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Abstract

This paper describes applications of global and local monotonicity analy-
sis within a decomposition framework. We present a general formulation and
solution procedure, based on a bottom-level global monotonicity analysis, for
a design optimization problem which is decomposed into three levels of
subproblems. We then perform an optimality test to prove that the optimality
conditions for the decomposed subproblems will form the optimality conditions
of the overall problem. Furthermore, applications of a two-level decom-
position method is presented in which an overall global monotonicity analysis
or first-level local monotonicity analysis is performed. Well-known examples
illustrate applications of the methods.



1. Introduction

Design optimization is at a rather critical stage in that many large
and/or complex real-world design problems occur which can not be effectively
handled using conventional methods. Special technique and/or modification of
the conventional methods is necessary to obtain optimal solutions of such
design problems. One possible means of solution involves a hierarchical
decomposition of the problem into a number of smaller subproblems each with
its own objective and constraints. 1In this type of decomposition, intercon-
nection between subproblems is usually multi-level, see Figure 1, where a
given-level subproblem coordinates the lower-level subproblem(s) and in turn
is coordinated by a higher-level subproblem. One of the main advantages of
the multi-level decomposition methods is that they fit well into the multi-
disciplinary framework of a design process where a number of engineering
disciplines interact (Mesarovic et al. 1970; Sobjeski and Haftka, 1987).
Furthermore, they allow parallel processing, and use of different specialized
optimization techniques on various portions of the problem.

A decomposition-based design optimization method usually consists of two
steps. First, the integrated or nondecomposed problem (objective and
constraint functions) is partitioned into a hierarchical two- or multi-level
subproblems. To be successful in the first step, the integrated problem
should be formulated in such a way that it will be fully or at least partially
decomposable. Once the problem is formulated, there are usually several
alternatives to decompose the problem. Perhaps, one of the most obvious
alternatives is the physical decomposition of the problem. For example, opti-
mal design model of an aircraft should be decomposable into its main com-
ponents, namely, wing, fuselage, landing gear, engine, etc.

Second, starting with the Towest-level, the subproblems are solved inde-
pendently. The solutions to the subproblems at a given level are then coor-
dinated by the upper-level problems, i.e., subproblems are forced to select
solutions corresponding to an overall optimum. In general, the lower- and the
upper-level subproblems are solved iteratively. Each of the lower-level
subproblems is itself a constrained design optimization problem and should be
solved many times before the solutions to the upper-level problems are



obtained. The success and effectiveness of the second step depends on how
simple and independent are the solutions to the lower-level subproblems.

There exists a variety of decomposition-based approaches for solving a
given design optimization problem. 1In general, these techniques fall into two
different methods, namely, the goal coordination and the model coordination
(Wismer, 1971; Kirsch, 1981). The model coordination method, in particular,
is more attractive for engineering design, since the iteration process may be
terminated whenever it is desired with a feasible even though nonoptimal solu-
tion. Several engineering problems have been solved using decomposition
methods including those in chemical (Wilde, 1965), mechanical (Siddall and
Michael, 1980), structural (Kirsch, 1981; Haftka, 1984), and aerospace design
(Sobieski et al., 1984; Barthelemy and Riley, 1986; Wrenn et al. 1987).

In a recent paper, Azarm and Li (1987a) proposed a two-level decomposition
approach, an extension of the model coordination method, based on the global
monotonicity concepts. The proposed approach applied to a number of problems
including those in mechanical design (Azarm and Li, 1987b). The present paper
is an extension of that effort. We present here a three-level formulation of
a separable design optimization problem. A three-level solution procedure is
then suggested based on the gilobal monotonicity analysis. An optimality test
is performed to see whether the optimality conditions of the decomposed three-
Tevel subproblems is the same as the optimality conditions of the overall
problem. The three-level decomposition is illustrated by a gear-reducer
example. Finally we demonstrate, with examples, two methods for a two-level
decomposition. In one of the methods, global monotonicity is applied to the
first- and second-level subproblems, while in the other, local monotonicty is
applied to the first-level subproblems.

2. Formulation and Procedure

The formulation and procedure which we present in this section is for a
three-level problem, but in fact it can be generalized to any number of
levels. The approach is essentially an extension of the two-level formulation
and procedure given by Azarm and Li (1987a and 1987b). We consider the
following nonlinearly constrained design optimization problem:



Minimize {f(z): g(z)<0 } (1)

where z is an n-vector of design variables, f and g are the objective and the
vector of inequality constraints, respectively. We assume that the equality
constraints have been eliminated already, for example, through direct elimina-
tion or through an appropriate projection of the problem to the subspace of
equality constraints.

