The networks consist of 2D
convolutional layers (purple), max-pooling layers (yellow), fully-connected layers (green), and
normalization layers (blue). F1 and S1 are modality embedding networks and F2 and S2 are
perceived emotion embedding networks for face and speech, respectively.

Overviews of our training and testing routines are given in Figure 3.3a and Figure 3.3b,

respectively. During training, we select one “real” and one “fake” video containing the

same subject. We extract the face as well as the speech features, freal and sreal, respec-

tively, from the real input video. In a similar fashion, we extract the face and speech

features (using OpenFace (Baltrušaitis, Robinson, and L.-P. Morency 2016) and pyAudioAnaly-
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sis (Giannakopoulos 2015)), ffake and sfake, respectively, from the fake video. More details

about the feature extraction from the raw videos have been presented in Section 3.2.3.2.

The extracted features, freal, sreal, ffake, sfake, form the inputs to the networks (F1, F2,

S1, and S2), respectively. We train these networks using a combination of two triplet

loss functions designed using the similarity scores, denoted by ρ1 and ρ2. ρ1 represents

similarity among the facial and speech modalities, and ρ2 is the similarity between the

affect cues (specifically, perceived emotion) from the modalities of both real and fake

videos.

Our training method is similar to a Siamese network because we also use the same

weights of the network (F1, F2, S1, S2) to operate on two different inputs, one real video

and the other a fake video of the same subject. Unlike regular classification-based neu-

ral networks, which perform classification and propagate that loss back, we instead use

similarity-based metrics for distinguishing real and fake videos. We model this similarity

between these modalities using Triplet loss (explained elaborately in Section 3.2.2.4).

During testing, we are given a single input video, from which we extract the face and

speech feature vectors, f and s, respectively. We pass f into F1 and F2, and pass s into

S1 and S2, where F1, F2, S1, and S2 are used to compute distance metrics, dist1 and

dist2. We use a threshold τ , learned during training, to classify the video as real or fake.

We list all notations used throughout in Table 3.3.

3.2.2 Approach

There are two main embedding correlations we compute to infer a video is fake or not.

We explain the details below.

3.2.2.1 F1 and S1: Video/Audio Modality Embeddings

F1 and S1 are neural networks that we use to learn the unit-normalized embeddings for

the face and speech modalities, respectively. In Figure 3.3, we depict F1 and S1 in both
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training and testing routines. They are composed of 2D convolutional layers (purple),

max-pooling layers (yellow), and fully connected layers (green). ReLU non-linearity is

used between all layers. The last layer is a unit-normalization layer (blue). For both face

and speech modalities, F1 and S1 return 250-dimensional unit-normalized embeddings.

The training is performed using the following equations:

mf
real = F1(freal), m

f
fake = F1(ffake),

ms
real = S1(sreal), m

s
fake = S1(sfake)

(3.1)

And the testing is done using the equations:

mf = F1(f), ms = S1(s) (3.2)

3.2.2.2 F2 and S2: Video/Audio Perceived Emotion Embedding

F2 and S2 are neural networks that we use to learn the unit-normalized affect embeddings

for the face and speech modalities, respectively. F2 and S2 are based on the Memory

Fusion Network (MFN) (A. Zadeh et al. 2018a), which is reported to have SOTA performance

on both emotion recognition from multiple views or modalities like face and speech. MFN

is based on a recurrent neural network architecture with three main components: a system

of LSTMs, a Memory Attention Network, and a Gated Memory component. The system

of LSTMs takes in different views of the input data. In our case, we adopt the trained

single-view version of the MFN, where the face and speech are treated as separate views,

i.e. F2 takes in the video (view only) and S2 takes in the audio (view only). We pre-trained

the F2 MFN with video and the S2 MFN with audio from CMU-MOSEI dataset (A. B.

Zadeh et al. 2018). The CMU-MOSEI dataset describes the perceived emotion space with

6 discrete emotions following the Ekman model (P. Ekman, Freisen, and Ancoli 1980): happy,

sad, angry, fearful, surprise, and disgust, and a “neutral” emotion to denote the absence

of any of these emotions. For face and speech modalities in our network, we use 250-
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dimensional unit-normalized features constructed from the cross-view patterns learned by

F2 and S2 respectively.

The training is performed using the following equations:

efreal = F2(freal), e
f
fake = F2(ffake),

esreal = S2(sreal), e
s
fake = S2(sfake).

(3.3)

And the testing is done using the equations:

ef = F2(f), es = S2(s). (3.4)

3.2.2.3 Training Routine

At training time, we use a fake and a real video with the same subject as the input.

After, passing extracted features from raw videos (freal, ffake, sreal, sfake) through F1, F2,

S1, and S2, we obtain the unit-normalized modality and perceived emotion embeddings

as described in Eqs. 3.1-3.4.

Considering an input real and fake video, we first compare freal with ffake, and sreal with

sfake to understand what modality was manipulated more in the fake video. Considering,

we identify the face modality to be manipulated more in the fake video, based on these

embeddings we compute the first similarity between the real and fake speech and face

embeddings as follows:

Similarity Score 1: L1 = d(ms
real,m

f
real)− d(ms

real,m
f
fake), (3.5)

where d denotes the Euclidean distance.

In simpler terms, L1 is computing the distance between two pairs, d(ms
real,m

f
real) and

d(ms
real,m

f
fake). We expect ms

real,m
f
real to be closer to each other than ms

real,m
f
fake as it

contains a fake face modality. Hence, we expect to maximize this difference. To use this
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correlation metric as a loss function to train our model, we formulate it using the notation

of Triplet Loss

Similarity Loss 1: ρ1 = max
(
L1 +m1, 0

)
, (3.6)

where m1 is the margin used for convergence of training.

If we had observed that speech is the more manipulated modality in the fake video,

we would formulate L1 as follows:

L1 = d(mf
real,m

s
real)− d(mf

real,m
s
fake).

Similarly, we compute the second similarity as the difference in affective cues extracted

from the modalities from both real and fake videos. We denote this as follows:

Similarity Score 2: L2 = d(esreal, e
s
fake)− d(f s

real, e
f
fake). (3.7)

As per prior psychology studies, we expect that similar un-manipulated modalities

point towards similar affective cues. Hence, because the input here has a manipulated

face modality, we expect esreal, e
s
fake to be closer to each other than to efreal, e

f
fake. To use

this as a loss function, we again formulate this using a Triplet loss.

Similarity Loss 2: ρ2 = max(L2 +m2, 0), (3.8)

where m2 is the margin.

Again, if the speech was the highly manipulated modality in the fake video, we would

formulate L2 as follows:

L2 = d(efreal, e
f
fake)− d(efreal, e

s
fake).

We use both the similarity scores as the cumulative loss and propagate this back into the
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network.

Loss = ρ1 + ρ2 (3.9)

3.2.2.4 Testing Routine

At test time, we only have a single input video that is to be labeled real or fake. After

extracting the features, f and s from the raw videos, we perform a forward pass through

F1, F2, S1 and S2, as depicted in Figure 3.3b to obtain modality and perceived emotion

embeddings.

To make an inference about real and fake, we compute the following two distance

values:

Distance 1: dm = d(mf ,ms),

Distance 2: de = d(ef , es).

(3.10)

To distinguish between real and fake, we compare dm and de with a threshold, that

is, τ empirically learned during training as follows:

If dm + de > τ,

we label the video as a fake video.

Computation of τ : To compute τ , we use the best-trained model and run it on the

training set. We compute dm and de for both real and fake videos of the train set. We

average these values and find an equidistant number, which serves as a good threshold

value. Based on our experiments, the computed value of τ was almost consistent and

didn’t vary much between datasets.
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3.2.3 Implementation Details

In this section, we discuss the datasets (Section 3.2.3.1) that we use to evaluate our

proposed audio-visual deepfake detection method, followed with feature extraction de-

tails (Section 3.2.3.2). We end with mentioning training and hyperparameters used to

obtain the results on the DFDC dataset and the DF-TIMIT dataset (Section 3.2.3.3).

3.2.3.1 Datasets

We perform experiments on the DF-TIMIT (Korshunov and Marcel 2018a) and DFDC (Dol-

hansky et al. 2019) datasets. We used the entire DF-TIMIT dataset and were able to use

randomly sampled 18, 000 videos from DFDC dataset due to computational overhead.

Both the datasets are split into training (85%), and testing (15%) sets.

3.2.3.2 Feature Extraction

In our approach (See Figure 3.3), we first extract the face and speech features from

the real and fake input videos. We use existing SOTA methods for this purpose. In

particular, we use OpenFace (Baltrušaitis, Robinson, and L.-P. Morency 2016) to extract 430-

dimensional facial features, including the 2D landmarks positions, head pose orientation,

and gaze features. To extract speech features, we use pyAudioAnalysis (Giannakopoulos

2015) to extract 13 Mel Frequency Cepstral Coefficients (MFCC) speech features. Prior

works (Chernykh and Prikhodko 2017b; Bougiatiotis and Giannakopoulos 2018; Cai et al. 2019) using

audio or speech signals for various tasks like perceived emotion recognition, and speaker

recognition also use MFCC features to analyze audio signals.
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Figure 3.4: Audio-Visual Deepfake Detection Model’s Qualitative Results: We show results
of our model on the DFDC and DF-TIMIT datasets. Our model uses the subjects’ audio-visual
modalities as well as their perceived emotions to distinguish between real and deepfake videos.
The perceived emotions from the speech and facial cues in fake videos are different; however in
the case of real videos, the perceived emotions from both modalities are the same.

3.2.3.3 Training Parameters

On the DFDC Dataset, we trained our models with a batch size of 128 for 500 epochs.

Due to the significantly smaller size of the DF-TIMIT dataset, we used a batch size of 32

and trained it for 100 epochs. We used Adam optimizer with a learning rate of 0.01. All

our results were generated on an NVIDIA GeForce GTX1080 Ti GPU.
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3.2.4 Experiments and Results

In this section, we list the state-of-the-art algorithms with which we compare our audio-

visual deepfake detection against in Section 3.2.4.1. We also discuss some ablation exper-

iments we performed in Section 3.2.4.3. To further analyze our model, we perform some

correlation analysis and present our findings in Section 3.2.4.2. We end with a discussion

on some qualitative results in Section 3.2.4.4.

3.2.4.1 Comparison with state-of-the-art Methods

We report and compare per-video AUC Scores of our method against 9 prior deepfake

video detection methods on DF-TIMIT and DFDC. To ensure a fair evaluation, while the

subset of DFDC the 9 methods were trained and tested are unknown, we select 18, 000

samples randomly and report our numbers. Moreover, as per the nature of the approaches

the prior 9 methods report per-frame AUC scores. We have summarized these results in

Table 3.4. The following are the prior methods used to compare the performance of our

approach on the same datasets.

1. Two-stream (P. Zhou, X. Han, et al. 2017): uses a two-stream CNN to achieve SOTA

performance in image-forgery detection. They use standard CNN network architec-

tures to train the model.

2. MesoNet (Afchar et al. 2018) is a CNN-based detection method that targets the mi-

croscopic properties of images. AUC scores are reported on two variants.

3. HeadPose (X. Yang, Y. Li, and Lyu 2019) captures inconsistencies in headpose orienta-

tion across frames to detect deepfakes.

4. FWA (Y. Li and Lyu 2018) uses a CNN to expose the face warping artifacts introduced

by the resizing and interpolation operations.

5. VA (Matern, Riess, and Stamminger 2019) focuses on capturing visual artifacts in the

eyes, teeth and facial contours of synthesized faces. Results have been reported on
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Table 3.4: Comparing Our Audio-Visual Deepfake Detection Method with SOTA Meth-
ods: We compare the AUC scores for our method against the state-of-the-art methods on DFDC
dataset and the DF-TIMIT dataset. Blue denotes best and green denotes second-best. Our model
improves the state-of-the-art method by approximately 9% on the DFDC dataset and achieves
accuracy similar to the state-of-the-art on the DF-TIMIT dataset.

S.No. Methods
Datasets

DF-TIMIT DFDC
(Korshunov and Marcel 2018a) (Dolhansky et al. 2019)

LQ HQ

1 Capsule 78.4 74.4 53.3
(H. H. Nguyen, Yamagishi, and Echizen 2019)

2 Multi-task 62.2 55.3 53.6
(H. H. Nguyen, Fang, et al. 2019)

3 HeadPose 55.1 53.2 55.9
(X. Yang, Y. Li, and Lyu 2019)

4 Two-stream 83.5 73.5 61.4
(P. Zhou, X. Han, et al. 2017)

5 VA-MLP 61.4 62.1 61.9
(Matern, Riess, and Stamminger 2019)
VA-LogReg 77.0 77.3 66.2

6 MesoInception4 80.4 62.7 73.2
Meso4 87.8 68.4 75.3
(Afchar et al. 2018)

7
Xception-raw 56.7 54.0 49.9
(Rossler et al. 2019)
Xception-c40 75.8 70.5 69.7
Xception-c23 95.9 94.4 72.2

8 FWA 99.9 93.2 72.7
(Y. Li and Lyu 2018)
DSP-FWA 99.9 99.7 75.5

Our Method 96.3 94.9 84.4

two standard variants of this method.

6. Xception (Rossler et al. 2019) is a baseline model trained on the FaceForensics++

dataset based on the XceptionNet model. AUC scores have been reported on three

variants of the network.

7. Multi-task (H. H. Nguyen, Fang, et al. 2019) uses a CNN to simultaneously detect ma-

nipulated images and segment manipulated areas as a multi-task learning problem.

8. Capsule (H. H. Nguyen, Yamagishi, and Echizen 2019) uses capsule structures based on a

standard DNN.

9. DSP-FWA is an improved version of FWA (Y. Li and Lyu 2018) with a spatial pyramid

pooling module to better handle the variations in resolutions of the original target

faces.
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While we outperform the DFDC dataset, we have comparable values for the DF-

TIMIT dataset. We believe this is because all 640 videos in the DF-TIMIT dataset are

face-centered with no body pose. In DFDC, the videos are collected with full-body poses,

with the face taking less than 50% of the pixels in each frame. The FWA and DSP-FWA

methods identify deepfakes by detecting artifacts caused by affine warping of manipulated

faces to match the configuration of the source’s face. This is especially useful for the

face-centered DF-TIMIT dataset than the DFDC dataset.

Table 3.5: Ablation Experiments on our Audio-Visual Deepfake Detection Model: To
motivate our model, and the two components (modality and emotion embeddings correlation)
we perform ablation studies where we remove one correlation at a time for training and report
the AUC scores on both the DF-TIMIT dataset and the DFDC dataset.

Methods
Datasets

DF-TIMIT DFDC
(Korshunov and Marcel 2018a) (Dolhansky et al. 2019)
LQ HQ

Our Method w/o Modality Similarity (ρ1) 92.5 91.7 78.3
Our Method w/o Emotion Similarity (ρ2) 94.8 93.6 82.8

Our Method 96.3 94.9 84.4

3.2.4.2 Interpreting the Correlations

To better understand the learned embeddings, we plot the distance between the unit-

normalized face and speech embeddings learned from F1 and S1 on 1, 000 randomly

chosen points from the DFDC train set in Figure 3.7(a). We plot d(ms
real,m

f
real) in blue

and d(ms
fake,m

f
fake) in orange. It is interesting to see that the peak or the majority of

the subjects from real videos have a smaller separation, 0.2 between their embeddings as

opposed to the fake videos (0.5). We also plot the number of videos, both fake and real,

with a mismatch of perceived emotion labels extracted using F2 and S2 in Figure 3.7(b).

Of a total of 15, 438 fake videos, 11, 301 showed a mismatch in the labels extracted from

face and speech modalities. Similarly, out of 3, 180 real videos, 815 also showed a label

mismatch.
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Figure 3.5: Example Misclassification by the Proposed Audio-Visual Deepfake Detection
Method: We show one sample each from DFDC and DF-TIMIT where our model predicted the
two fake videos as real due to incorrect perceived emotion embeddings.

3.2.4.3 Ablation Experiments

As explained in Section 3.2.2.4, we use two distances, based on the modality embedding

similarities and perceived emotion embedding similarities, to detects fake videos. To

understand and motivate the contribution of each similarity, we perform an ablation study

where we run the model using only one correlation for training. We have summarized the

results of the ablation experiments in Table 3.5. The modality embedding similarity helps

to achieve better AUC scores than the perceived emotion embedding similarity.

3.2.4.4 Qualitative Results

We show some selected frames of videos from both the datasets in Figure 3.4 along with

the labels (real/fake). For the qualitative results shown for DFDC, the real video predicted

a “neutral” perceived emotion label for both speech and face modality, whereas in the fake

video, the face predicted “surprise” and speech predicted “neutral”. This result is indeed

interpretable because the fake video was generated by manipulating only the face modality

and not the speech modality. We see a similar perceived emotion label mismatch for the

DF-TIMIT sample as well.

77



Figure 3.6: Example Results on In-The-Wild Videos of the proposed Audio-Visual Deep-
fake Detection Method: We observe that our model succeeds in the wild. We collect several
popular deepfake videos from online social media and our model achieves reasonably good results.

Failure Cases: Our approach models the correlation between two modalities and the asso-

ciated affective cues to distinguish between real and fake modalities. However, there are

multiple instances where the deepfake videos do not contain such a mismatch in terms

of perceived emotional classification based on different modalities. This is also because

every human being expressed his/her emotions differently. As a result, our model fails to

classify such videos as fake. Similarly, both face and speech are modalities that are easy

to fake. As a result, it is possible that our method also classifies a real video as a fake

video due to this mismatch. In Figure 3.5, we show one such video from both datasets,

where our model failed.

Results on Videos in the Wild: We tested the performance of our model on two such

deepfake videos obtained from an online social platform (YouTube Video 1 n.d.; YouTube

Video 2 n.d.). Some frames from this video have been shown in Figure 3.6. While the

model successfully classified the first video as a deepfake, it could not be for the second

deepfake video.

3.3 Video Manipulation Beyond Faces

We now focus on video manipulations which are not restricted to just manipulations on the

faces. Towards that end, we present a video manipulation dataset, VideoSham dataset.

We discuss the dataset creation process and compare it with other state-of-the-art datasets
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in Section 3.3.1. We further analyze this dataset in Section 3.3.2 with three experiments.

(a) Modality Embedding Distances: We plot the percentage of subject
videos versus the distance between the face and speech modality embeddings.
The figure shows that the distribution of real videos (blue curve) is centered
around a lower modality embedding distance (0.2). In contrast, the fake
videos (orange curve) are distributed around a higher distance center (0.5).
Conclusion: We show that audio-visual modalities are more similar in real
videos as compared to fake videos.

