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ABSTRACT
TITLE OF THESIS: INVESTIGATION OF VANISHING OF A HORIZON FOR BIANCHI
TYPE IX (THE MIXMASTER) UNIVERSE

D. M. CHITRE

THESIS DIRECTED BY: PROFESSOR CHARLES W. MISNER

In this dissertation, the generic, non-rotating, homogeneous closed model
universe (the "Mixmaster Universe', Bianchi Type IX) is studied to gain some
insight into how the broad-scale homogeneity of the universe may have been
produced at very early times. We begin our discussion by sketching the develop-
ment of relativistic cosmology until the last decade. In the second chapter
we discuss particle horizons in the Robertson-Walker models. These standard
models of the universe possess particle horizons. Thus, only a finite part of sucha

universe could have been causally connected; while the isotropy of 2.7OK

microwave radiation implies the universe to be homogeneous on a much larger
scale than the size of the horizon. The third chapter discusses in detail the
evolution of the Mixmaster Universe near the singularity using the Hamiltonian
techniques developed by Misner for these models., At a fixed time (or volume)
epoch Qo, a Mixmaster Universe is specified by initial conditions' By, B- (shape
anisotropy) and p,  p_ (expansion rate anisotropy). In the fourth chapter we
derive the equations for rays of high-frequency sound waves and light waves.
When these equations are applied in the Mixmaster Universe, we find that for
certain subsets of initial conditions, some of these sound rays and light rays
would circumnavigate the corresponding universes in certain directions. Our
results for light rays parallel those of Doroshkevich and Novikov, however we

use entirely different methods (Hamiltonian methods) for treating the Einstein

equations.



In the last chapter the evolution of the Mixmaster Universe is shown
equivalent to a geodesic flow within a bounded region of the Lobatchewsky plane.
The boundary shape makes this flow ergodic. The ergodicity is proved by
invoking a certain group of conformal transformations, G, which makes this
flow of broken geodesics on the Lobatchewsky plane, D, into a continuous one
on D/G, The Einstein equations in this problem lead to a natural measure on
initial conditions related to B, py. The measure of the circumnavigation sets
depends upon the epoch and it goes to zero as the volume of the universe shrinks
to zero., Finally, we compute the probability for circumnavigation along any
one axis of the universe, It turns out to be roughly 1% for an empty universe

and it decreases to 0,02% for realistic models containing radiation and matter

in them,
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CHAPTER 1.

Formulation of Cosmology

The cosmological problem within the framework of general relativity
consisted, for a long time, in finding a simple model of the physical
universe which is a solution to Einstein's equations. The simplification
was involved in idealizing the crudely observed symmetries of homogeneity
and isotropy of the universe and extrapolating them to all times in the
past. The investigation of world-models withou£ any postulate of homo-
geneity was first done by Raychaudhuri (1955) who obtained an equation
which showed how the expansion of the universe was influenced by shear
and rotation. Heckmann and Schitking (1959) classified several world-
models by studying the four-vector uu of flow of incoherent matter.

They also found homogeneous but anisotropic solutions for universes
filled with pressureless fluid. Analytic solutions were also found for
stress-energy tensors, corresponding to a pressureless fluid with mag-
netic field, or to a radiation fluid with p = %-p by taking a specialized
form for the anisotropy. Misner (1968) studied a general class of homo-
geneous, anisotropic solutions to the Einstein's equations in which the
pressure anisotropies were included, and proved that a considerable num-
ber of those solutions would evolve into the present day universe. Be-
1inskii and Khalatnikov (1969), Thorne (1967), Doroshekevich, Zeldovich,
and Novikov (1967) analysed cosmological modéls with pronounced aniso-
tropy at an early stage of cosmological expansion. This new way of

studying cosmology where the models considered looked very different



in the di .
stant past, exploited the richness of Einstein's equations and
a an

gave be . : .
tter insight into many problems -- the problem of particle hori
ori-

zons bei
ng one of them. Before we turn to the study of horizons in thi
is

new 1i :
ght, let us sketch briefly the development of relativistic cosmo

10gies :

Buildi ;
1ding upon the observational work of earlier astronomers (Curti
i G

Shap1 ’
pley, Slipher) and greatly extending the investigation himself, Hubbl

(1924)
) in the early twenties proved the extragalactic nature of the Andr
0_

meda N i
ebula, discovered the expansion of the universe in the late twenti
1es

(1929 .
), and showed in 1936 that the large scale distribution of galaxie
b S was

hOmo
e . 3
geneous and isotropic to the telescope limit. These three crucial

disC .
ov
eries set the stage for cosmology for years to come. It was im-

medi :
ately noticed that the models speculated by Friedman (1924) fitted

ver .
Y well with the above observations. Friedman was able to find solu-

tions . 3
to the Einstein equations for the metrics

dr? + rz(de2 + sin26d¢2)
(1.1)

ds? = - c2dt? + R*(t)
1% (k/4)r*1?

With k = .
k = +1 and -1; the corresponding space metrics describing a three-

Sph
Phere and a three-hyperboloid respectively. The Einstein equations

G 81G
URCTRA A = atTi
ghv —Ew-Tuv for the above metrics reduce to
I2 ’
_;[5]+5__A=8,n9p -
@ K] gz ° 3¢ vl
and
R A §TG
25*%[’;?]*7"‘:‘ i (1.3)
c’R ¢ R c

Wher .
e A is the cosmological constant and p, P 3T respectively the energy



density and pressure as observed by the comoving observers,
Robertson (1929) extended this class of solutions by including the

case where the 3-space geometry is Euclidean. The metric for that case is
ds? = - dt? + R? (t) [dx*+dy’+dz?] (1.4)

which has the same Einstein equations as the two Friedman cases but with
k=0. Robertson and later on Walker (1936) showed that these three cases
(k=0, *1) are the only solutions satisfying the "Cosmological Principle."
The cosmological principle which was first explicitly stated by Milne (1931),
demands that the universe be homogeneous and isotropic. The homogeneity of
the universe means that through each event in the universe, there passes a
spacelike hypersurface whose events are physically indistinguishable from each
other. While the isotropy means that a comoving observer cannot distinguish
one of his space directions from the others. Thus, if one restricts to
Robertson-Walker models for the universe, theoretical cosmology reduces to
the study of equations (1.2) and (1.3), Through the equations of motion for

the fluid, TUV_ = 0 we could obtain p and p in terms of R(t) and an appro-

sV
priate equation of state would give a relationship between p and p. (Note,
however that a solution to equation (1:2) is also a solution to equation

(1.3) by virtue of one of the Bianchii identities provided it is not a static
solution. Einstein in the pre-Hubble days was trying to find a static, closed
model for the universe. With k=1, §=0, no realistic fluid can satisfy
equation (1.3) unless A#0., Thus the need to introduce the cosmological
constant  in the Einstein's equations persisted till Hubble observed the gen-
eral recession of the galaxies. The various parameters k, A, the energy
density, p, the size of the universe now R0 appearing in the theoretical

solution are directly or indirectly connected with the observed astronomical

parameters like the average density now, the 'Hubble constant," H0=(R/R)o,and



the deceleration parameter, q0 = < %g %é. As the observations for these
dstronomical paramcters get better, the range of values for the theoretical
Parameters gets smaller. However, the observations are still not precise
“hough to distinguish between various Robertson-Walker models (K=0, *1) or

to predict the value of A. (See Sandage (1970) for the review of the measure-
Ments of the jubble constant and the deceleration parameter.)

The Robertson-Walker models have a singularity at a finite time in the
Past when the energy density and the curvature become infinite., To avoid the
Singu]arity Bondi and Cold (1948) proposed a temporally-invariant or steady-

State model universe. It is based on the so called perfect cosmological principle,

L+€. the universe presents the same large scale view at all times, The postulates

of homogencity and equivalence of all world-points completely determine the

PELrdc, Indeed, the metric clearly must be of the Robertson-Walker type and

further . . ;
Urthermore, the expansion factor in the Robertson-Walker metric must be such

that tpe Hubble constant is independent of the epoch, i.e.

Ld

H = R/R = constant

T ; ;
he Constancy of curvature of the space-like sections t = constant requires

k=(
and the metric becomes

ds? = —g¢? + eth (dx?+dy?+dz?) . (1.5
il LR . . ; ’ :
he Metric is of the de Sitter type and is a solution to the Einstein equations,

t 3 :
°F Vanishing energy-density and A>0, To rectify the situation, Hoyle (1949) modi-

fi
€ DR . .
d Einstein's equations to read

Guv = 4 §%§ (Thv = Cuv)’ | (1.6)



where C, 1is the matter creation term, Till a few years ago, obseryations were
going on two fronts to decide between steady-state model and the "big-bang"
Robertson-Walker models as a correct description of the universe. In the
steady-state theory all matter must be continuously accelerated, whereas

galaxies in Friedman models must decelerate. The deviation from a linear
expansion law between distance and red-shift would provide the necessary in-
formation on the change of motion with timé. A second approach has been to

look for evolutionary differences in galaxies in the great clusters. The
steady-state model requires that galaxies must be formed during all epochs.

On the other hand, in Robertson-Walker models, most galaxies are formed at a
unique epoch. Thus -integral properties such as color, and mass to light ratio
for an adequate sample of galaxies would show dispersion in the steady state
theory owing to the age difference of their stellar content. Although, these
observations did not provide very clear cut answers, they favored evolving
Robertson-Walker models. The discovery by Penzias and Wilson (1965) of the
cosmic microwave background changed the situation considerably. There was no
satisfactory way in which the steady-state theory could explain the 5. TVE
black-body spectrum of the background radiation while the presence of relic
thermal radiation is to be expected if we trace the expansion of the universe
back to a highly contracted, hot phase of the universe. Curiously, long before
the discovery of Penzias and Wilson and its explanation by Dicke etc. (1965), Gamow
and his colleagues (1949) had predicted a primeval fireball and had even predicted
its present temperature somewhat larger than 2.7°K, The isotropy measurements

of the black-body radiation gave an impetus to the study of anisotropic
cosmologies which was already started by Heckmann and Schicking (1959) and Zel'dovich
(1965). The precise measurement (0. 2%) [;ee Partridge (1969)] in its isotropy put
much more stringent limits on the anisotropy of cosmological models than those

derived from the isotropy of the Hubble red-shifts, Zel'dovich (1956) and



Thorne (1966) studied the anisotropic cosmologies in view of the possibility

of a primordial magnetic field. Hawking and Tayler (1966) and Thorne (1967)

investigated the influence of anisotropy on the primordial helium production. A

number of people studied exact solutions for anisotropic cosmologies. Misner
(1968) studied a large class of homogeneous, but anisotropic universes and
found that just above 10'% °K, neutrino viscosity was very efficient in reducing

the anisotropy. This led Misner (1967) to formulate the principle of "Chaotic

COsmology," The philosophy of chaotic cosmology was based on the existence of

Singularity proof of Hawking and Penrose (1970). Assuming that the singularity

man type, i.e. a singularity

<

time in the past, the idea of

demanded by Einstein's equations is of the Fried

Involving infinite densities a finite proper

Chaotic cosmology is to start with arbitrary initial conditions near the singu-
larity apg try to prove that they would develop into the present day universe.

