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CHAPTER I: INTRODUCTION

Polymerization is a chemical reaction where small molecules, called monomers,

add together to make larger molecules, called polymers.  This is interesting in many 

applications because while in monomer form, the material is fluid and can be molded into 

different shapes which then harden during polymerization [1].  Polymer materials are 

used in restorative dentistry as a binding material for creating replacement teeth.  One 

example is bisphenol A-glycidyl methacrylate (bis-GMA) [2].  The purpose of this work 

is to compare microwave induced polymerization to thermal induced polymerization of 

bis-GMA.

The goal of restorative dentistry is to replace portions of degraded tooth structure.  

As a part of this goal, research has gone into identifying restorative materials that exhibit 

properties similar to tooth enamel, permanently bond to the tooth structure, initiate tissue 

repair, and esthetically match the tooth structure.  The primary materials used are metals, 

ceramics, polymers, and composites [3].  Polymers and polymer based composites are of 

interest because they are aesthetically pleasing, inexpensive, and relatively easy to 

manipulate [4].

There are multiple methods of activating polymerization.  Activation is the 

outside influence that causes polymerization to begin.  Those most commonly used and 

studied for restorative dentistry are chemical, thermal, and light activation.  
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In chemical activation a catalyst is introduced.  One example is tertiary amine and 

benzoyl peroxide.  The tertiary amine catalyzes the chemical reaction that splits the 

benzoyl peroxide molecule into two free radicals [4].  One advantage of chemical 

activation is that it can occur at room temperature.  Generally chemically activated resins 

polymerize less than those activated by other methods.  This leads to less shrinkage, an 

additional advantage, but also leads to disadvantages.  The unused monomer is a potential 

tissue irritant, and the less polymerized material is not as strong [5].

In heat activation, the monomer is heated until individual monomer molecules 

split into free radicals.  One example is benzoyl peroxide [4].  When heated to between 

50 to 100 Celcius the benzoyl peroxide splits into two free radicals that then initiate the 

polymerization.  A problem that can occur in heat activation is if the monomer heats 

beyond its glass transition temperature.  If heated above the glass transition temperature 

the thermal motion of the resulting polymer chains can prevent or overwhelm bonding, 

resulting in a weaker polymer [6].  The bis-GMA resin will begin to depolymerize 

between 125 and 200 degrees Celsius.  Another disadvantage to heat polymerization is 

that it takes time.  Typical durations for heat activation exceed thirty minutes [7], [8].
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In light activation the monomer is exposed to a light source of a specific 

frequency.  The frequency is chosen for direct absorption of energy into the monomer.  

An example is blue-green light with a wavelength of approximately 470 nm used to 

activate compounds such as camphorquinone and dimethylaminoethylmethacrylate that 

are added to the monomer [4].  The advantage to light activation is that it occurs faster 

than either heat or chemical activation.  The primary disadvantage is sensitivity to color 

of the specimen [9].  The dentist needs to dye the replacement tooth structure to match 

the patient’s teeth.  This changes the index of refraction, and therefore the ability of the 

specimen to absorb light.  It has been shown that lower intensities of light produce cured 

samples with lower degrees of conversion [10].

In microwave activation the sample is exposed to electromagnetic fields at 

microwave frequencies.  Microwave activation occurs in times similar to that of light 

activation.  Additionally, in preliminary investigations, Dr. Ivan Stangel, DDS of Biomat 

Sciences claims to have seen vastly improved strength and degree of conversion values 

for composite samples prepared via microwave [11].  He requested an explanation of the 

mechanism behind microwave interaction with bis-GMA, hence this work.

This work is organized as follows:  Chapter II is on the theory of polymerization,

describing the polymerization process and relating the macro-qualities of the resulting 

polymer to its degree of conversion.  Chapter III will describe the experimental 

procedures and setups used to cure the samples, the equipment and testing procedures 

used to test the samples and the measurement of the data for this thesis.  Chapter IV 

presents and discusses the experimental data.  Chapter V presents the conclusions.
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CHAPTER II: THEORY OF POLYMERS AND POLYMERIZATION

A polymer is a large molecule that is generated by linking together many smaller 

molecules.  Polymerization is the name given to the process by which smaller molecules 

link to become polymers.  There are two types of polymerization, step polymerization 

and chain polymerization.  Step polymerization is also sometimes called condensation 

polymerization or step-growth polymerization.  Chain polymerization is also sometimes 

called addition polymerization[12], [13].