(b) Perceived Emotion Embedding in Real and Fake Videos: The blue
and orange bars represent the total number of videos where the perceived
emotion labels, obtained from the face and speech modalities, do not match,
and match, respectively. Of the total 15, 438 fake videos, 73.2% videos were
found to contain a mismatch between perceived emotion labels, and for real
videos this was only 24%. Conclusion: We show that the perceived emotions
of subjects, from multiple modalities, are strongly similar in real videos, and
often mismatched in fake videos.

Figure 3.7: Analysis of the Audio-Visual Deepfake Detection Model (Interpreting Modal-
ity and Emotion Embeddings): We provide an intuitive interpretation of the learned embed-
dings from F1, S1, F2, S2 with visualizations. These results back our hypothesis of perceived
emotions being highly correlated in real videos as compared to fake videos.
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3.3.1 VideoSham Dataset

In this section, we present details on the dataset creation process and discuss some of the

salient features and characteristics of VideoSham.

3.3.1.1 Source Videos

We have a total of 836 videos comprising of 413 original videos and 413 manipulated

versions, each corresponding to one of the original videos. We obtain our source videos

from an online video website (vimeo 6) and only include videos attributed with a CC-

BY (Creative Commons) license. In addition, we avoid videos with brands, children,

objectionable content, TV show/movie clips and videos with copyrighted music. We trim

these original videos to a specific length (upto 5−30 seconds) before we perform any

manipulation attack.

(a) Attack distribution: Distri-
bution of videos that are attacked
with different manipulation tech-
niques. Attacks 1 − 4 are spa-
tial attacks, and Attacks 5−6 are
temporal attacks.

(b) Density distribution:
Distribution of videos accord-
ing to the number of persons
present in each video. This is
considerably high w.r.t. the
existing datasets.

(c) Duration distribution:
Distribution of videos accord-
ing to duration or length of
each video (in seconds). The
average length of our videos is
8 seconds.

Figure 3.8: Characteristics and Summary of VideoSham Dataset Statistics: We visually
present various statistics for VideoSham for better insights.

6www.vimeo.com.
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3.3.1.2 Manipulation Attacks

We employ a total of 6 manipulation attacks for creating our dataset. As per prior

literature, we also categorize these attacks into spatial and temporal attacks7. We visually

show the distribution of the attacks in Figure 3.8a. We describe each of the attacks below.

− ATTACK 1 (Adding an entity/subject): In this attack, we select an entity or a

subject from some other sources and place them in the current video. This attack

is somewhat similar to a copy-move attack.

− ATTACK 2 (Removing an entity/subject): In this attack, we basically select an

entity or a subject in the video and remove it from all the frames and fill in the

gap with background settings. To do this, we used content-aware fill in Adobe

AfterEffectsTM and some deep learning methods for generating masks (K. He, Gkioxari,

et al. 2017) and performing video inpainting (D. Kim et al. 2019; D. Kim et al. 2020).

− ATTACK 3 (Background/Color Change): We focus on a particular aspect of the

video, and change the background of the video, or the color of a small entity in the

video.

− ATTACK 4 (Text Replaced/Added): We perform edits like adding some text in the

video or removing or replacing already existing text in the video.

− ATTACK 5 (Frames Duplication / Removal/ Dropping): This attack is specifically

to render the video temporally inconsistent. We choose to perform one of these

manipulations, randomly duplicating frames, and removing or dropping frames in

the video. This also includes slowing down a video.

− ATTACK 6 (Audio Replaced): Audio modality is a very important aspect of videos.

To manipulate this, we replace the existing audio with some other audio.
7We do not use geometric attacks, as they have been shown to be easily detected.
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We visually depict the 4 spatial attacks (ATTACK 1, ATTACK 2, ATTACK 3, and AT-

TACK 4) in Figure 3.2.

3.3.1.3 Manipulated Videos

We worked with 3 professional video editors hired on Upwork 8. The editors were shortlisted

based on their experience and were well-versed with Adobe AfterEffectsTM, the software

used for creating these edits. Each editor was assigned tasks, i.e. source videos, start

and end timestamps to be edited, and a one-line description of the manipulation to be

performed. We provide all videos and the attacks performed for every video.

3.3.1.4 Dataset Analysis

In Figure 3.8a, we present the distribution of attacks for the 413 videos, each lasting

1 − 31 seconds. The average length of videos in our dataset is around 8 seconds long.

We also run an object detection model 9 to count the number of people/agents in every

video (Figure 3.8b). More than 80% of the videos in our dataset contain at least one

subject.

3.3.2 Experiments and Results

We elaborate on three experiments we perform to highlight the importance, novelty and

use case of VideoSham. To begin with, we present the analysis of how well humans

fair in detecting these attacks in Section 3.3.2.1, followed by an analysis of the perfor-

mance of state-of-the-art deepfake detection methods and video forensic techniques in

Section 3.3.2.2. Finally, in Section 3.3.2.3, we present some ideas and preliminary results

for using interdisciplinary ideas for detecting such attacks.
8www.upwork.com.
9https://github.com/roboflow-ai.
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3.3.2.1 Expt 1: How Well Do Humans Perform?

Setup: We first shortlist 60 videos from VideoSham. Out of these, 30 videos are real

and the remaining 30 are manipulated (5 videos per attack). We recruit human partic-

ipants from Amazon Mechanical Turk (AMT) and show each video to 20 participants.

The participants are requested to watch the full video; followed by two questions. In

the first question, the participants are asked to respond to the following prompt in either

a yes or no - “Do you believe this video has been manipulated/edited to misrepresent

facts?”. And, in the second question, we ask them to explain in a sentence what they felt

was manipulated with the following prompt- “If you answered YES above, what region

or aspect of this video, do you believe is manipulated.”. Note that participants are not

informed whether videos are manipulated or not. They are also not informed about the

set of attacks. We show the setup in Figure 3.9 which was used to collect a total of 1200

responses from AMT participants.

Study Analysis: We summarize the responses of the user study in Table 3.6. Both

the real and manipulated videos receive 600 responses each. We observe that out of the

600 responses (corresponding to the 30 real videos), 342, i.e., 57% were correctly identified

as real. Similarly, out of 600 responses for the manipulated videos, 389 were incorrectly

identified as real, i.e., 35.2% of these responses correctly identified manipulated videos.

Analyzing the responses by the type of attack, we observe that human participants are able

to identify 45% of the videos manipulated using ATTACK 6. For the other attack types,

the proportion of manipulated videos labeled as ‘fake’ ranges from 13-31%. Furthermore,

we notice that human participants are able to more successfully identify manipulated

videos that are modified using temporal attacks (ATTACK 5 and ATTACK 6) than spatial

attacks (ATTACK 1− ATTACK 4). Moreover, we also received a number of responses

from participants explaining their rationale behind reporting a manipulated video. From

the responses received, there is no clear evidence that suggests that participants are able

to identify the manipulated region/kind in case of spatial edits. But, they were somewhat
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able to correctly identify the manipulated edit in case of temporal attacks. This would

imply that a subset of our selection of attacks is indiscernible to the human eye.

Statistical Tests: Next we consider statistical tests to see if humans are able to tell a

real video from a manipulated video. We consider the following quantities for this test,

define p1 = P (declaring video real|real video).

Also, let p2 = P (declaring video real|manipulated video). If humans are able to tell real

videos apart from manipulated videos, we expect p1 to be larger than p2. Hence, we test

the one-sided statistical hypothesis:

H0 : p1 = p2 against H1 : p1 > p2.

We test this hypothesis with the test statistic (p1 − p2)
10. In Table 3.6 we present the

difference of proportions as well as the one-sided p−value of the test for each attack type.

The first thing to note is that when combining across all attack types (last row), we see

that even though p1 is slightly bigger than p2, this difference is not statistically significant

(p−value of 0.177). This suggests that our edits are not discernible to human evaluators.

When we break it down by attack type, we observe that only for ATTACK 6 (audio

replacement), humans are more likely to declare such edits as manipulations (p−value

< 0.001). For ATTACK 4 (text replaced or added), there is weak statistical evidence of

humans detecting this manipulation (p−value of 0.097). For all other attacks, there is

no statistical evidence that humans can tell when a video has been manipulated using

that strategy. It is particularly telling that when an entity/subject is added or removed

(ATTACKs 1 and 2), more of our human subjects declare such manipulated videos as real

than they declare unedited videos. This shows how modern editing tools can be used to

manipulate videos in a way that humans have no way of telling such edits just by looking at

the video. This observation establishes the need to build high-quality video manipulation
10Given our sample size, we have an 86% statistical power of detecting a difference if the true values

are p1 = 0.75 and p2 = 0.74.

84



Table 3.6: Analysis of Human Performance on VideoSham Dataset: We summarize
how well the videos in the proposed VideoSham dataset decieve human participants. We
observe that participants are unable to detect ATTACK 3 (26%) and ATTACK 4 (31%). Videos
manipulated using ATTACK 5 are relatively easier to detect (75%)

(A) 1200 responses (20 participants × (30 real + 30 manipulated videos))

GT #Resp Rep Rep
p1 p2 p1 − p2 p− value CI(l) CI(u)(Total) Real Fake

R
ea

l

600 454 146 0.757 0 − − −

M
an

ip
ul

at
ed

A
tt

ac
k

1 100 87 13 0.757 0.87 −0.113 0.991 −0.182 1
2 100 79 21 0.757 0.79 −0.033 0.725 −0.112 1
3 100 74 26 0.757 0.74 0.016 0.408 −0.066 1
4 100 69 31 0.757 0.69 0.066 0.097 −0.020 1
5 100 75 25 0.757 0.75 0.006 0.493 −0.076 1
6 100 55 45 0.757 0.55 0.207 < 0.001 0.114 1

600 439 161 0.757 0.732 0.0250 0.177 −0.018 1

detection algorithms that can label manipulated videos at scale.

3.3.2.2 Expt 2: How Well Do Machines Perform?

To answer this question better, we evaluate state-of-the-art deepfake detection methods

and video forensics techniques on VideoSham.

Deepfake Detection Methods: We evaluate Li et al. (Y. Li and Lyu 2019), Xception-

Net (Rossler et al. 2019) and Mittal et al. (Mittal, Bhattacharya, et al. 2020a) on VideoSham.

Deepfake videos generated using data-driven methods can only synthesize face images

of a fixed size, and they must undergo an affine warping to match the configuration of

the source’s face. Due to resolution inconsistencies between warped face and background

context, there are various artifacts on the synthesized faces. Li et al. (Y. Li and Lyu 2019)

detects such artifacts by comparing the generated face areas and their surrounding regions

with a dedicated Convolutional Neural Network (CNN) model. On the other hand, Xcep-

tionNet (Rossler et al. 2019) is a transfer learning model which is also a CNN architecture,

which was originally trained for the classical object detection task and later finetuned
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Table 3.7: Analysis of Machine Performance (Video Forensics Techniques and Deepfake
Detection Methods) on VideoSham Dataset: We evaluate 3 state-of-the-art deepfake
detection methods and 2 video forensics techniques on VideoSham dataset. It is apparent that
these algorithms do not perform well on VideoShamdataset, speaking to the complexity and
diversity of the videos.

Predicted

GT #Vid.
Deepfake Detection Methods Video Forensics Techniques

Li et al MesoNet Mittal et al. Long et al. Liu et al.
(Y. Li and Lyu 2019) (Afchar et al. 2018) (Mittal, Bhattacharya, et al. 2020a) (Long et al. 2019) (Y. Liu et al. 2021)

Predicted Predicted Predicted Predicted Predicted
Real Fake Real Fake Real Fake Real Fake Real Fake

R
ea

l

413 188 225 167 246 238 175 219 194 234 179

M
an

ip
ul

at
ed

A
tt

ac
k

1 97 76 21 93 4 92 5 86 11 68 29
2 97 63 34 84 13 66 31 84 13 46 51
3 54 35 19 37 17 49 5 50 4 38 16
4 45 32 13 34 11 42 3 39 6 34 11
5 73 70 3 67 6 54 19 25 48 68 5
6 47 45 2 44 3 31 16 38 9 41 6

413 321 92 359 54 334 79 322 91 295 118

for deepfake detection on FaceForensics++ dataset. Finally, Mittal et al. propose an

approach that simultaneously exploits the audio (speech) and video (face) modalities and

also the perceived emotion features extracted from both modalities to detect any falsifi-

cation or alteration in the input video. They use the correlation between the modalities

to detect a fake video.

Table 3.8: Preliminary Quantitative Results of Gaze and Affect Ideas on
VideoSham Dataset (Expt 3): For some preliminary analysis, we explore two ideas, gaze
and affect of all agents involved. We observe that these two ideas in itself can effectively detect
manipulations of the kind, ATTACK 1 and ATTACK 2.

GroundTruth # videos Reported Reported
Real Manipulated

Real 413 286 127
Attack 1 97 32 65
Attack 2 97 35 62

Video Forensics Techniques: We evaluate Long et al. (Long et al. 2019) and Liu et al. (Y.

Liu et al. 2021) on VideoSham. Both of these methods are state-of-the-art methods in

video forensics literature. While, Long et al. (Long et al. 2019) is specifically for detecting

cases of frame duplications in a video, Liu et al. (Y. Liu et al. 2021) specifically focus on
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detecting copy-move attacks. For all the methods, we use pretrained models and report

the results when evaluated on VideoSham in Table 3.7.

Figure 3.9: User Study Setup Used to Access How Well Humans Fair on
VideoSham Dataset: We present the Amazon Mechanical Turk setup used (Section 3.3.2.1).

Study Analysis: All the five methods are less then 50% accurate on VideoSham dataset.

This is not very surprising and quite expected, as all the deepfake methods (Li et al. (Y. Li

and Lyu 2019), MesoNet (Afchar et al. 2018), and Mittal et al. (Mittal, Bhattacharya, et al. 2020a))

are trained specifically to look for manipulations in faces. Moreover, these method are not

used to inferencing on videos with more or less than 1 person in the frame and with so

much context information. Hence, we observe that these methods are only inferring based

on artifacts caught near the face regions in the VideoSham videos. We also observe

that Mittal et al. specifically are able to detect some of the temporal manipulations well;

which is because the method is trained to look for a correlation between audio and visual

modalities. Similarly, even the video forensics techniques are specifically performing well

on attacks that they have been trained for, i.e. ATTACK 5 for Long et al. and ATTACK

1 and ATTACK 2 for Liu et al. (H. Liu et al. 2016). ATTACK 3 (color change) and ATTACK
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4 (text replacement) tend to remain hard to be detected by most of these methods.

3.3.2.3 Expt 3: Beyond DeepFake Detection and Video Forensic Techniques

One can observe from the experiments in the previous section, that all the methods are

largely dependent on the visual artifacts. However, given the diversity of attacks used to

manipulate videos, we hypothesize the use of inter-agent and multimodal analysis models

for detecting such manipulations. We show preliminary results in Figure 3.10.

Figure 3.10: Preliminary Experiment 3, Qualitative Results of Eye Gaze and Affect Ideas
on the VideoSham Dataset for Detecting Video Manipulations: We show the output of the
automated techniques used to identify manipulated videos in VideoSham. (Column 1) In the
first column, we remove the main subject from the foreground. We identify this as a manipulated
image using a gaze tracking algorithm by noting that there is no object at the location of the
crowd’s gaze direction. (Column 2) Here, we manipulate an image by inserting the man in the
black shirt. We use emotion recognition techniques to infer that this false subject has an affective
state that is not in tune with those of the other players.

Strategy 1 (Gaze): To begin with, we believe that tracking gaze of subjects can be useful

for detection experiments. Gaze following is a task in computer vision to identify objects

and regions that the subject of interest is focusing on. The idea behind this strategy is

to identify manipulated images by using gaze following to locate “absent” targets and/or

“out-of-context” subjects in the video. To perform some preliminary analysis we deploy

GazeFollow (Recasens 2016). More specifically, for each frame, we begin by obtain the spatial
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coordinates of the subject’s head’s bounding box and pass this information as input to

the gaze tracking algorithm, GazeFollow (Recasens 2016), which outputs the location of

the subject’s gaze. The final step in this strategy is to run an object detector to obtain

a confidence score cg corresponding to an object present at the gaze location. A low

confidence score indicates a manipulated frame.

Strategy 2 (Affect): In this strategy we propose the use of affective cues. When we

track and look for affective disparities in affective state of different subjects. Prior works

in psychology (Kleinsmith and Bianchi-Berthouze 2013) and empirical works (Mittal, Guhan, et al.

2020) that subjects in social settings often share affective states. We use facial expressions,

body postures and scene understanding to perceive the affective states of all subjects. We

use the model EmotiCon (Mittal, Guhan, et al. 2020) trained on EMOTIC dataset (Kosti, Jose

M Alvarez, et al. 2017a) to perceive these affective states and obtain an affective confidence

score ca. By empirically assigning a threshold, τ on the two confidence scores, we flag a

video as manipulated. We observe that these two techniques help detect ATTACK 1 and

ATTACK 2 significantly well. We add quantitative results for the same in Table 3.8. We

show two qualitative results of these ideas in Figure 3.10.

Experiment 3 shows that, in addition to human assessment, specialized deepfake detec-

tion techniques, and video forensics, other approaches that are not intended for identifying

manipulated videos can be used.

3.4 Conclusions, Limitations and Future Work

In this section, we first presented learning-based audio-visual method for detecting deep-

fake videos. We use the similarity between audio-visual modalities and the similarity be-

tween the affective cues of the two modalities to infer whether a video is “real” or “fake”.

We evaluated our method on two benchmark audio-visual deepfake datasets, DFDC, and

DF-TIMIT. We also presented VideoSham dataset, a collection of 826 videos that con-

tain videos manipulated by professional video editors using one of 6 spatial or temporal
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attacks. We also performed 3 experiments to further analyze the proposed dataset. Our

goal with the expt 1 and expt 2 was to understand how well humans can detect some

of the manipulations that occur today circulated on social media. We also wanted to

understand if the developments in the deepfake detection and video forensic literature

match up to these manipulation attacks. Finally, through expt 3 we want to propagate

the idea of using ideas beyond detection of visual artifacts for scalable models for video

manipulation detection.

Our deepfake detection method has some limitations. First, our approach could result

in misclassifications on both the datasets, as compared to the one in the real video.