Furthermore one could try to formulate chaos in terms of maximum symmetry
L

breaking near the singularity, OT that the universe goes through almost all

Irregular stages near the singularity. The first part of chaotic cosmology

which consists of proving the cosmological principle has a great esthetic

8Ppeal while the second part could give rise to important consequences.

" : " .
In this thesis, we will try to characterize the '"chaotic behavior of the

Bianchy Type IX (generic, homogenous, anisotropic models) cosmologies near the
’

Singularity. The Hamiltonian methods applied to these models by Misner (1969)

descripe the evolution of these universes (called the Mixmaster Universe)

In terms of a particle motion in 2 potential well. The evolution is given com-

Pletely by specifying the initial conditions Bf’ B_ (shape anisotropy) and
Py, p_ (expansion rate anisotropy). We will show in the limit of infinite
Potentigy approximation that the evolution of the Mixmaster Universe is equivalent
i 8eodesic flow within a bounded region of the Lobatchewsky plane, It



will be shown that the boundary shape is such that, as the uniyerse goes towards

the singularity, the collisions with the equipotential walls bounding the region make

the geodesic flow ergodic. Thus the chaos of the Mixmaster Universe will be

characterized by the ergodic nature of the geodesic flow, or more specifically, it

means that if we start with a well-defined state of the universe (given by certain

value of Bi3 p+ at certain Qo), as it evolves towards the singularity, it goes

through almost all possible anisotropid stages, We will study the consequence

of ergodicity on the problem of horizons. For certain subsets of initial conditions,

some null-geodesics proceed to circumnavigate the corresponding universe. We
will see that the Einstein equations lead to a natural measure on the initial

conditions (B4, ps) in this problem. However,

the measure of the circumnaviga-

tion sets depends upon the epoch, so that the ergodicity does not guarantee that

a typical solution will evolve through such a set. Relying on the mixture property

of the ergodicity, we will compute the probability for circumnavigation along

any axis. It will turn out to be very small but finite,



CHAPTER ITI.

Particle Horizons

Horizons are frontiers between observable and unobservable events.
The first systematic study of visual horizons was done by Rindler (1956).
He defined two types of horizons. The first, called an event-horizon,
for an observer A is a surface in space-time which divides all events
into two non-empty classes: those that are observable by A and those
that are forever unobservable by A. The de Sitter universe can be
seen to possess an event-horizon. The other type of horizon is called
a particle horizon for a given comoving observer A at some time t
It is a surface in the space-like hypersurface t = to which divides
all comoving observers into two non-empty classes: those that have
already been observable by A at time to and those that have not. Pen-
rose (1968) defines particle horizons differently. 1In his definition,
the particle horizon of an observer y (see Fig. 1) separates events I
from which a particle with world line y can be observed, from events II
from which the particle cannot be observed. Note that p and Q will form
particle horizon in Rindler's definition. For spatially homogeneous
universes where the three-space sections are symmetric, the intersection
of Penrose's particle horizon with the surface t = constant would give
the Rindler particle horizon. We will restrict ourselves exclusively
to the Rindler's definition of particle horizon. As an example, consi-

der Robertson-Walker model in the early times when the universe was




radiation-dominated. The radiation energy-density is given by

er“ . proRou (2.1)

where Boo is the energy-density now and Ro is the present radius of the
universe. Ignoring the curvature term and cosmological constant term

in comparison with the radiation term in equation (2.1) we obtain

y
1 [dR]2 _ 816 Bioly

dt 3c2 RY .

RZ

or, integrating,

R _ (327G /% —
R, - [3c2 pro] tsec . 2w

The structure of the particle horizon at time t for the observer at r = 0
will be given by studying the propagation of null lines during the time

interval o to t:

t cdt T dr
= ff ———2 yl]
6 R(t) é a + %_rz) Xix

x(r) = r for k = 0, while x(r) = 2 tan 'r for k = +1. Thus the radius

of the particle horizon at time t is given by

c 2 Yt (2.5}

X(r) = sec

1/4
" [SZWG ; J /
(o] 2 TO

3¢

Taking R 5 x 107'° ergs/cm3 corresponding to the black-body radiation
temperature 2.7°K and Ro = 1028cm, we obtain the coordinate size for the

horizon at time t to be

x(r) = 107% V/t/1 sec



For the present matter-density P & %) ke gm/cma, the universe remains
radiation dominated until Tr % 3,000°K which corresponds to the age of
the universe t = 10'? sec. Thus, during the radiation dominated phase,
the light can travel the coordinate distance of 3 X 10% which is a
small fraction of the range of X going from 0 to 2T for the closed uni-
verse. To get a better idea, let us compute the mass of the baryons

in a typical horizon. Consider the k = 0 case, for which the proper

radius of the horizon at time t will be given by

Ty = R{t )¥,

where r is the maximum distance that light could have traveled. Substi-

tuting for R(t) from (2.2) and r from (2.3) we obtain

Ty = < S (2.4)

Writing P_ = aT", equations (2.2) and (2.1) would give the following

relationship between temperature T and the age of the universe, t:

1/2
Lo (32 % (2.5)
T 3¢
Thus the total baryon mass in a horizon will be given by
= A 3
My =% 0 Ty Leso)

pR =p R
m mo o
3 (2.7
or _ T )
p =P —
m mo |T
0

10



where Bis is the matter density now and TO is the present radiation tem-

perature. Substituting (2.4) and (2.7) into (2.5) and using (2.5) we

get
4 ¥ s 1
=l S e e
My = 7= By {T ) B¢~ Tome 732 e (2.8)
° £ [—3?”]

i -30 3
Taking p_ = = 10 " “gm/em, T = 2.7°K and T = 3,000°K, we compute the mass

of the horizon

M, = 4x 10"° gn = 10"°M

H O]

while the mass of the observable universe is roughly 105“gm. Thus we
find that in these standard evolutionary models of the universe, only a
small fraction of the universe could have had communication between its
various parts. As a result, no physical mechanism would make the pro-
perties of the two parts of the universe uniform when these two parts
of the universe lie outside of each other's horizon. But the universe
is observed to be homogeneous on a much larger scale than the size of
the horizon. The 2.7°K microwave relic radiation gives the deepest
look into the universe. The microwave photons give us direct informa-
tion about the nature of the universe at the time they last interacted
with matter. The main interaction with matter is the Thomson scattering
by free electrons. The radiation first ceases to interact with matter
when the plasma recombines as the temperature of the universe drops to

~ 4000°K (see Peebles, 1968). The photons now travel freely until the

11



epoch when the intergalactic plasma is turned on. To find out when the
presently measured microwave photons scattered last with the intergalac-
tic plasma, we consider the optical depth T (e_T is the attenuation fac-
tor for the photon intensity) obtained by Bahcall and Salpeter (1965)

for Thomson scattering in the universe with Hubble constant Ho = (1010 years)_l.
Taking the deceleration parameter q, = %—and a dense intergalactic plasma
with electron density U ° 10-5cm_3, we obtain the optical depth to be
unity for a distance corresponding to a red-shift of z = 7. Thus the
isotropy (see Partridge, 1969) of the present day observed 2.7°K micro-
wave radiation implies that the universe has been expanding isotropically
at least since z = 7. And the inhomogeneity in the microwave radiation
would be washed out only over a horizon size at z = 7. Let us compute

the relevant horizon size for k = 0 Robertson-Walker model, the metric

for which is

ds? = - c?dt? + R*(t) [dx® + dy® + dz?]
P
= Rz(t) [ - Czdt + dx2 + dy2 * dzz],
R™(t)
Defining a new time variable N by
_cdt
dn = R(E)

we obtain a conformally flat metric:

2

ds® = R*(M) [- dn? + dx?

+ dy2 + dzz] 3 (2.9)

When the universe is radiation dominated R(t) « v/t in which casen «v/t

12
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giving us

R(N) =n . (2.10)

1/3

When the universe is matter dominated, R(t) « tz/3 giving us R <« ¢t * ; or
R(N) = n® . (2.11)

Suppose that the microwave photons which were scattered last at nscatt

(corresponding to z = 7) by intergalactic plasma at P and Q (see Fig. 2)

are just observable now at no Then setting ds® = 0 in equation (2.9)

bs.
we get
OF & 0 nobs. i nscatt. (2.12}
vhile nscatt is related to the epoch z = 7 by the red-shift formula
R(M )
1 + z = _“TR(nObs. . (2.13)
scatt,

Since the universe is matter dominated during this relevant era, we can

use (2.11) to obtain

nobs
—ﬁ———i——— 8 . (2.14)
scatt.

Thus we are sceing photons of exactly the same temperature (up to 0.3%)

which were scattered by plasma at P and Q at n = n But light pro-

scatt,

pagation between regions around P and Q before the time of microwave pho-

ton scattering is possible only if

<
Pq r]sca'ct. (2.15)



Thus, the maximal angular separation (Om) between the plasma regions

which could have had prior causal communication is given by

n
s . i = i e scatt. )
m 0 ” . )
Mobs. ~ MNscatt.
= 1 ~ 1
n
2 obs. 21| 208 -1
nscatt.

or,
%

So in Robertson-Walker models of the universe, the inhomogeneities in

the temperature of microwave radiation would persist over regions sepa-

While we observe the microwave radia-

rated by angle 0 > 6 _at z = 7.

tion to have exactly the same temperature over widely different angles

in the sky as opposed to the expected variations over regions separated

by angle ¢ (= PO'Q) > 22°.

