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The demand for Digital Signal Processing (DSP) in embedded systems has been

increasing rapidly due to the proliferation of multimedia- and communication-intensive

devices such as pervasive tablets and smart phones. Efficient implementation of em-

bedded DSP systems requires integration of diverse hardware and software components,

as well as dynamic workload distribution across heterogeneous computational resources.

The former implies increased complexity of application modeling and analysis, but also

brings enhanced potential for achieving improved energy consumption, cost or perfor-

mance. The latter results from the increased use of dynamic behavior in embedded DSP

applications. Furthermore, parallel programming is highly relevant in many embedded

DSP areas due to the development and use of Multiprocessor System-On-Chip (MPSoC)

technology. The need for efficient cooperation among different devices supporting di-

verse parallel embedded computations motivates high-level modeling that expresses dy-

namic signal processing behaviors and supports efficient task scheduling and hardware

mapping.



Starting with dynamic modeling, this thesis develops a systematic design method-

ology that supports functional simulation and hardware mapping of dynamic reconfigu-

ration based on Parameterized Synchronous Dataflow (PSDF) graphs. By building on the

DIF (Dataflow Interchange Format), which is a design language and associated software

package for developing and experimenting with dataflow-based design techniques for sig-

nal processing systems, we have developed a novel tool for functional simulation of PSDF

specifications. This simulation tool allows designers to model applications in PSDF and

simulate their functionality, including use of the dynamic parameter reconfiguration ca-

pabilities offered by PSDF. With the help of this simulation tool, our design methodology

helps to map PSDF specifications into efficient implementations on field programmable

gate arrays (FPGAs). Furthermore, valid schedules can be derived from the PSDF mod-

els at runtime to adapt hardware configurations based on changing data characteristics or

operational requirements. Under certain conditions, efficient quasi-static schedules can

be applied to reduce overhead and enhance predictability in the scheduling process.

Motivated by the fact that scheduling is critical to performance and to efficient

use of dynamic reconfiguration, we have focused on a methodology for schedule design,

which complements the emphasis on automated schedule construction in the existing lit-

erature on dataflow-based design and implementation. In particular, we have proposed

a dataflow-based schedule design framework called the dataflow schedule graph (DSG),

which provides a graphical framework for schedule construction based on dataflow se-

mantics, and can also be used as an intermediate representation target for automated

schedule generation. Our approach to applying the DSG in this thesis emphasizes sched-

ule construction as a design process rather than an outcome of the synthesis process. Our



approach employs dataflow graphs for representing both application models and sched-

ules that are derived from them. By providing a dataflow-integrated framework for unam-

biguously representing, analyzing, manipulating, and interchanging schedules, the DSG

facilitates effective codesign of dataflow-based application models and schedules for ex-

ecution of these models.

As multicore processors are deployed in an increasing variety of embedded im-

age processing systems, effective utilization of resources such as multiprocessor system-

on-chip (MPSoC) devices, and effective handling of implementation concerns such as

memory management and I/O become critical to developing efficient embedded imple-

mentations. However, the diversity and complexity of applications and architectures in

embedded image processing systems make the mapping of applications onto MPSoCs

difficult. We help to address this challenge through a structured design methodology that

is built upon the DSG modeling framework. We refer to this methodology as the DEIPS

methodology (DSG-based design and implementation of Embedded Image Processing

Systems). The DEIPS methodology provides a unified framework for joint consideration

of DSG structures and the application graphs from which they are derived, which allows

designers to integrate considerations of parallelization and resource constraints together

with the application modeling process. We demonstrate the DEIPS methodology through

cases studies on practical embedded image processing systems.
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Chapter 1

Introduction

1.1 Key Problems in the Design and Implementation of Embedded Sys-

tems

Widely used in many different application areas, embedded systems are usually

dedicated to specialized purposes, and need to satisfy diverse constraints. In recent years,

as tablets and smart phones have emerged and spread around the world, an increasing

variety of applications are developed for such devices, and as such applications evolve,

they often require higher and higher levels of performance.

Such a trend towards higher performance embedded processing makes Multiproces-

sor System-On-Chip (MPSoC) technology increasingly attractive across many embedded

system domains. At the same time, the rapid evolution of tablet and smart phone technol-

ogy accelerates the product cycle in associated embedded systems. The need to manage

such change with high productivity and low cost makes designers turn to abstract models

for design process management and application development. Because embedded pro-

cessing technology and sensor technologies are evolving rapidly, such abstract models

need to be independent of the underlying hardware. Furthermore, the increasing levels

of adaptivity and reactivity required in embedded applications call for embedded sys-

tem implementations that can efficiently achieve dynamic reconfiguration, and associated
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scheduling and parallelization of application programs.

Due to time-to-market pressures and standards (e.g., standards for media formats

or data communication) that evolve concurrently with product evolution, ASIC cannot

provide the design agility, turnaround time, and flexibility required for many embed-

ded application areas. In such scenarios, reconfigurable devices, such as FPGA, can be

used as for prototyping and experimentation because of their regular structure with lower

price [58]. Furthermore, as the technology for such reconfigurable devices advances, it

can provide solutions beyond the needs of the prototyping and experimental stages, and

can be competitive, for certain application areas, in terms of the requirements of final im-

plementations [51]. Software-Defined Radio (SDR) is an example of an application area

where FPGA are employed extensively [7].

Dynamic reconfiguration allows for reconfiguration of processing structures at run-

time, while an application is executing. Through support for dynamic reconfiguration,

embedded systems allow customization of hardware structures both statically and at run-

time, thus allowing streamlining of processing configurations in response to application

requirements or data characteristics that are not known at design time. In addition to al-

lowing for dynamic changes in system functionality, dynamic reconfiguration, when car-

ried out effectively, can enhance performance, resource utilization, and energy efficiency

(e.g., see [25]).

Dynamic reconfiguration in embedded systems provides valuable flexibility and

opportunities for enhanced efficiency, but also leads to increased complexity in terms

of design analysis and optimization. Existing approaches focus primarily on either ab-

stract models with the capability of expressing dynamic reconfiguration at a high level or

2



techniques for low-level, platform-specific implementation. While both of these areas of

advancement are important, there is an increasing need to bridge the gap between them in

order to better realize the potential of dynamic reconfiguration technology.

Scheduling is of critical importance to embedded systems, and effects key metrics,

including latency, throughput, memory management efficiency, and power consumption.

Furthermore, scheduling disparate applications running on limited resources is very chal-

lenging. Past research has focused extensively on static scheduling, and has provided

a variety of efficient solutions for different kinds of requirements or constraints (e.g.,

see [51]). However, research on dynamic scheduling, particularly in the context of effi-

cient embedded system implementation, is relatively less mature.

Scheduling has been studied extensively in the context of dataflow-based model-

ing of DSP systems. Dataflow graph scheduling involves assigning actors to processors,

and sequencing subsets of actors that share common processing resources. For dataflow

scheduling of DSP systems, a “processor” in this context is typically taken to be a hard-

ware resource on which execution is time-multiplexed by actors that are assigned to it. In

addition to ensuring that dataflow graph dependencies are respected, scheduling is often

geared towards exploiting parallelism (performance improvement) and efficient memory

utilization (buffer management). Given the fundamental role of scheduling in dataflow-

based design flows, and its heavy impact on key implementation metrics, a wide variety

of techniques has evolved over the years and continues to evolve for scheduling DSP

dataflow graphs. Such techniques target objectives such as buffer optimization [2], joint

code and data minimization [8], quasi-static scheduling [20], adaptive scheduling [6, 55],

and throughput optimization [18].
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As multicore processors are deployed in an increasing variety of embedded systems,

effective utilization of multiprocessor system-on-chip (MPSoC) technology becomes crit-

ical to developing effective embedded implementations. Besides the challenges of paral-

lelizing embedded system applications, the exploitation of parallelism also increases the

complexity of resource management. Characteristic of embedded systems, limited re-

sources become a major bottleneck of performance improvement and of the management

of overall design constraints, especially in computationally-intensive application areas,

such as multidimensional signal processing. To help designers expose and exploit par-

allelism in tightly resource-constrained design scenarios, systematic methods are needed

for integrated modeling and exploration of associated implementation trade-offs.

1.2 Dataflow Models

Dataflow modeling is widely used in the design and implementation of DSP systems

(e.g., see [7]). A dataflow graph is composed of actors (nodes) and edges, which represent

computational tasks and data dependencies, respectively. The complexity of computations

represented as dataflow actors can have arbitrary granularity — e.g., ranging from a few

lines of code in a high level language to hundreds or thousands of lines.

As a distributed model of computation, dataflow involves local control through the

“firings” (discrete units of execution) of individual actors. An actor starts a firing when an

enclosing scheduler or hardware controller dispatches it for execution, and sufficient data

is available at its input ports. Such an asynchronous, concurrent model of computation

allows naturally for simultaneous execution of multiple actors if sufficient input data and

4



sufficient resources are available [40].

As the complexity of DSP systems increases, we see a steadily increasing demand

for more powerful dataflow models and associated techniques for analysis and optimiza-

tion. Synchronous Dataflow (SDF), proposed in [35], is the first dataflow-based model of

computation to gain broad acceptance in DSP design tools, and many useful techniques,

such as efficient scheduling and buffer size optimization, have been developed in the con-

text of SDF (e.g., see [8]).

Although an important class of useful DSP applications can be modeled effectively

in SDF, the expressive power of SDF is restricted since SDF imposes a restriction of static

communication behavior, which actors must adhere to. In particular, for any given input

port pi of an SDF actor, the number of data values (tokens) consumed from pi is constant

across all firings of the actor, and similarly, the number of tokens produced by the actor

on each of its output ports is constant. In other words, SDF actors cannot produce and

consume varying amounts of tokens on their output and input ports.

As the need to model dynamic communication behavior has increased, due to the

increasing levels of flexibility and dynamics in signal processing applications, many ex-

tensions or alternatives to the SDF model have been proposed. In general, an important

objective for these models is to accommodate a broader range of applications while main-

taining a significant part of the compile-time predictability that is offered by SDF.

Cyclo-static dataflow [9], scenario-aware dataflow [55], and Enable-Invoke Dataflow

(EIDF) [46] are examples signal processing oriented dataflow models of computation that

have been designed for increased expressive power. An extensive survey of such mod-

eling techniques and their associated trade-offs is provided in [51]. In this thesis, we
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target a specific form of dataflow modeling referred to as Parameterized Synchronous

Dataflow (PSDF), which offers valuable properties in terms of modeling systems with

dynamic parameters, supporting efficient scheduling techniques, and natural integration

with popular SDF modeling techniques [5].

PSDF can represent cyclo-static dataflow by making dataflow-related parameter

variations occur according to periodic patterns. Compared to EIDF, PSDF has lower

expressive power overall, but is equipped with streamlined scheduling techniques for

the subclass of application models that are amenable to PSDF semantics. Compared

to scenario-aware dataflow, PSDF can be viewed as having a more strict separation be-

tween data and parameters, which facilitates symbolic scheduling techniques based on

parameterized looped schedules.

PSDF is based on parameterized dataflow, which is a meta-modeling technique that

can significantly improve the expressive power of an arbitrary dataflow model that pos-

sesses a well-defined concept of a graph iteration [6]. Parameterized dataflow provides

a method to systematically integrate dynamic parameter reconfiguration into such mod-

els, while preserving many of the original properties and intuitive characteristics of the

original models.

The integration of the parameterized dataflow meta-model with SDF provides the

model of computation that we refer to as PSDF. Efficient quasi-static scheduling tech-

niques have been demonstrated previously for PSDF specifications [5]. Here, by quasi-

static scheduling, we refer to a general approach to scheduling in which significant por-

tions of schedule structure are fixed at compile time, while some amount of run-time

schedule adjustment can be made in response to input data or changes in operational

6



requirements.

Functional DIF is a functional simulation environment, with useful applications to

rapid prototyping, for DSP-oriented dataflow models of computation [46]. Functional

DIF is based on the EIDF model of computation, which is Turing complete. Functional

DIF allows actors whose internals are programmed in Java to be integrated with EIDF-

based dataflow graphs that are specified using Dataflow Interchange Format (DIF). DIF

is a textual language for specifying dataflow graphs in terms of arbitrary dataflow models

of computation [22].

1.3 Scheduling for Dataflow Models

In DSP-oriented dataflow models of computation, applications are modeled as di-

rected graphs, where actors represent computational modules for executing tasks, and

edges represent first-in-first-out channels for storing tokens, and imposing data depen-

dencies between actors. Whenever an actor fires, it consumes and produces tokens from

its input and output edges, respectively. As discussed previously, scheduling is a funda-

mental process that must be addressed carefully to derive efficient implementations from

dataflow graphs.

As the range of dataflow graph scheduling techniques continues to expand, based

on the heterogeneity of application modeling styles and implementation objectives, and

the increasing degree of dynamics in applications, it becomes increasingly important to

develop a common representation for modeling and working with dataflow schedules.

Such a representation is desirable to enable systematic reuse of design tool code, anal-
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ysis techniques, and back-end implementation methodologies across various scheduling

strategies. Furthermore, a formal representation helps to integrate different scheduling

techniques so that they can be mixed and matched across different subsystems of a design

based on characteristics and objectives associated with those subsystems.

1.4 Design Techniques for Multiprocessor Systems-on-Chip

The shared memory model, illustrated in Figure 1.1, is a popular parallel program-

ming model. The shared memory model is widely used in small scale parallel computers,

such as desktop personal computers and laptops. Parallel computing platforms that are

based on the shared memory model are called SMP. In SMP, processors (threads) are

given flexible access to shared memory, while writing conflicts (i.e., consistency prob-

lems) need to be resolved by programmers based on the available architectural support.

For example, a write-through cache can update shared memory data as soon as possible,

whereas a write-back cache generally takes longer to do so, thereby requiring additional

considerations to handle consistency [53]. One of the most popular multiprocessors for

embedded system, the ARM Cortex-A9 MPCore, is based on the shared memory model.

Instead of using a centralized concept of memory, the message passing program-

ming model assumes that each processor has its own local memory and communicates

with other processors through communication packets (messages). Message passing is

suitable for large scale parallel computers due to better scalability compared to the shared

memory model. However, memory references across different local memories can be

difficult to resolve. This makes the approach error prone, and requires more effort in
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Figure 1.1: Shared memory model.

code maintenance. To support message passing, a library called Message Passing In-

terface (MPI) has been developed for C- and Fortran-based parallel programming. Fur-

thermore, the implementation of message passing is not restricted to distributed memory

systems. That is, message passing can be realized in shared memory systems as well.