Given different representations of expressing perceived emotions, our approach can also

find a mismatch in the modalities of real videos, and (incorrectly) classify them as fake.

Furthermore, many of the deepfake datasets primarily contain more than one person per

video. We may need to extend our approach to take into account the perceived emotional

state of multiple persons in the video and come with a possible scheme for deepfake

detection. From the analysis of the three experiments, we conclude from expt 1 and

expt 2 that both humans and machines (5 methods shortlisted) struggle to detect these

manipulations successfully. We believe that these are attacks of concern, as they are going

undetected even by human participants. Moreover, we emphasize that these manipulations

play a big role in many real-world video manipulations (Figure 3.1). More generally, we

believe that computer vision algorithms perform almost comparable to humans in most of

these ATTACKS. However, most methods are very attack-specific and do not generalize

well to other attacks. Mostly every deepfake detection method fails to handle videos with

more than 1 subject and hence has a very limited scope. Also, importantly most of the

deepfake detection methods require huge amounts of training samples; and this is not a

realistic assumption. It is important to build methods which can be less computationally

intensive and at the same time are also able to generalize well. Similarly, methods in video

forensics also are only able to handle very specific attacks. These are less dependent on
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data, but computationally expensive as they are more or less, inference based methods.

In the future, fro detecting deepfake videos, we would like to look into incorporating

more modalities and even context to infer whether a video is a deepfake or not. We would

also like to combine our approach with the existing ideas of detecting visual artifacts like

lip-speech synchronisation, head-pose orientation, and specific artifacts in teeth, nose and

eyes across frames for better performance. Additionally, we would like to approach better

methods for using audio cues.

We believe following are some knowledge gaps and research agendas that can help

the society combat the increasing problem of misinformation, frauds and cybercrimes

occurring due to manipulated media content shared online.

1. There is a need to build detection models focused on more diverse attacks or video

manipulations. Through VideoSham, we attempted to include some of the attacks

that have not been studied before owing to a lack of a dataset. We hope this dataset

can be a step towards achieving better detection models for all the 6 attacks.

2. Moreover it is important to increase the scope of detection ideas being used cur-

rently for detecting manipulations. Current methods are extremely focused on visual

perception. Our goal through experiment 3 was to show through very preliminary

analysis that ideas based on inter-agent dynamics and multimodal cues can be a

promising literature source. Another promising idea, is to include domain knowledge

in detecting manipulations; as humans we have some contextual information which

the detection models severely suffer from.

3. Largely all existing methods require a significant amount of training data to train

the models. But, with newer manipulations and attacks on videos, it will become

impossible to keep up with detection models for the same. We need to reduce the

dependence on training data build detection models that are as generalizable as

possible to potential attacks.
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Chapter 4

Affective Analysis of

Multimedia Content

In affective computing, perceiving the emotions conveyed in images and videos has found

applications in digital content management (D. Joshi et al. 2014; Y. Wang and B. Li 2015),

digital marketing (McDuff, El Kaliouby, Cohn, et al. 2014; Hussain, Mingda Zhang, X. Zhang, et al.

2017; Ye and Kovashka 2018), education (Downs and Strand 2008; Alqahtani and Ramzan 2019),

and healthcare (Cohn et al. 2009). Such applications have resulted in automated ranking

systems, indexing systems (H. L. Wang and Cheong 2006; Wiley 2003; Kimura et al. n.d.), and

more personalized movie recommendation systems (E. Oliveira, Martins, and Chambel 2011).

Affective analysis of movies has been a problem of interest in the community (Quan,

V.-T. Nguyen, and Tran 2018; Jin et al. 2017), along similar lines. In our work, we explore the

problem of affective analysis of movies with the goal of understanding the emotions that

the movies invoke in the audience.
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Figure 4.1: Time-Series Emotion Perception Model: We present Affect2MM, a learning
model for time-series emotion perception for movies. We input multimedia content in the form
of multiple clips and predict emotion labels for each clip. Affect2MM is based on the theory
of emotion causation and also borrows the idea for temporal causality. We show some example
clip-frames from the movie ‘Titanic’, a part of the MovieGraphs Dataset, and corresponding
emotion labels.

There has been a growing interest (Desmond Ong et al. 2019) in dynamically modeling

emotions over time (‘time series emotion recognition’ among the affective computing com-

munity. This underlying problem uses temporally continuous data (facial features, speech

features, or other modality features) from multimedia content as input and predicts the

emotion labels at multiple timestamps (clips) of the input. To aid in solving this time-

series problem, several time-series emotion datasets have been proposed (McKeown et al.

2010; Hussain, Mingda Zhang, X. Zhang, et al. 2017; Trigeorgis et al. 2016; Kossaifi et al. 2019; Barros

et al. 2018; Desmond Ong et al. 2019). While these datasets focus more on single-person emo-

tional narratives recorded in controlled settings, multimedia datasets (movie databases)

like LIRIS-ACCEDE (Baveye et al. 2015) and MovieGraphs (Vicol et al. 2018) (annotated for

per-clip emotion labels) are also being explored for time-series emotion perception tasks.

There have been various efforts to understand how humans reason and interpret emo-

tions resulting in various theories of emotion causation based on physiological, neurologi-
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cal, and cognitive frameworks. One such theory is the “emotional causality” (Coëgnarts and

Kravanja 2016) that has been developed from the Causal Theory of Perception (Hyman 1992)

and Conceptual Metaphor Theory (Athanasiadou and Tabakowska 2010; Niemeier and Dirven 1997;

Kövecses 2003). “Emotional Causality” refers to the understanding that an experience of

emotion is embedded in a chain of events comprising of an (a) outer event; (b) an emo-

tional state; and (c) a physiological response. Few works have explored such emotional

causality for emotion perception in multimedia tasks.

Movies, as time-series multimedia content, model multiple human-centric situations

and are temporally very long, but coherent sequences. To be able to reason about emotions

invoked in various clips of the movie, it is important to develop a causal understanding

of the story. Generic methods of handling such temporality include recurrent neural net-

works (Landis and Koch 1977; Soleymani, Asghari-Esfeden, et al. 2014), attention-mechanisms (T.

Chen et al. 2014), graph modeling (R. Guo et al. 2020), and statistical methods like Granger

causality (C. W. J. Granger 1969). Explicit modeling of causality in the context of time-series

emotion perception has been relatively unexplored.

Emotion labels have been explored extensively, both as discrete (Kosti, Jose M. Alvarez,

et al. 2017c) and continuous (Mehrabian and Russell 1974a), in affective analysis. The Valence-

Arousal-Dominance (VAD) model (Mehrabian and Russell 1974a) is used for representing

emotions in a continuous space on a 3D plane with independent axes for valence, arousal,

and dominance values. The Valence axis indicates how pleasant (vs. unpleasant) the

emotion is; the Arousal axis indicates how high (or low) the physiological intensity of

the emotion is, and the dominance axis indicates how much the emotion is tied to the

assertion of high (vs. low) social status. A combination of 3 values picked from each

axis represents a categorical emotion like ‘angry’ or ‘sad’, much like how an (x, y, z) point

represents a physical location in 3-D Euclidean space. Various transformations (Mehrabian

1996; Hoffmann et al. 2012) can be used to map discrete emotion labels to the VAD space.

In this work, we work with both continuous emotion labels and discrete emotion labels.
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Main Contributions: The following are the novel contributions of our work.

1. We present Affect2MM, a learning-based method for capturing the dynamics of

emotion over time. Affect2MM aligns with the psychological theory of “emotional

causality” to better model the emotions evoked by each clip of a movie.

2. To better model the temporal causality in movies for long-range multimedia content

like movies, we use attention methods and Granger causality to explicitly model

the temporal causality (between clips in movies). Our approach can be used for

predicting both continuous emotion labels (valence and arousal) and also discrete

class labels.

We evaluate our method on two movie datasets, MovieGraphs (Vicol et al. 2018) and the

LIRIS-ACCEDE (Baveye et al. 2015) dataset. To showcase our method’s generalizability, we

also evaluate and compare our method on the SENDv1 (Desmond Ong et al. 2019) dataset,

a single-person emotional narratives dataset.

The rest of the chapter is structured as follows: We discuss some prior work in

multimedia analysis in Section 4.1. In Section 4.2 and Section 4.3 we formally state

the research problem, go over some background concepts (Co-Attention mechanism and

Granger Causality), followed by detailed explanation of Affect2MM’s model architecture.

We discuss implementation details in Section 4.4. We elaborate on quantitative, qualita-

tive and ablation experiments performed to evaluate Affect2MM in Section 4.5. Finally

we conclude with a discussion on some limitations of Affect2MM and future directions in

Section 4.6.

4.1 Prior Work in Multimedia Analysis

In this section, we summarize prior work done in related domains. We first look into

available literature in affective analysis of multimedia content and various applications

in Section 4.1.1. In Section 4.1.2, we discuss the visual affective representations that
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have previously been explored for related tasks. We also discuss conventional methods to

model temporality in Section 4.1.3. In Section 4.1.4, we discuss “emotional causality” and

other theories of emotion, as suggested in Psychology literature, and the need to align

computation models with these theories.

4.1.1 Affective Analysis of Multimedia Content

Various approaches have explored understanding emotions evoked by multimedia content.

Chen et al. (T. Chen et al. 2014), Ali et al. (Ali et al. 2017), Wei et al. (Wei et al. 2020) have

performed affective multi-class classification on images collected from popular websites.

Pilli et al. (Pilli et al. 2020), Hussain et al. (Hussain, Mingda Zhang, Xiaozhong Zhang, et al.

2017), and Zhang et al. (Huaizheng Zhang et al. 2020) studied predicting sentiments in im-

age advertisements. Vedula et al. (Vedula et al. 2017) extended this idea and developed

an advertisement recommendation system using sentiments in the advertisement content.

Understanding the relationship between emotional responses to content has been learned

by recording viewer responses in many controlled-use studies. Based on such studies,

researchers have used facial responses (McDuff, El Kaliouby, Cohn, et al. 2014; Kassam 2010;

Micu and Plummer 2010), facial electromyography (EMG) (Micu and Plummer 2010), electroen-

cephalogram (EEG), pupillary response and gaze (Teixeira, R. Picard, and El Kaliouby 2014;

Soleymani, Pantic, and Pun 2011), smile (McDuff, El Kaliouby, Demirdjian, et al. 2013; Teixeira, R.

Picard, and El Kaliouby 2014; S. Yang et al. 2014). Similarly, Philippot (Philippot 1993) and Gross

and Levenson (J. J. Gross and Levenson 1995) were the first ones to propose a small dataset

of clips from films with participants’ responses to them in controlled lab settings. McDuff

et al. (McDuff, El Kaliouby, Cohn, et al. 2014) have recognized the constraint of collecting

such data in controlled settings and have proposed collecting large-scale viewer data using

webcams. Other movie-based datasets with some affective annotations that were used

are HUMAINE (Douglas-Cowie et al. 2007), FilmStim (Schaefer et al. 2010), DEAP (Koelstra

et al. n.d.), MAHNOB-HCI (Soleymani, Pantic, and Pun 2011), EMDB (Carvalho et al. 2012),
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MovieGraphs (Vicol et al. 2018) and LIRIS-ACCEDE (Baveye et al. 2015). In our work, we

evaluate our method on some of these datasets.

4.1.2 Visual Affective Rich Representation

Analyzing viewers response (face and body posture reactions, EEG, and ECG signals)

for multimedia content to understand the affective content is not scalable due to a lack

of data. Subsequent efforts are being made to perform the same analysis using cues

directly from the content: images/videos/movies. Wei et al. (Wei et al. 2020), and Panda

et al. (Panda et al. 2018) report that general visual feature extractions used for standard

vision tasks (object recognition) do not scale up in terms of performance for emotion-

related tasks. Scene and place descriptors extracted from the image/frames have been

explored (Ali et al. 2017) to understand the affective component better. Researchers (Quan,

V.-T. Nguyen, and Tran 2018; Jin et al. 2017; Batziou et al. 2018) have also focused on the visual

aesthetics of the multimedia content to understand how they affect the evocation of

emotions from viewers. Zhao et al. (Y. Zhao et al. 2019) have also used background music

to analyze the affective state. In our work, we present a total of 6 features that we believe

can help in a better understanding of multimedia content.

4.1.3 Modeling Temporality in Time-Series Models

While emotional causality guides us to study the emotional state of a clip, it becomes

important to keep track of and model the temporality of emotions in long multimedia

content like movies. While recurrent neural network architectures are inherently designed

to keep track of such dependencies, explicitly modeling temporal causality has been a

norm. Attention-based methods and their many variants (Cheng, Dong, and Lapata 2016; T.

Chen et al. 2014) have been used before to help models learn important parts to “attend to”

in time series data. Furthermore, most commonly, causality is frequently studied using

graph structures and modeling (R. Guo et al. 2020; Glymour, K. Zhang, and Spirtes 2019). More
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conventionally, statistical methods like Granger causality (C. W. J. Granger 1969) have been

used to quantify the dependence of past events on future time series. More recently (Sind-

hwani, Minh, and Aurélie C. Lozano 2013; Tank et al. 2018), there have been multiple attempts

to incorporate similar behaviors in neural networks.

4.1.4 Theory of Emotions: A Look Into Psychology

Some of the major theories of emotion that reason causation of emotion can be grouped

into physiological, neurological, and cognitive theories. Physiological theories like the

James-Lange Theory (JAMES 1884) and the Cannon-Bard Theory (Cannon 1927) suggest an

external stimulus leads to a physiological reaction, and the emotional reaction is dependent

on how the physical reaction is interpreted. Schachter-Singer Theory (Stanley Schachter and

Jerome Singer 1962) propose a two-factor theory according to which a stimulus leads to

a physiological response that is then cognitively interpreted and labeled, resulting in an

emotion. Many more such theories attempt to understand how humans think about

emotional states, also called “affective cognition” by (D. C. Ong, Zaki, and Goodman 2019).

They also provide a taxonomy of inferences within affective cognition and also provide

a model of the intuitive theory of emotion modeled as a Bayesian network. Another

term scholars have used to understand this domain is “emotional causality” (Coëgnarts and

Kravanja 2016).

4.2 Problem Formulation and Background Concepts

We formally state our problem in Section 4.2.1. We then give a brief overview of co-

attention mechanism (Section 4.2.2) and Granger causality (Section 4.2.3).

4.2.1 Problem Statement

We consider multimedia content, which can be any image, video, or audio in the form

of multiple clips. Each clip, C, is a short sequence of frames that contains information
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Figure 4.2: Affect2MM Model Architecture: We use the components of Emotional Causality
to infer the emotional state depicted in the multimedia content. Given the input T clips, we first
extract features, f1 . . . fn, to build the affective-rich representation and help identify the outer
event/cause. We then pass these feature representations through a co-attention mechanism,
cLSTM-based encoder, and decoder to perceive the emotional state in either continuous val-
ues (valence/arousal) or discrete labels. The networks consist of fully-connected layers (yellow),
concat layers (blue), and non-linearity (red dots).

arising from multiple modalities such as facial expressions of the actors, their speech, the

transcribed dialogues, the visual aesthetics of the scene, the description of the scene, and

so on. Our goal is to predict the emotion label of each clip using the information contained

in the corresponding frames. More formally,

Problem 4.2.1. Given a set of clips spanning T time-steps, C1:T = {f 1:T
1 , f 1:T

2 , . . . f 1:T
p },

where f 1:T
i denotes the ith feature for each clip, we predict the emotion label, y, for each

clip, denoted by y1:T .

Our formulation allows y to be general in that it may represent either categorical emotion

labels (“happy”, “sad”, . . .) or continuous real-valued labels, depending on the dataset. In

this work, y can be either represent 26 categorical labels or one of the 2 real-valued labels

- valence and arousal.
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4.2.2 Co-attention Mechanism

Attention mechanisms (Bahdanau, Cho, and Bengio 2016) in neural networks have a long

history in both the NLP and vision communities. The broad idea is to allow the learning

model to only attend to relevant parts of the input rather than encoding the entire input.

While intuitive, modeling it requires the computation of attention scores, a weighted

matrix depicting the dependence of all outputs on each of the inputs. These attention

scores are then used for making inferences. There have been many variants like self-

attention (T. Chen et al. 2014), hierarchical and nested attention (Zichao Yang et al. 2016), and

attention flow (Seo et al. 2018). One such variant is the co-attention mechanism (C. Xiong,

Zhong, and Socher 2018).

The co-attention mechanism calculates the shallow semantic similarity between the

two inputs and uses that as a reference. Given two inputs (
{
ut
p

}t=T

t=1
,
{
ut
q

}t=T

t=1
), where

T is the timestep, co-attention aligns them by constructing a soft-alignment matrix S.

Each (i, j) entry of the matrix S is the multiplication of the tanh activation for both the

inputs.

Si,j = tanh(wpu
i
p) · tanh(wqu

j
q)

We feed these inputs through a single-layer neural network followed by a softmax

function to generate the attention distribution α (Q. Zhang et al. 2018).

z = tanh
(
wpu

i
p ⊕ wqu

j
q

)
α = softmax (wαz)

(4.1)

We use ⊕ to denote the concatenation of the two features. Based on the attention

distribution, the attended/relevant parts can be obtained as follows:

ûj
q =

∑
i

αi,j · ui
p
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4.2.3 Granger Causality (GC)

Granger causality (C. W. J. Granger 1969) is a way of quantifying the extent to which the

past activity of some time-series data is predictive of another time-series data. In our case,

we use the term “time-series data” to refer to an element of C1:T = {f 1:T
1 , f 1:T

2 , . . . f 1:T
p }.

The p features may include facial action units of the actors involved, the audio features,

embeddings of the text/transcript, scene descriptions, action or situation descriptions,

visual aesthetics of the clips, etc. In other words, the sequence of, say, facial features

across T clips, f 1:T
1 is a time-series modality data. We use GC to reason the causality

between different modalities connected across time. If there exists a causality between

f 1:T
1 and f 1:T

2 , then we say that f1 Granger-causes f2.

In our approach, we first explore the existence of Granger causality between time-series

modalities in temporal clips. If GC is found to exist between two modalities, then we show

that it can be used to improve the accuracy of any general emotion recognition system.

