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Programmed cell death plays an important role in normal development. Defects in

this process contribute to cancer. Matrix metalloproteinases (MMPs), zinc-dependant

endopeptidases that cleave components of the extracellular matrix, are among the

multiple protease types implicated in cell death.

Here I provide evidence that MMPs function in Drosophila salivary gland cell

death. Misexpression of the MMP inhibitor timp inhibited timely salivary gland cell

death, while misexpression of mmp2 induced premature salivary gland cell death.

mmp RNA interference was inconclusive because salivary gland persistence observed

at 28°C was similar to fkh-GAL4 negative controls. MMPs and caspases might have

an additive effect, since misexpression of timp and the caspase inhibitor p35 together

enhanced salivary gland persistence compared to either timp or p35 misexpression



alone. I also provide descriptive confocal microscopy of wild-type salivary glands

using α-Spectrin and the polarity marker Crumbs which suggest that polarity is lost

during salivary gland cell death.
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INTRODUCTION

Cell death is a normal component of development. It is required in the formation

of structures such as fingers and toes1, deleting structures such as the tadpole’s tail2,

controlling cell numbers such as the excess cells generated in the developing nervous

system3, and eliminating abnormal cells such as lymphocytes with auto-immune

potential4.

Schweichel and Merker defined three types of physiological cell death in 1973:

heterophagy (now known as apoptosis), autophagic cell death and non-lysosomal cell

death5. Of these, apoptosis and autophagic death are the most common, and differ in

their degradation mechanisms. While individual apoptotic cells are consumed by

phagocytes prior to degradation by the phagocyte lysosome, groups of dying

autophagic cells contain the lysosomal machinery necessary for much of their own

degradation. Dying autophagic cells form double-membraned structures called

autophagosomes around organelles and other cellular components. Autophagosomes

then fuse with lysosomes where their contents are degraded by lysosomal hydrolases6.

Proteases play an important role in programmed cell death. The core apoptosis

machinery was first discovered in Caenorhabitis elegans and includes the cell death

effector CED-3, a protease that is homologous to the mammalian caspase family7.

Many other proteolytic molecules such as matrix metalloproteinases (MMPs), the

ubiquitin proteasome system and lysosomal proteases have been implicated in cell

death, and the role of MMPs in cell death is the goal of this study. In 1962, Gross and

Lapiere showed that the regressing tadpole’s tail produced diffusible endopeptidases
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that could degrade collagen gels in vitro8. These enzymes are synthesized as inactive

zymogens requiring subsequent activation9. Structurally similar enzymes were found

in numerous species, and in 1995 they were grouped together to form the novel

family of matrix metalloproteinases, or MMPs10.

The MMP family is a sub-group of the metzincin superfamily of metallo-

proteinases. The metzincins are characterized by a methionine below the catalytic site

and a conserved zinc-binding motif at the catalytic site. The twelfth and last amino

acid in the zinc-binding motif is family-specific: the serralysin family of bacterial

enzymes has a proline, the astacins (ex: Bone Morphogenetic Protein 1) a glutamic

acid, the ADAMs (a desintegrin and metalloproteinase) an aspartic acid, and the

MMPs a serine10.

The human genome encodes 23 MMPs and four Tissue Inhibitors of

Metalloproteases (TIMPs)11. Three MMPs are known in Caenorhabditis elegans12,

two in Drosophila melanogaster13-15, and one in Arabidopsis thaliana16. Although

MMPs can cleave many extracellular matrix proteins, individual substrate

specificities have been hard to identify due to overlapping MMP functions in the

redundant mammalian systems that have been most studied.

MMPs are classified into eight categories based on variations in structure, and

consist of an N-terminal pre-domain, a pro-domain, a catalytic domain and a C-

terminal hemopexin domain (Fig.1). The pre-domain is cleaved after directing

synthesis to the endoplasmic reticulum (ER) to target the protein for secretion, and

the pro-domain maintains enzyme latency until its cleavage after secretion17. The

zinc-binding catalytic domain controls cleavage specificity by its substrate-
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recognition sites as well as the active site itself18. The hemopexin domain, joined by a

hinge to the catalytic domain, can specify MMP localization (e.g. with either a

transmembrane domain or a GPI anchor) and enhance substrate specificity. In

addition, it has also been shown that the N-terminal domain of TIMPs bind directly to

the catalytic site of MMPs, whereas the C-terminal domain interacts with the

hemopexin domain regulating MMP inhibition. TIMPs are secreted and can

reversibly inhibit MMPs17.

Regulation of MMP activity occurs at numerous levels including: transcription,

proteolytic activation, pericellular proteolysis, inhibition by TIMPs, and clearance.