Furthermore, we assume that the problem is decomposable into three levels,
namely, the top-level, the middle-level, and the bottom-level. The top-level
is composed of one subproblem (or problem). However, each of the middle and
the bottom levels may be composed of several subproblems. In each subproblem,
the variables are partitioned into two groups, namely, the local and the glo-
bal variables. We define the global variables to be those which are taken to
be fixed in a subproblem, and the local variables to be those which are taken
to be changed in the subproblem. The definition for local and global
variables given here is slightly different from the ones given previously by
Azarm and Li (1987a and 1987b). For example, in Figure 2 which shows a three-
level decomposition, we have set z = (y,x)t, where y represents the vector of
top-level local design variables - fixed in the lower levels, and x represents
the vector of top-level global design variables - fixed in the top-level.
Likewise, we have set x = (u,v)t, where u represents the vector of middle-
level local design variables, and v together with y represent the vector of
middle-level gliobal design variables. Finally, in the bottom-level, v repre-
sents the vector of bottom-level local design variables, and u together with y
represent the vector of bottom-level global design variables.

We assume that the objective function f is in the following additively
separable form:

I J

fly,u,v) = f(y) +i§1[fi(y,u1) +j§1f1’j(y,ui,v

030 (2)

where i, j are indices corresponding to the number of middle-level
subproblems, number of bottom-level subproblems with respect to (w.r.t.) the
middie-level subproblem i, respectively (see, Figure 2).



In addition, we assume that the inequality constraints are in the
following form:

9,(y) =0 h=1,c.., H

9; (¥suy) <0 i=1l,00e, 1

gi,j,](y’ui’vi,j) <0 j=1,..., (3)
k=1,..., K
1=1,..., L

where h, k, and 1 are indices corresponding to the number of inequality
constraints in the top-level problem, number of inequality constraints in
middie-level subproblem (i), and number of inequality constraints in bottom-
level subproblem (i,j), respectively (Figure 2).

The formulation of the bottom-level subproblem (i,j) with y and u; as the
vectors of the bottom-level global design variables, and F j as the only
bottom-level local design variable is:

Minimize fBi,j(y’ui’vi,j) = fi,j(y’ui’vi,j)

Subject to: (4)

gi,j,1(y’“1’v ) <0, 1=1,000, L.

i,J

The formulation of the middle-level subproblem (i) with y and V*i,j (found
from the bottom-level subproblem (i,j)) as the vector of middle-level global
design variables and u; as the vector of middle-level local design variables
is:

J

* _ *
Minimize fMi(y’ui’Vi,j) = fi(y,ui) +j§1fi,j(y’u1’vi,j)

Subject to: (5)

g]"k(ySU.'l) S 0’ k = 1,.0., K



Finally, the formulation of the top-level problem with u: and v: j as the
vector of top-level global design variables (found from the lower levels), and
y as the vector of top-level local design variables is:

I J
*
) = fO('y) +1§1[f1(y’u1‘) +'E f'i,

2o xo s * *
Minimize fT(y’ui’Vi i

* *
y’ui’vi’j)l

.3 3
Subject to: (6)

gh(y) < 0, h = 1,-", H

The iterative procedure used for the above decomposed problem is sum-
marized below:

Given an initial point as the current point, 2z°= (y°,u°,v°)t,

Begin step A, for i = 1,..., I,
begin step B, for j = 1,..., J,
(B.1) for a given (y°,u%)t, use global monotonicity analysis

to find v?’j for the bottom-level subproblem (i,j),
(B.2) find a new uj, for a given y°, from the middle-level subproblem

(i) such that f,, is decreased,

M
(B.3) return to step (B.1) until the minimum for fMi is obtained, for a
given y°,
end step B,

(A.1) find a new y° from the top-level subproblem such that fT is decreased,
(A.2) go to step A until the minimum for f is obtained,

End step A.

Note that in the procedure suggested here, the middlie- and the top-level
subproblems are solved by a conventional optimization method (Powell, 1978).

3. Optimality Test



In this section we will check whether the first-order Karush-Kuhn-Tucker
(KKT) optimality conditions for the decomposed problems, eqs. (4)-(6), will
form the KKT conditions of the nondecomposed (overa]l)‘prob1em, eqs. (2)-(3).
The regularity assumption of the points under consideration is that the gra-
dient vectors of active constraints are linearly independent at the regular

points.

Now, let z be a solution (local minimum) to eq. (1). We partition Z in
the following way:

= - — =t
Z = (y,u,v) (7)
where
- = - -\t
y= (yl,.-.’yt,cao,yT') (8)
- - - -\t
U = (Upseeeslssene,ly) (9)
u. = (U m T (10)
i ittt Yim i M
and
- = - -\t
Vs (VyseeesVisena,Vy) (11)
v, = (V v v. ot (12)
_i 1’1,.00, _i,j,o-o 1,\]
or
- - - - - - = - t
V= (Vl’l,...,Vl,J,-..,Vi’1,...,Vi’j,--.,Vi’J,...VI’I,...VI’J) (13)

We start with the KKT conditions for the bottom-level subproblems to form
partially the KKT conditions of the nondecomposed problem. We then extend our
argument to show that the KKT conditions of the upper-level subproblems will
form the remaining KKT conditions of the nondecomposed problem.