Existence of GC in LSTMs: The most widely-used model to estimate GC in linear

systems is the Vector AutoRegressive (VAR) model (Lütkepohl 2005; Aurelie C Lozano et

al. 2009). However, solutions for the linear models do not scale to non-linear time series

data (Teräsvirta, Tjøstheim, and C. Granger 2011; Sindhwani, Minh, and Aurélie C. Lozano 2013). Tank

et al. (Tank et al. 2018) address non-linear GC in neural network architectures like Multi-Layer

Perceptron (MLP) and LSTMs by introducing a new LSTM architecture called component-

wise LSTM (cLSTM), which models each time-series modality through independent LSTM

networks. More formally, consider the input

X1:T = Π





f1,1 f1,2 . . . f1,T

f2,1 f2,2 . . . f2,T
...

... . . . ...

fp,1 fp,2 . . . fp,T




(4.2)
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where the jth row of X1:T is denoted as X(j) and linear transformation Π is applied row-

wise (more details in Section 4.3.3.1). To check the existence of GC, we begin by passing

X1:T to the cLSTM which is made up of p separate LSTMs, L(j), j = 1, 2, . . . , p, each

operating on the input X1:T . In our system, this stage is executed using Equation 4.6.

Then, following the theoretical framework put forth in Tank et al. (Tank et al. 2018), we

check for GC by solving the following optimization problem using line search (Armijo 1966):

W ∗(j) = argmin
W (j)

∑
t

(xi,t − L(j)(X1:T ))
2 + λ

p∑
k=1

∥∥∥W (j)
:k

∥∥∥
2
, (4.3)

If
∥∥∥W ∗(j)

:k

∥∥∥
2
= 0, then the cLSTM identifies the kth time series modality to be Granger non-

casual to the jth time-series modality. Otherwise, it is Granger-causal. In Equation 4.3,

W (j) denotes the weights of the LSTM L(j) and W
(j)
:k denotes the kth column of W (j).

Table 4.1: Summary of Time-Series Emotion Recognition Datasets (Long-Form Multi-
media Content): We summarise details of the three long-form multimedia content datasets
used to study time-series emotion recognition. We use all the three datasets to evaluate the
proposed Affect2MM model. We provide details about the dataset splits, features used and the
evaluation metrics. We also mention emotion labels (C:continuous and D:discrete) available and
used for training.

Affective Features Labels Evaluation

Dataset Train/Val/Test Facial Audio Textual VA Scene Situation (C/D) Metrics

SENDv1 144/39/41 videos ✓ ✓ ✓ × × × Valence (C) CCC
(D. C. Ong, Zaki, and Goodman 2019)

MovieGraphs 33/7/10 movies ✓ ✓ ✓ ✓ ✓ ✓ 26 classes (D) Accuracy
(Vicol et al. 2018)

LIRIS-ACCEDE 44/10/12 movies ✓ ✓ × ✓ ✓ × Valence/Arousal (C) MSE
(Baveye et al. 2015)

4.3 Affect2MM: Our Approach

We first give an overview of our method and some notations used in Section 4.3.1. This

is followed by a description of each of the individual components of Affect2MM (Sec-

tion 4.3.3.2 – Section 4.3.3.4.
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4.3.1 Overview

We present an overview of our time-series emotion prediction model for multimedia con-

tent, Affect2MM in Figure 4.2. Our approach draws on the theory of Emotional Causality

to infer the emotional state that is conveyed in the multimedia content. The theory of

Emotion Causality (Coëgnarts and Kravanja 2016) consists of the following main events:

(a) Identifying Outer Event: This stage refers to a stimulus that is contained in the

multimedia content that causes an emotion in the consumer of that multimedia

content. Such emotion-causing stimuli in multimedia commonly include affective

cues such as facial expressions and speech of the actors, but often also include the

visual aesthetic features as well as the context of the multimedia content.

We work along these lines and extract these affective cues and visual aesthetic

features from the multimedia content and build an affective-rich representation,

described further in Section 4.3.2.

(b) Perceiving the Emotional State: This event refers to the formation of an emotional

state in the consumer of the multimedia content upon receiving the stimuli contained

in the latter. We develop a novel co-attention-based deep neural network that

predicts a perceived emotion conveyed through multimedia.

Lastly, the theory discussed thus far assumes a notion of causality between the two

events. That is, the “outer event” causes the “perceived emotional state”. In order to

computationally model this causality, we investigate the causality between the affective

cues using Granger causality (C. W. J. Granger 1969). In the following sections, we describe

the computational details of the two events of Emotion Causality.

4.3.2 Building the Affective-Rich Representation

Our goal here is to build a representation of features that are capable of inciting a perceived

emotional state in the audience. We extract features that can contribute to an affective-
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rich representation from the input C1:T clips of the multimedia content. For each clip, we

extract at most p feature representations, including but not limited to– the facial action

units of the actors involved, the audio features, embeddings of the text/transcript, scene

descriptions, action or situation descriptions and visual aesthetics of the clips,

f 1:T
i = Fi(C1:T ) (4.4)

where f 1:T
i ∈ Rp×|feature size|i×T for i = 1, 2, . . . , p is the ith feature representation ob-

tained using the extractor, Fi. We describe the feature extractor F in Section 4.4.2.

Affect2MM can work with any subset of the 6 features representations mentioned. This

is also shown in our results.

4.3.3 Perceiving the Emotional State

We use the features, f 1:T
1 , f 1:T

2 . . . f 1:T
p , generated from the first event to predict perceived

emotions in the consumer of the multimedia content. Our approach consists of a deep

neural network that uses co-attention to learn and, ultimately, to be able to focus on the

useful elements of the features at different time instances. The key intuition here is that

the relevance of features varies during the length of the multimedia. For example, the

scene-setting and the visual aesthetics may stand out towards the beginning of a movie, as

the viewers are not acquainted with the actors, rather are trying to build the scene in their

minds. But later, the facial expressions and the speech of the actors may develop a stronger

presence as the viewers get to know the actors and their stories. Co-attention helps capture

the time-varying nature of the pairwise interdependent affective-rich features, implicitly

handling transitivity amongst related modalities.

We begin by simultaneously encoding the feature representation (Eqn. 4.6) using recur-

rent neural network architectures (cLSTMs in our case) and computing the co-attention

between pairs of features (Eqn. 4.7). The results from these operations are convolved to
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obtain a final context vector (Eqn. 4.8). The final perceived emotion label is computed

by passing the context vector through an LSTM decoder, followed by a combination of

linear and non-linear matrix multiplication operations (Eqn. 4.10).

4.3.3.1 cLSTM Encoder

We encode the p time-series features using a cLSTM. As described in Section 4.2.3, we

first compute X1:T using Equation 4.2. More formally, the transformation, Π(f 1:T
i ) is

given by,

Π(·) = softmax(ϕ(·))

Then, the transformed feature representation of each time series is computed as,

x1:T
i = Π(f 1:T

i ), (4.5)

where ϕ is a linear operation with suitable weights. We can then obtain X1:T by row-wise

stacking x1:T
i as follows,

X1:T = x1:T
1 ⊘ x1:T

2 ⊘ · · · ⊘ x1:T
p ,

where ⊘ is a row-wise stacking operator. The stacked inputs are encoded using the

cLSTM encoder as defined in Eq. 4.3.

henc = cLSTM(X1:T ) (4.6)

4.3.3.2 Co-attention Scores

We learn the interactions between the different features f 1:T
1 , f 1:T

2 . . . f 1:T
p by aligning

and combining modalities pairwise using Eq. 4.1. We obtain m values of αk, where

k = 1, 2, . . . ,m and m =
(
p
2

)
, corresponding to each pairwise co-attention operation.
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αk = Co-attention(ϕ(fk1:T1
), ϕ(f 1:T

k2
)) (4.7)

where k1, k2 are indices denoting one of the p feature vectors, ϕ(.) are linear layer operators

with appropriate weights and ⊕ is the concatenation operator. We obtain a final α as,

α = α1 ⊕ α2 ⊕ · · · ⊕ αm

4.3.3.3 Decoder

Finally, once we have computed henc and α, we can obtain the ‘context vector’d, by

convolving the attention weights (α) with the encoded feature representation, henc,

d = henc ⊗ α (4.8)

The idea is to retain more of the corresponding values of henc where the attention weights

α are high and less information from the parts where the attention weights are low. Finally,

the decoder uses the ‘context vector’, d and the past emotion values y′, concatenated

together. We simply concatenate these two vectors and feed the merged vector to the

decoder. This returns ŷ the predicted labels.

hdec = LSTM(d⊕ y′) (4.9)

ŷ = ϕ(ReLU(ϕ(hdec))) (4.10)

4.3.3.4 Vector Auto-Regressive (VAR) training of Shared cLSTM Encoder

The cLSTM encoder is shared in a multitask learning fashion to regress future values

of input multimodal time-series data {f 1:T
1 , f 1:T

2 , . . . f 1:T
p } through vector autoregressive

training (Tank et al. 2018) as shown in Equation 4.3. The VAR training can be viewed as

a secondary task to the primary emotion prediction task, involving shared encoder layers.
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The group lasso penalty applied to the columns of the W
(j)
:k matrix forces the cLSTM to

predict the future values of kth modality without relying on the past values of jth modal-

ity. The ridge regularization penalty (r), the parameter for non-smooth regularization

(l), and the learning rate of VAR training determine the sparsity of the Granger Causal

relationship matrix (Tank et al. 2018) to mitigate the problem of multicollinearity amongst

the multivariate time series input.
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Table 4.2: Generating Affective Labels for MovieGraphs Dataset: We list the attributes of
Moviegraphs used for all clips for grouping them into 26 discrete emotion labels. These generated
labels for each clips are used for training and evaluating Affect2MM.

Class Id Emotion Labels Attribute Labels available in MovieGraphs

0 Affection loving, friendly

1 Anger anger, furious, resentful, outraged, vengeful

2 Annoyance
annoy, frustrated, irritated, agitated, bitter, insensitive,
exasperated, displeased

3 Anticipation optimistic, hopeful, imaginative, eager

4 Aversion disgusted, horrified, hateful

5 Confident
confident, proud, stubborn, defiant, independent,
convincing

6 Disapproval
disapproving, hostile, unfriendly, mean, disrespectful,
mocking, condescending, cunning, manipulative, nasty,
deceitful, conceited, sleazy, greedy, rebellious, petty

7 Disconnection
indifferent, bored, distracted, distant, uninterested,
self-centered, lonely, cynical, restrained, unimpressed,
dismissive

8 Disquietment
worried, nervous, tense, anxious, afraid, alarmed,
suspicious, uncomfortable, hesitant, reluctant,
insecure, stressed, unsatisfied, solemn, submissive

9 Doubt/Conf confused, skeptical, indecisive

10 Embarrassment embarrassed, ashamed, humiliated

11 Engagement
curious, serious, intrigued, persistent, interested,
attentive, fascinated

12 Esteem respectful, grateful

13 Excitement
excited, enthusiastic, energetic, playful, impatient,
panicky, impulsive, hasty

14 Fatigue tire, sleepy, drowsy

15 Fear scared, fearful, timid, terrified

16 Happiness
cheerful, delighted, happy, amused, laughing, thrilled,
smiling, pleased, overwhelmed, ecstatic, exuberant

17 Pain pain

18 Peace
content, relieved, relaxed, calm, quiet,
satisfied, reserved, carefree

19 Pleasure
funny, attracted, aroused, hedonistic,
pleasant, flattered, entertaining, mesmerized

20 Sadness
sad, melancholy, upset, disappointed, discouraged,
grumpy, crying, regretful, grief-stricken, depressed,
heartbroken, remorseful, hopeless, pensive, miserable

21 Sensitivity apologetic, nostalgic

22 Suffering
offended, hurt, insulted, ignorant, disturbed,
abusive, offensive

23 Surprise
surprise, surprised, shocked, amazed, startled,
astonished, speechless, disbelieving, incredulous

24 Sympathy
kind, compassionate, supportive, sympathetic,
encouraging, thoughtful, understanding, generous,
concerned, dependable, caring, forgiving, reassuring, gentle

25 Yearning
jealous, determined, aggressive, desperate, focused,
dedicated, diligent

26 None -
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Table 4.3: Affect2MM Hyperparameter Details: We summarize the values of hyperparameters
used to train and evaluate Affect2MM for SENDv1, MovieGraph and LIRIS-ACCEDE datasets.

Dataset
Hyperparameters SENDv1 MovieGraphs LIRIS-ACCEDE

Dropout Ratio 0.5 0.5 0.5
Optimizer Adam Adam Adam
Embedding Dimension (Facial Expression) 32 204 204
Embedding Dimension (Visual Aesthetics) N/A 41 317
Embedding Dimension (Audio) 88 300 1584
Embedding Dimension (Action/Situation) N/A 300 N/A
Embedding Dimension (Scene) N/A 300 4096
Embedding Dimension (Textual) 300 300 N/A
Hidden Dimension (Linear Layers) 512 1024 512
Hidden Dimension (cLSTM Encoder) 512 1024 512
Hidden Dimension (LSTM Decoder) 512 1024 512
Number of hidden layers 1 1 1
Epochs 10 10 20
Batch Size 1 1 1
Learning Rate (Affect2MM model) 1e-4 1e-4 1e-4
Learning Rate (Multivariate VAR) 0.001 0.001 0.001
Activation Function of Linear layers LeakyReLU LeakyReLU LeakyReLU
Dimension of FCN Layers [(512 x 4), (4 x 1)] [(1024 x 4), (4 x 27)] [(512 x 4), (4 x 2)]

4.4 Implementation Details

We give an overview of the datasets (SENDv1, LIRIS-ACCEDE, and MovieGraphs) used

for evaluating Affect2MM in Section 4.4.1. In Section 4.4.2, we mention the features

extracted for training. Finally, we discuss the training hyperparameters in Section 4.4.3.

4.4.1 Datasets

Here we discuss details of the three datasets we used to evaluate and benchmark Af-

fect2MM. For further readability, we have summarized these details in Table 4.1.

SENDv1 Dataset: The dataset consists of video clips of people recounting important

and emotional life stories unscripted. The videos have been recorded in a face-centered

setting with no background. Valence ratings collected are provided for every 0.5 seconds

of the video.

Evaluation Metrics: Most previous works in this dataset have reported the Concordance

Correlation Coefficient (CCC) (Lawrence and K. Lin 1989) for validation and test splits along

109



with the standard deviation. The CCC captures the expected discrepancy between the

two vectors, compared to the expected discrepancy if the two vectors were uncorrelated

and can be calculated as follows:

CCC(Y, Ŷ ) =
2 Corr(Y, Ŷ )σY σŶ

σ2
Y σ

2
Ŷ
+ (µy − µŶ )

2

where Corr(Y, Ŷ ) is the Pearson correlation between the groundtruth (Y ) and predicted

valence values (Ŷ ) for T clips/timestamps of a video, and the µ and σ are the mean and

standard deviation predictions.

LIRIS-ACCEDE Dataset: The dataset contains videos from a set of 160 professionally

made and amateur movies. The movies are in various languages including English, Italian,

Spanish, and French.

Evaluation Metrics: Consistent with prior methods we report the Mean Squared Er-

ror (MSE) for the test splits. Given predicted valence value, ŷ and true valence value y

for T clips of a movie, we compute the MSE as follows:

MSE =
1

T

N∑
i=1

(yi − ŷi)
2

MovieGraphs Dataset: This dataset provides detailed graph-based annotations of so-

cial situations depicted in movie clips for 51 popular movies. Each graph consists of

several types of nodes to capture the emotional and physical attributes of actors, their

relationships, and the interactions between them. The dataset was collected and manually

annotated using crowd-sourcing methods. We process all clips in every movie and extract

the available ‘emotional’ attributes and group them in 26 discrete emotion labels as de-

scribed by Kosti et al. (Kosti, Jose M. Alvarez, et al. 2017c). To create the discrete 26 emotion

labels, we provide the attribute values we used as “emotional keywords” (Table 4.2). These

are then used for training the MovieGraphs dataset.

Evaluation Metrics: Because the labels in MovieGraphs are discrete, detailing 26 emo-
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tion classes, we report and compare against the Top-1 accuracy.

4.4.2 Feature Extraction

To build up an affective rich representation of the multimedia content, we work with a total

of 6 features: facial, audio, textual, visual aesthetics, scene, and situation descriptors. We

summarize the features available for training Affect2MM in Table 4.1. Below we provide

details for extracting features from each of the three datasets.

SENDv1 Dataset: We used the facial features, audio features, and text embeddings as

input for SENDv1. We used the extracted features for the three modalities as explained by

Ong et al. (Desmond Ong et al. 2019). To summarize, for audio features they used openSMILE

v2.3.0 (Eyben et al. 2013) to extract the extended GeMAPS (eGeMAPS) set of 88 parameters

for every 0.5-second window. For text features, they provide third-party commissioned

professional transcripts for the videos. The transcript was then aligned (every 5 seconds)

and a 300-dimensional GloVe word embeddings (Pennington, Socher, and Manning 2014) was

used. For the facial features, they provide 20 action points (R. Ekman 1997) extracted using

the Emotient software by iMotions 1 for each frame (30 per second).

LIRIS-ACCEDE Dataset: Like mentioned in Table 4.1, we used the facial features,

audio features, scene descriptors, and visual aesthetic features. While we used the already

available features for audio and visual aesthetics, we extract the facial features and scene

descriptors ourselves. The audio features provided were extracted using the openSMILE

toolbox 2, which compute a 1, 582 dimensional feature vector. For the visual aesthetics,

the authors provide the following: Auto Color Correlogram, Color and Edge Directivity

Descriptor, Color Layout, Edge Histogram, Fuzzy Color, and Texture Histogram, Gabor,

Joint descriptor joining CEDD and FCTH in one histogram, Scalable Color, Tamura, and

Local Binary Patterns extracted using the LIRE 3 library. We extracted the face features
1https://imotions.com/emotient/
2http://audeering.com/technology/opensmile/
3http://www.lire-project.net/
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ourselves using Bulat et al. (Bulat and Tzimiropoulos 2017). These result in 68 action units

with the 3D coordinates. For the scene descriptors we use Xiao et al.’s (Xiao et al. 2018)

4096 dimensional intermediate representation.

Table 4.4: Affect2MM Evaluation on SENDv1 Dataset: for time-series emotion perception.
We report CCC values on both the validation and test sets for comparisons with state-of-the-art
methods.