Most is known about transcription regulation. Diverse stimuli such as cell stress,

changes in cell shape, phorbol esters, integrin-derived signals, and extracellular

matrix proteins (including MMP-specific substrates) can regulate MMP gene

expression17. MMP transcription depends on the organization of mmp promoters,

notably the position of cis-regulatory elements such as transcription factor ETS-

binding sites19, p53-binding sites20 and activator protein-1 (AP-1) sites, which bind c-

fos and c-jun proto-oncogene products activated by cytokines and growth factors17. In

addition, the expression level of specific mmp genes can be either reduced or

increased by genetic variation, such as SNP variation: for example, the 2G allele of a

human mmp1 SNP is associated with ovarian cancer21. Proteolytic activation is

another regulatory step, where the pro-domain is cleaved from MMPs. This is

typically initiated either by active MMPs or other proteases after secretion. Some

MMPs, however, including human MMP11 and transmembrane MMPs, contain a

furin-activation domain allowing intracellular activation by this serine protease22.
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Fig.1: Eight structural categories of MMPs 11
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Few MMP substrates have been identified in vivo, although many have been

tested in vitro. In vitro, MMP11 cleaves IGF-binding proteins, which indirectly

increase IGF23, and α1-proteinase inhibitor, which releases a cleavage product

promoting tumor growth24. MMP11 also cleaves α2-macroglobulin, whereas MMP19

cleaves collagens I and IV, fibronectin, gelatin I, tenascin and casein17. Methods for

identifying MMP targets are emerging and include yeast two-hybrid screens with the

MMP-specific hemopexin domain as bait25 and phage-display libraries26. In vivo

studies generally involved mice mutant for specific mmp genes, although the

redundant function of other mmp genes complicates analyses. One in vivo study

showed that MMP9 releases a fragment from collagen IV that is a functional

angiogenesis inhibitor named Tumstatin27.

Drosophila MMP1 and MMP2 are more closely related to human MMPs than to

each other, suggesting an ancient divergence15. Comparison of human and fly MMP

protein sequences indicates MMP1 resembles human MMP19 and 28 (furin1-

activated and secreted), while MMP2 resembles human MMP11 (also furin-activated

and secreted). Both have predicted GPI anchor sequences14, 15, suggesting membrane

association. mmp1 has two splice forms. Northern blots of total RNA have shown that

mmp1.f1 is only present in early pupae, whereas mmp1.f2 (henceforth mmp1) and

mmp2 are present at multiple stages throughout Drosophila life. timp RNA is present

at all the stages when MMPs are expressed, although TIMP tissue distribution has not

been studied. MMP1 is mainly expressed in the migrating dorsal epithelium during

dorsal closure and in the migrating primordia of the adult trachea. mmp2 is expressed

1 Furin is a proprotein convertase of the secretory pathway and is localized in the trans-golgi
network.
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in a variety of tissues, notably in wing imaginal discs and the morphogenetic furrow

of the developing eye disc. TIMP has been shown to inhibit both MMPs in vivo15.

Drosophila MMP mutants have been created by P element excision and

ethylmethane sulfonate (EMS) mutagenesis15. Homozygous mmp1 mutants have

tracheal defects with broken dorsal trunks and few survive to puparium formation,

while homozygous mmp2 mutants survive until pupation and possess defects in larval

midgut histolysis, suggesting MMP2 is required for destruction of this tissue15. mmp1

and mmp2 double mutants survive embryogenesis but die as larvae.

The Drosophila larval salivary gland is a good model to study programmed cell

death because of its well-studied morphology and genetic regulatory pathway 28. The

salivary gland epithelium undergoes synchronized cell death that is triggered by the

steroid 20-hydroxy-ecdysone (ecdysone) 10 to 12 hours after puparium formation

(APF) and destruction is complete by 16 hours APF29. At 12 hours APF, salivary

gland cells are cubic in shape and contain large vacuoles. The cells then become

round and the gland appears “bumpy”. By 14 hours APF, these large vacuoles

fragment and the nuclei separate from the cytoplasm. At 15 hours APF, the cytoplasm

undergoes blebbing and 16 hours APF only cellular debris remains30, 31.

Ecdysone triggers larval salivary gland programmed cell death by activation of a

transcription regulatory hierarchy 28. The ecdysone receptor complex, formed from

the nuclear ecdysone receptor (EcR) and Ultraspiracle (USP) 32-34, binds ecdysone

and induces transcription of the “early” regulatory genes, including Broad-Complex

(BR-C), E74A and E9335-37. Absence of the competence factor βFTZ-F1 prevents

transcription of these early genes38, 39. The BR-C, E74A and E93 transcription factors
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regulate the “late” core cell death genes reaper (rpr), head involution defective (hid),

Drosophila Apaf1-related killer (dark) and the caspases dronc and drice40, 41. Rpr and

HID, like their Smac/Diablo mammalian counterpart, interact with the Drosophila

inhibitor of apopotosis DIAP1 to lift caspase inhibition42. Dronc, one of the initiator

caspases, is activated in the presence of Dark and cleaves effector caspases such as

Drice43. Thus activated, these proteases are responsible for cleaving specific cell

substrates leading to death31.