STEP POLYMERIZATION

Historically, the first to be studied systematically was step polymerization.  In 

step polymerization different compounds react to build a larger molecule with some by-

products.  An example is adipic acid and ethylene glycol.  Figure 1 below shows a 

representation of their reaction.  They form an ester link while generating a water 

molecule as a by product.  

Figure 1:  Adipic acid and ethylene glycol molecules react, creating an ester link and a 
water molecule.

adipic acid
ethylene glycol

ester water
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The resulting molecule can continue to react with more adipic acid and ethylene 

glycol, making a long sequence of ester linkages and more water. As long as the numbers 

of adipic acid and ethylene glycol molecules are closely balanced, and the water is 

efficiently removed, the reaction will continue.  Figure 2 below shows a representation of 

this.

Figure 2:  A long ester link with water.  For each n sections of ester link, there are 2n 
molecules of water.

CHAIN POLYMERIZATION

In chain polymerization a monomer is split into free radicals, which react with 

other monomer molecules linking more and more of them together to create a polymer.  

Chain polymerization is what occurs with bis-GMA.  Thus the free radicals are 

incorporated into the final polymer, and there are no byproducts in theory.  In reality, 

byproducts can be generated.  Chain polymerization can be divided into multiple stages.  

We will call these stages activation, propagation, and termination.  We will follow the 

polymerization of tertiary butyl peroxide as an example.

ester
water
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To start activation, energy must be transferred into the monomer from an outside 

source.  This energy is used to break some of the chemical bonds in the monomer, in our 

case a single bond between the two oxygens in the teriary butyl peroxide molecule.  This 

generates two free radicals, which are molecules that have an unpaired electron and 

therefore need to react chemically with another molecule in order to be stable.

Figure 3:  A tertiary butyl peroxide molecule is split in two.

The free radicals can then react with monomers such as styrene.  This starts the polymer 

chain.  Note that the polymer chain still contains an unpaired electron.

Figure 4:  A free radical joins with styrene making a small polymer chain.

The unpaired electron at the end of the polymer chain causes the reaction to continue.  

This is propagation.

Figure 5:  Smaller polymer chains join with styrene to make larger polymer chains.

tertiary butyl peroxide free radicals

free radical
styrene small polymer chain

styrenepolymer chain polymer chain
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Termination could theoretically occur when the source of monomers has been 

depleted.  In most cases, termination results when the reactive portions of two chains 

join, making one long chain, otherwise called recombination.  Less often 

disproportionation occurs, where a hydrogen atom is taken from one reactive chain to 

another forming two separate stable chains.

Figure 6:  In a) two polymer chains approach each other.  They may either b) undergo 
recombination or c) undergo disproportionation to stabilize and terminate the reaction.

DEGREE OF CONVERSION

Degree of polymerization, also called degree of conversion, refers to the 

percentage of monomers consumed during polymerization.  This is used as and indicator 

of the thoroughness of polymerization and it has been shown that degree of conversion is 

the most important factor to examine for predicting final mechanical properties [14].  

This coupled with the difficulties of using strength tests on samples to predict lifetime 

performance [15], [16] means that degree of conversion is indeed critical.

a)

b)

c)
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The higher the degree of polymerization, the stronger the polymer should be.  To 

understand the underlying reason for this, it is necessary to talk about the strength of the 

covalent bonds.  The strength of a covalent bond is defined as the energy required to 

break the bond.  In methyl methacrylate polymerization, for example, double carbon 

bonds are split into two separate single carbon bonds.

In Figure 7 a) on the next page a growing polymer chain with an unpaired 

electron approaches a methyl methacrylate molecule.  The double carbon bond, the C=C, 

splits into a single carbon bond and a free electron.  Shown in Figure 7 b) the single 

carbon bond binds the methyl methacrylate to the growing polymer chain, and the free 

electron seeks out additional methyl methacrylate with which to interact.  The energy 

change during a chemical reaction is the difference between the initial bond energy and 

the final bond energy.  