In contrast to imperative programming, skeleton programming (also called struc-

tured programming) provides a different flavor for expressing parallelism [14]. Skeleton

programming involves the use of skeleton codes, which can be viewed as generic and

reusable functions (patterns) that are derived from functional programming languages [19].

Patterns for skeleton programming are discussed in [38].

Figure 1.2 demonstrates an example of the parallel patterns map and reduce. The

function sum, which takes two operands, computes (1 + 2 + 3 + 4 + 5) in parallel

by creating four sub-summations sum(1,2), sum(3,4), sum(sum(3,4),5) and

sum(sum(1,2),sum(sum(3,4),5)). In Figure 1.2, ((3 + 4) + 5) represents

sum(sum(3,4),5) for short. The sub-summation sum(1,2) and sum(3,4) can

9



be executed concurrently.

Algorithmic skeleton frameworks have been integrated with object oriented pro-

gramming languages, such as Java and C++. MapReduce, along with its implementation

developed by Google [15], is one well known programming model of this kind.

reduce

map

(1+2+3+4+5)
(3+4)

(1+2)

((3+4)+5)

((1+2)+((3+4)+5))

Figure 1.2: An example of the parallel programming patterns map and reduce.

Dataflow models of computation, as the name suggests, emphasize data and its flow

more than computation. They are also considered as first order functional programming

models. The function sum in Figure 1.2 modeled in terms of SDF semantics is illustrated

in Figure 1.3. Here, actor A produces five tokens containing the data values 1, 2, 3, 4

and 5 on its three outgoing edges. Consuming two tokens from its input edges, actor

B (C) produces one token, which encapsulates the sum (1 + 2) ((3 + 4)). Actor E

consumes the tokens produced from actors B and D to obtain the result of the overall

computation. To exploit parallelism from this dataflow graph, actors B and C can be

executed simultaneously.

Conforming to the shared memory model, portable operating system interface

(POSIX) threads, also known as Pthreads, is a widely used library that supports SMPs [11].
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Figure 1.3: An example of dataflow modeling.

Based on sequential programming languages, such as C and Fortran, Pthreads helps to re-

alize the potential performance gains of parallel computing by providing programmers

with an extensive library of APIs for thread management and thread synchronization. In

this context, threads can be viewed as subtasks of procedures that have their own pro-

gram counters and function-call stacks. Thus, threads can execute concurrently and share

resources.

Some programming languages, such as Java and C#, incorporate support for threads

into their associated development frameworks. In such frameworks, parallelism can be

expressed through constructs in the programming language, instead of through use of li-

braries. Although thread programming is a popular way to achieve performance gains

from parallel computing, the approach is fraught with problems in terms of understand-

ability, predictability, and determinism, which are the essential and appealing properties

of sequential computing [34].

To help simplify parallel programming, OpenMP (Open Multi-Processing) adopts a

concept of incremental parallelization, where the compiler undertakes the parallelization
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of sequential codes based on programmer-specified directives. Parallelization is realized

through a fork-join model [16], which creates multiple threads at selected instants during

execution (fork), and collects threads created by fork operations when they are completed

(join). Figure 1.4 illustrates the operation of fork and join operations in OpenMP.

Using OpenMP, programmers start with sequential codes, and insert OpenMP direc-

tives (pragmas) to specify which regions of the sequential codes are to be parallelized and

synchronized. Such an approach allows programmers to parallelize their sequential codes

incrementally, increasing the amount of parallelism exploited as they gain confidence in

their evolving implementations.

fo
rk

jo
in

fo
rk

jo
in

main
thread

main
thread

main
thread

threads
new created

threads
new created

Figure 1.4: Fork-join model.

The execution of a parallel program can be categorized into two styles according to

whether or not the number of parallel activities (e.g., threads) is constant at runtime. Fork-

join operations spawn parallel activities at some time and then, terminate them at another

time. Therefore, the number of parallel activities is not fixed. In this thesis, we are

generally concerned with dataflow graph scheduling strategies that involve dynamically

determined numbers of parallel activities, although not limited to a fork-join style of

parallelism.

In many areas of embedded signal processing, utilizing the underlying memory sys-
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tem efficiently has an major effect on important metrics, including real-time performance,

cost, and energy consumption. In [44], the authors present an overview of how the mem-

ory architectures of embedded systems can be customized to enhance performance.

Additionally, input/output (I/O) interfacing is an important part of embedded sys-

tem design, and needs to be considered carefully to derive efficient implementations. Var-

ious studies have investigated the streamlining of I/O. For example, to improve the latency

of file I/O, stream-enabled file I/O is proposed in [30]. This approach allows applications

to access files concurrently while they are being transferred.

1.5 Contributions of this Thesis

In this thesis, we present a number of contributions to help improve the mapping

of dataflow graphs for DSP applications into efficient parallel implementations. First,

we present a novel simulation tool that integrates the Java-based actor programming ca-

pability of Functional DIF with PSDF-based graph specification in the DIF language in

Chapter 2. This provides the first implementation of a comprehensive simulation environ-

ment for PSDF. Such an environment is useful for exploring the capabilities of dynam-

ically reconfigurable SDF modeling and quasi-static scheduling offered by PSDF, and

for applying these methods more deeply into design flows for FPGA and digital system

implementation.

Building on our newly developed PSDF simulator, which we refer to as PSDFsim,

we propose a comprehensive PSDF-based design methodology that covers modeling of

the target application, simulation of functionality, and hardware architecture mapping.
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PSDFsim is applied as a core part of this methodology to help validate the high-level

PSDF modeling architecture before committing to lower-level implementation decisions,

and later on, to help validate derived hardware description language (HDL) implementa-

tions.

To support the scheduling of dynamic reconfiguration, we address the problem of

schedule design by introducing a formal framework, called the Dataflow Schedule Graph

(DSG) for precisely representing, analyzing, manipulating, and interchanging schedules

in Chapter 3. We have designed the DSG representation with two major objectives — 1)

it should be rooted in formal dataflow semantics, and 2) it should accommodate a wide

range of schedule classes, including static, quasi-static, and dynamic schedules, as well

as both sequential and parallel schedule formats. Furthermore, because they are based

on the same dataflow semantic framework as the application representations from which

the schedules are derived, DSG can naturally represent structures in which schedules are

adapted dynamically (e.g., in response to changes in input data characteristics).

As motivated above, resource-constrained implementation of embedded systems

requires careful attention to a variety of design aspects, including parallelizing computa-

tions, memory management, efficient I/O interfacing, and efficient and fair management

of limited resources. Embedded image processing is a domain of signal processing where

the challenges in such a multi-faceted implementation process are especially difficult, due

to the large volumes of data involved, and the stringent real-time performance constraints.

To help address these challenges, we present in Chapter 4, a new design methodology,

called the DEIPS (DSG-based design and implementation of Embedded Image Process-

ing Systems) methodology. The DEIPS methodology builds on the DSG model to provide
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a structured framework for design and implementation of embedded image processing ap-

plications. The DEIPS methodology provides an integrated methodology for addressing

the issues that include parallelization of signal processing operations, memory manage-

ment, I/O interfacing, and efficient management of multidimensional (e.g., image- or

block-oriented) dataflow behavior. We demonstrate the DEIPS methodology through two

detailed case studies that involve mapping different image processing applications onto a

state-of-the-art multicore digital signal processor platform.
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Chapter 2

Rapid Prototyping for Digital Signal Processing Systems using

Parameterized Synchronous Dataflow Graphs

In this chapter, we present a comprehensive simulation environment for signal

processing systems that are modeled as parameterized synchronous dataflow (PSDF)

graphs. PSDF was introduced in [6] as a model of computation that augments syn-

chronous dataflow (SDF) semantics with structured methods to dynamically configure

dataflow graph parameters, including but not limited to parameters that affect token pro-

duction and consumption rates of actors. Our proposed new PSDF simulation environ-

ment is useful for exploring the capabilities of dynamically reconfigurable SDF modeling

and quasi-static scheduling offered by PSDF, and for applying these methods more deeply

into the design and implementation for signal processing systems.

2.1 PSDF Operational Semantics

The PSDF operational semantics allows subsystem behavior to be controlled by sets

of parameters that can be configured dynamically. Some basic concepts and terminology

associated with PSDF modeling and semantics are described as follows. For more details,

we refer the reader to [5].

1. A PSDF specification is composed of three cooperating PSDF graphs, which are

referred to as the init, subinit, and body graphs of the specification. Actors and
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edges in PSDF graphs can be parameterized with arbitrary parameters that can be

changed at run-time. For any fixed setting of parameters, the PSDF graph yields an

SDF graph.

2. A PSDF specification can be nested within a higher level PSDF graph. Such nesting

is achieved by encapsulating the specification as a hierarchical PSDF actor in the

higher level graph.

3. Parameters of actors and edges in a PSDF graph can only change between itera-

tions of the graph. The precise boundaries between iterations can in general be

user-defined; typically, in PSDF they correspond to boundaries between periodic

schedules of the underlying SDF graph. A periodic schedule of an SDF graph is

a sequence of actor firings that executes each actor at least once, and returns the

graph to its initial state (the initial set of token populations on the edges) [35].

4. The interface dataflow behavior (IDB) of a nested PSDF subsystem (i.e., the num-

bers of tokens produced or consumed at input and ports of the subsystem) can only

be changed by the init graph of the subsystem. The init graph executes once dur-

ing each iteration of the parent (hierarchically enclosing graph). In general, the

init graph is allowed to configure (change parameters in) the corresponding subinit

and body graphs. Such parameter changes are achieved by mapping the associated

parameters to appropriate actor output ports in the init graph.

5. The subinit graph executes once during each execution of the corresponding PSDF

subsystem (each firing of the enclosing PSDF actor if the subsystem is nested).

During such an execution, the subinit graph executes; new parameter values com-
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puted at outputs of the subinit graph are propagated to corresponding parameters

in the body graph; and then the body graph executes based on the updated set of

parameters.

6. Parameter changes that are computed by the subinit graph cannot modify the IDB

of the body graph or enclosing PSDF actor. This ensures that any parent graph

has a consistent view of the subsystem throughout an iteration of the parent graph.

Such a consistent view facilitates efficient quasi-static scheduling and associated

analysis [5, 41].

7. Based on 4, 5 and 6, parameter changes produced by the subinit graph can generally

be viewed as more frequent, but more restricted compared to those computed by the

init graph.

We use the downsampler example shown in Figure 2.1 to illustrate these concepts.

Here, actor H is a hierarchical PSDF actor that encapsulates a PSDF representation (sub-

system) of a dynamically reconfigurable downsampler. Actor D in the body graph of the

subsystem represents the core downsampling functionality. This actor is parameterized

by the factor and phase parameters, which represent, respectively, the downsampling ra-

tio F and the phase P of the downsampler (P < F ). In each firing, D consumes F tokens

from its input edge, and produces a single token, which is a copy of the (P + 1)th token

consumed during the firing.

Since the input of D is connected as input of the enclosing subsystem, changes to

the factor parameter in general affect the consumption rate of the subsystem and therefore

its IDB. Thus, the factor parameter can be configured by the init graph, but not the subinit
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graph. On the other other hand the phase parameter does not affect the IDB, and therefore,

this parameter can be configured by either the init graph, the subinit graph, or both.

Actors A, B, and C in Figure 2.1 represent SDF actors. The production rates of A

and B and the consumption rate of C are statically fixed at unity. These actors represent

data sources and a data sink, respectively, which can be used, for example, to drive the

subsystem with test data and collect the corresponding test output for subsequent valida-

tion.

As part of the init graph, actor E executes once before each iteration of the parent

graph of the PSDF subsystem corresponding to H . Thus, E can be used to perform initial-

ization of the factor parameter, as well as to perform periodic updates to this parameter.

For a more elaborate tutorial discussion of PSDF semantics, we refer the reader

to [5].

D

CA H

B

downsampler H
init subinit

body

1

1

B

E G

H

111 F
A C

Figure 2.1: A PSDF Downsampler.
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2.2 PSDFsim

In this section, we introduce PSDFsim, which to our knowledge is the first com-

prehensive functional simulator for PSDF-based application modeling and design. PS-

DFsim generates the schedule (simulation sequence) whenever the init graph determines

the dataflow behavior that it controls, and then simulation starts. Using PSDFsim, one

can validate and test the PSDF modeling architecture at a high level of abstraction before

committing to lower-level design decisions, such as detailed hardware-level modeling for

the actor internals. Such a two-phase approach to PSDF-based implementation helps to

separate the high-level (inter-actor) dataflow architecture design (in terms of PSDF se-

mantics) from the fine grained control and dataflow structures involved in the individual

actor implementations, and to allow the former to be applied systematically as a testbench

for the latter. More details on this PSDF-based implementation approach are described in

Section 2.3.

PSDFsim supports two different forms of parameter propagation — internal and

hierarchical propagation — for dynamic parameter changes to actors and edges. For

example, consider Figure 2.2. Each dashed edge in this figure represents a parameter

propagation path. Edges (A, a), (B, b), and (C, c) correspond to internal propagation

paths, which are explained further in Section 2.1. On the other hand, edges (D, d) and

(E, e) in Figure 2.2 represent paths for hierarchical parameter propagation. Such hierar-

chical propagation paths provide channels to update parameters based on new parameter

values that are computed from higher level subsystems. Based on properties derived from

PSDF semantics, updates through hierarchical propagation override any corresponding
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configurations that have been made through internal propagation.

These two forms of parameter propagation facilitate code reuse by allowing arbi-

trary actors to be applied and adapted in different kinds of contexts through different

forms parameter initialization and reconfiguration structures.
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Figure 2.2: An illustration of parameter propagation in PSDFsim.

2.3 PSDF-based Design Methodology

PSDF-semantics can be applied for model-based design in the front end of the

FPGA/ASIC design flow shown in Figure 2.3. Such an approach can provide a struc-

tured framework to control dynamic functionality and make corresponding adaptations

to scheduling strategies and resource allocations. Such a PSDF-based approach involves

two phases — high level modeling and validation (modeling) and hardware architecture

mapping (mapping). These two phases can in general be applied iteratively to implement

dataflow based parallel processing structures for FPGA- or ASIC-based signal processing

21



systems.

The modeling phase ensures correct application functionality as well as the correct

formulation of the functionality in terms of dataflow and PSDF principles. Through its

direct connection to the concurrency modeling capabilities of dataflow, this phase helps

provide a framework for efficient implementation even though the focus on this phase is

on functional validation rather than detailed hardware mapping. In this phase, procedu-

ral software is used to specify the internal functionality of the actors, while a dataflow

language is used to specify the high-level (inter-actor) application model. In PSDFsim

the Java and DIF languages are used for these purposes of intra-actor and inter-actor,

modeling-phase specification, respectively.