Salivary gland cell death has both autophagic and apoptotic characteristics.

Autophagic vacuoles are present in dying salivary glands 13h to 14h APF30, and

autophagy (Atg) gene transcription is induced by ecdysone44. In addition, the

apoptotic caspase-induced characteristics of DNA fragmentation and cytoplasmic

blebbing are seen during death30. Caspase activity is required, as overexpression of

the baculovirus pan-caspase inhibitor p35 prevents DNA fragmentation, caspase-

dependent changes in nuclear Lamin and Tubulin degradation, and cell death29, 31.

Salivary glands disappear in four to six hours. This rapid organ destruction is

probably a critical part of metamorphosis, in which the body undergoes massive

transformation in four to five days. The utilization of several death processes is

perhaps necessary to achieve such a rapid and efficient degradation.

In contrast to these cellular mechanisms of cell death, the morphology of the

dying salivary gland resembles the death process of tissues called anoikis. This form

of epithelium and endothelium-specific cell death is triggered by the separation of

epithelial cells from their basal lamina and their subsequent loss of cell polarity45.

Anoikis defects have been found to promote cancer46, 47. Cells destined for anoikis
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which have lost contact with their basal lamina may survive if they have acquired one

or more hallmarks of cancer48, such as a limitless replicative potential or a cell death

evasion potential. These cells are thus potentially metastatic since they are mobile and

self-sufficient. The mechanisms of anoikis are not fully understood, although it seems

cytoskeletal rearrangement is required. MMPs may function as the effectors

separating cells from their basement membrane in the salivary gland model, since

they are upregulated at the time of cell death in this tissue44.

At the onset of cell death 12 hours APF, timp RNA is downregulated while mmp1

and mmp2 RNAs are upregulated44, suggesting that MMPs might participate in

salivary gland cell death. Are MMPs involved in salivary gland cell death? If so, how

do they contribute to cell death? Here I investigate MMP loss of function and MMP

gain of function animals to determine their role in salivary gland cell death.
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MATERIALS AND METHODS

Fly strains

uas-timp, uas-mmp1.f1, uas-mmp1.f2, uas-mmp2, and 8 recessive mmp mutants

maintained in combination with the balancer CyO were obtained from Dr A. Page-

McCaw. The FRT strain carrying the double mmp1Q112* and mmp2W307* mutants

was obtained from Dr. Y.N. Jan.

Whole animal histology

Drosophila of various genotypes were staged either 6, 12, 20 or 24 hours after

puparium formation (APF) at either 18°C, 25°C or 28°C. The pupal cases were

partially removed, and the animals were fixed in 5% acetic acid, 4% formaldehyde,

1% glutaraldehyde and 80% ethanol for 16 hours at 4°C, embedded in paraffin,

sectioned, stained in Weigert’s Hematoxylin and Pollack Trichrome, and analyzed

using a Zeiss Axiophot II microscope (Zeiss, Oberkochen, Germany).

Salivary gland immunohistochemistry and confocal microscopy

Wild-type Canton S white prepupae were staged to 8h, 12h, 12.5h, 13h, or 13.5h

APF at 25°C. Salivary glands were dissected in Phosphate Buffered Saline (PBS),

fixed in 4% paraformaldehyde and heptane for 20 minutes at room temperature. The

salivary glands were blocked in PBS with 1% Bovine Serum Albumin and 0.1%

Triton-X (PBSBT) and incubated with primary antibodies for 16 hours at 4°C.

Antibodies against α-Spectrin49 and Crumbs50 were obtained from the Developmental
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Studies Hybridoma Bank, University of Iowa, Iowa, USA, and Dr. D. Branton,

respectively. After washing in PBSBT four times during 30 minutes, salivary glands

were incubated with fluorescent secondary antibodies for two hours at room

temperature then washed again in PBSBT four times during 30 minutes, and stained

with the nuclear dye TOTO-3. TOTO-3 and secondary antibodies were purchased

from Molecular Probes, Carlsbad, California, USA. Finally, they were mounted in

three-dimensional chambers on glass slides with VectaShield from Vector

Laboratories, Burlingame, California, USA, and visualized with a Zeiss Axiovert

100M confocal microscope (Zeiss, Oberkochen, Germany).