Figure 7:  Methyl methacrylate polymerization.

methyl methacrylate

methyl methacrylate

growing polymer chain

growing polymer chain

a)

b)
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The energy change of a single monomer being incorporated into the growing 

polymer chain is:

∆E = Σ(bond energies of broken bonds) - Σ(bond energies of created bonds)

∆E = Σ(614 kJ) - Σ(348 kJ)

∆E = 266 kJ

Exothermic reactions create bond combinations that are stronger than the initially 

broken bonds.  The energy that creates the stronger bonds and is shed thermally during 

the reaction comes from the molecule's electrons, which drop to lower energy orbits 

during the process.  The greater the degree of polymerization, the greater the number of 

bonds generated.  This translates to larger polymer chains.  Therefore a polymer with a 

higher degree of conversion should require more energy to break than a polymer with a 

lesser degree of conversion. 

Some practical factors can cause problems.  Sometimes cross-linking occurs 

between different polymer chains, increasing the strength of the resulting polymer even 

further.  The stress of the chemical reaction also occasionally causes cracks in the 

polymer, weakening it.  Therefore the degree of conversion relates to the macro 

properties of the polymer only if the process is carefully controlled.
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ACTIVATION

Activation requires an initial input of energy to the monomer from an external 

source.  This energy splits some of the monomer molecules into free radicals, which then 

polymerize the material.  Once activation begins, the polymerization is exothermic and 

the process completes without additional energy input.  Work by Musanje and Darvell 

[17] suggests that additional energy input after activation begins will not improve results.

The activation choices for restorative dentistry are chemical, light, thermal, and 

microwave.  This work focuses specifically on experimental comparison of thermal and 

microwave activation for the bis-GMA resin.   

THERMAL ACTIVATION

Thermal transfer of energy occurs in three ways, radiation, conduction, and 

convection.  Radiation is the direct transfer of energy from the source to the object.  

Conduction is the transfer of energy to the object through an interim material that may be 

solid, gas, or liquid.  Convection is the transfer of energy from a solid source or object to 

a moving mass of liquid or gas [18].  To an extent we have all three occurring.  

Equation 1 details energy transfer per unit time for radiation.

dQ/dt = eAσ(Ts-To)
4 (1)

'e' is the emissivity of the object.  Emissivity is a measure of efficiency for thermal 

transfer of energy in to and out of the object.  It can take values from 0 to 1, with one 

being the emissivity of a perfect or blackbody emitter.  'A' is the surface area of the 

object.  'σ' is the Steffan-Boltzmann constant, 5.67x10-8 W/m2K4 in SI units. 'Ts' is the 

temperature in degrees Kelvin of the source and 'To' is the temperature in degrees Kelvin 



11

of the object.  If Ts>To the object is receiving energy, if Ts<To the object is giving off 

energy, and if Ts=To no energy is transferred.

Equation 2 details energy transfer per unit time for conduction.

dQ/dt = cA(Ts-To)/L (2)

'c' is the thermal conductivity of the material between the object and the source.  For 

acrylic, which bis-GMA is, c = 0.01 W/mK [19].  'A' is again the surface area of the 

object.  'L' is the distance between the object and the source.  Again 'Ts' is the temperature 

in degrees Kelvin of the source and 'To' is the temperature in degrees Kelvin of the object.

There are no simple equations for describing convection.   Heated air near the 

heating elements or the thermal setup will want to rise while cooler air away from the 

heating elements will fall.  A detailed understanding of the air turbulence induced would 

be involved, uncertain, and unnecessary for the completion of this work.  The effect of 

convection can be minimized experimentally by preheating the thermal chamber prior to 

inserting the sample.

∂T/∂t = k∇2T (3)

Distribution of temperature within a solid sample is governed by the diffusion 

equation.  In equation 3 'T' is the temperature of the sample, 'k' is the diffusion coefficient 

and 't' is time.  For polymethylmethacrylate, which bis-GMA is, k = 1.24x10-6 m2/s [20].
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MICROWAVE ACTIVATION

In the case of microwave activation, energy transfer is due to interaction of the 

material and the electromagnetic field.  Microwave energy transfer in a microwave oven 

is typically higher than thermal energy transfer in a thermal oven.  Work by Halverson et 

al. [21] has related rate of energy transfer to extent of polymerization, meaning 

microwave activation should have an advantage over thermal activation.  Depending on 

the properties of the material, the wave will penetrate the sample and deposit energy.  In 

this way, using microwave activation may deposit energy more evenly than thermal 

activation would.  We start with the wave equation [22], [23]:

∇2E - µε∂2E/∂t2 = 0 (4)

'E' is the electric field vector, 'µ' is the magnetic permeability of the material and 'ε' is the 

electric permittivity of the material.  The wave is generated at the source, in the case of 

this work, a magnetron, with sinusoidal varying time component:

E ∝ E0e
-iωt (5)

Where 'E' is the electric field, 'E0' is the magnitude of the electric field in V/m, 'ω' is the 

frequency of oscillation in 2πHz, and 't' is the time in seconds.  Inserting Equation 5 into 

Equation 4 leads to:

∇2E + µεω2E = 0 (6)

This can be simplified due to the fact that choice of the microwave chamber can constrict 

the electric field to only being polarized in one direction and propagating in another.  

Choosing the polarization direction unit vector as x0 and the propagation direction unit 

vector as z0 gives:
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∂2Ex/∂z2 + µεω2Ex = 0 (7)

Solving Equation 7 gives the electric field equation:

Ex = E0e
-iωte-ikz (8)

Where k = ω(µε)1/2.  Because the magnetic and electric fields are coupled, the magnetic 

field is:

Hy = H0e
-iωte-ikz (9)

Where 'Hy' is the magnetic field in the y0 unit vector direction, and 'H0' is the magnitude 

of the magnetic field.  To solve for the power within the fields, and also for the energy 

transfer from the fields to the material, it is necessary to calculate the Poynting vector:

S = E×H

Where 'S' is the vector of the power flux in Watts/meters2, 'E' is the electric field vector 

and 'H' is the magnetic field vector.  It is useful to show another relation between the 

electric and magnetic fields using Maxwell's equations, specifically:

∇×E = - ∂B/∂t

We can show, for the solutions to Ex and Hy that we have:

- (µε)1/2Ex = By (10)

Therefore, the Poynting vector becomes:

S = - z0(Ex)
2(µε)1/2(µ)-1 (11)

S = - z0(E0e
-iωte-ikz)2(ε/µ)1/2 (12)

The time average of this is:

S = - z0(1/2)(E0e
-ikz)2(ε/µ)1/2 (13)
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Inside the material the electric permittivity and permeability are complex 

functions of the frequency.  Substituting ε = (ε' - iε")ε0 into k = ω(µε)1/2 leads to:

Save = - z0(1/2)(E0)
2(ε/µ)1/2exp[-i2zω(µ(ε' - iε")ε0)

1/2] (14)

Where ε' is the real part of ε, ε" is the imaginary part of ε, the value of ε in freespace is ε0

= 8.854 x 10-12 C2/Nm2, and exp(x) = ex.  Now, with a little more math and using the 

expression for the loss tangent δ = ε"/ε':
S = - z0(1/2)(E0)

2(ε/µ)1/2exp[-2zω{(µε'ε0/2)((1+δ2)1/2-1)}1/2]

x exp[-i2zω{(µε'ε0/2)((1+δ2)1/2+1)}1/2] (15)

So we can see that the power density in the field decreases as 

exp[-2zω{(µε'ε0/2)((1+δ2)1/2-1)}1/2].  This implies that the material is absorbing the 

energy.  How deeply the wave deposits energy is dependent on δ.  For bis-GMA, δ = 

0.119, and ε' = 4.2, for ω = 2π x 2.45 GHz, and µ is assumed as µ = µ0 = 4π x 10-7 

W/Am.  Therefore the skin depth, defined as the depth at which the power flux has 

dropped off to a factor of 1/e, is calculated to be 0.080 m.
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CHAPTER III:  EXPERIMENTAL SETUP AND PROCEDURES

Figure 8 below depicts a block diagram of the setup.  Solid arrows represent flow 

of microwave energy, and the dashed line represents the temperature sensor.  Microwave 

energy emanating from the source passes through a circulator to the microwave chamber.  

In the microwave chamber the energy is applied to the sample which is within the sample 

support.  Any reflected energy is redirected by the circulator to the load.  The temperature 

reader collects the data from the temperature sensor, which penetrates the microwave 

chamber and comes into contact with the sample.

Figure 8:  Block diagram of the setup.