In the mapping phase, the designer applies the individual actor models as functional

references to derive corresponding hardware implementations using a hardware descrip-

tion language (HDL). The functionality of these “hardware actors” can be validated us-

ing the same testbenches as those used in the modeling phase. Similarly, edges in the

DIF-based application (application graph) model are mapped into corresponding FIFO

implementations using the targeted HDL and associated design library.

By developing the actors based on PSDF principles, and connecting them through

standard FIFO semantics, functional correctness of the overall, application-level hard-

ware implementation follows directly from correctness of the original PSDF application

model, and correct mappings of the individual actor models into hardware. Additionally,

the application level model from the modeling phase can be used as a testbench to begin

application-level testing of the hardware, where both functional and timing constraints

must be taken into account. Insight from timing analysis of the hardware implementation
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can then be used to optimize the hardware actors and possibly to iterate back to the mod-

eling phase to explore refinements or alternatives to the high level dataflow architecture.
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Figure 2.3: FPGA/ASIC design flow overview.

2.4 Hardware Architecture Mapping

In this section, we present details on the mapping phase of our proposed design

methodology, including the steps involved in hardware architecture mapping of PSDF

actors, graphs, and specifications. Previous work on mapping dataflow structures into

hardware include the work on VLSI dataflow arrays [31], SystemC [21], and multidimen-

sional arrayed dataflow [37]. The methods developed in this thesis are different from these

approaches in their support for parameterized dataflow modeling, and the novel features

of dynamic parameter reconfiguration and reconfigurable dataflow modeling that are pro-

vided by PSDF semantics [5]. Due to the potential for applying parameterized dataflow
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semantics with arbitrary dataflow models of computation (subject to suitable definitions

of graph iterations, as described in Chapter 1), the integration of the techniques presented

in this thesis with the models used in the aforementioned works is an interesting direction

for further study.

PSDF and PSDFsim modeling constructs — in particular, PSDF actors, edges,

schedules, parameter propagation paths, and operational semantics — map naturally into

corresponding hardware structures. The buffer sizes can be determined by the sched-

ule used in the hardware, and other hardware components are generic and reusable (not

application-specific). Table 2.1 summarizes this mapping.

Table 2.1: Mapping PSDF constructs to hardware.

PSDF Model Hardware Components

actor circuit block

edge buffer (e.g., FIFO)

schedule graph controller

parameter propagation path wire

operational semantics subsystem controller

Although the complexity of circuit blocks can vary widely, the top-down applica-

tion of PSDF principles provides a standardized design style for the interaction between

different circuit blocks and for the interaction between circuit blocks and the associated

PSDF control for scheduling and parameter management for the blocks. This allows for

significant reuse of parameterized HDL “glue code”, as well as corresponding streamlin-

24



ing of verification effort.

We employ self-timed scheduling and control of dataflow actors, where actors can

fire as soon as they have sufficient data on their input buffers; sufficient empty spaces on

their output buffers; and up-to-date values available for their parameters, as determined

by the associated subinit and init graphs. Such self-timed hardware mapping is natural for

signal processing oriented dataflow models of computation, and avoids bottlenecks and

scheduling restrictions due to the alternative of fully static (globally clocked) scheduling

(e.g., see [51]).

Figure 2.4 illustrates the architecture of a standard wrapper for PSDF-based inter-

facing of actor circuit blocks. Here, the blocks labeled counter, controller, and loop count

handle control and iteration management within the functional unit of the actor, which can

be of arbitrary complexity. The blocks labeled cons circuit and prd circuit handle input

and output interfacing of the actor based on dataflow rates that may be parameterized and

dynamically configured.

The structure of hardware mapping at the PSDF subsystem level is illustrated in

Figure 2.5. The dashed lines indicate wires for parameter configuration, and the cir-

cuit blocks B and D are parameterized by the init and subinit graph, respectively. The

controllers associated with the structures of Figure 2.4 and Figure 2.5 are illustrated in

Figure 2.6.

The circuit block control, illustrated in Figure 2.6(a), is a key part of self-timed,

PSDF hardware implementation. At the beginning of a control iteration (the state labeled

PARAM), the circuit block configures any dynamically managed parameters based on the

current settings and tries to consume data from the buffer (CONS state). The controller
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will block in the CONS state until all data has arrived from the corresponding producer

actor, and has been consumed for processing by the circuit block. Then the controller

enters the EXE state and activates the function unit to process the input data and gener-

ate any output values. When the output data is ready, the prd circuit pushes it onto the

corresponding output edges during the PRD state. Finally, after all output data has been

written, the controller enters the DONE state. In the DONE state, if the firing count within

the current loop execution matches the loop count, then the controller goes back to the

PARAM state and waits for another circuit block iteration before proceeding; otherwise,

the controller goes to the CONS state to consume tokens for the next firing.

Circuit Block

circuit
prdcons

circuit
function

unit

counter controller loop
count

Buffer Buffer

Figure 2.4: Interface and control architecture for a circuit block.

2.5 Case Study: Phase-Shift Keying

In this section, we demonstrate our PSDF-based design methodology using a re-

configurable phase-shift keying (PSK) application that can be configured as binary PSK

(BPSK), quadrature PSK (QPSK) or 8PSK. We construct PSDF models of the modulator

and demodulator for this system, and develop Java-based functional DIF code to specify
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Figure 2.5: An illustration of subsystem-level hardware mapping.

the internal functionality of each actor. The resulting PSDF program is then simulated

and tested using PSDFsim, and then hardware mapping is applied to the modulator to de-

rive a Verilog implementation. HDL simulation and synthesis is then applied to validate

the evaluate the derived hardware.

Figure 2.7 illustrates our PSDF model of the targeted system for reconfigurable

PSK. Here, D represents an input interface that injects samples from the incoming data

stream into the dataflow graph; T and P are parameterized lookup tables; I1 is an actor

that configures the consumption rate (based on M) of T ; S2 and S4 provide trigono-

metric functions that are selected based on a dynamic parameter setting; I3 configures

the production rate of P ; A is an adder; X12 and X34 are constant multipliers whose

associated constants (scaling factors) are managed as dynamic parameters; and B is an

output interface for the storing or further processing of the resulting binary sequence. The

input interface D makes two copies of each input token on its output since two separate
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Figure 2.6: Finite state machines for (a) a circuit block, (b) a graph controller, (c) con-

sumption and production circuits, and (d) a subsystem controller.
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Figure 2.7: PSDF-based model of PSK modulator and demodulator.

Our PSDF model involves a parameter M , which determines which form of PSK

to employ. For M = 1, 2, 3, an SDF graph associated with BPSK, QPSK and 8PSK,

respectively, is effectively activated. After the system model is constructed, we use a
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PSDFsim to simulate the system and validate the functionality for the different values of

M . This initial simulation is performed assuming no distortion of data in the channel.

Since channel quality is critical to the choice of PSK, we can modify actor C to

model the noise in the channel and analyze the simulation results under different PSK

configurations. PSDFsim enables such multi-mode application simulation to be executed

in an integrated manner — i.e., as a single simulation that includes all PSK configurations

along with simulation control functionality that dynamically changes the configuration.

Our hardware mapping of the modulator is illustrated in Figure 2.8. Here, the filler

block represents an actor that is inserted to help maintain PSDF operational semantics.

Since the init and subinit graphs here both contain one node each, their associated graph

controllers can be removed. Note also that the circuit blocks associated with blocks T

and X12 are parameterized and receive parameter value updates from circuit blocks I1

and S2 . This case is implemented manually; however, the implementation is such that all

controllers can be reused easily in future designs.

A comparison of the simulation time for the PSK modulator between PSDFsim and

ModelSim SE 6.5 is shown in Table 2.2. The time required by PSDFsim to compute the

dataflow graph schedule is not included in the time reported here for PSDFsim. This is

because this schedule computation is not specific to a single simulation — the sched-

ule can be reused across multiple simulations for the same dataflow graph. The derived

schedule is also an important part of the hardware mapping process, and is used (without

any recomputation effort) by the lower level, ModelSim simulation. The time taken by

PSDFsim in our experiments to compute the schedule for the PSK system is 125 ms.

The improvements in simulation time using PSDFsim help to demonstrate the utility
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Figure 2.8: Hardware mapping for modulator.

of using PSDF for rapid prototyping and early-stage design. In particular, PSDF allows

for faster simulation and design exploration early in the design phase when the high level

dataflow architecture is being developed, and detailed HDL simulation (e.g., that provided

by ModelSim) is not needed.

Note that these experiments are based on an initial Java-based implementation of

PSDFsim that has not been optimized for speed. We expect that with optimization for

speed, the simulation time speedup achieved using PSDFsim can be improved signifi-

cantly.

To provide an area comparison, we instantiate three separate PSK circuits that sup-

port BPSK, QPSK and 8PSK individually using SDF-based models. We compare this

pure-SDF-based implementation with our PSDF implementation that is derived using PS-

DFsim and our proposed design methodology. Synthesis results generated by the Cadence
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Encounter RTL Compiler are shown in Table 2.2. Although there is some area overhead

in the PSDF implementation due to the controllers and auxiliary circuits used for the init

and subinit graphs, this overhead is more than compensated for by the hardware reuse that

is facilitated by the flexible, dynamic parameterization capabilities of PSDF.

Table 2.2: Comparisons for PSK modulator system.

Simulation time of PSDFsim and ModelSim

PSDFsim (ms) ModelSim (ms) Speedup

47 93 1.98X

Area of PSDF design and SDF design (100 MHz)

PSDF (cell) SDF (cell) Reduction

20004 33602 44.67% (1.68X)
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Chapter 3

A Model-based Schedule Representation for Heterogeneous Mapping of

Dataflow Graphs

In this chapter, we introduce a formal framework, called the dataflow schedule

graph (DSG), for precisely representing, analyzing, manipulating, and interchanging sched-

ules that are associated with high-level dataflow specifications of signal processing sys-

tems. We have designed the DSG representation with two major objectives — 1) it should

be rooted in formal dataflow semantics, and 2) it should accommodate a wide range of

schedule classes, including static, quasi-static, and dynamic schedules, as well as both se-

quential and parallel schedule formats. Furthermore, because they are based on the same

dataflow semantic framework as the application representations from which the sched-

ules are derived, DSG can naturally represent structures in which schedules are adapted

dynamically.

3.1 Related Work

A number of dataflow schedule representations have been explored previously. The

generalized schedule tree (GST) representation provides a tree-based representation of ar-

bitrary looped schedules [29]. A novel schedule format based on dynamic loop counts that

is geared towards SDF buffer memory minimization is developed in [43]. The interpro-

cessor communication graph and synchronization graph models provide dataflow-based
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schedule representations for parallel schedules of homogeneous SDF (HSDF) graphs [51].

HSDF is a restricted form of SDF in which the dataflow rate on each input and output port

is always equal to 1 [35].

A distinguishing characteristic of our proposed DSG representation is that it is both

dataflow based, and capable of handling dynamic schedule structures as well as dynamic

dataflow application models. This is in contrast to execution-sequence based represen-

tations, which can usually be characterized formally but lack dataflow semantics and are

often restricted to static schedules.

The most closely related modeling technique is the synchronization graph model.

In this model, self-timed multiprocessor schedules are represented as interacting dataflow

graph cycles, where each cycle corresponds to the periodic execution of the actors that are

assigned to a given processor [51]. A significant body of theory and algorithms has been

developed for this model. We are therefore motivated to generalize the synchronization

graph concept beyond self-timed schedules, and HSDF graphs.

The DSG can be viewed as such a generalization. The DSG model can represent

dynamic schedules, which can be applied to static or dynamic application models to im-

prove flexibility (e.g., load balancing robustness or data dependent control structures).

Furthermore, the model is fully based on dataflow principles, which together with its

accommodation of dynamic dataflow semantics, allows for integration with dynamic pa-

rameter control methods for dataflow graphs, such as those provided by parameterized

dataflow [6] and scenario-aware dataflow [55].

The DSG representation can be used in conjunction with existing task graph schedul-

ing techniques, such as those developed in [17, 27, 32, 50, 57]. For example, the DSG can
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be used to model the sequencing structures derived by the scheduling techniques (e.g., as

a standard interface for code generation) or to bridge subsystems that are scheduled using

different techniques. Indeed, exploring the optimized integration of DSG based schedule

control with new and existing task graph scheduling techniques is an interesting direction

for further investigation, and one that is especially relevant in the area of heterogeneous

computing systems.

3.2 Core Functional Dataflow

For concreteness, we develop the DSG in the context of a specific form of dataflow

— the core functional dataflow (CFDF) model of computation, which can be viewed

as a deterministic sub-class of enable-invoke dataflow graphs [46]. CFDF is a highly

expressive (Turing complete), dynamic dataflow model. In Section 3.10, we discuss how

the DSG model can be adapted to other forms of dataflow (beyond CFDF).

In CFDF, actors are specified as sets of modes, where each mode has a fixed pro-

duction and consumption rate associated with each input and output port, respectively.

Each actor has an associated current mode, which is maintained as part of its state. When

an actor is invoked, it executes its current mode, produces and consumes data (as in other

dataflow models), and updates its current mode. Since different modes of an actor can

have different production and consumption rates, dynamic dataflow can be modeled flex-

ibly in CFDF.

A distinguishing aspect of CFDF (and the non-deterministic superset EIDF) is that

separation of enable and invoke functionality for actors is defined as a first class charac-
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teristic of the model. Specifically, each actor has an associated enable function, which

can be called at any time between firings (e.g., by a run-time scheduler), and returns a

Boolean value indicating whether or not there is sufficient data available on the actor

input ports to fire (invoke) the actor in its current mode. Since such an isolated enable

check is available, the invoke function of an actor assumes that sufficient data is present,

and reads its input data without blocking reads.

In the implementation of dataflow tools, functionalities corresponding to the en-

able and invoke methods are often interleaved — for example, an actor firing may have

computations that are interleaved with blocking reads of data that provide successive in-

puts to those computations. In contrast, there is a clean separation of enable and invoke

capabilities in EIDF. This separation helps to improve the predictability of an actor invo-

cation (since availability of the required data can be guaranteed in advance by the enable

method), and in prototyping efficient scheduling and synthesis techniques (since enable

and invoke functionality can be called separately by the scheduler). This separation also

leads naturally to a concept of guarded execution, whereby an actor firing is conditionally

executed depending on whether or not it is enabled.