Cloning of RNAi constructs

Two recombinant plasmids (snapback RNAi constructs) were constructed in

which antiparallel and complementary sequences of either mmp1 (CG4859, scaffold

number AE003464) or mmp2 (CG1794, scaffold number AE003832) were separated

by an intervening non-complementary sequence 51. These sequences were placed

under the control of a UAS GAL4-binding site sequence in a P-element vector 52.

This design allows expression in the presence of GAL4, and enables the formation of

a RNA hairpin and initiates RNA interference. DNA fragments were amplified from

either wild-type Canton S genomic DNA, cDNA fragments, or reverse transcribed

and amplified from wild-type Canton S RNA at 13.5h APF when mmp1 expression

peaks44.
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mmp1 primer sequences:

5’ CGGAATTCACATGACAAATAGACGAGCC 3’ forward (EcoRI)

5’ GGGGTACCTGCCGTTCTTGTAGGTGAAC 3’ reverse (KpnI)

5’ GCTCTAGACACATGACAAATAGACGAGCC 3’ reverse (XbaI)

5’ GGGGTACCTTGAAGACGGGTTCAAAGC 3’ forward (KpnI)

mmp2 primer sequences:

5’ GGAACAATCCAAGCAACAATC 3’ forward (EcoRI)

5’ ACATAATACTCGCGACCTGG 3’ reverse (XhoI)

5’ GGAACAATCCAAGCAACAATC 3’ reverse (KpnI)

5’ CGTATACAGCATCCACCTTG 3’ forward (XhoI)

All restriction enzymes were purchased from New England Biolabs, Beverly,

Massachusetts, USA. Individual PCR fragments were first inserted into the TOPO

pCR2.1 vector (Invitrogen, Carlsbad, California, USA) and then individually

subcloned into the pUAST vector. Plasmids were transformed into SURE

competent cells (Stratagene, La Jolla, California, USA). DNA was isolated using

QIAfilter plasmid maxi kit (Qiagen, Hilden, Germany). Transgenic flies containing

these P-elements were obtained following standard procedures 53, 54 by Best Gene Inc.

(http://www.thebestgene.com/) for mmp1 and Duke University Model Systems

Genomics (http://www.biology.duke.edu/model-system/FlyShop/index.html)

for mmp2. Six mmp1 and two mmp2 insertions were then mapped using the balancer

strain w-; CyO/ScO; TM2/TM6B, and crossed to flies expressing GAL4 controlled by

the salivary gland-specific promoter Forkhead. Animals for all eight insertions were

were processed for salivary gland histology (see above).
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RESULTS

Function of MMPs in salivary glands

To test the hypothesis that MMPs function in salivary gland cell death, I mis-

expressed timp in salivary glands by crossing forkhead promoter-GAL4 to uas-timp in

order to maintain elevated TIMP levels. timp-expressing flies were aged to 12 and 24

hours APF at 25°C, embedded in paraffin, sectioned and examined by light

microscopy. None of the negative controls, parental lines of either uas-timp (n=10) or

forkhead promoter-GAL4 (n=10) crossed to wild-type Canton S, had salivary glands

24 hours APF. By contrast, 80% of timp-expressing animals had persistent salivary

glands 24 hours APF (n=61), eight hours after salivary glands normally die. Of these

animals with salivary glands, 20% had intact salivary glands, and 80% were

fragmented and partly degraded (Fig.2). These data indicate that MMP inhibition

promotes salivary gland survival.

It has been suggested that TIMP might function in an MMP-independent manner

in mammalian cells55. Therefore it is preferable to test if MMP loss-of-function

prevents salivary gland cell death. I analyzed 26 different mmp1 and mmp2 loss-of-

function mutant genotypes for salivary gland cell persistence 24h APF. These

genotype combinations were created from 4 recessive mmp1 and 4 recessive mmp2

mutants obtained from Dr. A. Page-McCaw. mmp1 P(K04809) contains a P-element

insertion, mmp12 is a deletion of the catalytic sequence, and mmp2Df(2R)Uba1-Mmp2

is a deletion allele of the 5’ region of mmp2 and the upstream gene uba115. The other

5 alleles are point mutations described in Fig.3.
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Fig.2: Timp misexpression causes salivary gland persistence 24h APF. Stained
sections of paraffin-embedded pupae aged to 24 hours. Uas-timp crossed to Cs has
no salivary glands 24h APF (A and B), whereas uas-timp crossed to fkh-GAL4
possess salivary gland fragments (C and D), or intact salivary glands (E and F).
Arrows either indicate salivary glands or salivary gland fragments. Panels B, D
and F are magnifications (from the same or a similar animal) of panels A, C and
E.
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Fig.3: MMP point mutations15
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Tables 1 and 2 describes mmp mutant genotypes aged to 24 hours APF at 25°C,

