
ABSTRACT

Title of dissertation: CHARACTERIZING THE COMPLEX
SPATIAL PATTERNS IN BIOLOGICAL
SYSTEMS

Joshua M. Parker, Doctor of Philosophy, 2015

Dissertation directed by: Professor Wolfgang Losert
Department of Physics

Spatial point patterns are ubiquitous in natural systems, from the patterns

of raindrops on a sidewalk to the organization of stars in a galaxy. In cell biology,

these patterns can represent the locations of fluorescently-labeled molecules inside

or on the surface of cells, or even represent the centers of the cells themselves. These

patterns arise due to the signaling activity of the cells which are mediated by a broad

range of chemicals, and understanding this activity is vital to investigating these

complex systems. Luckily, though each pattern is unique, the statistical properties

of the patterns embed information about the underlying pattern formation process.

In this work, I demonstrate techniques to characterize the complex spatial pat-

terns found in unicellular systems. Using topologically-derived measures, I demon-

strated a technique to automatically classify sets of point patterns into groups to

identify changes in higher order statistical moments due to experimental varia-

tion. This technique utilizes functional principal component analysis (FPCA) on

the Minkowski functionals of a secondary pattern formed by imposing disks on each



point center. I demonstrate that this better classifies a range of point pattern

sets, and then applied this technique to pattern sets representing membrane-bound

proteins in human immune cells, showing that this procedure correctly identifies

non-interacting proteins.

Further, I demonstrate a simulation-based technique to diminish the statistical

impact of large-scale pattern features. In protein patterns, these represent the e↵ects

of membrane ru✏ing during pattern formation. These features dominate correlation

measures, obscuring any hint of nanoscale clustering. Using heterogeneous Poisson

null models for each cell to re-normalize their pairwise correlation functions, I found

that patterns of LAT proteins (“linker for the activation of T-cells”) do indeed

cluster, with a characteristic length-scale of approximately 500 nm. By performing

clustering analysis at this length scale on both the LAT patterns and their respective

null models, I found that clusters are most commonly dimers, but that this clustering

is strongly diminished upon T-cell activation. This loss of clustering may be due to

the presence of unlabeled molecules that have been recruited to the cell membrane

to form complexes with LAT.

I also investigate both molecular and cell-center patterns in Dictyostellium

discoideum cells, which are a model organism for amoeboid motion and G-protein

receptor-mediated chemotaxis. These cells migrate using “autocrine” signal relay

in that they both secrete and sense the same chemoattractant, cyclic adenosine

monophosphate (cyclic AMP or cAMP). They also secrete phosphodiesterases that

degrade the chemoattractant. This leads to streaming patterns of cells towards

aggregation centers, which serve as sites of sporulation. To study these cells, I



demonstrate an image analysis technique that statistically infers the local popula-

tion of fluorescently-labeled mRNA units in fluorescent images of self-aggregating

cells. The images were of experiments where two particular mRNAs were labeled

along with their respective proteins, the first being adenylyl cyclase A (ACA), a

molecule involved in the production of cAMP. ACA itself has already been seen to

accumulate at the back of migrating cells. The location of these molecules were

compared to that of the locations of cyclic AMP receptor 1 (cAR1), which is the

cell’s mechanism for gradient sensing. Using my analysis technique, I found that

statistically significant proportions of ACA mRNA preferentially locate towards the

rear of migrating cells, an assymetry that was also found to identically correlate

with the asymmetry of ACA itself. This asymmetry was not seen in cAR1 mRNA,

which tends to distribute uniformly. Further, the asymmetry in ACA was most

exaggerated in cells migrating at the rear of streams, with the approach to the local

aggregate center diminishing leading to more uniformly distributed molecules. This

may suggest that ACA is locally translated at the back of migrating cells, a result

requiring further investigation.

I then construct a computational migration model ofD. discoideum chemotaxis

and use it to investigate how the streaming phase is e↵ected by cell-cell adhesion as

well as by the global degradation of cAMP. To classify the dynamics of the model

with respect to cell density and external chemical gradient, the two relevant phase

variables, I develop an order parameter based on the fraction of broken cell-cell

contacts over time. This parameter successfully classifies the dynamic steady states

of the model (independent motion, streaming, and aggregation), outperforming the



often used “chemotactic index”. I found that the elimination of degradation strongly

diminishes any presence of streaming, suggesting that chemical degradation is vital

to stream formation. In contrast, the addition of cell-cell adhesion expanded the

streaming phase, stabilizing streams that were formed initially through signal relay.
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“Fortunate is he, who is able to know the causes of things.”

– Virgil, Georgics II, 490

“Truth can be banal, and is often pedestrian, and that is all physics can teach us.

So, more whiskey is, and can be the solution to all problems.”

– Aftaab Dewan, personal communication, April 13th, 2015
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Chapter 1: Introduction

1.1 The chemical origins of biological pattern formation

There are few things more ubiquitous in the biological world than patterns.

In the animal kingdom, patterns range from the simple spots on animal hides and

the clever camouflages of moths to the dizzying patterns seen on rain forest dwellers

and even those under the sea. In plant species, the complex and seemingly fractal

growth patterns seen in leaf arrangements and flower petals show wild variation (see

Fig.1.1.A).
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(A)

(B) (C)

Figure 1.1: A) From left to right: a zebra (photo by Annie Katz, used with permis-
sion), a discus fish (Miandad Rahim, used with permission), aloe polyphylla (photo
by Stan Sheb, distributed under the Creative Commons license), and a sunflower
(photo by Lucapost, distributed under the Creative Commons license.) B) Dia-
gram of how morphogen gradients can lead to cell di↵erentiation (adapted from [1],
used with permission) C) Diagram of Turing’s reaction-di↵usion model for pattern
formation (adapted from [2], used under Elsevier license 3594940056911)
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The structure and functional purpose of these patterns have fascinated scien-

tists for centuries. For instance, much complexity can be seen in the di↵erent spiral

patterns found in plant leaves. Depending on the angle of the leaf relative to its

stem, the type of o↵set each leaf will take relative to its neighbor, and the number

of leaves on each stem, spirals of varying leaves of complexity and repetition can be

generated, distinguishing whole classes of plants, making them visibly recognizable

to animal and man alike [9]. This class of behavior, called “phyllotaxis” (greek

for “leaf arrangement”), has been intensely studied by mathematicians, who have

connected angular deviations to the Fibbonacci numbers [10] or to fractal growth

patterns [11]. This patterning has been suggested to maximize the project surface

leaf surface area, yielding the best overall plant exposure to sunlight [12]. There is

even more complexity in the variation of the patterns of animal hides. From striped

animals such as tigers and zebras to spotted animals such as dalmatians, leopards,

and gira↵es, the alternate orientation of light and dark regions of hair or scales have

been suggested to arise from complex predator-prey cycles where the best patterned

creatures are the ones who survive [13].

Though patterns vary so wildly, the primary determinant of pattern structure

is often chemical in nature, governed by signaling molecules called “morphogens”.

During development, morphogens are released, forcing gradients to arise across an

organism (see Fig.1.1.B). Depending on the local concentration, di↵erent signaling

pathways are triggered in a cell which alter gene expression, resulting in spatially

heterogeneous cell di↵erentiation [14]. This serves to pattern the organism with
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diverse cell groups, with the specific biochemistry and physical domain of the mor-

phogens designing the global pattern.

Famed Mathematician Alan Turing showed [15] that if a two morphogen sys-

tem contained a self-induced short range source of positive feedback on one species,

which itself was long-range inhibited by the other species, then simple reaction-

di↵usion kinetics of the two molecules could lead to spatial patterning of cell di↵er-

entiation (see Fig.1.1.C). He suggested this as a potential mechanism for the spiral

structures of plants as well as the varying patterns on animal hides. Many such

chemical reactions have been identified, with chemically induced spirals and spots

being dubbed “Turing patterns ” [16].

However, the issue has turned out to be much more complex. Indeed, the

physical mechanism for the structure of leaf spiral has been shown to be the pres-

ence or absence of the growth hormone auxin. A leaf begin to grow where auxin is in

low concentration, which then draws auxin to it and away from other areas, leaving

places for the next leaf to grow [17]. However, despite being chemically-based, auxin

gradients are not simply reaction-di↵usion systems. The chemical migration is reg-

ulated by the organism itself through transport proteins that pump auxin from cell

to cell [17, 18], resulting in the variation of plant spiraling. Further, in Drosophilia

development, the cell-cell pumping of morphogens has been shown to be modified by

a process called “lateral inhibition”, where a cell triggers a neighbor’s surface recep-

tors, resulting in the inhibition of a gene in the absence of a morphogenic cue [19].

This means that both external chemical signals and cell-cell mediated signaling end

up a↵ecting the overall global pattern formation.
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1.2 Microscopic pattern formation in the human immune system

Another system where external gradients and cell-cell signaling produce com-

plex biological processes is the human immune system. When a wound forms, the

compromised cells release cytokines which di↵use away from them. Leukocytes,

more commonly known as white blood cells, sense the presence of the cytokines

through receptor activity and begin migrating up the gradient towards the wound

site, a process known as “chemotaxis”, to engulf and/or kill any invading pathogens

as well as to form a barrier at the wound site. This is a feature of the innate immune

response [20], which acts swiftly and automatically to target all foreign invaders (see

Fig.1.2.A-B). Two types of leukocytes, macrophages and dendritic cells, consume or

“phagocytose” the pathogens, dissemble them, and taxi pieces to the cell membrane

to signal the presence of an invader to lymphocytes (T-cells and B-cells), which make

up the adaptive part of the immune system [21] (see Fig.1.2.C). When the pieces

of the pathogen (called “antigens”) are presented to pathogen-specific lymphocytes,

both T-cells and B-cells further respond by releasing more cytokines, releasing an-

tibodies, and hunting down the pathogen in the blood stream to kill it. Thus, the

entire human inflammatory response requires the chemical coordination of a handful

of cell types who signal to each other with a variety of chemical methods.

Not surprisingly, these complex chemical processes also lead to pattern forma-

tion. Upon antigen presentation to a T-cell, the “T-cell receptor” (TCR) activates a

signaling cascade that results in the phosphorylation of the “linker for the activation

of T-cell” protein (LAT), which in turn draws other molecules to the surface of the
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(A) (B)

(C) (D)

Figure 1.2: (A-B) Initial chemical signals of wounded tissue releases chemokines
which attract primary neutrophils, who in turn secret LTB4 to relay the signal
(adapted from [3], used under Elsevier license 3594941307244) C) Diagram of T-cell
mediated inflammatory response (adpated from [4], used under the Creative Com-
mons license) D) LAT signaling proteins on the surface of a Jurkat T-cell (adapted
from [5], used under Elsevier License 3594950695211)
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membrane to form multimolecular complexes [22]. Depending on the type of T-cell,

further downstream e↵ects result in changes in migratory patterns and secretion

of cytokines. Like morphogenic triggers, the activation of membrane-bound signal-

ing receptors creates whole cell changes. Recent developments in microscopy allow

the imaging of these membrane proteins to within tens of nanometers [23], yielding

spatial point patterns, the statistics of which are indicative of protein-protein and

protein-membrane interactions (see Fig.1.2.D). Studying these signaling pathways

is paramount for understanding both the basic functions of the immune system, but

also aberrant TCR-mediated responses of T-cells lead to various health concerns,

ranging from hair loss [24] to serious illness or death [25].

Further, the ability for leukocytes to migrate up chemical gradients can itself

result in spatial patterning. Neutrophils, the most common leukocyte in the blood

stream, are the body’s first responders, swarming the site of infection and creating

a barrier to further penetration while other leukocytes migrate slower and consume

pathogens to present to T-cells [3,26,27]. This creates spatial heterogeneous patterns

surrounding the infection site, with macrophages clustering outside of the already-

present neutrophils (see Fig.1.2.B). Further, neutrophils have been shown to secret

the cytokine leukotriene b4 (LTB4) which enhances the original cytokinetic signal,

a process known as “paracrine” signal relay. This results in a swarming pattern,

drawing cells to the site of inflammation that were too far away to respond to the

first cytokinetic burst [26]. Just as morphogens regulate the spatial patterns of cell

populations by cell-cell signaling, neutrophils can utilize cell-cell signaling to modify

external chemical cues and change their spatial arrangements. Therefore, changes
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in these dynamic patterns can reveal the e↵ect of di↵erent drug treatments and cell

mutations on leukocyte response e�ciency.

Further, neutrophil mis-regulation is involved in autoimmune disorders such as

arthritis and lupus, with targeted deletions in the signaling pathways and cell surface

markers leading to reductions in the prevalence of the disease in mice models [28].

The chemotaxis of neutrophils is mediated by G-protein coupled receptors (GPCRs),

a large class of proteins involved in receptor-based signal transduction across the

eukaryotic kingdom. Current attempts to provide therapeutic intervention consists

of investigations into which drugs can target expression factors along the GPCR

signaling pathways [29].

1.3 From the immune system to the forest floor: signal relay results

in the spatial patterning in migrating slime mold cells

Another eukaryotic cell that exhibits GPCR mediated chemotaxis is Dic-

tyostellium Discoidieum, an amoeboid slime mold cell. A much simpler organism,

D. Discoidieum both responds to and secretes the same chemical, cyclic adenosine

monophosphate (cAMP), which leads to “autocrine” signal relay. To prevent self-

signaling, the cells secrete cAMP at the back and respond most strongly to ligand

binding and unbinding at their leading edge [30]. Cells also secrete a phosphodi-

asterase to degrade the external signal [31]. Despite these di↵erences, the down-

stream kinases that transmit chemical signals into mechanical responses are highly

conserved, resulting in D. Discoidieum being a model cell for studying factors that
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a↵ect chemotaxis [32].

D. discoidieum cells also exhibit complex spatial patterning during sporala-

tion. When in a nutrient rich environment, Dicty cells migrate individually, but

upon starvation polarize and begin to secrete cAMP from their rear [33], creating

local chemoattract gradients (see Fig.1.3.A). The cells themselves begin to migrate

up the local gradients, secreting all the while, meaning that the cell ensemble is

both generating and responding to a temporally varying chemical signal. Eventu-

ally instabilities in the cell density create local aggregation centers that begin to

dominate the chemical signal, drawing other cells to it. Due to the autocrine signal-

ing, however, the responding cells form head-to-tail streams, which result in large,

transient spiral structures that end in an ensemble sized aggregate (see Fig.1.3.B).

Then, di↵erent cell cues take over to draw the ensemble up o↵ of the surface and

form a spore, which is then picked up by the wind and taken to a new, hopefully

nutrient-rich environment.

Again, these spatial patterns depend on experimental conditions. Cells which

do not externally or internally degrade cAMP do not chemotax e�ciently and there-

fore show aberrant stream formation [34, 35]. Cells which migrate on surfaces with

di↵erent adherent properties also show di↵erences in streaming capabilities, with

cells on strongly adhesive surfaces not being able to properly form large aggre-

gates [7]. And by inhibiting the production of adenaline cyclase A (ACA), the

cyclase actively involved in the production of secreted cAMP, streaming disappears

entirely, completely destroying the ability of the cell ensemble to find the appropri-

ate aggregation center and sporalate [36]. Pattern formation in D. Discoidieum is
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(B)

(A)

Figure 1.3: (A) Life cycle of the slime mold cell Dictyostellium Discoidieum.
Streaming phase occurs between individual motion and sporulation (Adapted from
Hideshi, distributed under Creative Commons) (B) The complex spiral structure
generated during cell aggregation (Photo by Bruno, distributed under Creative Com-
mons)
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therefore very sensitive to experimental variation, both in external environmental

cues as well as cell mutations.

1.4 Gaining insight from spatial patterns

As has been discussed, spatial patterns arise in a variety of biological systems,

and of particular interest is the patterning of membrane-bound signaling molecules

and the spatio-temporal patterns that they introduce in migrating cells. These pat-

terns, both static and dynamic, are stochastic – with probability 1, no two patterns

will ever be identical. However, the underlying statistical process that generates the

pattern is demonstrative of the underlying interactions involved, and therefore each

pattern can be used to characterize the particular system.

Whether we’re discussing the absolute positions of proteins or the centers of

migrating cells, one can classify these patterns as “point” patterns, in that the center

position information is what one intends to characterize. Standard analysis begins

with the defined centers, {x
i

}, within a viewing window, ⌦. A researcher applies

di↵erent statistical measures and then compares them with the same measures of the

null hypothesis that the pattern’s points are uniformly distributed, i.e. the points

are completely spatially random (CSR). Confidence intervals are defined, statistical

tests are verified, parameters are fit and the pattern is considered characterized.

These measures can vary by their statistical “order”, as in the number of points

needed to calculate the measure. The 0th order measure is just the number of points,

n. This contains no spatial information other than the average density, � = n

|⌦| . A

11



(B)

(A)

Figure 1.4: (A) Di↵erential pattern formation both in the presence (left) and the
absence (right) of chemoattract degradation (adapted from [6], used with author’s
permission). (B) The di↵erent pattern formation “trajectories” of cell populations
platted on surfaces with di↵erent adhesive properties (adapted from [7], used under
Creative Commons license)
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1st order measure of the pattern is a quantity that only involves individual points

in the viewing window, such as the local number intensity �(~r). This quantity

can be approximated using the entire set of points, but does not contain statistical

information about correlations. A 2nd order process involves measures on inter-

particle distances, such as the pairwise correlation function or Ripley’s K function

[37]. These by far are the most common types of pattern analysis techniques since

they both include enough information to discuss interactions between points but are

simple to understand because they only consider two points at a time. There exist

3rd order measures which considering three points at a time [38,39], 4th order which

consider four [40], and so on. The majority of research in point pattern statistics

involves building phenomenological models founded in statistical theory and then

applying the theory to data sets to fit parameters.