3.3 The Dataflow Schedule Graph Representation

Given a CFDF representation GA of an application, a dataflow schedule graph

(DSG) is a dataflow graph that satisfies certain technical constraints (described later in

this section), and represents the time-multiplexed execution of GA across a set of hard-

ware resources. Here, a hardware resource represents an arbitrary computational resource,
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such as a processor core, dedicated accelerator or FPGA subsystem, that executes actors

sequentially. Constraints imposed on the DSG ensure that each hardware resource can

execute at most one actor from GA at any given time. Tokens that flow along edges of

the DSG serve to enable actors for execution (as it becomes their turn to execute). DSG

tokens can also contain values that are manipulated and queried during execution of the

DSG to achieve various forms of data- or parameter-dependent schedule control.

In DSGs, special actors, called schedule control actors (SCAs) and reference actors

(RAs), are selected or developed as an integral part of the schedule modeling framework.

In contrast to conventional dataflow actors, which represent functional components from

the original application specification (application actors), SCAs are dataflow actors that

are dedicated to coordinating control flow in derived schedules. On the other hand, RAs

can be viewed as “pointers” to application actors. These pointers are equipped with op-

tional auxiliary computations. Intuitively, an RA represents a scheduling “wrapper” that

specifies the computation that is executed when the corresponding actor is “visited” dur-

ing schedule execution. The simplest form of RA is one that simply performs a guarded

execution of the actor that it points to. However, more capabilities can be incorporated

into RAs using the optional auxiliary computations mentioned above.

3.4 Reference Actors

An RA has a single input port and a single output port. An RA is a homogeneous

synchronous dataflow actor in the enclosing DSG — that is, it consumes a single token

on each firing from its input, and produces a single token on its output.
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Given an RA A, we represent the application graph actor pointed to by A with the

symbol ref (A), and we refer to ref (A) as the referenced actor of A.

As illustrated in Figure 3.1, an RA A consists of two functions preA and postA,

which are executed, respectively, before and after the guarded execution phase of A. This

guarded execution phase, represented by the block labeled “guarded firing” in Figure 3.1,

represents the guarded execution of A in terms of CFDF semantics (see Section 3.2).

firing

RA

A
bufferstate of actor

buffer

postpre guarded

Figure 3.1: The internal structure of an RA.

We refer to the functions preA and postA as subfunctions of the enclosing RA. In-

tuitively, the RA subfunctions provide a mechanism to process and manipulate data that

is used throughout the graph to control execution of actors (e.g., to facilitate conditional

execution or data dependent iteration in various parts of the graph). The data manipu-

lated by RA subfunctions is encapsulated within the DSG tokens that are produced and

consumed by the enclosing RA.
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To clarify the operational structure of DSGs, it is useful to emphasize that the tokens

flowing on a DSG are strictly for schedule control purposes. Furthermore, because actors

in the application graph are allowed to execute only when they have sufficient data (as

specified by the CFDF enabling conditions), and CFDF is a deterministic dataflow model,

schedule control by DSGs does not violate determinacy — such control only dictates how

actors are time multiplexed when they are mapped to the same hardware resource.

RAs can contain internal state. Such local (actor-specific) state is widely known

to be compatible with dataflow representations since in dataflow graphs, state can be

modeled as self loops with delays (initial tokens) [35, 28]. Thus, the use of state in RAs

does not violate our ability to interpret DSGs as genuine dataflow representations.

The following categories of data can be used as inputs in RA subfunctions:

• The value represented by the current DSG token — i.e., the DSG token that is

consumed by the enclosing RA firing (preA only). This value can be of any type.

The type is a design issue of the particular DSG control structure that is being

developed for a specific schedule or the particular class of control structures that is

being targeted by a particular scheduling tool.

• The state of the enclosing RA.

• The state of the referenced actor.

The following categories of data serve as outputs for (i.e., can be modified by) RA

subfunctions:

• The state of the enclosing RA.

38



• The value of the token that is produced by the RA (postA only).

Firing of an RA involves the following sequence of steps:

1. The RA consumes a token from its input edge. This token is passed as input to

preA, which executes, and updates the state of RA.

2. A guarded execution of ref A is carried out. That is, ref A is fired once if it is

enabled.

3. An execution of postA is carried out. This execution operates on the state of the RA.

The output value from this execution is produced as the output of the RA firing.

The general purpose of preA and postA is to manipulate DSG tokens. The values

of DSG tokens, in conjunction with SCAs, contribute to overall schedule control. Com-

putations in preA and postA are optional. For example, an RA can simply execute the

referenced actor unconditionally, maintain no internal (RA) state, and pass input DSG

values from input to output without modification. Such “lightweight” RAs are typical in

the construction of static scheduling structures, as well as in dynamic structures where

dynamic schedule control is managed by SCAs. When code is generated from DSGs,

such lightweight RAs can easily be detected and “optimized away” so that they do not

result in run-time overhead.

An example of a non-lightweight RA is one that updates DSG tokens with esti-

mates of the amount of energy or execution time taken by the associated firings. Such

information can then be used by the enclosing DSG to adapt overall schedule control —

39



e.g., when the DSG is embedded within a parameterized dataflow system or other kind of

reconfigurable dataflow graph framework (e.g., see [6, 55]).

3.5 Schedule Control Actors

To model dynamic scheduling structures, SCAs generally play an important role in

conjunction with RAs. An SCA is an actor that can have any positive number of input

ports and any positive number of output ports. In other words, an SCA must have at least

one input port and output port, and may have any number of additional input or output

ports. The dataflow behavior of an SCA exhibits the following lumped homogeneous

synchronous dataflow (LHSDF) condition: for every firing f of an SCA C, we have that

nc = np = 1, where nc represents the total number of tokens consumed by C across all

input ports during f , and np represents the total number of tokens produced across all

output ports during f .

Note that an SCA C can have internal state, and if we model that state as a self-loop

edge for C, then this edge is treated independently of the LHSDF condition — i.e., such

a self-loop edge is a standard HSDF edge whose dataflow does not “count towards” the

values of nc and np.

A token in a DSG can be interpreted loosely as an “actor level program counter” for

a given target processor. The LHSDF condition for SCAs along with the HSDF semantics

of RAs guarantee that there is only one such program counter (thread of control) that is

“demanded of” each target processor. This ensures that the schedule execution modeled

by the DSG conforms to the assumption that individual target processors execute actors
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sequentially.

Note that while our proposed DSG model is used to model schedules for CFDF

graphs, SCAs and hence DSGs do not necessarily conform to CFDF semantics. The

primary requirement for SCAs in the context of the associated actor level program counter

concept is most naturally captured by LHSDF semantics as opposed to CFDF.

We introduce several types of SCA actors that will be used in this thesis. Table 3.1

summarizes properties of these actors. The loop actor has two pairs of inputs and outputs.

One pair is used to perform computations within the loop repeatedly, while the other

pair is used for conditionally branching into and exiting the loop based on certain control

conditions. Since there is only one DSG token, execution always proceeds unambiguously

either inside or outside the loop.

SCA actors can be paired with other SCA actors to provide special control functions

that involve their coordination. For example, if and fi provide DSGs with the capability

of selecting computations conditionally. The number of outputs for a given if actor must

match the number of inputs to the corresponding fi actor to provide conditional selection

of the computations that are enclosed by the matching if and fi pair.

The pair snd and rec is used for interprocessor communication and synchronization

in concurrent DSGs (CDSGs), which are discussed further in Section 3.7.

3.6 Sequential Dataflow Schedule Graphs

A DSG for a single-processor schedule represents the time-multiplexed (sequen-

tial) execution of a set of actors on a single processing resource. Execution of the DSG
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Table 3.1: Examples of SCAs.

SCA # of inputs # of outputs

loop 2 2

if 1 ≥ 2

fi ≥2 1

snd 1 2

rec 2 1

models the evolution of actor firings in the associated sequential schedule. To preserve

this sequential execution property, a sequential DSG (SDSG) imposes the restriction that

at most one token can be present in the entire DSG at any given time. This requirement

formally captures the interpretation of DSG tokens as actor level program counters in the

context of single-processor schedules. Just as the program counter in a conventional pro-

cessor “points to” a single instruction at any given time, the unique SDSG token points to

a single SDSG actor, which is the next actor to execute.

For example, consider the class of single appearance schedules for SDF graphs [8].

These schedules are represented in terms of looped schedules such that each actor appears

exactly once, implying, for example, minimal code size under inline implementation. For

example, the looped schedule (3(2ab)c), involving 3 actors a, b, c, and 2 loops represented

by the two nested, parenthesized terms, represents the firing sequence ababcababcababc.

To demonstrate SDSGs for single appearance schedules, we apply the loop SCA
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that was introduced in Section 3.5. Figure 3.2(a) shows an SDF graph (GA) and an as-

sociated single appearance schedule (A(2B)C). A simple SDSG (GS) is shown in Fig-

ure 3.2(b). In this example, loop
1
, which is an instance of the loop actor, implements an

outer loop that models a finite blocking factor J . This blocking factor value gives the

number of times that the schedule is to be repeated. If the schedule is to be repeated

indefinitely (J = ∞), then loop1 should be removed, and the output of RC should be

connected directly to RA.

The actor loop
2
, which is also an instance of the loop SCA defined in Section 3.5,

implements control for an inner loop that corresponds to the nested subschedule (2B). A

token in this SDSG does not carry any values; it simply points to the next actor in the

SDSG that is to be executed.

The “D” symbols on the graph in Figure 3.2 correspond to delays, and are imple-

mented as initial tokens in the graph. Functionally, a delay corresponds to the z−1 operator

in signal processing.

Execution of the SDSG shown in Figure 3.2(b) proceeds as follows. The delay (ini-

tial token) on the edge (RC , loop1
) causes execution to begin with a firing of loop

1
. This

actor loop
1

has one input port, one output port, and an internal state that maintains a loop

iteration count no, which corresponds to the number of remaining schedule iterations, and

is initialized to the blocking factor value J . Each time loop1 fires, it first checks the value

of no. If no = 0, then the firing completes with an output token produced on the output

edge that is connected to END . On the other hand, if no > 0, then the value of no is

decremented, and the firing completes with a token produced on the output edge that is

connected to RA.
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This token has the effect of passing processor control to RA, which then fires the

referenced actor A once and passes control (through its output token) to loop2.

The actor loop
2

has two input ports in1 and in2 and two output ports out1 and

out2 , as shown in Figure 3.2(b). loop
2

also has a state variable ni, which maintains the

number of iterations remaining in the current inner loop invocation.

When loop2 consumes a DSG token from in1 , it resets ni to 2, and produces an

output token on out1 to enable RB . On the other hand, when loop
2

consumes its input

from in2 , it first decrements the value of ni. If after this decrement operation ni > 0,

then it again produces an output token on out1 ; otherwise, it produces an output token on

out2 , which effectively exits the inner loop, and passes control to RC .

Actors RB and RC , like RA, operate by consuming a single token each from their

unique input edges, firing their associated referenced actors, and producing a single output

token on their unique output edges. In the case of RC , the output token produced has the

effect of passing control to the next invocation of the outer loop iteration control.

We emphasize that under correct operation, an SDSG contains at most one token.

Thus, for an enabled SCA that has multiple input edges, there is never ambiguity about

which input edge the next firing will consume data from — the SCA will simply consume

the input token from the unique edge that has a nonzero buffer population.

3.7 Concurrent Dataflow Schedule Graphs

Efficient parallel computation is an important motivation for use of dataflow graphs

in many implementation contexts. For this purpose, the concept of the DSG can be nat-
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Figure 3.2: (a) An SDF graph (b) A design example of an SDSG for the single appearance

schedule (A(2B)C).

urally extended to handle concurrent execution of multiple SDSG “threads”. Multiple

SDSGs can be integrated to execute concurrently through the use of a special kind of

actor called an inter-SDSG coordination actor (ICA). We refer to the resulting class of

communicating, concurrent SDSGs as concurrent DSGs (CDSGs).

Two specific ICAs are snd and rec, which perform communication and associated

synchronization of data that is passed between different processors. As shown in Fig-

ure 3.3, snd and rec both have one pair of input and output ports each — IN PC and

OUTPC — for the execution-enabling SDSG token (i.e., the token that is analogous to

a program counter or “PC”, as described in Section 3.6). Additionally, the snd actor has
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a second output port that is used to send data to another processor, and similarly, the rec

actor has a second input port that is used to receive interprocessor communication (IPC)

data. We refer to these output and input ports as OUT IPC and IN IPC , respectively.

Every instance of a snd actor is paired with a corresponding rec actor in the sense

that the OUT IPC port of each snd actor is connected to the IN IPC port of the corre-

sponding rec actor. The snd represents the communication of a single token, including

any necessary synchronization functionality (e.g., checking for available buffer space)

from the sending processor to the processor on which the corresponding rec actor re-

sides. Similarly, the rec represents receipt of a single token, including any associated

synchronization functionality (e.g., to check whether the corresponding interprocessor

communication buffer is non-empty before reading).

In general, the synchronization and data communication features of the rec and snd

actors can be decoupled into more specialized ICAs that separately perform communi-

cation and synchronization. Such decoupling of synchronization and IPC operations can

lead to opportunities for significantly reduced synchronization overhead (e.g., see [51]).

Design and application of ICAs for such decoupled synchronization and IPC is a useful

direction for further work.

snd

IN

PCOUT PCOUT

PCIN
IPCIN

IPCOUT

rec: receiversnd: sender

rec

PC

Figure 3.3: The snd and rec actors.

46



Figure 3.4 illustrates an HSDF application graph, and a partitioning of this graph

across four processors. Figure 3.5 illustrates a CDSG representation of a multiprocessor

schedule that is based on this partitioning result. In Figure 3.5, the schedule for each

processor is embedded within an infinite loop to achieve an iterative execution of indefi-

nite duration, which is a common execution format for DSP dataflow graph applications.

Such infinite loops can easily be replaced by finite-iteration loops if needed by appropriate

reconfiguration of the four loop SCAs.

Recall that the “D” symbols in our dataflow graph drawings correspond to delays,

which are equivalent to initial tokens. Note also that each of the four concurrent SDSGs

in Figure 3.5 has an edge directed from the last actor in the associated actor chain back

to the first actor, which is a loop actor. This “feedback edge” represents the transfer of

execution from the end of a given loop iteration on the processor back to the beginning of

the next iteration. The delay on each of these feedback edges indicates that the execution

on the given processor starts with the loop actor.

Each edge in Figure 3.4 that crosses the boundary of two processors can be viewed

as an interprocessor communication edge (IPC edge), and is mapped to a corresponding

pair of snd and rec actors in the CDSG of Figure 3.5. For example, the edge (E, I) in

Figure 3.4 represents an IPC edge between Processor 1 and Processor 4. In the CDSG,

this IPC edge is implemented by snd1 and rec4, which are connected, respectively to the

output of the reference actor for E and the input of the reference actor for I .