Thus the isotropic models of the universe have an unpleasant fea-

ture in terms of the existence of the particle horizons. Misner (1969a)

first pointed out the possibility of absence of horizons in a more gene-

ral, anisotropic, Bianchi Type IX model of the universe. That the struc-

ture of horizons is quite different in anisotropic models can be seen in
Kasner solutions (Kasner, 1921) of Einstein equations, whose importance

as models for the initial singularity was first demonstrated by Lifshitz

and Khalatnikov (1963). These solutions correspond to the gravitational

field in empty, homogeneous Euclidean space and the metric for these solu-

tions is given by

P2 . » 2p3

2p1
d dx? + t dy + t dz? (2.16)

ds? = - dt? + ¢



where p,, p,, P, are three arbitrary numbers satisfying the relations:

. =% ELE . (2.17)

Therefore, only one of those numbers is independent. So a single real

parameter u (first used by Landau and Lifshitz, 1962) can represent Pys

pz, p3 as
- u u + 1 u(u + 1
Py = e——— Pp B e, p3 = ___(_—__) (2.18)
1 +u+ u? 1 +u+ u? ) l1+u+u
= 0. Then

Consider a particular Kasner solution with pp =1landp, = P,

the metric is

ds? = - dt? + t2dx? + dy? + dz?2 . (2.19)

In terms of the new time variable n = fnt, the metric reduces to
ds? = e2N(- dn? + dx?) + dy? + dz?

Thus the distance Ax covered by the light signal propagating in the x-

direction is

Ax = M

Assuming that the metric has the form (2.19) for all t from t = 0, then

n takes on all real values fromn = -« . Thus at any given time n, any
finite distance along the x-axis can be covered by a light signal in the

time available since the initial singularity. Thus the particle horizons



are washed out along the x-axis by causal propagation. In the next

chapter, we will describe the behavior of Bianchi Type IX model as
investigated by Misner (1969b), Belinskii, Lifshitz, Khalatnikov (1970).

They find out that this model closely approximates Kasner solutions dur-

ing certain periods of its evolution. Here we will investigate that

subset of Type IX solutions which, during their evolution, approximate
those Kasner solutions which open particle horizons in one spatial direc-
tion. This subset of solutions (called the 'circumnavigation solu-

tions'")will be characterised by the initial conditions B+, B_ (shape

anisotropy) and P,sP_ (expansion rate anisotropy). We will see how

the Einstein equations lead to a natural measure on the initial condi-
tions (B+, p+) in this problem, enabling us to compute the probability

for a typical Bianchi Type IX solution to have no horizon along any one

AXiSi
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CHAPTER III

The Non-rotating Bianchi Type IX Model

The metric for the generic, non-rotating, closed homogeneous cos-—

mological model of Type IX can be written as

2 _ 2 ., 1.2, 28 I
ds™ = dt™ + 4 R™ (e )ij oo . (3.1)
Here R and Bij are functions of time t only. The matrix Bij is
The

diagonal and tracecless and measures the anisotropy of the universe.
i : . ; ot A .
o~ are three independent differential forms which remain invariant under

the Bianchi Type IX homoegenity group. Thus the o satisfy the following

relation
doi = Eijk Gj’\ Ok (3.2)
and they can be represented as
01 = sinyd® - cosysinbd¢
o, = cosyPd6 + sinysin6d¢ (3.3)
Oy = - (dy + cos6d¢)

where Y6¢ are the Euler angles with 0O <y<ébm, 0<6 < and

0 < ¢ < 2m. The numerical factor of 1/4 in Equation (3.l)lis chosen so

that when Bi. = 0 the space part of the metric is just the standard metric

for a 3-sphere of radius R. Thus for B = 0, one obtains the closed

Robertson-Walker cosmological model which is both homogeneous and isotropic.

3
We will measure the volume of the universe (proportional to /§'= R ) by
8

a parameter § defined as



/2 -0

B ow (2/35)%

For the two independent anisotropy parameters choose

@™
|

= (81 + Bz)/2
and B = (Bl = 32)/2/5

Thus the variables , B+ and B_ characterize the three-geometries. To
study the dynamics of these universes, the most elegant method is to
obtain the Hamiltonian action functional which Misner,[1969] did by
adapting the Hamiltonian formalism developed by Arnowitt, Deser and Misner
[1962]. The idea of the Hamiltonian formalism is to cast the variational

principle for Einstein's equations which is &I = 0 with

1/2 d4x

X - (16'11)—l J "R(-"g) ; (3.4)

into a canonical form. Arnowitt, Deser and Misner [19¢2] show that the

variational principle can be put in the form

-1 ik ¢ 4
I = (16m) f LA - 9P d'x (3.5)
ik
where not all and gik are independent as they satisfy the constraint

equations:

1l -k 2 ik
g 3R + 5 (m k) = 7 ’H‘ik =0 ' (3.6)

ik
-— 2’"’ Ik_ = 0 . (3‘7)
The quantity 3R is the curvature scalar formed from the spatial metric

854 “|" indicates the covariant derivative using this metric, and spatial

18



(Latin) indices are raised and lowered using gij and gij' The equations

(3.6) and (3.7) are nothing but the Einstein's initial value equations

ou

G = 0, up to certain multiplicative factors. The action integfal (3:5)

for our metric (3.1) would be

o -1 i3
I = (16m) J m dgij A OIN Ty A Oy

1
=1 f ﬂJ dgij "

where
1.2, .28 1 -29, 28
By "Z R )y =G e )y s
Thus, dgij = —Zgij d + Zgik d Kj
So
T o= Gy I twed di. - 7 ad (3.8)
k ki k $ .

Since Bkj is traceless, we separate out the traceless part of ﬂkJ by

defining

e Ry
= (Zﬂ)(ﬂk 3 § T

Py i T s (3.9)

gince (3.8) is almost in a canonical form, taking Q as a time coordinate,

we see that (Zﬂ)ﬂkk will be the Hamiltonian so we write
Bo= @m ot . (3.10)
Thus the action Integral now reduces to
1= f Ip,) 48y, - Hdal
Parameterizing pjk in the same way as Bkj’ namely
J

6 p K = diag.(p+ + P 3

’ P+ - P_ /5—, '2P+)

19
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we obtain

I = f (p+ dB+ + p_dB_ - HAQ) g (3.11)

Thus we have obtained the standard canonical form provided 8 and

x* Pz

@ can be varied independently and H is expressed as a function of B,

p, and Q. To see this note that the constraint equation (3.7) is iden-

tically satisfied in any case and the only remaining constraint equation

(3.6 reduces to

3
B 52 8p 3 3 1 i
( 8 ) R+2 (m k) = (2,"_1) k+’3—5 k’IT )ix

or
Rlggplokd 1epee (w4 k.
64 Z V) Wy T Bgp@g=0 .
I
. ik 1 2 2 k
Substituting p p Py ® g’(P+ +p J)s © e %;-H, and 3R = éE-(l—V)
R
i 2 -
and writing R = 35 & » We can solve the above equation for H, to obtain
2 2 -4Q 1./2
H=[p +p "~ +e w-11"/ (8. 42}
1 -
where V(B) = g-trace (e48 - 2e 28 + 1)

= 2 *Prcosh 438 - 1) + 1

—-% e_28+cosh 2/§B_ - l-e_8B+

3 : {3.13)

Thus, with & as the choice for the independent, coordinate time variable,
the state of the universe at any epoch §, is given by the field amplitudes

B+ and B_ and their congugate momenta Py and P_. And the evolution of the

universe is given by the Hamilton's equations:
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dp dp
+ oH s oH dH _ dH ) (3.14)

s p, 7 de T T BB, *dn . aa

In terms of the § time, the beginning of the universe appears at

2. = + o, The proper time of comoving observers is related to by

(see Misner [1969L])

_[2 1 -3
dt _V/;; 0 e e . (3.15)

Thus the non-rotating Bianchi Type IX problem is reduced to a Hamiltonian

problem corresponding to a particle moving in two dimensions in a time de-

pendent potential. The "anisotropy potential V(B) is positive definite

with

V:8(®B°+87 nearg=o0. (3.16)

The equipotentials near the origin of the Q+B_ plane are closed curves for

V < 1. The potential walls rise steeply away from g = 0, with the equi-

potentials forming equilateral triangles in the B+B_ plane. [See Figure 1.]

The potential has reflection symmetry in the 3+ - axis and one side of the

equilateral triangle cuts the negative B+ - axis. The corners of the triangle

are not closed however, but have channels leading off to infinity. These
channels narrow exponentially and the deviation from the straight-sided
traingular shape takes up a very small part of the total equipotential. For
example, near the positvie B+ - axis, for large B+, V(B) has the form

V(B) = 1+ 168 % &%+ (40
In directions opposite the three corners, the potential rises exponentially

for large distances from B = 0. Along the negative B+ - axis, for example

V has the value



V(B) = %-9—88+ for B, %< =1 : (3.18)

Thus the equipotential contours for V > 1 consist of three disjointed
curves, each of which runs off to infinity at thé channels. When not
running off to infinity, the contours are approxmiately straight lines.
Thus, the evolution of the universe is given by the motion of the system
point B = (B+,B_) as a function of the time coordinate §, moving in a
time—dependent potential well. In the first approximation near the singu-

larity for § - =, we can neglect the potential term e—AQ(V—l) in the

Hamiltonian [Eqn. (3.12)] to give "

[P+2 + P_z]l/z- (3.19)

s
Il

The Hamilton's equations, then give p,,» H as constants of motion and
dBy _ P+ Thus the universe point moves with velocity B' = dB/df =

ds H
2}1/2

2 ; .
{ (dB+/dQ) + (dB_/dQ) of unit magnitude in straight lines. The

approximation used would fail when V(B) becomes sufficiently large. The
limiting equipotential (the potential "wall") is one which would make

B' to go to zero. Using the Hamilton's equations
+ oH
e p+/H (3.20)

one can rewrite Equation (3.12) as

1= B'+2 ¢ B'_z g B Ty B Gsed (3203
so that the condition B' = 0 gives
2 4Q
V(Bwall) =0
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Substituting the asymptotic form for the potential for B+ << =1 from

Equation (3.18), we obtain

s N J 2
B+ = Bwall = Eﬂ -8 tn (3H°) (3..22)

The @ dependence of H is given by the Hamilton equation

dH _ 8H 2 -4Q 2.2 2
W o= -Fe (-1 =-2H (1-8")
or
2
d 4nH '2
N = -4 (1_8 ) . (3.23)

Thus, when the system point B is well inside the potential walls,
B' ~ 1 and H is nearly constant. From Equation (3.22) we then conclude
that the sides of the limiting equipotential triangle move outward at

; d
velocity (~E%%ll) = l-when the system point is moving with unit velocity

2
inside the triangle. If the system point is moviang in a straight line
making an angle 0 with B+ - axis, then dB+/dQ = cos0 and dB_/dQ = sin6.

