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In this thesis, we propose and evaluate several techniques to dynamically increase the 

memory access locality of scientific and Java server applications running on cache-

coherent non-uniform memory access(cc-NUMA) servers. We first introduce a user-

level online page migration scheme where applications are profiled using hardware 

monitors to determine the preferred locations of the memory pages. The pages are 

then migrated to memory units via system calls. In our approach, both profiling and 

page migrations are conducted online while the application runs. We also investigate 

the use of several potential sources of profiles gathered from hardware monitors in 

dynamic page migration and compare their effectiveness to using profiles from 

centralized hardware monitors. In particular, we evaluate using profiles from on-chip 

CPU monitors, valid TLB content and a hypothetical hardware feature. 

We also introduce a set of techniques to both measure and optimize the memory 

access locality in Java server applications running on cc-NUMA servers. In 

particular, we propose the use of several NUMA-aware Java heap layouts for initial 

object allocation and use of dynamic object migration during garbage collection to 



  

move objects local to the processors accessing them most. To evaluate these 

techniques, we also introduce a new hybrid simulation approach to simulate memory 

behavior of parallel applications based on gathering a partial trace of memory 

accesses from hardware monitors during an actual run of an application and 

extrapolating it to a representative full trace. 

Our dynamic page migration approach achieved reductions up to 90% in the 

number of non-local accesses, which resulted in up to a 16% performance 

improvement. Our results demonstrated that the combinations of inexpensive 

hardware monitors and a simple migration policy can be effectively used to improve 

the performance of real scientific applications. Our simulation study demonstrated 

that cache miss profiles gathered from on-chip hardware monitors, which are 

typically available in current micro-processors, can be effectively used to guide 

dynamic page migrations in an application. Our NUMA-aware heap layouts reduced 

the total number of non-local object accesses in SPECjbb2000 up to 41%, which 

resulted in up to a 40% reduction in the memory wait time of the workload. 
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Chapter 1: Introduction 

Large cache-coherent, shared-memory multiprocessor servers are widely used for 

high performance computing, large-scale applications and client-server computing 

since these servers provide tight coupling of processors and memory resources. 

Several vendors now offer such servers. The SGI Altix servers[76] scales up to 512 

processors, the Sun Fire servers[14] support more than 100 processors, the IBM 

pSeries 68[48] scales up to 64 processors, the HP Superdome[35] scales to 128 

processors, and the Compaq AlphaServer GS-series[29] scales to 32 processors. The 

dominant architecture for the modern shared-memory multiprocessor servers is the 

cache-coherent non-uniform memory access (cc-NUMA). 

Although cc-NUMA architectures allow construction of large shared-memory 

servers, data locality is an important consideration in these servers due to non-

uniform memory access times. In large cc-NUMA architectures, processors have a 

faster access to the memory units local to them compared to the remote memory 

units. For example the remote and local latencies in mid-range Sun Fire 6800 servers 

is around 300ns and around 225ns, respectively where the remote and local latencies 

in high-range Sun Fire 15K servers are around 400ns and 225ns[14]. Memory 

intensive applications running on cc-NUMA servers may have a significant number 

of non-local memory accesses, which may also degrade the execution performance of 

the applications running on these architectures. Therefore, it is becoming more 

important to both analyze and optimize the memory behavior of memory intensive 

applications running on these cc-NUMA servers. 
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As the designs of the modern systems become more complex, it is getting harder 

to accurately simulate the complex interactions between the applications running on 

these systems and the underlying hardware/software components. Therefore, most 

processors now include hardware support for performance monitoring such as MIPS 

R10000[79], Compaq Alpha[20], Itanium from Intel[37], Sun UltraSPARC[68]. 

Similarly, shared-memory multiprocessor servers provide increasing hardware 

support for performance monitoring of the system interconnect such as Sun Fire Link 

Hardware[51]. In these complex systems, additional low-overhead hardware support 

for performance monitoring gives unique and valuable information about the dynamic 

behavior of the applications running on these systems. Even though the information 

gathered from these hardware performance monitors is partial or incomplete, it is still 

an important source of profiling information and it can potentially be used to tune the 

application and system behavior automatically. More importantly, the online nature of 

the information gathered by these monitors makes the application of online 

optimization techniques possible, which are particularly important for applications 

with behavior that dynamically changes throughout their execution. 

The thesis of this dissertation is that programs can be automatically tuned at 

runtime using online profiling data gathered from hardware performance monitors. 

To validate this thesis, we introduce techniques to dynamically increase the locality 

of memory accesses in scientific and Java server applications running on cc-NUMA 

servers by placing memory pages and heap allocated objects at their preferred 

memory locations identified at runtime using hardware performance monitors. 
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The Java Programming Language[31] is gaining popularity for developing 

applications on a variety of platforms ranging from multiprocessor servers to 

embedded systems[58]. Moreover, in recent years, increasing interest is being shown 

in the use of Java Programming Language for client-server computing. In the client-

server computing model, client applications make requests to server applications 

where server applications fulfill the clients’  requests and return the information back 

to the client applications. Hence, server applications typically have large requirements 

for memory, bandwidth, processing power, or a combination of these. Due to the 

large requirements and multithreaded nature of the server applications, these 

applications are gaining importance as a new class of workloads for commercial 

shared-memory multiprocessor servers. 

Java programs tend to make extensive use of heap-allocated memory and 

typically have significant pointer chasing, which puts pressure on the memory 

subsystem[58]. It has been commonly accepted that commercially important server 

side workloads such as the SPECjAppServer2001[63] need to run with a heap size of 

1.0GB to 3.5GB to achieve high throughput[38]. Similarly, the SPECjbb2000[64] 

benchmark is often executed with a heap of up to 3.8GB[66]. As the disparity 

between processor and memory speeds continue to grow, it becomes more important 

to optimize the memory behavior of memory intensive applications. 

This thesis describes a set of techniques for using online profiling information 

gathered from hardware performance monitors to automatically reduce the number of 

non-local memory accesses in multithreaded applications running on cc-NUMA 

servers. In these techniques, profiling information gathered from hardware monitors 
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is used to identify the preferred memory locations of memory pages and program 

objects such that the number of non-local memory accesses in the applications will be 

reduced when these memory objects are placed at their preferred locations. 

We first introduce a user-level memory page migration scheme, namely dynamic 

page migration. In this page migration scheme, applications are profiled to determine 

the preferred locations of the memory pages in the memory units using hardware 

monitors. Then system calls are used to request the kernel to migrate the memory 

pages to the specific memory units. In this dynamic page migration scheme, both 

profiling and page migrations are conducted during the same run of the applications. 

The access frequencies of the memory pages by the processors are gathered 

continuously at runtime using hardware counters and the memory pages are migrated 

local to the processors accessing them most at fixed time intervals. 

We also introduce a set of techniques to both measure and optimize the memory 

access locality of Java server applications running on cc-NUMA servers. These 

techniques exploit the capabilities of fine grained hardware performance monitors to 

provide data to automatic feedback directed locality optimization techniques. We 

propose the use of several NUMA-aware Java heap layouts for initial object 

allocation and use of dynamic object migration during garbage collection to move 

objects local to the processors accessing those most. To evaluate these techniques, we 

also introduce a new hybrid simulation approach to simulate memory behavior of 

parallel applications running on multiprocessor servers. Our approach is based on 

gathering a partial trace of memory accesses from hardware performance monitors 

during an actual run of an application and extrapolating it to a representative full trace 
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to drive the simulation. In addition, our approach uses information on heap 

allocations from the memory management library used in the underlying system. Our 

simulation approach is particularly suited to evaluate new software systems rather 

than new hardware components. 

The hardware performance monitors we used to gather page access profiles for 

our dynamic page migration are centralized external monitors. These monitors are 

plug-in hardware that listens to all address transactions on the system interconnect in 

the cc-NUMA server. However, such monitors are not available in most of the 

systems. In this thesis, we also investigate the use of several other potential sources of 

profiles gathered from hardware monitors in dynamic page migration and compare 

their effectiveness to using profiles from centralized hardware monitors. In particular, 

we investigate the effectiveness of using cache miss profiles, Translation Lookaside 

Buffer (TLB) miss profiles from on-chip hardware monitors on processors, and the 

content of the on-chip TLB using the valid bit information in the TLB entries. 

Moreover, we also introduce an easily-installable hardware feature, called Address 

Translation Counters (ATC), which is specifically designed for dynamic page 

migration and compare its effectiveness with other sources of profiles. The ATC is a 

set of additional counters that is included in the TLB of the processors and gathers 

accurate information on access frequencies to the memory pages in the applications. 

Contributions 

The main contributions for my research presented in this thesis are: 

Dynamic Page Migration 

We introduced a user-level dynamic page migration approach that relies on the 

operating system kernel to provide the actual migration mechanism. Our approach 
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focuses on applications that are more likely to benefit from page migrations rather 

than trying to improve the overall system performance that is common in prior 

kernel-level approaches. Moreover, we demonstrate that the combinations of in-

expensive plug-in monitors that sample interconnect transactions and a simple 

migration policy can be effectively used to improve the performance of real scientific 

applications even on systems with small remote to local memory latency ratios. 

Dedicated Hardware Monitors for Dynamic Page Migration 

We conducted a simulation based study where we investigated the use of several 

different types of hardware monitors and compared their effectiveness in terms of the 

reduction in the number of non-local memory accesses, number of page migrations 

triggered and execution times. We also designed and evaluated a new simple 

hardware feature, ATC, to accurately gather page access frequencies specifically for 

dynamic page migration. We demonstrate that cache miss profiles gathered from on-

chip hardware monitors, which are typically available in current micro-processors, 

can be effectively used to guide dynamic page migrations in an application. 

NUMA-Aware Java Heaps 

We evaluated the potential of existing page-level locality optimization techniques 

on a Java server application and demonstrated that coarse-grain page-level 

optimization techniques may not be as effective in reducing the number of non-local 

memory accesses in Java server applications. Instead, we measured the memory 

behavior of server applications at the object level and introduced new object-centric 

optimization techniques including several new NUMA-aware Java heap layouts and 

dynamic object migration for Java server applications. We also demonstrate that 

hardware monitors can also be used to generate representative parallel workloads to 
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simulate memory behavior of parallel applications by gathering partial trace of 

memory accesses during an actual run and extrapolating it to a full trace. 
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Chapter 2: Related Work 

Most of the prior research on optimizing the locality of memory accesses for 

applications running on cc-NUMA architectures has been in the area of page 

migration and replication. This chapter first describes some of the research on page 

migration and replication. The remainder of this chapter is grouped in topics 

including measuring the memory behavior of applications, optimizations proposed for 

improving the use of memory hierarchy, thread-local heap management, techniques 

that automatically adapt to the memory behavior and software simulation. 

2.1. Page Placement, Migration and Replication 

Noordergraaf and Zak[51] described a set of embedded hardware instrumentation 

mechanisms implemented for monitoring the system interconnect on Sun Fire servers. 

The instrumentation supports sophisticated programmable filtering of event counters. 

Their implementation results in a very small hardware footprint making it appropriate 

for inclusion in commodity hardware. Since the information gathered from these 

instrumentation mechanisms is based on sampling, the access frequencies of memory 

pages need to be approximated. Moreover, the information gathered from these 

instrumentation mechanisms only captures a subset of all memory accesses that also 

involve system interconnect for cache coherency. 

Most prior page migration policies[8,43] have been in the context of non-cache-

coherent NUMA multiprocessor systems. These kernel-level policies were based on 

page fault mechanisms and designed for multiprocessors with large remote to local 

latency ratios. Bolosky et al.[8] used memory reference traces to drive simulations of 
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NUMA page placement policies. LaRowe et al.[43] modified OS memory 

management modules to decide whether a page will be migrated on a page fault. In 

contrast, this thesis introduces page migration techniques for cache-coherent NUMA 

multiprocessor systems. Moreover, the page migration techniques in this thesis work 

at user level and migrate pages using the page access frequencies gathered from 

embedded hardware monitors. 

Chandra et al.[13] investigated the effects of different OS scheduling and page 

migration policies for cache-coherent NUMA systems using Stanford DASH 

multiprocessors. Although they mainly focused on OS scheduling policies, they also 

investigated page migration policies based on TLB misses. Chandra et al. reported 

that page migration did not improve the response time for the workloads used due to 

overhead incurred by the operating system. 

Verghese et al.[71] studied the operating system support for page migration and 

replication in cache-coherent NUMA multiprocessors. They introduced a decision 

tree to select the action to be taken on memory pages upon cache misses. The actions 

taken for a page include replication, migration and freeze, depending on the threshold 

values used in the decision tree. Using the thresholds that gave the best results they 

evaluated their approach using a simulator for SGI Origin2000 multiprocessors and 

workload traces of cache misses in the applications. The multiprocessor system they 

used also had large remote to local memory latency ratios. They reported that 

dynamic page placements did not yield performance gains due to overhead introduced 

by the operating system. 
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Kernel-level dynamic page placement schemes are also extensively studied in the 

Sun WildFire systems[11,32,50]. The Sun WildFire system is a prototype cache-

coherent NUMA architecture that is built from small number of large SMP nodes and 

has large remote to local latency ratios. Hagersten and Koster[32] evaluated the 

impact of coherent page replication and hierarchical affinity scheduling on TPC-C 

execution. They used excess-remote-cache-miss counts to guide page placements. 

Noordergraaf and Pas[50] also evaluated page migration and replication using a 

simple HPC application. To identify memory pages for migration, they used excess 

misses that indicate conflict and capacity misses in a local node’s cache. They 

reported that using a replication-only policy yielded much better performance than 

policies that included migration. 

More recently, Bull and Johnson[11] studied the interactions between data 

distribution, migration and replication for the OpenMP applications. Although they 

particularly focused on a data distribution extension for OpenMP, they also studied 

the impact of page migration and replication. Their study also showed that page 

replication is more beneficial than migration. In contrast, this thesis introduces a user-

level page migration approach for cc-NUMA servers with small remote to local 

memory latency (1.34:1). Moreover, our page migration approach focuses on 

applications that are more likely to benefit from page migrations rather than trying to 

increase the overall system performance. 

Most recent work[75] used dynamic page placements to improve the locality for 

TPC-C in cc-NUMA servers. Wilson and Aglietti[75] used Verghese’s dynamic page 

placement algorithm to tune TPC-C execution on Sybase. They used a one-second 
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trace of TPC-C execution and a simulator for a 4-node multiprocessor system to study 

the performance, bandwidth and locality of TPC-C. They used hand-tuned threshold 

values for dynamic page placements. Wilson and Aglietti showed that dynamic page 

placement could be effective if operating system overhead is hidden within the idle 

CPU cycles. 

2.2. Analyzing the Memory Behavior of Applications 

Since Java application servers, commercial database applications and Web servers are 

rapidly gaining importance as a new class of workloads for commercial 

multiprocessor servers, the memory behavior of these applications has been 

extensively studied. Most of these studies focused on the performance of the 

underlying memory subsystem or the processor. However, the techniques described in 

this thesis gather per-thread memory behavior information of applications in terms of 

memory pages and heap allocated objects. 

Karlsson et al.[39] presented detailed memory system behavior of the application 

servers in ECperf[25] and SPECjbb2000[64] benchmarks running on commercial cc-

NUMA multiprocessor servers. They used hardware counters in SunE6000 and 

SunE15K and conducted uniprocessor simulation to investigate the impact of 

different memory subsystem parameters. They found that a large fraction of the 

working data sets is shared among processors. In another study, Karlsson et al.[38] 

focused on the memory behavior of ECperf benchmark and found that many of the L2 

cache misses in ECperf are satisfied by the caches of the neighbor processors. 

Marden et al.[47] studied the memory system behavior of the server applications 

in the Perl and Java versions of SPECweb99 benchmark on a 4-node multiprocessor 



 

 12 
 

server. Using simulation, they measured the cache behavior of the server applications 

in both implementations. They reported that the cache miss rate becomes worse for 

the Java implementation when the size of the cache is increased due to likelihood of 

shared data residing in remote caches. 

Chow et al.[19] presented uniprocessor performance characteristics of 

transactions from the ECperf benchmark. They used hardware counters to measure 

the program behavior and presented correlations between both the mix of transaction 

types and the system configurations in terms of different performance characteristics 

including L2 cache misses. Similarly, Luo and John[45] also studied the 

characterization of multithreaded Java server workloads. They compared the 

VolcanoMark and SPECjbb2000 Java server benchmarks with SPECint2000[60] 

benchmarks in terms of processor performance. Luo and John mainly investigated the 

effects of multithreading and measured the number of cache misses in the 

multithreaded Java server applications. 

Barroso et al.[2] studied the memory behavior of commercial workloads including 

online transaction processing (OLTP) on a multiprocessor server. They used both 

hardware counters and a detailed software simulation. They reported that OLTP 

workloads are particularly sensitive to memory and cache-to-cache data transfer 

latencies, especially in the presence of large L2 caches. Similarly, Ranganathan et 

al.[54] studied the database workloads using detailed simulations. They also reported 

that a large fraction of the communication misses in OLTP exhibit migratory behavior 

by accesses to a small faction of migratory data. Ailamaki et al.[1] examined four 

commercial DBMSs running on an Intel Xeon processor. Using hardware counters, 
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they measured the execution time breakdown of these applications into different 

system components. They reported that 90% of the memory stalls are due to L2 data 

cache and L1 instruction cache misses. 

The memory behavior of SPECjvm98[61] benchmarks has also been studied. In 

these studies, information gathered has been presented in terms of different 

characteristics. Shuf et al.[58] analyzed the memory behavior of SPECjvm98 

benchmarks and pBOB[3]. Using both hardware counters and simulation using heap 

access traces, they gathered information on the distribution of heap accesses and TLB 

and cache misses over objects, arrays, and virtual method tables. Shuf et al. reported 

that the number of hot fields in applications is very small, and that most of data TLB 

and cache misses are due to the frequently accessed objects. 