In summary, the CDSG provides a formal, dataflow-based representation for mod-

eling multiprocessor schedules of dataflow application graphs. Although other represen-

tations exist for managing schedules, the CDSG provides a novel combination of features
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Figure 3.4: An application graph and a partitioning of the graph across four processors.

— in particular, 1) full adherence to dataflow semantics, which helps to unify the model

with the associated application representation, and 2) flexible integration of control con-

structs (through SCAs), which allows for modeling of a wide range of static, quasi-static

and dynamic schedules.

3.8 Adaptive Dataflow Schedule Graphs

A major benefit of the SDSG model is that in addition to accommodating static

schedules, it provides a common, formal framework for representing a wide variety of

dynamic dataflow schedules — i.e., schedules in which firing sequences are adapted dy-

namically, based on characteristics of the input data or operating environment.

We refer to an SDSG model of a dynamic dataflow schedule as an adaptive dataflow

schedule graph (ADSG). Since ADSGs form a subclass of SDSGs, an ADSG can contain
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Figure 3.5: A CDSG representation of a multiprocessor schedule that corresponds to the

partitioning result shown in Figure 3.4.

at most one token across all of its edges at any given time.

As a simple example, consider the dataflow-based if-then-else construct il-

lustrated in Figure 3.6(a). All actors in Figure 3.6(a) produce and consume one token

each except for the switch (SW ) and select (SE) actors. Although the switch and

select actors are commonly associated with the Boolean dataflow model [10], they can

be mapped conveniently into CFDF semantics [47].

Both SW and SE consume the Boolean token produced by actor E to determine

whether Path 1 or Path 2 will be followed subsequently. Although the path is determined

at run time, a schedule for each path can be determined at compile time — (AESWBSED)

and (AESWCSED) are schedules corresponding to Path 1 and Path 2, respectively.

Figure 3.6(b) shows a design example of an ADSG for the application graph shown

in Figure 3.6(a). In other words, Figure 3.6(b) shows an ADSG model of a specific quasi-

static schedule for the application graph in Figure 3.6(a).

Intuitively, the cycle in Figure 3.6 that encapsulates the actors (with feedback edge

49



fiRA RE

RC

RB

RD

(a)

F

TS
W

IT
C

H

C

B

T

F

S
E

LE
C

T

A

E

D

Path 1

Path 2

D

(b)

if

Figure 3.6: (a) A dataflow-based if-then-else construct. (b) An adaptive DSG for

this construct.

from RD to RA) models an infinite, quasi-periodic schedule.

In this ADSG, the output token that is produced by RE encapsulates the data value

that is produced by the corresponding firing of E. This is different from the DSG tokens

in our earlier examples, where the tokens carried only control (enabling) information and

had no values associated with them. The data encapsulation at the output of RE can be

ensured by the post function associated with RE.

The switch actor, modeled by the SCA if , examines the output value v from E

(through the DSG token that encapsulates its value), and produces a token on one of its

output edges depending on whether v is true or false. This output token, like all other

50



tokens in this DSG except for those at the output of RE , does not have any associated data

value.

The RAs RB and RC are “minimal” RAs that simply perform guarded executions

of their associated referenced actors. By design of the quasi-static schedule that is mod-

eled by the enclosing DSG, the enabling conditions for these guarded executions will be

satisfied whenever the corresponding reference actors are fired.

On each firing, the SCA fi consumes the token from its unique, non-empty input

edge (which is determined by the “output path” taken by the preceding invocation of if ),

and passes control to the RA RD.

3.9 Experimental Results

Heterogeneous computing systems integrate different kinds of hardware and soft-

ware to work together based on the given application requirements. Benefits of hetero-

geneous computing are often achieved at the expense of ad-hoc, error prone integration

processes due to diverse code bases and the lack of unifying formal models. The DSG

representation developed in this thesis helps to alleviate this integration problem, leading

to more systematic design and implementation of solutions that leverage heterogeneous

computing platforms.

In this section, we demonstrate through design examples that the DSG is an effi-

cient schedule representation, which provides robustness and flexibility to the back-end

of dataflow-based design processes. Our experiments examine the application of DSGs

to improving simulation performance of dataflow graphs, as well as to improving the pro-
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cesses of hardware mapping and software implementation from dataflow graphs. Overall,

the experiments show the utility of DSG-based design and implementation across a het-

erogeneous variety of platforms.

3.9.1 Simulation Time Improvement

High level system simulation is a useful application of dataflow graphs in DSP

system design. Simulation time for complex dataflow models is often dominated by the

computation time of the schedule [59]. For some applications, this overhead can be re-

duced with well-designed quasi-static schedules, which trade off relatively large amounts

of static schedule computations with relatively small amounts of run-time schedule ad-

justments [51].

In this section, we apply the DSG representation to model a quasi-static schedule,

and demonstrate improvement in simulation time achieved by this schedule.

Figure 3.7(a) demonstrates a Boolean-parameterized downsampler H , which can be

used to achieve dynamic changes in sampling rate for different parts of a data stream. The

actor H consumes α tokens and then sends one of the consumed tokens to either actor B

or C, as determined by the value of the actor’s selection parameter. The values of pa-

rameter α and the selection parameter are generated by actor I and S, which are enclosed

within the subsystems labeled init and subinit. The operation of these subsystems

as well as the periodic generation and updating of new parameter values are based on pa-

rameterized dataflow semantics [6]. For more details on parameterized dataflow, we refer

the reader to [6].

52



To accommodate dynamic changes to α and dynamic selections between actors B

or C based on the selection parameter, we construct the ADSG representation shown

in Figure 3.7(b). Here, we utilize the ability to embed control information within DSG

tokens to achieve the dynamic reconfiguration required by the given application.

The RA RI determines the updated value of the parameter α, which we denote

(with a minor abuse of notation) by α(t), and embeds this value in the DSG token that

is output by RI . This value is then used to control the number of iterations in the nested

loop SCA labeled as loop2 . The if and fi SCAs perform conditional execution of actor

B or C based on the current value of the selection parameter. The current value of

this parameter is embedded in the DSG control token that is output by RS so that it can

be queried by the subsequent execution of the if SCA.

Experimental results with different numbers of application graph iterations (pro-

cessed blocks of data samples) are given in Table 4.3, and a corresponding chart is shown

in Figure 3.8(b). Intuitively, an iteration in this context ends when the DSG token re-

turns to the delay element on the feedback edge in Figure 3.7. That is, an iteration starts

when the DSG token leaves from the delay element on the feedback edge and ends the

next time the DSG token returns back to the delay element. The experiments are per-

formed using the PSDFSim simulation environment, which can be adapted to implement

and experiment with different types of schedules for PSDF graphs [59].

The quasi-static schedule provided by the DSG is compared to the standard PSDF

scheduling approach, which can be viewed as a dynamic scheduling approach, of re-

computing the schedule dynamically every time graph parameters change. The dynamic

scheduling approach is more general and easier to apply, while a quasi-static approach has
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Figure 3.7: (a) A PSDF model for a reconfigurable phase shift keying application; (b) an

ADSG representation for implementing this application.

the potential for significant performance improvements by exploiting application-specific

structure in the schedule. The DSG representation helps to capture this structure in a

standard, dataflow-based format that is easily integrated into the PSDFSim environment.

The performance of the quasi-static schedule is consistently better than the per-

formance of the dynamic schedule. The degree of performance improvement generally

increases with increasing numbers of iterations, which correspond to increasing numbers

of input samples that are processed in the simulation. This is due to overhead in construc-

tion of the DSG representation that is more effectively amortized across the input data set

as the size of the data set increases. Thus, for larger numbers of iterations, the DSG-based
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quasi-static schedule significantly outperforms the dynamic schedule.

Simple linear regressions for the dynamic schedule (PSDFSim) and quasi-static

schedule (DSG) are shown in Figure 3.8(b). As the iteration count increases beyond the

intersection of these two lines, the DSG achieves increasingly larger performance im-

provement compared to PSDFSim. This intersection, based on the linear regressions,

occurs when the iteration count is 393.5, which matches the trend observed in our exper-

iments.

In practice, this kind of simulation often requires large numbers of iterations. From

our experimental results, we see that PSDFSim is useful for debugging or simulation

across small numbers of iterations, whereas the DSG is suitable to achieve simulation

time improvement across larger iteration count values — e.g., when performing higher

level functional validation of an application.

3.9.2 Hardware Architecture Mapping from a DSG

In this section, we experiment with a reconfigurable phase-shift keying (RPSK)

modulator application, which can be configured as binary PSK (BPSK), quadrature PSK

(QPSK) or 8PSK based on the desired trade-off between communication quality and per-

formance. As in the previous section, we apply the parameterized synchronous dataflow

(PSDF) model of computation for application modeling and scheduling.

Figure 3.9 shows our PSDF-based model of the RPSK modulator. Two parameters

are employed for dynamic reconfiguration — β (analogous to the α parameter in Sec-

tion 3.9.1) provides the consumption rate of actor T , and ν, a parameter of actor X12,
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Dynamic schedule (Sec.)

Iteration Count 1 10 102 103 104 105 2× 105 3× 105

CPU Time 0.556 0.636 1.100 2.668 14.465 131.032 266.345 385.792

Iteration Count 4× 105 5× 105 6× 105 7× 105 8× 105 9× 105 106

CPU Time 519.66 661.581 786.217 907.725 1073.393 1155.039 1309.274

Quasi-static schedule (DSG) (Sec.)

Iteration Count 1 10 10
2

10
3

10
4

10
5

2× 10
5

3× 10
5

CPU Time 0.604 0.608 0.788 1.352 5.736 50.411 101.542 151.169

Iteration Count 4× 105 5× 105 6× 105 7× 105 8× 105 9× 105 106

CPU Time 200.697 251.988 301.135 348.038 402.665 448.164 493.295

(a) Simulation results for DSG-based quasi-static scheduling.

(b) Performance chart from simulation.

Figure 3.8: Performance comparison between DSG-based quasi-static scheduling, and

dynamic scheduling.
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provides the modulation frequency. Since ν does not affect the dataflow (production and

consumption) rate of its associated actor, it does not show up in the dataflow rate annota-

tions of Figure 3.9.

In a previous study with this RPSK application, we defined a general methodology

for mapping PSDF graphs into hardware, and demonstrated synthesis results for the RPSK

application using this methodology [59]. Analogous to the dynamic scheduling approach

described in Section 3.9.1, this methodology is easy to apply due to its generality, and

is also useful as it provides a standard method to realize hardware implementations of

PSDF graphs. The DSG provides a complementary method, which can be used (e.g.,

in later stages of the design process) to specialize the hardware mapping for a specific

application, and capture the structure of such specialized mappings in an abstract form

that can be targeted subsequently to platform-specific, hardware control structures.
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Figure 3.9: RPSK modulator.

From its formal, dataflow-based structure, the DSG is well-suited for transforma-

tion into optimized finite state machine (FSM) structures that provide control logic for

hardware implementation of the associated schedules. Figure 3.10(b) illustrates a DSG
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representation for the RPSK targeted application, along with an FSM that is derived from

the DSG. Most of the states map to distinct RAs, and execute the functionality associated

with the associated RAs. Since the loop iteration count of loop
2

is fixed, the state RS2
is

designed to implement loop control as well as firing the actor S2.

In our experiments with hardware mapping, we targeted ASIC implementation us-

ing the Cadence Encounter RTL Compiler for back-end synthesis. The results reported

here are synthesis results only (the design was tested thoroughly but not actually fabri-

cated). Table 3.2 shows the improvement in area that is achieved by the streamlined DSG

representation compared to the general-purpose PSDF-to-hardware mapping approach

of [59]. This improvement is accompanied by a formal, dataflow based representation

of schedule logic, which can be retargeted systematically to other types of platforms for

rapid prototyping and experimentation with platform-specific implementation trade-offs.

Table 3.2: Area comparison for RPSK modulator under constant speed (100 MHz).

DSG General-purpose Reduction

mapping

Area (cell) 18949 20004 5.27%

3.9.3 Application to Software Implementation

We use the core functional dataflow (CFDF) model of computation (see Section 3.2),

and the lightweight dataflow (LWDF) programming method [48] for software design and

implementation of the RPSK application described in Section 3.9.2, and for DSG-based
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(b) An FSM for the DSG in Figure 3.10(a).

Figure 3.10: Hardware architecture mapping for a DSG.
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experimentation with alternative schedules in this software context. LWDF can be viewed

as a “minimalistic” approach for integrating coarse grain dataflow programming struc-

tures into arbitrary simulation- or platform-oriented languages, such as C, C++, CUDA,

Java, Verilog, and VHDL. For more details on LWDF programming, we refer the reader

to [48].

Figure 3.11(a) illustrates a C language implementation using CFDF and LWDF. In

Figure 3.11(a), actors S and T are CFDF actors with three modes each. The variable M is

set to 1, 2 or 3 depending on whether the current communication mode is is BPSK, QPSK

or 8PSK, respectively. Depending on the modes of S and T , data is routed to one of the

actors C1, C2 or C3. The consumption rates of these actors are different, as the annota-

tions in Figure 3.11(a) show. In Figure 3.12, the function guarded execution carries

out a CFDF guarded execution of the given actor, and returns true if the associated actor

firing was carried out (i.e., if the actor was enabled to begin with).

A DSG representation of a canonical schedule is shown in Figure 3.11(b). A canon-

ical schedule for a CFDF graph can be viewed as a simple, brute force way to schedule the

graph [47]. Canonical schedules usually have high run-time overhead, but can be useful

for rapid prototyping purposes because they can be constructed very easily and quickly.

Compared to the canonical schedule, the schedule modeled by the DSG in Fig-

ure 3.11(c) is more efficient. This schedule model employs SCAs to direct control flow

based on the active communication mode, and minimize run-time overhead due to fire-

ability (enable condition) checking.

Experiments with these schedules were carried out on a Windows-based desktop

computer with a 2.8 GHz CPU and 1GB RAM. The gcc version 3.4.4 compiler
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(c) A more efficient schedule represented by an ADSG.

Figure 3.11: RPSK system and alternative DSGs.

was used in the back end of the implementation process.