3.0 kW, 2.45 GHz
Microwave Source

Circulator

3 kW load

Microwave chamber

Sample Support

Temperature Reader
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RESIN 

The resin used to make the sample during testing was provided by Biomat 

Sciences.  It was specifically formulated for thermal curing, designated Biomat Resin 

"A", prepared on 07-16-01 and consisting of 74.75 % weight bis-GMA, 24.75 % weight 

tri-ethylene glycol dimethacrylate (TEGDMA) which reduces the viscosity of the 

mixture, and 0.5 % weight Benzoyl Peroxide (BPO) which is the initiator [11].  

Composite material tested was also provided by Biomat Sciences and included 

25% weight resin as described above and 75% weight Alumina filler [11].

SAMPLE SUPPORT 

The direct sample support structures were constructed from teflon, which was 

chosen for it's low loss tangent δ ~ 0.0001.  Three parts, the bar mold, the bar mold 

support and the bar mold guide are pictured in figures 8, 9, and 10 below.

Figure 9 is the bar mold.  The purpose of the bar mold is to contain the liquid 

resin in the shape required for the cured samples.  For 3-point flexural strength tests the 

samples prepared needed to be 25 by 2 by 2 mm3.  

Figure 9:  Mechanical drawing of the bar mold
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Figure 10 is the bar mold support.  The purpose of the bar mold support is to raise 

the bar mold to the center of the microwave chamber.  Since the microwave chamber is 

based on WR284 waveguide, the interior dimensions are 72.1 by 34.0 mm.  The 17.0 mm 

height of the bar mold support is half of the 34.0 mm dimension of the Microwave 

Chamber.  The 28.5 mm diameter of the bar mold support was chosen to match the 28.5 

mm diameter of the bar mold.  The 3.2 mm diameter hole through the center of the bar 

mold support allows access for a thermal sensor to the center of the sample during curing.

Figure 10:  Mechanical drawing of the bar mold support.

Figure 11 is the bar mold guide.  The purpose of the bar mold guide is to hold the 

bar mold and bar mold support in position with relation to each other and the microwave 

chamber and the plug.  The 28.5 mm inner diameter was chosen to match the bar mold 

and bar mold guide.  The 31.8 mm outer diameter was chosen to be less than the access 

hole in the microwave chamber.
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Figure 11:  Mechanical drawing of the bar mold guide

Figure 12 is an assembly drawing of the bar mold, bar mold support and bar mold 

guide.  This is the sample support.  This assembly is inserted into the microwave chamber 

on the plug pictured in figure 13.

Figure 12: Assembly drawing of the bar mold, bar mold support and bar mold guide.  All 
dimensions are mm.
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MICROWAVE SOURCE AND CHAMBER

The microwave source used was a Microwave Materials Technologies 3.0 kW 

2.450 Ghz source driving the TE10 mode into a WR284 waveguide output.  It is 

continually adjustable from 0.00 - 3.00 kW output with a forward and reflected power 

measurement accuracy of ± 0.05 kW.

The Microwave Chamber was constructed from a 0.2312 m (9.113 inch, one 

waveguide wavelength) of WR284 copper waveguide with two CMR284 flanges, and is 

pictured in figure 13 below.  The 57.9 mm distance from the end is one quarter 

waveguide wavelength for 2.45 GHz in WR284 waveguide.  This places the center of the 

38.1 mm access hole at a field power peak in the TE10 mode.  The 38.1 mm distance from 

the edge centers the 38.1 mm access hole.

Figure 13:  Mechanical drawing of the microwave chamber.  Dimensions are mm.



20

The hole for inserting the sample consistently into an area of peak field strength 

was filled during tests with a plug which is pictured in figure 14.  The 50.8 mm diameter 

of the plug was chosen to be larger than the 38.1 mm diameter of the access hole.  The 

28.5 mm diameter raised portion of the plug was chosen to match the bar mold, bar mold 

support and bar mold guide.  The 3.2 mm hole allows access for a thermal sensor to the 

sample.  The 2.0 mm height of the raised portion of the plug matches the 2.0 mm 

thickness of the wall of the microwave chamber.  The plug was constructed from brass to 

maintain electrical contact with the copper microwave chamber.  

Figure 14:  Mechanical drawing of the plug.  Dimensions are in mm.
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MICROWAVE SIMULATIONS

Simulations run in Hewlett-Packard High Frequency Structure Simulator (HP 

HFSS) confirmed the predicted field strength locations and results are pictured in figure 

15, and 16 below.  Figure 15 is a simulation of half of the microwave chamber.  The right 

side is a port for input and output of energy, and all other walls are perfect conductors.  In 

the center is the teflon support with a resin sample.  The lines inside the chamber 

represent relative E field strengths, the darkest in the center representing peak field 

strength.  Performing the simulation on half of the microwave chamber allows HP HFSS 

to concentrate on a smaller area, without significantly changing the results.  