Kim and Hsu[40] studied the memory behavior of SPECjvm98 benchmarks using 

an exception based tracing tool. They investigated the lifetime characteristics of the 

objects, the temporal locality and the impact of cache associativity on cache miss 

rates. Kim and Hsu reported that the overall cache miss ratio is increased due to 

garbage collection, which suffers higher cache misses compared to the application 

itself. They also observed that Java programs generate substantial number of short-

lived objects but the size of frequently accessed long-lived objects is more important 

to the cache performance. 

Yang et al.[77] measured the allocation latencies, garbage collection elapsed time 

and the object lifetime in the SPECjvm98 benchmarks. They triggered garbage 

collection at every 50K memory allocations and at fixed time intervals and compared 

the lifespan of the objects in the SPECjvm98 applications measured using both 
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approaches. Yang et al. showed that time based approach yields fewer garbage 

collections while maintaining the heap residency same as the space based approach. 

2.3. Optimizations to Create and Preserve Locality 

The prior research on pointer intensive applications with dynamic memory allocation 

mostly studied techniques to create and preserve locality of the applications through 

better use of caches. Due to difficulty of making good decisions at compilation time, 

these techniques mostly used profiling information gathered during separate runs. In 

contrast, the goal of this thesis is to both gather online profiling information from 

hardware monitors and to tune applications during a single run. 

Shuf et al.[57] presented an allocation-time object placement technique that co-

locates heap objects based on the notion of prolific types. They also introduced a 

garbage collection time graph-traversal technique that tries to improve the locality of 

the garbage collection and surviving objects by first traversing the objects that reside 

close to each other before traversing their children. Shuf et al. reported that their 

techniques significantly improve application and garbage collection performance. 

Yardimci and Kaeli[78] presented profile-guided techniques to allocate heap 

objects in a cache-conscious way for C applications. Using cache miss information, 

they modified malloc allocation routine to place heap objects in appropriate regions to 

reduce conflict misses in L1 data caches. They also divided the memory allocations 

into phases and built a temporal relationship graph (TRG) for each allocation phase. 

Using the TRGs, Yardimci and Kaeli allocated contemporaneously accessed objects 

into neighboring regions in the heap and data cache. In both techniques, they used 

stack pointer content and the object size as predictors of the allocation phases. 
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Calder et al.[12] presented a compiler-directed technique for cache conscious data 

placement for pointer-intensive applications. In their approach, applications are first 

profiled to characterize how data is used and then using the profiles, address 

placements of call stack, global constants, global variables and heap objects are 

decided to reduce the conflict misses. They guided the placements of the objects by 

building a TRG among all objects. Calder et al. showed that cache-conscious 

placement produces significant gains for global variables and call stack, but modest 

gains for heap objects. 

Chilimbi et al.[15-17] described several techniques for improving cache locality 

of pointer-intensive applications. Chilimbi et al.[15] described two techniques, 

structure splitting and field reorganization, for cache conscious structure definition 

for C and Java applications. In their technique, Java objects are split into a hot and a 

cold portion using previously gathered field access frequencies. They also 

implemented a tool that produces structure field reordering recommendations to the 

programmer using structure field affinity graphs. Similarly, Chilimbi et al.[16] 

demonstrated that good data organization and layout can improve the spatial and 

temporal locality of the pointer-intensive C applications. They described a data 

organizer tool for tree like structures to which the programmer supplies a function to 

traverse the structures for allocation. They also implemented a cache-conscious heap 

allocator that uses programmer-supplied hints and attempts to co-locate 

contemporaneously accessed data on the same cache line. In another study, Chilimbi 

et al.[17] described how a copying garbage collector can be used for cache-conscious 

object layout using real-time profiling information for Cecil applications. They 
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introduced a generational garbage collector that reorganizes data for a cache-

conscious layout, in which long-lived objects with high temporal affinity are placed 

next to each other. They constructed object affinity graphs for each generation and 

used these graphs to traverse live objects in the heap during garbage collection 

intervals. Chilimbi et al. showed that significant reduction in cache misses is possible 

through the techniques described in [15-17]. 

Truong et al.[69] presented profile-guided techniques for structure field 

reorganization and instance interleaving in the pointer intensive C applications. They 

used source code modifications in the structure definitions. For field reorganization, 

Truong et al. grouped fields of each data structure that are often referenced together 

to fit in the same cache line. Kistler and Franz[41] also presented a profile-guided 

technique that uses temporal profiling information for structure field reordering. Their 

technique tried to maximize the spatial locality of individual data members by 

assigning fields that are accessed close in time to the same cache line. To identify the 

fields that are accessed closely in time, they constructed TRGs using path profiles. 

Seidel and Zorn[56] investigated profile-driven techniques for allocation intensive 

programs to predict object references and lifetimes using variety of information 

available at the time of object allocation. Later, they used profiles to reduce the 

number of page faults and to increase the spatial locality by segregating objects into 

different heap areas using the objects’ access frequencies and lifetimes. They also 

evaluated the impact of different predictors such as stack pointer, path pointer and 

contents of the call stack at object allocation times and showed that references to the 

heap objects are highly predictable. 
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Ding and Kennedy[23] presented a dynamic approach for improving both 

computation and data locality in irregular programs. They introduced locality 

grouping that reorders data accesses to improve spatial use of the objects and 

dynamic data packing that places data accessed at close intervals into the same cache 

line. They investigated effectiveness of different packing techniques including first-

touch packing that classify objects in the order they appear, group packing that 

classify objects according to their reuse patterns, and a hybrid technique. Ding and 

Kennedy also proposed that compilers could provide support to control the overhead 

of dynamic data packing within acceptable limits. 

2.4. Escape Analysis and Thread-Local Heaps 

Escape analysis is a static whole-program analysis technique that determines whether 

the lifetime of data exceeds its static scope such as the scope of a method and/or a 

thread. Escape analysis has been used for optimization of stack allocation and thread 

synchronization elimination. Unlike escape analysis, the techniques in this thesis 

work on objects shared among threads and require dynamic analysis of object access 

frequencies during program executions. 

Gay and Steensgaard[28] presented an escape analysis algorithm for Java 

applications and used the analysis results for stack allocation of the objects. They 

considered an object to have escaped from the scope of a method if a reference to the 

object is returned from the method or if a reference to the object is assigned to a field 

of another object. They reported that 10-20% of the objects are local to the methods 

and can be allocated on stack. 
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Choi et al.[18] and Blanchet[7] used escape analysis for stack allocation and 

elimination of thread synchronizations. Choi et al.[18] used connection graphs to 

capture the connectivity relationship among object references and performed flow-

sensitive reachability analysis on the connection graphs to determine objects local to 

methods and threads. Blanchet[7] used integer height types to encode object reference 

relationship and sub-typing. He used a two-phase flow-insensitive analysis to identify 

objects local to methods and threads. Both Choi et al. and Blanchet reported that 

escape analysis is effective to determine significant number of objects that do not 

escape their local scopes. 

Salcianu and Rinard[55] presented a combined pointer and escape analysis for 

multithreaded applications that use region based memory allocation. Their algorithm 

constructs parallel interaction graphs that store reference relationship among objects 

accessed by multiple threads and capture the objects that do not escape a given 

multithreaded computation. They used fixed-point computation to obtain a single 

parallel interaction graph that reflects the interactions between all parallel threads. 

Salcianu and Rinard used the analysis results to verify correct use of region-based 

allocation, eliminate dynamic checks associated with the use of regions and eliminate 

unnecessary synchronizations. 

Memory management techniques using thread and processor local heaps have also 

been studied for multithreaded applications. These techniques are mainly designed to 

eliminate memory management synchronizations among multiple threads. Even 

though these techniques relate to the memory management policy described in this 

thesis, we allocate objects local to the processors that access those most. 
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Berger et al.[5] introduced a fast, highly scalable memory allocator, Hoard, for 

multithreaded applications that avoids false sharing and is memory efficient. Hoard is 

designed to enable multithreaded applications to achieve scalable performance on 

shared-memory multiprocessor servers. Hoard maintains a global heap and many per-

processor heaps to allocate objects in the multithreaded applications. When a per-

processor heap usage drops below a certain fraction, Hoard transfers a large fixed-

size chunk from a per-processor heap to the global heap to be used by other 

processors. Berger et al. showed that Hoard keeps memory blowup and 

synchronization costs to a constant factor. 

Steensgaard[65] and Domani et al.[24] investigated the benefits of using thread-

local heaps to improve garbage collection performance in Java applications. 

Steensgaard proposed an automatic memory manager to allocate a section of the heap 

for each thread where the thread allocates its local objects, and to allocate another 

section of the heap for objects shared among threads. He used thread escape analysis 

to identify thread-local objects. Similarly, Domani et al. assigned each application 

thread a partition of the heap in which the thread allocates its local objects. Domani et 

al. dynamically monitored applications to determine local objects and marked all 

descendents of a local object as global when the object becomes descendent of a 

global object. When a thread requires space, both Steensgaard and Domani et al. first 

triggered minor garbage collection to collect thread-local heap spaces. 

2.5. Automatically Adapting to the Memory System Behavior 

Bennet et al.[4] described an adaptive memory coherence mechanism for distributed 

shared memory architectures in which several different mechanisms, each appropriate 



 

 20 
 

for a different access pattern of shared objects, are used. They showed that large 

percentage of all accesses to shared objects could be characterized by a small number 

of categories of access patterns. For each access pattern, Bennet et al. developed an 

efficient coherency mechanism and described methods to identify objects that exhibit 

the pattern. They compared write-invalidate and write-update coherence policies with 

their adaptive policy and showed that adaptive cache coherency outperformed the 

standard mechanisms. 

Cox and Fowler[21] described a cache-coherency protocol that automatically 

classifies cache memory blocks as migratory or shared and switches between a sub-

protocol optimized for migratory data and other appropriate for shared data. They 

identified a data block as migratory, if there are two cached copies of the block and 

the processor that requested the invalidation is different from the processor that 

previously requested the invalidation at the time of a write-hit to the shared block. 

Cox and Fowler used replicate-on-read miss policy for shared data blocks and 

migrate-on-read-miss policy for migratory data blocks. 

Bershad et al.[6] described an adaptive technique for reducing the number of 

conflict misses in physically indexed direct-mapped caches using online information 

gathered from an inexpensive hardware feature, Cache Miss Lookaside (CML) buffer. 

The CML buffer records and summarizes a history of recent cache misses in terms of 

list of pages and the number of cache misses on pages. CML information is used by 

the operating system to dynamically adjust the virtual to physical address mappings to 

reduce the number of conflict-induced cache misses. When the number of cache 
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misses occurred in a page exceeds a programmable threshold, operating system 

relocates all but one of the conflicting pages to prevent potential cache conflicts. 

Horowitz et al.[34] proposed a hardware feature, informing memory operations, 

as a means of both dynamically measuring the memory behavior and adapting to the 

measured behavior. An informing memory operation allows an application to gather 

information on whether a memory access hits or misses the caches. Horowitz et al. 

described two forms of informing memory operations; The first form used a 

combination of cache outcome condition code and a special branch-and-link 

instruction to enable transfer of execution to a code segment when a cache miss 

occurs. The second form used low-overhead traps. Horowitz et al. also proposed 

possible uses of informing memory operations for performance monitoring, software-

controlled prefetching and multithreading, and enforcing cache coherency. 

Glass and Cao[30] described a virtual page placement policy, SEQ, based on the 

observed pattern of page faults. SEQ normally performs LRU replacement. It also 

monitors page faults as they occur and detects long sequences of faults to contiguous 

virtual addresses. When such sequences are identified, SEQ switches to a pseudo 

MRU replacement on the sequences.  In SEQ, the replacement page is chosen from a 

sequence that faulted most recently and of which the length is greater than a 

programmable threshold. If no such sequence exists, SEQ falls back to LRU 

replacement policy. Glass and Cao showed that SEQ performs significantly better 

compared to LRU for the applications that exhibit sequential access patterns. 
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2.6. Software Simulation 

Execution-driven simulators, such as MINT[70], Augmint[49], RSIM[53] and 

Simics[46], are widely used to gather information on the memory behavior of 

applications for a desired memory architecture. These simulators are generally 

concerned with timing characteristics of the program components or the memory 

subsystem. Even though traces for memory accesses in an application can be gathered 

with these simulators, due to difficulty of accurately simulating complex interactions 

between systems and applications running, profiles gathered from these simulators 

are not as representative as the ones gathered from hardware performance monitors. 

Trace-driven simulators combined with trace generation tools, such as Dinero 

IV[26], MPTrace[27] and QPT[44], are used to simulate the interactions between the 

underlying memory subsystem components and applications. However, these 

simulators are generally slow due to the fact that they simulate full caches using 

traces gathered. Moreover, static instrumentation used to gather traces may have a 

significant impact on the trace quality due to perturbation to the memory behavior of 

the application under test. In our techniques, we eliminate potential perturbation by 

gathering information on objects that survive at least one garbage collection and by 

sampling memory accesses via low-overhead performance monitors. 

The Java Virtual Machine Profiler Interface (JVMPI)[74] defines a general 

purpose mechanism to obtain profiles from a Java VM. However, the JVMPI 

provides information about heap allocations using JNI handles and does not provide 

information about where objects are stored in terms of memory addresses. 
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DeRose et al.[22] introduced a data collection framework and family of cache 

analysis tools, SIGMA. The SIGMA environment provides detailed cache 

information by gathering memory reference data using software-based 

instrumentation. The tool can also assist in perturbation analysis to determine 

performance variations caused by changes to system hardware or software. The 

MetaSim[59] tracer generates detailed information about load/store unit usage for an 

application and captures dynamic memory address information during an 

instrumented run under a desired memory subsystem. The address stream is later 

processed to find the memory access patterns. 

Kurc et al.[42] presented a simulation-based framework for data intensive parallel 

applications on parallel machines. They used application emulators that provide 

parameterized models of applications to be able to scale applications in a controlled 

way and suite of simulators for large number of processors. An application emulator 

is a simplified version of the real application with necessary communication and 

computation characteristics and it provides a specification of the behavior of an 

application to a simulator. In comparison, our technique is more automatic in 

workload generation and uses profiles gathered from hardware monitors. 
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 Chapter 3: Dynamic Page Migration 

In this chapter, we introduce a dynamic page migration scheme that profiles 

applications to determine the preferred location for each memory page using 

hardware monitors. We then use system calls to request that the kernel move memory 

pages to their preferred locations. 

In our dynamic page migration algorithm, both profiling and page migration are 

conducted during application execution. For each memory page in the application, we 

continuously gather data from hardware performance monitors about the processor 

most frequently accessing the page. At fixed time intervals during the application’s 

execution, pages are migrated to a memory unit that is local to the processor that most 

frequently accesses each page. 

Although page migration has been extensively studied in prior research, our 

dynamic page migration approach demonstrates several novel features. First, our goal 

is not to introduce a new page placement policy. Instead, we demonstrate that the 

combinations of in-expensive plug-in hardware monitors that sample information 

about interconnect transactions and a simple page migration policy can be used 

effectively to improve the performance of real scientific applications. The plug-in 

hardware we used in this research is commercially available from Sun Microsystems. 

Second, even on multiprocessor systems with small remote to local memory 

latency ratios, optimizing page placement still provides substantial benefit to some 

applications. The remote and local latencies in the Sun Fire 6800 servers we used in 

our research are approximately 300ns and 225ns respectively (i.e. a remote to local 
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memory latency ratio of 1.33:1). This is quite low for a NUMA system, and previous 

research on optimizing page placements has tended to focus on systems with much 

larger remote to local memory latency ratios. We believe our techniques will be more 

effective on systems with large remote to local memory latency ratios. 

Third, using the information provided by hardware monitors that gather 

information based on physical addresses rather than virtual addresses is accurate 

enough to guide page migration and eliminates the need for getting virtual address 

information via hardware monitors. 

3.1. Hardware and Software Components 

In this section, we describe the hardware and software components used in our 

dynamic page migration research. We first describe the architecture of the Sun Fire 

servers. We next describe the Sun Fire Link hardware monitors for the Sun Fireplane 

system interconnect, which we used to measure memory access behavior. Finally, we 

give a brief explanation about the system calls that we used. 

3.1.1. Sun Fire Servers 

The Sun Fireplane interconnect is Sun’s fourth generation of Symmetric 

Multiprocessor Systems (SMP) interconnect. The Sun Fireplane interconnect is 

implemented with up to four levels of interconnect logic depending on the number of 

processors in the server[14]. In medium and large-sized Sun Fire servers, processors 

and memory units are grouped together on system boards[68]. Each system board 

contains 4 processors and 4 memory units local to the processors. 
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In Sun Fire servers, the transfer time to move a data block from a memory unit to 

the requesting device is non-uniform depending on the system boards the memory 

unit and requesting processor are on. Processors on a system board have faster access 

to the memory banks on the same board (local memory) compared to the memory 

banks on another board (non-local memory). For example, back-to-back latency 

measured by a pointer-chasing benchmark in a Sun Fire 6800 server with 750MHz 

CPUs is around 225ns if the memory is local and 300ns if the memory is non-local. 

Moreover, the back-to-back latencies in larger Sun Fire 15K servers are even larger 

and are around 225ns if the memory is local and 400ns if the memory is non-local. 

The Sun Fire 6800 server is a mid-range cc-NUMA architecture based on the 

UltraSPARC III processors and Sun Fireplane interconnect. It supports up to 24 

processors and 24 memory units. The processors and memory units in these servers 

are grouped into 6 system boards. Each processor has its own on-chip and external 

caches. Mid-range Sun Fire systems use a single snooping coherence domain that 

spans all the devices connected to a single Fireplane address bus. 

3.1.2. Sun Fire Link Hardware Counters and Bus Analyzer 

In a cache-coherent shared-memory multiprocessor, the system interconnect is often 

the performance-limiting component for some applications[51]. Moreover, due to 

complex interactions among the processors and devices that utilize the system 

interconnect, it is difficult to analyze the performance of the system interconnect. Due 

to high transaction rates in these systems, gathering a complete set of interconnect 

transactions is not practical. Instead, these systems often have additional hardware 

monitors to count and sample the system transactions. Even though the information 



 

 27 
 

collected by these hardware monitors is incomplete, it is still an important source of 

profiling information[51]. 