If the pattern formation process is a linear superposition of pairwise inter-

actions, such as those formed under electrical or gravitational forces, second order

statistics are often enough. However, patterns in biological systems are not so simple.

For protein patterns, if a protein complex is formed due to a catalyzed chemical re-

action (due to the presence of an enzyme), then the fluorescent images of the protein

pattern could show higher order moments due to the non-linear chemical reaction

process and the presence of unlabeled molecules. Further, the protein-membrane

e↵ects will force the pattern to already be non-random [8]. This means that the

appropriate null model for the patterns is not CSR. In migrating cell populations,

cell-cell signaling via chemical secretion is mediated by the modified external chem-

ical gradient, which is both spatially varying and time dependent. Migrating cells
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are also generally navigating complex environments which would arbitrarily clump

or separate otherwise non-interacting points [3]. Since these features themselves

vary from cell to cell and experiment to experiment, appropriately handling these

issues become doubly important issue when dealing with sets of point patterns.

Additionally, no single order correlation function can characterize a point pat-

tern since it only describes that point pattern at that statistical level. This means

that processes appear random at one order can be seen to have structure or clus-

tering at other orders [37, 41]. What is being more and more addressed in applied

point pattern analysis is the use of “secondary” structures where the point pattern is

transformed into another type of mathematical object, such as a graph or topological

set, and analyzed using non-standard statistical technique [37, 42]. These measures

focus not on a single order, but include many orders at once to better quantify a

point pattern. This often leads to measures with more statistical power [43], a vital

quantity when analyzing sets of biological data.

1.5 Outline of Thesis

This thesis contains four contributions representing my work to develop and

apply statistical techniques that quantify and characterize the complex spatial and

spatio-temporal point patterns that arise in biological systems, particularly those

that are related to the human immune system. These techniques aim to help re-

searchers answer the “are” and the “how” questions of spatial pattern analysis: “Are

the patterns di↵erent?” and “How are the patterns di↵erent?”. What follows is a
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brief overview of each project and the results therein. Whereas much of standard

point pattern analysis relies heavily on analytic but phenomenological models, I

leaned heavily on direct simulation to both remove the assumptions of the statisti-

cal approach as well as to better approximate the biological processes considered.

1.5.1 Using morphological analysis techniques to sort point pattern

sets

The first contribution [44] was aimed at answering the “Are they di↵erent?”

question by improving techniques to perform unsupervised classification of point

pattern sets. Prior techniques relied on using standard 2nd order functionals of

point patterns – ones that consider only pairwise interaction – along with func-

tional principle component analysis (FPCA) to divide a set of patterns into di↵erent

groups [45]. However, these functionals have been shown in several instances to not

fully characterize spatial point patterns [37]. Most definitively, Baddelley and Sil-

verman explicitly designed a point process that is indistinguishable from a Poisson

process when only considering 2nd order measures [41]. This suggests that to fully

characterize a spatial point pattern for sorting purposes, di↵erent measures should

be used.

To address the issue of the failure of 2nd order measures, Mecke and Stoyan

suggested transforming a point pattern into a set of overlapping discs of radius r

and calculating the “Minkowski numbers” of the pattern [43]. In two dimensions,

these numbers are the projected area and perimeter of the shapes resulting from
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the overlapping discs, as well as the Euler number, which is the di↵erence between

the number of connected objects and the number of holes that are present in the

topological set. These numbers contain at once all the statistical moments of the

pattern, and have been known to completely characterize convex sets, a result of

Hadwiger’s Theorem [46]. Mecke and Stoyan showed that by considering a range

of r values, the resultant Minkowski functionals were able to distinguish between

Poisson processes and the process generated by Baddelley and Silverman.

I, therefore, implemented a sorting technique that combined FPCA with

Minkowski Functional analysis. I first showed that both standard 2nd order func-

tionals and Minkowski functionals perfectly distinguish between sets of Strauss pro-

cesses [47], which simulate randomly distributed discs with varying levels of overlap

permitted; this result was consistent with the original results of [45]. However, when

I attempted to distinguish between a set of Poisson patterns and a set of patterns

representing Baddelley and Silverman’s process, I showed that 2nd order functionals

completely failed to distinguish the two pattern sets while the Minkowski functionals

sorted the sets perfectly. I then applied the technique to bi-disperse point patterns

derived from super-resolution images of two trans-membrane proteins, LAT and

TAC, on the surface of T-cells. Previous results show strong di↵erences in the

molecular distribution of these molecules, with LAT forming clusters and TAC dis-

tributing more randomly along the membrane [48]. Again, I showed that FPCA

with Minkowski functionals outperformed FPCA with 2nd order functionals, which

again completely mis-sorted the pattern sets. Then, investigating FPCA sorting

with each functional individually, I showed that FPCA with only the Euler number
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best sorted the protein pattern sets. I discussed this result in the context of future

analysis of multi-color pattern sets.

1.5.2 Cluster analysis of LAT protein pattern sets containing hetero-

geneous large scale features

My second contribution [49] was aimed at the “How are they di↵erent?” ques-

tion, namely by developing a technique to perform cluster analysis on pattern sets

that have heterogeneous large scale structures. Specifically, I was interested in

looking at the small-scale clustering hierarchy of point patterns derived from super-

resolution images of LAT protein patterns on the surface of T-cells (utilizing pho-

toactivation localization microscopy, or PALM [23]). These experiments included

ones where the T-cells had been chemically activated and where they had not. The

main obstacle to performing this analysis, however, is large scale heterogeneities in

the individual point patterns. These can be due to larger scale clusters, voids in the

pattern due to lack of membrane adhesion, or by protein-membrane interactions,

where random voids in the point pattern form due to high membrane fluctuations

[8]. These large scale features dominate correlation measures, making it it impossible

to isolate small features.

A way of dealing with this issues is to simulate heterogeneous Poisson processes

(HPPs) for each cell to use as individualized statistical baselines. Prior work with

protein pattern sets has shown that these null models are better adapted to establish

randomness than CSR when looking at the pairwise correlation function of a single
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pattern [5]. To facilitate cluster analysis of the set of point patterns, I simulated

mutliple HPPs for each pattern and used their average pairwise correlation function

to calculate the heterogeneous pairwise correlation function through simple division

g
i,inh

(r) = g
i

(r)/ < g
i,hpp

(r) >. I demonstrated that this strongly diminished cell-

to-cell variation, revealing a recognizable correlation function for a clustered pattern

with a characteristic length scale of approximately 500 nm. I then performed cluster

analysis at that length scale on both the cell data and the simulated null models,

constructed the cluster size distributions ⇢(k), and looked for statistical deviations

from randomness. Doing so, I showed that the LAT proteins in inactive T-cells tend

to cluster in smaller structures, preferring to be found in dimers. However, upon

T-cell activation, these structures all but vanish, likely representing the recruitment

of other signaling molecules to the membrane [22]. I then discuss extensions of this

technique to multi-colored pattern sets, i.e. patterns with multiple tagged molecules,

as well as to spatially and temporally heterogeneous pattern sets.

1.5.3 Quantifying the spatial asymmetry of ACA mRNA in migrat-

ing Dictyostelium discoideum cells

My third contribution [50] represents answering both questions for sets of spa-

tial patterns, the di↵erence being that the actual physical location of each point

pattern was unknown. Specifically, I was interested in the perceived assymetry of

ACA mRNA in Dictyostelium discoideum cells. The data was derived from Flu-

orescent in situ Hybridization experiments (FISH) of “streaming” D. Discoideum

18



cells, which resulted in di↵raction-limited fluorescent images of both ACA mRNA

and cAR1 mRNA molecules. It is already known that ACA localizes to the back

of migrating cells [33]. Across dozens of images from multiple experiments, there

seemed to also be a pattern where ACA mRNA fluorescence was strongly localized

towards the rear of migrating cells, whereas the cAR1 mRNA was distributed more

uniformly. Further, this seemed by eye to be a trend most highlighted in cells that

were just joining streaming structures, and was less accentuated for cells that were

near an aggregate center.

I sought to quantify this trend by inferring the underlying mRNA locations

from the di↵raction-limited images. Because of the amorphous shapes that D. Dis-

coideum take, I determined that simple moment analysis of the fluorescent intensity

was inappropriate. For all the images, I performed a peak-finding algorithm and

fit Gaussian point-spread functions to the peaks found, measuring both the peak

intensity, I
0

, and the standard deviation, s. I then thresholded these values until

I achieved finely peaked distributions whose average was indicative of a fluorescent

“unit” of the pattern, likely representing a small number of mRNA molecules. Then,

for each cell, I took a region-of-interest approach (ROI) to quantify localization, di-

viding the cell front and back with arbitrarily shaped polygons and quantifying the

number of mRNA units present in an ROI using two di↵erent techniques. The first

technique employed standard error propagation using the means and standard de-

viations of the distributions of I
0

and s to calculate both the average number of

mRNA present and an estimate of the error. The second technique used a simula-

tion approach, rebuilding each image dozens of times with randomly placed mRNA
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units to match the observed fluorescence, each time yielding a potential realization

of the underlying molecular pattern. Then, the mRNA population in a specified

ROI was measured by the average number of mRNA units placed in that region,

with the error being the standard error of the mean. While both techniques yielded

similar results, I found that the simulation method had a stronger statistical power

in di↵erentiating populations.

Using these two techniques, I quantified the front/back localization of both

ACA mRNA and cAR1 mRNA in migrating cells. I found no real di↵erences in

size or fluorescent intensity between the two molecular units, and indeed found that

cAR1 mRNA had no overall trend of localization in the cell, preferring to distribute

randomly. In sharp contrast, ACA mRNA showed a strong tendency to localize

towards the back of migrating cells, with the strongest trend being found in cells to-

wards the back of streams. When the number of mRNA units was compared also to

the local concentration of their respective molecule (as measured by the integrated

local intensity), a strong correlation was found between the rear proportion of ACA

mRNA and the proportion of the cell concentration of ACA localized at the rear,

with both being strongly localized at the rear of cells that are just joining streams.

This phenomena was further investigated by looking at time lapse images of cells

recovering from treatment with cycloheximide which inhibits protein synthesis. Ini-

tially, ACA mRNA were not visible due to the inhibition. Upon recovery, the return

of ACA mRNA to normal levels maintained the assymmetry, suggesting that the

translation machinery of ACA localizes at the back of polarized cells, allowing local

replenishment of ACA during cell migration.
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1.5.4 Modeling and analyzing the patterns of externally guided chemo-

taxing cells

The fourth and final contribution [51] represents a turning of the two questions

on their head, seeking first to design a temporally varying spatial point pattern

with visibly distinguishable behavior that could not be quantified with available

techniques. I then demonstrate a new analysis technique, and use both the model

and technique to make theoretical predictions. Specifically, I was interested in the

chemotactic motion of D. Discoidium cells in the presence of external chemoattrac-

tant gradient. When external chemical signals are very strong, the autocrine signal

relay of D. Discoidium is washed out and cells migrate towards the source of the

signal individually. When the external signal is weak, the self-generated chemi-

cal signals of the ensemble dominate and the cells form non-migrating aggregates.

However, for moderate concentrations of external chemical signals, the autocrine

signaling leads to cells coordinating their migration, resulting in streams of cells

that move together towards the signal. As is to be expected, the definitions of

what is “strong”, “moderate”, and “weak” depend on the density of the cells, since

more cells secrete more chemoattractant. Though this motion is often measured, it

is hard to quantify. Standard measures applied to cell migration experiments are

various “chemotactic indices” (abbreviated CI). Always a first order quantity, a

common definition [36] for CI is the average over the ensemble of the projection of

the cell’s front-to-back alignment onto the direction of the external chemical source.

Perfect migration yields CI ⇡ 1, random migration yields CI ⇡ 0, with most real
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experiments showing values in between. This is similar to Viscek’s mean progression

index [52], which also measures the mean orientation of the ensemble.

I wanted to investigate these three stages of dynamic steady state and how

di↵erent model perturbations might e↵ect the critical concentrations, (C
0

) and den-

sities (⇢
0

) necessary for their observation. I began by developing a computational

model for individual D. Discoidium migration, viewing the cell’s motion as the re-

sult of three modules: directional sensing, protrusion generation, and center-of-mass

motion. These cells individually e↵ect the global chemical signal through local se-

cretion and global degradation. They also interact with each other mechanically

through soft-core repulsive forces. I simulated these cells in a box with a fixed con-

centration at the top and bottom, applied periodic boundary conditions to the cell’s

motion, and let the system reach steady state. I found many combinations of C
0

and ⇢
0

that yielded one of the three dynamic steady states. By the construction of

the simulation, the di↵erence between streaming and individual motion is lateral co-

ordination, with both types of cells still migrating upward. This means the for both

conditions, CI ⇡ 1, demonstrating that it is not an adequate method for exploring

perturbations to the di↵erent dynamic steady states.

I instead demonstrated a technique for quantification based on measures on

the ensemble’s spatio-temporal contact network. Our rationale was that randomly

migrating cells will break more contacts then those that are stream, which will

break more than those that have collapsed into an aggregate. To show this, at

each time, t I calculated a contact network, where each cell was a node and edges

were present if d
ij

< r
cell

. I then looked at a time t + �t to see what fraction of
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these contacts had been broken, F
s

(�t was always chosen to be longer than the

individual cell’s persistence time). I then ran the simulation for the same density and

concentration with cell secretion removed and calculated the fraction of broken links

in that context, F
0

. I showed then that the ratio, F
s

/F
0

correctly identifies the three

dynamic regions, allowing us to create a psuedo phase diagram as a function of the

two parameters ⇢
0

and C
0

. I then used the model and the fraction of broken links to

investigate the e↵ects of two perturbations: the addition of adhesion and the removal

of degradation. I found that because adhesion opens up another mechanism for

motion coordination, it both strengthened coordination in the absence of chemical

secretion and in the presence. In contrast, removing the ability for the cells to

degrade the chemical signal all but destroyed the streaming phase. This occurs due

to old signals not being removed in place of new ones while the global concentration

continues to increase. I discuss the extension of the model to paracrine signal relay,

which is relevant for understanding immune cell migration.

1.6 Discussion

Whether sets of static point patterns, fluorescent images, or migrating points,

my work has aimed to push forward the field of pattern set analysis for biological

applications. The complex patterns analyzed represent structures whose size span

three orders of magnitude: nanometer scale patterning of proteins, micron scale

assymetries in the molecular distribution of mRNA molecules, and millimeter scale

patterning of chemotaxing cells. However, the techniques developed were not re-
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stricted to any one size. Contact and proximity networks brought insight to both

protein clustering and cell streaming. For heterogenous cluster analysis of proteins,

I leveraged the local number intensity to recreate randomized patterns for statistical

comparison, a technique I similarly employed to infer the approximate numbers of

ACA mRNA units in migrating cells.

These techniques, however, were adapted in each setting for the system at

hand, and in particular involved mono-disperse patterns. Further extensions of my

work involve interactions between di↵erent populations. For measuring clustering

in signaling proteins, techniques are already being implemented that allow for the

fluorescent labeling of many di↵erent proteins at once, meaning that both pattern

set distinction and cluster analysis could be employed to investigate multi-molecular

complexes. For FISH experiments with labeled mRNA, co-localization of di↵erent

mRNA units could identify complementary processes in the cell machinery. And cell

migration experiments with cell mixtures could highlight sorting in collective migra-

tion, whether through di↵erential adhesion or the suggested bi-stability of receptor

sensitivity [53]. Further, extending my migration model to paracrine chemotaxis

would allow for the study of the group migration of neutrophils, who already show

cell sorting with regard to defects in the sensing of LTB4 gradients.
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Chapter 2: Automatic sorting of point pattern sets using Minkowski

Functionals

2.1 Overview

This chapter is adapted from the paper in Physical Review E by Parker, Sher-

man, van de Raa, van der Meer, Samelson, and Losert [44] in which I developed

and implemented a technique to use topologically derived measures to divide point

pattern sets into like groups.

Point pattern sets arise in many di↵erent areas of physical, biological, and ap-

plied research, representing many random realizations of underlying pattern forma-

tion mechanisms. These pattern sets can be heterogeneous with respect to underly-

ing spatial processes, which may not be visually distinguishable. This heterogeneity

can be elucidated by looking at statistical measures of the patterns sets and using

these measures to divide the pattern set into distinct groups representing like spatial

processes. We introduce here a numerical procedure for sorting point pattern sets

into spatially homogeneous groups using functional principal component analysis

(FPCA) applied to the approximated Minkowski functionals of each pattern. We

demonstrate that this procedure correctly sorts pattern sets into similar groups both
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when the patterns are drawn from similar processes and when the second-order char-

acteristics of the pattern are identical. We highlight this routine for distinguishing

the molecular patterning of fluorescently labeled cell membrane proteins, a subject

of much interest in studies investigating complex spatial signaling patterns involved

in the human immune response.

2.2 Introduction

2.2.1 Motivation: Why study point patterns?

Spatial points patterns naturally arise in many areas of research in both the

physical and life sciences, including ecology [54,55], crime statistics [56], epidemiol-

ogy [57], economics [58], seismology [59], material science [60], and astronomy [61].

Whether the points represent molecules, trees, cell phone users, or entire galaxies,

the spatial distributions of point patterns belie the underlying stochastic processes

that govern the pattern’s formation.