Method Modalities

FA AT FT FAT

Val Test Val Test Val Test Val Test

LSTM (Desmond Ong et al. 2019) .100 .160 .800 .090 .280 .400 .140 .150
VRNN (Desmond Ong et al. 2019) .140 .170 .320 .350 .240 .300 .170 .240

SFT (D. Ong et al. 2019) .150 .160 .080 .080 .320 .350 .120 .140
MFT (D. Ong et al. 2019) .060 .080 .360 .330 .400 .360 .420 .440

B3-MFN (D. Ong et al. 2019) 0.220 .090 .370 .330 .330 .310 .340 .280
Human (Desmond Ong et al. 2019) - - - - - - .470 .500

Ours .557 .582 .592 .601 .556 .567 .599 .597

Table 4.5: Affect2MM evaluation on MovieGraphs Dataset: for time-series emotion per-
ception for time-series emotion perception. We report top-1 accuracy for comparisons with
state-of-the-art methods.

Method Validation Test
(Top-1 Acc) (Top-1 Acc)

EmotionNet (Wei et al. 2020) 35.60 27.90
Ours 39.88 30.58

MovieGraphs Dataset: For the MovieGraphs dataset as summarized in Table 4.1, we

use all the features except the audio as the audios were not provided in the dataset.

We now explain below how we retrieve the features. We extracted the face features

ourselves using Bulat et al. (Bulat and Tzimiropoulos 2017). These result in 68 action units

with the 3D coordinates. For the transcript, we used the 300-dimensional GloVe word

embeddings (Pennington, Socher, and Manning 2014) to obtain the feature representation.

For visual aesthetic features, we extracted various features for color, edges, boxes, and

segments using Peng et al. (Peng and JEMMOTT III 2018). For the scene and situation

descriptors, we used the provided text in the dataset and used the 300-dimensional GloVe

word embeddings again to make them into feature representations.
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4.4.3 Training Hyperparameters

All our results were generated on an NVIDIA GeForce GTX1080 Ti GPU. Hyper-parameters

for our model were tuned on the validation set to find the best configurations.We used

RMSprop for optimizing our models with a batch size of 1. We experimented with the

range of our model’s hyperparameters such as: number of hidden layers (1, 2, 3), size of

hidden layers (cLSTM, LSTM Decoder, Dense), dropout {0.2, 0.3, 0.4, 0.5.0.6}, hidden

dimension {64, 128, 256, 512}, and embedding dimension {64, 128, 256, 512}. The ridge

penalty (r) and non-smooth regularization parameter (l) of VAR training of the cLSTM

was kept constant at 1e−4 and 0.001, respectively.The learning rate of both the tasks -

emotion prediction and VAR were in this range - {1e−5, 1e−4, 1e−3, 1e−2}. More specific

details on model-specific training hyperparameters are summarized in Table 4.3.

Table 4.6: Affect2MM evaluation on LIRIS-ACCEDE (MediaEval2018 Dataset): for
time-series emotion perception. We report MSE for comparisons with state-of-the-art meth-
ods (lower the better).

Valence Arousal
Method (MSE) (MSE)

CERTH-ITI (Batziou et al. 2018) 0.117 0.138
THUHCSI (Jin et al. 2017) 0.092 0.140

Quan et al. (Quan, V.-T. Nguyen, and Tran 2018) 0.115 0.171
Yi et al. (Y. Yi, H. Wang, and Q. Li 2018) 0.090 0.136

GLA (Sun, T. Liu, and Prasad 2019) 0.084 0.133
Ko et al. (Ko et al. 2018) 0.102 0.149

Zhao et al (Y. Zhao et al. 2019) 0.071 0.137
Ours 0.068 0.128

Table 4.7: Ablation Experiments on Affect2MM: We perform ablation experiments to un-
derstand the importance of co-attention and Granger Causality for modeling temporal causality.

Experiment SENDv1 MG LIRIS-ACCEDE
Valence Arousal

(CCC) (Acc) (MSE) Arousal(MSE)

Affect2MM w/o (co-attn.& GC) .570 28.290 0.122 0.143
Affect2MM w/o GC .585 29.450 0.095 0.135

Affect2MM .597 30.580 0.068 0.128

113



4.5 Experiments and Results

We first discuss our quantitative results in Section 4.5.1, where we compare the perfor-

mance of our method with SOTA methods on the three datasets. We then go over the

ablation experiments performed in Section 4.5.2. Finally, in Section 4.5.3, we present

some qualitative results for Affect2MM.

4.5.1 Quantitative Results

We compare Affect2MM with SOTA methods on the three datasets.

SENDv1 Dataset: For this dataset we summarise the results in Table 4.4. We

provide CCC score for every combination of the three features/modalities used and also

the combined results. Two prior works (D. C. Ong, Zaki, and Goodman 2019; D. Ong et al. 2019)

have experimented with various network architectures and ideas and reported CCC values.

We list and compare our performance from their best-performing methods in Table 4.4.

MovieGraphs Dataset: The dataset has not been previously tested for any similar task.

We trained a recently proposed SOTA method, EmotionNet (Wei et al. 2020), for affective

analysis of web images on the MovieGraphs dataset and compared our performance with

this approach. We summarize this result in Table 4.5.

LIRIS-ACCEDE Dataset: For this dataset we summarise the results in Table 4.6. To

be consistent with prior methods, we report Means Squared Error (MSE) and Pearsons’

Correlation Coefficient (PCC) for our method. We compare against 7 existing SOTA

methods evaluated on the same dataset. Some of these listed methods were a part of the

MediaEval2018 Challenge.

4.5.2 Ablation Experiments

We perform a small ablation study to analyze the importance of each of the two com-

ponents we incorporate for modeling the temporal causality in Affect2MM. We report
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Figure 4.3: Affect2MM’s Qualitative Plot Analysis: (a) We show the valence values learned
for a single sample on the test set in the SENDv1 Dataset, and in (b), we show both valence
and arousal values from the LIRIS-ACCEDE Dataset. (c) We show the confusion matrix for the
MovieGraphs dataset. Brighter colors on the diagonal indicate more correct classifications.

the performance without co-attention between the features and also without Granger

causality. These results are summarized in Table 4.7. As reported, we see a performance

improvement of about 4− 5% across all datasets and another 2− 3% with the addition

of Granger causality.

4.5.3 Qualitative Results

Time-Series Emotion Predictions: We present qualitative results for Affect2MM in

Figures 4.3 and 4.4. In Figure 4.3(a), we show the valence values (range ∈ [0, 1]) learned

for a single sample from the test set for SENDv1 Dataset. In Figure 4.3(b), we show the

predicted valence and arousal values for a sample from LIRIS-ACCEDE Dataset (range

∈ [−1, 1]) along with ground-truth labels. In Figure 4.3(c), we plot the 27×27 confusion

matrix for all the test points in the MovieGraphs dataset. The horizontal axis represents

the predicted class labels while the vertical axis represents the true labels. The discrete

classes are in alphabetical order with 27th class as ‘None’ (Table 4.2). Brighter colors on

the diagonal indicate more correct classifications.

Interpreting GC matrix: We visualize the Granger causality plots in Figure 4.4 ((a), (b)

and (c)) for all the three datasets. The dimensions of the GC matrix is |features × features|.

Hence, it is |3× 3| for SENDv1 dataset, |4× 4| for LIRIS-ACCEDE dataset and |6× 6|

for Moviegraphs dataset. To interpret the GC matrix, we read the features appearing on
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Figure 4.4: Affect2MM Analysis (GC Matrices and Co-attention Weights): (Top) We
show the GC matrices for all three datasets (Desmond Ong et al. 2019; Baveye et al. 2015; Vicol
et al. 2018). Darker shades indicate the existence of a Granger causality between corresponding
features.(Bottom) We plot normalized co-attention weights for one sample each from the (d)
SENDv1 and (e) LIRIS-ACCEDE datasets with time-stamps on the x-axis and pairs of features
on the y-axis. Darker shades imply a higher co-attention between the pair of features and more
relevance to predictions of the current and the following clips.

the horizontal axis and query whether they Granger-cause (or non-cause) the features on

the vertical axis. Darker shades of purple indicate causality while lighter shades indicate

non-causality. So for example, in (a) f3 Granger-non-causes f1 for SENDv1 dataset, and

in (b), f5 Granger-causes f1 with a higher certainty.

Causality Qualitative Analysis: Here we further analyse co-attention and GC qual-

itatively. We present the analysis and reasoning of GC and co-attention for one such

video from SENDv1 dataset (ID123vid1 video), for which the corresponding GC matrix

and co-attention weights are shown in Figures 4.4(a) and (d).

Interpreting Co-attention Weights: We visualize the co-attention weights for one

sample each from SENDv1 and LIRIS-ACCEDE in Figure 4.4 ((d), (e)). We plot the
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clips/timestamps on the x-axis and pairs of all the features on the y-axis. For every clip,

darker shades of red indicate a higher co-attention weight between a pair of modalities.

1. Text GC Face: In Figure 4.4(a), the text modality strongly Granger-causes the facial

modality because at 2:20, when the subject says, “... he had a sailor’s mouth ...”, the

subject then moments later motions to his face and changes his facial expression to

mimic a sailor face.

2. Text GC Speech: In Figure 4.4(a), the text Granger-causes speech which is most

clearly evidenced when at 2:05, the subject says, “... feel really lucky, really blessed

...”, then subject then audibly sighs with relief.

3. Speech correlation with text: In Figure 4.4(d), we see a weak correlation between

speech and text in the beginning because when the subject is remembering the good

things about his grandfather, the text contains positive stories about the grandfather

while the tone in his speech is still sad. However, the correlation between text and

speech is stronger at the end of the video when the subject mentions the word, “death",

and then takes a long pause signifying great sadness and loss.

4.6 Conclusion, Limitations and Future Work

We present Affect2MM, a learning method for time-series emotion prediction for multi-

media content. We use Emotional Causality via co-attention and Granger causality for

modeling temporal dependencies in the input data and building an affective-rich repre-

sentation to understand and perceive the scene. We evaluated our method on three

benchmark datasets and achieved state-of-the-art results.

There are some limitations to our approach. We need to make the feature extraction

process online. Furthermore, our approach does not currently work with scenes containing

single actors. In the future, we would like to extend our approach to solve Step 3 of the

Emotional Causality Theory to predict the physiological response of the viewer to the

movie. We would also like to explore the causality and correlation of modalities in single-
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actor scenes to automate the analysis of debates and group discussions. Finally, we would

like to incorporate the ideas presented in this paper with recommendation systems.
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Chapter 5

Analyzing User Behavior on

Social Media Platforms

The popularity of social media has increased dramatically in recent years. According to a

2021 survey by Pew Research Center (Center 2021), 81% of U.S. adults use social media,

with younger people being the most frequent users. A survey conducted by Common Sense

Media in 2020 (Media 2020) found that 84% of U.S. teenagers reported using social media,

with over one-third using it almost constantly. Additionally, the American Academy of

Pediatrics also recognizes the significance of social media in adolescent development and

socialization, stating in a 2021 policy statement (Pediatrics 2021) that “the use of social

media has become a central aspect of adolescent development."

Consequently, social media has become a rich source for researchers to address a variety

of societal problems. Some of these research problems include understanding the spread

of misinformation and fake news on social media platforms (Kaliyar, Goswami, and Narang

2021; Islam et al. 2020), flagging inappropriate content (Papadamou et al. 2020), and, detecting

hateful and abusive content (Mozafari, Farahbakhsh, and Crespi 2020; Ribeiro et al. 2018). Social

media has also been used to study social networks and relationships, including how they
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influence health behaviors (Valente 2015), political opinions (Center 2018), and psychological

well-being (Verduyn et al. 2017). While a lot of these problem statements focus on the

content aspect of social media, given the increased popularity it is also important to

understand the impact social media can have on the users.

Some interesting characteristics of social media usage is as follows:

(a) Users often have little control over the content they consume on social media feeds.

Does this influence the behavior of users?

(b) All conversations on social media are 1 : n, and so it is important to understand

the impact of a such large number of 1 : n conversations.

Recent studies ( n.d.) have exposed negative effects of social media due to users’ lack

of control over the content they consume. Users tend to post content that presents a

false image of themselves to gain social validation (S. Zhao, Grasmuck, and J. Martin 2008;

Walther et al. 2008; Jinyoung Kim and Ahn 2013). Users also often change their behavior on

social media to portray a positive impression of themselves on these platforms (Sleeper

et al. 2013; Rainie, Lenhart, and A. Smith 2012). All these cause issues such as body image

concerns, anxiety, and mental health problems, particularly in teenagers, as a consequence

of negative social comparison (Jang et al. 2016; Spitzer, Crosby, and Witte 2022). Additionally,

sharing content on social media can elicit emotions that transfer to other users, leading

to similar emotional experiences, particularly in image/video-based applications (Qian et al.

2013; Crandall and Snavely 2012), further damaging users’ well-being.

To minimize the negative effects of such content, understanding creators’ intent and

educating their social network about this intent is crucial (Saldias and Rosalind W Picard

2019). To this end, various efforts have been made to comprehend the intent behind

sharing multimodal social media content (Jia et al. 2021; Kruk et al. 2019; n.d.; Yen 2017; Xu

et al. 2022a).

Understanding human intent behind multimodal social media content is challenging

due to the lack of a standard intent taxonomy for this type of data. Prior works have pro-
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posed diverse taxonomies and scrape images from various social media platforms (Twitter,

Unsplash, Instagram, Weibo) (Jia et al. 2021; Kruk et al. 2019; D. Zhang et al. 2021; Xu et al.

2022b). Additionally, intent prediction goes beyond visual recognition tasks and requires

understanding human cognition and behavior. Existing intent prediction models for such

data are limited to image and text modalities.

A recent study led by Facebook (Kramer, Guillory, and Hancock 2014) highlighted one of

the most subtle and least combated problems of digital content on social media–emotion

contagion, which is defined as follows (Goldenberg and J. Gross 2019; Ferrara and Zeyao Yang

2015):

Emotion contagion (EC) is a diffusion of emotions (positive or negative) and opinions

over users in a social network such that the emotions and opinions of a “perceiver” become

more similar to those of the “expressor” as a result of exposure to them.

Emotion contagion can occur as a result of any type of exposure to the emotions of

others. This can be broadly classified into non-digital (face-to-face or telephonic) and

digital (social media) conversations. We now formally define Digital Emotion Contagion:

Digital Emotion Contagion (DEC) is when EC occurs by sharing and expressing opin-

ions on online platforms via multimodal digital content such as posts on Reddit and

Facebook, tweets on Twitter, etc.

While in both non-digital and digital emotion contagion, the emotions and opinions of

“perceivers” change as a result of exposure to “expressors”, the exposure is a lot more in-

tense and frequent on digital media platforms as all interactions on social media platforms

are 1 : n opposed to 1 : 1 conversations in the non-digital world. As already discussed,

users have little control over the content they consume on online social media platforms,

putting them at risk of this emotion contagion. Moreover, social media platforms are

known to incentivize emotion-rich content, leading to a self-reinforcing loop of enhanced

emotion contagion (Goldenberg and J. Gross 2019). Goldenberg et al. (Goldenberg and J. Gross

2019) note that because of this it is important to note that this is mediated digital emotion
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contagion.

However, detecting the occurrence of contagion on social media platforms is challeng-

ing. Firstly, users can have similar emotional responses to a similar situation without any

contagion, but differentiating such cases of similar emotional responses from contagion is

hard. Moreover, to do so requires tracking user activity on social media platforms over

a time span which is very sensitive data to publicly release. Additionally, while it is of-

ten possible to collect human-annotated data to build datasets for furthering research; it

is not so straightforward here as by its very nature contagion is a hidden phenomenon.

Consequently, prior work in emotion contagion research has been restricted to proving its

existence on social media platforms (Ferrara and Zeyao Yang 2015; Kramer, Guillory, and Hancock

2014; Fan et al. 2014) like Facebook, Twitter, and Weibo. While conducting such controlled

experiments has been controversial in the past as we are interfering with social media

users, prior works have presented various hypotheses (R. Lin and Utz 2015; S. He et al. 2016;

Coviello et al. 2014; Bhullar 2012; Gruzd, Doiron, and Mai 2011) about factors responsible for

causing emotion contagion on social media. As suggested, researchers in the community

agree that since detecting the occurrence of contagion as a research problem is in nascent

stages; it’s time to shift focus on understanding various factors that would help understand

when contagion can be stronger or weaker on specific social media platforms.

Main Contributions: Towards this goal of understanding and making users emotionally

aware of the content they consume on social media, we make the following contributions.

1. We propose a learning-based model called INTENT-O-METER (Figure 5.1(a)), a

human intent prediction model for multimodal social media posts. In addition to

visual (image) and textual (caption) features, INTENT-O-METER leverages Theory

of Reasoned Action (TRA) factoring in (i) the creator’s attitude towards sharing

a post, and (ii) the social norm or perception towards the post in determining

the creator’s intention. We also integrate this intent prediction model into a web

application interface (similar to Instagram) to understand users’ feedback on the
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Figure 5.1: Understanding User Behavior and Increasing Awareness about the Content
Consumed on Social Media: We study two characteristics of how social media can impact
users. In (a), we present a model, INTENT-O-METER, a human intent prediction model for
multimodal social media posts. In (b), we attempt to understand additional factors that could
lead to stronger or weaker contagion on Instagram.

use of such intent labels along with social media posts. We try to understand if

users will be open to trying this for their own awareness of social media content.

2. To understand the impact of contagion better, given a social media post m and the

user u, we perform analysis to understand what factors could lead to stronger or

weaker contagion on Instagram (Figure 5.1(b)).

The rest of the chapter is structured as follows: We discuss some prior work and

discuss prior work in various social media research problems, intent recognition datasets,

and digital emotion contagion in Section 5.1. In Section 5.2 we discuss our work in

understanding intent behind the content the users share on social media platforms and

Intentgram dataset. In Section 5.3, we elaborate on our analysis and findings about

factors that can lead to stronger or weaker contagion on Instagram. Finally we conclude

with a discussion on some limitations of and future directions in Section 5.4.
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Table 5.1: Summary of Intent Taxonomy from Prior Literature: We summarize the 7-label
taxonomy we adopt for Intentgram (borrowed from Kruk et al.) and the number of samples
per label.

Label # Samples Interpretation

advocative 9, 293 advocate for a figure, idea, movement.
entertainment 8, 938 entertain using art, humor, memes etc.
exhibitionist 5, 327 create a self-image reflecting the person.
expressive 9, 800 express emotion at an external entity.
informative 7, 964 information regarding a subject or event.
promotive 4, 661 promote events, products, organizations.
provocative 9, 289 directly attack an individual or group.