Figure 15:  Half microwave chamber HP HFSS simulation.

Figure 16 is a simulation of one quarter of the microwave chamber.  The right 

side is a port for input and output of energy, bottom is a symmetry plan, and all other 

sides are perfect conductors.  The lines inside the chamber represent relative E field 

strength, with the strongest being the darkest lines near the sample holder.  The E field is 

symmetric about the center axis, which allows the use of the symmetry plane.  Making 

use of symmetry planes allows for faster and more accurate simulation.
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Figure 16:  HP HFSS simulation with symmetry plane.

SUPPLEMENTARY SETUP

Thermal curing was conducted in a GE model XL44 home convection oven.  

Temperature was measured using a T-type thermocouple and HP thermocouple reader.

Temperature measurement and recording during curing was performed with Fiso 

Technologies model FOT-HERO fiber optic sensors in conjunction with model TM-250 

sensor reader.  The FOT-HERO sensors were rated for 0 - 2000 Celcius with an accuracy 

of ± 1.00 C.  The FOT-HERO consists of a Fabry-Perot cavity at the end of a fiber optic 

cable.  This chamber is broad band illuminated, and the resonant frequency of the 

chamber varies as the chamber expands and contracts due to temperature variations.  An 

FOT-HERO is pictured in figure 17.
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Figure 17:  FOT-HERO

The mechanical test performed post curing was three point flexural strength 

testing using an Instron Universal Electromechanical Tester model 4465 with load 

measurement accuracy of ±0.5 %, and head position accuracy of ±0.02 mm.  A diagram 

of the test is depicted in figure 18.  Force is applied to the center of the sample which is 

supported at the ends.  The force, in N, required to break the sample is recorded and used 

with the dimensions of the sample to calculate the strength in MPa.  For the test to be 

accurate, the samples must be close to 2 x 2 x 25 mm3 in dimension.

Figure 18:  3-point flexural strength testing.
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Fourier Transform Infrared (FTIR) analysis for degree of conversion (DOC) was 

carried out using an Excalibur Series BioRad FTS 3000.  FTIR works by launching 

infrared energy at the sample and recording the energy/wavelength scattering from the 

sample.  Each wavelength corresponds to a different portion of the molecular structure.  

1640 nm is the wavelength of interest for double carbon bonds.  DOC is then calculated 

by:

1 – R = DOC

Where R is the ratio of the area under the peak at wavelength 1640 nm prior to and post 

curing.

PRE-CURE PROCEDURES

When not in use, the test resin was wrapped in a paper bag and stored in a 

refrigerator at 45 Fahrenheit.  At all times latex gloves were worn to prevent direct skin 

contact with the sample, and to prevent contamination of the sample. 

When it was time to conduct tests the resin was removed from the refrigerator and 

allowed to sit at room temperature for a minimum of 20 minutes.  One side of the bar 

mold would then be covered with scotch tape to prevent the resin from seeping out the 

bottom.  The resin was then inserted into the bar mold using a plastic syringe.  The resin 

would be allowed to sit for an additional 20 minutes to allow any air bubbles introduced 

to escape.  
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The top of the bar mold would then be covered with scotch tape in order to 

prevent air-inhibition of the polymerization.  The bar mold would then be placed on the 

bar support and both inserted into the bar guide.  All three of which would then be placed 

on the plug.  The plug was then inserted into the microwave chamber, with the sample 

aligned so that it's 25 mm axis ran parallel to the 76.2 mm axis of the WR284 waveguide.  

The plug was then clamped in place using two clamps.  Finally, if being used, the 

Fiso temperature sensor would be inserted through the 3.2 mm diameter access hole in 

the Plug until in contact with the center of the bar mold, separated from the resin by the 

Scotch Tape.  3M copper tape was then used to seal the access hole to prevent escape of 

microwave energy.

CURING PROCEDURES

Prior to beginning experiments, the microwave run with no sample in place as 

forward and reflected power measurement calibration.  The manual dial setting would 

then be left in place.