A new area of point pattern analysis involves studying the molecular patterning

of proteins on the surfaces of cells. Due to photo-activated localization microscopy

(PALM) [23], a new super-resolution microscopy technique, cell biologists are now

able to measure the spatial distribution of fluorescently-tagged membrane proteins

and determine the response of the molecules to di↵erent stimuli (see 2.1). By fix-

ing the cells on a slide and exposing them to laser light, researchers can activate

molecules one by one in multiple cells, locating the center to within 20 nm. This new

technique has resulted in a wealth of new point pattern data representing di↵erent
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molecules and surface treatments, and quantitative analysis of these patterns can

contribute much to understanding protein-protein and protein-membrane interac-

tions [48, 62]. From a theoretical standpoint, each pattern is a pure realization of

Figure 2.1: Using photoactived localization microscopy, the fluorescenctly labeled
proteins are localized by fitting a point spread function to the stochastically pho-
toactived molecules; the final pattern represents thousands of fluoresecent images

an underlying spatial process and can be used to characterize that process. From a

practical perspective, however, it takes many experimental realizations with finite

systems to discern the underlying structure. Furthermore, if the point interactions

are complex or the patterns are formed in complicated environments (such as the

membrane of a cell), the amount of data needed to confidently quantify a process

becomes large and cumbersome to analyze. This gives rise to the need to be able to
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confidently divide large sets of patterns, sorting the patterns into smaller, homoge-

neous groups that can be analyzed further. In addition to simplifying analysis, this

type of sorting can also provide researchers with quick information about the homo-

geneity of a process and the experimental parameters that a↵ect this homogeneity.

2.2.2 Current methods for sorting patterns

The standard method of sorting pattern sets is as follows: For each pattern,

one calculates a list of numerical summary characteristics (e.g. index of disper-

sion, Clark-Evans index). These can be regarded as the ”coordinates” of a pattern,

to which distance-based clustering algorithms can be applied [37]. This approach

presents the researcher with the task of deciding which characteristics to use, how to

compare them (normalizing, z-scores, etc) as well as how many: too few may result

in missing information, too many could result in redundancy. This adds nuance

to the sorting, limiting the statistical conclusions that can be drawn, and making

trustworthy automation of the sorting procedure for large pattern sets di�cult to

accomplish.

A more robust sorting technique has been developed, where patterns are sorted

using functional principal component analysis (FPCA) on smoothed second-order

functionals of the patterns. This routine treats the point set as a set of functions,

{a
i

(t)}, such as the pairwise correlation function, g(r) [45]. The coordinates of

each pattern are then calculated by finding the eigenfunctions and corresponding
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eigenvalues of the equation:

Z
v(s, t)w

i

(s)ds = �
i

w
i

(t). (2.1)

Here v(s, t) is the variance-covariance function of the set of functionals a(r), defined

as

v(s, t) = (N � 1)�1

NX

i=0

(a
i

� ā
i

(t))(a
i

(s)� ā
i

(s)). (2.2)

The “score” of the i-th pattern on the j-th principal component is then
R
a
i

(t)w
j

(t)dt

(see Refs. [63,64]). Like standard PCA, the eigenvalues form a positive decreasing set

whose truncated sum represents the total variance encapsulated in the included prin-

cipal components. For automation, one can simply set a threshold for the amount

of variance to be included, which in turn prescribes the number of coordinates to

be used. This feature removes the arbitrariness of sorting patterns via the standard

method, making FPCA an easily automatable way of quantifying the di↵erence be-

tween patterns. Illian et al [45] showed that this routine was robust to point location

uncertainty approaching 20% of the window size. 1

However, spatial processes can create patterns with more structure than second-

order functionals can measure. The Neyman-Scott process (NS), introduced to study

galaxy clustering, involves randomly distributed parent points generating clusters of

varying size. The complexity of the parent/daughter interaction gives rise to fami-

lies of NS processes with the same pairwise correlation function [37, 42, 65], despite

1See Supplemental Material at http://link.aps.org/supplemental/DOI for more information re-
garding how to incorporate spatial uncertainty into point pattern analysis.
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underlying spatial di↵erences in the patterns.

Baddeley and Silverman [41] also introduced a cell process which is built by

partitioning a domain into cells of equal size which are then filled with a varying

number of uniformly distributed points. Though the process is rather regular, they

showed analytically that their process was indistinguishable from a Poisson process

when considering second-order functionals of the pattern [41], meaning that higher-

order functionals must be used to resolve this ambiguity.

2.2.3 From points to disks

In this paper, we apply the proximity measure of FPCA to the approximated

Minkowski functionals of point patterns [43]. These functionals are calculated by

centering a disk on each point and analyzing the topology of this secondary pat-

tern of overlapping disks as a function of the radius. Since the overlap can be very

complex, involving all possible combinations of individual points, these functionals

depend on all orders of interaction simultaneously. This makes them a more com-

plete “fingerprint” for pattern comparison [43, 66]. These functionals have enjoyed

marked success in astrophysics [67], soft matter [68], and fluid turbulence [69].

For completeness, we first explain the Minkowski functionals and how they are

applied to point pattern analysis. We then demonstrate the sorting procedure by

clustering sets of patterns of both synthetically generated data and biological data

representing the spatial distributions of membrane proteins. Using both agglomer-

ative and divisive clustering algorithms, we show that this procedure outperforms
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FPCA clustering with second-order functionals, and in general we demonstrate it

to be a viable method for automatically sorting point pattern sets.

2.3 Outlining the Procedure

2.3.1 Minkowski functional analysis of point patterns

The first step in two-dimensional (2D) Minkowski functional analysis [43, 66]

is to turn a point pattern into a “secondary pattern” by centering a disk of radius

r at the center of every point (see Fig. 2.2). 2

If the radius is large enough, some of these disks will overlap. By combining

the overlapping disks, a pattern of di↵erently shaped objects is formed. The total

area, A, of this collection of objects is then just the total area of the disks excluding

any overlapping area. This is the first Minkowski measure. The second Minkowski

measure, the total perimeter, P , of the pattern is the perimeter of all of the shapes,

which is again reduced from the perimeter of the individual disks because of overlaps.

The Euler number, �, is the final Minkowski measure, defined as the total number

of distinct shapes or components in the window (created by the overlapping disks)

minus the number of holes.

2In this paper, we deal only with 2D patterns, but our procedure is easily generalizable to
patterns of any dimension.
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Figure 2.2: (a) The Minkowski functionals are calculated by imposing disks on the
point pattern. This new secondary structure can be characterized using topological
measures, which vary for di↵erent radii (b) The three reduced Minkowski functionals
for a 2-D Poisson (random) process. These functionals are unitless due to the
normalization by the same measure one would expect for a set of non-overlapping
disks.
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By calculating each of these measures first for small radii, where the disks do

not overlap, and growing the radius after each calculation until the entire pattern

window is covered, the three Minkowski functionals, A(r), P (r),�(r) are approxi-

mated. Because at each radius, the Minkowski measures depend on the locations of

all of the points simultaneously, these functionals include information about every

type of spatial structure present in the pattern, completely characterizing it (a con-

sequence of Hadwiger’s theorem from integral geometry, see Ref. [70]). This feature

makes the Minkowski functionals a more complete measure of the underlying point

interactions, including information from all possible groupings of points.

When comparing patterns, one actually uses the reduced Minkowski function-

als, namely the Minkowski functionals for the pattern divided by what is expected

for a set of non-overlapping disks. These are given by

a(r) =
A(r)

⇡Nr2
(2.3)

p(r) =
P (r)

2⇡Nr
(2.4)

e(r) =
�(r)

N
(2.5)

The functionals for a Poisson process are shown in Fig. 2.2.b. The analysis in

this paper relies exclusively on these reduced functionals, so we do not di↵erentiate

between the two.
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2.3.2 Sorting the patterns

Our aim is to automatically sort patterns by performing FPCA on their ap-

proximated Minkowski functionals, clustering the patterns with their individual

scores on the principal components. We do the same with the pairwise correla-

tion function so that we can directly compare our method with that of Ref. [45].

For each pattern set, we use enough principal components to account for 95% of

the variation. For the Minkowski functionals, we calculate the principal component

scores individually for the area, perimeter,and Euler number and then concatenate

the scores into a larger vector and use a Euclidean norm (which corresponds to the

Mahalanobis distance [71]). Then, we use these scores as coordinates, applying two

di↵erent clustering algorithms:

• Ward’s method [72]. An agglomerative technique which seeks to minimize

the total intercluster variance of the distances between objects. We chose this

method because it is well known to the pattern analysis community and allows

us to directly compare our method with that of Illian et al [45].

• Fast weighted modularity [73,74]. To implement this routine, we first calculate

the pair-wise Euclidean distance between all patterns, D
ij

, and transform our

pattern set into a weighted graph with edge weights

W
ij

= max(D
ij

)�D
ij

. (2.6)
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Then, this algorithm aims to maximize “modularity” of this weighted network,

by dividing the set into groups where the total weight of edges between mem-

bers of the same group is higher than the total weight of the edges between

members of di↵erent groups. We chose this method because it is a global

clustering routine with large popularity in the cluster analysis literature, and

because the software implementation is able to work with very large data sets

(millions of objects).

By utilizing both cluster analysis algorithms, we can verify whatever results we

obtain, and more completely demonstrate the e�cacy of our sorting method using

the Minkowski functionals.

2.4 Testing our sorting method

We now apply this procedure to three di↵erent data sets. These sets of patterns

highlight three possible situations in which one would sort patterns: (i) comparing

di↵erent systems, (ii)) varying a parameter in an experiment, and (iii) comparing

di↵erent components of a bi-disperse system 3. Each set is comprised of two groups

which have an a priori cluster structure. We then apply the sorting technique, which

allows us to calculate the percentage that is miss-classified (P
MC

) by looking at the

fraction of patterns that are assigned to a group that is dominated by a di↵erent

pattern type.

3See Supplemental Material at http://link.aps.org/supplemental/DOI for specifics regarding
software and computational methods used
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2.4.1 Data set 1: Two Strauss processes

The Strauss process [47] is a germ-grain pattern simulation model specified

by two parameters, a radius r 2 R+ and an interaction parameter � 2 [0, 1]. The

interaction parameter determines if grains of radius r will be allowed to overlap

during the formation of the pattern (see Fig. 2.3.a).

If � is small, there is a strong repulsion between grains, where � = 0 yield a

hard-core process. If � is close to 1, the repulsion is weak, where � = 1 yields a

completely random process.
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Figure 2.3: (a) The regularity of a Strauss process is completely determined by
�, the interaction parameter. For � = 0, no overlaps are allowed. For � = 1, all
overlaps are allowed. (b) The left most panes display the g(r) and �(r) for the 40
simulated Strauss processes. On the right are the results of using FPCA scores to
divide the pattern set into two groups. As can be seen, both g(r) and the Minkowski
functionals can perfectly separate the set into two groups corresponding to di↵erent
values of �.
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Figure 2.4: (a) A Baddeley-Silverman (left) process side-by-side with a Poisson
process (right). Despite the visible di↵erences, the pairwise correlation functions
are identical (b) The left most panes display the g(r) and �(r) for the 58 patterns
simulated. On the right are the results of using FPCA scores to divide the pattern
set into two groups. As can be seen, FPCA sorting with g(r) creates two perfectly
heterogeneous groups, while FPCA sorting with the Minkowski functionals groups
the patterns correctly.
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In Ref. [45], it was reported that even for comparison of pattern sets with

similarly strong repulsion (� = 0.0 and � = 0.1) the pairwise correlation function

was able to e↵ectively distinguish di↵erent Strauss processes. We here repeat this

test with 20 patterns each, fixing the number of points at N = 1000, and letting r =

0.025. We also fix the number intensity to be � = (2r)�2, which forces interaction

between the points.

As can be seen in Fig. 2.3.(b), both g(r) and the Minkowski functionals are

able to distinguish the two Strauss processes, separating the pattern set into two

homogenous groups. This is to be expected for g(r), as second-order interactions

dominate the process, and is consistent with the findings of Ref. [45].

2.4.2 Data set 2: Baddeley-Silverman vs. random

The Baddeley-Silverman process [41] is built by partitioning a domain into a

grid and moving from box to box, distributing N points in each box uniformly. N

itself is a random number, taking on the values 0,1, and 10 with probabilities 1/10,

8/9, and 1/90, respectively. This causes the process to be rather regular, but with

some strong clustering occurring every now and then (see Fig. 6).

Since E[N ] = Var[N ] = 1, it can be shown that the Baddeley-Silverman

process shares all of the same second-order characteristics as a Poisson process. In

ref. [43], the Minkowski functionals were shown to be able to distinguish these two

processes. Therefore, we expect to see proper sorting when using a(r), p(r), and

e(r), and failure using g(r).
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We simulated 29 Baddeley-Silverman processes and 29 Poisson processes, fix-

ing the point number N = 1024. Using both the pairwise correlation function and

the Minkowski functionals, we sorted the pattern sets to into two groups. As can

be seen in Fig. 2.4.b, the pairwise correllation function fails to sort the patterns

correctly, creating two heterogeneous groups (P
MC

> 40). However, the Minkowski

functionals successfully divide the pattern set into two homogeneous groups.

2.4.3 Data set 3: Bi-disperse patterns of inter cellular proteins

For an application to an experimental data set, we look at super-resolution

images of two proteins residing at the membrane of immune cells [see Fig. 2.5.(a)].

One protein under study is LAT, short for “linker for activation of T cells”,

a naturally occurring protein crucially involved in the reactions that regulate T

cell antigen-dependent activation, a critical event in the adaptive immune response.

LAT proteins have been seen to form clusters on the membrane with potentially

complicated hierarchies [48]. However, the membrane of the cell can have a first-

order e↵ect on the molecular patterning of membrane proteins. It has been found

that the location of other membrane protein clusters often correlates with how close

the membrane is to the surface, and anti-correlates with regions of high membrane

fluctuations [8].
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Figure 2.5: (a) The two proteins are both dispersed in the cell membrane. LAT
(blue) and TAC (red) proteins are separately tagged, allowing them to be visualized
separately. (b) The left most panes display the g(r) and �(r) for the 16 molecular
patterns. On the right are the results of using FPCA scores to divide the pattern set
into two groups. As can be seen, using Minkowski functionals with FPCA improves
the di↵erentiation of the two sets.
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Another protein, TAC (the alpha chain of the interleukin-2 receptor), can also

be localized and di↵erentiated from LAT by tagging with a di↵erent fluorescent

molecule and using two di↵erent lasers with di↵erent wavelengths. TAC is a mem-

brane protein that does not form clusters, instead distributing uniformly in regions

where protein-membrane interactions have not excluded proteins. This means that

TAC can serve as a membrane marker when studying the clustering of other pro-

teins. Since LAT and TAC are part of separate signaling pathways, they also do not

interact biochemically [75]. Therefore, upon sorting, we should get two homogeneous

groups representing the two di↵erent molecules.

Applying FPCA on the approximated pairwise correlation functions of these

data sets again yields strongly heterogeneous groups (P
MC

⇡ 50%). This is visible

in the pair-correlation functions [Fig. 2.5.(b)], where the individual patterns exhibit

large variability. In contrast, because the Minkowski functionals consider more than

just second-order interactions, the Euler number is able to visibly distinguish the

molecular patterns, and the pattern sorting is improved (P
MC

⇡ 25%).
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Figure 2.6: From left to right: Sorting with all three functionals, the area, the
perimeter, and the Euler number. Considering the individual functionals (sorting
using weighted modularity), the Euler number outperforms the other two, only
misidentifying one pattern

Further success is achieved if we look at how FPCA sorting with each func-

tional performs on its own [Fig. 2.6]. When only using the area, the sorting is

identical to the sorting based on all three Minkowski functionals. However, sorting

the LAT-TAC protein pattern set improves when just using the perimeter, and we

achieve almost perfect classification when using the Euler number, only misidentify-

ing one pattern. This is not surprising, since the area and perimeter are constrained

to be smooth, positive, and monotonically decreasing, and thus cannot vary as much

while the Euler number can vary more wildly.

2.5 Conclusions and discussion

In this work, we have introduced the procedure to automatically sort point pat-

tern sets using the approximated Minkowski functionals and FPCA. Using Strauss

processes with strong repulsion, we have shown that this method can accurately
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sort point pattern sets drawn from very similar processes. Further, this method also

distinguishes Baddeley-Silverman processes from Poisson processes, a task which

the pairwise correlation function perfectly fails to accomplish. We then found that

when looking at experimental point patterns representing proteins, FPCA sorting

using the Minkowski functionals outperformed FPCA sorting with the pairwise cor-

relation function. This su�ciently demonstrates that the Minkowski functionals can

successfully quantify the di↵erences between pattern sets showing complex behavior.

We also found that FPCA sorting using only the Euler number strongly out-

performs the other two. While mathematically the three functionals do completely

classify a pattern, the area and perimeter may only be slightly di↵erent for di↵erent

spatial processes. This means that error introduced when approximating the func-

tionals numerically may blur these di↵erences, resulting in improper sorting. Since

the Euler number is allowed to vary more dramatically as the disks combine and

holes form, it can visually distinguish very similar pattern sets, and therefore leads

to better sorting.

Though we have presented this technique as a way to sort patterns into dis-

tinct sets for further analysis, the sorting itself can serve as an analysis tool. We

are currently working to apply this tool to examine how the presence of di↵erent

chemical cues e↵ect the clustering of LAT proteins, as well as how T-cell activation

perturbs the patterns. Because of the Minkowski functional’s ability to robustly

characterize a pattern, we can treat the membership of a pattern in a particular

group as a sign of similarity between it and its co-members. We can therefore look

at group statistics to determine what experimental variables change the molecular
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patterns, and to what degree, allowing for systematic large-scale investigations of

the membrane proteins and their response to di↵erent stimuli.
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Chapter 3: Heterogeneous cluster analysis of LAT protein point pat-

tern sets reveal changes in clustering upon T-cell activa-

tion

3.1 Overview

This chapter is adapted from the paper in preparation by Parker, Sherman,

Barr, Samelson, and Losert [49] in which I developed and implemented a technique

to perform clustering analysis on sets of LAT point patterns with heterogeneous

intensity distributions.