For our dynamic page migration scheme, we use the Sun Fire Link hardware 

monitors[51] to gather profiling information for page migration (Shown in Figure 1). 

The Sun Fire Link hardware monitor counts and samples the transactions on the 

address bus of the Sun Fireplane interconnect. These monitors were developed as part 

of a system to cluster multiple systems together, thus they listen to the address bus of 

the system interconnect. 

 

Figure 1: Framework for our dynamic page migration scheme 

The Sun Fire Link Monitors consist of two 32-bit counter registers, a 

programmable control register that activates the counters, two registers to filter 

transactions based on transaction type, and two sets of mask and match registers to 

filter transactions based on other parameters, such as physical address range and the 
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device identifier. In addition to counter registers, the Sun Fire Link Bus Analyzer has 

an 8-deep FIFO that records a limited sequence of consecutive interconnect address 

transactions. Each recorded transaction includes the requested physical address, the 

requestor device id, and the transaction type. The bus analyzer is configured with 

mask and match registers to select specific address ranges, processors or transaction 

types. 

Even though the Sun Fire Link counters and bus analyzer provide useful 

information about the addresses and requesting processors in the transactions, the 

information is at the level of physical addresses. To accurately evaluate the memory 

performance of an application, the address transactions have to be associated with 

virtual addresses used by the application. This requires us to reverse map physical 

addresses back to virtual addresses. We used the meminfo system call in Solaris 9 to 

create a mapping between physical and virtual memory pages in the applications. 

3.1.3. System Calls in the Solaris 9 Operating System 

To ensure the reusability of local caches in the processors, each application thread 

should be scheduled on the same processor, if possible, throughout its execution[62]. 

To ensure the reusability of local caches and to accurately count page access 

frequencies by processors independent of thread scheduling, we explicitly bind 

application threads to the processors in the system. We bind application threads to the 

processors in a round robin fashion using the processor_bind system call in Solaris. 

Solaris places each physical memory page into the memory that is local to the first 

processor that touches the page. However, first-touch page placement may result in 
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non-local placement of a page relative to the processor that accesses it the most, 

which may have a significant impact on memory performance of the application. 

To move pages, we use the move-on-next-touch feature of the madvise system 

call in Solaris 9. Using the move-on-next-touch feature, we request the operating 

system to move a range of virtual memory onto the local memory of the processor 

that next touches the range. 

3.2. Methodology 

Our dynamic page migration algorithm consists of two different modules. The first 

module gathers profiling information using the Sun Fire Link counters and bus 

analyzer. The second module migrates memory pages using the profiling information 

gathered by the first module. In our page migration approach, we insert 

instrumentation code into the application to gather profiling information, to migrate 

the memory pages, to bind application threads to processors and to detect the 

application termination. 

We used Dyninst[9] to insert instrumentation code into the application being 

analyzed. Dyninst is a library that permits the insertion of code into a running 

program. The Dyninst library provides a machine independent interface to permit the 

creation of tools and applications that use runtime code patching. 

For our dynamic page migration algorithm, instrumentation code is inserted at the 

entry of the main function, exit point(s) of thr_create function, and the entry of 

exithandle function. The instrumentation code that is inserted at main loads a shared 

library that creates additional helper threads for gathering profiling information and 

migrating memory pages. The instrumentation code inserted at the exit point(s) of 
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thr_create calls the processor_bind system call to explicitly bind the newly created 

application threads to available processors in a round robin fashion. The helper 

threads are bound to dedicated processors and the remaining processors are used to 

bind the other threads in the application. The instrumentation code inserted at the 

entry to exithandle detects the application termination and cleans up the hardware 

monitors and software libraries. 

Our dynamic page migration algorithm is a two-phase algorithm. It creates two 

helper threads, one for profiling and another for page migration. The profiling thread 

samples the interconnect transactions and updates the access frequencies of the 

memory pages for each system board. The migration thread stops the execution of all 

other application threads at fixed time intervals and triggers page migration based on 

the profiling information gathered. In addition, to prevent memory pages ping-

ponging between memory units, we freeze memory pages that have been migrated 

recently for a fixed number of page migration iterations (We freeze a page after 3 

consecutive iterations). Thus, the memory pages are migrated at fixed time intervals 

and a page may be migrated more than once throughout application execution. 

Our migration algorithm does not use a minimum access frequency threshold to 

trigger the migration of a page. At every migration interval, regardless of the number 

of accesses to a page, the page is considered as candidate for migration. Alternatively, 

we could limit migration to the pages with a minimum number of accesses or cache 

misses and thus migration overhead would potentially be eliminated for pages with 

little contribution to the application's memory time. 
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3.3. Preliminary Experiments 

In this section we will discuss the results of our preliminary experiments to ensure 

that we could accurately sample interconnect transactions in the applications being 

analyzed, and that placing pages local to the same board as the processor can have a 

significant impact on the memory performance of an application. 

3.3.1. Interconnect Transaction Sampling 

We sample the interconnect transactions using the Sun Fire Link hardware monitors 

and approximate the access frequencies for the memory pages. However, for 

sampling to be effective, the sampling technique has to be representative of all 

transactions that occurred during the execution of the application being analyzed. 

One approach to sample interconnect transactions using the Sun Fire Link bus 

analyzer is to continuously sample at the maximum speed of the interconnect 

instrumentation software. We refer to this sampling scheme as maximum-rate 

sampling. Maximum-rate sampling does not capture a compete set of transactions, but 

it tries to sample as many transactions as possible. Alternatively, transactions can be 

sampled at fixed time intervals or at every Nth transaction occurrence, where N is a 

constant that defines the interval of sampling[10]. In this thesis, we refer to sampling 

at every Nth transaction occurrence as interval sampling. 

We conducted a series of experiments to compare how representative the 

maximum-rate and interval sampling techniques are of all transactions. To objectively 

compare the two sampling techniques we designed a distance metric D that given a 

set of transactions and a set of samples from the set, measures the percent difference 

between the values of a property for these sets. The property we used in our 
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experiments is the ratio of transactions requested by a specific processor to the total 

number of transactions. This metric indicates how much a set of transactions deviate 

from another set of transactions in terms of memory behavior. Thus, the closer the 

value of our distance metric is to 0, the more representative the set of sampled 

transactions is of the set of all transactions. Since the Sun Fire Link counters can 

accurately count the number of transactions as well as the number of transactions 

from a given processor, we counted both of these values and compared them with 

samples taken via Sun Fire Link bus analyzer to approximate the sampling error of 

sampling techniques.  

For each experiment, we configured one of the two counters in the Sun Fire Link 

hardware monitors to count the number of transactions requested by a selected 

processor P, denoted CP. The other counter is configured to count all transactions, CA. 

Using the Sun Fire Link bus analyzer we also sampled interconnect transactions and 

recorded the number of transactions sampled, denoted SA. In the set of sampled 

transactions, we count the number of transactions that are requested by processor P, 

denoted SP. We calculate the ratios for the set of sampled transactions and the set of 

all transactions as RSample = SP/SA and RAll = CP/CA, respectively. We define the 

distance as D = ABS(RSample - RAll) / RAll. That is, the distance metric gives an insight 

as to how far the set of sampled transactions deviate from the set of all transactions. 

We conducted a series of experiments for a set of processors while running an 

OpenMP version of the CG benchmark from NAS Parallel benchmark suite[52]. For 

our experiments, we ran CG with 6 threads using the input set of size B. We repeated 
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the experiments with different sampling intervals in which samples taken at every 64, 

256, 1024 and 4096 transactions. 

Table 1 presents the results of the experiments conducted to compare how 

representative the sampled transactions are of all transactions. In Table 1, the second 

column gives the distance values for maximum-rate sampling. The third to sixth 

columns give results for interval sampling with different interval values. In Table 1, 

the rows that are labeled with processor identifiers give the distance between the set 

of all transactions and the set of sampled transactions with respect to that processor. 

The second from the last row averages the distance values of all experiments. 

Table 1 shows that maximum-rate sampling can sample about 18% of all 

transactions. Table 1 also shows that for maximum-rate sampling, for each processor, 

the distance metric is significantly higher compared to interval sampling. Moreover, 

for maximum-rate sampling, the average distance over all processors is 0.56, which 

shows that the set of sampled transactions is quite different from the set of all 

transactions (Recall a value of 0 for distance D is perfect sampling correlation). 

Interval Sampling  Max-Rate 
Sampling 4K 1K 256 64 

Processor 0 0.51 0.03 0.03 0.03 0.09 

Processor 1 0.61 0.04 0.04 0.04 0.09 

Processor 2 0.47 0.01 0.02 0.02 0.23 

Processor 3 0.58 0.00 0.01 0.01 0.02 

Processor 4 0.65 0.02 0.02 0.02 0.12 

Processor 5 0.57 0.03 0.02 0.03 0.15 

Average Dist. 0.56 0.02 0.02 0.02 0.11 

% Sampled 17.56 0.19 0.78 3.07 9.75 

Table 1: Distance values for maximum-rate sampling and interval sampling 
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During maximum-rate sampling, the maximum number of transactions the 

instrumentation software can record bounds the number of samples that can be taken 

for a processor. Thus, if a processor requests transactions faster than the maximum 

rate the instrumentation software can read, many transactions for the processor will 

not be recorded. Similarly, if a processor requests transactions slower than the rate of 

instrumentation software, almost all of its transactions will be recorded as samples. 

Thus, maximum-rate sampling results in a skewed distribution of sampled 

transactions with respect to the level of memory system activity on processors and the 

sample set does not accurately represent all transactions. 

Table 1 also shows that for interval sampling, the distance values depend on the 

sampling rate. The distance values are low and similar to each other except for the 

experiments where transactions are sampled at every 64 transactions. In particular, if 

the samples are taken at every 256 transactions or more, the set of sampled 

transactions is fairly representative of all transactions. Table 1 also suggests that for 

interval sampling, if the rate that samples are taken exceeds 5% of all transactions, the 

set of sampled transactions becomes less representative. 

To further investigate how representative the samples for larger sampling interval 

values, we also conducted experiments varying the sampling interval up to every-

128M address transactions. In addition, for each experiment, we also recorded the 

number of distinct pages that are included in the set of sampled transactions. Figure 2 

presents the average sampling error (left y-axis) and the percentage of distinct pages 

sampled (right y-axis) in the application for the intervals we tested. 
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Figure 2: Average distance and percentage of pages sampled in CG (B) 

Figure 2 shows that average sampling error is the highest for max-rate sampling 

and it starts decreasing dramatically as the sampling interval increases. Moreover, 

average error stays low and steady for a large range of sampling intervals starting at 

every-256 transactions sampling to every-8M transactions sampling. Average 

sampling error starts to increase again after every-16M transaction sampling due to 

the fact that the number of samples taken is not large enough to accurately 

characterize all transactions in the application. 

Figure 2 also shows that for max-rate sampling, 93% of all pages in the 

application are included in the samples taken. Similarly, for smaller intervals, the 

percentage of distinct pages sampled is around 90% for interval sampling. However, 

as the sampling interval increases, Figure 2 shows that the percentage of distinct 

pages sampled in interval sampling decreases dramatically, resulting in many pages 

not included in the set of sampled transactions. More importantly, Figure 2 shows that 

even though interval sampling generates more representative samples, the percentage 

of the pages included in the samples decreases as the sampling interval increases. 
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Since transaction sampling competes for bus bandwidth with the application being 

measured, it is also necessary to quantify the bus load due to the sampling technique 

used. To quantify the bus load of each sampling technique, we conducted an 

experiment where we counted the number of address transactions due to accessing the 

hardware monitor. From this, we calculated the additional bandwidth consumed. 

Our experiments showed that both maximum-rate and interval sampling produce 

the same bus load of around 0.5MB/sec (0.005% of the maximum data bandwidth). 

This is due to the fact that the dominant part of the bus load is produced by sampling 

the counter contents to determine whether it is time to take a sample rather than 

getting the sample. If the counters had an interrupt on overflow feature (common in 

current on-chip CPU hardware monitors), we could eliminate much of this bus load. 

3.3.2. Impact of Local Page Placement 

Before testing the benefits of our page migration scheme on multithreaded 

applications, we wanted to assess the impact of page placement on the memory 

performance of a single threaded application. We designed a simple application that 

sequentially traverses over the elements of an array repeatedly. Before each array 

element is accessed, the cache line containing the element is invalidated and the 

access is satisfied by the memory in which the array pages are placed. Note that this 

application is designed to exercise memory heavily and real applications would not 

have as many cache misses. 

We conducted experiments running the single threaded application under local 

and non-local page placement, and we measured the total time spent to access array 

elements. Moreover, to eliminate factors such as pre-fetching or speculative loads, we 
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also implemented a variant of this benchmark that uses a random number generator to 

decide on the next element to be accessed. 

Table 2 presents the memory access times for our test programs. In Table 2, the 

first column lists the applications, where each row is labeled by the pattern in which 

the array elements are traversed. The second and third columns give the memory 

access times for local and non-local placements of the array pages, respectively. The 

fourth column lists the slowdown ratios when array pages are placed non-locally 

compared to being placed locally on the processor running the application. 

Array Page Placement Array Access 
Pattern Local Non-Local 

Slowdown 

Sequential 546.6 685.8 1.25 

Strided 659.7 810.1 1.23 

Random 512.5 606.0 1.18 

Table 2: Array access times in seconds for local and non-local page placement 

For each program, Table 2 shows a significant slowdown in array access times 

when array pages are placed non-local to the processor running the application 

compared to placing array pages locally. The slowdown ratios for array access times 

range from 1.18 to 1.25. More importantly, Table 2 shows that the slowdown due to 

non-local page placement is directly proportional to the back-to-back latencies 

measured by the pointer-chasing latency benchmark. 

We noticed a form of intra-board locality in the Sun Fire servers. That is, although 

the array pages are local, the choice of the processor from the group of processors on 

the same system board also has an impact on the array access times. Table 3 presents 

the array access times for each application when different processors in the same 

system board are used to execute the application. In each execution, array pages are 
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placed identically. In Table 3, the second column presents array access times when 

the test programs run on the first processor in a system board where the third column 

presents array access times when they run on the second processor. 

Table 3 shows that the programs spent 7-11% more time traversing the array 

elements when they are bound to the second processor of the system board compared 

to when they are bound to the first processor even though the array pages are placed 

local to the processors. We believe intra-boards variations in array access times are to 

due to whether the array pages are placed on the memory banks controlled by the 

processor running the application or on the memory banks controlled by another 

processor in the same system board. We also believe increasing the number of 

memory banks controlled by each processor will reduce the intra-board variations. 

Processor on System Board Array Access 
Pattern CPU 0 CPU 1 

Slowdown 

Sequential 546.6 604.3 1.11 

Strided 659.7 715.4 1.08 

Random 512.5 546.0 1.07 

Table 3: Intra-board variation in array access times 

3.4. Page Migration Experiments 

To investigate the effectiveness of our dynamic page migration approach on the 

performance of real applications, we conducted experiments using the OpenMP C 

implementation of the NAS Parallel Benchmark suite[52]. We chose applications 

with different sizes ranging from B to C (large data set sizes) such that each 

application would have a similar memory footprint. We compiled the applications 

using Sun’s native compiler, Sun C 5.5 EA2, with optimizations (-xopenmp=parallel 

and -O3) on to support parallelized code. 
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We conducted all of our experiments on a 24-processor Sun Fire 6800 with 24GB 

of main memory (as described in Section 3.1). The system clock frequency is 

150MHz. The processors are 750MHz UltraSPARC III. The memory in each system 

board is 8-way interleaved where each processor controls two banks of memory. The 

Sun Fire Link hardware is plugged into an I/O drawer in this system. The Sun Fire 

Link instrumentation has full visibility into all transactions on Fireplane interconnect. 

To quantify the benefits of our dynamic page migration approach, we conducted a 

series of experiments with and without page migration. For all applications, we 

measured both the original execution times and the execution times when pages are 

migrated using our dynamic page migration approach. For each application, we also 

measured the percentage reduction in the number of non-local memory accesses when 

memory pages are dynamically migrated compared to its original execution.  

We ran all applications with 12 threads on 6 system boards of the Sun Fire 6800 

server. To eliminate any possible contention due to resource sharing among 

processors, we scheduled two threads on each system board. We sampled 

interconnect transactions at every 1024 transactions. 

As explained in Section 3.2, we insert instrumentation code into the application 

using the Dyninst library. For each application, the instrumentation overhead is a one-

time overhead since the Dyninst library has a capability of saving instrumented 

executables for later reuse. Moreover, the instrumentation overhead for our page 

migration approach is independent from the execution times of the applications we 

analyzed. We measured the instrumentation overhead for all applications for our 

dynamic page migration approach and it is typically around 2 seconds. 
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3.4.1. Sensitivity to Migration Interval 

For the experiments with page migration, the migration interval is given as a 

parameter to out dynamic page migration scheme. Thus, it is also important to 

investigate the impact of the migration interval on the effectiveness of our migration 

approach. To investigate the impact of migration intervals and choose the migration 

interval for the experiments, we conducted a sensitivity analysis in which we ran each 

application under different migration intervals ranging from 1 second to 50 seconds. 

Figure 3 presents the results of the sensitivity experiments we conducted. In 

Figure 3, the x-axis shows the migration intervals in seconds we considered. For each 

application, the y-axis presents the normalized execution times for the considered 

migration intervals with respect to the execution times when migration is triggered at 

every 1-second. 
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Figure 3: Sensitivity of the page migration scheme to the migration interval  

Figure 3 shows that migration interval used does not have a major impact on the 

performance of the applications except MG. For MG, migration interval has a 
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significant impact due to the fact that MG is a short running program and when 

migration is triggered at a slower rate, MG does not benefit from page migrations. 

Thus, for our page migration experiments described in the remainder of this chapter, 

we chose to trigger page migration at every 5 seconds. We chose 5 seconds as the 

migration interval such that we would trigger enough number of migrations in MG to 

benefit from dynamic page migration but still keep a slower rate of migrations in the 

other applications for a lower migration overhead. 