Once the process for pre-curing was complete, the clock in the laboratory was 

used to time the duration of test.  During the time that the microwave source was on, a 

NARDA model 8712 Electric Radiation Survey Meter with model 8723D Isotropic 

Electric Field Probe was used to measure for leakage of microwave energy in the area 

within 1 foot of the microwave chamber for safety reasons.  Once the test was complete, 

the sample would be removed form the microwave chamber and allowed to sit at room 

temperature for 20 minutes before being removed from the bar mold.  The bar mold 

would be allowed to rest at room temperature for at least an hour before re-use.
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POST-CURE PROCEDURES

Once a cured sample was removed from the bar mold it would be inserted into a 

non-reactive food quality 1 oz. opaque container and placed in the freezer at 10 

Fahrenheit.  Once removed from the freezer it would be placed into a cooler and taken to 

Biomat Sciences for mechanical evaluation within 24 hours.  At Biomat Sciences the 

samples would be measured for exact dimensions then processed for flexural strength and 

degree of conversion.
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CHAPTER IV: DATA

Prior to comparing microwave results to other methods, experiments were 

performed to optimize microwave curing.  Power and duration of microwave exposure 

were checked.  For this work, primarily 1.0 kW and 0.5 kW were studied.  Figure 19 

below compares degree of conversion for samples prepared at 0.5 kW for 30 s to samples 

prepared at 1.0 kW for 15 s.  Nine samples were prepared at 0.5 kW for 30 s and four 

were prepared at 1.0 kW for 15 s.  For samples prepared at 0.5 kW the mean equals 0.869 

and the standard deviation equals 0.196.  For samples prepared at 1.0 kW the mean 

equals 0.746 and standard deviation equals 0.089.
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Figure 19: Degree of conversion versus microwave power. 

Figure 20 compares flexural strength of 0.5 kW, 30 s to 1.0 kW, 15 s.  Note the 

direct relation of degree of conversion to flexural strength.  For the samples prepared at 

0.5 kW the mean equals 60.29 MPa and the standard deviation equals 22.02.  For the 

samples prepared at 1.0 kW the mean equals 29.44 MPa and the standard deviation 

equals 8.97.
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Figure 20:  Flexural strength versus microwave power.

Next time spent in microwave was explored.  Figure 21 compares degree of 

conversion for samples prepared at 120 s and 30 s.  Note that there is no improvement in 

degree of conversion from the prolonged exposure.  Again, for the nine samples prepared 

at 0.5 kW, 30s the mean equals 0.869 and the standard deviation equals 0.196.  For the 

eight samples exposed to 0.5 kW for 120 s, the mean equals 0.915 and the standard 

deviation equals 0.047.

Figure 21:  Degree of conversion versus microwave duration.
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Figure 22 compares flexural strength of samples prepared at 0.5 kW for 30 s and 

for 120 s.  Only three of the eight samples prepared for 120 s were suitable for 

mechanical testing.  The other five emerged from the curing process fractured.  For the 

three samples from 120 s exposure that were tested, the mean equals 30.49 MPa and the 

standard deviation equals 13.95.  This is much lower than the mean of 60.29 MPa and 

standard deviation of 22.02 for samples exposed for 30 s.
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Figure 22: Flexural strength versus microwave duration.

Figure 23 compares degree of conversion for different processing methods.  

Literature is per work by Bartoloni, et al [24], and includes values for thermal, light, and 

microwave curing.
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Figure 23: Degree of conversion by method of cure.

Figure 24 compares flexural strength of several different methods.  The literature 

is per Tam et al. [25], and Smith et al. [26], and includes values for thermal, light, and 

microwave curing.  Only three of the eight samples prepared at 140 C, 10 min. were 

suitable for mechanical testing.  The other five emerged from the curing process 

fractured.  For those three samples, the mean equals 135.90 MPa with a standard 

deviation of 19.93. 
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Figure 24: Flexural strength versus method of cure.