Substituting B+ = (cos6)Q + const and B_ = (sin0)Q + const. in the metric

(3.1) we obtain

ds

]

. - B Yo o2
o ac s %}[}2(B+ + /3B)-20 12 2(p- - /3B.)-20 2

& 5 2
+elﬁ+ 2903

~dt® + =—

2 1 Q(2cos0 + V3sin® - 2) 112
6TT e (0]

eQ(ZcosO - V3sino - 2) O22

Q(-bcos® - 2) 32
+ uz + aB e o

al, Gy 5 u3 are some constants. Since H is constant when the system

is moving freely inside the potential walls, Equation (3.15) can be in-

where

tegrated to give

-39 .
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Thus, the metric reduces to

2
dsz = -dt2 +.%F [Al tZPl 012 + A2 t2P2 02 + A3 ¢ % ] (3.24)

where Al’ AZ’ A3 are some constants and

Py = - %-cose £ 30 sin6 + %
V3
Py =~ %-cose +-§: sin6 + %- (3.25)
3
-2 .
Py = 3 cosO + 3 . N

These coefficients satisfy Py + Py + Py = 1= pl2 + p22 + p32 which are

just the relations which Kasner coefficients satisfy. Belinski, Khalatnikov,

Lifshitz [1970] call these metrics generalized Kasner solutions. Thus

the universe has a Kasner epoch when the system point B is moving freely.

This epoch, then can be parameterized by "u". From equation (2.18) sub-

stituting for P3 in (3.25), we get

o
u (ut+l) = §-cose +-%
1+utu
or
dB+ x _ u2+u—l/2)
I cosf = - -
u tutl
Similarly, we would get (3.26)
a6 Blukl)z
S B W
u +utl

Thus the evolution of the Bianchi Type IX universe can be described as a

series of Kasner epochs - the system point £ moving in a certain direction

24
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characterized by a certain value of the parameter u, with unit velocity un-
till it comes close to one of the equipotential walls (which are moving more

slowly) and feels the potential, and would then bounce off the wall and would

follow freely a different Kasner epoch until it reaches the next wall.

The Kasner solution which does not have a horizon for causal propagation

along one axis, say the z-axis, has indices P; =P, = 0 and Py = 1 which

corresponds to u = @ [see Equation (2.18)]. u = @ corresponds to

dfy _ dB. _ ; . . : ;
o 1 and.aj_ 0, i.e. the system point is moving horizontally, parallel

to the 8+ —axis in the positive direction. Note that the inclined potential

walls are also moving with unit-velocity in the positive B+ direction. Thus,
this epoch would correspond to the system point following one of the inclined

potential walls. In the next chapter we will investigate how closely a

Bianchi Type IX solution would have to approximate this particular Kasner

epoch for it to lead to a vanishing horizon along one axis. The Kasner solu-

tions corresponding to horizon vanishing along the other two axes are given by

Py = P3 = 0, P, = 1 and Py = Py = 0L Py = 1 respectively: those are

parameterized by u =0 and u = -1 and correspond to the system point

moving parallel to the other two corner axes and moving in the same directions
as those corners.

As the system point bounces back and forth between the equipotential
walls, let us note the physical significance of various paths as they relate
to V(B). Consider a particular path when the system point is close to B+—axis
and following the corner (lB_I << 1, By + ). This corresponds to a

"pancake' singularity - a relative compression of the 3-axis with the

other two axis approximately equal. With B_ = 0, it corresponds to the Taub

Vacuum solution with the lengths in the 1 and 2-axes remaining finite and



equal. When the system point is near the potential walls, say for example

the vertical wall which corresponds to B+ > — © and B_ < V5-8+, 3¢
corresponds to a 'cigar" singularity with stretching of the 3-axis

relative to the other; the other two sides of the triangular equipotentials

correspond to preferential stretching of the other two axes.



CHAPTER IV

Propagation of Light and High-frequency Sound Waves

We want to investigate possible modes of communication in the Bianchi

Type IX model. In the Appendix A we obtain an equation for the propagation

of high- frequency sound waves. It is a geodesic-like equation for sound

rays describing a wave-packet moving in the y-direction. The equation reads

dy _ @ 26+
- /é??vse e " (4.1)

o 2
where Vs = (%f ol is the sound velocity. Setting VS = 1 one would get

the law of propagation for light going in the y~direction. Or, indepen-

dently, one could get it from the geodesic equation D¢ V = 0 as done in

Appendix B. For the light going in the y-direction, setting V2 = V3 = 0

(the components of the tangent vector to the geodesic in the other two

principal directions) in Equation (B1.6) and using the null condition

(Vo)2 = (VO)2 = 0, one obtains

g-t‘li = Vo7 ¥ 2B+ (4.2)

We want to study the above equations for large u (asymptotically

u = ®) epoch when the universe approximates a generalized Kasner solution
with Py = Py = Q, Py = 1 which is that Kasner solution for which light
The u = « have two

propagates round the universe in the yY-direction.

In the axial case,

distinct cases - the axial and the non- axial ones.

the system point is close to the B+—axis and is running towards the corner,
It is more convenient

while the corner is moving outw:.rds with unit velocity.

to describe the motion of the system point in terms of BO defined as

(4.3)



is then a measure of the horizontal distance from the corners. BO is

B
o

negative and it decreases as the universe feels the potential in the channel.

The solution to Einstein's equations for this epoch can be described as

2e280

B =12 G_TZ——) [See Appendix A, Eqn. (4.8).]

where K is a small constant of motion, and Z0 is a spherical Bessel

function. For large values of the argument, it reduces to

28

- o
e Bo sin(zeK - m/4)

3=

which corresponds to the adiabatic harmonic oscillator given by Misner (1969)

Substituting this solution in the equations for sound rays, we find that

high-frequency sound waves can go round the universe in the y-direction

during seven cycles of B_; where we have taken Vs - corresponding to
%)

p = %-e for radiation fluid. While the light ray would do the same thing

during four cycles of B_ The result corresponds to the one quoted by

Doroshekevich and Novikov (1970) which reads

1
Ne T4 Nm ’
Y-direction and Nm =

where Ne = number of times light goes round in the

number of maxima for B_. Note that B_ is related to Q in their

4v38-
notation: Q = e S . Note also that the argument of the Bessel function

for 8_ is decreasing, since BO is negative and decreasing. For small
argument, we can write f_ as
2
2e Bo
B ~ ax + blogx , where x = m

Thus as x decreases, B increases and soon the approximation for

[B_ , <<1 would fail. At this stage we can consider the system point to

have come out of the channel.
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Next consider the more general case, the off-axial case with B >1

and u very large. Suppose that the system has bounced back off the vertical

wall (at @ = Qb) and is going towards the inclined wall with large u. The

equipotential wall is moving outward with velocity 1/2 while the system

. 1 3
point has velocity §-+ Ea-towards the wall. Thus the system point will

catch up with the wall and will experience its potential for a long time

before getting bounced off. 1In the Appendix A, we compute the changes in

various, relevant quantities as the system point enters and leaves the

potential of the wall. When we study the

region where it experiences the
equation for propagation of sound rays during this epoch, we find the

estimate of how large wu should have been when it first bounced off the

vertical wall, sothat a horizon is washed out during the next collision with

the inclined wall. The relevant equation [Appendix A, Eqn. (3.7)] reads as

V3 b e—6(8+)wall

\Y%
s

. . : : 9] .
(3+) wall 1S negative; it goes like (B+)wall - §-+ o where o 1is a
2, there exist small sectors

constant. Thus, we find that at any epoch,

around the lines parallel to Q+—axis such that when the system point is

rurning along these sectors at @, a horizon is removed in the y-direction.

The angular extent of these sectors (6 = v3/u) depeands upon © and it

decreases to zero as { goes to . Therefore, at each epoch §, we obtain

a subset out of the set of all possible initial conditions (B,, B_> 6)

that the solutions corresponding to the initial data specified by

such

this subset don't have g horizon in the ¢—dire¢tion. The totality of all
such subsets will be called a circumnavigation set at that epoch. In the
next chapter, we will show how to assign a set theoretical measure on these

initial conditions.



30

Let us now follow the system point after the first bounce with the

inclined wall. As shown in the Appendix A (first shown by Belinskii and
dp
=i 1 o Ta€. — < 0.

Khalatnikov (1969)) u changes from uy to up = i 15

So the system point follows a Kasner epoch of straight line motion in the

B_ plane till it comes close to the second inclined wall. A similar analysis

as done in the Appendix A would show that a collision with this inclined

wall changes u to -u -2, or the value of the parameter u now becomes

and the system point leads back towards the first inclined wall. The

u-2
process repeats itself till wu becomes less than unity in which case it

stops rattling back and forth between the inclineéd walls and heads towards

the vertical wall and would start rattling back and forth in one of the

other two corners. The above description can be described very elegantly by

the i fshitz-Khalatnikov bounce law u > u - 1 [1969]. liere we take our
fundamental interval for u to be 1 <u < ®  Other values of u can be seen
to represent the solutions corresponding to the values of u in the funda-

mental interval by simple relabeling of the axes. The operators permuting

the Kasner exponents Pys Py, Py are:

Pyp tu>-(1+u : (P> Pys P3) > (Py, Pys Py)
Py3 P u > 1l/u t (pys Pys P3) > (Pys Pgs Py)
- Pyy ¢ U > = u/(1+4) t (Pys Py P3) > (Pgs Pys Py)
Thus the bounce law : ue = - uy given above can be transformed into ue

=u, - 1 by the operation Py3 B P12 p31. The evolution of the Mixmaster

1
universe, then consists of one Kasner epoch represented by u (> 1) re-

placed by another with u - 1. Sp it continues till the integral part of
becomes 1less than one.

the initial value u 1is exhausted, i.e. until u



The transformation p23! u > 1/u will put u back in the fundamental

interval and that will start another series of Kasner epochs. These suc-

cessive series are called eras and the length of an era is given by the

number of Kasner epochs it contains (see Belinski etc. (1970)). If the whole

sequence begins by the number u® = k% + xo, where k° is the integral part of

uo, then the lengths kl, k2, k3, ... of the successive eras are given by

the numbers appearing in the expansion of x in an infinite continuous

fraction

A TR

Belinskii etc. (1970 do an algebraic study of the above equation and prove that

with increasing numbers of eras, .the values of x approach a stationary

distribution, i.e. if we start with a certain probabilistic distribution
for x in the range (0,1) at some epoch Qo and follow the evolution

of the system points towards the singularity, the values of x take on

a stationary distribution asymptotically.
In the next chapter, we will use geometric methods to investigate the

statistical properties of the Mixmaster universe. We will prove that the

evolution of the universe is ergodic in a certain phase space related to

B+, B_ and u. Thus we prove certain statistical properties not only of

the anisotropic expansion (which is related to u or x) but also of the aniso-

tropy (B+, B_) of the universe.