embedded in paraffin, sectioned and examined by light microscopy. Mmp mutants

were either unfit for analysis because of either developmental delays or lethality prior

to pupation, or survived without any abnormal salivary gland phenotype. I could only

analyze the weakest alleles, since the strongest alleles all die as larvae15. This might

explain why salivary glands do not survive. mmp1Q273* homozygous mutants were

the least defective genotype possessing salivary glands 24 hours APF (Fig.4). Of the

nine mmp1Q273* pupae staged, four had persistent salivary glands, and of these four,

two did not head evert, providing clear evidence of developmental arrest prior to the

stage salivary glands die. Although previous work suggests that MMP1 might be

specifically implicated in head eversion15, 56, this phenotype could also indicate that

mmp1Q273* mutants are developmentally delayed or arrest development just prior to

this event. MMP mutant salivary gland cell death phenotypes could therefore not be

reliably analyzed using this approach.

Since loss-of-function analyses of MMP mutants is complicated by pleiotropy

that causes developmental arrest, I attempted to silence mmp1 and mmp2 expression

in salivary glands by tissue-specific RNA interference. None of the mmp1 RNAi

animals (n=30) or parental controls forkhead promoter-GAL4 (n=10) and uas-mmp1

(n=10) crossed to Canton S had persistent salivary glands at 24 hours APF at 25°C.

By contrast, at 20 hours APF at 28°C, all mmp1 RNAi animals had pieces of

persistent salivary glands (n=10), as did 70% of parental control forkhead promoter-

GAL4 crossed to Canton S (n=10, Fig.5). Since animals develop more rapidly when

raised at 28°C, 20h APF at 28°C is considered equivalent to 24h APF at 25°C.
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Table 1: Mmp mutant heterozygous and homozygous combinations 24h APF.
a Example of a heterozygous genotype: all other mmp1 and mmp2 heterozygous
mutants had similar phenotypes (data not shown). Heterozygous animals were
analyzed by dissection for salivary gland persistence. b Subset of animals with
salivary gland persistence and developmental defects 24h APF.

genotypes
parents
crossed
(pairs)

n
salivary gland

persistence
developmental

defects

Mmp2A218V a

CyO
30 6 0 0

Mmp1Q112*
Mmp1Q112*

30 3 1 1b

Mmp1Q273*
Mmp1Q273*

30 9 4 2b

Mmp12

Mmp12 30 2 0 0

Mmp1P(K04809)
Mmp1P(K04809)

30 3 1 1b

Mmp2A218V
Mmp2A218V

30 5 0 0

Mmp2F219I
Mmp2F219I

30 2 0 0

Mmp2W307*
Mmp2W307*

30 2 0 0

Mmp2Df(2R)Uba1-Mmp2
Mmp2Df(2R)Uba1-Mmp2

30 2 0 0
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Table 2: Mmp mutant heteroallelic and double trans-heteroallelic combinations
24h APF. a Subset of animals with salivary gland persistence and developmental
defects 24h APF. b Larval-stage and older progeny were not seen, indicating lethality.

genotypes
parents
crossed
(pairs)

n
salivary gland

persistence
developmental

defects

Mmp2Df(2R)Uba1-Mmp2
Mmp2F219I

30 13 0 0

Mmp12 +
+ Mmp2A218V

30 NDb - -

Mmp1Q112* +
+ Mmp2A218V

30 3 0 0

Mmp1Q273* +
+ Mmp2A218V

30 1 1 1a

Mmp12 +
+ Mmp2F219I

30 NDb - -

Mmp1Q112* +
+ Mmp2F219I

30 NDb - -

Mmp1Q273* +
+ Mmp2F219I

30 3 0 0

Mmp1P(K04809) +
+ Mmp2F219I

30 2 0 0

Mmp12 +
+ Mmp2W307*

30 1 1 1a

Mmp1Q112* +
+ Mmp2W307*

30 1 0 0

Mmp1Q273* +
+ Mmp2W307*

30 3 2 2a

Mmp1P(K04809) +
+ Mmp2W307*

30 1 0 0
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Fig.4: Mmp1Q273* mutants cause salivary gland persistence 24h APF but
are developmentally delayed. Stained sections of paraffin-embedded pupae aged
to 24 hours. (A and B) Cs controls. (C) Mutant pupae are not head everted, and
still have larval muscle, signs of global delayed development. (D) Salivary glands
are intact. Arrows either indicate salivary glands or salivary gland fragments.
Panels B and D are magnifications (from the same or a similar animal) of panels
A and C.
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Fig.5: Mmp1 RNAi causes salivary gland persistence 20h APF at 28°C but so
does fkh-GAL4 crossed to Cs. Stained sections of paraffin-embedded pupae
raised at 28°C and aged to 20 hours. Fkh-GAL4 crossed to Cs has small salivary
glands fragments (A and B) and uas-mmp1RNAi crossed to Cs has no gland
persistence (C and D), whereas uas-mmp1RNAi crossed to fkh-GAL4 show large
gland fragments (E and F). Arrows indicate glands or gland fragments. Panels B,
D and F are magnifications (from the same or a similar animal) of panels A, C
and E.
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Since controls also had defects in degradation, the analysis of MMP1 function in

salivary glands based on this RNA interference experiment is inconclusive.