Table 3.3 compares the performance of the canonical schedule DSG (denoted by

C.Sched), and the DSG of the more efficient schedule (denoted by E.Sched). The over-

all performance measurement is performed using preS and postA, which record the start-

ing and stopping time for execution, respectively. Such implementation of performance

measurement functionality represents a useful application of RA subfunctions, which in

this case help to modularize, cleanly separate, and formally connect performance instru-

mentation code with respect to application (actor) and schedule code. The difference in
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performance between the two schedules is largely due to the higher frequency of guarded

execution failures (i.e., calls to the guarded execution function that return false)

that result from the canonical schedule.

This experiment helps to demonstrate how the DSG representation can be used as

a common framework for experimenting with alternative schedules for software imple-

mentation. In this case, the DSG representation is used for initial functional validation

using the canonical schedule, followed by a natural progression to a more sophisticated

schedule, which provides opportunities for performance optimization once initial func-

tional validation has been achieved. Recall from the formal semantics of dataflow graphs

that for all valid schedules (i.e., schedules that respect the dataflow properties of the appli-

cation), functional correctness is independent of the schedule. Thus, such a progressive or

incremental approach to schedule exploration is attractive from the viewpoints of separat-

ing concerns, structuring the design process, and improving overall productivity. These

are all useful viewpoints to help designers leverage the power of heterogeneous comput-

ing platforms.

3.10 Extensions

For concreteness, we have presented the DSG model in the context of CFDF seman-

tics. However, the DSG model can be adapted to other dataflow models or environments

that can support a notion of guarded execution — i.e., a check for fireability followed by

execution of the associated actor if it is found to be fireable.

In contrast, models in which fireability checking and actor invocation are inter-
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leaved (with blocking reads) cannot be integrated directly into the proposed DSG frame-

work. However, a more restricted form of DSG can be employed in which RAs fire their

associated actors unconditionally. Such DSGs require more care in their construction (to

avoid run-time deadlock), and can be useful for modeling static or quasi-static scheduling

structures where significant information is available at compile time for DSG derivation.
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do {

progress← 0

M = query(S)

for 1 to M{progress← progress OR guarded execution(S)}

switch(M){

case 1: progress← progress OR guarded execution(C1) break

case 2: progress← progress OR guarded execution(C2) break

case 3: progress← progress OR guarded execution(C3) break

}

progress← progress OR guarded execution(T)

progress← progress OR guarded execution(F)

progress← progress OR guarded execution(X1)

progress← progress OR guarded execution(X2)

progress← progress OR guarded execution(A)

} while (progress)

Figure 3.12: Outline of software implementation structure for the DSG shown in Fig-

ure 3.11(c).
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Table 3.3: Performance comparison between alternative schedules based on DSG model-

ing. The units of time in this table are seconds.

# of bits 3× 103 3× 104 3× 105 3× 106 3× 107

M = 1 (BPSK)

C.Sched 0.64 0.89 3.49 28.05 275.96

E.Sched 0.63 0.83 3.21 25.69 251.72

Improv. 1.56% 6.74% 8.02% 8.41% 8.78%

M = 2 (QPSK)

C.Sched 0.64 0.83 3.10 25.16 264.46

E.Sched 0.63 0.73 2.05 14.79 142.26

Improv. 1.56% 12.05% 33.87% 41.22% 46.21%

M = 3 (8PSK)

C.Sched 0.62 0.81 2.91 23.82 234.18

E.Sched 0.62 0.71 1.60 10.83 103.88

Improv. 0.00% 12.35% 45.02% 54.53% 55.64%
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Chapter 4

Multiprocessor System-On-Chip Implementation of Image Signal

Processing Applications

4.1 Introduction and Related Work

Image processing is important for many modern embedded application areas, such

as Computer Vision (CV). Such applications involve processing of individual images or

sequences of images, where each image consists of numerous pixels, and the relevance of

different pixels in an image can vary significantly across different regions in the image.

For example, an 800x600 Bitmap Image File (BMP) file contains 800 × 600 pixels, or

480,000 pixels. The pixel values are numeric, and not every pixel value may contribute

significantly to the information we want to know. Taking face recognition as an example,

the pixels that make up the eyes are more relevant than the neck.

Extraction of the relevant information for a CV application may require more than

one image or “frame”, and therefore, demands more intensive computation and may result

in significantly increased memory requirements. As the technology of CV matures, more

and more CV applications are being deployed as embedded systems. For example, the

CV tool OpenCV [1] has recently been extended with support for the Android platform,

which is employed in smart phones and tablet computers.

Multiprocessor Systems-On-Chip (MPSoC) devices are becoming increasingly rel-
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evant to the implementation of embedded image processing applications (e.g., see [3]). To

support a wide range of applications with diverse functional requirements and operational

constraints, MPSoC devices typically incorporate significant amounts of heterogeneity in

their architectures. Such heterogeneity in turn creates large design spaces that must be

considered carefully for effective embedded software implementation.

In the context of MPSoC-based design and implementation, the process of search-

ing for a suitable hardware/software architecture is known as design space exploration

(DSE). In [33], input applications are modeled as directed acyclic graphs, and alternative

architectures are explored to support these applications models. Different target architec-

tures are considered with varying numbers of processors and varying topologies for in-

terprocessor communication. The candidates resulting from this architecture exploration

are represented as a Pareto curve in terms of three objectives — execution time, critical

delay and area cost. In [33], the cost function for each of these objectives is assumed to

be given as an input to the DSE process.

A similar flavor of DSE, proposed in [56], deploys simulation for rapid performance

evaluation of different MPSoC architectures. Here, simulation is used to evaluate the

relevant design evaluation metrics, including performance- and area-related metrics. The

simulation is driven by a set of scenarios, which capture relevant inputs and operating

conditions for the application being implemented. Both the works of [33] and [56] adopt

evolutionary algorithms to generate Pareto solutions.

The Daedalus environment augments a simulation-driven design flow flow [42] with

implementation-level DSE, which is targeted to the Xilinx MicroBlaze family of FPGA-

targeted, soft processor cores. The Daedalus environment is shown to achieve significant
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speed-ups compared to single processor solutions through its integrated simulation- and

implementation-based DSE approach.

The Tightly-Coupled Thread Model (TCT), proposed in [24], applies a novel pro-

gramming model and execution model to derive performance improvement from the com-

bination of functional pipelining and task parallelism. The TCT programming model

allows the designer to partition a sequential program into parallel processes that are en-

capsulated as “thread scope” blocks. Support for synchronization is provided through

a joint architecture/compiler solution, where special instructions for synchronization are

provided in the targeted hardware (TCT MPSoC), and the compiler generates code to im-

plement synchronization using these instructions. Based on the TCT MPSoC platform, a

tool called MAPS [12] models and analyzes coarse-grained application parallelism by

constructing Weighted Statement Control Data Flow Graphs, which are composed in

terms of units of execution called Coupled Blocks (CBs). Each CB can be viewed as

a schedulable, coarse-grained functional module.

In [23], the authors develop methods for exploiting parallelism in synchronous

dataflow (SDF) graphs to accelerate multithreaded simulation of communication sys-

tems. This approach integrates both compile-time and run-time scheduling techniques.

The scheduling process includes construction and analysis of inter-thread communica-

tion (ITC) graphs, which model the effects of partitioning an application-level SDF graph

into a set of concurrent threads. Using ITC graphs, schedules for the threads are gen-

erated in the compile-time scheduling phase based on trade-offs among synchronization

overhead, throughput and buffer memory requirements.

This scheduling is based on careful analysis of SDF dataflow properties (i.e., the
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production and consumption rates of individual actors and subsystems), which can ex-

hibit significant variation in communication systems due to the underlying multirate sig-

nal processing structures. Each thread that is derived in this way is mapped to a single

processing unit and executes its actors in a manner that ensures the property of bounded-

buffer fireability. An actor satisfies bounded-buffer fireability if it has sufficient data in its

input buffers, and enough space in its output buffers to produce its results. The scheduling

techniques developed in [23] provide significant speedup of SDF-based simulations while

guaranteeing bounded-buffer fireability and deadlock-free operation.

4.2 Overview of Our Contribution

The research works discussed in Section 4.1 focus either on abstract analysis and

optimizations in terms of application-level properties or rely on customized hardware fea-

tures. For example, the TCT framework must be used with the specialized TCT MPSoC,

which supports the associated TCT programming and execution models in hardware, and

the approach of [23] emphasizes analysis and optimization of abstract SDF properties

(production and consumption rates). Furthermore, such methods are not geared toward

the special challenges of image processing applications, which involve stringent perfor-

mance constraints and manipulation of large data streams.

In this chapter, we help to bridge this gap by applying the dataflow schedule graph

(DSG), which we introduced in Chapter 3, as a formal model between software and hard-

ware. Our application of the DSG in this manner enables coarse-grain dataflow analysis

that can be calibrated and optimized in terms of relevant target architecture characteris-
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tics without being tied to a specific architecture. Based on this approach, we develop

a methodology for mapping dataflow programs for image processing systems to enable

powerful optimization based on the stringent resource and performance constraints in-

volved in their embedded implementation.

Our methodology demonstrates how high-level application- and schedule-level mod-

els can be used cooperatively to efficiently parallelize embedded image processing sys-

tems based on relevant parameters of the target architecture. We demonstrate our methods

through concrete case studies involving practical image processing applications.

4.3 DSG-based Framework for Resource-constrained Implementation of

Embedded Image Processing Systems

The techniques, tools, and platforms used for embedded system implementation

are diverse. For example, devices in the ARM processor family are configurable and ex-

tensible in different ways for different types of smart phones. To help structure the map-

ping of applications for important classes of applications (e.g., applications for broadband

communication terminals, sensor nodes, or security devices), domain-specific tools and

APIs are increasingly employed — e.g., see [7] for a discussion of domain-specific de-

sign methods and tools for various application domains within the broad area of signal

processing systems. Such structured, domain-specific methods help to streamline design

processed and move away from the ad-hoc and error prone methodologies that have been

common in conventional embedded system development. The models and methods pre-

sented in this chapter provide the foundation for a new class of domain-specific tools
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that are geared toward mapping embedded image processing applications onto MPSoC

platforms.

Building on the developments in Chapter 3 in this thesis, we apply in this chapter

the DSG framework as an abstract interface between tools and applications for embedded

image processing. Joint consideration of DSG structures and the application graphs from

which they are derived allow us to integrate considerations of parallelization and resource

constraints together with the application modeling process. This provides designers with

a formal framework to co-design their dataflow programs (dataflow-based application

models) together with the schedules that will implement these programs on the targeted

MPSoC device. Through such a co-design approach, designers can iteratively model,

analyze, simulate, and adapt or optimize the use of dataflow graph application structures

(e.g., different kinds of filtering topologies or block processing configurations), along

with MPSoC-level implementation concerns, such as parallel execution, synchronization,

and memory management.

Furthermore, our overall methodology is independent of the hardware during the

modeling phase. Thus, our methods can be retargeted across different families of MPSoC

devices. At the same time, individual modeling components (e.g., instances of dataflow

graph actors, schedule control actors, and interprocessor communication actors) can be

characterized in terms of how they execute or how much memory or other resources they

consume on the specific MPSoC that is being targeted. Each component in our applied

models has precise, execution-related meaning for implementation while preserving any

formal properties (e.g., production and consumption rates, bounded memory execution,

or deadlock free execution) that can be derived from the application-level dataflow graph
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models.

In the remainder of this chapter, we refer to our new DSG-based methodology

for design and implementation of embedded image processing systems as DEIPS (DSG-

based design and implementation of Embedded Image Processing Systems). We present

the DEIPS methodology in the context of a state-of-the-art MPSoC platform that is rele-

vant in the embedded image processing domain — the Texas Instruments (TI)

TMS320C6678L embedded multicore digital signal processor platform, using the TI

TMS320C6678L Evaluation Module [54]. We demonstrate the DEIPS methodology

through two case studies, each of which involves mapping of a relevant image processing

application onto the targeted multicore TI platform. The two applications that these case

studies are based on are image background subtraction, and image registration. Through-

out the case studies, we demonstrate how the DEIPS methodology enables designers to

experiment with a variety of important design concerns and implementation issues —

including parallel computation, memory management, I/O interfacing, and multidimen-

sional dataflow functionality — in a unified framework that is rooted in formal models

and methods.

4.4 DEIPS-based Design for Multicore Programmable Digital Signal Pro-

cessors

In this section, we develop the DEIPS-based design methodology in the context of

the TI TMS320C6678L Evaluation Module, which provides an experimentation and pro-

totyping environment for an important family of multicore digital signal processors. The
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underlying multicore processor contains eight cores that can run at 1 GHz. Each core has

L1 cache and L2 cache. The L1 cache is made up of separate parts for program and data,

while the L2 cache provides unified space for program and data. The memory subsystem

includes 512 MB memory (DDR3), which we employ as local memory, and 4 MB SRAM

(MSMCSRAM), which we employ as shared memory among processors. Programmers

can allocate memory space in the L2SRAM, MSMCSRAM or DDR3 through heaps that

handle them. A simplified view of the architecture is shown in Figure 4.1.

4MB SRAM
D−Cache

32KB L1

P−Cache

512 KB L2 Cache

C66X
CorePac

TM

Memory subsystem

512MB DDR3

32KB L1

Figure 4.1: Architecture of the Texas Instruments TMS320C6678L Evaluation Module.

This platform provides significant flexibility to programmers and high level design

tools to manage thread definitions, memory partitioning for threads, and inter-processor

communication.

In the DEIPS methodology, we map each thread to an Sequential Dataflow Schedule

Graph (SDSG). The memory usage of each thread, which can be analyzed or simulated

efficiently using the underlying SDSG model, is then used to determine the size of the

corresponding block of partitioned memory.

Additionally, we implement two pairs of special actors to provide more accurate
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DSG representations targeted to the multicore TI platform. These actors implement data

synchronization and control synchronization, respectively, on the TI platform.

4.4.1 CDSG Construction

Inter thread interactions are modeled as communication and synchronization ac-

tors between pairs of communicating SDSGs, and the resulting system-level schedules

are modeled as CDSGs. When more than one processor is employed in the schedule,

the CDSG model includes more than one SDSG and provides the nexus of the different

SDSGs to coordinate and synchronize their concurrent execution.

For example, consider Figure 1.3. Concurrent execution for this example can be

achieved using a schedule that is represented as a CDSG that consists of two SDSGs, as

shown in Figure 4.2.

The SCA actors snd and rec are used to synchronize pairs of communicating SDSGs.

Such implementation of interprocessor communication is complicated on the targeted TI

platform since it requires handshaking involving heaps in shared memory, and creation of

correct heap-based communication mechanisms. To simplify interprocessor communica-

tion from the designer’s point of view, and to make such communication more reliable,

we integrate the handshaking functionality into pre-defined, reusable, TI-targeted snd and

rec actor components. Designer’s can then integrate such interprocessor communication

components as needed in their DSG structures without having to bother with the low level

implementation details associated with interprocessor communication on the targeted de-

vice. Each time an snd or rec is instantiated in a CDSG, the associated inter-processor
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communication is effectively instantiated and appropriately configured based on the sur-

rounding CDSG context.