Total 55, 272

5.1 Prior Work in Understanding User Behavior on Social

Media Platforms

In this section, we discuss previous works in related domains. To begin, we first go over

the impact of social media on the mental well-being of users (Section 5.1.1). We then

explain the various interpretations of the word “Intent" and the need to infer the intent

of social media content in Section 5.1.2. Then in Section 5.1.3, we summarize various

datasets and models that have been proposed in the recent past for inferring intent for

social media content. We also provide an understanding of the Theory of Reasoned Action

and our motivation for using this for our model in Section 5.1.4. In Section 5.1.5, we go

over the theory of emotion contagion and then we specifically focus on digital emotion

contagion (Section 5.1.6) and discuss the challenges of existing research directions on

emotion contagion in social media.

5.1.1 Social Media’s Impact on Mental Well-Being

Social media sites like Instagram, Facebook, and Twitter have become an important part

of our daily lives, especially for young adults (Lakhiwal and Kar 2016; Van Dijck and Poell 2013).

The pressure to publish “socially acceptable" and “socially likable" content often results in
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a depiction of a false narrative on social media; more specifically image/video-based plat-

forms like Instagram. Sophisticated editing tools and filters add to this false narrative. The

impact of such content on young people is of grave concern. They often compare them-

selves to others (what they see) to assess their opinions and abilities, and such comparison

has been known to lead to depression (Keles, McCrae, and Grealish 2020). Such comparisons

can have a serious impact on physical and mental well-being. Young people also quantify

their social acceptance in terms of the number of likes/comments/shares/follows (Tigge-

mann et al. 2018) which again traps them in a vicious circle.

5.1.2 Interpretations of ‘Intent’

The term “intent" can have various meanings in different contexts, such as representing

the next steps of an agent (Wooldridge and Jennings 1995; Bratman 1988) or actions (Ignat

et al. 2021), emotions, and attitudes (Xu et al. 2022b). However, answering the question of

why people post on social media platforms requires a specific intent taxonomy. Previous

works (Purohit et al. 2015; Xu et al. 2022a; Kruk et al. 2019; Jia et al. 2021; D. Zhang et al. 2021)

have proposed different taxonomies, but there is little consensus among them. We sum-

marize the various datasets and taxonomies for intent prediction for social media data in

Section 5.2.3.2. Social pressure to present likable and well-edited (filters) content can

result in a false narrative on social media, which can affect young people’s self-esteem

and social acceptance. Educating young adults about the intent of content creators can

help them be less vulnerable to what they see on social media.

5.1.3 Social Media Intent Recognition Models

While there aren’t many intent prediction models for social media data, we briefly go over

the ideas presented in some recent works. Kruk et al. (Kruk et al. 2019) and Zhang et al. (D.

Zhang et al. 2021) use both visual (image) and textual (captions) modalities to predict an

author’s intent for their Instagram posts. Jia et. al. (Jia et al. 2021) focus more on predicting
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intent labels based on the amount of object/context information and use hashtags as an

auxiliary modality to help with the better intent prediction. The scope of these works is

limited to just the visual and textual features of the data. Understanding human intent,

however, is a psychological task (Talevich et al. 2017), extending beyond standard visual

recognition. Therefore, we conjecture that additional cues from social media psychology

literature are needed to improve the state-of-the-art in intent prediction.

Table 5.2: Summary of Characteristics of SOTA Intent Prediction Datasets: We compare
Intentgram Dataset with state-of-the-art intent prediction datasets. See Section 5.2.4.3 for
a detailed discussion on a comparison between these datasets. I: image, V: video, C: caption,
and H: hashtag. † Not Available Publicly.

Datasets Features #Labels Size Source

I V C H

MDID (Kruk et al. 2019) ✓ ✗ ✓ ✓ 7 1, 299 Instagram
Intentonomy (Jia et al. 2021) ✓ ✗ ✗ † ✓ 28 14, 455 Unsplash

MET-Meme (Xu et al. 2022a) ✓ ✗ ✓ ✗ 5 10, 045
Twitter, Weibo,
Google, Baidu

†Purohit et al. (Purohit et al. 2015) ✗ ✗ ✓ ✗ 3 4, 000 Twitter
†MultiMET (D. Zhang et al. 2021) ✓ ✗ ✓ ✗ 4 6, 109 Twitter, Facebook
MIntRec (Hanlei Zhang et al. 2022) ✗ ✓ ✓ ✗ 20 2, 224 TV Series

WHYACT (Ignat et al. 2021) ✗ ✓ ✓ ✗ 24 1, 077 YouTube Videos

Intentgram ✓ ✗ ✓ ✓ 7 55, 272 Instagram

5.1.4 Social Media and Theory of Reasoned Action

The Theory of Reasoned Action (TRA) (Fishbein and Ajzen 1977) assumes that people make

rational choices when they engage in a specific behavior (e.g. posting content on social

media), and that behavior is driven by intentions. Furthermore, TRA lays out the fol-

lowing two factors that determine intention: (i) attitude toward the behavior and (ii)

the subjective norms associated with the behavior. Attitudes toward the behavior refer

to the overall evaluations of the performance of the behavior in question, and subjective

norms refer to perceived pressure or opinion from relevant social networks. Generally,

individuals who have more favorable attitudes and perceive stronger subjective norms re-

garding behavior are more likely to show greater intentions to perform a behavior. Prior

research (S. Kim, Joonghwa Lee, and D. Yoon 2015; X. Lin, Featherman, and Sarker 2013; Peslak,

Ceccucci, and Sendall 2012) has used TRA to reason and develop an understanding of what
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Figure 5.2: Intent-o-meter Model Architecture: Given as input a social media post, P =
{PI ,PC ,PH}, which has three components (an image, PI , with an associated caption, PC , and
a set of hashtags, PH = {Ph1 ,Ph2 , . . . ,Phn}), our goal is to predict the intent label for P.
Intent-o-meter has three streams. In the first stream (orange), we encode the visual features
of the image, in the second stream (blue) we encode the captions, and finally, in the third stream
(green) we model the Theory of Reasoned Action; both attitude of the author/creator and the
social norm of the kind of post, P. We then fuse the three streams (dark red) to make the final
intent prediction. The networks consist of fully-connected layers (light green), an LSTM layer
(blue), a concatenation operation (dark red), and a softmax layer (yellow).

motivates social media users to share information online. They confirm that TRA can be

used as a model for social networking behavior. They also find that both intention and

subjective norm are positively associated with the intention to use social media (Tarkiainen

and Sundqvist 2005; H.-K. Bang et al. 2000). While these studies, however, confirm TRA and

its role in modeling user intent on social media, no work so far uses TRA to predict user

intent

5.1.5 Theory of Emotion Contagion

Prior works have suggested that humans instinctively tend to align with the emotional

states they perceive around them (P. Ekman, Levenson, and Friesen 1983; Hatfield, Cacioppo, and

Rapson 1992; Barger and Grandey 2006). Various studies have concluded that emotions can be

contagious (Schachter and JE Singer 1962), as a response to which individuals show behav-
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ioral, attentional, and emotional synchrony (Hatfield, Cacioppo, and Rapson 1992). Prior liter-

ature has also associated emotion contagion with feelings of empathy and sympathy (Hat-

field, Cacioppo, and Rapson 1992; Dellarocas, Xiaoquan Zhang, and Awad 2007) and emotional

arousal (Mehrabian and Russell 1974b; Russell 2003; Mehrabian 1980). The study of emotional

contagion has been the focus of various disciplines because different types of interactions,

such as commercial transactions, team communication, and human–robot interactions,

can transfer emotions (Jingjing Li, Jian Zhang, and Zhiguo Yang 2017; Q. Chen et al. 2019; Kuang

et al. 2019; Manera, Grandi, and Colle 2013; Matsui and Yamada 2019). Marketing research on

emotional contagion has focused on understanding how positive or negative emotions

converge in positive or negative consumer behavior (Dellarocas, Xiaoquan Zhang, and Awad

2007; Kramer, Guillory, and Hancock 2014; Fox et al. 2018; Cowley 2014). More recently, emo-

tion contagion through social media has been of heightened interest because of the high

engagement on these platforms.

5.1.6 Digital Emotion Contagion

Most prior works (Kramer, Guillory, and Hancock 2014; Ferrara and Zeyao Yang 2015; Fan et al. 2014;

Coviello et al. 2014) have conducted controlled experiments on social media platforms and

confirmed the presence of emotional contagion and its manipulative effects on individuals.

Similarly, (Tromholt 2016) and (Hunt et al. 2018) show that the content we consume on social

media affects not only the emotions that we express on these platforms but also our general

well-being. As discussed in prior literature (Goldenberg and J. Gross 2019), contagion can occur

due to three mechanisms: (i) mimicry, (ii) activation, and (iii) social appraisal. More

specifically, digital media platforms are known to incentivize competition for attention

and positive reinforcement in the forms of likes or shares (Brady, Gantman, and Van Bavel

2020; Brady, Crockett, and Van Bavel 2020), and expressing emotions is an extremely useful

way to attract attention. As a result, such emotion-rich digital activities lead to self-

reinforcing loops that enhance emotion contagion over time. (Saldias and Rosalind W Picard
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2019) developed Tweet Moodifier, a Google Chrome extension that enables Twitter users

to filter and visually mark emotional content in their Twitter feed to make them aware of

and reflect on the emotion-rich content being consumed.

5.2 Intent-o-meter: Understanding Users Intent to Share

Online

In this section, we go over the proposed intent prediction model, Intent-o-meter for

multimodal social media posts. We formulate the problem in Section 5.2.1. We then

explain the model architecture in Section 5.2.2. We introduce our dataset, Intent-

gram, the taxonomy, and data collection process and compare it with the state-of-the-

art datasets intent prediction datasets in Section 5.2.3. In Section 5.2.4, we go over

the quantitative experiments and ablation experiments to evaluate Intent-o-meter on

state-of-the-art methods and datasets. We explain the user evaluation we perform to

further evaluate in Section 5.2.5.

5.2.1 Problem Formulation

Problem 5.2.1. Given as input a social media post, P = {PI ,PC ,PH}, which has

three components: an image, PI , with an associated caption, PC , and a set of hashtags,

PH = {Ph1 ,Ph2 , . . . ,Phn}, our goal is to predict the intent label for P .

We present an overview of our intent prediction model, Intent-o-meter, in Figure 5.2.

As our input is multimodal, we refer to multimodal deep learning literature and extract

both the visual features from the input image PI as well as the textual features from

the associated caption. For the former, we use a state-of-the-art visual feature extrac-

tion backbone network, the ResNet architecture family (Section 5.2.2.1) while for the

latter, we leverage the GLoVe word embeddings with a recurrent neural network (Sec-

tion 5.2.2.2). In addition, we also extract features that model the Theory of Reasoned
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Action; the attitude of the creator and the social norm of the kind of post, P (Sec-

tion 5.2.2.3). We concatenate the three features in late fusion to make the final intent

prediction (Section 5.2.2.4).

5.2.2 Our Approach

In the following sections, we describe each component in more detail.

5.2.2.1 Stream 1: Visual Modality

The dominant modality for such social media platforms is often the visual modality, i.e.,

images and videos. To be consistent with prior work, we use the ResNet-18 network pre-

trained on the ImageNet dataset (Jia Deng et al. 2009) to encode the visual features (K. He,

Xiangyu Zhang, et al. 2016). We use the output of the second-to-last layer for the image

representation (RN×512). To fine-tune this, we then add two trainable fully-connected

layers (ϕ) with ReLU non-linearity and 0.5 dropout, to finally get fvisual.

fvisual = S1

(
ResNet18(PI)

)
(5.1)

Table 5.3: Ablation Experiments on Intentgram Dataset (Benefit of TRA in Intent Pre-
diction): We highlight the importance of using TRA in addition to visual and textual features by
ablating Intent-o-meterand analyzing each component in isolation. − indicates the absence
of hashtag information in the dataset. (u) indicates uniform weighting for hashtag embeddings.
stream 1: visual, stream 2: textual, streams 3(a) and 3(b): TRA.

Dataset Metric

Experiments
Streams

1 + 2 1 + 2 + 3(a) 1 + 2 + 3(b) 1 + 2 + 3(a) + 3(b)
Intent-o-meter

Intentonomy F1 32.72 40.68 - 40.68
MET-Meme F1 38.89 47.74 - 47.74

MDID Acc. 54.29 55.58 57.12/55.92(u) 58.20

Intentgram Acc. 50.21 52.36 53.73/51.23(u) 54.01
AUC 73.58 76.86 75.51/74.87(u) 79.48
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5.2.2.2 Stream 2: Textual Modality

Prior work in multimodal learning shows that visual information is often not enough to

recognize human intent (Mittal, Bhattacharya, et al. 2020b; A. B. Zadeh et al. 2018). We use the

user-generated captions, PC , of the images as a complementary cue. To encode these

captions we leverage pre-trained GLoVe word embeddings (Pennington, Socher, and Manning

2014) to encode caption words in 50 dimensions. We use an LSTM layer, followed by two

fully connected layers (ϕ) with ReLu non-linearity and 0.5 dropout to get ftextual.

ftextual = S2

(
LSTM(GLoVe(PC))

)
(5.2)

5.2.2.3 Stream 3: Modeling TRA

As discussed in Section 5.1.4, according to the Theory of Reasoned Action (TRA), individ-

uals who have more favorable attitudes and perceive stronger subjective norms regarding

a behavior (in this case, posting particular content) are more likely to show greater in-

tentions to execute that behavior. Many studies (S. Kim, Joonghwa Lee, and D. Yoon 2015;

X. Lin, Featherman, and Sarker 2013; Peslak, Ceccucci, and Sendall 2012) have validated the influ-

ence of TRA on users while posting content on social media, but no method exists that

computationally models both these components from a post, P . We describe this below.

Stream 3(a) Attitude: In TRA, a user’s attitude indicates how strongly the creator

believes in the post they are sharing online. Since “belief” in a post is subjective, we

refer to social media psychology literature where studies have correlated engagement and

frequency with social media use and in particular, one such study (Scott et al. 2017) states,

“highly engaged youth participated on social media platforms often and in diverse ways:

messaging friends, reacting to and circulating others’ posted content, and generating their

own.” We model such engagement in two ways. The first is via caption sentiments. Kruk

et al. (Kruk et al. 2019) show that two different captions for the same Instagram image can

completely change the overall meaning of the image-caption pair.
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With this intuition, we compute the polarity of the sentiments expressed in the cap-

tions. We use the VADER (Hutto and Gilbert 2014) library to compute these features.

fsentiment = VADER(PC) (5.3)

The second way in which we model user engagement and frequency on social media is via

the editing and filters applied on the images before they are posted on the various social

media platforms. Doing so is reflective of the time spent by the creator in preparing the

post and indicative of the attitude the creator has towards the image they are sharing.

To help our model learn this, we compute k image quality or visual aesthetic features,

q1, q2, . . . , qk which correspond to image blurriness, dominant color, brightness, contrast,

exposure, average color, and so on.

fquality = Image_Quality(PI) =
[
q1, q2 . . . qk

]⊤ (5.4)

We concatenate the features and use fully connected layers and non-linearity to compute

f3a .

fattitude = S3a

([
fsentiment; fquality

]⊤) (5.5)

Stream 3(b) Social Norm: The goal here is to understand how well the content

posted is perceived socially. In the absence of any formal definition of social perception of

content, we use hashtags, associated with a post P , as a proxy for social acceptance of

the post. Hashtags for social media posts are used to categorize content to make it more

visible. Moreover, prior work (Martín, Lavesson, and Doroud 2016; X. Chen et al. 2020) has shown

that hashtags are directly correlated to growing one’s social network and expanding their

audience. We assume that the most influential hashtags appear first in the set of available

hashtags, PH = {Ph1 ,Ph2 , . . . ,Phn}. This is a reasonable assumption due to the auto-

suggest feature in most devices. Assuming a linear piece-wise weighting scheme, with a
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weight of n−1
n

, for the hashtags, we use pre-trained GLoVe word embeddings (Pennington,

Socher, and Manning 2014) to encode the words as 50−dimensional features. We use an

LSTM layer, followed by two fully connected layers with non-linearity and dropout to get

fsocial.

fsocial = S3b

(
n∑

i=1

n− i

n
Phi

)
(5.6)

We conclude this section by emphasizing that our current TRA model, based on caption

sentiments, image aesthetics, and hashtag embeddings, is heuristic and may be one of

several possible way alternatively modeling TRA. It should, accordingly, not be presumed

as a gold standard way of computationally modeling TRA–that remains an open research

question–and we hope this work is a stepping stone towards further research in this area.

5.2.2.4 Fusion: Inferring the Intent Label

To fuse the 4 features/encodings we have computed, fvisual, ftextual, fattitude, and

fsocial from the three streams, we concatenate these features before making any indi-

vidual intent inferences.

fconcat =
[
fvisual, ftextual, fattitude, fsocial

]⊤
ffuse = Sfuse

(
fconcat

) (5.7)

We use two fully-connected layers followed by a softmax layer. This output is used for

computing the loss and back-propagating the error back to the network.

5.2.3 Introducing Intentgram Dataset

We present our intent taxonomy and data collection procedure for Intentgram in

Section 5.2.3.1 followed by a comparison with other social media intent datasets in Sec-
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tion 5.2.3.2. We depict samples in Intentgram dataset corresponding to one of the 7

intent classes in Figure 5.4.

Table 5.4: Intent-o-meter’s Evaluation on the MDID Dataset: We summarize the experi-
ment results on MDID dataset here. We report top-1 accuracy and AUC score for comparisons.
There are a total of 7 intent labels.

Method top-1 Accuracy AUC

Random 28.10 50.00
Gonzaga et al. (Gonzaga, Murrugarra-Llerena, and Marcacini 2021) 54.50 84.40

Kruk et al. (Kruk et al. 2019) 56.70 85.60

Intent-o-meter 58.20 89.70

Table 5.5: Intent-o-meter’s Evaluation on the MET-Meme Dataset: We summarize the
experiments for MET-Meme dataset here. We report top-1 accuracy and AUC score for compar-
isons. There are a total of 7 intent labels.

Validation Test
Method Micro F1

Random 23.20 22.32
Kruk et al. (Kruk et al. 2019) 36.36 38.89

Xu et al. (Xu et al. 2022a) 37.64 41.65

Intent-o-meter 41.33 47.74

Table 5.6: Intent-o-meter’s Evaluation on the Intentonomy dataset: We present experi-
ments for intent prediction on the Intentonomy dataset. We report Micro F1 Score and Macro
F1 Scores for comparisons. There are a total of 28 intent labels.