3.4.2. Reduction in Non-Local Memory Accesses 

To quantify the benefits of our dynamic page migration approach, we counted the 

total number of non-local memory accesses for all applications with and without 

using dynamic page migration. We used the Sun Fire Link hardware monitors to 

measure the total number of non-local memory accesses in the applications. 

Due to limitations in the number of accurate counters in the Sun Fire Link 

hardware monitor, we were not able to count the per board number of non-local 

memory accesses in an application during a single run. Instead, we ran each 

application once for each system board and counted the number of non-local memory 

accesses requested by the group of processors in that system board. We later 

calculated the total number of non-local memory accesses for an application as the 

sum of the non-local memory accesses for all system boards. 

Table 4 presents the percentage reduction in the total number of non-local 

memory accesses when dynamic page migration is used compared to when memory 

pages are not migrated. In the second column, we give the total number of address 

transactions requested by each application during its execution. The third column 
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gives the percentage of non-local memory accesses without our page migration 

approach and the fourth column shows the percentage of non-local memory accesses 

when memory pages in the application are migrated using our dynamic page 

migration approach. The fifth column lists the percentage reduction in the total 

number of non-local memory accesses when dynamic page migration is used. 

Table 4 shows that for all applications, our dynamic page migration approach was 

able to reduce the number of non-local memory accesses by 19.7-89.6% (The average 

reduction for applications is 58.3%). 

Table 4 also shows that for MG, a significant number of non-local memory 

accesses were eliminated when memory pages were migrated. This is due to the fact 

that first-touch policy in the underlying operating system placed pages poorly in a 

single memory unit and our migration policy was able to migrate pages to several 

memory units according to their access pattern. 

Percentage of 
Non-local  Accesses 

 
# of Address 
Transactions 

(Millions) w/o Page 
Migration 

Page 
Migration 

% 
Reduction 

BT (B) 38,507 40.9 25.3 38.0 

CG (C) 15,721 80.9 15.3 81.0 

EP (C) 42 85.4 28.2 67.0 

FT (B) 2,329 64.2 29.6 54.0 

LU (C) 48,682 41.2 33.1 19.7 

MG (B) 841 80.5 8.3 89.6 

SP (C) 116,116 55.0 22.7 58.8 

Table 4: Reduction in non-local memory accesses due to page migration 

Unlike MG, for LU our dynamic page migration approach was not able to reduce 

the number of non-local memory accesses significantly. For LU, first-touch policy 
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placed memory pages better. Moreover, system boards uniformly access the majority 

of the memory pages that our dynamic approach was able to migrate. That is, while 

migrating those pages to a system board reduces the number of non-local memory 

accesses requested by the processors in that system board, the number of non-local 

memory accesses by the processors in all other system boards increases. Our dynamic 

page migration approach uses a simple decision mechanism that identifies the 

preferred location of a memory page as the system board that accesses it most. It does 

not take the access frequencies by other system boards into consideration. The access 

frequencies by other system boards may also be used to better decide whether a page 

should be migrated[71]. 

3.4.3. Impact of Page Migration on Cache Usage 

The UltraSPARC III processors in the Sun Fire servers use physical addresses to 

index their external caches. Since page migration changes the physical addresses of 

the memory pages in an application, it is also necessary to ensure that our page 

migration approach does not have a significant impact on the cache usage of the 

applications. To quantify the cache usage of the applications, we counted the number 

of conflict and capacity misses (i.e. non-compulsory misses) during the execution of 

the applications with and without dynamic page migration. We counted the number of 

conflict and capacity misses in the applications using Sun Fire Link counters by 

measuring the number of write-back (WB) transactions requested. A WB transaction 

is requested when a dirty cache line is evicted from the external cache due to a 

capacity or conflict miss. 
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Table 5 presents the number of WB transactions with and without our page 

migration approach. Table 5 shows that our dynamic page migration approach does 

not significantly affect the number of conflict and capacity cache misses. It also 

shows that our dynamic page migration approach has a higher impact on EP 

compared to other applications. However, EP does not allocate a significant number 

of memory pages during its execution and thus the absolute number of cache misses 

is more than a factor of 20 lower than any other application we measured. Moreover, 

the total number of address transactions requested by EP is not significant due its 

effective use of local caches. The increase in cache misses in EP is mainly due to the 

invalidation of lines in caches caused by migration of memory pages. 

# of WB Transactions (Millions) 
 

w/o Page 
Migration 

Page 
Migration 

% Change 

BT (B) 14,948.8 14,900.1 -0.33 

CG (C) 270.6 268.7 -0.67 

EP (C) 12.3 12.6 2.38 

FT (B) 855.0 851.8 -0.37 

LU (C) 18,252.8 18,171.6 -0.44 

MG (B) 217.4 218.0 0.28 

SP (C) 39,223.3 39,139.9 -0.21 

Table 5: Percent change in the number of write-back transactions 

3.4.4. Execution Times 

While reducing the number of non-local memory accesses in an application is 

important, what matters is the impact of this reduction on application’s runtime. In 

this section, we look at the impact of our page migration approach on the execution 
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times of the applications. For each application, we conducted three different 

experiments and measured the total execution time for each experiment. 

First, we ran each application using our dynamic page migration approach and 

measured the total execution time including overhead due to the creation of the helper 

threads and triggering memory page migrations. Even though the migration thread 

runs in parallel with other threads of the application, it suspends all application 

threads to trigger the actual page migrations and later resumes their executions. 

During the second set of experiments, we measured the original execution times of 

the applications with no intervention. Lastly, we conducted a third set of experiments 

to investigate the impact of binding application threads to fixed processors, and 

therefore the impact of dynamic page migration in isolation. During these 

experiments, we ran each application with page migration disabled but bound the 

threads to the processors in the system. 

For each application and experiment, we repeated the experiment seven times and 

recorded the minimum of the execution times among all runs. We used the minimum 

execution time since we noticed higher variation in the original execution times for 

some applications. We suspect the higher variation in the original execution times of 

those applications is due to differences in the initial page placements and thread 

scheduling by the operating system.  

Table 6 presents the execution times of the applications we analyzed. The second 

column lists the original execution times of the applications. In the third column, we 

present the execution times when the application threads are bound to the processors 

throughout the executions. The fourth column lists the execution times of the 
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applications when we migrate memory pages using our dynamic page migration 

approach. The fifth column presents the number of page migrations triggered. Lastly, 

the sixth column presents the overhead due to page migrations. 

Table 6 shows that for all applications except LU and MG, when the application 

threads are bound to processors the applications run faster by 0.16-1.76% compared 

to their original executions. However, LU slows down by 0.6% where MG slows 

down by 2.2% when their threads are bound to the processors. Table 6 shows that 

binding application threads to the processors is almost always beneficial even though 

the performance gain is not significant. 

Execution Times (seconds) 
 

Original 
Bound  

Threads 
Page 

Migration 

# of  
Migrations 

Overhead 
(seconds) 

BT (B) 996 992 966 112,310 11.8 

CG (C) 625 613 534 47,213 4.4 

EP (C) 293 292 292 2,071 0.3 

FT (B) 113 112 118 177,602 15.1 

LU (C) 1981 1994 1978 132,696 13.1 

MG (B) 31 32 26 49,884 2.7 

SP (C) 3901 3854 3347 138,943 17.1 

Table 6: Execution times, number of migrations and migration overhead 

Table 6 also shows that the overhead due to page migration is mainly proportional 

to the number of page migrations requested and it ranges up to 12.8% compared to 

the original execution times of the applications. To guarantee that the migration 

thread touches the page next before all other threads, all other threads have to be 

suspended. If the operating system instead provided a system call that would allow 

applications to indicate the target locations of the memory pages, it would permit 
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migration of pages to their target locations during the next available opportunity, and 

thus reduce the page migration overhead. 

Figure 4 presents the performance improvement when our page migration 

approach is used compared to both the original execution time and the execution time 

when the threads of the applications are bound to processors. Under the label of each 

application on the x-axis, Figure 4 also presents the migration overhead percentage 

with respect to the original execution time of the application. Figure 4 shows that our 

dynamic page migration approach was able to improve the execution performance of 

the applications except FT by up to 15.9% compared to their original executions. 

However, FT runs slower under our dynamic page migration approach. 

Our dynamic page migration approach improved the performance of CG and SP 

by 14.5% and 14.2%, respectively, compared to their original execution times. CG 

and SP request many memory accesses and our dynamic page migration approach 

was able to eliminate many of the non-local memory accesses (see Table 4). In 

addition, dynamic page migration improved the execution performance of CG and SP 

by 12.8% and 13.2% respectively, compared to the executions where application 

threads are bound. 

Like CG and SP, our dynamic page migration approach was also able to improve 

the performance of MG by 15.9% compared to its original execution time. Even 

though MG does not request many memory accesses, our page migration approach 

was still able to reduce the number of non-local memory accesses significantly (see 

Table 4). Compared to the execution of MG when its threads are bound to the 
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processors, dynamically migrating memory pages in MG improved the execution 

performance by 18.1%. 

Figure 4 also shows that our dynamic page migration approach improved the 

execution performance of BT by 2.9% compared to its original execution and by 

2.6% compared to execution where its threads are bound to processors. Figure 4 also 

shows that our page migration approach is not as effective for BT as for CG, MG, and 

SP, which is partially due to fact that the reduction in the number of non-local 

memory accesses in BT is not as high. Similarly, our page migration approach 

improved the performance of LU by 0.8%, which is also mainly due the small 

reduction in number of non-local memory accesses. 

Performance Improvement due Page Migration
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Figure 4: Performance gain for the applications under dynamic page migration 

Figure 4 also shows that our dynamic page migration approach was not as 

effective in improving the execution performance of EP even though it reduced the 

number of non-local memory accesses by 67.0%. EP reuses data in the local caches of 
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the processors, and the majority of its memory accesses are requested at the beginning 

of its execution, before the memory pages are migrated. 

Figure 4 shows that our dynamic page migration approach was not able to 

improve the execution performance of FT even though it reduced the number of non-

local memory accesses in FT by 54.0%. Instead, our page migration approach slowed 

down the execution of FT by around 4.2% compared to its original execution. 

However, Figure 4 also shows that the slowdown for FT is mainly due to the 

overhead introduced by page migration, which is 12.8% of the original execution time 

for FT. That is, the reduction in the number of non-local memory accesses did not 

overcome the overhead introduced by migration of many pages that are initially 

placed poorly. Moreover, the page migration overhead for FT would be reduced 

significantly if the operating system did not require suspending application threads to 

trigger the actual migrations by touching pages and instead provided a mechanism to 

directly request migration. 

3.5. Graphical User Interface 

To visualize the page placement in the applications, we implemented a Graphical 

User Interface (GUI) that presents the locations of the virtual memory pages in terms 

of the memory units(boards) in the underlying CC-NUMA server. Our dynamic page 

migration GUI also presents additional information such as the number of page 

migrations triggered for each migration interval, the stack percentage bars indicating 

the percentages of pages migrated to each memory unit for the latest migration 

interval as well as since the application start. 
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Figure 5 shows the GUI snapshot for application MG when dynamic page 

migration is not used.  The bottom window in Figure 5 visualizes the virtual address 

space of the application where each pixel (or a sequence of pixels when a portion of 

application’s address space is displayed) represents a virtual page and the color of the 

pixel presents the memory unit the page is placed. The virtual page index increases 

from left to right and top to bottom, starting with the page index 0 at top left corner of 

the window. Note that in our GUI, there are 6 colors to represent the locations of the 

pages due to the fact the Sun Fire 6800 server we used have 6 memory units (boards). 

 

Figure 5: GUI snapshot for page placement in MG without page migration 

Figure 5 shows that almost all of the memory pages in MG are placed in a single 

memory unit when MG is run without page migration. This is due to the fact that MG 
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starts with a single thread that initializes its data structures, hence first-touch 

placement in the underlying operating system places pages in the memory unit on the 

same board as the initialization thread runs. 

 

Figure 6: GUI snapshot for page placement in MG with page migration 

Figure 6 shows the GUI snapshot for MG when run with dynamic page migration 

(every 5-second migration) after several migration iterations. Figure 6 shows that our 

dynamic page migration scheme was able to accurately migrate pages local to the 

processors accessing them most. Even though Figure 6 shows some imperfections in 

the placement of the pages due page migration, it clearly indicates the stride-access 

pattern in MG. We believe imperfections are caused by the fact that information on 
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some memory pages is not included in the profiles gathered from performance 

monitors due to use of interval sampling. 

In addition to locations of the memory pages in an application, our dynamic page 

migration GUI also presents detailed information on page migrations triggered when 

run with dynamic page migration. The window at the top-left corner in Figure 6 

displays the number of page migrations triggered to each memory unit for each 

migration interval. The top middle window displays the stack percentage bar that 

presents the percentages of migrations triggered to each memory unit for the latest 

migration interval in addition to the total number of pages migrated for the interval. 

Similarly, the top right window displays the stack percentage bar that presents the 

percentages of migrations triggered to each memory unit since the application start in 

addition to the total number of pages migrated. 

3.6. Summary 

In this chapter, we introduced an automatic profile-driven page migration scheme and 

investigated the impact of this page migration scheme on the memory performance of 

multithreaded programs. We used commercially available plug-in hardware monitors 

to profile the applications. We tested our dynamic page migration approach using the 

OpenMP C implementation of the NAS Parallel Benchmark suite. 

Our dynamic page migration approach always reduced the total number of non-

local memory accesses in the applications we analyzed compared to their original 

executions, by up to 90%. Our page migration approach was also able to improve the 

execution time of the applications up to 16% compared to their original executions.  
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We believe the effectiveness of our page migration approach also shows the 

advantage of putting the page migration policy at the user level while only relying on 

the operating system kernel to provide the actual migration mechanism.  

We also believe that for page migration mechanism to be more beneficial, 

underlying operating system should provide means to trigger page migration without 

stopping the application. That is, if the user could simply request migration of a page 

and the underlying operating system could migrate the page during available idle 

cycles, most of the migration overhead would be hidden. 
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Chapter 4: Dedicated Monitors for Page Migration 

In the user-level dynamic page migration scheme described in Chapter 3, we used the 

Sun Fire Link hardware monitors to sample access frequencies of memory pages by 

processors and consequently to identify preferred locations of memory pages at 

runtime. These monitors are centralized hardware and listen to the address bus of the 

underlying cc-NUMA system. They also provide a means to sample the address 

transactions from any device on the system interconnect. However, these types of 

hardware monitors are not always available for multiprocessor systems. Moreover, 

for non-bus based multiprocessors that do not use a common address and data bus, it 

is difficult to implement such centralized monitors to listen to the address transactions 

on the system interconnect. 

Many processors have for some time included ways to count events such as cache 

misses, TLB misses, etc. Moreover, they provided ways to trigger an interrupt when a 

given number of events occur. More recently, processors such as Intel Itanium 2[37], 

provide the ability to capture the addresses involved in performance critical events 

including the address of an access that misses a cache or TLB in the memory 

subsystem. These monitors provide an opportunity to gather a sampled profile of page 

access behavior. 

In this chapter, we investigate the use of several other potential sources of profiles 

gathered from hardware monitors in dynamic page migration and compare their 

effectiveness to using profiles from centralized hardware monitors that listen to the 

system interconnect. In particular, we investigate the effectiveness of using cache 
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miss profiles, TLB miss profiles from on-chip monitors, and the content of the 

processor TLBs. 

We also introduce a simple hardware feature, called Address Translation Counters 

(ATC), which is specifically designed to gather profiles for dynamic page migration 

and compare its effectiveness with other sources of profiles. The ATC is a set of 

additional counters included in the TLBs of a processor and gathers accurate 

information on access frequencies to the memory pages by the processor. 

To evaluate the effectiveness of each source of profiles in dynamic page 

migration, we conducted a simulation based study using a full system simulator. We 

present results of this study in terms of the number of page migrations triggered, 

reduction in the number of non-local memory accesses, and improvement in 

execution times of the applications. Similar to the page migration experiments 

described in Chapter 3, we present the results of our experiments for the applications 

in the OpenMP C implementation of NAS Parallel Benchmark suite. 

4.1. Sources of Hardware Profiles for Dynamic Page Migration 

In Chapter 3, we described how we used the centralized Sun Fire Link hardware 

monitors to identify the preferred locations of memory pages for dynamic page 

migration. In this section, we describe the other potential sources of profiles that can 

be used to generate page access frequencies for dynamic page migration. 

4.1.1. Profiles Gathered from Distributed On-Chip CPU Monitors 

Profiles of page access frequencies by processors in an application running on a cc-

NUMA server can be gathered by using information about the cache or TLB misses 
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by each processor in the system. If the information about the number of cache or TLB 

misses on each page by a processor is known, the access frequency of the page by the 

processor can be approximated. However, for such information to be available, the 

addresses associated with the cache and TLB miss events are needed. 

Many processors have for some time included hardware support to count 

interesting events for performance monitoring. Moreover, they have provided 

mechanisms to trigger an interrupt when a given number of events occur. More 

recently, an increasing number of processors provide the ability to capture the 

addresses involved in performance critical events. For example, the Itanium 2 

processor provides a set of event address registers (EARs) that record the instruction 

and data addresses of data cache misses, the instruction and data addresses of data 

TLB misses, and the instruction addresses of instruction TLB and cache misses[37]. 

Thus, by distributed sampling of the addresses associated with the cache or TLB miss 

events, profiles of page access frequencies by processors can be generated. Moreover, 

since cache miss events are generally distributed throughout the execution and 

provide information on fine grain behavior, profiles of page access frequencies 

gathered from cache miss events may be more representative. Compared to cache 

misses, the number of TLB miss events is generally lower and these events may not 

correspond to the pages that are frequently accessed due to the fact that applications 

tend to keep frequently accessed pages in TLBs. In our research, we investigate the 

use of both cache miss and TLB miss information gathered from on-chip CPU 

hardware. 
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To access and control the hardware monitors, the publicly available 

instrumentation software such as perfmon[36] can be used. Perfmon is a standard 

kernel interface to access the hardware performance monitors available on all modern 

processors. In perfmon, the monitoring unit’s state is encapsulated by a software 

abstraction called context, which is associated with a thread. For multi-threaded 

applications, it is necessary to create one context per thread and bind each application 

thread to a fixed processor. The perfmon interface also supports time based sampling 

and interval sampling where the sampling interval is expressed as a number of 

occurrences of an event. Our experiments in Chapter 3 showed that interval sampling 

produces more representative samples of all events in an application. Hence, we focus 

on interval sampling where samples are taken at fixed event boundaries. 