,mgfv



CHAPTER V.

The Ergodic Behavior and the Horizon Problem

A. The Evolution of the Mixmaster Universe.

The evolution of the Mixmaster Universe is given completely by
specifying its shape anisotropy '"B'" and the expansion rate aniso-

tropy p,, p_ at some epoch, Qo. As we follow its trajectory, the sys-

tem point seems to wander about rattling back and forth between the
equipotential walls and moving along various directions (direction
specified by 6; tang = p+/p_). In this chapter, we will study the
exact nature of this wandering motion. We will show that the evolu-

tion of the Mixmaster Universe is equivalent to a geodesic flow within

a bounded region of the Lobatchewsky plane. We will find a certain
group of transformations, G, which make this flow of broken geodesics

on the Lobatchewsky plane, D, into a continuous one on D/G.

As we saw earlier, the variational principle for Einstein's
equations §I = 0 with

Il g et Slgr
I-= T S Ry/-g d'x

can be cast into a canonical form to obtain the Hamiltonian

H=[p,2+p2+e .1 (5.1)

where p,and p_ are the momenta conjugate to the field amplitudes 8+ and B_

respectively.



Let us rewrite the corresponding Hamilton's equations:

dg, dp_
el U B e E L
-4 =
dp+ e 9 oV dp_ e 40 v
dQ 2H 88+ i de ~ 2H 9B (5:2)
and
dH _ o _ 2e’49(v-1)
e ~ o T T H
Let us introduce a new independent variable, A, «defined by
d i
dA = 0 (5.3)
The Hamilton's equations can be written now as
a8, @t ©
ax R TP g T® - Pg
(5.4)
Wy 1 a0y P 1y o ag
ax 2 8, dax ~"7° g @ -~ C¢-D
where
. 2 2 -49 3
_pQ—H=[p+ +p_ + e (V-l)]z . (5°5)

As Misner (1971) points out, one can see that equations (5.4) are just

a new set of Hamilton's equations

dg" 3k By K (5.6)

dA— T 9p ¢ 35
d Pa dx agA
with A as the independent variable and

] -4Q
[-pp* +p, % +p 2 +e (V- 1)] (5.7)

~
]
N =

as the new Hamiltonian.

g+ =B, g =B . The variational principle

in superspuce, so g = Q, .

Indices A, B, etc. are used to label coordinates
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can now be written as
0 =6 S [deQ +p,dB_ +p dB_ - KdA] (5.8)

the Einstein's equations in addition giving the constraint K = 0. Con-

sider now the behavior of the potential energy like term, R in the Hamil-

tonian:

R = e%ve,, 8) -1]

e_d'Q_SB+ for g, » -o

8

~

(SR

The condition that V be important is then given by

-4 (Q + ZB+)
e ~ 3H2

or asymptotically, the "potential wall" defined by B,a11 Will be given by

1 1 2
= . B =
Bwall 3 3 In(3H°) (5.9)

For large Q approximation, we can ignore the variations in the second

1 :
term, g—ln(3H2) (which would go as In Q). Thus the equipotential in
the B-plane bounding the region in which the potential (space curvature)

terms are significant is given by

1
Aty = oig L e (3.10)

Consider the following set of transformations (see Misner, 1971) which

would make the above walls stationary in the new coordinates:




Q- 2a = et coshg
B, = et sinh& cos ¢
B = et sinhg sin¢
The equipotential walls now will be given by
1
tanh £ = - 5 sec ¢

and the other two are obtained by replacing ¢ » ¢ +

mulae.

35

{5.11)

(5.12)

ZI-in the above for-

Substituting the new canonical coordinates into the action, the

variational principle reads now

0=617/ (ptdt + pgdg + p¢d¢ - K d)\)

where
P, = et(p+sinh£cos¢ + p_ sinh&sing + pQCOShg)
Py = et(p+cosh£cos¢ + p_ coshfsind + p sinh§)
p¢ = et(- p+sinhgsin¢ + P_ sinhgcosh¢)

(5:13)

In terms of these new canonical variables, the Hamiltonian, K, is given

by
2

2K = (- p,2 +p
5 2 sinh?g

P
4 S TR L e gt

(5.14)



The factor 0-2t can be removed by defining a new variable dA' = e-2tdx
to give the new Hamiltonian
2
P
2K' = - p2+p? s —L s R, $)et
2 sinh?g

In the asymptotic limit, taking R(§, ¢) to be zero inside the equipo-
tential walls and + « outside, we find that the evolution of the Mix-

master Universe inside the equipotential walls is governed by the sta-
tionary Hamiltonian, ‘
2

| 2 P
K' = 50- p,® * P” * syoper ) (5.15)

Note that for a particle Hamiltonian

Hv

1
K= 38 PR,

the motion of the particle is along the geodesics of the manifold pos-
sessing the metric guv. Thus, the evolution of the Mixmaster Universe
as projected on the two-dimensional space £, ¢ will be given by a geo-

desic flow on the Riemannian manifold with the metric
(d2)? = d&* + sinh®£(d¢)?

inside the region bounded by the curves given by (5.12). By making a
transformation sinhf = 2r/(1 - r?), we obtain the metric on the Lobat-
chewsky plane which is a unit disc with constant negative curvature.
The metric for it can be written in Fhe cartesian coordinates as

4(dx® + dy?
= (f - Y 2)2 ' (5.16)
—x —y

(de)?
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The geodesics on this manifold are circular arcs, orthogonal to the

circle r = 1. The equipotential walls are now given by the three cir-

cular arcs as shown in Fig. 4. These arcs bound the fundamental region

in which the system point moves along geodesics (circular arcs) until
it hits the wall and is then bounced back along another geodesic and

so it goes on. The '"bounce law" would be governed by the shape of the

border.
A-typical solution to Einstein's equations would be given by a

mesh of broken geodesics. We will show that the solution can be re-

presented by a continuous geodesic curve under a suitable set of trans-

formations. Consider the following transformation which takes one wall

(given by a circular arc) into a vertical diameter as shown in Fig. 5:

NAETI o arER (2.12)
2 - Bz +1 '

It is a conformal transformation, thus preserving the metric. The bounce

law at any point on the diameter AB is very simple as it is governed by

two constants of motion, the Hamiltonian

(1 - x2 - y?)2
1] -
H = 4 (px

* (2.18)

* pyz)

and the vertical component of the momentum Py, Thus E§'= py/px has the

same value before and after the bounce. Hence, the transformation z » - z

would transform the reflected geodesic onto a continued part of the inci-
. . -1 :

dent geodesic. By applying A ° now we recover the fundamental region.

Figure 6 illustrates how the transformation R, = A™' RA applied to a con-

tinuous part of the incident geodesic outside the fundamental region gives
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the proper reflected geodesic inside the fundamental region. Similarly,
one could construct transformations R2 Eﬁé_Ra for the other two walls or
they can be generated from R and S = e3 . Figure 7 finally shows how
a repeated application of these transformations would give a representa-
tion ofézrokcn mesh of geodesic lines by a continuous one. Thus the evo-
lution of our model is now given by a continuous geodesic flow on D/G;

where D is the unit disc with the metric given by (5.16), and G is the

group generated by Rl, R2 and R3 or by R1 and S. To get an orientable

manifold, consider a subgroup F in G defined by

F={R, ,R. . .., R, 1} %
1, , ’ i where n is even (5.17)

Thus, considering points which are congruent under G as identical, we
obtain a closed, orientable, two-dimensional Riemannian manifold of con-
stant negative curvature. We will denote it by MF (= D/F). These groups
(called Fuchsian groups) have been extensively studied (see Hedlund, [1939]
and references therein). Some of the important properties of these groups
for the relevance of geodesic flow on MF are the following:

Corresponding to any such group F there exists a normal fundamental
region R. This is a simply connected region bounded by arcs of hyperbolic
lines (circular arcs perpendicular to the circle |z| = 1) which are con-
gruent in pairs, such that no two interior points are congruent and any
point of D is congruent to some point within or on the boundary of R.

The region R for our group F is ABCP in Figure 8.
The group F given by (5.17) is a Fuchsian group of the first kind

which is characterised by the fact that the fundamental region does not



contain an interval of |z| = 1. The geodesics on MF are determined uni-

quely by specifying a point (x, y) in the fundamental region and a direc-

tion 8(0 < @ < 21) The set of these elements [(x, ¥, 0)] forme a Hausdorfs

space, denoted by QF' Measure in QF is defined by the integral

4dxdydo
frJ L ! (5.18)

(1 -x* - y?)?

To prove certain results for the geodesic flow on M_, the property that

R
plays a crucial role is that the area of ) 1s finite. Hopf (1936) and
Hedlund (1939) havp proved that the geodesic flow on MF is ergodic in the
metrically transitive sense, i.e., if we start with any arbitrary mea-
surable set Mo of QF (points of Mo denote initial conditions of the Mix-
master Universe at some time QO), the corresponding universes given by
the geodesics specified by Mo will have non-zero intersection with any
measurable set M of Qg The ¢ 'ier important result (again proved by
Hedlund [1939]) says that the geodesic flow on MF is a "mixture'", i.e.,
any measurable set M of positive measure tends, with increasing or de-
creasing time, to occupy a definite fractional part of any other mea-

surable set M*, and the fraction is simply the fractional part of QF

which M occupies. This can be written as

(mM)  (mM*)

. LR o
lim m(Mt M*) mQF

t>+0
where mM denotes the measure of M. The mixture property tells us that

the sets in QF tend towards homogeneous distribution. Thus we obtain the
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result that in whatever range of anisotropy shape (specified by a certain
set of x and y values) and anisotropic expansion rates (specified by a
certain range of 9) the universe might have started near the singularity,
we will expect it to have a uniform distribution over QF -- far away from
the singularity. This then characterises the 'chaos'" of the universe.

If we start with a well-defined state of the universe and let it evolve
towards the singularity, we find that it goes through almost all possible

anisotropic stages. .