Recent advances in super-resolution microscopy techniques have allowed biol-

ogists to image the spatial locations of trans-membrane signaling proteins on the

surface of T-cells to within tens of nanometers [23]. By studying these spatial point

patterns over a variety of experimental perturbations, including both non-active and

active cells, biologists interested in better understanding the human immune system

can study the interactions of signaling molecules, allowing them to investigate the

signaling hierarchy of the T-cell [48]. A large obstacle in looking at the clustering

hierarchy of these proteins is the presence of the cell membrane, which during cell

spreading creates a heterogeneous and constrained environment for the proteins to
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settle in [8, 48]. This makes the point pattern of each cell arbitrarily di↵erent from

other cells studied under the same experiment conditions. Indeed, the variation

due to the changes in the membrane-imposed boundary conditions dominate any

attempt to investigate features at the smaller scale. In this work, we demonstrate a

technique that simulates individualized heterogeneous Poisson null models for each

cell. Using these patterns, we calculate an average pairwise correlation function

(PCF) to create a membrane-specific statistical baseline and then re-normalize the

pairwise correlation functions of the LAT protein point patterns. We show that this

reduces the cell-cell variability in the pattern set, resulting in a recognizable PCF of

a cluster process with a length scale of roughly 500 nm. Using this length scale, we

perform cluster analysis on both the original patterns and the simulated null mod-

els by generating proximity graphs and looking at the cluster size distribution for

both the data and the simulation patterns. We find that in non-active T-cells, LAT

proteins are more likely than random to form smaller structures at this length scale,

in particular clustering in dimers. However upon activation, become similar to their

random controls. A possible explanation for this is the presence of non-fluorescently

tagged proteins being recruited to the membrane upon activation, thus causing the

LAT proteins to not be found in nanoclusters.
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3.2 Introduction

3.2.1 Point patterns in cellular systems

Spatial point patterns are a ubiquitous data type in scientific research. No

matter the length scale or the object under investigation, understanding how to

analyze located objects crops up in research on the fall patterns of rain drops [76],

the distribution of gold nano-particles in materials [60], and even the clustering of

galactic structures [61]. Recent advances in microscopic techniques have allowed

for robust single molecule localization of proteins that reside on the membrane of

cells [23]. This technique has been used to study trans-membrane proteins involved

in the signaling cascade of T-cell activation. In these experiments, T-cells are allowed

to settle on a glass slide and are imaged from below (see Fig. 3.1.A-B).. When the

glass slide is coated with an antibody, fluorescently-tagged proteins bind to the

surface and are stimulated sequentially with laser light. Through post-processing,

these fluorescent events can be associated with single molecules, resulting in a spatial

point pattern. These patterns can then be analyzed to infer interactions, both with

each other and other physical structures.

3.2.2 Does T-cell activation a↵ect apparent clustering in LAT pro-

teins?

Of special interest to researchers is the LAT protein, a key play in human

T-cell activation. In the body, helper T-cells are activated by coming into contact
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with “antigen-presenting cells”, whose surface coating of antigens bind to the T-

cells membrane-bound TCR proteins (“T-cell antigen receptors”). If the antigen

presented is what that particular T-cell is adapted to recognize, the cell’s LAT

proteins become phosphorylated and cluster which induces T-cell activation. This

can be experimentally modeled by allowing T-cells to settle on glass slides coated

in di↵erent antigens, which allows for fluorescent imaging of the LAT patterns both

when the cell is active and when it is not. Fig. 3.1.c shows three representative LAT

protein patterns: the left and center patterns are from non-activated T-cells and the

right pattern is from an activated T-cells. Recent experiments have suggested that

these proteins cluster on small scales [48], and a key question is whether the observed

clusters are a↵ected by T-cell activation and in what ways. By performing analysis

on sets of these patterns, representing multiple cells, we could statistically confirm

if clustering exists and to what extent it is a↵ected by T-cell activation.
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Figure 3.1: (a) Experimental setup. Glass surfaces are coated with antigens for
cells to settle onto and imaged using super-resolution microscopy. (b) A single
sample image of the fluorescence patterns seen in PALM experiments. (c) Three
representative patterns of those derived from non-active cells (left and center) and
activated T-cells (right) (d) Images of the spreading process of a Jurkat T-cell on a
glass slide. Both the cell boundary and the variation in adhesion pattern a↵ect the
protein pattern (adapted from [8], used under the Elsevier user license)
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3.2.3 An obstacle to analysis: the cell membrane

A naive approach to investigating clustering interactions between points would

be to start with the pairwise correlation function (PCF) of the pattern, g(r), which

measures the probability of the distance between two points being within the range

d = r ± dr. For a pattern whose point locations are uncorrelated, the probabil-

ity of a point being anywhere within a viewing window is constant, so g(r) = 1.

Therefore, r values where g(r) > 1 or g(r) < 1 demonstrate deviations from the

assumption that the point’s locations are completely uncorrelated, with g(r) = 1

here functioning as the the statistical “baseline” of the measure. In particular, one

can investigate clustering by looking at the first minima, where the approximated

g(r) and it’s confidence intervals all decrease below the baseline of g(r) = 1. This

distance then corresponds to 1.5⇥ r
c

, where r
c

is the characteristic length scale for

clustering. Then one can connect all points who are nearer to each other than r
c

,

creating a proximity graph, and look at the distribution size distribution, ⇢(k), i.e.

the distribution of the number of points, k, in each of the graph’s connected com-

ponent. For small r
c

, the distributions should be approximately exponential [77].

To determine if clustering is present, a randomized null pattern can be simulated

and analyzed similarly, and plots of ⇢(k)� ⇢
r

(k) are made. For small r
c

, the cluster

size distribution should be approximately exponential [77], so the di↵erence plot can

highlight any deviations from random clustering present in the pattern. Doing this

then for each pattern in a set, one can observe the general behavior of an underlying

point process to the variation in experimental conditions.
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However, for patterns of membrane bound proteins, there are many di↵erent

factors controlling the point pattern formation. The process of cell spreading itself

is variable, with both the location of the boundary and adhesion contact area form-

ing over time (see Fig.3.1.d). The membrane not only imposes an arbitrary and

amorphous boundary, creating a “virtual cluster”, but areas of poor adhesion can

cause certain regions of the membrane to not be imaged, resulting in large scale het-

erogeneities [8,48]. Looking at g(r) for three sets of LAT experiments (Fig. 3.2), we

see that the pattern sets are strikingly heterogeneous, resulting in large confidence

regions (region between the dashed lines). We also see that, despite these large con-

fidence regions, none of the correlation functions approach random, i.e. g(r) ⇡ 1.

These features are due to both the dominance of large scale pattern features and

the feature variability from pattern to pattern. This means that any attempt to ex-

tract small scale details of the protein-protein interactions using standard techniques

would be unsuccessful.
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Figure 3.2: Standard pairwise correlation function for three sets of protein patterns.
Dashed lines represent 95% confidence intervals.
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3.2.4 Heterogeneous cluster analysis using simulations

In this work, we address this issue with a simulation based approach. For each

pattern, we develop an individualized statistical baseline by simulating multiple

heterogeneous Poisson point patterns that recreate the original pattern’s large scale

intensity variations but blur small scale structure. Using the PCFs of these patterns,

we re-normalize the original pattern’s g(r), achieving the heterogeneous pairwise

correlation function, g
inh

(r) [78, 79]. This new quantity can be interpreted as the

probability of two points having a distance d = r ± dr given that the process

was formed while interacting with a heterogeneous environment, which here is the

membrane. Then, if a clustering length scale is observed, we can perform cluster

analysis on both the cell data and the individualized null models to determine the

clustering structure of the LAT proteins.

3.2.5 Data and Methods

For this work, we used three sets of LAT protein point patterns. These patterns

were derived from PALM experiments with Jurkat cells, which are an immortalized

line of the human helper T-cells [80]. Cells with fluorescently-tagged LAT proteins

(PAmCherry) were allowed to settle on glass slides coated with antibodies to mimic

an antigen presenting cell. For two of the pattern sets, a non-activating antibody

was used (↵CD45 or ↵CD28). For the remaining pattern set, ↵CD3
"

was used

so that the T-Cell would activate. The non-active sets had 10 patterns each and

the active set had 15. For each pattern, 100 heterogeneous Poisson patterns were
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simulated and their average g(r) was calculated (for full details, see Supplemental

Materials). Then g
inh

(r) was calculated through simple division, g
i,inh

(r) = g
i

(r)/ <

g
i,ing

(r). These were then averaged for visualization, with the confidence intervals

being determined through error propagation. Bandwidth selection for the intensity

approximation will, of course, e↵ect the results of the analysis, with too small a

bandwidth reproducing the original pattern and too large a bandwidth not correctly

reproducing the intensity profiles. Since we were interested in clustering at the

length scale of a few hundred nanometers, we used a bandwidth of 2.5 microns to

ensure appropriate separation of length scales but not to be too comparable to the

size of the cell. Fig. 3.3.A shows an original pattern and one of its heterogeneous

Poison null models. The absolute location of points are visibly di↵erent, but the

overall number intensity has been preserved.

3.2.6 Results: LAT proteins show clustering at the nanoscale which

is diminished upon activation

Fig. 3.3 shows the average g
inh

(r) along with 95% confidence intervals. Com-

pared to Fig. 3.2, we can see that the breadth of confidence regions (between the

dashed lines) have been strikingly reduce, showing that our method has dramati-

cally reduced the e↵ects of larger scale heterogeneities. The average function that

remains is recognizable as that of a cluster process, with all three sets showing a

first minima around 750 nm, which gives a characteristic clustering scale of r
c

⇡ 500

nm.

55



radius, r (nm)
200 400 600 800 1000 1200 1400

C
on

di
tio

na
l P

C
F

-1

0

1

2

3

4

5

6

7

8

9

Activated T-Cells
Control #1
Control #2

0 20 40 60 80 100 120
0

20

40

60

80

100

120

0 20 40 60 80 100 120
0

20

40

60

80

100

120

9

7

5

3

1

0.6 1.0 1.40.2
r ( m)

g in
h(

r)

Non-active #1
Non-active #2

Active

(a)

(b)

Figure 3.3: (a) (left) A protein point pattern derived from a PALM experiment and
(right) a heterogeneous Poisson point process with the same intensity distribution.
Small changes can be seen in the location of the points on the fringes, but the large
scale features are preserved. (b) Heterogeneous pairwise correlation function for
three sets of protein patterns. Dashed lines represent 95% confidence intervals. All
three pattern sets collapse onto a single function reminiscent of clustering
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Knowing that protein patterns can exhibit higher-order patterning [44], we

performed cluster analysis with this length scale by connecting points to each other

if their inter-point distance d
ij

< r
c

and then calculating the cluster size distribution,

⇢(k). We did the same for each of the cell’s randomized patterns, and calculated

⇢(k) � ⇢(k)
rand

. Points that were farther than r
c

away from all other points were

ignored, meaning that clusters must have two or more members (⇢(k = 1) = 0).

Looking at the quantity ⇢(k) � ⇢(k)
rand

for the three data sets (Fig.3.4), we see a

statistically significant presence of smaller clusters in non-activated T-cells, particu-

larly dimers (k = 2) and a diminished amount of larger sized clusters. This confirms

prior inferences that LAT proteins cluster in small groups, primarily dimers [48].

Upon T-cell activation, the same measure shows that these dimers sharply diminish

at this length scale in favor of slightly larger clusters, with the overall deviation of

the patterns from random diminishing as well. This di↵erence between the three

cases is statistically significant, with a two-tailed t-test on ⇢(2)�⇢
rand

(2) for the ac-

tive sets being statistically significant from both non-active sets with 99% confidence

(p < .01).
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3.3 Discussion

In this work, we’ve demonstrated a way of performing cluster analysis on

heterogenous sets of point patterns by providing individualized baselines for each

pattern, both when calculating the pairwise correlation function and when perform-

ing cluster analysis. This allowed us to perform cluster analysis on sets of protein

point patterns derived from PALM experiments with human immune cells, reveal-

ing that LAT proteins do indeed cluster in dimers when the T-cell is non-active.

Further, we’ve demonstrated that this clustering is diminished by T-cell activation.

This may represent the presence of other molecules involved in the signaling path-

way being drawn to the membrane, crowding out smaller clusters and forcing the

LAT proteins to more trace out the membrane. This may also represent a shift

towards more micro-scale clustering due to T-cell activation. Further analysis will

utilize a larger bandwidth for the estimation of the pattern’s local number intensity

when building the HPP null models. Additionally, another interest is whether the

the clusters themselves are spatial segregated based on cluster size. This can be

investigated by looking at spatial distribution of cluster centers of di↵erent types.

Additionally, intuition needs to be gained about the pattern di↵erences between the

two control sets, namely where the distinction in clustering hierarchy seen in 3.4

cannot be attributed to activation.

Further, this work can be extended to multi-color patterns, i.e. patterns with

more than one fluorescently tagged molecule. We predict that not only will the

technique presented here work to elucidate the common structure of the multi-
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molecular complexes, but that comparing the heterogeneous baseline of the di↵er-

ent colors would elucidate any di↵erences in the protein-membrane interactions of

each molecule. Recent work has also extended techniques to analyze spatially het-

erogeneous patterns to include temporally varying patterns [81, 82], opening up a

completely new avenue as well for our clustering to be applied. With the most recent

advances in high-speed flourescent tracking of molecules [83], we anticipate applying

both techniques to study temporal varying molecular patterns as well.
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Chapter 4: Adenylyl cyclase mRNA localizes to the back of polarized

Dictyostelium cells during chemotaxis

4.1 Overview

This chapter is adapted from the paper submitted to Current Biology by Das,

Parker, Kriebel, Guven, Larson, Losert, and Parent [50] in which I developed and

implemented a technique to infer the spatial localization of mRNA molecules in fluo-

rescent images. I then applied this technique to images from experiments performed

by Das and Kreibel which represent the locations of ACA mRNA and cAR1 mRNA

in migrating Dictyostelium discoideum cells.

During directed cell migration front-back polarity is achieved by chemical gra-

dients that promote the asymmetric localization of otherwise evenly distributed

proteins. In Dictyostelium discoideum, vesicular transport of the adenylyl cyclase

A (ACA) to the back of polarized cells is essential to relay exogenous cAMP signals

during chemotaxis and for the collective migration of cells in head-to-tail arrange-

ments called streams. Using fluorescence in situ hybridization (FISH), we observed

that the ACA mRNA is asymmetrically distributed at the back of polarized cells.

This localization requires an intact actin cytoskeleton as well as protein synthesis.
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Using both standard estimators and Monte Carlo simulation methods, we found

that ACA mRNA enrichment depends on the position of the cell within a stream,

with the back localization of ACA mRNA being strongest for cells at the end of

a stream. Our findings suggest that the asymmetric distribution of ACA mRNA

allows the local translation and accumulation of ACA protein at the back of the

cells. These data represent a novel functional role for localized translation in the

relay of chemotactic signal during chemotaxis.

4.2 Introduction

The transmission of chemotactic signals to neighboring cells is a spatially reg-

ulated process. When exposed to an external point source of cAMP, Dictyostelium

cells lacking ACA migrate directionally, but do not relay chemotactic signals to

neighboring cells or align in a head-to-tail fashion to form streams a process that

increases recruitment range during aggregation [33, 36]. This streaming behavior

not only depends on the presence of ACA, but most remarkably, on its enrichment

at the back of polarized cells. Indeed, ACA is distributed in two distinct pools in

polarized cells: one is restricted to the plasma membrane, the other is localized on

highly dynamic intracellular vesicles that coalesce at the back of polarized cells [36].

We have shown that the spatial enrichment of ACA vesicles at the back of cells

and their subsequent secretion are essential for streaming during chemotaxis [30].

We proposed that the asymmetric distribution of vesicular ACA provides a com-

partment from which cAMP is locally released from the back of cells to attract
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neighboring cells. One mechanism to achieve the polarized cellular distribution of

proteins involves translation of localized mRNAs [84–86]. Consistent with this, we

showed that the asymmetric distribution of ACA requires de novo protein synthe-

sis [30]. We hypothesize that localized ACA synthesis is required to maintain the

active ACA pool at the back of polarized cells for streaming during chemotaxis.

4.3 Experimental context for simulation-based analysis: ACAmRNA

seems to localize at the back of polarized chemotaxing cells

We examined the cellular distribution of ACA transcripts using fluorescent

in-situ hybridization (FISH) [87, 88]. We used 48 di↵erent fluorescently labeled

oligonucleotide probes that span the entire acaA gene, thereby creating a su�cient

signal-to-noise ratio to allow for mRNA detection [89]. We acquired di↵raction lim-

ited confocal image slices and reduced them to a maximum intensity projection to

facilitate data analysis. As a control for these studies, we followed the distribu-

tion of the seven transmembrane cAMP receptor 1 (cAR1) transcripts. cAR1 is

the main GPCR that mediates chemotactic responses in Dictyostelium cells, it is

uniformly distributed on the plasma membrane and does not localize to intracel-

lular vesicles [89]. We found that the FISH signals appeared as specific punctae,

i.e. randomly distributed spots likely representing multiple individual transcripts,

within the cytoplasm of individual, vegetative, non-polarized aca- cells express-

ing ACA-YFP (ACA-YFP/aca-) as well as car1/3-/- cells expressing cAR1-YFP

(cAR1-YFP/car1/3-/-) (Fig. 4.1.A-B). The hybridization of our ACA and cAR1
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FISH probes to the acaA and carA genes was specific as no hybridization signal was

observed in aca- and car1/3-/- cells, respectively (Fig. 4.1.C-D). We next assessed

the distribution of ACA transcripts in chemotaxis competent and polarized WT and

ACA-YFP/aca- cells. Whereas F-actin localized to the leading edge of WT cells, we

observed that ACA mRNA was enriched at the back of cells (Fig. 4.2.A). This asym-

metric localization of ACA mRNA was observed in both WT and ACA-YFP/aca-

cells after they were starved and pulsed for 5 hrs and allowed to spontaneously

chemotax in a chamber slide (Fig. 4.2.B-C). In contrast both endogenous cAR1

mRNA (Fig. 4.3.A) and cAR1-YFP mRNA (Fig. 4.3.B) appeared uniformly dis-

tributed in the cytoplasm of polarized, chemotactically competent cells. For both

cAR1 and ACA, higher-intensity FISH spots were also observed in the nucleus, co-

localizing with the DAPI signal, likely representing nascent transcripts associated

with the acaA and carA genes (Fig. 4.1.A-D, Fig. 4.3.A-B).