Similar to RNAi studies of mmp1, none of the mmp2 RNAi negative controls,

including parental lines uas-mmp2 RNAi (n=10) and forkhead promoter-GAL4

(n=10) both crossed to Canton S, had salivary glands 24 hours APF at 25°C. By

contrast, 12.7% of mmp2 RNAi animals had persistent salivary gland fragments 24

hours APF (n=55, Fig.6). In the hope of strengthening the phenotype, I raised and

staged flies at 28°C, since Gal4 is suspected to be more active at this higher

temperature. This temperature increased salivary gland persistence to 70% of mmp2

RNAi - expressing animals 24 hours APF (n=10). Elevated temperature also led to

70% persistence of fragments in negative controls of forkhead promoter-GAL4

crossed to Canton S (n=10). These fragments are in the last stages of disintegration,

while mmp2 RNAi glands are more intact (Fig.7).

In order to complement loss-of-function analyses of MMPs, I misexpressed mmp1

and mmp2 in salivary glands to determine if they were sufficient to induce death.

None of the uas-mmp2 negative controls, including parental lines uas-mmp2 (n=10)

and forkhead promoter-GAL4 (n=10) both crossed to Canton S showed abnormal

salivary gland morphology or premature cell death 6 hours APF at 25°C. 75% of

mmp2–expressing animals had abnormal gland morphology that appear to

prematurely degrade (n=29, Fig.8). These data indicate that ectopic expression of

mmp2 is sufficient to induce premature cell death of salivary glands.



21

Fig.6: Mmp2 RNAi causes weak salivary gland persistence 24h APF at 25°C.
Stained sections of paraffin-embedded pupae raised at 25°C and aged to 24 hours.
Uas-mmp2RNAi crossed to Cs has no gland persistence (A and B), whereas uas-
mmp2RNAi crossed to fkh-GAL4 show small gland fragments (C and D). Arrows
indicate glands or gland fragments. Panels B and D are magnifications (from the
same or a similar animal) of panels A and C.
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Fig.7: Mmp2 RNAi causes salivary gland persistence 24h APF at 28°C.
Stained sections of paraffin-embedded pupae raised at 28°C and aged to 24 hours.
Fkh-GAL4 crossed to Cs has small salivary glands fragments (A and B) and uas-
mmp2RNAi crossed to Cs has no gland persistence (C and D), whereas uas-
mmp2RNAi crossed to fkh-GAL4 show large gland fragments (E and F). Arrows
indicate glands or gland fragments. Panels B, D and F are magnifications (from
the same or a similar animal) of panels A, C and E.
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Fig.8: Mmp2 misexpression causes early salivary gland degradation 6h APF.
Stained sections of paraffin-embedded aged to 6 hours. Fkh-GAL4 crossed to Cs

has intact salivary glands (A and B) and so does uas-mmp2 crossed to Cs (C and
D), whereas uas-mmp2 crossed to fkh-GAL4 shows disorganized glands (E and F).
Arrows indicate glands or gland fragments. Panels B, D and F are magnifications
(from the same or a similar animal) of panels A, C and E.
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Misexpression of isoform 1 or 2 of MMP1 both induced a prolonged third larval

instar stage followed by death as larvae at 25°C and 18°C (data not shown). These

data indicate that elevated levels of MMP1 are toxic to animals, and may suggest that

salivary glands are required for proper development.

Interaction between caspases and MMPs

Caspases are required in salivary gland cell death: the apoptosis genes rpr, hid,

dark, dronc and drice are induced just before autophagic cell death40, 41, 44, 57 and

expression of the pan-caspase inhibitor p35 and a dominant-negative form of dronc

blocks salivary gland cell death and DNA fragmentation29, 31. In addition, loss-of-

function mutations in dark and dronc appear to delay salivary gland cell death58, 59, 60.