B. The Probability for the Vanishing of a Horizon.

As seen earlier, the light can circumnavigate the universe in the

P -direction if

) 2B, - 20 (5.19)
—3-6 u

H
In the asymptotic limit approximations,

> 4m, for large u

H = }_.e'4a

V3

where the position of the equipotential wall is given by

(B+)wa11 =-zlta .

Thus, the circumnavigation sets are given by small sectors of angle

5 “-fg .1 4a28, .20 . (5.20)
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When converted into the new coordinates, the angle is given by

1 + x%2 + y2 - 2x
1 - x2 - e - (5.21)

1__6—2et [
27

The geodesic flow is given by the Hamiltonian

8o *

2 _ (1 - x" - yz)

2 2
B = 7] (o, &, 1
L. 2H'cos 6 B 2H'sin © " :
Writing p = : 2 and p_ = ; , the invariant volume
(1 - x* - y%) Y- x -y

element would be given by

! 1
dxAdyAdprdpy . 4 dxAdyQH dHéAje

(1-x" -y)

Since the motion of the system point is ergodic, let us choose a stationary

microcanonical ensemble distribution in the phase-space x, vy, Pys Py- If N

is the total number of solutions, then the probability distribution function

will be given by

N S@H' - n"
6, H') =
P(x, y, 9, H') o (Area) (5.22)
where the area, A, is given by
& o okl dxdy
fundamental (1 - gr 5 y2)2

region

The probability for a typical solution to lie in the circumnavigation set

at time t will then be given by

4 (P(x 6, H' OdH'H'
4 f (x, y, 0, 2 )dxgyg dH'H (5.25)
IS SR

integrated over the circumnavigation set. Note that these sets given by (5.21)
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decrecase exponentially as t (or ) increases. So it is a fairly good
estimate to compute the above probability at the minimum possible value
of t. The toin. will be calculated so that our approximations are valid
until that epoch. It turns out to be very close to the turn-around (the
maximum expansion) epoch for an empty universe. For a more realistic
model (i.e., radiation and matter containing universe) the tmin. epoch,
corresponding to the radiation energy being as dominant as the aniso-
tropic energy, is much earlier and thus reduces. the probability for a
horizon vanishing considerably.

To see the validity of approximations, note that H' = P, is a con-
stant given by the value of pt from (5.13). Thus

H' = H® - o) - B+p+ - B_p_

When the system point is colliding with the vertical wall, Do 0 and the

position of the wall is given by

2

H® = %—e_4ge_8B+

Combining these two equations, we obtain

1 1
®va11 = - Lo+ 108 - 2) - T log(/3 H1) | KR 243
. 1 Jz 2
Writing @ = - Z-log( 3 H') we see that taking
1 !
B ya1p =" 29 %0

is a good approximation provided

1 1
|7 log(@ - 20)] < |- 70 +af (5.25)
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or

[ - 2a] > %- .

We now substitute the probability distribution function from equation (5.22)

into (5.23) and integrate over the circumnavigation set given by (5.21).

T
Taking the value of t at . i.e., e L %3 the probability for a

typical solution not to have any horizon in the Y-direction is then obtained

as

1 1 +x%2+y2 .2

-2(x) ——LX =5
1.-x%2 - y? .

p = N I, dxdy

4m2NA (1 - x2 - y?)?2

x2 + y? -
2 2

-y
mental region, a lower limit on the probability is given by

2 .
X) is always less than unity in the funda-

Since the factor (1 2
1 - x

Let us now consider the effect of observed radiation on the evolution of

the Mixmaster Universe. The Hamiltonian would be modified to read

n? = p+2 R p_2 s g3R L

g T

8TG 00
y

c

The radiation energy density T°° is given by

T00 Rk - (TOO) R 4
O O

where (TOO)O is the energy density now and Ré is the present radius of the

universe. The radius of the universe is given by



By taking the length factor RO to be the present radius of the universe, we
get Q to be equal to 0.70 for the present epoch. Taking (Too)O &5 % 1078
ergs/cm® corresponding to the black-body radiation temperature 2.7°K and

R, = 10%2%cm., we obtain

T% - 16 x &% x 5 x 10713

: . 2 00 . . ;
Substituting the expressions for SR and T in the Hamiltonian we obtain
6

R
2 _ 2 2 1 6 626 816G 0o 60 .00
Ho=p  *p " ~ggR o g U-N =g T

'+

4 R,®
_ 2 2 é b = _ 8TG "o =29 -13

=p,  *+P.° *3 RO e vV -1) + ;:—-nz— e 5 x 10 s
rr 1 -8B+ 1 4Q-8 .
Writing V. = e B o 3-e4 ® and calling Q = Qa for the epoch when the

radiation energy is as important as the anisotropy-energy, we get
-20

Ty TR T
8 I 4 (0]
C
=27
- ~2R
n B %-1056 x 1071 x g7
9 % 10°°
or
8o 4+ 28 -
: 8a + 28, - 10 i
i.e. Qa = 4 - 2 log 10
= 40 - 4.6
Thus, tmin. is given by
tmin
e "= Qa - 20 = 20 - 4,6

So the probability for a horizon vanishing in the t-direction computed

at Q = Qa will be given by

4



o-2(20 - 4.6) & 5 102 -

1
p(a) = —-
4t

Note that a crude value for the estimate of minimum value of o will be
given by assuming that the anisotropy decays as B+ = = §.+ o and de-
manding that there should be no anisotropy left at T = 3,000°K, which
corresponds to the radius R1 = 2 x 10°2%cm. and correspondingly = 7,

Substituting, the minimum value of o in equation

giving O in. = Sia 5t

(5.26) we obtain the probability for the vanishing of a horizon to be

AN

0.02%.

Thus, we conclude that there is a very small but finite probability

for a horizon vanishing (in one direction) before the photons get de-

coupled from the matter.

——

(5.:26)

PSS
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FIGURE 1.

‘)m“c'e 7

Description of particle horizons.
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FIGURE 2.

The last scattering of microwave radiation.
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FIGURE 4.

An idealization of equipotential walls whlch are moving out in B .B_ plane

while they are given by stationary circular arcs in the Lobatchewshy plane.

i
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B

FIGURE 5. A is the transformation which takes the equipotential wall
represented by a circular arc into a diameter.
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FIGURE 6. The effect of the transformation A ' RA is to map the reflected
geodesic into a continued part of the incident trajectory.
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FIGURE 7. A repeated application of the transformations S = A”! RA makes a typical
solution of the Mixmaster Universe evolve along a continuous geodesic.
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FIGURE 8.

The area bounded by arcs AB, BC, CP and PA representg
the normal fundamental region of the group, F.
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APPENDIX A

High-frequency Sound Waves To Eliminate A Horizon

In The Mixmaster Universe



IS N S T e s - RS ECT LT AT LT N S

ABSTRACT

From the linear wave equation for small amplitude sound
waves in a curved spacetime, there is derived a geodesic-like
differential equation for sound rays to describe the motion of
wave packets. These equations are applied in the generic, non-
rotating, homogeneous closed model universe (the "Mixmaster
Universe', Bianchi Type IX). As for light rays [described by

<
Doroshkevich and Novikov (DN)], these sound rays can circum-
navigate the Qniverse near the singularity to remove particle
horizons only for a small class of these models and in special
directions. Although these results parallel those of DN, different

Hamiltonian methods are used for treating the Einstein equations.
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1l. Introduction

The present day universe can be described very well by the Robertson-
Walker cosmological models. The extrapolation of these models for the
early times of the universe gives rise to the problem of particle horizons.!
A particle horizon at a particular epoch bounds each finite part of the
universe which could have been spanned by a causal signal during the time
available since the initial singularity. Since the Robertson-Walker
models possess particle horizons, only a finite part of such universe
could have been causally connected. Thus, we aré faced with the observation
of the microwave background radiation having precisely (< 0.2%) the same
temperature2 in widely different directions even though the regions of
plasma which scattered the radiation last had no prior causal relationship.
The Robertson-Walker models therefore are too simplified to describe the
early phase of the universe. Here we would consider a more general model
of the universe - the non-rotating Bianchi Type IX model. It has a very
different singularity behavior,3,q but it could evolve into the closed
Robertson-Walker model at the present epoch. Misner3 first pointed out
the possibility of mixing by light in these models.

> quote the results of their investigation of

Doroshkevich and Novikov
the propagation of light in the Mixmaster Universe. Doroshkevich, Lukash
and Novikov® in a recent preprint apply these results for finding the likeli-
hood of horizon vanishing and find it to be very low. Our results are in
substantial agreement with theirs. 1In a future paper, we will show how our

formulation and treatment of the problem gives us a natural probabalistic

estimate for horizon vanishing. Here we will derive the equations for rays
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of high-frequency sound waves in these generic models and study their be-
havior in a certain class of solutions to Einstein's equations. The
Hamiltonian methods which we use to obtain information about the relevant
solutions to Einstein's equations are quite different from the ones employed

by Belinski etc’/ or Doroshkenich and Novikov.® Also we do not reject the

application of our calculations to epochs where quantum effects could enter.
We look forward to calculations in which quantum effects might be included

and would meaningfully modify the interpretation of these small perturbations.



The metric of the Bianchi type IX for an anisotropic non-rotating

universe can be written as

d52 = - dt2 + (617)—1 e_ZQ(eZB)ij Oicj’ (A1.1)
where

o, = sinyd6 - cosyPsinbd¢

o, = cosyd0 + sinysinOd¢
and 0y = =(d¥ + costdg)

O. A Oy and are differential forms on the three-sphere

taf 1
satisfy dOi 5 eijk i
parameterized by Euler angles y0¢ with 0 < ¢ < 4m, 0 < 6 < mand 0 < ¢ < 2m.