4.1.2. Profiles Gathered from Valid Bit Information in TLB Entries 

Hardware tries to keep virtual to physical page translation entries of the frequently 

accessed pages in the processor TLBs. That is, the content of the valid TLB entries in 

a processor potentially provides information on the pages that are mostly accessed by 

the processor. Thus, by sampling the content of the TLBs in a processor on a cc-

NUMA server periodically, it is possible to approximate page access frequencies by 

the processor. Similarly, the information from each processor on a cc-NUMA server 

can be combined and page access frequencies by processors can be generated to guide 

page migrations in a dynamic page migration scheme. 

To sample the content of valid TLB entries of a processor, the underlying 

operating system needs to provide a software sampling mechanism. In particular, the 

operating system needs to provide a means to query the list of valid entries and the 
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virtual addresses of the pages for each valid TLB entry. In our research, we assume 

the underlying operating system provides a system call that returns the list of virtual 

page addresses in the valid TLB entries for a given processor.  

4.1.3. Address Translation Counters 

To evaluate the effectiveness of sources of profiles in dynamic page migration, we 

designed a dedicated hardware monitor that gathers accurate page frequencies and 

compared the effectiveness of other sources of profiles with the dedicated monitors. 

 

Figure 7: Information flow in the Address Translation Counters 

The hypothetical hardware feature we use, Address Translation Counters (ATC), 

is a set of additional counters that is included in the TLBs of the processors. In ATC, 

a counter is included for each TLB entry in a processor (Shown in Figure 7) and 

incremented when a virtual to physical address translation is satisfied by the 

corresponding TLB entry. Moreover, when the content of a TLB entry is evicted due 

to a TLB miss or invalidated due to other reasons such as cache coherency operations, 

the counter associated with the TLB entry is cleared. The ATC is included in each 
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processor and will count the number of accesses to the memory pages by the 

processor using the virtual to physical address translations requested by the processor 

while the memory pages are actively accessed. 

Information recorded by the ATC hardware can be gathered in several ways. One 

way is to sample the content of the counters regularly during execution along with the 

virtual page addresses associated with these counters. Another approach is that the 

operating system may provide low-overhead software traps such that when a TLB 

entry in invalidated due to a TLB miss or cache-coherency operation, the content of 

the corresponding ATC counter value and the associated virtual page address can be 

provided to the application (similar to the software TLB miss handler in MIPS 

processors[33]). Lastly, the underlying operating system could include an additional 

field for each page table entry where the TLB entry can be saved at context switches. 

Then, the TLB count information can be gathered via a system call by querying the 

page table content. 

In our research, we assume the underlying operating system provides a system 

call to gather the information recorded by ATC in a given processor. To be used in 

dynamic page migration, the system call needs to return list of virtual addresses 

stored in each TLB entry and its corresponding ATC value. Moreover, for correct 

page access frequencies the counters need to be cleared to prevent repeated 

summation of counter values. Consequently, an application can periodically call the 

system call for each processor in a multiprocessor system and combine the 

information gathered from each processor to generate page access frequencies by 

each processor. 
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4.2. Simulation Framework 

To evaluate the effectiveness of each source of profiles for page access frequencies in 

page migration, we conducted a simulation study using the full system simulator 

Simics [46], which is an efficient system level instruction set simulator. For our 

research, we chose to simulate a Sun Fire 6800 as the target cc-NUMA system. 

Despite its small ratio of local to remote memory latency, it allows us to compare our 

simulation study to the actual page migration scheme in Chapter 3.  

To simulate a target machine on Simics, it is also necessary to install the 

corresponding operating system to run on the simulated machine. We installed the 

Solaris 9 (Generic_117171-07) binaries on the simulated machine. 

Sun Fire systems are built from UltraSparc III processors[14,68]. The memory 

subsystem in UltraSparc III processors includes five caches, four on-chip and one 

external. These caches include an L1 data cache, an L1 instruction cache, a prefetch 

cache, a write cache and an L2 external cache. In addition, the memory management 

unit in UltraSparc III processors includes two data and two instruction TLBs that are 

accessed parallel. In each pair of TLBs, one TLB is smaller and is used to support 

larger page sizes (64K-4M) efficiently. When 8K pages are used, the smaller TLB is 

included as part of the larger TLB. 

By default, Simics does not model any cache system or memory subsystem. It 

uses its own internal memory representation where the memory is always up to date 

with the latest CPU and device transactions[73]. However, the functionality of Simics 

can be extended by user-written modules[72]. Simics provides an interface for users 

to provide modules to observe and modify the behavior of the transactions that go 
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through the memory system. This interface is composed of two different interfaces 

acting at different phases of a memory transaction execution. In particular, the timing-

model interface provides access to a transaction before it is executed (i.e., it has just 

arrived at the memory-space).  The timing model interface can also be used to change 

the timing and the execution of a memory transaction, as well as to modify the value 

of a store going to the memory. The snoop-memory interface provides access to a 

transaction after it has been executed. 

To simulate the memory subsystem of UltraSparc III processors, we both 

modified the already available Simics modules and implemented a new timing 

module. We also implemented a separate module to simulate the on-chip TLBs. 

In addition to memory subsystem, we also implemented a monitoring module for 

the data collection methods we want to evaluate. These include on-chip hardware 

performance monitors to gather cache miss and TLB miss information, the centralized 

Sun Fire Link monitors to gather interconnect transactions, and our hypothetical 

hardware feature ATC to gather page access frequencies. Figure 8 shows the overall 

framework of the memory subsystem model we used in our simulation study. 

The transaction filter in Figure 8 filters the transactions according to whether they 

are memory or device transactions as well as their cacheability status. For our 

simulation, we only focus on cacheable memory transactions. These transactions are 

passed to the type filter, which separates instruction and data accesses and sends them 

to separate L1 caches. Since accesses can cross a cache-line boundary, the line 

splitters are connected before L1 caches to let correctly aligned accesses go through 

untouched whereas unaligned accesses are split in two accesses. 
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Figure 8: Simulation framework for the memory subsystem in each processor 

Simics comes with two different cache models. The g-cache module is the 

standard cache model. It handles one transaction at a time and cache operations are 

performed in order. The cache returns the sum of the stall times reported for each 
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operation. The g-cache-ooo module is a more complex model adapted to Simics with 

micro architectural interface extensions. It handles multiple outstanding transactions 

and keeps track of their current status. g-cache-ooo is the standard cache model for 

Simics out-of-order execution processors[72].  

In this research, we only simulate L1 and L2 caches from the memory subsystem 

due to the difficulty of simulating other caches and their interactions accurately. To 

simulate the L1 caches and unified L2 cache, we modified the g-cache module 

available in Simics distribution. Even though UltraSparc processors are out-of-order 

processors, we used the g-cache module rather than g-cache-ooo for our simulation 

due to fact that cache coherency protocols are only implemented in the g-cache 

module. Moreover, since Sun Fire servers use a modified version of the MESI 

protocol for cache coherency, called MOESI, and the g-cache module implements the 

MESI coherency protocol, we modified the g-cache module to add necessary 

modifications to handle additional states and state transitions in the MOESI protocol. 

To simulate the on-chip TLBs, we implemented a separate Simics module. This 

module is configurable where the number of lines, associativity, page size and 

replacement policy are given via configuration scripts. We also implemented the ATC 

hardware in this module by including additional hardware counters in the TLB entries 

for each locality group in the simulated machine. 

The Page Migration module in Figure 8 implements the dynamic page migration 

algorithm described in Section 3.2. That is, it gathers profiles to guide the page 

migrations via sampling the information from hardware monitors and generates page 

access frequencies. It also triggers page migrations at fixed time intervals. This 
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module is also configurable in the sampling interval for hardware monitors, simulated 

seconds between migrations and the type of hardware monitors and source of profiles 

that will be used for page migration. 

The NUMA-Latency Generator module generates stall times for local or non-local 

access latency for each access request that misses the caches in the memory 

subsystem. This module simulates the actual memory accesses requested during 

application execution including the accesses due cache misses, write-backs due to 

eviction of dirty cache lines, or writes on write-through caches. This module also 

provides information on the locality of each access to the hardware performance 

monitoring unit to measure the percentage of memory access locality during 

application execution. 

4.3. Simulation Experiments 

To investigate the effectiveness of each source of profiles in dynamic page migration, 

we conducted simulation experiments using the OpenMP C implementation of the 

NAS Parallel Benchmark suite. We chose applications with different sizes from A to 

B (moderate to large data set sizes) such that each application would have a similar 

memory footprint. Moreover, we modified the number of iterations in each 

application to keep the simulation time manageable. We compiled the applications 

using Sun’s native compiler, Sun C 5.5 EA2, with optimizations (-O3 -

xopenmp=parallel) on an actual Sun Fire 6800 server and copied them to the 

simulated Sun Fire machine. For all experiments, as the target machine, we booted a 

24-processor Sun Fire 6800 with 12GB of main memory where each locality group 

contains 2GB main memory. The default processors in the simulated machine are 
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75MHz UltraSPARC III. Even though the clock frequency of a simulated processor 

can be set arbitrarily in Simics without any affect on the actual speed of simulation, 

the default frequency is set to a lower value to emulate an interactive system such that 

keyboard and mouse input events in the simulated machine are handled with short 

delays. Since we used interactive mode to set up the simulated machine including 

installing the operating system, copying the compiled executables to the simulated 

disk, we used the default processor settings. 

To quantify the benefits of using each source of profiles on dynamic page 

migration, we ran a series of experiments with and without page migration. For each 

application, we ran the application with dynamic page migration several times 

varying the source of profiles. Additionally, to investigate the impact of accurate page 

access frequencies on the effectiveness of dynamic page migration, we also ran each 

application and migrated pages based on perfect profiles. Perfect profiles are gathered 

by having the simulator use full memory access history for all page references to 

allow us to quantify the cost of the less than perfect profiles produced by our 

sampling techniques. 

For the experiments with page migration, we triggered page migration at every 50 

simulated seconds. Even though we chose migration interval as 5 seconds in our 

dynamic page migration studies on the actual machine, we chose to trigger page 

migrations at every 50 seconds for our simulation study due to the fact that the 

simulated clock cycle is 10 times slower compared to the actual machine. 

For all experiments, we used the same simulation parameters for the simulated 

memory subsystem except we varied the sampling method used to gather profiles 



 

 66 
 

from hardware monitors. Table 7 summarizes the parameters and their values we used 

in our experiments for each source of profiles to generate page access frequencies. 

 
Interconnect 
Transactions 

Cache 
Misses 

TLB 
Misses 

TLB 
Content 

ATC 
Content 

Sampling Method Centralized Distributed 

Sampling Interval 
Every 512 

transactions 
Every 512 

miss events 
Every 16K 

translation events 

Local Latency 225ns 

Non-Local Latency 300ns 

I-TLB 128-entry, 2-way associative, 8K pages 

D-TLB 512-entry, 2-way associative, 8K pages 

L1 D- Cache 64 KB, 4-way associative, 32-byte lines, 2ns hit time 

L1 I-Cache 32KB, 4-way associative, 32-byte lines, 2ns hit time 

L2 Cache 8MB, 2-way associative, 512-byte lines, 16ns hit time 

Table 7: System parameters and their values used in simulation experiments 

4.3.1. Memory Access Locality Experiments with Page Migration 

For each simulation experiment, we measured the percentage reduction in the number 

of non-local memory accesses in the application when memory pages are dynamically 

migrated compared to its original execution. We also measured the total number of 

pages migrated throughout the execution of the application. 

Table 8(a) presents the percentage of non-local memory accesses for the 

applications we tested with and without page migration. The second column presents 

the percentage of non-local memory accesses in the original executions. The next five 

columns present the percentages of non-local memory accesses when applications are 

run with dynamic page migration using different sources of profiles to generate page 

access frequencies. The last column presents the percentage of non-local memory 

accesses using accurate page access frequencies gathered from all actual memory 
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accesses. For each application and source of profiles, Table 8(a) also gives the 

percentage reduction in the number of non-local memory accesses with respect to the 

original execution of the application. 

Like Table 8(a), Table 8(b) presents the number of page migrations triggered 

when applications are run with dynamic page migration using different sources of 

profiles to generate page access frequencies. However, for each application, the 

number in parenthesis in each cell in Table 8(b) gives the ratio of the number of page 

migrations triggered with respect to the number of page migrations triggered using 

perfect profiles. We present these ratios for a better comparison of the number of 

page migrations triggered for different source of profiles. 

At first glance, it looks like dynamic page migration is effective in reducing the 

number of non-local memory accesses independent of the source of profiles used to 

gather page access frequencies. The one exception is that the number of non-local 

memory accesses is increased for LU only when TLB miss information is used. 

Overall, the reduction in the number of non-local accesses ranged from -9.6% to 

87.3%. Moreover, it appears that the behavior of the different data collection 

techniques can broadly be grouped in to three different groups based on the number 

of non-local memory accesses and the number of page migrations triggered. In 

particular, the results show that using interconnect transactions performs similar to 

using cache miss information, and using ATC content performs similar to using TLB 

content, and using TLB miss information performs poorly compared to other sources 

of profiles. 



 

 68 
 

 

% of Non-Local Accesses 
(% Reduction compared to the Original Execution) 

 Orig.  
% Non- 
Local 

Accesses 
Intercon. 

Trans. 
Cache 
Misses 

TLB 
Misses 

TLB 
Content 

ATC 
Content 

Perfect 
Profiles 

BT-A 42.0 
29.4 

(30.1) 
29.1 

(30.9) 
36.9 

(12.1) 
30.7 

(26.9) 
28.2 

(33.0) 
28.1 

(33.3) 

CG-B 79.5 
13.7 

(82.7) 
11.9 

(85.0) 
26.6 

(66.5) 
11.8 

(85.2) 
11.3 

(85.8) 
11.7 

(85.3) 

FT-B 77.0 
66.5 

(13.6) 
66.0 

(14.3) 
71.9 
(6.6) 

64.2 
(16.7) 

64.0 
(16.9) 

63.8 
(17.1) 

LU-B 42.5 
35.5 

(16.5) 
34.3 

(19.3) 
46.6 
(-9.6) 

42.2 
(0.8) 

41.1 
(3.3) 

33.5 
(21.3) 

MG-B 80.6 
14.8 

(81.7) 
12.9 

(84.0) 
46.3 

(42.6) 
10.3 

(87.2) 
10.2 

(87.3) 
10.0 

(87.6) 

SP-B 69.0 
54.0 

(21.7) 
53.8 

(22.0) 
62.6 
(9.3) 

55.8 
(19.1) 

54.5 
(21.0) 

52.9 
(23.4) 

(a) Percentage of non-local accesses for different sources of profiles 

Number of Page Migrations Triggered 
(Ratio wrt. Perfect Profiles) 

 
Intercon. 

Trans. 
Cache 
Misses 

TLB 
Misses 

TLB 
Content 

ATC 
Content 

Perfect 
Profiles 

BT-A 
34,529 
(2.20) 

31,422 
(2.00) 

36,472 
(2.32) 

17,298 
(1.10) 

14,122 
(0.90) 

15,730 

CG-B 
18,828 
(0.97) 

18,920 
(0.98) 

18,524 
(0.96) 

19,823 
(1.02) 

19,308 
(1.00) 

19,344 

FT-B 
190,313 

(1.05) 
214,605 

(1.18) 
98,320 
(0.54) 

156,180 
(0.86) 

155,578 
(0.86) 

181,632 

LU-B 
22,881 
(2.23) 

21,177 
(2.07) 

19,492 
(1.90) 

8,589 
(0.84) 

4,897 
(0.48) 

10,241 

MG-B 
51,361 
(1.06) 

52,435 
(1.08) 

34,009 
(0.70) 

49,102 
(1.01) 

48,552 
(1.00) 

48,397 

SP-B 
35,420 
(1.43) 

34,453 
(1.39) 

40,571 
(1.64) 

25,035 
(1.01) 

25,233 
(1.02) 

24,814 

(b) Number of page migrations triggered for different sources of profiles 

Table 8: Results of memory locality experiments for different sources of profiles 
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Table 8(a) shows that when perfect profiles are used, dynamic page migration 

reduces the number of non-local memory accesses in the applications by 17.1-87.6%. 

Table 8(a) also shows that dynamic page migration using interconnect transactions 

reduces the number of non-local memory accesses by 13.6% to 82.7%. For some 

applications the reduction in the number of non-local memory accesses is slightly 

lower compared to the reduction percentages presented in Chapter 3. This is mainly 

due the fact that we modified the number of iterations in the applications to obtain 

manageable simulation times. Most of the page migrations are triggered early in the 

execution of these applications and during the rest of the execution they benefit from 

these page migrations. Thus, by reducing the number of iterations in an application, 

the application does not fully benefit from dynamic page migrations. However, Table 

8(a) also shows that the reduction using interconnect transactions are comparable to 

using perfect profiles, which indicates that using interconnect transactions in dynamic 

page migration is effective in approximating the actual page access frequencies by 

processors. 

Table 8 (a) and (b) show that using cache miss information in dynamic page 

migration performs slightly better compared to using interconnect transactions in 

terms of the reduction in the number of non-local memory accesses and the number of 

page migrations triggered. For the majority of applications, using cache miss 

information reduces the number of non-local memory accesses slightly more and 

triggers slightly fewer page migrations compared to using interconnect transactions. 

Moreover, the results show that using cache miss information performs closer to 

using perfect profiles compared to using interconnect transaction in terms of the 
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reduction in the number of non-local memory accesses. Thus, by distributed sampling 

of cache miss information from on-chip CPU hardware monitors in a multiprocessor 

server, dynamic page migration can accurately generate page access frequencies in 

the applications and can be as effective as sampling interconnect transactions via 

centralized hardware counters. 