The KKT conditions for the bottom-level subproblem (i,j), eq. (4), may be

expressed as follows (all evaluations performed at (z):

(of /av, ) = 0 (14)

/94, 5) + 5,179 5

L
i, 151 Ay, 3,199



=0, A >0 (15)

M,3,1%1,30 1,31

95,5,150, 1=1,...,L ‘ (16)

Summing up eq. (14) for all the bottom-level subproblems, where i=1,..., I
and j=1,...,J, will result in:

I J I J L

Z of, .Jov, .+ I Z Z A

R L P ) =0 (17)
j§1 j=1 1,] 1,] i=1 j=1 1=1 i,J,1 1,3,1

lavi,J

Likewise, the KKT conditions for the middle-level subproblem (i), eq. (5),
may be expressed as follows:

K
anilaui,m + kfl Ai,k(agi,k/aui,m) =0 (18)
Ai,kgi,k = 0, Ai,k 20 (19)
gi,k <0 , k=1,...,K (20)
where m=1,...,M and
J
anilaui,m = afilaui,m + jfl afi,j/au1,m
+ % (3f, ./8v*, J)(dv*, ./du; ) (21)
j=1 1,] 1sJ 1,3 i,m
Now, suppose in subproblem (i,j), constraint 9i,j,1 is regionally (or
globally) active (Azarm and Papalambros, 1984a):
* -
gi’j’](y’uiyv i,j) =0 (22)

since vj j is the only local variable in subproblem (i,j), eq. (14) may be
written as (considering eqs. (15) and (22)):



% * _
Of y 378V 5 + Ay 5,1(095 5 470V 4 = 0 (23)

»Js
so that for i=1,...,I and j=1,...,J, we have

* - *
0f, 5/ 4,5 = Ay,3,1(894,5,178V 4 5) (24)

Furthermore, since y is constant in the middle-level subproblems, we may also
consider y to be constant in eq. (22), so that for every feasible neighborhood
of a feasible point and for m=1,...,M, we have:

* * _
agi’j’]/aui,m + (agi’j,]/av 1’j)(av 1,j/au1’m) =0 (25)
which results in
av*. ./ou. = -(8g. . J/ov*, ) Y(Bg, . ./du. ) (26)
i,j°77i,m 1,3,1 1,] i,3,1"77i,m

Ay 5,10895 5 470U )

i=1 58

K
+k§1A1,k(ag1,k/aui’m) = 0, m:l’...’M (27)

summing up eq. (27) for all the middle-level subproblems

I I J I J
T of.,/ou, += ZTof, ./ou. +Z ZA, . ,(0g. . ,/0u, )
j=1 b M ey j=1 1,777 ,m ey j=1 T,§,1V7°1,7,1 i,m
I K
+i§1 kfl Ai’k(agi’k/aui,m) =0, m=1,...,M (28)

The argument remains valid if g5 j 1 is not active, in which case based
on eq. (15), the corresponding Lagrange multiplier is zero (Ai’j,1=0). There-
fore, eq. (28) may be rewritten in the following form:




I I 9 1 J L
2 afilau + X Zof, fou, +ZT = Z A .

(9g.
j=1 M 7 yy ger 13m0y 50 qag 1l

i,5,17844 )

I
+ 2 2 A, (99, ) =0, m=1,...,M (29)
i=1 kel ik i, k

Finally, the KKT conditions for the top-level problem, eq. (6), may be
expressed as follows:

H
afT/ayt +h§1 hhagh/ayt= 0 (30)
g, <0, h=1,...,H (32)
where t=1,...,T", and
I I M N
of /ayt- of /ayt+ Zlaf layt+121 mzl(af Jou™ i m)(Bu 1,m/ayt)
I J I J ( M o N
+3 Taf, By +E Z[ 3 (8F, . . )(8u*; /dy,)
o1 g1 B3N T e T O ) O O
* *
+ (afi’jlav 1.’J.)(av 1,j/ayt)] (33)

Now, suppose a subset of the constraints in the lower-level subproblems is
active, namely, in the bottom-level subproblem (i,j), i=1,...,I and j=1,...,d,
constraint 9i,j,1 is regionally (or globally) active:

g1’j’](y,u* ) =0 i=1,...,1 (34)

V*
R
j=1,ooo,l]

and in the middle-level subproblem (i), i=1,...,I, there are M regionally
(or globally) active constraints:

10



95 (y>u™y) = 0, i=1,...,1 (35)

K=1,eee,M
then, from eq. (34)
) /3y, + g (3 /au*; _)(du*. /dy,)
99,3,/ 2 1995 5,110 4 ) O m Yy
% * .
+ (agi’j’]/av 1.,J.)(av 1,j/ayt) = 0, i=l,eee,l (36)
j=l,.00,d
and from eq. (35)
8g. /3y, + g (dg. /ou*. )(du*. /8y,) =0 =1 I 37
9,k /Oyt 2 (094, JOUTy ) (0074 /0Ye) = “leees (37)
k=1,ee.,M

where t=1,...,7". We now use the vector notation, defined by egs. (7)-(13),
to rewrite eqgs. (33), (36), and (37) as follows:

I J
t *
(3f./du™*, )" (au*./ay, )+ = = af, ./dy
1 i i i t i=1 j=1 i, t

I I
BfT/ayt=8f°/8yt+i§16fi/ayt+i§

I J I J
t, . % * *
+ 3 3 (8f, .Jau¥.)-(du*./dy,) + = = (df, ./ov™. .)(Bv™, ./dy,)
i=1 j=1 LEN i L 2 j=1 1,] i,d i,j' 7t
(38)
and
x (L, %

/du 1.) (ou 1/6yt)

09 /ayt+(agi

i,3,1 231

+ (09,

%* * .
L3/ eV ey = 0, i=1,.0.,] (39)

j=1,oco,\]

11



and

8g, /8y + (8g,/8u™,) (8u*/dy,) = 0 iel,ee.,l (40)
where
* * * t
(afilau 1) = (afi/au i1 afi/au 1,M) (41)
t
(au*i/ayt) = (au*i’llayt,..., au*i’M/ayt) (42)
* * * t
(afi,jlau i) = (afi,j/au 1’1,...,8f1.’3./au i,M) (43)
t
* x*
agi’l/au it agi’llau i M
(8g,/8u™;) = . (45)
* *
agi,M/au i1t agi,M/au iM
* _ * * t
(agi’j’]/au 1.) = (agi’j’]/au 1.’1,...,691.,J.,]/8u 1,M) (46)
from eq. (39), we have
* _ * -1 x ,t
ov 1.’J./E)yt- —(agi,j’]/av 1,j) [(agi’j’1/ayt)+(agi’j,]/au ;)
* § =
(3u 1/ayt)], i=l,.4.,]
j=1,00.,d (47)
and from eq. (40)
au*, /3y, = -(3g, /ou*,) " (3g,/3y,), i=1,...,1 (48)

substituting eq. (48) into (47)

12



* _ % -1 . .t
av 1’j/ayt- -(Bgi’j’]/av 1,j) [(Bgi’j’]/ayt) - (agi’j,]lau i)
(391/3u*1)—1(391/3yt)] i:l’:..’l (49)

J=l,eee,d

then, substituting eqs. (48) and (49) into eq. (38) to have

I I
_ x \t *x -1
afT/ayt- afolayt+1§ afi/ayt—if (afi/au 1.) (ag1lau 1) (agilayt)

1 1

1 J 1 J .
+3 I of, ./Joy,- % = (8f; ./du.)
i=1 je1 3 Ttyop e T3

t *x (-1
(3g,/0u*) 1 (39, /2y,)

I J
-3 % {(3f, Jav™. .)(dg

x -1
i=1 j:l sJ 1sJ v’ ') [(agi’j’]/ayt)

i,i,1 i,

-(3g, ; 4/3u*)) (89, /0u%,) 7! (g, /0y ]} (50)

i,3,1
or

I 1 J I J
9f /ay,= of /3y, + T of /3y .+ = T of, ./dy.+E I [ -(of, Jav*, L)
T 7t o' Ut j=1 t i=1 j=1 i, 77t i=1 j=1 i,] 1,

I
(89 4 1/8v"; ) 1(agi,j’]/ayt)]+.? {[-(af, 7ou* )" t

J
- = (3f, ./8u*.)
i=1 j=

i, i
1 J

J
* * -1 x T
- El(-afi,j/av i’j)(agi’j,]/av i,j) (agi,j’]/au )]

(8g,/0u*;) "} (09, /2y;) (51)

eq. (51) may be written in the following form (considering eq. (24)):

13

s



1 I J I J
afilayt+.2 Z of

of,. /oy, = of /oy, + Z JOy,+ 2 Z A, . ,(9g. . ,/0y,)

Tt L A j=1 j=1 1,377t j=1 j=1 1,§,1V791,3,17 77t
.3 {[-(af, /3u*,) b - : (af, ./au*,)t- 22 (3g. . ./3u*)t]

i=1 i i j=1 i,] i j=1 1,J,1 i,J,1 i

* (-1
(8g;/8u™,) " "}(089;/3y,) (52)
I M
We may simplify eq. (52), by showing that its last term is £ X Ai K
i=1 k=1

(dgi,k/8yt). To do that, we rewrite eq. (27) for all the middle-level

subproblems using our vector notation:

J J

* * *
afilau 1+.§ Bfi’jlau i+.§ Ai,j’](agi’j’]/au 1)
J=1 j=1
+ (agi/au*i)t A =0 (53)
where
t
A_i = (Ai,l,'c-,Ai’k,ooc,}\i’M) (54)
hence, from eq. (53)
A= [ (B /ou* )t]_l[—(af /ou* ) - ; (af /au* )
j= L\eg /ouy AR LSRR P E
J *
-z Ai,j’](agi,j,1/8u 1)] (55)
J=1
or
b - [-(af,s0u*)t- ; (af. ./au*.)t- . (8 rau*) Y
i- /8U7g) 7= 2 (0T s/0urs) m 2 Ay g 41904 5 170
J=1 J=1
* (~1
(agilau i) (56)

14



so, based on eqs. (56), (54), and (44), eq. (52) is written as follows:

I 1 3 1T
of /dy,= of /oy + T of./oy,+ £ Zof, ./oy.+Z Z A, .
T 77t o' 7t j=1 t i=1 j=1 1,j° 77t i=1 j=1 i,J,1
I M
(agi,j’1/8yt) +1§1 kflAi,k(agi,klayt) (57)

Again, the argument remains valid if some of the lower-level constraints
are not active, i.e., gj,6j,1<0 and/or gj k<0, in which case the corresponding
Lagrange multiphers are zero, i.e., Aj j,1 = 0 and/or Aj g = 0. Thus, eq. (30)
may be written in the following form (considering eq. (57)):

I I J I J L
of /dy,+ Z of./oy.+ X Zof, ./oy+Z £ A, . .(8g, . ,/dy,)
0 t 21 t i=1 j=1 i,] t i=1 j=1 1=1 i,j,1 i,j,1 t
I K H
+2 Z A, (09, _/Oy,) + Z A 0g,/dy,=0 (53)
i=1 k=1 i,k ik" 7t he1 h™%h t

Therefore, eqs. (17), (29), (58) together with eqs. (15), (16), (19), (20),
(31), and (32) derived for all the subproblems will form the KKT conditions for the

overall (nondecomposed) problem, egs. (2)-(3).
4. Example: Global Monotonicity-Based Decomposition (GMBD)

In this section we present a well-known example from the literature
(Golinski, 1970), namely a gear reducer, which has been solved by several
optimization methods including those by Datseris (1982), Azarm (1984), Li and
Papalambros (1985). More recently, Azarm and Li (1987b) solved this example
using a two-level global monotonicity-based decomposition. Here, we will show
that by using different decomposed subproblems than the ones adopted by Azarm
and Li (1987b), we can solve the problem using the two- as well as the three-
level decomposition method. In addition, we will show that with the insight
obtained from the decomposition, we can solve the problem ana]ytical]y as

well.

15



Here, for convenience, the nonlinear programming statement for this

example is given:

Minimize £(x) = 0.7854x,x3(3.3333x5 + 14.9334x; - 43.0934) - 1.508x, (x5 + x5)
3 3 2 2
+ 7.477(x6 + x7) + 0.7854(x4x6 + x5x7)
Subject to: (59)
, -1, -2, -1
9,° 27x1 Xp Xg T % 1
, 1 -2, -2
9,° 397.5x1 X, X3 7 £ 1
95° 1.93x2_1x3—1x2x6_4 <1
9y 1.93x2'1x3"}‘xgx7-4 <1
9g* AI/Bl < 1100
745x
4,2 6-0.5
Ap = [ + (16.9)10°]
273
B 0.1 3
17 %%
96" AZ/BZ < 850
745%5 2 6,0.5

A, = [(x2X3 )¢ + (157.5)10°]

_ 3

B2 = 0.1x7

9; X5Xg < 40
9g* 5 < x1/x2 <12 9

16




910: 2.6 < x1 < 3.6 :g11
912: 0.7 € x2 < 0.8 :913
914: 17 < x3 < 28 .g15
916: 7.3 < x4 < 8.3 :917
918: 7.3 £ x5 < 8.3 :glg
920: 2.9 < x6 < 3.9 :921
922: 5.0 £ x7 < B.5 :923
P (1.5x, + 1.9)x P

240 . 6 L] 4 —

Ot (1.1x, + 1.9)x P

25' L] 7 L] 5 -— -

4.1. Two-Level Decomposition

The gear reducer considered here, see Figure 3, consists of two sub~

systems, namely, shaft and bearings 1 and shaft and bearings 2.

These two

subsytems are selected to correspond to subproblems 1 and 2, respectively.
The two-level physically decomposed problem has X4 and Xg as the local
variables for subproblem 1, Xg and X, as the local variables for subproblem 2,

and xl, X2’ X3 as the local variables for the top-level problem:

Subproblem 1:

o _ 2 3 2
Minimize fl(xl,xz,x3,x4,x6) = - 1.508x1x6 + 7.477x6 + 0.7854x4x6
Subject to: (60)
93¢ 1.93x2"1x3"1x43x6'4 <1
9g* A1/B1 < 1100
916° 7.3 < Xq < 8.3 29y

17



2.9 < x. £ 3.9 299q

920° 6

-1
PR (1.5x6 + 1.9)x4 <1

Subproblem 2:

R _ 2 3 2
Minimize fz(xl,xz,x3,x5,x7) = - 1.508x1x7 + 7.477x7 + O.7854x5x7
Subject to: (61)
-1,-1 3 -4
9y° 1.93 Xo & X3 TXgTXg <1
9g° AZ/BZ < 850
98° 7.3 < Xg < 8.5 919
9pp° 5 < X5 < 5.5 953
g (1.1 x, + 1.9) x. L <1
250 L] 7 L) 5 —

In subproblem 1, it can be easily verified that the objective function is
increasing w.r.t. X, and Xg within the feasible range of X4 > 7.3, Xg 2 2.9,
and X1 < 3.6. Hence according to the first rule of monotonicity analysis
(see, for example, Papalambros and Wilde, 1988), w.r.t. Xg constraints 935 95>
and g,, are the candidate active constraints. In order to find the dominant
active constraint, we rearrange 935 9gs and 9y a5 follows:

-1, -1 3,1/4
g93* Xg 2 (1.93 Xo "X3 X4 ) (62)
g xg 2 (A, /110)1/3 (63)
950" Xg 2 2.9 (64)

Then, we find the lower and upper bounds of the right-hand sides of egs.
(62) and (63) using the available bounds on the variables X5s X35 and Xy

2.406 s (193, g7, HY <3103 (65)
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3.6 < (A,/110)13 < 3.352 (66)

From equations (62)-(66), we conclude that 9g is the éctive constraint and 93s
and 9y are the redundant constraints. Likewise, it can be verified that in
subproblem 1, w.r.t. X4 constraints 916 and 924’are the candidate active
constraints. If we rearrange 954 as follows:

X, 2 1.5x

9o4° 4 6 * 1.9 (67)

Since 9g is active, by substituting the lower and upper bounds of variable
Xg from eq. (66), we can find the lower and upper bounds of the right-
hand side of equation (67):

6.918 < 1.5x; + 1.9 < 6.928 (68)

which if compared with X4 > 7.3, will result in 916 85 the active constraint
and 9,4 35 the redundant constraint.

Therefore, in subproblem 1 constraints 9g and g16 are found to be active:

* * 6-0.5
g5 xg = {L(745 x,/(x,x3))% + 16.9 x 10°7%7 / 11013 (69)
*
916 Xy = 7.3 (70)
In subproblem 2, w.r.t. X5 constraints 945 95> 9y, are the candidate
active constraints. By a similar analysis, as in subproblem 1, we have:
9y° Xy 2 (1.93x2'1x3'1x53)1/4 (71)
R x, 2 (Ay/85)1/3 (72)
95p° Xs 2 5 (73)
where
2.406 2 (1.93x, x5 7% )4 < 30103 (74)
‘ 1/3
5.28568 < (A2/85) < 5.28686 (75)
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From equations (70)-(75) we conclude that 9 is active. Likewise, w.r.t.

Xg constraints 98 and 995 are the candidate active constraints. However,
since 9 is active, then we can use the lower bound of X5 from equation (75)
into the right-hand side of 955"

O,c: Xg 2 1.1x, + 1.9 2 1.1 (5.28568) + 1.9 = 7.714 (76)

which if compared with 918 results in 9,5 @5 the active constraint.

Therefore, in subproblem 2, constraints 9% and 9,5 are found to be active:

[(745%5/ (x,x5))? + 157.5x10°1%° /0,147 = 850 (77)

96 7

* *-1
955° (1.1x7 + 1.9)x5 =1 (78)

The second-level problem is written in the following form:

Minimize f(x) = 0.7854x x5 (3.3333x5 + 14.9334x, - 43.0934)
x2 %2 x3 %3 (x5xx% + xxal)
—1.508x1(x6 + Xy ) + 7.477(x6 + Xq ) + 0.7854'7476 5%7
Subject to: (79)
) -1, -2, -1
9;¢ 27x1 Xy "Xq <1
] -1 -2, -2
9,° 397.5 Xp "Xy TX3 <1
g7: XoX3 < 40
9g! 5 < xllx2 <12 *9q
910° 2.6 < X, < 3.6 991
9:p° 0.7 < Xy < 0.8 9,3
914° 17 < X3 < 28 ‘945

where x}, xg, xg, and x; are found from subproblems 1 and 2 as shown in
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Figure 4. The second-level problem is solved by a single-level optimization

method (Powell, 1978).