The quantities  and Bij depend only on time, with § determining

the volume and Bij’ a diagonal traceless 3 x 3 matrix:
B = diag (B}, B,, By)

governing the anisotropy (shape). Note that for Bi‘ = 0, this metric is
J

one form for the positive curvature Robertson-Walker metric. As two

independent shape parameters choose
B, =(B + By)/2

and
B_ = (B, - B)/2/3 g

The variational principle for Einstein's equations &I = 0 with I = (l61r)_l

f R (—g)l/2 dax can be cast into a canonical form to obtain’ the Hamiltoniani
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H = [p+2 + p_2 + e (yo1y11/2 (AL.2)

P, and p are the momenta conjugate to the field amplitudes B+ and B_

respectively, with @ as the choice for the independent (coordinate time)

variable. An equation giving § as a function of the cosmic time t is

/2 1 -3Q
dt = - 37 j{ ¢ dQ 2 (AL ..3)

The "anisotropy potential" V(B+, B_) arises dué to the anisotropy of

the curvature of the three-dimensional space sections of the universe. The
potential walls rise steeply away from B = 0, with the equipotentials
asymptotically forming equilateral triangles in the 8+ B_ plane as

shown in Fig. 1. One of the three equivalent sides of the triangle is

described by the asymptotic form

1 -8B
Vage T, B - (AL. 4)
which is valid in the sector lB_l <-V3 B+. The corners of this
triangular potential are flared open; for instance if 3+ > o with
|6 | << 1, one finds
V() ~ 168 2 %Pt 4 1, (AL.5)

The evolution of the universe is described by the motion of the system

point B = (B+, 8_) as a function of the time coordinate §. When B8

is well away from the potential walls, the universe point moves with



dpg { B, o 4B 2}1/2

. 1] - & P _‘:
velocity B' = a9 a9 * (dQ)

and it can be parameterized as

dB+ u2+u—l/2l

ae 2 (A1.6)
u +ut+l

AP Benans

ae = 2 (A1.7)
u +u+l

where the parameter u goes from -» to ®. The potential walls move
dg
outward with velocity (in the sense of *—V(%ll) one-half. The system
point B would thus move in one direction with t‘mit velocity till it
comes close to one of the walls and feels the potential and would then
bounce off the wall changing its direction. Furthermore, Belinskii and
Khalatnikov" have shown that all solutions would come arbitrarily close
to the values u = -2, -1, - %, 0, 1, » after rattling back and forth
between the walls. These values of u correspond to the system point
moving parallel to the three corner axes.
When the system point is well inside the walls, the potential V
can be neglected. But V =0 just gives the Einstein equations Ru\)

= 0 for Bianchi type I. One finds,3 then that these epochs parallel

of unit magnitude in straight lines

> . 1
Kasner solutions using { = - 7 logt + constant as the independent variable;

3

the Kasner metric being given by

2 2

ds2 = - dt2 i R02 (t2pl dx~ + t2p7- dy” + t2p3 d22>

where the exponents Pys Py and P, are connected by the following two

relations:



Thus the B point shifts from one Kasner-like model to another at each

collision with a potential wall. For the Kasner solution with pl =p, = 0

Py 1, there exist no horizons for causal propagation in the z-direction.?
Similarly, there is absence of horizons in the other two directions for

Kasner metrics with P, = Py = 0, Py = 1 and Py, = Py = 0, P = 1
respectively. This motiviates us to study the epochs of Bianchi type IX
model which approximate these Kasner-solutions for ga long period of time.
These epochs can be seen to be the ones when the system point is moving
parallel to one of the axes of the equipotential triangle and is either
running towards a corner or following an inclined wall. When the system
point is running towards a corner on the B, —axis, the parameter "u"
designating the direction of the velocity is asymptotically « and B+
is very large; IB_I <<1 giving the universe a pancake shaped anisotropy
corresponding to a relative compression of the 3-axis (y-axis) with the
other two axis approximately equal. While near the inclined walls, say
for Bl > @, the anisotropy is cigar shaped with the stretching of the
l—axis relative to the others. So we expect the null geodesics in the
Yy—direction to go around the universe during the uy = = epochs.

In the next section we will derive the equations for the propagation
of high-frequency sound waves and in the following sections we will study
their behavior during the epochs when u is very large. It will be seen
that there exist a set of initial conditions for which the special Kasner-
like behavior persists long enough for these sound waves to go round the
universe in the Y-direction. This possibility of communication either by

sound-waves or light rays along a certain direction during the evolution of

a universe will be called the removal of horizon in that direction for that

universe.
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2. The Propagation of High-Frequency Sound Waves

Let E, E and g be the energy density, pressure and the four velocity
of the fluid, and let €', p' and u' be the small amplitude, high-frequency

perturbations on the above solution. The propagation of the disturbance is

governed by the energy equation:

M M,
€, u + (p + €)u by = 0 (A2.1)

and the Euler equation:

W Vo Hv MoV
(@ +eyus w’ = - g™ (42.2)
Substituting p = p +p', € =€+ €' and u =4 + u' in the equations (A2.1)
and (A2.2) and linearising we obtain
1 —H 1 H ' oy = = M
€ i u + e,uu + (e¢' + p")u b + (e + p)u' ;u =0 (A2.3)

and

- - = Vv -V - -
€+ @5 u Y+ ut W)+ e+ p) @Y T
v —H-V -y= - -
= - " + o' I u'M P>y, = u“u'Vp,v . (A2.4)

Differentiating equations (A2.4) with respect to p and substituting for

ulU,

;  from equation (A2.3) we get,

v =HU=V
"+ utapt, -ty W = (A2.5)

where F is a scalar function which contains the high-frequency perturba-
tions €', p' and u' only up to their first derivatives.

s i ; / )
Writing p' = Ae  , where ¢ is a rapidly varying function and setting

the dominant terms in the equation (A2.5) equal to zero, we obtain
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g" + u'u )¢, ’ (E)s 2y P2y s’ = 0 (A2.6)

0 . .
where v, = (—P—) is the sound velocity. The equation(A2.6) is a

Hamilton-Jacobi equation corresponding to

=)
ol (A7)

1 U

o AL HV g oL K
H—z(g +uu)pp vzzu
s

as a particle Hamiltonian. To obtain the corresponding Lagrangian, we

solve for pp from one set of Hamilton's equations:

Y
dx~ _ _oH _ UV, =p=v _ 1 =u=y
o "9 - (g tuudp 7 wup, (A2.8)
H Vs'
where XLl = (t,e9¢’q))'

= 9 : :
Noting that u = e for comoving coordinates, we can invert (A2.8) to obtain

U
dx 2,— -
i [gw + (1-v, )uuuv] E (A2.9)

ge]
I

\%

Thus, we get the Lagrangian L as follows:

H
_ dx _
L=p, G H
dxu dxv 2 1 dX d 2
= ———_——— e o ! - X "
. dn [gu\) + {1 vy )uuuv] T [guv + (1—vS )uuuv] (A2.10)
M v
- 1 dxt dx S 2= =
=T o a Lgy,, t AvDuul . (A2.11)

The propagation of rays is then given by the Lagrange's equations,

v \Y Vv 3
P dx Lo 2y= = dx'q _ dxP dx” %8y (A2.12)
= 12 8w ar T 2V )uu, 3 Ji= v W

Consider a possible set of solutions with 6 = constant and ¢ = constant.

Then the Lagrange's equations reduce to

2g
& [ 28k v a-w gD T « bt (A2.13)



BEPJQ ( ﬂ )2 = 0
90 dA
(A2.14)
37 [gw%] = 0 (A2.15)
[¢ ¥ ]- ()2 By (A
ax “Byy dl TN oy 2.16)

Since By is a function of t only, eqn.(A2.14) is identically satisfied,

while (A2.15) and (A2.16) reduce to
-2Q 2
j—k [cose e 85——%] 0 (A2.17)

and

d_
dA

For 6 = constant,(A2.17) reduces to (A218). So the Lagrange's eqns. now

reduce to . (A2.13) and eqn. (A28) which can be solved for g&-a d dw
Putting H = 0 in the equation (£.10) we obtain
H v
ax”  dx’ iy & B )
dx_ da £ F =vg) 0 U, o
or
t
9Ey2 4 gy (2452 + ()2 avd) = 0 (22.19)
for 6 = constant, ¢ = constant class of solutions. From eqn. (A219) we
obtain
dy Vs R B3
® ¢ m= bn v e e g (A2.20)

33

—20 283 d B ,
[a= e o ﬁ] - 0 (A2.18)

04
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By putting L 1, we get the law of propagation for light going in the

Y — direction.
3. The Removal of Horizons

Let us now study the behavior of the above high-frequency sound waves
during the u = ® epochs. First consider the axial case when the system
pgint is very close to the B+ —axis and is running towards the corner. This
is the case which Belinskii’ etc call the case of small oscillations. The
appropriate solution to Einstein's equations as derived in the next section
is

28
2e” o
B = ZO( = ) [see (a4.8)]

where Zo is a Bessel function of order zero. K is a constant and B is
o)

defined as

The variation of Bo is given by

8 == % [seed4.3)]

Writing B, = ~df, W = 2(80 + Q) in equation(A2.20), we reexpress the

equation of the sound-wave propagation in the y-direction as
- |- ver v e3Q e260 .
dt
Using equation(Al.3), the change in y can be given in terms of the

variable  as

d d dt 2
G e BWEE o, o efo (43.1)

dse  —  dt  do Vs

N
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Hence, the change in Yy along the sound wave between the epochs Ql and L,
is given by
Q2 Q2
= = 2 _2Bo
Ay = J dy J voq e dQ
1 q, &
(A3.2)
= v g-eZBO <R, dg
s H dBO o
Ql
Substituting equation (A4.3) in equation (A32), we obtain
2
= 2 280
Ay = - Vg Je dg (A3.3)
- !
=1, (6280) ‘
-2 V%" VK (A3.4)
e280
Therefore, a Chagfe of 87T/VS in =7 would give a change of 47 in V.
y 2e .
Since B_ = ZO( K ) which for small K goes roughly as
S am 2Bo
"/ ;B COS(ZeK - w/4) or
e "0

280
‘/—‘?%8— sin(®&— - w/4)
e 0O )

B_ would go through four cycles as its argument changes by 8w. Thus setting

v
S

Y—direction (i.e. Y going from 0 to 4m) during four cycles of 8 . This

corresponds to the DN result of Ne = %Nm' For radiation filled universes,

= 1, we see that the light ray would circumnavigate the universe in the

the velocity Vg of the sound-wave propagation will be 1/V3; as a result
these waves would go round the universe in the yY-direction during seven

cycles of B_. Similarly, when the system point is running towards the other
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two corners, the causal and the high - frequency sound wave influence would
circumnavigate in the other two principal directions.
Next consider the off-axial case with u very large and 8 > 1. The

appropriate solution to Einstein's equations as derived in the next
section again gives

dBo
5 = - K /H . [See (A4.11) ]

while total change in BO during one bounce with the inclined potential wall

for large u is given by

1
AB N [See (A4.17)]

where uy is the walue of u before the bounce. The change in y along the
high-frequency sound wave ray going in the yY-direction is again given by

equation (A3.3

2v

i = = f"'zsc’ A, 8

So during one collision with the wall, the change in Y would be

v
AUJ = S (Q—ZBO)i [1 _ QZA(BO)]