64



A B

C
c
D

D

Figure 4.1: ACA and cAR1 mRNAs are randomly distributed in vegetative
cells. (A) Maximum intensity projections of confocal fluorescent images of vege-
tative ACA-YFP/aca- cells depicting DAPI (nucleus) and ACA mRNA (pink). (B)
Maximum intensity projections of confocal fluorescent images of vegetative cAR1-
YFP/car1/3-/- cells depicting DAPI (nucleus) and cAR1 mRNA (pink). (C and D)
Maximum intensity projections of confocal fluorescent images of 5 hrs di↵erentiated
aca- (C) or cAR1/3-/- cells (D) depicting DAPI (nucleus) and ACA or cAR1 mRNA
(pink). The data are representative of three independent experiments.

65



Figure 4.2: ACA mRNA is spatially localized to the back of polarized chemotax-
ing cells. (A) Representative maximum intensity projections of confocal fluorescent
images of WT cells depicting F-actin (green), DAPI (nucleus), and ACA mRNA
(pink). The dotted red box in the image is enlarged to show a single polarized cell
and the asymmetric ACA mRNA distribution. The small white arrows indicate the
position of the mRNA spots (B-C) Representative merged phase contrast and max-
imum intensity fluorescent images depicting DAPI (nucleus), ACA mRNA (pink),
in WT and ACA-YFP/aca- cells. The small white arrows indicate the position of
the mRNA spots. The white dashed arrows indicate the direction of the stream in
these self-aggregation chemotaxis experiments.
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Figure 4.3: (A-B) Representative merged phase contrast and maximum intensity
fluorescent images depicting DAPI (nucleus), and cAR1 mRNA (pink) in WT and
cAR1-YFP/car1/3-/- cells. The small white arrows indicate the position of the
mRNA spots. The white dashed arrows indicate the direction of the stream in
these self-aggregation chemotaxis experiments. (C) Each cell was hand bisected,
defining front and back Regions of Interest (ROI) based on both the orientation
towards the aggregate center and the relative back enrichment of ACA-YFP in the
cell. (G) Simulated and linear estimates of mRNA units across cells is plotted for
ACA-YFP/aca- and cAR1-YFP/car1/3- cells. The boxes show the 50% confidence
region from the median (red line). The bars cover a region with 99% confidence
level from the median. All data points beyond this confidence level are considered
as outliers and shown with red dots. The statistical significance is inferred by the
t-test, * represents p < 0.05 and ** represents p < 0.01. (n

ACA

= 45, n
cAR1

= 24).
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4.4 Quantifying and simulating mRNA distribution in fluorescent

images

We sought to quantify the cellular distribution of ACA and cAR1 mRNA tran-

scripts in polarized chemotaxing cells. Since phase contrast images of fixed cells did

not show a sharp cell boundary, we were not able to utilize active contour algo-

rithms to define the cell boundary [90]. We instead took a Region of Interest (ROI)

approach, where the cell was hand segmented into visually equal front and back

regions, with the identification of the cell’s polarity being based on both observed

ACA protein enrichment at the back and the position of the local aggregation cen-

ter (Fig. 4.3.C). The mRNA content of each ROI was then calculated using two

methods: a linear estimate and full image simulation. In the first method, simple

integrated intensity measurements were used to quantify the spatial distribution of

mRNAs. We estimated the ACA and cAR1 mRNA intensity in a region in terms

of Gaussian point spread function (i.e. units) with a peak value, I
0

, and a spread

value, s, representing at most a few mRNA [91, 92]. To find candidate variables

for the mRNA units, we located the peak intensities in the images to find local

bright regions and fit 2-dimensional Gaussian point spread functions to each one.

By thresholding the distributions of their spatial size and absolute intensity, we

achieved finely peaked, uni-modal distributions of I
0

and s representing 274 isolated

units (Fig. 4.4.A-B). We then estimated the number of points in an ROI by divid-

ing the integrated fluorescent intensity in that region with the total intensity of a
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single unit, I
T

= 2⇡s2I
0

. The second method involved deconvolving the image with

Gaussian subunits via Monte Carlo simulations. To simulate the pattern, we used

the mean values for I
0

and s in the following accept/reject Monte Carlo pattern

formation procedure:

1) Calculate the maximum fluorescent intensity in the image, I
max

.

2) Pick a random location in the image and measure the total fluorescent intensity

at that location, I
local

.

3) Draw a uniformly distributed random number, r 2 [0, 1] . If I
local

/I
imax

< r,

then consider that point to be a location of a subunit and subtract a subunit’s

intensity profile from that location.

4) Repeat until no suitable locations remain
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Figure 4.4: Simulation and quantification of spatial ACA mRNA localization pat-
terns. (A) For each image, a peak finding routine was run on the mRNA florescent
channel (left). Isolated spots were identified by thresholding their size and intensity
(right). (B) Peaks were fit to Gaussian point spread functions. The resulting dis-
tributions were thresholded from above until fine, unimodal distributions remained
for the two fit parameters. The mean of these distributions were termed as units.
Both ACA and cAR1 mRNA showed comparable parameters. (C) The sequential
images from a single iteration of the image simulation procedure performed on the
mRNA fluorescent channel. Areas of yellow represent agreement. (D) The number
of units in a particular image was determined by minimizing the squared di↵erent
between the approximated image and the original. This is equivalent to minimizing
the chi-square parameter of the fit. (E) After performing the procedure multiple
times, the average image is calculated and used for quantification.
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This technique is a simple modification to pattern formation simulation tech-

niques utilized in the analysis of spatial point patterns [37, 55]. Performed once,

this procedure provides an estimated underlying pattern of mRNA subunits that

created the image. A repeat of this procedure will provide subtly di↵erent locations

for mRNAs, as well as a di↵erent total number present (Fig. 4.4.C), representing

the variety of configurations that would still correspond to a good match with the

original image. By repeating this process multiple times, the number of subunits

in an ROI is therefore estimated by the mean number of points placed in the ROI

during the various simulations, and the uncertainty is given by the standard error

(Fig. 4.4.D-E). This procedure therefore distinguishes itself from strict peak local-

ization in that it does not require the mRNA to be well-separated to infer the local

number density. Thus, these two complimentary procedures provide us with reliable

estimates of the local number of mRNA subunits throughout the fluorescent image

data set.

Both of these estimates modeled the image as being comprised of a discrete

number of fluorescent spots, which we refer to as mRNA units. These are by no

means single molecules and likely represent multiple individual transcripts. Using

peak finding algorithms on all of the images of both ACA and cAR1 mRNA and

thresholding their size and intensity, we identified a characteristic unit (Fig. 4.4.A-

B). We found that both cAR1 and ACA mRNA units were comparable in size and

intensity (Fig. 4.4.B). The linear estimate of the mRNA content of an ROI, then,

is the integrated intensity inside the region divided by the intensity of a single unit.

The simulated estimate, by contrast, rebuilds the image one unit at a time until the
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sum squared di↵erence between the simulated image (green) and the original confo-

cal image (red) is minimized (Fig. 4.4.C-D). This rebuilding is performed multiple

times to obtain an average image, representing a spatial map of all of the mRNA

units (Fig. 4.4.E). Using this method, the mRNA content of an ROI is then the

average number of mRNA units contained inside the ROI. Since both methods treat

the ROI as a container, this method of characterization only depends on the accurate

bisecting of the cell into front and back, being insensitive to the accuracy of defining

the cell boundary. We found that the simulated methods broader distribution in

estimates yields a stronger statistical power. This demonstrates the facility of in-

cluding a simulated estimate, as the linear estimates do not reflect the uncertainty

inherent in estimating the number of mRNA units over a cell population.

4.5 Results and Discussion

4.5.1 ACA mRNA and ACA protein asymmetrically localize to the

back of isolated and migrating cells

Using both methods, we measured no preferential cellular distribution of cAR1

mRNA units in cAR1-YFP/car1/3-/- single cells (Fig. 4.3.D). In sharp contrast,

a large proportion of ACA mRNA localized to the back of both WT and ACA-

YFP/aca- single cells (Fig. 4.3.D). For migrating cells, Dictyostelium cells can be

classified in di↵erent groups based on their location in the line of a stream with

respect to the aggregation center (Fig. 4.5.A). Cells arrange themselves either at

the front (near the aggregate), in the middle, or at the back of a stream of multiple
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cells. Using simulated images (Fig. 4.4), we quantified the number of ACA and

cAR1 mRNA units localized within the cell front and back in relationship to the

position of the cell in a stream (Fig. 4.5.B). We only considered cells that were

well polarized allowing hand segmentation, non-polarized cells touching the aggre-

gate center were not taken into the analysis (see eccentricity measurements, see Fig

4.5.A, right panel). We did not measure a preferential distribution of cAR1 mRNA

within individual cells in all stream positions analyzed. In contrast, the enrich-

ment of ACA mRNA at the back of cells became stronger in cells positioned in the

middle and back of streams (Fig. 4.5.B). Indeed, we found that as cells migrate

closer to an aggregation center, the ACA mRNA acquires a random cellular distri-

bution (Fig. 4.5.B). It’s well known that the mean local concentration of cAMP

controls the ability of the cell to adjust to changes in the local gradient [93, 94], a

phenomena known as “adaptation”. We envision that as cells get closer and form

an aggregation center, they are exposed to higher mean cAMP signals, resulting in

the ine�cient gradient sensing contributing to a loss in the asymmetric distribution

of ACA mRNA. However, cells at the far end of the aggregation center experience

a lower mean concentration, which allows better cAMP gradient measurement, al-

lowing the maintenance of a polarized state and the ensuing enrichment of ACA

mRNA at their back.
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Figure 4.5: The ACA mRNA is asymmetrically distributed at the back of the
streaming cells (A) Cartoon depicting the distribution of cells within a stream.
Each cell was characterized as either being at the back of a stream, in the middle of
stream or near an aggregate based on its position from the aggregate center. (B) The
simulated estimate of mRNA units across the cell is plotted for ACA-YFP/aca- (grey
box) and cAR1-YFP/car1/3 (white box) cells. The boxes show the 50% confidence
region from the median (red line). The bars cover a region with 99% confidence
level from the median. All data points beyond this confidence level are considered
as outliers and shown with red dots. The statistical significance is inferred by the
t-test, * represents p < 0.05 and ** represents p < 0.01, n = 15 � 52. (C-D)
The correlation between mRNA and its corresponding protein at the back of cells
is presented for ACA-YFP/aca- and cAR1-YFP/car1/3-/- cells (see Experimental
Procedures for details), n = 12� 45.
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In order to understand the functional significance of the ACA mRNA asym-

metry, we measured the degree of ACA-YFP protein enrichment at the back of

cells in the di↵erent stream populations. This value was obtained by measuring

the integrated YFP fluorescence intensity at the back of the ACA-YFP/aca- cells

(Fig. 4.5.C-D). We observed that the degree of ACA mRNA asymmetry strongly

correlates with the amount of enriched ACA-YFP at the back of cells (Fig. 4.5.C;

Pearsons correlation: 0.99), with cells at the back of streams showing the high-

est polarized distribution. This correlated polarization di↵ered significantly from

what was seen in cAR1-YFP/car1/3-/- cells, where we found no correlation be-

tween cAR1 mRNA and cAR1-YFP distribution (Fig. 4.5.D; Pearsons correlation:

0.01). As noted, we measured high eccentricity numbers for both ACA-YFP/aca-

and cAR1-YFP/car1/3-/- cells (Fig. 4.5.A, right panel), indicating that all cells

within the streams were polarized to the same extent. However, only the ACA

mRNA was preferentially enriched at the back of the cells. Together, these findings

suggest that the sustained enrichment of ACA-YFP at the back of cells arises from

newly translated ACA from the localized ACA mRNA transcripts.

4.6 Conclusions

Together, our findings show for the first time localized mRNA in the social

amoebae Dictyostelium discoideum. We show that the ACA mRNA is specifically

localized at the back of polarized cells, and that this is required for the relay of

signals during chemotaxis and streaming. Signal relay and streaming are essential
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to increase the recruitment range of cells when they migrate to a point source of

attractant [33]. We have previously proposed that ACA-containing vesicles are

secreted at the back of chemotaxing cells as exosomes [30], where they are required

for the formation of streams during chemotaxis. We reason that the localized ACA

mRNA allows the local translation and replenishment of ACA protein at the back

of cells, where it is necessary to relay signal to neighboring cells. We envision

that similar mechanisms are involved in other cellular systems, such as immune cell

signaling, where the maintenance of localized protein expression may be necessary

to allow for fast spatio-temporal events to occur.
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Chapter 5: A broken-contact order parameter for inferring inter-cellular

communication from patterns of externally guided mi-

grating cells

5.1 Overview

This chapter is adapted from the paper in preparation by Parker, Guven, Wang,

Ott, and Losert. [51] in which Can Guven and I developed a simulation based mi-

gration model for the group migration of Dictyostelium discoideum in the presence

of an external chemical gradient. We also defined a spatio-temporal contact network

based order parameter to distinguish between individual and cooperative migration,

and used this measure to investigate model perturbations.

We propose an order parameter for investigating the local spatial organiza-

tion often seen in migrating cell systems. Using a phenomenological model for

the group dynamics of Dictyostelium discoideum, we observe that monitoring the

fraction of broken cell-cell contacts over time resolves the characteristic structures

seen in simulations that are not captured by other global order parameters. We

then explore the use of this parameter to analyze experiments involving both me-

chanical and chemical perturbations. We demonstrate that adding adhesive forces
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between cells stabilizes streaming structures and diminishes otherwise independent

migration. However, the loss of the degradation of the chemoattracant diminishes

stream formation, almost eliminating the streaming phase altogether. We discuss

the application of this order parameter to experimental and theoretical work on D.

discoideum migration as well as extensions to other biological and physical systems.

5.2 Introduction

Much e↵ort has been made to understand the collective dynamics of the group

migration of the slime mold Dictyostelium discoideum, which is studied as a model

for chemotaxis [36, 95], individual amoeboid motion [90, 96, 97], and group migra-

tion [98,99]. Studying these phenomena provides insights into human inflammatory

response to wounds and infections as well as cancer cell migration [100].

D. discoideum cells both sense and secrete the same chemoattractant, cyclic

adenosine monophosphate (cAMP), providing a bias towards coordinated motion in

neighboring cells. For low densities or strong external chemoattractant gradients,

uniformly distributed D. discoideum cells move independently (see Fig. 5.1.a). How-

ever, other conditions allow for chemical signaling between cells, resulting in the for-

mation of chains of migrating cells called “streams” [36,101,102] (see Figs. 5.1(b,c)).

Though local in nature, stream formation is crucial for D. discoideum to ag-

gregate, which has strong physical and biological implications for the survival of the

organism. Changes in cell-cell communication or defected mechano-transductive

ability of the cells have been shown to inhibit stream formation [33, 34]. E.g.,
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mutant cells with diminished cell-substrate interactions do not form streams and

cluster in smaller aggregates, which results in aberrant sporulation (Fig. 5.1(e)). In

addition, Garcia et al [34] showed that cells that cannot degrade the chemical signal

also display aberrant stream formation, prolonging the self-aggregation of cells.

A current push in experimental and theoretical cell biology is investigating

what factors a↵ect the structure and facility of these streams [7]. These transient,

local regions of coherence are visible to the eye but means of quantifying streaming

behavior is an open area of research. Global order parameters (introduced by Vicsek

et al. [52]) have been applied to quantify streams but were not on their own able to

account for the local variations in density seen in streaming patterns [102].
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(a) (b)

(d) (e)

(c)

50 μm

Figure 5.1: (a) Initial state of cells (uniformly distributed). (b-c) Cells moving in
streams. (c) Final configuration of wild-type cells is a large aggregate. (d) Mutant
cells that cannot stream form smaller aggregates in their final configuration.
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In this work, we introduce a local order parameter calculated from the spatio-

temporal cell contact network. Using a mathematical model for D. discoideum group

migration, we demonstrate that the fraction of broken contacts within a window of

time can distinguish streaming from individual cell motion, and we use this quan-

titative characterization to investigate the model’s dependence on experimentally

relevant conditions. We then use this model to investigate the e↵ects that degrada-

tion and adhesion have on the streaming phase of the model. We find that adhesion

stabilizes streams and diminishes individual motion, likely prolonging short-lived

stream formation and maintain cell-cell contacts. In contrast, the loss of chemical

degradation strongly diminishes streaming to a narrow band of density and external

concentration parameters. This suggests that the temporal refinement of the local

gradient is required for coordinated chemotaxis.