4.2. Three-Level Decomposition

In the gear reducer example, if we continue to decompose each
subproblem into two levels, we will then end up with a three-level decomposed
problem. To do that, subproblem 1 is decomposed into two levels with Xg
(corresponds to bearings 1) and Xg (corresponds to shaft 1) to be the middle-
and the bottom-level local variables, respectively. Likewise, subproblem 2 is
decomposed into two levels with Xg (corresponds to bearings 2) and X5
(corresponds to shaft 2) to be the middle- and bottom-level local variables.
Hence, the original gear reducer problem is decomposed into three levels with
the bottom-level subproblems (1,1) and (2,1) as follows:

Subproblem (1,1):

Minimize f, _ = 1.508x,x2 + 7.477x> + 0.7854x ,x2

B1.1 176 6 476

]

Subject to: (80)
g3: 6 2 (1. 93x2 3 4)1/4 = 9'1,3
9! X > (a/110)/% = g1,
950° Xg 2 2.9 = 911,20
951 Xg < 3.9 = 9'1,21
94° Xg S (x4 - 1.9)/1.5 = 9'1,24

Subprobliem (2,1):

C. _ 2 3 2
Minimize fBz’1 = 1.508x1x7 + 7.477x7 + 0.7854x5x7
Subject to: (81)
-1 3 1/4
9y x, 2 (L.83xy x5 ) A - 9'2.4

) /73 _
9g: Xy 2 (A2/85) = g 2.6
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955° X < (x5 - 1.9)/1.1 = 9'2,25

Application of the global monotonicity analysis to the bottom-level
subproblems (1,1) and (2,2) results in:

*

Xg = max 19"y 35 91,50 91,20 (82)

and

*

X7

max {9' 45 9'7 50 9'2 22} (83)

The middle-level subproblems 1 and 2 are:

Middie-Level Subproblem 1:

2 3 2

.. * * *
Minimize fMl = —1.508x1x6 + 7.477x6 + 0.7854x4x6
Subject to: (84)

7.3 <x, <£8.3

4
Middle-Level Subproblem 2:

2 3 2

. . e * * *
Minimize fM2 = 1.508x1x7 + 7.477x7 + 0.7854x5x7
Subject to: (85)

7.3 < x5 < 8.3

The top-level problem is the same as the one given by equation (79). Figure 5
shows the three-level structure for this example. The middle- and top-level
subproblems are solved by a single-level optimization method (Powell, 1978).
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4,3. Analytical Approach

In the previous section, we only applied the global monotonicity analysis
to the lowest-level subprobiems. However, if the mathematical formulation of
the problem allows, it is desirable to apply the global monotonicity to the
upper-level subproblems as well. Indeed the simpler the upper-level sub-
problems are made, the less number of times (iterations) will be needed to
solve the lower-level subproblems. Furthermore, as we will show in this sec-
tion, in some cases the application of global monotonicity analysis and sub-
sequent simplication of the lower- and the upper-level subproblems may lead
us directly to the optimum.

Let us first consider the gear reducer example without the two practical
constraints 904 and g25. They are design conditions on the shafts based on
experience, as was referred to by Li and Papalambros (1985) in a similar but

a single-level analysis of the example. We use the results of our analysis
obtained from subproblems 1 and 2 of section 4.1 to find XZ’ xg, x; using

eqs. (70), (69), (77), respectively. 1In case of xg, since constraint 955 has
not been considered, we can concluded that from subproblem 2 constraint 948
is active, i.e., x; = 7.3. We now apply the global monotonicity analysis to
the second-level problem which is given by eq. (79). The second-level
problem has the local variables, X1s Xos and X3 and the global variables

Xgs Xgs Xgs Xgpe It can be easily shown that Bflaxi, i =1,2,3, is positive

within the feasible domain (note that xj and xg are fixed, and from egs. (69)
and (77), xg and x; are explicit functions of x,, x,, X5). Hence, based on the

monotonicity rules, constraints 91 95 9g» and 910 are the candidate active
constraints w.r.t. Xg. We rearrange these constraints to obtain:

9, Xy 2 (27/(x§x3)) = g'1 (86)
2.2 .

9, X > (397.5/(x2x3)) =9', (87)

9g° Xq 2 5x2 = 9'8 (88)
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9;0° X, 2 2.9 (89)
where 1.86 < g'1 < 3.24, 0.79 < g'2 < 2.8, and g'8 > 3.5. Hence, we can
conclude that constraint 9 is active. Likewise, it can be verified that
w.r.t. X5 and X3 constraints 912 and 94 are active. Thus the constraint-
bound solution of this example is x* = (3.5, 0.7, 17, 7.3, 7.3, 3.35, 5.29)%
which corresponds to the active set (95’ 9g° 9> 912, 914, 916° 918)’ and is
similar to the one reported by Li and Papalambros (1985).

Now consider the gear reducer example with the practical constraints
9,4 and g,z. In this case, from egs. (77)-(78), xg and x5 are implicit
(rather than explicit) functions of X5 and X3 Hence, we can not directly
apply the monotonicity rules to the second-level problem, as was the case
without considering 954 and 955 However, we may use a well-known operation,
namely, constrained derivatives (Beightler et at., 1979), to find monotonicity
properties of the second-level problem w.r.t. X5 and X To use this opera-~
tion here, we set z = (y,x)t where x and y represent the global variables and
the local variables of the second-level problem, respectively. If g is the m-
vector of the lower-level active constraints, then we can find the monotoni-
city of the upper-level problem w.r.t. its local variables using the
constrained derivative (or reduced gradient) operator:

(8/8y) = (38/dy) - (a/6x)(ag/8x)_1(6g/8y) (90)

The quantities (98g/9x) and (8g/dy) are the Jacobian matrices of the vector
function g(y,x).