2

A

RB

RC

sG

RD RE

rec1

snd 1loop

D

snd

rec2

2

SDSG 1

DSDSG 2

DSG token

1

R

Figure 4.2: CDSG for Figure 1.3.

Similarly, data synchronization is modeled in the CDSG through appropriate actors

that implement the required communication functionality on the targeted TI device. This

kind of communication modeling is illustrated in Figure 4.3. Here, the dataflow graph

application model is mapped onto a CDSG composed of two connected subgraphs, where

each processor executes one subgraph. Actors datasnd1 and datarec1 , and similarly the

actor pair datasnd2 and datarec2 , are associated in a pairwise fashion for synchronization

and communication — e.g., Actor datarec1 is allowed to receive data from datasnd1 based

on how the associated data synchronization actors are implemented on the TI platform.

Figure 4.4 shows the CDSG for Figure 4.3. We denote the RAs pointing to actors

datasnd and datarec as Rds and Rdr, respectively. These actors, Rds and Rdr, are used

for data synchronization, whereas actors snd and rec perform control synchronization to

help ensure correctness of the associated data synchronization.
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Figure 4.3: Illustration of synchronization for the partitioned dataflow graph of Figure 1.3.

We emphasize that this CDSG representation models one particular schedule for

the associated dataflow application graph. In general, a given application graph can have

multiple alternative CDSG refinements, and in fact, the number of distinct CDSG possi-

bilities can grow exponentially with the size of the application graph. This potential for

exponential growth is related to the NP-hardness of relevant forms of the multiprocessor

scheduling problem (e.g., see [51]).

4.4.2 Implementation Details

Each processor on the targeted TI platform loads the same program and identifies

which part of the program it should execute. The thread for each processor is created

through the DSP/BIOSTMreal-time operating system kernel. Among the low level inter-

processor communication packages provided by TI, we employ the MessageQ module to

develop the datasnd and datarec actors, as well as the snd and rec actors for synchroniza-

76



P1

C

rec1 Rdr1 RB Rds2 snd 2

DSG token

D

RAloop Rds1

sG

RD RERdr2snd 1

D

rec2

SDSG 1

SDSG 2

P2

R

Figure 4.4: The CDSG for Figure 4.3.

tion.

Figure 1 shows a simplified pseudocode sketch for the implementation of a dataflow

application graph and a CDSG that executes this application on the targeted TI platform.

This example utilizes three of the processors on the target platform, and thus, the pseu-

docode references three different SDSGs.

Joint Test Action Group (JTAG), also known as boundary scan, is widely used for

functional testing of integrated circuits. Many embedded platforms are therefore equipped

with JTAG interfaces for debugging and prototyping. The core of a JTAG interface can be

viewed as a chain of flip-flops through which programs are shifted in and data is shifted

in and out. Because of the shifted, serial natural of JTAG communication, JTAG typ-

ically dominates the performance of stream processing applications that employ JTAG

interfaces. However, some amount of speedup may be possible in such JTAG implemen-

tation contexts by dedicating one or a small subset of processors to only to I/O services,

and through careful parallelization of the application tasks across the remaining proces-

sors. Such optimization can be useful to enhance the efficiency of the prototyping and
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Program 1 Implementation on the targeted TI platform of a dataflow application graph

and a CDSG that executes this application.
Void main_tsk_func(UArg arg0, UArg arg1){

//construction of application graph and CDSG

if (MultiProc_self() == 1) {

construction of G_A1;

construction of SDSG 1;

} else if (MultiProc_self() == 2) {

construction of G_A2;

construction of SDSG 2;

} else {

construction of G_A3;

construction of SDSG 3;

}

//execution of CDSG

if (MultiProc_self() == 1) {

execution of SDSG 1;

} else if (MultiProc_self() == 2) {

execution of SDSG 2;

} else {

execution of SDSG 3;

}

}

int main(int argc, char **argv) {

Int status;

status = Ipc_start();

if (status < 0) {

System_abort("Ipc_start failed\n");

}

BIOS_start();

}
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experimentation processes that are often executed across JTAG interfaces.

4.5 Comparison to Other Dataflow-Based Modeling Techniques for Im-

age Processing

A variety of domain-specific dataflow modeling techniques have been proposed

in the past for design and implementation of image processing systems (e.g., see [7]).

For example, in [39], a multi-dimensional extension to SDF, called multidimensional syn-

chronous dataflow (Multidimensional Synchronous Dataflow (MDSDF)) is presented. By

introducing multidimensional (vector-valued) dataflow production and consumption rates

for graph actors, MDSDF provides for more detailed and flexible modeling of inter-actor

communication.

Windowed Synchronous Data Flow (WSDF) is an alternative approach to dataflow-

based modeling of image processing applications [26]. WSDF incorporates rigorous sup-

port for sliding window operations, which are important in many types of image process-

ing computations.

Distinguishing characteristics of our DEIPS methodology and its underlying dataflow

modeling techniques are its integrated application- and schedule-level modeling capabili-

ties, as enabled by the DSG representation, and the flexible support for dynamic dataflow

behavior, as enabled by the underlying core functional dataflow (CFDF) model of com-

putation.

Useful directions for future work that are motivated by this chapter include ex-

ploring adaptations of the integrated image processing models and scheduling techniques
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developed in this chapter to work with models such as multidimensional synchronous

dataflow and windowed synchronous dataflow. For example, the identification and op-

timized mapping of efficient DSG scheduling structures for these alternative image pro-

cessing oriented dataflow models appears to be a promising direction for future work.

Another interesting direction for exploration is the integration of sliding window support,

as motivated by the WSDF model, into the DEIPS methodology and the underlying DSG

and CFDF models.

4.6 Case Study: Background Subtraction on a Multicore Digital Signal

Processor

Video surveillance is widely used for security enhancement and environmental

monitoring. As video surveillance methods become more sophisticated, the volume of

data that must be analyzed for surveillance applications increases as well. Pattern recog-

nition helps to incorporate automation in this analysis process, and make it more practical

with limited human resources for monitoring surveillance data.

In a workload analysis study of video surveillance systems, it has been shown that

the most expensive computation is background subtraction (BG subtraction) [13]. BG

subtraction algorithms generally involve two phases — training and differentiating. In

the training phase, the construction of the BG model is based on features extracted from a

set of training frames. This model construction process involves determining appropriate

threshold values for pixels. Then, in the differentiating phase, the BG model is applied to

recognize the foreground — if a given pixel of the current frame exceeds the associated
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threshold value, it is recognized as a foreground pixel; otherwise, it is recognized as a

background pixel. The training methods and threshold values vary with different algo-

rithms and applications, and careful tuning of these key aspects is typically important to

achieve high accuracy [45].

One method for BG subtraction, proposed in [52], adopts a Gaussian Mixture

Model (GMM) for each pixel. As shown in Figure 4.5(a), the GMMs for the background

model are constructed using temporal information (i.e., the sequences of values for a

given pixel across successive image frames). We construct another set of GMMs for the

background model using spatial information. These spatially-oriented GMMs, as illus-

trated in Figure 4.5(b), are constructed in terms of blocks of pixels rather than individual

pixels.

GMMs for one block

Time

(a) (b)

GMMs for one pixel

Figure 4.5: (a)Temporal GMMs; (b)Spatial GMMs.
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In the construction of the background model, each pixel and block needs three

GMMs and five GMMs respectively, thereby requiring large amounts of memory during

processing. We let each processor “own” a dedicated block of memory that is partitioned

from the 512MB DDR3 memory and managed as a heap on the targeted TI platform.

Such memory space is local and dedicated to only one processor for each partition block.

4.6.1 Application Modeling

Background subtraction on images in a video sequence can be structured as a

macro-pipeline where incoming frames are processed concurrently with the processing

of previous frames, and generation of output results from these frames. In I/O-dominant

implementation scenarios, such as our JTAG-based scenario, it can be useful dedicate

processors to the I/O functionality associated with such a pipeline.

Early work on scheduling techniques for macro-pipelined implementation of signal

processing systems was presented in [4]. The DEIPS methodology provides an integrated

approach for modeling, mapping, experimenting with, and iteratively optimizing this class

of schedules as well as many other kinds of schedules, for different signal processing

applications and platforms.

Figure 4.6 illustrates a high level dataflow graph model that can be employed to

experiment with such a macro-pipeline based application configuration. This model is

developed using the lightweight dataflow environment (LiDE) [48, 49], which provides

utilities and retargetable APIs that designers can apply to experiment with signal process-

ing oriented dataflow design and implementation techniques on a variety of platforms. In
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Figure 4.6, two I/O actors are used for reading input images and writing output results, re-

spectively, and one actor, which has two modes, is responsible for the construction of the

background models (training mode) and extraction of the foreground (detection mode).

Each data token in this application model corresponds to a memory reference that points

to an image frame. Thus, the application dataflow graph is modeled at a relatively high

level of abstraction, where the actors operate on individual frames as the basic units of

computation.

When execution of the application begins, the Image Reader actor repeatedly

reads frames in BMP format and passes associated frame-level memory references to the

actor Background Subtraction. In the training mode, the

Background Subtraction actor constructs the GMMs for background detection.

Once application execution switches to the detection mode, the

Background Subtraction actor extracts foreground pixels using the GMMs de-

rived from the training phases. The results of this foreground extraction process are out-

put to the Image Writer, which implements the required I/O functionality across the

JTAG interface. Note that actor Background Subtraction generates results only

in the training mode, and thus, the underlying CFDF actor model is one of a dynamic

dataflow actor, where the production rates vary across the two actor modes.

In our experiments with this BG subtraction application, we used 57 frames for

training, where each frame had a size of 240x320 and the block size was set to 15x20.

The total number of frames used in our experiments, including frames for training and

detection, was 365.
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Figure 4.6: LiDE-based application model for macro-pipelined background subtraction.

4.6.2 Macro-Pipeline Mapping Structure

In this section, we discuss the structure and operation of our macro-pipelined imple-

mentation in detail, as well how this aspect of our implementation process was modeled

and managed systematically through the DEIPS methodology.

Starting from Figure 4.6, we consider each actor as a macro-pipeline stage, where

each stage has a single processor in the target platform that is dedicated to it. Commu-

nication between pipeline stages is restricted, through appropriate buffer bounding con-

straints, such that at most one token (image frame reference) can reside on an edge at any

given time. This restriction helps to keep to overall memory requirements bounded, and

can be relaxed through looser buffer bounding constraints if the image size is smaller or

more memory is available on the target platform.

The macro-pipelined version of the application graph and the corresponding CDSG

are shown in Figure 4.7(a) and Figure 4.7(b), respectively. In Figure 4.7(b), abbreviations

are used as shorthand for the RAs (e.g., IR is used as shorthand for the RA that points

to the Image Reader). The pair of actors if and fi select (enable control for) the top
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path when the first 57 frames are being processed (i.e., when the system is in the train-

ing mode), and switches to the bottom path for the subsequent frames (after the system

transitions to detection mode).

rec2 Image Writer

GA1

1rec
dr1R 2snd

BSR if

ds2R 3snd 4rec

fi

IRR ds1R 1snd 2rec

D

dr2R 4snd3rec
IWR

D

GS

GA2 GA3

Background
Subtraction

data

p2 p3p1

(a)

D

(b)

SDSG 1

SDSG 2

SDSG 3

1 3

2

Image Reader snd1 datasnd2datarec1 data

Figure 4.7: (a)Macro-pipelined version of Figure 4.6; (b)the corresponding CDSG.

Actors Image Reader and Image Writer in Figure 4.6 read and write image

frames from and to the host PC through the JTAG interface. As shown in Table 4.1, the

shifting of image frames into and out of the digital signal processor subsystem consumes

significant time while the processor is kept idle. The I/O modeling capabilities of our

DEIPS methodology — e.g., through the dataflow actor encapsulation of interface ac-

tors — helps to model, analyze, and instrument such interfacing overhead in a systematic

and integrated manner. This is in contrast to conventional approaches to DSP architec-

ture/system optimization, which focus primarily on the core computational aspects.
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Table 4.1: Actor execution time measurements (ms).

Actor Time Actor Time

Image Reader 27358.031 data sender 0.122

Background training 11125.280 data receiver 0.122

Subtraction detection 46.231 Partitioner 3.526

Image Writer 30168.770 Merger 0.011

The performance improvement of the macro-pipeline is dominated by the critical

stage — i.e., the stage that takes the most time. The ideal speedup in this context can

be formulated as the total execution time divided by the execution time of the critical

pipeline stage.

In the training phase, there are two pipeline stages, which are the stages correspond-

ing to actors Image Reader and Background Subtraction, respectively. Here,

from the measured execution time values in Table 4.1, we see that the critical pipeline

stage is Image Reader, and the ideal speedup can thus be formulated as

27358.031 + 11125.280

27358.031
= 1.41. (4.1)

On the other hand, the ideal speedup in the detection phase (again based on the

values in Table 4.1) can be calculated as

27358.031 + 46.231 + 30168.770

30168.770
= 1.91. (4.2)
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The difference between the ideal and actual speedup arises due to the effects of

system startup and other transient effects, which are not taken into account in the steady

state processing that the ideal speedup is calculated based on. For more discussion on

transient effects in macro-pipelines derived from dataflow graphs, we refer the reader

to [51].

The ideal speedup is approached as the number of frames increases and the steady

state system behavior dominates the overall execution time. As shown in Table 4.2, the

actual performance improvement observed in our experiments, including the combined

effects of the training and detection phase, is 1.26. This speedup is based on the lim-

ited number of frames used in our experiments (57 training frames and 308 frames in the

detection phase). In addition, the speedup is enhanced as the number of frames in the de-

tection phase increases. This speedup is also limited by our use of the JTAG interface on

the targeted multicore platform. As discussed earlier, this interface, while useful for pro-

totyping and experimentation, induces significant performance penalties due to its serial

operation.

4.6.3 Fork-Join Mapping Structure

In Section 4.6.2, we showed how we applied our DEIPS methodology to design

and implement a macro-pipelined structure for the multicore BG subtraction application,

including the application and schedule models for the targeted macro-pipeline. In this

section and in Section 4.6.4, we show how an additional method for performance en-

hancement, the use of fork-join parallelism, can be integrated into our DEIPS-based im-
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plementation. While fork-join parallelism is a well-known form of parallelism in many

domains, our contribution here and in Section 4.6.4 is to demonstrate the ability of the

DEIPS methodology to provide a unified framework for applying and integrating fork-

join parallelism together with other forms of system analysis and implementation, includ-

ing the previously-discussed macro-pipelined and JTAG interfacing aspects of our design,

that are relevant for embedded signal processing applications.