5.3 Stochastic cell migration model

We demonstrate the quantification of streams utilizing a collective D. discoid-

ium migration model based on our prior work [102]. In this model the dynamics of

a single cell is described with three modules, gradient sensing (Eqs. (5.1) and (5.2)),

membrane protrusions (Eqs. (5.3) and (5.4)), and center-of-mass motion (Eqs. (5.5)

and (5.6)), supplemented by an equation (Eq. (5.7)) for the di↵usion, production,

and degradation of the chemoattractant. Each cell i is represented as a motile disk

with a defined front and back, corresponding to the direction of its motion. The

cell responds to the external cAMP concentration field, C(r, t) by aligning its target
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direction, g
i

(t), to a perceived gradient direction via the following two equations

(where |g
i

(t)| = 1)

ġ
i

(t) = !
�

g
i

(t)⇥ (H
i

(t)⇥ g
i

(t)) , (5.1)

H
i

(t) =
lrC(r

i

(t), t)

hC(r
i

(t), t)i
local

+K
D

+
p
⌘
�

⇠�(t) . (5.2)

According to (5.1), g
i

(t) orients itself with the vector H
i

(t) on a relaxation time

scale !�1

�

. The deterministic contribution to H
i

(t) (first term on the right hand side

of (5.2)) is proportional to the cAMP gradient if C is low and saturates to l(rC/C)

when C is large (C � K
D

), consistent with experimental observations [103] (l :=

p
D/⌫

0

, where D and ⌫
0

will be defined subsequently). According to (5.2), H
i

(t)

has a stochastic component modeled by two dimensional white noise of amplitude

⌘
�

(h⇠j
�

i = 0, h⇠j
�

(t)⇠j
0

�

(t0)i = �
jj

0�(t � t0), where j = x, y indicates the directional

component). This models the stochastic nature of the binding and unbinding of

cAMP molecules to receptors [103–106].

The “membrane protrusion” module models the cell’s protrusive response n
i

(t)

to its target direction of motion, and with the net direction of new protrusions

corresponding to the two equations

ṅ
i

= !
✓

n
i

⇥ (G
i

⇥ n
i

) , (5.3)

G
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i

+
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That is, the unit vector n
i

(t) responds to a noise-corrupted goal direction G
i

(t)

(with noise amplitude ⌘
✓

) on a time scale !�1

✓

.

Finally, the center-of-mass motion of cell i, located at point r
i

and moving

with velocity v
i

, is modeled by the equations,

v̇
i

(t) = ��v
i

(t) + v
0

n
i

(t) +
X

j 6=i

f
ij

, (5.5)

f
ij

(d
ij

) =
ri � rj
d3
ij

(1� d
ij

/2r
cell

) k
rep

(5.6)

Here, f
ij

is a “force” with strength k
rep

(⇥ is the unit step function) that prevents

the cells (assumed to be of size r
0

) from occupying the same space. In the absence

of mechanical interactions (i.e., k = 0), Eq. (5.5) can be integrated to yield v
i

(t) =

v
0

R
t

�1 e��(t�t

0
)n

i

(t0)dt0. This identifies the center-of-mass motion as a “sum over

protrusions” [90] with a characteristic time scale ��1, where  is a time-independent

parameter selected so that the speed |v
i

| suitably averaged over cells is v
0

(see

supplementary information).

We simulate Eqs. (5.1)-(5.6) in a square chamber with side L = 0.33 mm, cell

density ⇢, and periodic boundary conditions for the cell motion (thus, if a cell leaves

through one of the four boundaries, it is reintroduced at the opposite boundary).

The cells are initially distributed to be not in contact but otherwise random, and

the simulation is let run su�ciently long to reach steady state. The dynamics of the
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chemoattractant inside the chamber are governed by the following di↵usion equation,

@
t

C = Dr2C � ⌫(y)C + s
X

j

�(r� r
j

) , (5.7)

The first term on the right hand side of Eq. (5.7) represents di↵usive spreading of

the chemoattractant with di↵usivity D. The second term represents global degra-

dation of the cAMP field by phosphodiesterases secreted by the cells. The third

term represents a constant secretion of cAMP from each cell with rate s [33]. We

choose the form of ⌫(y) and the boundary conditions on C(x, y, t) to mimic be-

havior experiments performed in no-flow gradient chambers [102]. The boundary

conditions are C(x, 0, t) = 0, C(x, L, t) = C
0

, C(x + L, y, t) = C(x, y, t), while

⌫(y) = 4⌫
0

y/L(1� y/L) where ⌫
0

is a coe�cient reflecting the rate of degradation.

5.4 Quantifying coordinated motion in migrating cells

Fig. 5.2.(a-c) show model simulations of the three steady state phases of

this model (individual motion, streaming, and aggregation)for a representative set

of parameters and three values of concentration strength, C
0

. For high C
0

, the

cells do not communicate, moving upward with a di↵usive motion in the x-direction

(Fig. 5.2.a). For moderate C
0

, the cell’s secretion of cAMP results in a system size

stable stream, (Fig. 5.2.b). For low C
0

, these streams become unstable and the cells

aggregates (Fig. 5.2.c).

To quantify this behavior, we define a local order parameter, F , as follows. At

time t
0

we consider two cells with d
ij

< 2r
0

to be in contact, where d
ij

:= |r
i

� r
j

| is

84



the distance between cells i and j (r
0

is the cell radius). We then look at time �t in

the future and calculate the fraction of those contacts that no longer exist, N
broken

/N ,

where N is the total number of contacts at time t
0

. Our order parameter, F , is then

the time average over t
0

, hN
broken

/Ni
t0 , normalized by the same value achieved for

simulations with s = 0 (cells not secreting cAMP). This normalization insures that,

though the nominal value of the fraction of broken links increases with �t due to

the motion of the cells, the order parameter itself is su�ciently independent of the

time window. Since s = 0 implies no chemical signaling between cells, F ⇡ 1 implies

persistent yet individual motion while F < 1 implies local coordination of cells.

We compare this order parameter to the mean progression index (introduced

by Vicsek et al [52]), M , which is defined as the average of v
i

(t) averaged over t and

i, normalized by the average cell speed, v
0

, M := |hvi|/v
0

. M is therefore a measure

of the cell transport rate along the net displacement of the stream parallel to the

chemoattractant gradient.

In Fig.5.2(d), both F and M are plotted for varying ⇢ and C
0

. For strong ex-

ternal chemical signal or low densities, the fraction of broken links is due to random

motion in the x-direction, with all cells moving upward (F ⇡ 1, M ⇡ 1). As the

chemical signal is decreased or density increased, the cells begin to stream, coordi-

nating their lateral position and reducing the number of broken contacts while cells

continue to move upward (F < 1, M ⇡ 1). As the streams become unstable and

collapse into aggregates, the fraction of broken links is small but non-zero and cells

stop migrating upwards (F ⌧ 1, M ⌧ 1). As is seen, for regions of aggregation

or individual motion, both measures yield the same information. However, M re-
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veals only the transition from motion to aggregation while F shows a broad region

of density and concentration values that yield coordinated streaming cell motion.

This clearly demonstrates that F is capable of more completely characterizing the

dynamic phases of D. discoideum cell migration.
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Figure 5.2: (a-c) Snapshots of the simulations demonstrating the three steady state
dynamic modes: individual motion, streaming, and aggregates (⇢ = 750 mm�2)
(d) The mean progression index (left) and the fraction of broken links (right) for a
variety of ⇢ and C

0

values. (e) The fraction of broken links for cells with intercellular
adhesion (f) The fraction of broken links for cells that do not degrade cAMP
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5.5 Chemical and mechanical perturbatons a↵ect stream stability

We now are positioned to explore perturbations to the experiment and their

e↵ects on streaming. Our first perturbation was to modify the chemical interactions

by removing degradation of the cAMP signal, which mimics experiments done with

PDE1� cells. Not only will this a↵ect the externally imposed signal, but will also

diminish the cell’s ability to locate each other, since degradation removes previously

secreted chemoattractant to amplify more recent signals. The second perturbation

was to include a small adhesive force between cells, modifying Eq. 5.6 to

f
ij

(d
ij

) =
ri � rj
d2
ij

(1� d
ij

/2r
cell

) (k
rep

/d
ij

� k
adh

)⇥(2r
0

� d
ij

). (5.8)

We set the adhesion to be a small e↵ect, with k
adh

/k
rep

= .05. This was to keep

our model results still informative as it would not draw the cells too close together.

The Looking at the fraction of broken links for cells with inter-cellular adhesion

(Fig. 5.2.e), we see very little change along the aggregate/stream boundary. This

suggests that a small amount of adhesion doesn’t broadly increase the instability of

streams, causing them to collapse into aggregates. However, for high concentrations

and low densities, there is a shift towards more cooperative motion as adhesion

prevents quick migration away from one’s neighbors, thus better relaying of the

locally secreted signal. This suggests that adhesion overall broadens the streaming

regime.

However, when chemical degradation is turned o↵ (Fig. 5.2.f), the streaming
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regime dramatically. This narrowing is in part due to the growth of the individual

motion region, suggesting that degradation is needed to produce the sharper gra-

dients that allow cells to find each other in the presence of stronger signals. The

narrowing is also due to the shifting of the aggregate/streaming boundary, where cell

populations that were once able to distinguish the external signal instead collapse

in on themselves. This is likely do to the overwhelming build up of chemoattrac-

tant, washing the external signal out. This confirms the vital role for degradation

in autocrine signal relay.

5.6 Conclusions

In this work, we have shown that monitoring the spatio-temporal contact

network is a useful tool for investigating cellular dynamics. Specific to streaming,

the contacts broken over time show the ordering in the system due to increases

in cell-cell interactions through variation of external parameters. We used this

technique to demonstrate the sensitivity of the streams to mechanical and chemical

perturbations, demonstrating that adhesive forces can stabilize interactions even

in the absence of streaming, while the loss of the ability to degrade the external

chemical signal reduces the ability for cells to move cooperatively. Further work

will be to model “paracrine” signal relay, which is relevant to modeling neutrophil

migration who secrete and respond to LTB4 along with a host of other cytokines [26].
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Chapter 6: Summary and Future Outlook

In this work, I’ve demonstrated various di↵erent ways to characterize pattern

sets for exploring biological questions. Biological pattern formation presents special

issues due to the inherent noise of cell-to-cell variability but also in the complicated

and often non-linear aspects of phenomena. This gives rise to the need to use more

outside-of-the-box tools as well as focus on simulation based approaches to better

approximate null models to create coherence among patter sets.

In chapter 2, I demonstrated techniques using topological measures to charac-

terize patterns, allowing for the robust sorting of pattern sets into like groups. We

showed that these measures outperform previously used second order functionals,

and correctly divided non-interacting protein patterns. From an analysis perspec-

tive, this work focused primarily on choosing the right statistical measure, wanting

to leverage all moments of the pattern simultaneously.

These functionals, however, are hard to interpret visually and are themselves

homogeneous functions of each pattern’s number intensity. This means we cannot

use them to define length scales to investigate clustering in the patterns. So, in

Chapter 3, I used a modified pairwise correlation function [78], using simulation

techniques to create individualized statistical baselines for each cell to account for
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the large scale features associated with protein-membrane interactions and regions

of poor image quality. From an analysis perspective, this research focused its atten-

tion on the appropriate null models for the set, a key observation for dealing with

complicated patterns. By re-normalizing the each cell’s pairwise correlation func-

tion by its associated null model, I demonstrated that the broad scale heterogeneity

in the point pattern sets are dramatically reduced, allowing for the identification

of a clustering length scale of about 500 nm. Further using individualized baseline

patterns as a reference, I performed cluster analysis on the pattern sets and was

able to show that, at that length scale, LAT proteins cluster in small structures of

two or three proteins, but that T-cell activation diminishes this hierarchy.

In Chapter 4, I turned my attention to spatial patterns where the point loca-

tions aren’t known but must be inferred from the heterogenous intensity distribution.

The data in question was a set of images from FISH experiments with Dictyostellium

Discoidiem cells that are self aggregating. Two di↵erent types of mRNA, ACA and

cAR1, had been fluorescently labeled along with their associated proteins and the

task at hand was to quantify the relative front/back distribution of these molecules.

Adapting techniques to simulate heterogenous Poisson processes, I used a brute

force approach to infer the local number densities of each molecule in each image.

With this approximated density field, I was then able to measure the front/back

distribution of each molecule in both the absolute sense as well as proportionally

across the cell. Doing this found that whereas cAR1 mRNA has no preferential

location in the cell, ACA mRNA preferentially locates to the rear of the migrating

cells. Further, this spatial preference is most prominent in cells that are just joining
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streams, and steadily diminishes as the cells approach the aggregate.

Finally, in Chapter 5, applied both the notion of selecting the right measure

and the right statistical baseline to study a model of D. discoidieum migration and

the e↵ects that both mechanical and chemical perturbations have on dynamic mi-

gration modes, namely individual motion, streaming, and aggregation. In choosing

the right measure, I both focused on the need for higher order measures than the

chemotactic index as well as the need to consider temporal stability in the pattern,

settling on looking at the average fraction of broken contacts within a time window.

This was then normalized by the same measure for non-interacting cells, allowing

for a pseudo-phase diagram to be made with respect to density and external concen-

tration for each simulation condition. After demonstrating this measure’s ability to

distinguish the dynamic steady states of the model, I showed that cell-cell adhesion

doesn’t e↵ect the streaming/aggregate transition but mainly coordinates motion in

higher concentration regions. I also showed the lack of chemical degradation all

but eliminates the ability of cells to stream, owing to the inability to clarify local

gradients.

In regards to the analysis techniques themselves, the obvious extension of these

e↵orts is to multi-color and multi-disperse pattern sets. Current e↵orts in super-

resolution imaging is to fluroescently label more and more molecules, which would

allow for investigation into the structure of the molecular complexes that form after

T-cell activation. This would allow for the inference and potential identification

of what chemical reactions occur downstream of TCR binding events, which could

yield dramatic insights in immune system research. Similarly, cell migration assays
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with cell mixtures can be done to look at competition and cell sorting, meaning

that our spatio-temporal contact network measure should be adapted to networks

with di↵erent node labels. In both instances, this creates combinatoric complexity

in both defining the correct measures and the appropriate null models, which itself

requires well defined questions to be answered each time their asked.

In regards to the cell migration model, current work in modeling chemotaxis

is focused on the paracrine signal relay seen in neutrophils. The cell response to

this type of signaling is much more nuanced and complex than D. discoidieum, and

whether or not the cells move cooperatively towards the sight of the wound is still

an open question. Further, neutrophils migrate in the presence of other cell types,

rushing to the sight of the wound first which leads to cell sorting. So, having both

the control of a simulated model and spatio-temporal analytics that can measure

interactions in poly-disperse systems would put us in a unique place to contribute

to the understanding of human immune response.
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Chapter A: Appendix B: Supplemental Material for Chapter 2

A.1 Software

To approximate the 2-D Minkowski functionals of our patterns, we relied ex-

clusively on the software described in [43], which was available online at http:

//www.mathe.tu-freiberg.de/inst/stoch/Stoyan/morph2D/. 1. This program

takes as input rmin, dr, and rmax. Since our interest is in automation we used the

same values for all of our patterns (r
min

= dr = .01, r
max

= 100).

For both smoothing and applying the Functional Principal Component Anal-

ysis, we used the Functional Data Analysis MATLAB packages that are available

online at www.functionaldata.org, and we relied on their description in [64] for

implementation. Mimicking the procedure of [45], we first smoothed our functionals

using cubic b-splines.

To cluster using Ward’s method, we first utilized MATLAB’s implementa-

tion in their “linkage” function. To implement modularity maximization, we used

the weighted version of the Fast Modularity algorithm which can be found online

at http://cs.unm.edu/~aaron/research/fastmodularity.htm. The specifics of

1At the time of this paper’s submission, this website was down; we are in the process of notifying
the appropriate people about this issue
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the algorithm are the same as in [73], but maximizes the weighted definition of

modularity (for a description of this alteration, see [74]).

Other home made programs were written to compute the second order func-

tionals, simulate point patterns, and implement various portions of the project

(either in MATLAB or C). Those interested in discussing these programs should

contact the authors.

A.2 Intensity Scaling

As reported in [70], the Minkowski functionals are homogenous with regard to

domain scaling. To be specific, for any parameter � > 0 and domain ⌦ ⇢ Rd, the

n-th Minkowski functional M
n

(|⌦|) satisfies the relation

M
n

(|�⌦|) = �d�nM
n

(|⌦|) (A.1)

This means two patterns with di↵erent overall number intensity will have di↵erent

Minkowski functionals even if they are the same type of pattern. To address this

in our pattern comparison, all patterns were scaled to unit intensity before their

Minkowski functionals were approximated.
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A.3 Approximating g(r)

To approximate the pairwise correlation function g(r), we used the estimator

ĝ(r) = N�1��1

NX

i=1

w�1

i

(r, dr)
X

i 6=j

I(|~r
i

� ~r
j

| < r). (A.2)

Here, I(x) is the indicator function and � is the number intensity. The weight w
i

is the portion of the area of the disc centered on ~r
i

with inner radius r and outer

radius r + dr that is contained in the pattern window. We found that this method

achieved better results than that of [45], where g(r) is approximated by exploiting

it’s relation to the derivative of Ripley’s K-function.

A.4 Pattern Simulation

Binomial processes were simulated using MATLAB’s built in random number

generator and scaling the results. MATLAB code to simulate Strauss processes can

be found in [107], and Baddelley-Silverman processes were simulated using home-

made software based on the procedure described in [41].
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Chapter B: Appendix B: Supplemental materials for Chapter 3

B.1 Approximating g(r)

To approximate the pairwise correlation function g(r), we used the estimator

ĝ(r) = N�1��1

NX

i=1

w�1

i

(r, dr)
X

i 6=j

I(|~r
i

� ~r
j

| < r). (B.1)

Here, I(x) is the indicator function and � is the number intensity. The weight w
i

is

the portion of the area of the disc centered on ~r
i

with inner radius r and outer radius

r + dr that is contained in the pattern window, which corrects for edge e↵ects.