Table 8 (a) and (b) also show that using TLB and ATC content in dynamic page 

migration perform similar and they are comparable in terms of the reduction in the 

number of non-local memory accesses to using cache miss and interconnect 

transaction information for all applications except LU. In LU, they are not as 

effective in reducing the number of non-local memory accesses even though they 

trigger significantly fewer page migrations. In terms of the number of page 

migrations triggered, using TLB and ATC content tend to trigger fewer page 

migrations compared to using cache miss information and interconnect transactions. 

However, for CG and MG where dynamic page migration is highly effective, they 

trigger comparable number of page migrations. 

Table 8 (a) and (b) also show dynamic page migration using TLB miss 

information is not as effective as other sources of profiles. Even though using TLB 

miss information triggers fewer migrations, it is not as effective in reducing the 

number of non-local memory accesses because the page access frequencies gathered 

from TLB miss information is not representative of page access frequencies in the 

applications. Moreover, dynamic page migration using TLB miss information 

increases the number of non-local memory accesses for LU by around 10%. 
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Overall, Table 8 (a) and (b) show that the sources of profiles other than using 

TLB miss information perform similar in terms of the reduction in the number of non-

local memory accesses. More importantly, they show that cache miss profiles 

gathered from on-chip hardware monitors, which are typically available in current 

micro-processors, can be effectively used to guide dynamic page migration in an 

application. This is particularly encouraging since such on-chip counters are included 

in many recent processors, and instrumentation software to access these counters are 

publicly available. Thus using cache miss information via distributed sampling in 

dynamic page migration is an easy and effective approach. Even though using TLB 

and ATC content performs slightly better for some applications, their use requires 

new hardware and new system calls in the operating. 

4.3.2. Case Study: Memory Access Locality in MG 

To further investigate how dynamic page migration works using different sources of 

profiles to generate page access frequencies, we present the change in memory access 

locality versus time during execution of MG (size B). We also present the number of 

page migrations triggered versus time for MG. We chose to present the results for 

MG due to the fact that both our actual dynamic page migration approach in Chapter 

3 and our simulation study have shown migration to be most effective for MG. 

Figure 9 presents the number of page migrations triggered versus time in MG for 

experiments with dynamic page migration using different sources of profiles. 

Similarly, Figure 10 presents the percentages of non-local memory accesses versus 

time in MG with dynamic page migration using different sources of profiles as well 

as without migration. We measured the percentage of non-local memory access and 
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the number of page migrations after each page migration interval, thus the x-axis in 

both figures is labeled with increasing order of migration interval. 
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Figure 9: Number of migrations triggered by time in MG 

Figure 9 shows that when MG is run with dynamic page migration using sources 

of profiles other than TLB miss information, the majority of the page migrations are 

triggered early in the execution. Using TLB and ATC information triggers more 

migrations during the first seven migration intervals compared to using interconnect 

transactions and cache miss information but the latter sources of profiles trigger 

slightly more migrations in total. Overall, the number of migrations triggered in MG 

is comparable for all sources of profiles other than using the TLB misses. Dynamic 

page migration using TLB miss information triggers page migrations throughout the 

execution and triggers significantly fewer overall page migrations. 

More importantly, Figure 9 shows that using profiles other than TLB miss 

information triggers a similar number of page migrations compared to using perfect 

profiles. However, using TLB and ATC content matches the behavior of using perfect 

profiles slightly better compared to using other sources of profiles. 
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Figure 10 shows that the percentage of non-local memory accesses in the original 

execution of MG increases steeply during the first third of the execution and increases 

slowly during the rest of execution. Figure 10 also shows that when run with dynamic 

page migration, the percentage of non-local memory accesses starts to decrease after 

the third migration interval for all sources of profiles except using TLB miss 

information. Using TLB and ATC content reduced the number of non-local accesses 

more during first couple of migration intervals compared to using cache miss and 

interconnect transactions. However, towards the end of the execution the difference in 

percentage of non-local memory accesses is reduced. Overall, using TLB and ATC 

content matches to the behavior of using perfect profiles slightly better in MG. Unlike 

other sources of profiles, Figure 10 shows that using TLB information is not as 

effective for MG and the percentage of non-local memory accesses starts to decrease 

later during execution compared to other sources of profiles, which results in 

significantly smaller reduction in the number of non-local memory accesses. 
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Figure 10: Percentage of non-local memory accesses by time in MG 
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Overall, the figures show that using TLB content and ATC content is initially 

more effective in reducing the number of non-local memory accesses in MG 

compared to using cache miss information and interconnect transactions. However, 

by the end of execution, all sources of profiles except TLB miss information provide 

comparable information. 

4.3.3. Execution Times 

To investigate the impact of the reduction in the number of non-local memory 

accesses in the execution times of the applications, we also measured the total number 

cycles spent to execute each application using different sources of profiles in the 

simulator. For each simulation experiment, we measured the total number of cycles 

spent to satisfy memory accesses. 

Our simulation experiments showed that even though the total number of cycles 

to satisfy memory accesses is reduced by up to 16% for the applications, the impact 

of this reduction on the total number of cycles to execute the applications was not 

significant (typically about a 0.5% improvement). This is due to the fact that even 

though our simulator can simulate instructions executed by an application accurately, 

it lacks the ability to properly simulate the contention for the memory units. 

Moreover, in such a simulation environment it is also difficult to accurately simulate 

simultaneous out-of-order issue of multiple instructions by multiple processors. Thus, 

since our workload exhibits very low cache miss behavior, the performance 

improvement in actual memory accesses did not have a significant impact on the 

overall performance of the applications when the simulator executes one instruction 

at a time. We believe this simulation limitation contributes to conclusions reached by 
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previous researches that indicated limited benefit to page migration in cc-NUMA 

systems[11,50,71]. 

To verify this claim, we conducted experiments where we ran MG (size B) under 

different page placement scenarios on an actual machine to isolate the impact of 

memory contention and the impact of the reduction in the number of non-local 

memory accesses on its execution performance. 

Originally, almost all pages in MG are placed in to a single memory unit which 

results in 80.5% of non-local memory accesses in its execution. Since the majority of 

the pages are placed on a single memory unit, the contention to this memory unit 

during execution is very high. To investigate the impact of memory contention on the 

execution performance of MG, we ran MG under two different page placement 

settings on an actual Sun Fire 6800 server. In one setting, its memory pages are 

placed uniformly on all memory boards and in the other setting, all of its pages are 

placed in a single memory unit. We measured the percentage of non-local memory 

accesses in MG for each run using the Sun Fire Link counters and the fraction of non-

local memory accesses remained around 80%. Our experiments show that by placing 

the pages in MG uniformly to all memory boards, the execution performance of MG 

improved by 10.2% compared to its execution where all pages are placed in a single 

memory unit. This indicates that simply reducing the memory contention to a single 

memory unit improved execution performance of MG improved by 10.2%. Thus, the 

lack of ability to accurately capture such memory contention in the simulated 

machine partially explains why our simulation experiments did not yield 

improvement in the total number of cycles executed by the applications. 
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To investigate the impact of the reduction in the number of non-local memory 

accesses on the execution performance, we also ran MG on the actual Sun Fire server 

and placed all pages at their preferred locations at the beginning of the execution. We 

did this placement based on the data gathered using our dynamic page migration 

scheme described in Chapter 3. Our experiments showed that the execution 

performance of MG improved by 10.3% when the pages are placed in their preferred 

locations compared to when all pages are placed uniformly over all memory units. 

This improved placement resulted in an 81% reduction in the number of non-local 

memory accesses. The difficulty to accurately simulate the actual memory subsystem 

and latency hiding in the instruction executions using in-order cache modules in the 

simulator also partially explains why our simulation experiments did not yield an 

improvement in the total number of cycles executed in the applications despite the 

reduction in the number of non-local memory accesses in the applications. 

To better evaluate the impact of the reduction in the number of non-local memory 

accesses on the execution times of the application, we adopted a different approach. 

In this approach, during simulation experiments, we recorded the actual page 

migrations triggered in each simulation experiment in to a log file and used the log 

file to trigger page migrations on an actual machine using our dynamic page 

migration scheme described in Chapter 3. To do this, we modified our page migration 

system not to gather profiles from hardware monitors but instead use log files 

generated during simulation to guide page migrations. For each application and 

source of profiles, we recoded the page migrations and ran the application on an 
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actual Sun Fire 6800 server where page migrations are triggered at fixed time 

intervals using the recoded migration entries. 

Table 9 presents the percentage improvement in the execution times of the 

applications we tested with and without page migration on an actual Sun Fire 6800 

server compared to their original execution times. Starting with the second column, 

the next five columns present the percentage improvement in the applications when 

they are run with dynamic page migration using different sources of profiles to 

generate page access frequencies. The last column presents the percentage 

improvement using accurate page access frequencies gathered from all actual memory 

accesses. For each application and source of profiles in Table 9, the positive 

improvements in the execution performance of applications are shown in bold. 

% Improvement in Execution Times compared to Original  
 Intercon. 

Trans. 
Cache 
Misses 

TLB 
Misses 

TLB 
Content 

ATC 
Content 

Perfect 
Profiles 

BT-A -1.04 -0.76 -1.70 0.22 0.83 0.89 
CG-B 8.35 8.38 6.51 8.53 8.63 8.48 
FT-B -0.22 -1.82 -0.08 -2.35 -1.25 -1.46 

LU-B -0.79 -1.01 -0.85 -0.08 0.36 0.26 
MG-B 16.47 15.84 13.06 18.09 18.28 17.97 
SP-B 5.47 5.77 2.77 7.11 7.55 7.15 

Table 9: Improvement in execution performance for different sources of profiles 

At first glance, Table 9 shows that dynamic page migration is effective at 

improving the execution performance of applications CG, MG and SP independent of 

the source of profiles used to gather page access. Dynamic page migration slightly 

slowed down the execution of FT for all sources of profiles and slowed down the 

execution of BT and LU for profiles other than TLB and ATC information. The 

improvement in runtime for all applications ranged from -1.82% to 18.28%. 
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Moreover, similar to Table 8 (a) and (b), Table 9 shows that the behavior of dynamic 

page migration can broadly be grouped in to three different groups in terms of the 

improvement in the execution times of the applications. That is, Table 9 shows that 

using interconnect transactions performs similar to using cache miss information, and 

using ATC content performs similar to using TLB content, and using TLB miss 

information performs differently compared to other sources of profiles. Also with our 

ATC hardware, we were able to improve the execution times of 5 of 6 applications 

versus 3 of 6 for our original centralized monitors. 

Table 9 shows that when perfect profiles are used, dynamic page migration 

improves the execution performance of the applications by -1.46-17.97%. Table 9 

shows that for applications CG, MG and SP, dynamic page migration improves their 

execution performance independent from the source of profiles used compared to 

their original execution. The improvement is up to 18.28% for MG. Moreover, for 

these applications, using TLB content and ATC information performs slightly better 

compared to using interconnect transactions and cache miss information. This is due 

to the fact that using TLB content and ATC information tend to trigger fewer page 

migrations, which results in less migration overhead. More importantly, for these 

applications using cache miss information performs comparable if not better than 

using interconnect transactions. The minor differences for these applications when 

interconnect transactions and cache misses are used are due the differences in the 

reduction of the number of non-local memory accesses and the number of page 

migrations triggered during the execution of these applications. 
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Table 9 shows that using TLB content and ATC information performs slightly 

better for the applications BT and LU compared to using other profiles. This is due to 

the fact the for these applications dynamic page migration triggers fewer page 

migrations compared to other profiles while producing a similar reduction in the 

number of non-local memory accesses. This is due the fact that the overhead due 

migration of pages in not as much when TLB content and ATC information is used 

for these applications. 

Table 9 shows that for FT none of the profiles was effective in improving the 

execution performance. This due to the fact that the reduction in the number of non-

local memory accesses for FT is only around 15% and the overhead introduced by 

migrations of any pages did not overcome the benefits due to improvement in 

memory access locality of FT. 

Table 9 also shows that even though using TLB miss information triggers fewer 

migrations, it is not as effective in reducing the number of non-local memory accesses 

indicating that the page access frequencies gathered from TLB miss information is 

not representative of page access frequencies in the applications. 

4.4. Summary 

In this chapter, we evaluated the effectiveness of using of several potential sources of 

hardware profiles in dynamic page migration and compared their effectiveness to 

using profiles from centralized hardware monitors. In particular, we investigated the 

effectiveness of using profiles gathered from on-hip CPU monitors, the content of the 

processor TLBs and a hypothetical hardware feature designed specifically for 

dynamic page migration. 
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Our experiments showed that the reduction in the number of non-local memory 

accesses in the applications ranges up to 87.3% compared to not using page 

migration, which resulted in up to an 18.3% improvement in execution time. 

Moreover, our experiments showed that using interconnect transactions performs 

similar to using cache miss information, and using ATC content performs slightly 

better still. However, using TLB miss information performs poorly compared to the 

other sources of profiles. 

More importantly, our experiments showed that using cache miss information 

performs comparable to using profiles gathered from hardware monitors specifically 

designed for page migration as well as perfect profiles constructed from all actual 

memory accesses. That is, our experiments demonstrated that cache miss profiles 

gathered from distributed on-chip hardware monitors, which are typically available in 

current micro-processors, can be effectively used to guide dynamic page migrations 

in an application. 
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Chapter 5: Inadequacy of Page Level Optimization 

The Java Programming Language is gaining popularity on multiprocessor servers[58]. 

Moreover, in recent years, increasing interest is being shown in the use of Java 

Programming Language for client-server computing. Java server applications often 

need to perform several tasks at the same time to satisfy the requests of several client 

applications. To facilitate parallelism, server applications are usually multithreaded. 

Due to the large memory requirements and multi-threaded nature of the Java server 

applications, they are gaining importance as a workload for commercial shared-

memory multiprocessor servers. 

Prior research[43,50,71,75] has shown  that dynamic page placement techniques 

on cc-NUMA systems are most effective for applications with regular memory access 

patterns, such as scientific applications. In these applications, large static data arrays 

that span many memory pages are divided into segments and distributed to multiple 

computation nodes where only one or a few computation nodes accessing each data 

segment most. 

However, unlike scientific applications, Java programs tend to make extensive use 

of heap-allocated memory and typically have significant pointer chasing [58]. Thus, 

unlike scientific applications, dynamic page placement techniques may not be as 

beneficial for Java applications since they allocate many objects, with different access 

patterns, on the same memory page. Since the page placement mechanism used in the 

operating system is transparent to the standard allocation routines, the same memory 

page can be used to allocate many objects that are accessed by different processors. 
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Due to Translation Lookaside Buffer size issues, cc-NUMA servers tend to use super 

pages of several megabytes, which further increases the likelihood of allocating 

objects that have different access patterns on the same memory page. As a result, to 

better optimize memory access locality in Java applications running on cc-NUMA 

servers, heap objects should be allocated or moved so that objects that are mostly 

accessed by a processor whose memory is local to that processor. 

In this chapter, we first evaluate the potential of existing well-known locality 

optimization techniques and present the results of a set of experiments where we 

applied dynamic page migration to a Java server application. In our experiments, we 

used the dynamic page migration scheme described in Chapter 3. 

We next introduce an approach to measure the memory behavior of Java server 

applications at the object level. Our approach is based on source code instrumentation 

of the underlying virtual machine to gather information about the heap allocations and 

sampling the address transactions during the execution of the application via 

hardware performance monitors.  

Lastly, we present the results of a simple optimization technique that tries to 

reduce the number of non-local memory accesses in the young generation using the 

madvise system call in Solaris 9. We used the move-on-next-touch feature of the 

madvise system call on the pages in the young generation to move the pages local to 

the processor that touches them next. 

5.1. Software Components 

In this section, we describe the software components used in our research. We first 

briefly describe the original memory management used in the Hot Spot Server 



 

 83 
 

VM[67]. We next describe the SPECjbb2000 benchmark[64] we used as a typical 

server application to evaluate our techniques described in this chapter. 

5.1.1. Java HotSpot Server VM (version 1.4.2) 

It is commonly accepted that the majority of the objects in Java applications die 

young[40]. That is, most of the objects can be reclaimed shortly after being allocated. 

For instance, Iterator objects are often alive for the duration of a single loop. Some 

objects however do live longer. For instance, there are typically objects allocated at 

program initialization and they live until the program terminates. Between these two 

extremes, there are objects that live for the duration of some intermediate 

computation. Even though distribution of objects with different lifetimes vary from 

one application to another, most applications contain many short-lived objects[67].  

For efficient garbage collection, the Java HotSpot VM exploits the fact that a 

majority of objects die young[67]. To optimize garbage collection, heap memory is 

managed in generations, which are memory pools holding objects of different ages 

(Shown as in Figure 11). Each generation has an associated type of garbage collection 

that can be configured to make different time, space and application pause tradeoffs. 

 

Figure 11: The default memory layout of HotSpot VM 
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Garbage collection happens in each generation when the generation fills up. 

Objects are initially allocated in the young generation. Because of infant mortality, 

most objects die in the young generation. When the young generation fills up it 

causes a minor collection. Minor collections are optimized so a young generation full 

of dead objects is collected very quickly. After surviving several rounds of minor 

garbage collections, surviving live objects are migrated to the tenured space. When 

the tenured generation needs to be collected, there is a major collection, which is 

often much slower because it involves all live objects on the heap. 

In the Java HotSpot VM version 1.4.2 there are three additional garbage collectors 

besides the default garbage collector. Each is a generational collector that has been 

optimized for either the throughput of the application or low garbage collection pause 

times. The three collectors are named throughput, concurrent and incremental 

collectors. The throughput collector uses multiple threads to execute a minor 

collection and so reduces the serial execution time of the application. A typical use of 

the throughput collector is in an application that has a large number of threads 

allocating objects. In such an application, it is often the case that a large young 

generation is needed for fast allocation of many objects. 