In fork-join parallelism, a task is decomposed into parts that are operated on in

parallel, followed be a post-processing phase where the partial results computed by the

individual parts are combined to produce the output of the overall task.

In our multicore BG subtraction application, we apply fork-join parallelism to the

construction of the background model in the training phase. In particular, we accelerate

background model construction by applying two processors that operate concurrently on

different parts of the input images. Figure 4.8(a) illustrates this application of fork-join

parallelization. Here, two new actors, Partitioner and Merger, are integrated into

the DEIPS system model to provide for partitioning and merging of each input image.

A CDSG representation for our fork-join version of the BG subtraction application

graph is illustrated in Figure 4.8(b). Here, subgraph (SDSG) GA1 dispatches decomposed

images to SDSG GA2 and SDSG GA3, and then collects the partial results back from

them. The 240x480 image is split into 120x480 parts before being dispatched for fork-

join-based concurrent processing.

Performance measurements from our fork-join version of multicore BG subtraction

are reported in Table 4.3. The measured speedup is 2.13. We speculate that the superlinear

speedup here is due in part to a reduction in the cache miss rate (i.e., from the localized
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processing facilitated by the partitioning of each input image into two disjoint parts.)

4.6.4 Combination of Macro-Pipelined Execution and Fork-Join Paral-

lelism

In this section, we build on our DEIPS-based multicore BG subtraction system

design to combine macro-pipelined execution and fork-join parallelism. This allows us

to obtain performance improvement from both forms of parallel execution, which are

complementary in this application.

To derive the CDSG for this integrated implementation, we separate theImage Writer

from the SDSG GA1 in Figure 4.8(a) to form the new SDSG GA4 shown in Figure 4.9(a).

In the resulting CDSG, there is a total of four processors running concurrently. Similar to

Figure 4.7, each of GA1 and GA4 are individual macro-pipeline stages. In addition, GA2

and GA3 together form a single pipeline stage, and also provide the parallelism for the

targeted application of fork-join parallelism.

Table 4.4 summarizes performance results from the implementation modeled in

Figure 4.9. The overall speedup for the computation time is 2.15, which is better than

both of the implementations discussed previously (macro-pipelining only and fork-join

only). However, the improvement compared to the fork-join only implementation is small

(1.11%). This can be attributed to the dominance of I/O, which constitutes the critical

pipeline stage in the macro-pipelined implementation. The overall speedup in terms of

total execution time is 1.24, which is slightly lower than the corresponding speedup for

the macro-pipelining only case. This reduction in speedup can be attributed to the double
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buffering between the shared memory and local memories, which results in a correspond-

ing doubling of memory transfers.

The results output by the GMM in this implementation are shown in Figure 4.10.

4.7 Case Study: Image Registration on a Multicore Digital Signal Pro-

cessor

In this section, we demonstrate the versatility of our DEIPS methodology by ap-

plying it to a different image processing application — that of image registration. The

target platform is the same TI multicore digital signal processor that we employed in

Section 4.6.

In image registration, two or more images of the same scene are integrated or trans-

formed into a common coordinate system. We specifically examine image registration

involving two images. In this case, one of the images, referred to as the target image,

is geometrically aligned in terms of the coordinate system of the other image, which is

referred to as the reference image. We experiment with a specific image registration algo-

rithm called the SIFT algorithm [36]. SIFT is a well-known algorithm that is used across

a wide range of image registration scenarios. For details on the SIFT algorithm, we refer

the reader to [36].

Figure 4.11 shows a CFDF-based dataflow model of the SIFT application, which

we use as a starting point in this case study. As with the case study of Section 4.6, we

have implemented this dataflow graph in the LiDE environment [48, 49].

As shown in Figure 4.12, the application graph is partitioned into SDSGs GA1 and
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GA2, which are mapped respectively to processors p1 and p2 in the target platform.

An extra actor, called broadcast, is included to reduce synchronization overhead and

promote modularity. Note that the application graph is no longer connected in a graph-

theoretic sense, while datasnd and datasnd provide an implicit bridge across the two con-

nected components.

Figure 4.13 illustrates the CDSG that we have designed for the image registration

application. Again, abbreviations are used to denote reference actors, so for example,

IR(R) is used as shorthand for “Image Reader (reference)”.

The SIFT-based image registration application requires a large amount of memory.

On the targeted TI multicore platform, we construct two heaps to manage the DDR3

memory used for processors p1 and p2. The heap sizes for p1 and p2 are configured as

336MB and 176MB respectively.

In our experimentation with the SIFT application, we used reference image and

target image sizes of 640× 480, and we used the BMP file format for all of the input and

output images.

Since memory requirements in this application are significant, we measured the

heap usage after execution of each actor through the underlying DSG model. The results

are shown in Figure 4.14 and Figure 4.15. For example, in Figure 4.14, the column la-

beled D shows the amount of free space in Heap 1 immediately after the delay operates

on the associated DSG token, and the difference between columns IR(T ) and S(T ) give

the amount of memory allocated by actor SIFT(T). Since the granularity of the measure-

ment here is at the actor level, the resulting memory usage measurements can be used as

feedback to the actor designer, and also as input, in the form of actor characterizations, to

91



higher level analysis and optimization.

Table 4.5 shows the execution time of each application actor on the targeted mul-

ticore platform, excluding the time required for I/O. The computation time of the SIFT

actor dominates the performance of the application. However, the synchronization time

in this implementation is significant. Thus, when experimenting with alternative imple-

mentations, special care should be taken to ensure that the overhead associated with syn-

chronization does not overshadow any benefits achieved through parallel execution. In

the DEIPS methodology, the use of dedicated actors to represent synchronization func-

tionality helps in the modeling and analysis associated with such trade-off exploration.

The overall performance improvement achieved for this implementation is 1.27.

This amount is again limited due to the effects of JTAG interfacing in the underlying

platform.

4.8 Summary

In this chapter, we have presented the DEIPS (DSG-based design and implemen-

tation of Embedded Image Processing Systems) design methodology, which builds on

the DSG model developed in Chapter 3, and provides a structured framework for design

and implementation of embedded image processing applications. Our DEIPS framework

provides an integrated methodology for design and implementation of embedded image

processing systems, including issues related to multidimensional dataflow functionality,

parallel processing, memory management, and I/O interfacing. We have demonstrated the

DEIPS methodology using cases studies involving a background subtraction application,
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and an image registration application. In both of these case studies, we employed a target

platform based on a state-of-the-art multicore digital signal processor.
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Table 4.2: Execution time of the SDSG and CDSG in their macro-pipelined configu-

rations (seconds).

Training (57 frames) and Detection (43 frames)

System Time Improvement

SDSG 6306.300 NA

CDSG in pipeline 5299.412 1.19

Training (57 frames) and Detection (143 frames)

System Time Improvement

SDSG 12830.746 NA

CDSG in pipeline 10517.005 1.22

Training (57 frames) and Detection (308 frames)

System Time Improvement

SDSG 22186.749 NA

CDSG in pipeline 17558.713 1.26
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Table 4.3: CPU time for the SDSGs and CDSG in the fork-join version of the multicore

BG subtraction application (seconds).

DSG type Time Improvement

SDSG 632.285 NA

CDSG in fork-join 296.986 2.13

Table 4.4: Performance measurements for the integrated application of macro-pipelined

implementation and fork-join parallelism to the multicore BG subtraction application.

DSG type Total execution Improvement Computation Improvement

SDSG 22186.749 NA 632.285 NA

The combined CDSG 17947.052 1.24 293.690 2.15

96



(b)

Image Reader Image WriterPartitioner Merger

GA1

GA2

GA3

GA4

IRR PR ds1R ds2R 1snd 3snd 2rec 4rec

GS

if

ds3R

BS1R2snd
dr1R1rec

5snd 6rec

fi

D

D

SDSG 2

dr3R dr4R7rec5rec
MR IWR6snd 8snd

if

ds4R

BS2R4snd

7snd 8rec

fi
dr2R3rec

D

SDSG 3

datasnd1 datarec1

datasnd2 datarec2

datasnd3 datarec3

datasnd4 datarec4

Background
Subtraction 1

Background
Subtraction 2

(a)

SDSG 1

D SDSG 4

F
ig

u
re

4
.9

:
In

teg
rated

m
acro

-p
ip

elin
in

g
an

d
fo

rk
-jo

in
p

arallelizatio
n

fo
r

m
u

ltico
re

B
G

su
b

tractio
n

.

9
7



(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

Figure 4.10: Experimental results for multicore BG subtraction: (a)–(c) show the input

frames; (d)–(f) show the corresponding background subtraction results.
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snd

Matching

Key Points Matching

Refinement

Transformation

Target Image

Image

Writer

GA2

GA1

Image Reader

(target)
SIFT(T)

broadcast(R)

broadcast(T)

Image Reader

(reference)

p1

p2

datarecSIFT(R) data

Figure 4.12: Partitioning of Figure 4.11 for mapping onto the target multicore platform.

D

R S(R)R dsR snd

IR(T)R S(T)R b(T)R rec drR

b(R)RMR KRTRIWR

p2

p1

SDSG 1

SDSG 2

D

IR(R)

Figure 4.13: The CDSG derived for Figure 4.12.
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Figure 4.14: Heap usage measurements for SDSG 1.

Figure 4.15: Heap usage measurements for SDSG 2.
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Table 4.5: Execution time measurements for application actors (ms).

SDSG 1

Actor Time Actor Time

IR(R) 388.982 datarec 0.762

S(R) 45085.449 snd 0.057

SDSG 2

Actor Time Actor Time

IR(T) 387.057 b(R) 0.067

S(T) 52235.870 K 11404.301

b(T) 0.067 M 27.849

rec 3764.150 T 1917.787

datasnd 0.190 IW 28.38

Execution time of CDSG 69765.718

Execution time of Seq. code 88285.298

Improvement 1.27
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Chapter 5

Conclusion and Future Work

In this thesis, we have addressed the importance of the embedded systems, as well

as critical problems in the design and implementation of embedded systems, especially

in the broad domain of embedded Digital Signal Processing (DSP) systems. We have

focused specifically on developing well-integrated models, methods, and tools for han-

dling dataflow-based application modeling, static scheduling, runtime scheduling, mem-

ory management and optimized parallel implementation. We have also demonstrated our

contributions throughout the thesis on relevant application case studies.

To help in the modeling of dynamically structured DSP flowgraphs, we have demon-

strated a design methodology and associated simulation tool, called PSDFsim, for design

and implementation of reconfigurable signal processing systems. We have demonstrated

the use of PSDFsim and our associated design methods to help streamline the processes

of rapid prototyping, design exploration, and implementation. Our experiments show

improvements in simulation efficiency and in the quality of synthesized solutions. Fur-

thermore, in contrast to ad-hoc techniques for applying dynamic parameter control to

Synchronous Dataflow (SDF) graphs or other kinds of design subsystems, the Parame-

terized Synchronous Dataflow (PSDF)-based approach that we present provides for well-

structured integration of parameter management into the SDF framework. This leads to

more efficient and reliable techniques for hardware design and implementation.
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We have also introduced the Dataflow Schedule Graph (DSG) as a formal, dataflow-

based model for representing and interpreting schedules for dataflow graphs. We have

shown that both sequential and parallel schedules can be accommodated in the DSG

framework. The DSG is not restricted to any specific dataflow model, and provides for

a wide range of static, quasi-static, and dynamic scheduling structures. Furthermore, the

model is readily extended with new types of schedule control actors and reference actor

subfunctions so that the structures of the represented schedules can be flexibly customized

by designers, tool developers, and adaptive scheduling strategies. We have demonstrated

the utility of the DSG representation through various examples with emphasis on demon-

strating the utility across a heterogeneous variety of computing platforms.

We have applied the DSG model for schedule representation to develop a method-

ology for design and implementation embedded image processing applications on Mul-

tiprocessor Systems-On-Chip (MPSoC) platforms. We refer to this methodology as the

DEIPS (DSG-based design and implementation of Embedded Image Processing Systems)

methodology. The DEIPS methodology provides DSP system designers with an intuitive

approach to specifying and exposing concurrency in DSP applications, while also provid-

ing control in how this concurrency is exploited, flexibility in experimenting with alter-

native scheduling strategies under resource constraints, and expressive power to represent

a wide range of DSP applications, including applications that exhibit dynamic dataflow

behavior. In the DEIPS methodology, a dataflow model of the application functionality

is used to identify the computation-intensive, memory-demanding or I/O intensive parts,

while a DSG model of the schedule is used to coordinate execution of the application on

a given target platform.
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We have demonstrated the DEIPS methodology using an image processing case

study involving background subtraction. We have demonstrated how different forms of

parallelism can be applied and experimented with for this application using the DEIPS

methodology. Considering I/O interfacing and memory usage, we also demonstrated im-

plementation details associated with this case study, with emphasis on those associated

with I/O and memory management. Our experimental results on this case study showed

up to 2.15 times improvement in computation time using our DEIPS methodology. We

demonstrated the versatility of the DEIPS methodology by applying it to a second image

processing case study, which involved image registration.

Dataflow models for DSP system design have been studied extensively in various

contexts, including simulation, hardware implementation, and software implementation.

However, as embedded DSP applications and platforms incorporate increasing levels of

dynamics, it becomes important to revisit and augment the library of existing dataflow

methods with new methods that can reliably and efficiently handle complex dynamic be-

haviors. Our work on the DSG provides a formal foundation for methodically incorporat-

ing such dynamics throughout the processes of design and implementation. In this thesis,

we have demonstrated the efficacy and utility of the DSG model. This foundation can

be applied to develop new techniques for mapping dataflow graphs into different classes

of platforms in ways that rigorously integrate application- and schedule-level modeling.

Useful directions for future work along these lines include the application of DSG as a

substrate for optimized integration of hybrid scheduling techniques.

Our DEIPS methodology incorporates the Sequential Dataflow Schedule Graph

(SDSG) and Concurrent Dataflow Schedule Graph (CDSG) representations as core com-
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ponents of the design process. Developing back ends for optimized integration of the

DEIPS methodology, and associated CDSG and SDSG transformations with relevant

classes of platforms — including programmable digital signal processors, graphics pro-

gramming units, field programmable gate arrays, and high performance, general purpose

multi-core platforms (e.g., for DSP system simulation) — is an important area for future

work.
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