I created a line expressing both p35 and timp. At 24h APF at 25°C, salivary

glands in these animals (78% salivary gland persistence, n=9) are morphologically

more intact than in animals expressing either p35 alone (71% salivary gland

persistence, n=7) or timp alone (80% salivary gland persistence, n=61). These

qualitative differences in salivary gland morphology suggest caspases and MMPs

function in an additive manner that leads to cell death (Fig.9).
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Fig.9: Combined p35 and timp misexpression causes salivary glands to
appear more intact than p35 or timp misexpression alone 24h APF at 25°C.
Stained sections of paraffin-embedded pupae aged to 24 hours. Uas-p35 (A), uas-
timp (C), and uas-p35; uas-timp (E) have no salivary glands 24h APF. Uas-p35
crossed to fkh-GAL4 (B) and uas-timp crossed to fkh-GAL4 (D) possess salivary
gland fragments whereas uas-p35; uas-timp crossed to fkh-GAL4 (F) shows intact
salivary glands. Arrows either indicate salivary glands or salivary gland
fragments.
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Markers of wild-type salivary gland cell death

No markers exist to detect changes in cellular MMP activity in the context of

developing cells. As a first step towards determining if cell detachment and loss of

cell polarity can be used as markers of MMP activity during cell death, I monitored

loss of cell polarity during salivary gland cell death in wild-type Canton S using

confocal microscopy. I performed antibody stains against the apical transmembrane

polarity marker Crumbs (red), and the cortical plasma membrane-associated protein

Spectrin (green). Nuclei were stained with TOTO3 (blue). At 8 and 12 hours APF

(Fig.10 A and B), cells are organized into a cube-shaped, polarized epithelium, where

Crumbs is localized at the apical surface near the salivary gland lumen. As cell death

progresses to 13.5h APF (Fig.10 C and D), cells elongate, staining is less efficient,

and Crumbs diffuses into the cytoplasm and the lumen. Discs Large, a basolateral

polarity marker, also diffuses 13h APF (data not shown). These data suggest that

polarity is lost during salivary gland cell death.
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Fig.10: Changes in cell shape and polarity during salivary gland cell death in
Cs. Confocal microscopy of wild-type salivary glands stained with anti-Spectrin
(green), anti-Crumbs (red) and TOTO3 (blue). Timepoints are 8h APF (A), and a
timeline spanning 12h to 13.5h APF (B, C and D).
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DISCUSSION

MMP1 and MMP2 function in cell death

At the onset of cell death 12 hours APF, timp RNA is downregulated while mmp1

and mmp2 RNAs are upregulated44. These data suggest that MMPs might function in

salivary gland cell death. To test this hypothesis, I misexpressed timp in the salivary

gland by crossing forkhead promoter-GAL4 to uas-timp. Misexpressing timp causes

salivary gland persistence in 80% of animals 24h APF at 25°C. These data indicate

that downregulation of timp is required for salivary gland cell death, but do not

directly show that MMPs are required for salivary gland cell death. By contrast,

misexpression of mmp2 in salivary glands causes premature degradation in 75% of

salivary glands 6h APF at 25°C in animals that are not killed prior to this stage. This

indicates that expression of mmp2 alone is sufficient to induce salivary gland cell

death.

Heterozygous mmp mutants have been shown to survive without defects, while

the majority of homozygous mmp1 and mmp2 mutants die during larval and pupal

development, respectively15. Our study confirms that mmp mutants die during these

stages, but does not find differences in the timing of death between mmp1 and mmp2

mutant animals. It is also intriguing that double trans-heterozygous mutants (with one

allele mutant for mmp1 and one mutant for mmp2) have a lethality similar to or

greater than that of homozygous mmp1 and mmp2 mutants 24h APF. This suggests

that MMP1 and MMP2 may have at least partly redundant functions. Previous work

has shown, however, that mmp2 is required for larval gut histolysis, but not mmp1.



29

This argues that MMP1 and MMP2 functions are not interchangeable15. More animals

need to be observed to further analyze these findings.

To complement gain-of-function approaches, salivary-gland-specific RNA

interference of mmp1 and mmp2 was attempted because mmp mutants had pleiotropic

defects and died before they could be evaluated for altered salivary gland cell death.

Several pieces of evidence suggest that MMPs function in salivary gland cell death:

A) mmp1 RNAi animals have a slightly higher percentage of salivary gland

persistence compared to their fkh-GAL4 controls crossed to Cs at 28°C, and mmp2

RNAi animals have more intact salivary glands than their fkh-GAL4 controls crossed

to Cs; B) uas-mmp RNAi controls crossed to Cs never have salivary gland persistence;

and C) mis-expression of mmp2 causes premature salivary gland cell death, while fkh-

GAL4 controls crossed to Cs have intact salivary glands 6h APF. However both mmp1

RNAi and mmp2 RNAi animals and their fkh-GAL4 controls crossed to Cs show

relatively similar percentages of salivary gland persistence at 28°C. RNA interference

experiments are therefore inconclusive.

Overall, these results suggest that MMP2 functions in salivary gland cell death.