The throughput collector uses copying (sometimes called scavenge) for the minor 

collections such that it efficiently moves objects between two or more generations 

using multiple garbage collection threads.  The source generations are left empty, 

allowing the remaining dead objects to be reclaimed quickly. For major collections, 

however, it uses a mark-compact garbage collection algorithm to allow generations to 
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be collected in place without reserving extra memory. The major collections are done 

by a single VM thread and are significantly slower than minor collections. 

5.1.2. SPECjbb2000 Benchmark 

The SPECjbb2000 (Java Business Benchmark) is a benchmark for evaluating the 

performance of servers running typical Java business applications[64]. The 

SPECjbb2000 represents an order processing application for a wholesale supplier 

with multiple warehouses. This benchmark loosely follows the TPC-C specification 

for its schema, input generation, and transaction profile. SPECjbb2000 replaces 

database tables with Java classes and data records with Java objects. SPECjbb2000 

does no disk I/O.  

The SPECjbb2000 runs in a single JVM and emulates a 3-tier system. The middle 

tier, which includes business logic and object manipulation, dominates the other tiers 

of the system. Clients are replaced by driver threads with random input to represent 

the first tier. The third tier is represented by binary trees rather than a separate 

database and database storage is implemented using in-memory binary trees. 

There is a one-to-one mapping between warehouses and threads, plus a few 

threads for SPECjbb2000 and JVM functions. A "point" represents a two-minute 

measurement at a given number of warehouses. A full benchmark run consists of a 

sequence of measurement points with an increasing number of warehouses (and thus 

an increasing number of threads). The benchmark prints a metric as the numerical 

representation of the performance of the system besides the metric for each number of 

warehouses. The metric used is the throughput in terms of transactions per second. 
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We chose to use SPECjbb2000 for our measurements to be able to isolate the 

impact of our optimization techniques on the memory performance of typical Java 

server applications. An alternative benchmark would be the SPECjAppServer[63] 

benchmark. However, this benchmark tests performance for a representative J2EE 

application and each of the components that make up the application environment, 

including hardware, application server software, JVM software, database software, 

JDBC drivers, and the system network[63]. As such, its performance depends on 

many components rather than the memory subsystem. 

5.2. Optimizing with Dynamic Page Migration 

Prior to evaluating our new object centric optimization techniques, we quantify the 

impact of existing optimization techniques on the memory access locality of Java 

server applications. Such quantification enables us to compare the effectiveness of 

specialized techniques with respect to a more general technique and to verify the need 

for such specialized techniques. 

As a general locality optimization technique, we choose dynamic page migration 

since this technique has been studied extensively and is known to yield performance 

improvements for scientific applications running on cc-NUMA servers. For our 

experiments, we use our dynamic page migration scheme with the same parameter 

values we used for the experiments described in Chapter 3. 

To quantify the impact of dynamic page migration on memory access locality of 

SPECjbb2000, we ran SPECjbb2000 for 6, 12, 18 warehouses with and without 

dynamic page migration. For each number of warehouses, we counted the number of 

non-local memory accesses and measured the percentage reduction in the number of 
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non-local memory accesses due to dynamic page migration. We also measured the 

percentage improvement in the throughput with dynamic page migration. 

Table 10 presents the percentage reduction in the total number of non-local 

memory accesses when dynamic page migration is used. The second column gives 

the number of page migrations triggered. The third column gives the percentage of 

non-local memory accesses without page migration and the fourth column shows the 

percentages with page migration. The fifth column lists the percentage reduction in 

the number of non-local memory accesses when page migration is used. The sixth 

column gives the performance improvement in the throughput. 

Non-local  Memory Accesses 
# of 

Warehouses 
# of 

Migrations w/o 
Migration 

with 
Migration 

% 
Reduction 

% 
Improvement 

6 69,796 72.0 % 52.3 % 27.4 % -2.8 % 

12 145,607 77.0 % 58.1 % 24.5 % -3.4 % 
18 165,794 77.5 % 61.3 % 20.9 % -3.1 % 

Table 10: Performance improvement due to page migration in SPECjbb2000 

Table 10 shows that running SPECjbb2000 with dynamic page migration, the 

number of non-local memory accesses are reduced around 25% for all configurations 

compared to not using dynamic page migration. Moreover, it shows that the reduction 

percentage decreases as the number of warehouses increases due to increase in the 

sharing of objects among warehouses. Table 10 also shows that dynamic page 

migration was not able to improve the throughput despite the reduction in non-local 

accesses. Instead, dynamic page migration reduced throughput around 3% since the 

reduction in non-local accesses did not overcome the overhead introduced by 

migrating many pages. 
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To investigate the page placements with and without page migration, we also ran 

SPECjbb2000 when page migration GUI is enabled. Figure 12 shows the snapshots of 

page migration GUI presenting the locations of the virtual pages in SPECjbb200 in 

terms of memory units in the underlying CC-NUMA server. Figure 12(a) presents the 

page locations when page migration is not used, where as Figure 12(b) presents the 

locations of pages when page migration is used. 

  
(a) (b) 

Figure 12: Page placements in SPECjbb2000 without and with page migration 

Figure 12(a) shows that when SPECjbb2000 runs without page migration, its 

pages are placed to the memory units in a finer grained fashion where small 

sequences of pages are placed together in memory units. This is due to the fact that 

HotSpot VM uses thread local allocation buffers where each thread is provided a 

segment of memory to allocate its objects from when space is required. Moreover, 

unlike scientific applications, Figure 12(b) shows that dynamic page migration was 
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not effective in accurately migrating pages local processors accessing those most. 

More importantly, Figure 12(b) shows that number of migrations triggered increases 

significantly throughout the execution. We suspect this is due to two reasons; First, 

the young generation in the Java heap is reused after every garbage collection 

resulting in pages changing their access patterns. Second, objects that have different 

access patterns are allocated in the same memory page. 

Overall, Table 10 and Figure 12 show that unlike scientific applications where the 

reduction in the number of non-local memory accesses can be as much as 90%, 

dynamic page migration was not as effective in reducing the number of non-local 

memory accesses for SPECjbb2000.  Instead, to better optimize memory access 

locality for this type of workload on a cc-NUMA server, we believe object level 

migration is needed. 

5.3. Inadequacy of Page Level Optimization 

Java programs tend to make extensive use of heap-allocated memory and typically 

have significant pointer chasing. Since typical object sizes are much smaller 

compared to the commonly used memory page sizes, Java applications are likely to 

allocate many objects in the same memory page. Moreover, if an application 

uniformly accesses the objects in a page, a page level memory locality optimization 

technique may not be as effective in reducing the number of non-local memory 

accesses to the page. To investigate whether page level optimization techniques, such 

as dynamic page migration, are too coarse grained to be effective in reducing the 

number of non-local memory accesses in Java server applications, it is necessary to 

measure the memory behavior of these applications at the object level. In this section, 
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we introduce a technique to measure the memory access behavior of server 

applications at object granularity and present result of our experiments where we 

measured the memory behavior of SPECjbb2000 benchmark. 

5.3.1. Measuring Memory Access Locality at Object Granularity 

To gather information about the object allocations by a Java application and the 

internal heap allocations required by the virtual machine, we modified the source 

code of the HotSpot VM. For each heap allocation, we inserted constructs to record 

the type of the allocation, the address and size of the allocation and the requestor 

thread. To capture the changes in the addresses during garbage collection, we also 

modified the source code of garbage collection modules in the HotSpot VM. For each 

surviving object, we record the new and the old addresses of the object. 

We only instrument object allocations that survive one or more garbage 

collections. During each garbage collection, we map the newly surviving objects back 

to the corresponding original object. Since most objects die without surviving a 

garbage collection, we eliminate overhead due to very short lived objects. 

We used the Sun Fire Link monitors to sample the address transactions during the 

execution of the application and later associate those transactions with the 

corresponding objects. Even though the information collected by the hardware 

monitors is sampled and incomplete, it provides sufficiently accurate profiling 

information. More importantly, since the monitors are implemented in hardware 

level, they neither interfere with the memory behavior of the application nor 

introduce significant overhead. 
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Our memory access locality measurement algorithm is a two phase algorithm. 

During the execution phase, we run the application on the modified virtual machine to 

gather information about the heap allocations and to sample the address transactions 

via hardware monitors. At the end of the execution phase, we generate a trace of heap 

allocations and memory accesses by the processors. In the post-processing phase, we 

process the generated trace and report measurement results. 

We first instrument the executable of the virtual machine at the start of the main 

function to create an additional helper thread for sampling the address transactions. 

We use Dyninst[9] to insert the instrumentation code. Moreover, to eliminate 

perturbation of sampling on the address transactions, we bind the helper thread to 

execute on a separate processor that does not run any of the threads in the application. 

The helper thread initializes some instrumentation structures and samples address 

transactions via the Sun Fire Link monitors for the remainder of the run. 

Our algorithm divides the execution of Java applications into distinct intervals. 

We refer to the time period from the start of a garbage collection until its termination 

as garbage collection interval and the time period between two consecutive garbage 

collections as execution interval. 

We do not sample address transactions during garbage collection intervals since 

current virtual machines are engineered to have a small memory footprint that would 

likely not have a significant impact on the memory behavior of the applications. To 

associate address transactions with heap allocations during the post-processing phase 

of our algorithm, we need to store the order information for both address transactions 
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and allocation records. Thus, we use the index of the last sampled address transaction, 

which is maintained by the helper thread. 

The post-processing phase combines the allocation records and address 

transactions recorded during each execution interval and sorts them according to the 

order they are requested during the execution. It then associates the address 

transactions with allocation records generated during the same execution interval. If a 

transaction is not associated with an allocation record in the execution interval being 

processed, the post processing phase tries to associate the same transaction with an 

allocation record that was recorded during an earlier execution interval. 

5.3.2. Measurement Experiments 

We now present the results of experiments we conducted to measure the memory 

access locality at the object level for SPECjbb2000 running on the HotSpot Server 

VM. During our experiments, we observed that SPECjbb2000 exhibits similar 

memory access locality regardless of the number of warehouses. Hence, we only 

present the results of SPECjbb2000 for 12 warehouses. In these experiments, we 

sampled the address transactions every 512 transactions. 

Prior to describing the results of experiments, we briefly discuss the execution 

overhead and perturbation in SPECjbb2000 introduced by our measurements. The 

results of our experiments show that the throughput of SPECjbb2000 is reduced by 

3% due to our source code instrumentation of HotSpot VM. In addition, we observed 

that 0.08% percent of all address transactions sampled are associated with the 

additional buffers we used to store allocation records and sampled transactions. Thus, 
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our measurement has neither a significant impact on the execution performance nor a 

significant perturbation on the memory behavior of SPECjbb2000. 

Our measurement technique gathered around 10 million allocation records during 

the execution of SPECjbb2000 with 12 warehouses. In addition, it took around 33 

million samples from the address transactions in the system interconnect. The post-

processing phase of our technique associated 97.4% of the samples taken with an 

allocation. That is, 2.6% of all samples taken were not associated with any allocation 

during the execution. The majority of the unassociated address transactions fall into 

the code space of the HotSpot VM. 

Memory Accesses Non-Local Accesses 
Allocation Type 

# of 
Allocations Count % Count % 

thread local buffer-TLAB 85,351 11,490,677 34.5 9,632,456 83.8 

object 9 1 0.0 0 0.0 

array 18 159 0.0 3 1.9 

large array 1 224 0.0 0 0.0 

permanent object 34,907 220,596 0.7 179,899 81.6 

permanent array 9,516 15,593 0.0 11,433 73.3 

scavenge survivor move 7,376,785 435,170 1.3 354,129 81.4 

scavenge old move 602,940 1,849,777 5.6 1,732,677 93.7 

compact move 1,932,844 14,628,184 43.9 12,107,329 82.8 

active table 1 17,113 0.1 13,259 77.5 

code cache  1 3,511,678 10.5 2,821,164 80.3 

stack 27 125,564 0.4 102,154 81.4 

memory chunks 249 35,644 0.1 18,970 53.2 

jni handles 86 65,938 0.2 65,673 99.6 

Table 11: Results for memory behavior of SPECjbb2000 with 12 warehouses 

Table 11 presents detailed results of our experiments. In the second column, it 

gives the number of allocation records gathered from each type of heap allocation. 

The third and fourth columns give the number of memory accesses associated with 
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the heap allocations for the corresponding allocation type and the percentage of the 

associated transactions among all transactions. The fifth column gives the number of 

non-local accesses, and the sixth column presents the percentage of non-local 

memory accesses for each allocation type. Table 12 presents the results for associated 

transactions presented in Table 11 for each heap segment in Java heap. 

Table 11 shows that the majority of allocation records we recorded were due to 

garbage collection of surviving objects. It also shows that there are only a few heap 

allocations for internal data structures used by the virtual machine itself. More 

importantly, Table 11 shows that accesses to heap allocated objects are mainly due to 

the Thread Local Allocation Buffers (TLAB) allocated from the eden space of the 

Java heap and the surviving objects moved into old generation during garbage 

collection. TLABs are the thread-local storage used by the threads for fast object 

allocations in the young generation. 

Memory Accesses 
Java Heap Section 

Count 
% of All 
Accesses 

%  
Non-
Local 

Young Generation 11,926,231 35.8 83.7 

Eden Space 11,389,586 34.2 83.8 

Survivor Spaces 536,645 1.6 82.7 

Old Generation 16,477,990 49.5 84.0 

Permanent Generation 236,189 0.7 81.0 

Internal Data Structures 3,755,937 11.3 80.4 

Table 12: Memory activity per Java heap region 

Table 11 and Table 12 show that around 12% of accesses are associated with the 

internal structures and permanent allocations by the virtual machine and 10% of these 

accesses are due to the code cache used for interpreter and Java method codes. That 
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is, even though the HotSpot VM contributes to the memory behavior of the 

SPECjbb2000, its contribution is not significant. 

Overall, these results show that Java server applications are good candidates for 

memory locality optimizations due to the high percentage of non-local memory 

accesses. They also show that the memory behavior of SPECjbb2000 is mostly 

defined by the heap allocations and memory accesses it requested and the memory 

behavior of the Java virtual machine is not significant. Thus, locality optimization 

techniques that focus on optimizing the memory behavior of an application rather 

than the memory behavior of the underlying virtual machine hold the greatest 

opportunity. 

5.4. Estimating Potential Benefits of Object Centric Techniques 

To investigate the potential benefits of finer grain optimization techniques, in this 

section we present an estimation study that roughly predicts the benefits of using such 

optimization techniques. The estimation study is based on the heap allocations and 

accesses gathered during our measurement experiments. 

In this study, we consider three object level placement techniques. First, static-

optimal placement has information about all accesses to each heap allocation by 

processors during the execution and places objects in the memory pages local to the 

processors that access them most at allocation time. Second, prior-knowledge 

placement has information about the accesses to each surviving allocation during the 

next execution interval and moves allocations to the memory pages local to the 

processors accessing them most in garbage collection intervals. Third, object-

migration placement uses object access frequencies by processors since the start of 
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execution up to the current time. At garbage collection, it migrates heap allocations to 

memory local to the processors that access those most. 

In this estimation study, we measured the potential reduction in the number of 

non-local memory accesses for each placement technique using heap allocation 

records and memory accesses we gathered using our measurement tool. Figure 13 

presents the percentage of non-local memory accesses in the original execution of 

SPECjbb2000 as well as using each placement technique. 
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Figure 13: Potential reduction in non-local accesses for object centric techniques 

Figure 13 shows that heap allocations in the young generation would significantly 

benefit from both static-optimal and prior-knowledge placement. It also shows that 

object-migration would not be effective in reducing the number of non-local memory 

accesses in young generation. Figure 13 indicates that the heap allocations in the old 

generation would also benefit from static-optimal and prior-knowledge placements. 

Unlike heap allocations in the young generation, allocations in the old generation 

however would benefit from object migrations. 
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Figure 13 shows that the prior-knowledge placement is more effective in the old 

generation compared to other placement techniques. It also shows that the static-

optimal placement alone yields a significant reduction in non-local accesses in the old 

generation. This indicates SPECjbb2000 has some dynamically changing memory 

behavior in the old generation. More importantly, Figure 13 shows that dynamic 

object migration responds to this changing behavior quite well and yields a significant 

reduction in the number of non-local memory accesses in the old generation. 

In Figure 13, the significant reduction in the number of non-local memory 

accesses in the young generation for the static-optimal placement indicates that heap 

allocations in the young generation are mostly accessed by single processors. Thus, 

we further investigated heap allocations in the young generation. We found that 94% 

of all accesses to the heap allocations in the young generation are requested by the 

same processor that requested the allocation. This is due to the fact that threads 

allocate their TLABs from young generation where objects are allocated from these 

TLABs. Moreover, since the mortality rate for the objects in TLABs are high, most of 

the accesses to those allocations are most likely to be from the same thread. Thus, if 

thread local buffers were placed local to the processor thread is running on, a 

substantial access locality would be possible. 

More importantly, Figure 13 shows that SPECjbb2000 exhibits different memory 

behaviors in the young and old generations. Thus, for an object centric optimization 

technique to be effective, we believe it should target optimizing each generation 

separately and apply different techniques on each generation. To investigate the 

potential benefits of such a technique, we calculated the potential reduction in the 
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number of non-local memory accesses for a hybrid optimization technique using the 

fact that 94% of all observed accesses to the heap allocations in the young generation 

are requested by the same processors that allocated them. The hybrid optimization 

technique places heap allocations local to the processors that requested them in the 

young generation and uses dynamic object migration in old generation. We have 

found that such hybrid technique would reduce the number of non-local memory 

accesses by 73%. 

5.5. Experiences with a Simple Page-Level Optimization Technique 

As a result of our measurement experiments, we designed a simple optimization 

technique that tries to reduce the number of non-local memory accesses in the young 

generation using the madvise system call in Solaris 9. We used the move-on-next-

touch feature of the madvise system call on the pages of each allocated TLAB to 

move the pages local to the processor that touches them next. Since each thread 

allocates objects from its own TLAB, the thread that allocates the TLAB is the same 

thread that touches those pages next.  