B.2 Theoretical considerations for heterogeneous cluster analysis

B.2.1 The heterogeneous pairwise correlation function

In spatial process statistics, each spatial pattern is a stochastic realization of

an underlying point process: no two patterns are ever identical, but hallmarks of the

point process are instead embedded in the di↵erent spatial correlations of the points

and their relative distances. Following the formalism of Ref. [78], we consider here a

planar point pattern � = {~r
i

}, where the first-order intensity of the is pattern �(~r)
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with mean value �̄. We define the second order density ⇢(~u,~v), in that ⇢(~u,~v)d~ud~v

is the probability that the point pattern Y has a point in each of the di↵erential

rings centered at ~u and ~v. Thus, the heterogeneous pairwise correlation function of

the pattern � is given by [78]:

g
inh

(~u,~v) =
⇢(~u,~v)

�(~u)�(~v)
(B.2)

We assume su�cient stationarity in the pattern to assert that g(~u,~v) = g(|~u � ~v|)

where | · | is the euclidean norm. For our purpose, the set of N patterns X = {�
i

}

has a companion set of N positive functions ⇤ = {�
i

(~r)}. We assume that there

exists an underlying process such that hg
inh,i

(r)i = g
inh,⇤

(r) with probability 1 as

N ! 1. If, then, for any r
c

< 1, g
inh,⇤

(r
c

) < 1, then we can infer that the

underlying, environment filtered process is a more clustered process than random.

To calculate the heterogeneous pairwise correlation function, we blend the

approaches of both Ref. [78] and [79]. We take each pattern in turn and simulate

1000 heterogeneous Poisson null models for each pattern (for simulation details, see

below). For both the original pattern and all of it’s random recreations, we calculate

the approximate heterogeneous function as

�(r) = ⌃n

i=1

⌃
i 6=j

I[r
j

2 @b
~ri(r)]

n(n� 1)w(~r
i

)
, (B.3)

where @b
~o

(r) is di↵erential surface of the Borel set centered at ~o with radius r, I[·]

is the indicator function, and w(~r) is an edge correction factor (cite, see discussion
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below). Then, we approximate the heterogeneous pairwise correlation function for

pattern i as

ĝ
inh,i

(r) =
�

data

(r)

h�
random

(r)i (B.4)

With the approximated function g
inh,�

(r) achieved by an ensemble average.

B.3 Simulating a heterogeneous Poisson null model for an existing

point patter

Starting with a blank window of the same dimensions as the original pattern,

we iteratively follow these steps:

1) Pick a random location in the simulation window, ~r
test

2) Calculate the quantity p = �( ~r
test

)/max(�(~r)), where �(~r) is the approximated

first-order intensity of the pattern to be randomized.

3) Draw a uniformly distributed random number, r 2 [0, 1] . If r < p, then place

a point in the simulated window at location ~r = ~r
test

. Otherwise, repeat.

In our work, we continued this process until the number of points, N , in the two

patterns matched. This accept/reject strategy recreates the variation in the local

number density of the original pattern, treating it as an un-normalized cumulative

probability density function [55]. We approximated the first-order intensity function
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through kernel density estimation [37], where

�(~r) = h
h

(|x� x
i

|)
h

(|y � y
i

|)i
i

(B.5)

where 
h

(d) is the Epinechkov kernel [108]


h

(d) =
3

4h
(1� d2

h2

)I[d < h] (B.6)

with h being the “bandwidth” of the estimating kernel.
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Chapter C: Appendix C: Supplemental materials for Chapter 4

C.1 Experimental procedures

C.1.1 Preparation of cells

WT (AX3), ACA-YFP/aca, and cAR1-YFP/car1/3 cells were grown in shak-

ing cultures to 4 106 cells/ml in HL5 media [2]. They were harvested by centrifuga-

tion, washed once in developmental bu↵er (composition). To allow di↵erentiation,

the cells were shaken at 100 rpm for 47 h with pulses of 75 nM cAMP every 6

min [109,110]. The cells were then processed according to the assay performed.

C.1.2 Antibodies and Immunoblotting

Whole cell lysates were subjected to a 420% Tris-HCl SDS-PAGE analysis

using the Criterion gel system and transferred to Immobilon-P (Millipore). The

Immobilon-P was blotted with anti-GFP monoclonal antibody (1:5000; Babco),

anti-RPL8 (ARP40215, Aviva Systems Biology, 1:1000) anti-actin (C-11; Santa

Cruz Biotechnology, 1:2000) and detection was performed by chemiluminescence

using a donkey anti-mouse horseradish peroxidasecoupled antibody (1:5000; GE

Healthcare) or an anti-rabbit horseradish peroxidase-coupled antibody (1:10,000;
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GE Healthcare) and the ECL Western blotting detection reagents (GE Healthcare).

C.1.3 Chemotaxis and streaming assays

The chemotaxis assay were performed as previously described [2]. Briefly, 57-h

di↵erentiated cells were plated on chambered cover slides as described [33,111] and

allowed to adhere and self-stream for 30 min to 1 hr. Alternatively, chemoattractant

gradients were generated using a microinjector (Eppendorf) with micropipettes filled

with 1 M cAMP. The micropipette was placed in the chambered cover slides and

images were captured at specified times. Once the cells started to align in streams

and form self-aggregates, they were fixed and processed for in situ hybridization.

C.1.4 Fluorescent in situ hybridization (FISH)

Vegetative or di↵erentiated cells were fixed in 3% paraformaldehyde (32%

(wt/vol)) and permeabilized with Triton X-100 (0.1% vol/vol) in phosphate bu↵er.

A mixture of 48 FISH DNA probes ( 22 nt long) was commercially synthesized

(Biosearch technologies) and processed according to the manufacturers protocol.

Briefly, fixed cells were hybridized with the FISH probes for 4 hrs at 37C in 10%

formamide in 2X saline-sodium citrate (SSC) hybridization bu↵er. The coverslips

were washed three times with 2X and 1X SSC strengths bu↵ers and the nuclei were

stained with DAPI. The coverslips were mounted and allow to cure. The slides

were observed with a confocal microscope (Axiovert 200; Carl Zeiss, Inc.). Sin-

gle plane images and Z stacks (1-m confocal slice) were taken using 63 and 100X
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plan neofluor objectives (Carl Zeiss, Inc.) and Z stacks were arranged in maximum

intensity projections.

C.2 Perturbations

5 M LatA (for 10 or 30 min; Invitrogen) or 400 M CHX (for 10 or 30min;

Sigma-Aldrich) was added to cells plated on a cover slip. Cells were fixed and

processed for in situ hybridization as described above. Simultaneously, cells were

harvested for total RNA isolation (Trizol; Invitrogen) and RT-PCR analysis.

C.3 RNA isolation and analysis

RNA was isolated using Trizol LS reagent (Invitrogen) and contaminating

DNA was removed by treatment with RQ1 DNase (Promega) for 30min at 37C.

One microgram of RNA was reverse transcribed using SuperscriptII Reverse Tran-

scriptase (Invitrogen) and random hexamer primers, according to the manufacturers

instructions. cDNA was used for PCR reactions in a GeneAmp PCR System 9700

(Applied Biosystems). Densitometry analysis was performed using ImageJ 1.42q

(National Institutes of Health).

C.4 Cycloheximide recovery

Cells were di↵erentiated as described for 4 hrs in shaking flasks containing 2

107 cells/ml. At the end of 4 hrs, 1.6 mM CHX was added to the cells in shaking

flask for an additional 2 hrs to inhibit protein synthesis. Cells were then harvested
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and washed to remove traces of the drug and resuspended in phosphate bu↵er. The

cells were plated and the recovery of fluorescence was monitored at di↵erent time

points by imaging using confocal microscopy. In a parallel set of experiment, cells

were fixed and processed for in situ hybridization, as described. For western blot

analysis, 2.7 106 cells were harvested at various time points and resuspended in

Laemmli bu↵er [112]. Whole cell lysates were subjected to a 420% Tris-HCl SDS-

PAGE as described above.

C.5 Ribopuromycylation

Ribopuromycylation was performed as previously described [113, 114] and

modified for Dictyostelium. Di↵erentiated cells were treated with 91 M PMY and

208 M emetine for 10 min at RT. All extraction procedures were performed on ice

using reagents pre-chilled to 4C. Cells were incubated for 2 min with 500 l/well

permeabilization bu↵er (50 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 25 mM KCl, 355

M CHX, EDTA-free protease inhibitors, and 10 U/ml RNaseOut containing 0.015%

digitonin [Wako Chemicals USA]). After the extraction step, an aliquot was used for

western blot analysis. The extracted cells were spun, resuspended in IP bu↵er (40

mM Tris-HCl, ph 8.0, 2 mM EDTA, 50 mM NaCl, and 1% CHAPS) and Complete

protease inhibitor cocktail (Roche), and solubilized for 1 h on ice. After solubi-

lization, 100 l of a 50/50 protein A sepharose CL-4B (GE Healthcare)/IP bu↵er

slurry was added to each sample and incubated using a rotator for 1 h at 48C to

preclear the lysate. The protein A sepharose was removed by centrifugation and
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15 l of anti-PMY monoclonal antibody was added per milliliter of lysate and incu-

bated on a rotator overnight at 48C. 100 l of a 50/50 protein A sepharose slurry was

added and incubated for 2 h at 48C to precipitate puromycylated protein complex.

Samples were washed four times with 1 ml IP bu↵er. The precipitated proteins

were released from sepharose beads by adding Laemmli bu↵er and boiling for 10

min. The resulting samples were run using the Criterion gel system (Bio-Rad Lab-

oratories) using a 420% Tris-HCl gel and immunoblotted with anti-rpl8 polyclonal

antibody. RNA associated with the immunoprecipitated complex was dissociated

with 10 U/ml RNaseOut containing 0.015% digitonin and used in RT-PCR.

C.6 Measuring cell polarity

The front/back polarity was determined by manual segmentation, calculating

the ratio of the long and short axis of the cell length in the direction of the stream

towards an aggregate center. The extent of polarization of the cells was calculated

using eccentricity equation ✏ =
p
1� b2/a2. A value of 1 indicates a parabolic or

polarized cell shape and a value of 0 indicates a circle or non-polarized cell shape.

During this process, we did not take into account cells whose boundaries could not

be distinguished from each other in a stream.
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C.6.1 ACA translation originates in the cytoplasm and localizes to

the back of cells as they acquire polarity

To visualize the appearance of newly synthesized ACA protein and mRNA in a

spatiotemporal fashion, we followed the cellular distribution of the ACA protein and

mRNA following recovery after CHX treatment. We treated ACA-YFP/aca- and

cAR1-YFP/car1/3-/- cells with 1.6 mM CHX for 2 hrs to inhibit protein synthe-

sis. As previously reported [30], this treatment dramatically decreased ACA-YFP

levels but did not alter the expression level of cAR1-YFP (Fig. C.1). After CHX

treatment, cells were washed and ACA-YFP or cAR1-YFP protein recovery was

monitored in live cells using confocal microscopy and by Western analysis. In par-

allel experiments, at corresponding recovery time points, samples were fixed and

hybridized with FISH probes to monitor the appearance and cellular distribution

of ACA and cAR1 mRNA. As seen in Figure C.2.A, long-term CHX treatment

rendered the cells non-polar and the ACA-YFP signal could not be detected (Fig.

C.2.A; 0 min), although a few cells retained ACA mRNA expression (Fig. C.2.B; 0

min). As early as 30 min following CHX removal, when cells remained non-polar,

newly synthesized ACA-YFP protein appeared in a vesicular pool within the cyto-

plasm. The recovery of ACA-YFP expression was also observed 30 min after CHX

removal by Western analysis (Fig. C.1). One hour after recovery, ACA-YFP became

enriched at the back of the now polarized cells and by 2 hrs, a strong ACA-YFP

plasma membrane labeling was evident (Fig. C.2.A). Similarly to the ACA pro-

tein recovery, 30 min after CHX removal the ACA mRNA signal strongly appeared
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in a random distribution in the cytoplasm of the non-polarized cells. As the cells

acquired polarity, within 1-2 hrs after CHX removal, the ACA mRNA signal also

became enriched at the back of the cells (Fig. C.2.B). Importantly, under these same

conditions, cAR1-YFP and cAR1 mRNA signals remained unchanged throughout

the entire recovery time (Fig. C.2.C-D). Using the quantification method described

above, we estimated the number of ACA mRNA units in the front and back of cells

at di↵erent times during CHX recovery. As the cells recovered and acquired polarity,

we measured an increase in the number of ACA mRNA units at the back of cells,

reaching a maximum 2 hrs after CHX removal (Fig. C.3.A). These findings estab-

lish that ACA mRNA first occurs randomly in the cytoplasm and that upon the

acquisition of cellular polarity, the ACA translation machinery spatially localizes to

the back of migrating, polarized cells.

Cycloheximide Recovery

 GFP

 actin

 actin

0 60 120 0 15 30 60 120 min

0 60 120 0 15 30 60 120 min

ACA-YFP/aca

0 15 30 60 120 min0 60 120

cAR1-YFP/car1/3-/-

 GFP

DMSO Recovery

Cycloheximide Recovery

DMSO

0 60 120 0 15 30 60 120 min

Recovery

Figure C.1: . Loss of ACA-YFP but not cAR1-YFP after CHX treatment Western
analysis showing protein levels of ACA-YFP from ACA-YFP/aca cells or cAR1-YFP
from cAR1-YFP/car1/3-/- cells in the presence of 1.6 mM CHX and during the
recovery time points. DMSO-treated cells were used as control for this experiment.
Representative data of two independent experiments are shown.
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Figure C.2: ACA translation occurs in the cytoplasm followed by localization to the
rear of the polarized cells (A) Representative phase contrast (upper panel) and con-
focal fluorescent (lower panel) images of ACA-YFP/aca- treated with 1.6 mM CHX
for 2 hrs. Fluorescent recovery is monitored after CHX removal. (B) Representative
maximum intensity projections of confocal fluorescent images of ACA-YFP/aca-
cells depicting DAPI (nucleus) and ACA mRNA (red). Red arrows indicate the
nascent ACA transcription sites after CHX removal. The white star indicates the
location of the aggregation center. (C) Representative phase contrast (upper panel)
and confocal fluorescent (lower panel) images of cAR1-YFP/car1/3-/- treated with
1.6 mM CHX for 2 hrs. (D) Representative maximum intensity projections of con-
focal fluorescent images depicting DAPI (nucleus) and cAR1 mRNA (red). For (A)
and (C), red arrows indicate the appearance of the nascent cellular ACA transla-
tional sites while white stars indicate the location of the aggregation center. For
(B) and (D), white stars indicate the location of the aggregation center.
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Figure C.3: (A) The simulated estimate of ACA mRNA units 60 and 120 min after
CHX removal across the cell is plotted for ACA-YFP/aca- cells. The boxes show
the 50% confidence region from the median (red line). The bars cover a region with
99% confidence level from the median. All data points beyond this confidence level
are considered as outliers and shown with red dots. The statistical significance is
inferred by the t-test, * represents p < 0.05. The data excludes the 0 min time point
as these cells are not polarized, n = 6 � 15. (B) Western analysis of C-terminally
puromycylated nascent chains released from ribosomes with and without puromycin
(PMY) treatment in ACA-YFP/aca- and WT cells (upper panel). The complex
was immunoprecipitated using the anti-PMY mAb 12D10 and immunoblotted with
the anti-rpL8 polyclonal antibody to detect associated ribosomes (middle panel).
The associated RNA was dissociated from the complex and the presence of specific
mRNAs corresponding to acaA and carA were detected by RT-PCR using specific
primers (bottom panel). This figure is a representative of at least four independent
experiments.

We next wanted to assess if ACA is indeed actively translated in cells. For this

purpose, we wanted to determine if ACA mRNA is associated with actively trans-

lating ribosomes. We adopted the ribopuromycylation method [113] to immobilize

puromycylated nascent chains on ribosomes in the presence of the chain elongation

inhibitors puromycin (PMY) and emetine. We observed high amounts of puromycy-

lated nascent protein chains in both WT and ACA-YFP/aca- cells (Fig. C.3.B, top

panel). The nascent chains bound to the ribosomes were immunoprecipitated with

the -puromycin antibody and blotted for rpl8 a large ribosomal protein [113, 114].

We found that the immunoprecipated PMY tethered actively translating ribosome
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complex in both WT and ACA-YFP/aca- cells, although we routinely observed a

much stronger signal in ACA-YFP/aca- cells (Fig. C.3.B). Remarkably, RT-PCR

analysis of the dissociated complex further revealed that ACA mRNA, but not

cAR1 mRNA, is associated with the actively translating ribosomes (Fig C.3.B).

These findings establish that ACA is actively translated in chemotaxing competent

cells.
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Chapter D: Appendix: Supplemental materials for Chapter 5

D.1 Cell motion experiments

D.1.1 Cell culture and development

Wild-type Dictyostelium discoideum (AX2) and the talin A null (talA-) mu-

tant cells (in an AX2 background) were a generous gift from Carole Parent’s lab

(NIH/NCI). Cells were cultured in HL-5 at 1�4⇥106 cells/mL. For di↵erentiation,

cells were harvested at 4⇥106 cells/mL and transfered to a beaker at 2⇥107 cells/mL

shaken at 150 rpm. Cells are developed for 5 hours (wild-type) or 6 hours (talA-)

in development bu↵er (5 mM Na2HPO4, 5 mM NaH2PO4, pH 6.2, 2 mM MgSO4

and 0.2 mM CaCl2). During development, cells are stimulated with pulses of cAMP

(50 nM every 6 minutes). In the last 30 minutes of development, CellTracker Green

(Invitrogen) (10 µg with 0.8% DMSO) was added to cells for fluorescent-labeling.