Figure 25 shows the temperature rise of a 0.500 in. diameter by 0.125 in. thick 

sample of bis-GMA during 0.5 kW microwave processing.  The microwave was turned 

on at t = 0 s, and polymerization starts at approximately t = 15 s, once the sample reached 

~130 C.  This is interesting because 130 C is the thermal activation temperature.
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Figure 25: Temperature rise, resin only, 0.5 kW.
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Figure 26 shows the derivative of the temperature rise shown in Figure 25.  Note 

the sharp change in rate of temperature rise once polymerization initiates at about t = 14 

s.  This is due to the exothermic nature of the reaction.  From t = 14 s to t = 16 s we have 

the temperature rise due to the exothermic polymerization.  Afterwards the profile returns 

to a linear profile due to microwave input.  The change in the temperature rise slope from 

before to post polymerization indicates that the complex dielectric values for polymerized 

bis-GMA differ from the prepolymerization values.
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Figure 26: Temperature rise derivative, resin only, 0.5 kW. 

Figure 27 shows the temperature rise of a 12.7 mm diameter by 3.2 mm thick 

sample of bis-GMA during 0.1 kW microwave processing.  The microwave was turned 

on at t = 0 s, and polymerization starts at approximately t = 85 s, once the sample reached 

~130 C.  Therefore, at two different microwave power settings, polymerization began 

only after the resin achieved thermal activation temperature.  Again, note that the 

temperature rise slope prior to t = 14 is different from that after t = 16.
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Figure 27: Temperature rise, resin only, 0.1 kW.

Figure 28 shows the derivative of the temperature rise shown in Figure 27.  Note 

that there is a sharp change in rate of temperature rise once polymerization initiates at 

about t = 85 s.  This is due to the exothermic nature of the chemical reaction.
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Figure 28: Temperature rise derivative, resin only, 0.1 kW.
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Figure 29 shows the temperature rise of a 0.500 in. diameter by 0.125 in. thick 

sample of composite resin during 0.5 kW microwave processing.  Note that the profile of 

the temperature rise is very different from that for resin alone.  This indicates that the 

addition of the filler has a significant impact on microwave induced polymerization.  
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Figure 29: Temperature rise, composite, 0.5 kW.

Figure 30 shows the derivative of the temperature rise shown in Figure 29.  Note 

that the slope of the temperature rise is also significantly different from that for resin 

alone.  There is no sharp spike showing exactly when polymerization began.  Most likely 

polymerization began just before t = 30, where there is a peak in the temperature rise.
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Figure 30:  Temperature rise derivative, composite, 0.5 kW.
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CHAPTER V: CONCLUSIONS

Based on the data obtained, microwave initiated polymerization is brought about 

by microwave heating of the bis-GMA.  Additionally, microwave initiated 

polymerization takes a fraction of the time required to bring about thermal initiated 

polymerization.  Therefore the initial results obtained by Biomat Sciences with composite 

material are due to mixed interaction of microwave energy, resin, and filler material.

The conclusion that microwave initiated polymerization is microwave heating and 

not a different mechanism is based on comparing degree of conversion of the samples 

prepared, strength of the samples prepared, and temperature at which activation occurs.  

If microwave activation were a different mechanism than thermal activation, it would 

have been expected that these parameters would have had dissimilar results.  However, 

degree of conversion, flexural strength, and temperature of activation for microwave 

cured samples did not differ significantly from thermally cured samples or from available 

data in literature.  

The significant differences in temperature rise profiles for bis-GMA alone versus 

bis-GMA mixed with alumina indicate that the addition of the alumina has a significant

impact on the process.  This can be explained by the differences in the complex 

permittivity values for bis-GMA and alumina.  For bis-GMA, ε = 4.2 and δ = 0.119, for 

alumina ε = 9.0 and δ = 0.0002.  The alumina does not absorb the microwave energy, and 

there is less bis-GMA present, therefore the temperature rise profile should be different 

from that for bis-GMA alone.
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FUTURE WORK

Future work should include a detailed study of composite material in microwave.  

The differences in the temperature rise for resin alone versus that of the composite 

indicate that the composite filler has a significant impact on the reaction.  

Experimental work by Park and Robertson [27] indicates that dipole interaction of 

60 Hz AC fields and filler material gives organized structure to the composite material by 

aligning the composite filler particles, improving strength results.  A hybrid approach 

where a composite material is heat cured while being exposed to low levels of microwave 

energy could verify if Park and Roberson’s results are valid for 2.45 GHz.

The initiator is chosen depending on the method of cure desired.  The resin 

studied in this work was formulated specifically for thermal curing.  Typically benzoyl 

peroxide is used in thermal curing, and camphoroquinone is used for light curing.  

Research could focus on identifying an appropriate initiator for microwave applications.
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