Method Micro F1 Macro F1

Random 7.18 6.94
Kruk et al. (Kruk et al. 2019) 32.72 28.57

Jia et al. (Jia et al. 2021) 38.49 31.12

Intent-o-meter 40.68 34.71

5.2.3.1 Taxonomy, Collection and Pre-processing

7-label Taxonomy: We follow the intent taxonomy used by Kruk et al. (Kruk et al. 2019),

as they also define the labels on Instagram data. We summarize this further in Table 5.1.
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Table 5.7: Intent-o-meter’s Evaluation on our Proposed Dataset, Intentgram: We sum-
marize evaluations on Intentgram here. We report accuracy, AUC scores and Micro F1 Score
for comparisons. There are a total of 7 intent labels.

Method top-1 Accuracy AUC Micro F1

Random 28.10 50.00 −
Kruk et al. (Kruk et al. 2019) 50.21 73.58 49.15

Intent-o-meter 54.01 79.48 53.54

Scraping Instagram Posts: We used the Apify scraper to collect Instagram posts

from publicly available profiles, similar to Kruk et al. (Kruk et al. 2019). As a first step,

we begin by scraping Instagram posts belonging to the 7 categories (Table 5.1) using

hashtags provided by Kruk et al. We initially collected and clustered a large number of

Instagram content to understand and identify popular hashtags.

Based on the frequency of usage, we choose top-10 hashtags for each of the intent

labels (added these hashtags in Table 5.9).

Dataset Pre-processing: With an aim to curate a large-scale collection of publicly

available Instagram posts we scrape 2000 samples for all the hashtags under consideration.

Thus after the initial phase, we end up getting 1, 40, 000 posts in total. The Apify platform

provides a mirror of the original Instagram posts (viable only for a short time) to download

them. We then apply pre-processing and cleaning as described below to get the final

dataset consisting of 55, 272 posts. For fair evaluation, we restrict ourselves to a total of

10, 053 samples (equally distributed across all 7 categories) for the purpose of training,

validation, and testing. We will release the entire dataset to facilitate further research by

the community.

Intentgram Cleaning and Processing: We list down the various hashtags used to

scrape the public posts in Table 5.9. Because this is a dataset scraped from Instagram,

it was quite noisy and required cleaning. We mainly filter the data points in the following

aspects-

1. Duplicate Removal: We observed that during the scraping process a lot of
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duplication posts got scrapped due to the modus operandi of the Apify platform.

The first thing was to remove the duplicate posts.

Another interesting observation made was many of the scraped posts had 2 or more

of the hashtags under consideration thereby getting scraped more than once. For

the purpose of this study, we restrict ourselves to considering posts belonging to a

single category. Hence the duplicates were ignored resulting in a further reduction

in sample size.

2. Language: In this work, we limited ourselves to posts with English captions only

and therefore, discarded posts written in other languages.

3. Non-Textual Characters: We clean the captions of emoticons, special characters,

unnecessary punctuation marks, etc.

4. Multimodal Posts: Since we are developing a multimodal intent prediction model,

we also remove posts without hashtags and captions.

Table 5.8: Summary and Characteristics of Intentgram Dataset Statistics: We summarize
some insights from our dataset, Intentgram; average number of hashtags, average number of
likes and the average length of caption for Instagram posts per Intent class label.

Avg No. of Hashtags Avg No. of Likes Avg Caption Length

Advocative 16.71 101 198
Entertainment 19.29 156 151

Exhibitionist 16.07 53 122
Expressive 15.22 34 163

Informative 17.08 45 215
Promotive 14.33 331 199

Provocative 15.58 174 306

Detailed Analysis of Intentgram Dataset: We summarize some insights of our

dataset, Intentgram in Table 5.8. We observe that the number of hashtags used is

more or less consistent across all the 7 categories. However, the interesting thing to note

is the average number of likes in the Promotive class is significantly more than in the

other classes. This might be attributed to the fact that a lot of people tend to get more

influenced by such content over social media. Similarly, the average caption length is
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considerably higher in the Provocative class. This might be due to the fact that creators

use more textual content in their posts to make their case even more strong.

Explanation of Intent Taxonomies: As mentioned in Section 5.1.2, there is no consen-

sus on the intent taxonomy for social media posts. We summarize the various taxonomies

that have been used for annotating social media posts with intent labels in the recent past

in Table 5.10. We list the various datasets and their source of social media posts too.

Our decision to stick with the 7-label intent taxonomy as proposed by Kruk et al. was

driven by the fact that their source of social media posts was similar to Intentgram’s

source, Instagram.

Table 5.9: Building and Scraping Intentgram Dataset (Hashtags Used): We summarize
the hashtags used to scrape Instagram posts for the 7 Intent labels.

Intent Label Hashtags Used to Scrape Instagram Posts

Advocative #pride, #maga, #gay, #trump, #lgbt, #love, #usa, #freedom, #insta-gay, #conservative
Entertainment #meme, #earthporn, #fatalframes, #earthpix, #wanderlust, #nature, #earthfocus, #naturelovers, #naturegram, #traveldiaries

Exhibitionist #selfie, #ootd, #fashion, #style, #picoftheday, #beautiful, #cute, #photography, #follow, #instalike
Expressive #lovehim, #merrychristmas, #christmas, #happy, #christmastree, #christmasdecor, #christmastime, #xmas, #winter, #photooftheday

Informative #news, #Noticias, #hiphop, #technology, #instadaily, #podcast, #reels, #viral, #Business
Promotive #ad, #NYCC22, #funkogram, #funkocollector, #Collectible, #FunkoNews, #Funkos, #Loungefly, #FPN #FunkoPOP

Provocative #antifa, #redpill, #eattherich, #socialism, #antifascist, #anticapitalism, #anticapitalist, #capitalismkills, #antiracist

Table 5.10: Summary of SOTA Social Media Intent Prediction Datasets: We summarize
the various social media intent taxonomies proposed in the recent past.

Dataset # Intent labels Labels

MDID 7 advocative, entertainment, exhibitionist, expressive, informative, promotive, provocative
(Kruk et al. 2019)
MET-Meme 5 entertaining, expressive, interactive, offensive, other

(Xu et al. 2022a)
Purohit et al. 3 seeking, offering, none

(Purohit et al. 2015)
MultiMET 4 persuasive, descriptive, expressive, others

(D. Zhang et al. 2021)
multirow1*NYT Survey 5 entertaining, self-fulfillment, promotive, grow relationships, define ourselves

( n.d.)

Intentonomy 28

Attractive, BeatCompete, Communicative, CreativeUnique, CuriousAdventurousExcitingLife, EasyLife,
(Jia et al. 2021) EnjoyLife, FineDesignLearnArt-Arch, FineDesignLearnArt-Art, FineDesignLearnArt-Culture,

GoodParentEmocloseChild, Happy, HardWorking, Harmony, Health, InLove, InLoveAnimal, InspirOthers,
ManagableMakePlan, NatBeauty, PassionAbSmthing, Playful, ShareFeelings, SocialLifeFriendship,
SuccInOccupHavGdJob, TeachOthers, ThngsInOrdr, WorkILike

Intentgram 7 advocative, entertainment, exhibitionist, expressive, informative, promotive, provocative

Dataset Statistics: We also collect relevant metadata for each post such as caption,

hashtags, number of likes, and number of comments. Due to privacy concerns, we release

only the ResNet-18 features of the images in Instagram posts.
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5.2.3.2 Comparing Intentgram with SOTA Datasets

Table 5.2 compares our proposed dataset, Intentgram, with state-of-the-art intent

classification datasets. Intentgram uses the 7-label taxonomy (advocative, entertain-

ment, exhibitionist, expressive, informative, promotive, provocative) borrowed from MDID

dataset, which is based on Goffman and Hogan’s prior work (Goffman 2021; Hogan 2010) for

Instagram data. Intentgram is the most diverse in terms of available modalities and

features consisting of images, captions, and hashtags. The MDID dataset (Kruk et al. 2019)

also uses Instagram as the source data but is 40× smaller than Intentgram. In fact,

Intentgram is the largest dataset containing approximately 55K data points. Finally,

we note that while the MDID, Intentonomy, MET-Mete, MultiMET and the dataset pro-

posed by Purohit et al. are specifically intended for intent classification and social media

analysis, the MIntRec and the WHYACT are in fact action prediction datasets.
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Figure 5.3: Screenshots of the two Questionnaires Used for Evaluating Intent-o-
meter Model and Intentgram Dataset: We show a screenshot of the two questionnaires
used as a part of the userstudy. In (a), we show the 6 questions participants are asked before
they see the web interface. In (b), we show a screenshot of the 6 questions participants are asked
after they see the web interface.

5.2.4 Experiments and Results

Our experiments answer the following two questions: (i) Does modeling TRA result in

better intent prediction in social media posts? and (ii) How does Intent-o-meter com-

pare to state-of-the-art (SOTA) methods?
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Figure 5.4: IntentgramDatasets’s Qualitative Examples: We depict a single Instagram post
from each of the 7 intent labels from our dataset along with a portion of the caption and a
subset of the hashtags used with the post. For privacy concerns, we will blur the human faces.

5.2.4.1 Experimental Setup

Dataset Splits: We use four intent prediction datasets: Intentonomy (Jia et al. 2021),

MDID (Kruk et al. 2019), and MET-Meme (Xu et al. 2022a), and Intentgram. We used the

original splits provided by the authors for Intentonomy, MDID, and MET-Meme datasets.

For the purpose of experiments, we sample 10, 053 posts from Intentgram (1, 443,

1, 154, 1, 415, 1, 576, 1, 475, 1, 420, and, 1, 570 posts respectively for the 7 intent label)

and we split training, validation, and testing sets in the ratio 60 : 20 : 20, resulting in

6, 031, 2, 011, and 2, 011 samples for train, validation, and test sets, respectively.

Evaluation Metrics: Different datasets have used different metrics for evaluation. The

Intentonomy dataset uses Micro F1 score and Macro F1 score. Similarly, MDID reports

accuracy and AUC metric. For the MET-Meme dataset, we have reported and compared

against both validation and test F1 scores. For our dataset, Intentgram we report

Accuracy, AUC metric, and Micro-F1 score.

Training Details: All our results were generated on an NVIDIA GeForce GTX1080

Ti GPU. Hyper-parameters for our model were tuned on the validation set to find the

best configurations. We used Adam optimizer for optimizing our models with a batch

size of 50. We experimented with the range of our model’s hyperparameters such

as: dropout {0.2, 0.3, 0.4, 0.5, 0.6}, learning rate {1e−2, 1e−3, 1e−4}, number of epochs
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{50, 75, 100, 125}, and the hidden dimension of LSTM layers {32, 24, 16}.

5.2.4.2 Benefits of TRA in Intent Prediction

In Table 5.3, we highlight the benefit of modeling TRA, in addition to leveraging the visual

and textual features obtained from images, captions, and hashtags. Specifically, we ablate

Intent-o-meter on all four datasets and report the F1 score, accuracy, and the AUC.

In particular, we compare the results in the first column (“1 + 2”) with the last column

(“Intent-o-meter”). Our results show that leveraging TRA improves the F1 score by

7.96% and 8.85% on the Intentonomy and MET-Meme, results in higher accuracy by 4%

each on MDID and Intentgram, and increases AUC by 5.9 points on Intentgram.

We also perform additional tests where we individually analyze the individual effect of

embedding the caption sentiments and image aesthetics as well as associated hashtags.

In particular, the column under (“1+2+3(a)”) highlights the benefit of modeling caption

sentiment. And in the (“1 + 2 + 3(b)”) column, we analyze Equation 5.6 by comparing

linear piece-wise weighting with uniform weighting with each weight set to 1, and conclude

that weighting, in some form, is better. Future work involves exploring more sophisticated

weighting schemes including transformer-based attention.

In addition to the above ablation experiment, we can also draw further evidence for

TRA from our experiments comparing Intent-o-meter with state-of-the-art intent

prediction methods that solely rely on visual and textual features, which we describe

below.

5.2.4.3 Comparing Intent-o-meter with SOTA

We summarize our comparisons with SOTA methods on the MDID (Table 5.4), Intenton-

omy (Table 5.6), MET-Meme (Table 5.5), and our dataset Intentgram (Table 5.7).

Performance on MDID dataset: We compare against the prediction model proposed
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by Kruk et al. (Kruk et al. 2019)1 and Gonzaga et al. (Gonzaga, Murrugarra-Llerena, and Marcacini

2021). While Kruk et al. propose the use of image and captions for predicting intent labels,

Gonzaga et al. create a transductive graph learning method. We observe that our model

outperforms these methods by up to 3.7% in top-1 accuracy and 5.3 AUC points.

Performance on Intentonomy dataset: We compare against the prediction model pro-

posed by Jia et al. (Jia et al. 2021) who propose the use of hashtags as an auxiliary modality

for predicting intent labels. We observe that our model outperforms their method by up

to 3.59% in F1 score.

Performance on MET-Meme dataset: We compare against the baseline prediction

model proposed by Xu et al. (Xu et al. 2022a) who only use image modality to predict

intent labels and Kruk et al.(Kruk et al. 2019). We observe that our model outperforms

these methods by up to 6.9% in F1 score.

Performance on our dataset, Intentgram: We compare against the intent predic-

tion model proposed by Kruk et al. We observe that our model outperforms these methods

by 4% in top-1 accuracy and F1, as well as by 6 AUC points.

Conflating our results obtained from the ablation experiment in the previous section

with our comparison results with SOTA methods that do not use TRA on 4 standard

datasets, we find strong evidence that modeling TRA significantly improves intent predic-

tion in terms of F1 score, top-1 accuracy, and AUC.
1Code replicated by us due to unavailability.
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(a) (b)

(c)

Figure 5.5: User Study Setup and Analysis Used for Evaluating Intentgram Dataset and
Intent-o-meter Model: We summarize our user study setup and findings here. In (a), we show
a screenshot with various components highlights, in (b) we report the background of the 100
participants recruited for the user study and, finally in (c) we report the answers to the questions
of the pre-questionnaire and post questionnaire.
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Figure 5.6: Analyzing User Study Responses Based on Age Groups: We analyze the
responses for the three age groups, 18− 22 years, 22− 25 years, and 25− 30 years.

Figure 5.7: Analyzing User Study Responses Based on Gender: We analyze the responses
for the 50 male participants and 50 female participants separately.

Figure 5.8: Analyzing User Study Responses Based on Location: We analyze the responses
of the users based on their residing location. We have 65 users based in US, 31 based in India,
and 4 from the rest of the world.
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Figure 5.9: Analyzing User Study Responses Based on Average Time Taken to make a
Post: We analyze the responses of the users based on the time they spend to make a post on
Instagram. We group the 100 users into three groups, ≤ 1 minute, 1 − 5 minutes, and ≥ 5
minutes.

Figure 5.10: Analyzing User Study Responses Based on Frequency of Logins to Insta-
gram: We analyze the responses of the users based on the time they spend to make a post on
Instagram. We group the 100 users into five groups; not daily, once per day, 2− 3 times a day,
10 times per day, and all the time.

5.2.5 Understanding Human Preference

To understand human preferences and their reaction to intent labels displayed alongside

social media posts, we conducted a user study, similar to T-Moodifier (Saldias and Rosalind

W Picard 2019), to answer two questions: (i) do intent labels on posts make users more
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aware of the content they consume? and (ii) would they prefer to have their content

filtered by such labels? We describe the user study setup in Section 5.2.5.1 and analyze

the results of the study in Section 5.2.5.2.

5.2.5.1 User Study Setup

The study consists of a web application where users interact with an “Instagram-like”

interface in which the posts are taken from Intentgram. For each post, users also see

an intent label for that post (highlighted in green on top in Figure 5.5(a)). We instruct

participants to scroll through the feed for 5− 10 minutes to experience the interface.

Prior to interacting with the interface, we ensure that (a) participants are between

the ages of 18 and 30 and (b) they sign a consent form. In addition, we request them to

answer a pre-study questionnaire which consists of 6 questions (Appendix Figure 5.3(a))

based on their current usage of Instagram. We also provide a screen recording of our

web application to the users in case they have issues accessing the web application2.

Finally, after the task, we ask participants to answer a post-study questionnaire, that

consists of another 6 questions to collect their feedback on our web application (Appendix

Figure 5.3(b)).

The aim of building this application was to make active social media users aware of

an experience they could have if they had access to information about the intent behind

the posts available on their social media news feed. We also wished to understand how

receptive users would be to such a design. The main challenge here was to build a web

application that closely resembles a platform that most participants of the study would be

familiar with. Therefore, we chose to build from scratch, a web application that resembles

the popular social media platform Instagram as much as possible. The UI of the web

application was built entirely using React JS. For the posts, we used images, captions,

and hashtags from our dataset Intentgram. The web application was hosted using
2Web Application screen recording shown to participants.
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firebase3. Firebase provided us with the feature of having a real-time database. It is a

cloud-hosted database wherein data was stored as JSON. Any new updates made either

to the data or web design were conveyed to the users instantly.

5.2.5.2 User Study Analysis

We recruit 100 participants for our user study (50 identify as female and 50 as male).

We summarise statistics about the participants age and geographical locations in Fig-

ure 5.5(b) (rows 2,3). We also gather information about their amount of usage of social

media application, Instagram. In Figure 5.5(b) (row 4), we report the frequency of social

media logins and in Figure 5.5(b) (row 5), we record the average time taken to publish a

post by participants.

In addition to statistics about the participants, we also gather information about the

role of social media in their lives. In Figure 5.5(c), 67% lean towards believing they are up

to date with their friends lives because of social media and 77% participants also believe

that social media is not a true reflection of their friends’ lives. Similarly, 37% participants

report getting affected by what they see online, while 25% unsure if they are getting

affected. As a testimony to our web interface, roughly half participants, 53% reported

that the display of the intent labels was not a hindrance to their social media application

experience; 86% participants seem to in agreement with the taxonomy of intent labels

used to tag posts; and 84% participants also report a resemblance to the posts shown and

the posts they see on their own personal social media feeds. And finally, 70% participants

reported both that the intent labels helped them become aware of the content they are

consuming on social media and that they would prefer filtering the content based on such

intent labels.