Il

=~ 4 =
o 7|

2B 1
(e™70)y q (A 3.5)




where the subscript i denotes the values of the variables before the

collision. The value of the constant K can be obtained in terms of u. and
i

H. from equation (Al.6):
i

dB+ _ u2+u—l/2
dQ

u2+u+l

and the equation (A4.11)

das
FRl o S

K
dq H

Then Ay is given in terms of the initial values as

3

2
u, +u,+1
E 2 280y 1
Ay Ve 3 -y (e )l 5
4 i
285
- =y E ) £ -
3 ‘s H wy or large Uy 5 (A3.6)

As the system point evolves, consider the epoch when the system point
had its first collision with the inclined wall for large u. So the system
point has just bounced back off the vertical wall and is going towards

the inclined wall at say Q@ = Qb. The position of the potential wall is

then given by

= 4 y(py

=
|

wall

e—4ﬂb %_e-8(8+)

120, _-8(8o)

Py g
=3 e wall

Substituting the expression for H in the equation (A3.6) and dropping

the subscripts, we get
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ap = (v, 2 e2Poy) sl ¢™6%,4B0)
8 3 /3

v efPyarg : (A3.7)

2_
{3 °
Therefore, for all solutions for which at the beginning of the series of

collisions with the inclined wall, the value of u is such that

u > /3 b e~6(6+)wall
2VS

then the high-frequency sound wave communication has an open channel in

. . ; . ; < Q
the Yy-direction. Since (B4) wall is negative (it goes as: 3+: = 5.+

constant), we find that there exist small sectors around the lines parallel
to the B+—axis such that when the system point is running along these
sectors at Qb’ a horizon is removed in the Y-direction during the next bounce
with the inclined potential wall. The angular extent of these sectors
depends upon @ and it goes to zero as § goes to o,

One concludes, therefore, that at each epoch , there exist certain
subsets of initial conditions [B+, B_s; u()], such that some rays of
high-frequency sound waves and null-geodesics will proceed to circum—
navigate the corresponding universe. It will be shown in a future
publication that the universe point wanders about in a truly ergodic
fashion and that by finding a measure on initial conditions, one can com-

pute the probability for a typical solution to have no horizon along

one axis.



4. u = @ SOLUTIONS OF EINSTEIN EQUATIONS

In this secction we will derive the relevant information about u =

golutions which we used in the last section. First consider the axial case

vl

en the system point is very close to one of the corner axes and is running

rovards the corner. TFor the corner on the B+ —-axis, the asymptotic form

of the potential is

2 4Py 1; B, > = and |p_|<<l.

v(B) ~ 168_ "

Then the Hamiltonian of the system is
2 2 2 =40 4 1/2
H = [p+ +p "+ 168" e e B+ L (A4.1)

To get a time-independent Hamiltonian, substitute

g+ = 30 + @ in the action integrand
w=p, d8, + p_df_ -HdQ  to give
w = p+d80  p @8 = o - p+)dQ .

so the new Hamiltonian is

2 2 2 4 1/2
K = [:p+ +p T+ 168 " e Bo:] / S8 s (44.2)
snd the correspending Hamilton's equations give
an ' ’
Yo w . P+, __K (4. 3)
Q G s .
d Py K Py H
AR, B ,
si-r il | (M. 4)
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doy -k _ - 328.% %Fo P

e a8y H , - (a4.5)

e R S

e 9B_ H (A4.6)
and

dr oK

——— b—1 — = O .

dg a0 ; (4.7)

Equation (A4.7) tells us that K is a constant while Eqns.(A 4.3) » (A4.4) and

(A4.6) can be manipulated to give

dg_ P_
dB,, K i
dBO = an /dQ B K
Hence
d28__ 2 1 e, "163_@480
B = = 2
d,, K dp K
or dZB 480
( dBO;} + (1(;@0 ) B =0 which has
the solution
g, . ) _ (A4.8)

where 7, is a Bessel funct;on of order zero. Note from Eqns.(A4.1) and (A42)
that K and H are strictly positive. Then from Eqn. (A4, 3) BO is always de-
creasing, so Eqn.(A4.8) is valid starting from some initial value of 60 until

80 decreases to the point where the argument of the Bessel function gets

small and B_ gets large contradicting the IB |<tl assumption.



Next consider the off-axial case (R_ > 1). When the system point is
almost parallel to the B+ -axis (large u) and is following one of the in-

clined potential walls, the asymptotic form of the potential is

v(p) v L AP+ V38

Then the Hamiltonian of the system is

2 2 -
H = [p_{_ +p_ + % e e e4(8+ i /3—6')']1/2 . (A4.9)

Substituting 8+ B 60 + @ in the action, we get the time-—indépendent

Hamiltonian

B - 2 ., 1 4By 4V/3R_-1/2
K= [P_,_ TR, @ EE 0 e N - Py (A4,10)
The Hamilton's equations give
g & Py P i
= p.  KAp.~ ~ 1,
de.  ap, Kby H | -)
f]_fi: _ kP -
ao dp_ H (A4,12)
e S WL G
d Q@ B,  3H (A4.13)
dp 4(Bg + V3B.) '
i R TR S (A4.14)
dse B_ /3 H
and
dK _ K _ | \
o - 9 i : (A4.15)

From Eqns. (A4.13) and (A414) we get

V3 dp+ dp_
a. Taw T



7.3

or

/-3— p+ o p_ = CODSt;ﬂt = d, Say. . (A4-16)

Substituting for P, and p_ in Eq. (#4.16) from Eqs(A 4,11) and(A4.12) we

obtain
/__d6+ di_
H( 3?{2 — ’—‘d'Q) = .
: dB+
Also from Eq.(A4-15) K=1H1- P, = H(1l - Ty ) is a constant. These two

constants of motion enable us to find B! , B' after the bounce in terms of

their values before. Let uy and ug be the values.of the parameter u,

characterising the velocities of the system point well before and well after

the bounce. Then the constancy of K = H(1 - B;) and /§'p+ -p = H(/E-Bi - 8Y

gives respectively.

w? + u, - = . W2 4 - ;
. i al 2 3 £ 2
B {1 - ) = H(1 - ) .
uz + u, +1 u2 + u_ + 1
i i _ 4 £
and ﬁf
u? -1 SouZ -1
i f
= ) = H(— ) ,
A
uf +ouy + 1 ug + ug +11
Hence,
2
E£< I ug Ao ug + 1
H. 2
b § uy i uy o
and ug = - Uy where Hi and Hf are the values of H before and after the

bounce, respectively.

During the collision with the wall,

2 4 o~h QL 4G4+ /38)

12 = 2 .
H p+ + pe 3

dg

dB
_{- - -—
B o J% 4 B = )2 3G

4Q G + /3 8)

L
3

il
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< l > at 1 O) d,“. = _a..li v o
So the equation an %) gives
di 2 =49 4(p, + V3 B) .
—— = - — - -+ L
H dq : B e

: g, dpg
sing this result and solving for = i ;
Using this result c fod do » J0 in terms of H, K and a,

v

one obtains

H2 = H2(1 - %)2 + H?2[/3(1 - %) ~8q2 1 548 .
L 1

_ H 2 " an
X
dH ' s
Hogg = -6, -m@-H) ; !
hence
' 8
dg 3 d~0 daa _ E_/ di  _ K
dii 2 de H

dg 6(H, - H)(H - Hp)

A lower limit on the change in 80 during the collision can be computed as

dg
= I, = ini 7 -9 .
A(Bo) (Li Hf) (mlnlmum.\alue of T
dg dZB

0
5 g - =2t : o X
The minimum value of di is at that value of H, where TR vanishes;

i.e., at

2
H (Hi + Hf)/z :
_ N 1
Therefore, A(Bo) - 3(H, - H,.) g
i £
But
i £ 3 1 i S
4 , X
= 3 }\ ui ; Since Uf s —ui .
Hence,
1 .
B Y
A(8 ) a : (A4.17)
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1. The Geodesic Equations

As covariant basis vectors, we take the orthonormal tetrad:

o
w = dt

S S I SO

W =
véu | ‘
2 1 -Q By (B1.1)
w = —e€ e a,
von i
w3 = --l—-e—Q e83 oq 3 ] o e
B
The set of basis vectors dual to the wu is S
> .2
eo ot
+ o S ~B1r.. . _ cosp B d
ey 6m e’ e [slfnp el e a¢)+c05\,[) cotO—aE]
- . ' (B1.2)
- ~ Q —82 g_ siny 3 L P) AR
e, Yor e e [co?wae e 29 siny cot® m
- B e —i
e3 6m e e o0
The connection forms w" as determined uniquely by 0 = dg = w + w
v UV pv VM
and dw? = - wuv ﬁ\wvare j
Q
N T . 4 1
wq =Wy T (-9 + Bl)w
0 2 lhe . 2
W, = Wiy -0 + Bz)m ’
(Bl.3)
. SN W Wl
w4 = W'y = (-9 + 83)m



| 2 3130 0nt s sseces -

and
1 2 /65 . 2B3y 3
Wo=~-w, = Gzﬂ CQ(cz81 +.e2P2 - "o
w2 = w3 _ Ybu eQ(GZBZ 2 e2[33 _ ezBl)wl (BL.4)
3 2 2 ;
o Yon 285, 2
B, n o ik - T 825 2P P
. . L e
where - denotes the differentiation with respect to t. IEw = N8, T 5%
is a tangent vector to a geodesic parametrized by %, then
- . .
D'> v = 0 . <
v X
or
u . '
d : ' -
L AR (B1.5)

H ' ) ’
where T . are the components of the connection forms, 1.e.

wl—‘ — 1—.11 wp
v v P
‘ P H
i Sy dv o dv
Computing the values of I‘u\"."-).‘from (B.l.3 and (Bl.4) and writing d—;\- o T
= vo\'.ru, the geodesic equations (B1.5) reduce to
0-0 . 1. . gely .,
PP+ (HEaey) + (DB + (V)T -ag) = 0
. . . o 9
vovl + val(——Q+Bl) + vzv3 Jor e 9(6282 - e B3) = 0
- (B1.6)

» VO\']Z + Vovz(—fﬂt&z) + v?’v:L Yo e_Q(3283 = 3281) =0

and . - y
v0v3 S & v0v3(~-§z+83) + vlv2 Y6 e Q(9,28'1-%3282) =

(=]
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