The cells were then washed twice in phosphate bu↵er (5 mM Na2HPO4, 5 mM

NaH2PO4, pH 6.2) and resuspended in phosphate bu↵er at 5⇥ 105 cells/mL.
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D.1.2 Chemotaxis assay

In the needle assay experiments, 800 µL phosphate bu↵er containing 4 ⇥ 106

cells were dropped in a 2-well Lab-Tek chamber and cells were allowed to settle for

10 minutes. Then, a micropipette containing 0.1 mM cAMP were placed at the

center of the imaging field and closed to the bottom of the chamber. An Eppendorf

Femtojet system, which was connected to the micropipette, was set at a pressure of

130 hPa to continuously release cAMP from the micropipette as previously described

( [33]. The fluorescent images were taken by a Leica SP2 confocal microscope every

6 seconds for 150 minutes. Data from the no-flow linear gradient was taken from

Ref. [102].

D.2 Parameter selection based on experiment

D.2.1 The Concentration Profile

The concentration profile is given by solving the equations

@
t

C = Dr2C � ⌫(y)C + s
cell

⇢(r, t). (D.1)

Where the degradation profile ⌫(y) is given by

⌫(y) = ⌫
0

y

L
y

✓
1� y

L
y

◆
. (D.2)
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Figure D.1: The y-component of the signal vector seen by the cell in the absence of
cell sectretion (i.e. s

cell

= 0). As the external concentration is decreased, the signal
goes to a constant.

Selecting variables common to experiment and prior modeling [102], we chose L
x

=

1 mm, L
y

= 0.33 mm, ⌫
0

= 2.25 min�1, s
cell

= 250 nM , and cell injection rate

⇢
o

v
0

= 7.5 cells min�1 mm�1. Defining the dispersion length �
cAMP

=
p

D/⌫, we

modeled the dimensionless chemoattractant signal seen by the cells as

h
0

(r, t) = �
cAMP

rC

hCi
local

+K
D,cAMP

(D.3)

Where K
D

= 50 nM . This for is consistent with the formula for the relative di↵er-

ence of bound cAR1 receptors on the surface of the cell (see Ref. [103]). For s
cell

= 0,
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the symmetry in the x direction allows the steady state equation to reduce to a one

dimensional second order di↵erential equation. Fig. D.1 shows the solution to the

steady state equation for the y-component of the signal for varying boundary values

C
0

.

h
0,y

(y) = �
cAMP

@
y

C(y)

C(y) +K
D,cAMP

(D.4)

As can be seen, as C
0

! K
D

, the signal decreases towards a constant value.

D.2.2 Individual cell parameters

Unlike prior work with simpler models [102], our cell model is highly non-linear

and methods using linearization or the Fokker-Plank equation are not available to

us to fit parameters to experimental data, which is also di�cult to come by. There-

fore, the cell parameters used in our model are either taken from prior biochemical

knowledge or estimated using no-flow chamber experiments with aca- mutant cells,

i.e. cells that do not perform signal relay and therefore do not interact strongly [33].

This allows us to fit our various parameters based on individual cell tracks. Then,

for each cell, we have the equations

ġ
i

(t) = !
�

g
i

(t)⇥ (H
i

(t)⇥ g
i

(t)) (D.5)

ṅ
i

(t) = !
�

n
i

(t)⇥ (G
i

(t)⇥ n
i

(t)) (D.6)

v̇
i

(t) = ��v
i

(t) + v
0

n
i

(t) (D.7)
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Where

H
i

(r
i

, t) = �
cAMP

rC(r, t)

hC(r, t)i
local

+
p
⌘
�

⇠
1

(t) (D.8)

G
i

(t) = g
i

(t) +
p
⌘
✓

⇠
2

(t) (D.9)

Where both ⇠
1

(t) and ⇠
2

(t) are 2D white noise sources whose components have zero

mean and correlations h⇠
i

(t)⇠
j

(s)i = �
ij

�(t� s). We choose v
0

= 10 µm/min, which

is commonly seen in a chemotaxing cells [36]. The variable  is fit to ensure that
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Figure D.2: The signal-to-noise as seen by a cell as a function of it’s position in the
chamber. The noise strength ⌘
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v
0

is the root-mean-square speed of the ensemble. It is time independent and can

be calculated analytically (see section), but is calculated numerically before each

simulation. We set ⌘
�

to the ligand binding time ⇡ 1 s = 1/60 min [115].

To fit �, we use that fact that our model in the absence of signal is a Furth

model, and fit ��1 to the persistence time corresponding with experiments done

with aca- mutant cells. The standard way to measure the persistence of a cell is to

fit it’s mean squared displacement (MSD(�t) := h|r(t +�t)� r(t)|2i) to the Furth

model [116–118] of a 2D persistent random walker,

MSD(�t) = 2v2t
p

(�t� t
p

(1� e��t/tp) . (D.10)

Here, v is the mean squared value of a component of the cells velocity and t
p

is the

persistence time. It can be seen that as lim
�t!1 MSD(�t)/�t = 2v2t

p

, consistent

with overall di↵usive motion. However, in the no-flow gradient chamber, the pres-

ence of an externally imposed gradient causes an an overall drift in the direction of

the gradient. This means that the velocity components are no longer equal, and the

long time behavior of the cell in the lab frame is not di↵usive. To measure the per-

sistence of the cells in the presence of a drift, we have to consider the mean squared

displacement of individual components (i.e., x
i

2 {x, y}) in the co-moving frame.

We denote the mean squared displacement of a component with MSD(�t; x
i

). This

quantity is defined as

MSD(�t, x
i

) = h(x
i

(t+�t)� x
i

(t)��thVi
xi)

2i . (D.11)
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where hVi
xi is the x

i

component of the drift velocity. We define the persistence of

the cells as the ratio of the mean squared displacement and the mean squared speed

in the co-moving frame,

P
xi(�t) =

MSD(�t; x
i

)

hv2
xi
i (D.12)

Here, by dividing out the square of the appropriate velocity component, we remove

the e↵ect of the signal’s directional bias from the mean squared displacement and can

therefore quantify the persistance in the presence of drift. Fig.D.2.a and D.2.b show

P
x

(�t)/�t and P
y

(�t)/�t for the aca- mutant cells in a variety of concentrations.

The data is very noisy, owing to the low number of long tracks in the experiments.

However, there does not seem to be an overall bias with respect to increasing signal.

The black dotted line is take from our simulation with � = 0.8 min�1 and ⌘
✓

=

0.25 min.

The persistence was found to fit well with t
p

⇡ ��1 = 1.25 min. It should

be noted that this timescale is much shorter than normally seen in Dictyostellium

discodium migrating in the absence of signal, which normally have a t
p

⇡ 6 min

[116]. Our data here suggests that a gradient changes the persistence dynamics

of the cell. We also noted here that overall in the experiments, P
x

(�t) < P
y

(�t),

highlighting the overall polarization bias of the ensemble resulting in more persistent

motion upwards.

The final variable ⌘
✓

to was adjusted to fit our orientation statistics. Fig.D.2(c)

and D.2(d) show the angular distribution and autocorrelation of the orientation of
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aca- mutant cells in a variety of concentrations, where the orientation is taken as

the direction of center-of-mass velocity. Again, the dashed line representing results

of our simulation fit right inside the data.

D.3 The time-scale independence of the fraction of broken links
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Figure D.3: The fraction of broken links is determined by the time scales of the
model and not the actual timescale of the temporal network window

The fraction of broken link measure, F (C̄), is created using both a length scale

and time scale: for us, our length scale was the radius of a cell to make it a contact

network, and the time scale decides how far in the future we’re looking. Too small

a time scale, and the cells will remain in contact mainly due to persistence and not

to interactions. Too long a time scale, and an appreciable number of cells will have

left the chamber.

In our work, we chose the time scale to be twice the persistance time, roughly

corresponding with 2��1, but in general found the functional form of F (C̄) to be

una↵ected by time scales as long as 6��1, as can be seen in Figure 3.a and 3.b.
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What is a↵ected is F (0), the number broken for no cell interaction, and to a much

smaller extent F
max

(see Figure 3.b inset). Therefore, F (C̄)/F
max

is an appropriate

and robust measure of the dynamics of the system.

D.4 Condition for signal independent ensemble speed

The interaction between the membrane and the forces generated by the poly-

merizing actin forms protrusions on the cell membrane. The duration of a pro-

trusion and the frequency of protrusions have been measured to be around 20 sec-

onds [119, 120]. Nevertheless, cell motion is has been seen result from a history of

protrusions [90]. In our model, we consider that the velocity of a cell v
i

is driven in

the direction of generated protrusions, the form of which in the absence of interac-

tions is given by

v̇
i

(t) = ��v
i

(t) + v
0

n
i

(t) (D.13)

We set v
i

(�1) = 0, suggesting that all of the cells started from rest and have

progressed to their current state over an infinite number of protrusions. This allows

us to write the solution to the above equation as

v
i

(t) = v
0

Z
t

�1
e��(t�t

0
)n

i

(t0)dt0 . (D.14)

Here we will calculate the necessary form of  in order to force the root-mean-square

of the speed to be independent of time and consequently the external signal, which

119



is observed in [36], i.e. v
rms

:=
p
hv

i

(t) · v
i

(t)i = v
0

, where v
0

is the steady state

speed of the ensemble. We calculate the v
rms

from Eq. (D.13),

v2
rms

= 2v2
0

Z
t

�1
e��(2t�t

0
1�t

0
2)hn

i

(t0
1

) · n
i

(t0
2

)idt0
1

dt0
2

. (D.15)

Since the limits of the integrals were the same, we left out the integral sign for

the second integral. Next, we replace the correlations of the actin activity with

hn
i

(t0
1

) ·n
i

(t0
2

)i = C
f

e�!f |t01�t

0
2|+C

s

e�!s|t01�t

0
2|, where !

f

and !
s

are the fast and slow

processes in the actin activity dynamics and C
f

and C
s

are the associated weights

of the corresponding processes in the correlations.

v2
rms

= 2v2
0

(C
f

I(!
f

) + C
s

I(!
s

)) , (D.16)

where I(!) :=
R

t

�1 e��(2t�t

0
1�t

0
2)�!|t01�t

0
2|dt0

1

dt0
2

. In order to satisfy v
rms

= v
0

, we get

the condition  = (C
f

I(!
f

) + C
s

I(!
s

))�1/2. Lastly, we calculate the I(!) in order

to find the explicit form of .

I(!) = e�2�t

Z
t

�1
dt0

1

 Z
t

0
1

�1
dt0

2

e�(t
0
1+t

0
2)�!(t

0
1�t

0
2) +

Z
t

t

0
1

dt0
2

e�(t
0
1+t

0
2)+!(t

0
1�t

0
2)

!
.

Carrying out the t0
2

integration for the integrals in the parentheses we get

I(!) = e�2�t

Z
t

�1
dt0

1

 
e(��!)t

0
1

� + !
e(�+!)t

0
1 +

e(�+!)t

0
1

� � !

⇣
e(��!)t � e(��!)t

0
1

⌘!
.
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The first, second and third integral results e

2�t

2�(�+!)

, e

2�t

(��!)(�+!)

and � e

2�t

2�(��!)

, and

consequently the prefactor eliminates all the time dependence. When simplified we

get I(!) = (�(� + !))�1. Using this expression we can show  as a function of the

time autocorrelations of actin biasing, n(t),

 =
p

�

✓
C

f

� + !
f

+
C

s

� + !
s

◆�1/2

. (D.17)

This variable is independent of time, and only depends on the correlation variables

of the second compass and the timescale �, meaning that we can set the ensemble

speed while allowing fluctuations in the individual cell’s velocity.

D.5 The parameter regime for two-time scale correlations

The analytical form of  assumes n autocorrelations of the form C
f

e�!f |t01�t

0
2|+

C
s

e�!s|t01�t

0
2|. In this section we show the necessary conditions for our model param-

eters to exhibit have autocorrelations in that form. In the strong external gradients

we can linearize equations (D.5) and (D.6),

�̇ = �!
�

(�+ ⇠
�

) (D.18)

✓̇ = �!
✓

(✓ � �+ ⇠
✓

) (D.19)
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Then we take the Fourier transform and rewrite the equation for ✓ in the frequency

domain

✓̃(!) =
!
✓

�i! + !
✓

 
!
�

⇠̃
�

(!)

�i! + !
�

+ ⇠̃
✓

(!)

!
, (D.20)

where the variable with a tilde are the Fourier transform of the corresponding vari-

able (i.e., ✓̃(!) :=
R1
�1 ei!t✓(t)dt). We then employ the Wiener-Khintchine theorem,

⇡�(! � !0)S
✓

(!) = h✓̃(!)✓̃⇤(!0)i, where S
✓

is the power spectrum of ✓

S
✓

(!) = 2

Z 1

�1
ei!th✓(t)✓(0)idt . (D.21)

Using (D.20), we can calculate the correlations as

h✓̃(!)✓̃⇤(!)i = !2

✓

!2 + !2

✓

"
!2

�

!2 + !2

�

h⇠̃
�

(!)⇠̃⇤
�

(!0)i+ h⇠̃
✓

(!)⇠̃⇤
✓

(!0)i
#
. (D.22)

The power spectrum of white noise corresponds to the noise intensity, h⇠̃
✓

(!)⇠̃⇤
✓

(!0)i =

2⇡�(! � !0)⌘
✓

. Plugging that in Eq. (D.22) we obtain

S
✓

(!) =
2!2

✓

!2

�

⌘
�

(!2 + !2

✓

)(!2 + !2

�

)
+

2!2

✓

⌘
✓

(!2 + !2

✓

)
. (D.23)

We associate the estimated correlations of n with our fast and slow timescales as

h✓(⌧)✓(0)i ⇡ A
�

e�!�|⌧ | + A
✓

e�!✓|⌧ | and use in the right-hand side of Eq. (D.21) to

122



get

S
✓

(!) =
4A

�

!
�

!2 + !2

�

+
4A

✓

!
✓

!2 + !2

✓

. (D.24)

Finally, solving for ⌘
�

and ⌘
✓

from the equations (D.23) and (D.24) we get

⌘
�

=
2A

�

!
�

✓
1�

!2

�

!2

✓

◆
(D.25)

⌘
✓

=
2

!
✓

✓
A

✓

� A
�

!
�

!
✓

◆
. (D.26)

The noisy intensities are non-negative, which implies !
✓

� !
�

and A
✓

/A
�

� !
�

/!
✓

.

Therefore, our model shows two-time velocity autocorrelations, which obey the con-

ditions stated above.

D.6 Numerical details

The first step in simulating the no-flow gradient chamber is to handle the

concentration profile of cAMP. This is done by solving in time the di↵usion equation

given in (1). This equation is solved with the boundary conditions C(x, 0) = 0,

C(x, L
y

) = C
0

, and C(0, y) = C(L
x

, y). We picked mesh densities such that each cell

is able to resolve at least 5 mesh points, and the contributions of each cell’s secreted

value s
cell

is placed at the cell’s rear. The concentration profile is updated using

the Forward-Time, Center-Di↵erence strategy, with a time step set to ensure the

Courant-Friedrichs-Lewy condition D
cAMP

�t/(�x�y) < 1/4. We then determine

the quantity rC/|C
local

| at each mesh point and allow the cell to ”measure” the
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local signal at it’s front, namely

H
i

(r
i

, t) = h
0

(r
i

, t) + ⇠
�

(t). (D.27)

Where we have used

h(r, t) = L
y

rC(r, t)

hC(r, t)i
local

+K
D

, (D.28)

⇠
�

(t) = L
y

r
⌘
�

D
cAMP

/⌫
⇠
1

(t). (D.29)

Where both ⇠
1

(t) is a 2D white noise source whose components have zero mean and

correlations h⇠
i

(t)⇠
j

(s)i = �
ij

�(t � s). With these formulas, g(t) and n(t) evolve

under the equations

ġ
i

(t) = !
�

g
i

(t)⇥ (H
i

(t)⇥ g
i

(t)) (D.30)

ṅ
i

(t) = !
�

n
i

(t)⇥ (G
i

(t)⇥ n
i

(t)) (D.31)

Where, similar to g(t)’s attractor,

G
i

(t) = g
i

(t) + ⇠
✓

(t), (D.32)

⇠
✓

(t) =
p
⌘
✓

⇠
2

(t). (D.33)

Where ⇠
2

(t) is a 2D white noise source with the same mean and correlations as ⇠
1

(t).

Using the definitions of G and H and expanding the triple vector product, we can
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rewrite Eqns. D.30 and D.31 as

ġ = !
�

(h0 � g(h0 · g)) + !
�

(⇠� � g(⇠� · g)) (D.34)

ṅ = !
✓

(g � n(g · n)) + !
✓

(⇠✓ � n(⇠✓ · n)) (D.35)

where it is understood that the two compass directions g and n have unit magnitude.

For simulation purposes, we can continue rewriting our compass equations as

ġ = !
�

Ã(g)(h0 + ⇠�) (D.36)

ṅ = !
✓

Ã(n)(g + ⇠✓) (D.37)

where Ã(r) is a matrix with the form

Ã(r) =

��������

r2
y

�r
x

r
y

�r
x

r
y

r2
x

��������
.

Now, (D.36) and (D.37) can solved numerically (using Euler-Maruyama [CITA-

TION]). Even though the triple vector product preserves that magnitude of the

vectors, both g(t) and n(t) were normalized after each integration step to remove

complications due to rounding error. The remaining step to progress the cells for-

ward involves simple collision detection to include the adhesion and repulsive forces.
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