We also asked participants for optional suggestions, comments, and feedback on the

web application. A common theme among the suggestions was the presentation of the
3https://firebase.google.com
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intent labels. One participant suggested color-coding intent labels, and another suggested

making intent labels optional and letting users control if they would want to view posts

with labels or without labels. Some participants appreciated the green highlighting that

distinguished the labels whereas others mentioned preferring a more subtle appearance e.g

in a corner in a smaller font. Another suggestion was to provide a feedback mechanism

for users to report an incorrect intent label, and one participant suggested extending this

to a multi-label classification as some posts seemed relevant for multiple labels.

We filtered user study responses by age, gender, location, frequency of use, and fre-

quency of posting (Figures 5.6-5.9). Although most trends seem consistent across the

various parameters, we make some interesting observations. First, the percentage of peo-

ple open to filtering social media content by intent labels increases as people grow older.

The question asking if users are affected by social media revealed that females are more

affected by other users’ posts than men. Perhaps the most interesting observation is that

the same percentage of participants worry about what others will think in each posting

frequency category.

5.3 What causes Emotion Contagion on Instagram?

In this section, we go over the analysis performed to discover new factors that can help rea-

son digital emotion contagion on Instagram. We formulate the problem in Section 5.3.1.

We then explain the dataset used and the experimental setup in Section 5.3.2. We then

explain the analysis and insights in Section 5.3.3 and Section 5.3.4.

5.3.1 Problem Formulation

In a social media network of N users, u1, u2, . . . , uN , suppose the ith user makes a post pi.

Suppose further that j attributes associated with each user are denoted by a1, a2, . . . , aj

and k attributes associated with each post are denoted by b1, b2, . . . , bk. Let ui(am)

represent the mth attribute value of ui. Similarly, pi(bn) represent the nth attribute value
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Table 5.11: Summary of Factors Causing Emotion Contagion: We summarize factors sug-
gested by prior literature that are known to cause stronger emotion contagion on various social
media platforms.

Aspect Factors References

Homophily Connection Strength (R. Lin and Utz 2015)
Age, gender, demographics (S. He et al. 2016)

Causality Time Gap b/w Content Consumed and Action Taken (Coviello et al. 2014)

Interference Sentiment (Coviello et al. 2014; Bhullar 2012; Gruzd, Doiron, and Mai 2011)

of pi.

The probability that pi causes emotion contagion is P (ζ| (ui, pi)). However, comput-

ing this probability is intractable; as prior research is only limited to proving that contagion

exists. There have been various hypotheses that reason few user profile attributes, ui(am)

and post attributes pi(bs) that tend to cause stronger or a weaker contagion. Prominent

studies (Goldenberg and J. Gross 2019; Ferrara and Zeyao Yang 2015) have propounded factors

that can indicate strong or weak emotion contagion on online digital platforms. These

factors are also summarized in Table 5.11. Various studies suggest content high in emo-

tional content is more prone to cause more contagion than other content (Coviello et al.

2014; Gruzd, Doiron, and Mai 2011). It has also been shown that stronger ties between the

expression and perceiver lead to stronger contagion (R. Lin and Utz 2015). The strength of

ties on social media networks can be computed by either the number of mutual connec-

tions, reciprocity between these connections, and also the “follower ratio”, i.e. the ratio of

the users’ followers vs. who they follow on the social media platform. On the other hand,

perceivers’ personalities (M. Cao et al. 2017) (easily influenced/agreeable), their online activ-

ities (Del Vicario et al. 2016), and their demographic features like age, gender, and culture (S.

He et al. 2016) have proven to influence the degree of emotion contagion online. Therefore,

based on some of these user profile attributes, ui(am) and post attributes pi(bs), we are

able to model the relation P (ζ| (ui(am), p
i(bn))) ⪰ P (ζ| (uj(am), p

j(bn))), is typically

determined, which suggests that the strength of contagion caused by the ui users’ pi post

will be more than uj users’ pj post. Here, x ⪰ y represents strength in a qualitative sense
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and not in a quantitative sense.

Problem 5.3.1. We want to build on the factors listed in Table 5.11 and find more user

profile attributes (a1, . . . aM) and post attributes (b1, . . . bN), that would lead to stronger

or weaker contagion.

5.3.2 Dataset and Experiment Analysis Setup

We sample 2, 000 data points from Intentgram to study Instagram-specific user at-

tributes and profile attributes to identify new factors that lead to contagion on Instagram,

a popular social media platform. As discussed in Section 5.2.3.1, Intentgram is a

collection of Instagram posts scraped using the Apify API. For each of these data points,

we have the corresponding information:

• userId: This is the identification number associated with the Instagram user.

• postImage: The image associated with the Instagram post.

• hashtags: The list of the hashtags used along the image posted.

• caption: The caption used along with the image posted.

• # comments: This is the number of comments the post got on Instagram.

• # likes: This is the number of likes the post got on Instagram.

• intentCategory: Each of the datapoint is associated with one of the 7 intent

labels (advocative, entertainment, exhibitionist, expressive, informative, promotive,

provocative).

Additionally, we use Instagrapi library 4 to further retrieve the following information

corresponding to each of the data points:
4https://pypi.org/project/instagrapi/
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• followerCount: The number of users who follow the user who made the corre-

sponding Instagram post.

• followingCount: The number of users the user corresponding to the Instagram

post follows.

• # posts/year: This signifies a user activity; and is the number of posts the user

makes on average in a year.

• isVerified: Is a boolean variable indicating if the account is verified or not by

Instagram.

• isPrivate: Another boolean variable indicating if the user account is private or

public.

Furthermore, we compute two more additional pieces of information for each of the

data points:

• # human subjects: We used a face detection algorithm (Jiankang Deng et al. 2020)

to detect the number of human subjects in the image posted by the user.

• Edits/Filters Used: We obtain a metric to associate the quality of the image

posted (C. Chen and Mo 2022) as a proxy for measuring the number of edits or filter

used in the image.
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Table 5.12: Summary of Correlation Values for Reasoning Contagion: We summarize the
Pearson correlation values between our hypothesized Instagram-specific user attributes (a2−a4)
and post attributes (b2 − b8) and already established factors that cause contagion (a1 and b1).
Significant correlations are shown in bold for p < 0.05. Also, for features of nominal values, we
use a variation of Pearson Correlation, a.k.a Point Biserial Correlation Test.

FFR (a1) Sentiment Polarity (b1)
User Factors (a1 . . . aM)

account usage (a2) 0.264 -0.027
verified account? (a3) 0.008 0.192
private account? (a4) -0.161 0.050

Post Factors (b1 . . . bN)
# comments (b2) 0.091 0.029

# likes (b3) -0.093 0.186
# subjects (b4) 0.194 -0.084
# hashtags (b5) -0.013 -0.044

caption length (b6) 0.134 0.097
edits/filters (b7) 0.203 0.364
intent label (b8) 0.288 0.303

5.3.3 User Profiles and Instagram Posts and Contagion Correlation

Based on the features described above we now explain the first analysis we performed.

As already discussed, our goal is to discover newer user-specific attributes (a1 . . . aM) and

post-specific attributes (b1 . . . bN) that can reason digital emotion contagion on social

media platforms. If we had access to such ‘contagion’ labels (ζ), our experiments and

analysis would have been a lot more direct; making it possible to even develop learning

models to infer the level of contagion of such Instagram data (more generally, social media

data). However, considering we do not have access to the contagion values, ζ, we proxy it

with our existing knowledge about factors causing contagion (summarized in Table 5.11).

The first user attribute (a1), reflected in Table 5.11 (row 1), the strength of ties between

the expressor and the perceiver can affect the level of contagion. Prior empirical studies

have confirmed that the stronger the connection; the more will the contagion be. While

there is more than one way to compute this strength of connection in social networks, we
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model it as the “follower ratio" (FFR), which is defined as follows/

FFR =
followerCount
followingCount

Similarly, the first post-specific attribute (b1), reflected in Table 5.11 (last row), is

the sentiment polarity of the content being shared. It has been empirically shown that

content that is more susceptible to invoking stronger emotions in the perceiver leads to

more contagion. To this end, we compute the sentiment polarity of the corresponding

content (Hutto and Gilbert 2014).

Our Hypotheses: Now, given access to a1 and b1, which act as a proxy to contagion ζ

values, we hypothesize that the following user-specific factors (a2 − a4) and the following

post-specific factors (b2 − b8) could be useful in reasoning contagion too.

• a2, user account activity: We believe how frequently a user shares posts on

their account could indicate how much contagion their posts will cause.

• a3, verified account: We believe the fact that the user account is verified or not

can also be an important factor to consider when understanding contagion.

• a4, private/public account: Similar to the previous point, whether the user

account from which the post is made is public or private can also be an important

indicator.

• b2, # comments: We believe an important factor could be how many comments

an Instagram post receives.

• b3, # likes: And, similarly there could be a correlation between the number of

likes an Instagram post has and the contagion.

• b4, # human subjects: An interesting factor to study is the number of human

subjects in the image.
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• b5, # hashtags used: We also believe the number of hashtags users use with

their posts could have some correlation with contagion.

• b6, length of caption: More expressive long captions rather than short captions

could also be a determinant factor causing contagion.

• b7, edited/filtered Images The number of edits or filters used before the image

is posted, in other words, the time spent on creating a post can have a relation to

the contagion caused by the post.

• b8, intent labels: Finally given the digital emotion contagion we are studying is

‘mediated’, it becomes important to understand the users’ intent behind sharing a

post. Here, we want to understand if certain intent tends to be more contagious.

Study Analysis: We study the correlation between a1, b1 with the target attributes,

a2 − a4, b2 − b8. We summarize the Pearson correlation values in Table 5.12 where we

highlight both strong and weak correlations and mark the statistically significant results

in bold. We discuss some of these interesting relationships below.

We have discovered a positive correlation between user activity and a higher "follower

ratio" (p = −0.152). This implies that users who are more active tend to have more

followers compared to the number of users they follow. This finding can be rationalized

by considering social media accounts of public figures, where their higher level of activity

and engagement with their followers may result in a higher follower ratio. Furthermore,

we have observed that verified accounts tend to have content that is more polar in sen-

timent (p = −0.224). Similarly, public accounts have a higher follower-to-following ratio

(FFR) compared to private accounts. These results indicate that verified accounts, which

are often associated with public figures or influencers, tend to generate more polarized

sentiment in their content. Moreover, public accounts, which have a wider reach, tend

to have a higher FFR compared to private accounts, suggesting differences in follower

engagement and interaction based on account visibility settings.
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We observed weak correlations between a1 and b1 with several key factors, such as the

number of comments (b2), hashtags (b5), and caption length (b6). Interestingly, there is a

positive correlation between edited/filtered images (b7) and both a1 and b1, with p-values

of -0.153 and -0.246 respectively. This can be attributed to the findings of our proposed

intent prediction model, which revealed that image quality features play a significant role.

Furthermore, we have observed statistically significant positive correlations between a1,

b1, and a8, i.e., intent labels, with p-values of 0.003 and -0.193 respectively. We attribute

this to the strong association between specific intent labels and a1 and b1. The positive

correlation with sentiment polarity is also in line with our previous findings, which showed

that incorporating emotions enhances the accuracy of intent prediction models.

In summary: our analysis has revealed interesting correlations between user activity,

account verification status, sentiment polarity, and follower engagement on social media.

Specifically, we found that more active users tend to have a higher follower ratio, which

could be explained by the engagement dynamics of public figures. Verified accounts tend

to generate more polarized sentiment in their content, and public accounts tend to have

a higher follower-to-following ratio compared to private accounts, indicating differences in

follower engagement based on account visibility settings.

Additionally, our findings suggest that image quality features play a significant role

in the correlations between user activity and intent labels, as well as sentiment polarity.

Given these positive correlations, we believe that some of these attributes are essential

and can be used as determinants for contagion on social media platforms.
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Table 5.13: Analysis of Contagion: We use thresholding on a1 and b1 to compute proxy ζ
values. We then analyze b4 and b8 on a per-class basis.

Contagion (ζ)

Strong Medium Weak

#
S
ub

je
ct

s

(b
4
)

0 88 135 211
1 483 169 105

2− 3 281 306 96
> 3 54 49 23

In
te

nt
La

be
ls

(b
8
)

Advocative 51 109 131
Entertainment 123 71 54
Exhibitionist 148 94 70
Expressive 135 89 62
Informative 85 139 49
Promotive 77 113 69
Provocative 211 93 27

5.3.4 More Deeper Analysis

In the previous section, we analyzed the correlations between a1 and b1, with the other

factors that we hypothesized could be also used as determinants of emotion contagion on

social media platforms. In other words, we used a1 and b1 as proxy markers of contagion.

In this section, we go one step ahead and threshold values of a1 and b1 to create three

discrete contagion, ζ values. To create these ζ values, we do the following-

• ζ = strong contagion: 0.7 < a1 ≤ 1.3 and b1 > 0.7

• ζ = medium contagion: 0.4 < a1 ≤ 0.7 or 1.3 < a1 ≤ 1.6 and 0.4 < b1 ≤ 0.7

• ζ = weak contagion: a1 ≤ 0.4 or 1.3 ≥ a1 and 0.4 ≤ b1

We present a comprehensive analysis of two crucial factors, namely b4 and b8, in

Table 5.13, summarizing our nuanced insights. Our findings reveal compelling patterns in

the contagion dynamics of social media posts.

First, we observe that posts with one or more human subjects in the content exhibit

a robust contagion effect, ranging from strong to medium levels. Remarkably, 63.8% of

156



posts containing only one subject and 42.5% of posts containing more than three subjects

demonstrate strong contagion. Furthermore, posts with two subjects exhibit both strong

(41.1%) and medium (44.8%) contagion. Intriguingly, posts without any subjects display

the weakest contagion effect, with 43.8% indicating contagion. These findings challenge

the conventional belief that posts with more subjects would trigger stronger contagion,

suggesting that the presence of fewer human subjects in a post may actually lead to more

intense contagion.

Second, we delve into the role of intent labels in contagion dynamics. As expected,

posts labeled as "Provocative" and "Entertainment" show the highest potential for con-

tagion, with 63.7% and 49.5% of posts demonstrating strong contagion, respectively.

Notably, posts labeled as "Exhibitionist" and "Expressive" also exhibit strong contagion,

albeit to a lesser degree. In contrast, posts labeled as "Advocative", "Informative", and

"Promotive" demonstrate weak to medium contagion. These findings highlight that an

"X factor" element, such as being provocative or entertaining, is essential to trigger con-

tagion, whereas posts aimed at imparting information may not have the intended effect.

In summary, our analysis reveals intriguing insights into the contagion dynamics of

social media posts, shedding light on the impact of factors such as the number of human

subjects and intent labels. These findings contribute to a deeper understanding of the

complex mechanisms underlying social media contagion and have potential implications

for various domains, including social media marketing, public health communication, and

online information dissemination.

5.4 Conclusion, Limitations, and, Future Work

We proposed Intent-o-meter, an intent prediction model for social media posts using

visual and textual modalities, along with the Theory of Reasoned Action. We evaluated

our model on the Intentonomy, MDID, and MET-Meme datasets. We introduced In-

tentgram, a dataset of 55K social media posts scraped from public Instagram profiles.
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We also developed a web application with intent labels displayed on the posts and test it

with existing Instagram users. While the literature on digital emotion contagion is quite

in its nascent stages, we perform statistical analysis and present new insights. We show

that attributes like the quality of the image posted on Instagram, and the intent label with

which a post was made by the expressor have positive correlations with other factors that

have been known to lead to a stronger contagion. Moreover, as shown by prior studies,

we confirm that quantitative metrics like the number of comments and likes to a post do

not necessarily impact how contagious the content can be.

We recognize that the Theory of Reasoned Action (TRA) is not the only method for

modeling psychological and cognitive cues in social media posts. Employing other theories,

such as the Theory of Planned Behavior (Ajzen 1991), could aid in comprehending human

intent. Furthermore, we aim to enhance existing features by identifying additional ones.

For example, we plan to create improved user profiles, analyze a user’s social network, and

assess their social media activity to better capture a person’s motives. Our study on users

shows that tagging posts with intent tags improves awareness of consumed content, and

users are willing to try filtering content based on the tags. Nevertheless, the extent to

which this tagging can alleviate the negative impacts of social media remains an unsolved

research question. To further investigate this, we intend to conduct more user experiments

in our future work. We also think that our approach can be applied to other social media

platforms, which could offer new feature sources and improved feature design.

The lack of datasets and user-annotated labels for digital emotion contagion are defi-

nitely a roadblock; as also pointed by prior literature. However, like suggested we explored

and presented interesting insights specifically for Instagram data that could potentially

lead to higher contagion. To further our understanding, we hope to see how generic fea-

tures like this are cross social media platforms and also further brainstorm for more such

attributes.
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Chapter 6

Conclusion

This dissertation advanced the capabilities of existing human emotion perception systems

and created new connections between emotion perception and multimedia analysis, social

media analysis, and multimedia forensics. Specifically, two novel algorithms were intro-

duced in this dissertation to improve human emotion perception models. These algorithms

were subsequently applied to various domains, such as detecting fabricated multimedia,

comprehending human behavior and psychology on social media networks, and extracting

emotions elicited by movies.

The initial segment of this dissertation centered around enhancing emotion percep-

tion models via two distinct approaches. The first approach proposed a new technique

to fuse multiple modalities for multimodal emotion perception models. The second ap-

proach involved leveraging contextual information, such as the background scene, multiple

modalities of the human subject, and socio-dynamic inter-agent interactions, to predict

perceived emotion. This led to the development of context-aware human emotion per-

ception models.

The subsequent segment of this dissertation delved into three distinct domains of

AI applications. These included video manipulations and deepfake detection, multimedia

content analysis, and user behavior analysis on social media platforms. We showed that
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the solutions proposed for these applications can be enriched by using ideas from human

behavior and emotion understanding models.

To substantiate our discoveries, we conducted evaluations on cutting-edge datasets

using the most advanced techniques for the relevant research problems. Moreover, we

introduced three new datasets named GroupWalk, VideoSham, and, Intentgram to

enhance the research in this field.

We believe that with the extensive research conducted in this dissertation, we have con-

tributed new findings to the field of emotion perception. By introducing novel algorithms

and incorporating ideas from emotion perception into various domains of AI applications,

we have broadened the understanding of how ideas of human behavior and emotions can

be utilized in different contexts. Moreover, by exploring three very diverse applications

we have shown the potential of integrating human emotion perception in vastly different

domains. Furthermore, by demonstrating the effectiveness of emotion perception in these

applications, such that it helps them in combating fake content and protecting themselves

on social media platforms, this will enable individuals to become more comfortable with

the role and potential of emotion perception.
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