Using the constrained-derivatives operation on variables X{s Xos and X3,
we can verify that the objective function of the second-level problem,
eq. (26), is increasing w.r.t. X1s Xo» and X3 within the feasible range of Xg
Xes Xgs and X2 Hence, as it was found previously, constraints 9g> 912’ g14
are active. The constraint-bound solution for the problem is x* = (3.5, 0.7,
17, 7.3, 7.72, 3.35, 5.29)t which corresponds to the active set (95’ 96> 9g»
9120 9140 995° 925). Again, this solution is similar to the one reported by

Li and Papalambros (1985).
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5. Examples: Local Monotonicity-Based Decomposition (LMBD)

In this section we present two examples which have been solved by a two-
Tevel monotonicity-based decomposition method. Here we have applied local
monotonicity (Azarm and Pabalambros, 1984b), rather than global monotonicity
(Papalambros and Wilde, 1979 and 1988), to the first-level subproblems. LMBD
is particularly attractive for those problems in which the global monotonicity
analysis on the lower-level subproblems requires extensive algebraic manipula-

tions.

The first example is the gear reducer presented in section 4. The two-
Jevel decomposition of the example considered is similar to the one presented
in section 4.1. However, here the first-level subproblems are solved using
the ACCME program (Azarm and Papalambros, 1984b) while the second-level
problem is solved by a sequential quadratic programming method (Powell, 1978).

The second example is a 22-bar truss subjected to 10 kN load on its edge
(Kirsch, 1981), see Figure 6. The design objective is to minimize the volume
(or the weight) of the truss. The constraints require that the stresses in
the truss elements will not exceed 100,000 kN/mZ. The design variables are y,
shown on the Figure, and the members'cross-sectional areas (xn). Also, 1n(y) is
the length of the nth member, which is a function of y, and |on(xn,y)|1s the
absolute value of the stress in the nth member which is a function of y and Xpe
The problem may be formulated as:

22
Minimize f(y,x) = X xnln(y)
n=1

Subject to: (91)
| o, (x,.¥)| < 100,000

xn >0

2<sy<6
where n=1,..., 22. The 22 first-level subproblems, to be solved for a given

y, are as follows (n=1,...,22):
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Minimize f81 (y,xn) = xn]n
Subject to: . (92)
| o (x,,¥) | < 100,000

X, >0
The analysis of truss is done by a finite element program. The subproblems are
then solved independently using the ACCME program (Azarm and Papalambros,
1984b). The solution of the first-levél subproblems are coordinated by a
second-level problem formulated as follows:

22
Minimize f(y,x) = ; 1,(¥)
n=1

Subject to: (93)

The second-level problem has only one variable, hence it can be solved by a
one-dimensional optimization method. The iteration history for this example
using the one-dimensional (Reklaitis et al., 1983) golden-section or the
interval-halving method on the second-level problem is presented in Figure 7.

6. Concluding Remarks

Several monotonicity-based decomposition methods for solving a design opti-
mization problem which is decomposable into several subproblems has been pre-
sented. These methods should make possible solutions of problems previously too
difficult to handle by monotonicity analysis within a single-level framework.

One disadvantage of these methods, when coupled with a conventional single-
level optimization method, is the possibility of discontinuous behavior of
bottom-level derivatives (see, egs. (82) and (83)) if they are needed by the
upper-level subproblems. This can be resolved by using an optimization method
on the upper-level subproblems which does not require derjvatives from the
lower-level subproblems. Another solution is to use a penalty function approach
of the type suggested by Haftka (1984). The other disadvantage is that for a
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given value of the upper-level local variables, one or more of the lower-level
subproblems may have no solution. One possible remedy is to transfer violated
constraints from the lower- to upper-level subproblems.

In general, global monotonicity analysis of subproblems (done manually here)
is desirable, because of the generality of knowledge contained in such an analy-
sis. However, for large problems, the manual operation is likely to be tedious
and cause mistakes. To overcome this problem, a symbolic manipulatin program
(see, for example, MACSYMA, 1983) may be used. If global monotonicity analysis
is not possible, as is the case in the 22-bar truss example where analytical
expressions for the subproblems are unavailable, then local monotonicity analy-

sis can be used.

Finally, the question of how to model a decomposable (or how to decompose a)
design optimization problem remains open. It seems that this question should be
addressed during the design modelling stage. Development of a systematic metho-
dology (or a set of guidelines) which will lead the designer to a decomposable
model should be investigated. Furthermore, once the model is formulated,
several alternatives may exist for decomposition. The criterion and/or strategy
for selecting the best alternative remains to be investigated.
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