MMPs are known to play a critical role in numerous physiological cell death

processes involving extra-cellular matrix remodeling, such as bone formation in

mice61 and larval intestinal epithelium apoptosis in Xenopus laevis62. In addition,

MMPs have been implicated in human endothelial cell anoikis by cleaving integrins

bound to the endothelial basement membrane63. Recently Drosophila MMP1 has

been shown to coimmunoprecipitate with and perhaps cleave the cell-adhesion

molecule Ninjurin in S2 cell culture64. MMPs might play a similar role in the salivary
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gland by remodeling the extra-cellular matrix leading to cell death. Major limitations

to existing published work are the functional redundancy of MMPs in mammals, the

lack of definite genetic experimentation in other models, and thus the scarcity of

reliable information on in vivo MMP activity in physiological processes. Studying

MMPs in the Drosophila salivary gland circumvents these limitations and could

prove that MMPs are necessary and sufficient for programmed cell death in this

tissue.

Additional experiments are required to clearly determine if MMPs function in

salivary gland cell death. First, it is possible that the RNA interference carried out in

these experiments was only partially efficient. Decreased mmp RNA levels in

Northern blot hybridization analyses of mmp RNAi animals would indicate that RNA

interference is effective, by comparison with uas-mmp RNAi controls crossed to Cs.

Second, I designed flies combining mmp1 and mmp2 RNAi which could be used to

determine if salivary gland persistence increases 24h APF at 25°C compared to fkh-

GAL4 controls crossed to Cs. Third, it would be ideal to investigate flies that are

mosaic for an mmp1Q112* and an mmp2W307* mutation using the Mosaic Analysis

with a Repressible Cell Marker (MARCM) method65. The creation of these mosaic

animals would circumvent the pleiotropic defects present in homozygous mutants. In

salivary glands, mmp1Q112* and mmp2W307* double mutant cells expressing GFP

could be analyzed starting from 12h APF at 25°C, and compared to their wild-type

neighbors undergoing cell death. Changes in cell shape and polarity could be

evaluated by performing antibody stains against Spectrin and Crumbs using confocal
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microscopy, and caspase activity could be analyzed by TUNEL assay and active

caspase-3 antibody stains.

Interaction between caspases and MMPs

Caspases are necessary for salivary gland cell death29, 31. If MMPs also function in

salivary gland cell death, the requirement for two protease systems and their

relationship is critical to resolve. The morphologically additive effect of combining

p35 and timp expression suggests that MMPs and caspases may both function in

salivary gland cell death, and that they may act in parallel pathways. Little is known

about the potential interactions between MMPs and caspases. However it appears

from other models that different protease types may indeed function independently. In

the human breast cancer cell line MCF-10A, for example, caspase-dependent

apoptosis as well as caspase-independent autophagic cell death can be separately

triggered to induce acini lumen formation66. In the salivary gland, several lines of

evidence indicate that such pathways are kept distinct spatially and temporally in

order to fulfill different functions. Caspase-dependent changes include DNA

fragmentation as well as Tubulin and nuclear Lamin cleavage31, whereas MMPs are

expected to localize at the cell-matrix boundary and induce changes in basement

membrane contact and indirectly on cell polarity64. In addition, caspases are

upregulated at 10h APF just before the onset of cell death, while mmps are

upregulated at 12h APF44. The activation of independent proteolytic pathways in the

salivary gland is perhaps necessary to achieve rapid and efficient tissue degradation.

To formally explore the potential relationship between MMPs and caspases, it is
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possible to test whether they function in a common or in parallel pathways. One

useful experiment would involve misexpressing MMPs in the salivary glands of

either dronc or dark loss-of-function mutants. To complement this, flies

misexpressing dronc in the salivary glands of mmp1Q273* mutants would test the

reciprocal genetic relationship. Misexpression of either mmp2 or dronc separately

cause premature cell death62 (Fig.8). If either mmp or caspase mutants suppress this

ectopic cell death phenotype, we will then conclude that MMPs and caspases function

in a common pathway. If mmp or caspase mutants fail to alter mmp2 and dronc

misexpression phenotypes, we will then conclude that MMPs and caspases work in

parallel pathways to induce cell death.

Conclusion

I have described how cells change from a cubic shape to a round shape as they die

in the Drosophila larval salivary gland, and how cell polarity is disrupted.

Cytoskeletal changes also occur, partly through caspase activity31. I therefore propose

that an anoikis-like cell death mechanism occurs in the salivary gland, and that

MMPs, upregulated at the time of cell death44, are the effectors separating cells from

their basal lamina.

Future work is needed to understand the role of MMPs in salivary gland cell

death, the substrates cleaved by MMPs, and the relationship between MMPs and

caspases. This study suggests that MMPs function in the death of salivary glands

during development.
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