We ran a set of experiments in which we ran SPECjbb2000 for 12 warehouses 

with our simple optimization enabled. In these experiments we have also recorded the 

number of advised pages in addition to the OS reported migration counts. Our 

experiments showed this simple technique was not able to improve the performance 

of SPECjbb2000. Instead, it reduced the throughput of SPECjbb2000 by 10.8%. Our 

experiments also showed that 2.4M 8K-pages are marked by the OS for migration, of 

which 1.7M pages are actually migrated. We observed that the reduction in the 

throughput of SPECjbb2000 is due to overhead introduced by the significant number 
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of page migrations triggered. The fact that young generation is re-used repeatedly 

after each garbage collection and pages in the young generation may belong to 

TLABs allocated by different threads at different times during the execution 

contributes to the number of pages migrated. 

The overhead for migrating a page also includes the copying overhead of the page 

to its new location. However, for our simple technique, copying the page was not 

necessary since the pages on which we called madvise in the young generation do not 

contain valid data after the garbage collection iteration. Thus if the OS provided 

advise calls where a page would be advised but not copied, the optimization 

technique would benefit from such advise calls. That is, the possible advises that 

would only evict the page entry in the TLB would suit the needs of this optimization 

technique, as later when the page is touched again, OS would allocate new physical 

page using the first-touch policy. 

5.6. Summary 

In this chapter, we first evaluated the potential of existing well-known locality 

optimization techniques on Java server applications where we applied dynamic page 

migration to SPECjbb2000 benchmark. Our experiments showed that dynamic page 

migration was able to reduce the number of non-local memory accesses in 

SPECjbb2000 by only around 25% and reduced the throughput by around 3% due to 

the overhead introduced by migrating many pages. Unlike scientific applications, 

dynamic page migration was not as effective in optimizing the memory access 

locality in SPECjbb2000.   



 

 100 
 

We also introduced an approach to measure the memory behavior of Java server 

applications at the object level and presented the results of our experiments where we 

measured the memory behavior of SPECjbb200. Overall, our results showed that Java 

server applications are good candidates for memory locality optimizations due to the 

high percentage of non-local memory accesses. Moreover, we demonstrated that 

optimization techniques that focus on optimizing the memory behavior of an 

application rather than the memory behavior of the underlying virtual machine hold 

the greatest opportunity. 

More importantly, our experiments showed that SPECjbb2000 exhibits different 

memory behavior in the young and old generations. Thus, for an object centric 

optimization technique to be effective, we believe it should target optimizing each 

generation separately and apply different techniques on each generation. In the next 

chapter, we introduce a set of object centric techniques to optimize the memory 

access locality of Java server applications. These techniques work at object level and 

use different NUMA-aware heap layouts for young and old generations. 
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Chapter 6: NUMA-Aware Java Heaps 

In this chapter, we introduce a set of techniques to optimize the memory access 

locality of Java server applications running on cc-NUMA servers. These techniques 

exploit the capabilities of fine grained hardware performance monitors to provide 

data to automatic feedback directed locality optimization techniques. We propose the 

use of several NUMA-aware Java heap layouts for initial object allocation and the use 

of dynamic object migration during garbage collection to move objects local to the 

processors accessing them most. 

We also introduce a new approach to simulate memory behavior of parallel 

applications running on multiprocessor servers. Our approach is based on gathering a 

partial trace of memory accesses from hardware performance monitors during an 

actual run of an application and extrapolating it to a representative full trace to drive 

the simulation. Our approach also uses information on heap allocations from the 

memory management library used in the underlying system. Our approach is 

particularly suited to evaluate new software systems rather than new hardware 

components. Even though our approach can be used to simulate the memory behavior 

of various types of parallel workloads, in this thesis, we focus on Java server 

applications and demonstrate our approach using a hybrid execution simulator to 

evaluate NUMA-aware heap algorithms. 

6.1. NUMA-Aware Java Heap Layouts 

To optimize memory access locality of Java server applications, we propose the use 

of two different Java heap configurations. The first one, NUMA-Eden, uses a 
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NUMA-aware young generation and the current old generation of the HotSpot VM. 

The second one, NUMA-Eden+Old, uses both a NUMA-aware young generation and 

a NUMA-aware old generation. 

The NUMA-Eden configuration focuses on optimizing the locality of the accesses 

to the objects in the young generation where as the NUMA-Eden+Old configuration 

focuses on optimizing the locality of the accesses to the objects in both the young and 

old generations. The NUMA-Eden+Old is more likely to be more effective than the 

NUMA-Eden since it targets all memory accesses in the application. However, it 

requires gathering object access frequencies by processors at runtime since unlike the 

eden space, the old space is not partitioned to locate memory from a single processor 

on a given page. 

6.1.1. NUMA-Aware Young Generation 

To optimize the locality of memory accesses to the objects in the young generation, 

we propose to divide eden space in the young generation into segments where each 

locality group of processors is assigned a segment. We do not change the layout of 

survivor spaces due to the fact that memory accesses to the survivor spaces 

throughout the execution is insignificant compared to memory accesses to eden space. 

In addition, we divide the eden space to equal sized segments, as shown in Figure 14. 

 

Figure 14: The NUMA-aware young generation layout 
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To allocate objects in the young generation in the proposed layout, the virtual 

machine needs to identify the processor that the requestor thread runs on, and place 

the object in the segment of the corresponding locality group of the processor. If 

application threads are bound to execute on fixed processors in the cc-NUMA server 

or affinity scheduling is used in the underlying OS, virtual machines can easily 

identify the processor an application thread runs through OS provided system calls. 

When there is not enough space for object allocations in the young generation, the 

java virtual machine triggers minor garbage collection. For our NUMA-aware 

allocator, the java virtual machine may trigger minor collections in several ways; one 

approach is to trigger minor garbage collection when there is not enough space in a 

segment for object allocation. However, such an approach may trigger minor 

collections more often compared to original heap due to fragmentation caused by 

dividing the region into locality based segments. Alternatively, the virtual machine 

may fall back to its original behavior and allocate the objects from segments that have 

enough space, thus eliminating additional minor collections. Since minor collection 

algorithms are engineered to be fast, we believe additional minor collections will not 

have a significant impact on the execution performance of Java server applications. 

Thus, we trigger minor garbage collection when a segment does not have enough 

space for object allocations. Moreover, we collect all segments, even if they are not 

full, to eliminate future synchronization due to minor garbage collection requests by 

the other segments. 

A NUMA-aware young generation may also have additional benefits. If garbage 

collection threads are bound to execute on processor groups and each collector thread 
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collects the dead objects in the eden segment associated with the same locality group 

that the thread is bound to execute, the memory access locality of garbage collection 

threads can be optimized. Since the garbage collection threads are known to suffer 

cold cache misses, such optimization can improve the performance of garbage 

collection threads. 

6.1.2. NUMA-Aware Old Generation 

Our experiments described in Section 5.3 show that almost 50% of all memory 

accesses are accesses to the objects in the old generation. Moreover, they also show 

that 84% of accesses to the objects in the old generation are non-local memory 

accesses. Thus, for fine grain memory locality optimization techniques to be effective 

for Java server applications, they should also optimize memory access locality for the 

objects in the old generation. 

To optimize the memory access locality for the objects in the old generation, the 

fine grain optimization techniques should try to keep the objects local to the 

processors accessing them most during the lifetimes of objects. We refer to the 

location of an object as the preferred location if the object is placed in a memory page 

that is local to the processor accessing it most. To be able to identify the processors 

accessing the objects most, we use the transaction samples taken form hardware 

performance monitors as described in Section 5.3. 

When an object is promoted to the old generation, it stays in the old generation 

during the rest of its lifetime. If the object survives another full collection after being 

promoted to the old generation, its address may change due to the copying collector. 

More importantly, the object may be accessed by different processors during the 
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distinct intervals of its lifetime. Thus, for a fine grain optimization technique to be 

effective, it should for each old generation object identify the preferred location of the 

object and place the object to its preferred location during garbage collection. 

To optimize the locality of memory accesses to the objects in the old generation, 

we propose a dynamic object migration scheme. In this scheme, when an object is 

promoted to old generation during minor garbage collection, the preferred location of 

the object is identified and the object is placed in its preferred location. During full 

garbage collection, the preferred location of each object in the old generation is 

identified and the object is placed at its preferred location. Moreover, to match the 

dynamically changing behavior of the application, after a fixed number of minor 

garbage collections, the preferred locations of the objects in the old generation are re-

computed and objects are migrated. 

 

Figure 15: The NUMA-aware old generation layout 

After the preferred location of an object is identified, the virtual machine needs a 

means to place the object in its preferred location. Thus, similar to NUMA-aware 

young generation, we propose to divide the old generation into segments where each 

locality group of processors is assigned a segment (Shown in Figure 15). 

 
O

ld
 S

pa
ce

 
fo

r 
G

ro
up

 1
 

 
O

ld
 S

pa
ce

 
fo

r 
G

ro
up

 2
 

 
O

ld
 S

pa
ce

 
fo

r 
G

ro
up

 N
 

 
 
 

…………………… 



 

 106 
 

6.2. Using Hardware Monitors to Generate Parallel Workloads 

To evaluate the effectiveness of the proposed heap layouts, we implemented and used 

a hybrid execution simulator. To drive our simulation, we generated a representative 

memory workload from the actual runs of the Java server application. 

We chose to evaluate the proposed heap layouts using a hybrid simulator since 

our experiments in Chapter 4 showed that even though an instruction level simulator 

can reproduce memory operations executed by an application accurately, it lacks the 

ability to properly simulate the contention for the memory units. Moreover, in such a 

simulation environment it is also difficult to accurately simulate simultaneous out-of-

order issue of multiple instructions by multiple processors. 

Software simulation has several advantages since it enables us to reproduce the 

results of experiments. It also provides a means to run sensitivity experiments not 

possible in a live system. However, software simulation is often slow due to the need 

to fully simulate the underlying memory subsystem. Unlike full memory system 

simulators, our simulator is a hybrid simulator and executes the generated memory 

workload on a real system, which results in faster execution. In this section, we 

describe the hybrid execution simulator and the data collection and memory workload 

generation. This approach is possible since we need to simulate new hardware 

associated with the data collection, yet we are not proposing any new features of the 

execution of the memory system. 

Our hybrid simulator has three distinct modules, as shown in Figure 16. The 

Workload Generation Unit generates a partial workload from an actual run of a 

parallel application. The Workload Scaling Unit scales the partial workload into a 
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larger memory workload for higher memory pressure and the Workload Execution 

Machine executes the workload. 

 

Figure 16: Flow of information in the hybrid execution simulator 

6.2.1. Partial Workload Generation 
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we run an application and generate a trace of heap allocations and a set of sampled 

memory accesses requested during the execution. We use the memory access samples 
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information gathered from program instrumentation. During workload generation 

phase, we associate memory accesses with heap allocations in the trace and generate a 

partial parallel workload. For our purposes, a workload generated from an actual run 

of an application is a sequence of requests to allocate and access objects by 

processors. Accesses occur in the same order they were requested in the actual run. 

We refer to an entry in a memory workload as an event. Depending on whether it 

is a request to allocate or access an object, we refer to an event as allocate-event or 

access-event, respectively. Each event in a workload must include necessary 
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Depending on the usage of garbage collection by the parallel application being 

measured, garbage collection slightly complicates workload generation since some of 

the trace entries for heap allocations are used to track the changes in addresses of the 

surviving objects and they do not correspond to actual heap allocations. Thus, for 

these trace entries, we map the surviving objects to their source objects and use the 

source objects to insert access-events into the workload. That is, for each trace entry 

that accesses a surviving object, we insert an access-event to the workload using the 

allocate-event of the source object of the surviving object. 

In addition, in our Java system, the HotSpot VM uses per-thread buffers for initial 

object allocation, which requires special handling. We insert an allocate-event into 

the workload for each per-thread buffer since the generated workload should allocate 

these buffers and the objects in them in the same order as the actual run. Moreover, 

for each trace entry for a surviving object, if the source object is a per-thread buffer, 

we insert an additional allocate-event as the source of the surviving object and use it 

in access-events that access the surviving object. We manipulate per-thread buffers 

and objects in these buffers separately to track live objects for garbage collection.  

To correctly execute the workload, we need to include information on the liveness 

of each object at any point in the generated workload. To keep track of the liveness of 

objects, we also mark the last access-event by each processor to each allocate-event. 

Since an object can be accessed by multiple processors, we also encode the list of 

processors that access the object in the allocate-event of the object. Moreover, to 

uniquely identify objects, we assign unique identifiers to allocate-events and use them 

in access-events. 
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To accurately simulate the memory behavior of parallel applications, it is also 

necessary to synchronize the execution of the events by processors. If the purpose of 

the simulator is to evaluate hardware, synchronization at each event is required. 

However, when simulating runtime software systems, it is often sufficient to 

synchronize at natural barriers in the software. In our Java system, each garbage 

collection forms a natural barrier. Thus, we insert a special event for each garbage 

collection point to synchronize the execution of workload events by processors. 

For each event inserted into the workload, we extract the information required to 

execute the event from the source trace entry. Each allocate-event includes 

information such as the size of the allocation and type of the allocation. Similarly, 

each access-event includes information such as the offset of the access within the 

allocation and the type of the access. Moreover, each event in the workload also 

includes the owner processor that executes the event during workload execution. 

However, for our Java system, we partition the events in a workload according to 

their locality groups rather than their processors. 

6.2.2. Workload Scaling Unit 

The partial workload we generate from an actual run includes all object allocations 

whereas it only includes a subset of all object accesses since we use sampling to 

gather memory accesses. Thus, the partial workload only includes a fraction of 

memory intensity of the actual run. To generate a workload that causes higher 

memory pressure, we scale the set of sampled object accesses into a larger set. 

To generate a representative scaled workload from a partial workload, the scaled 

workload should exhibit the same memory behavior as the partial workload. To 
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characterize the memory behavior of the partial workload, we fit the observed 

distribution of object accesses to a Poisson distribution and scale the workload by a 

user supplied factor using this distribution. We choose Poisson distribution since the 

distribution of object accesses tend to have a heavy tail due to the existence of many 

short-lived objects and a few long-lived objects. 

To fit the set of sampled object accesses to a distribution, we first classify the 

objects according to the number of times they are accessed in the workload. We 

partition objects into several buckets and histogram object accesses by access 

frequency. We choose the number of buckets that matches the lifetimes of objects 

best. Moreover, we exclude the objects whose accesses are not sampled in the 

distribution since we believe these objects are short lived and including accesses to 

these objects in the scaled workload may result in a major change in the original 

memory behavior. 

For each histogram bucket, we record the number of objects in the class and the 

total number of sampled accesses to the objects. Using the ratio of the total number of 

accesses in each bucket to the number of all sampled object accesses, we generate a 

probability distribution for the set of sampled object accesses. To populate the set of 

object accesses, we next fit the observed distribution to a Poisson distribution, and 

use its density values to assign new accesses to the objects. 

Since we take samples at fixed transaction boundaries, the likelihood of under 

sampling accesses to the objects that are accessed less frequently during the actual 

run is higher. To compensate for potential under-sampling error, we need to 

overpopulate the accesses to the objects that are accessed infrequently. By choosing a 
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Poisson distribution where the density values are higher for infrequently accessed 

objects compared to the observed distribution, we achieve the required compensation. 

To insert new object accesses for a given target memory workload size, we first 

distribute additional object accesses among histogram buckets using the density 

values of the fitted Poisson distribution. Then, among all objects in each bucket, we 

distribute the accesses uniformly. 

For each new object access, it is also necessary to assign a processor to execute 

the access. For some objects, we have enough samples to replicate per processor skew 

in data accesses, but for others we don’t. Therefore, we use the total number of 

accesses to the object in the partial workload. If the object is accessed less than a 

fixed number of times, we randomly assign the processor to the new access. 

Otherwise, we use the ratios of the number of accesses to that object by each 

processor to assign the accesses. Thus we can replicate any processor affinity that 

may have caused that object to not have a uniform processor access pattern. 

6.2.3. Workload Execution Machine 

We implemented a separate program, Workload Execution Machine (WEM), to run 

parallel workloads generated from actual runs of the applications under a given heap 

configuration. WEM takes both a memory workload and a heap configuration as 

input and runs the workload using the given heap configuration. At termination, 

WEM reports the total time spent to run the workload in addition to the percentage of 

accesses to the heap objects that are non-local. 

The WEM is composed of several units for different functionality, as shown in 

Figure 17. The execution unit creates a thread, workload execution thread, for each 
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locality group in the cc-NUMA server to execute the workload events of the 

corresponding locality group. Thus, each execution thread binds itself to run on its 

locality group throughout workload execution. The execution threads allocate objects 

through a common heap interface but accesses them directly from the heap. When a 

workload execution thread can not allocate object due to lack of available space, it 

notifies the virtual machine thread to start garbage collection. 

 

Figure 17: Workload Execution Machine architecture and the information flow 
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HotSpot VM. We implemented the parallel scavenge and mark-compact collectors for 

minor and major collections, respectively. 

The GC threads in the garbage collection unit execute the minor garbage 

collection in parallel. The VM thread handles the synchronization between execution 

threads and GC threads. If major garbage collection is required, the VM thread 

executes major garbage collection itself similar to the HotSpot VM. In addition, the 

VM thread also runs dynamic object migration after every fixed number of minor 

collections. The frequency collector unit in the WEM gathers access frequencies by 

execution threads and propagates this information to the garbage collection unit to be 

used later for object migrations. 

All heap configurations use a common interface to execute the heap requests by 

both the execution and garbage collection threads. The heap management unit takes 

the input heap configuration and initializes the Java heap accordingly. We 

implemented the heap management routines for the NUMA-aware heap 

configurations as well as the original heap management routines used in the Java 

HotSpot server VM. 

6.3. Workload Generation Experiments 

We ran the SPECjbb2000 with 12 warehouses and gathered a trace of heap 

allocations and sampled memory accesses for this run. We sampled address 

transaction at every 512 transactions. We gathered around 10 million allocation 

records and 28 million memory accesses. Using the trace gathered, we generated a 

partial workload in which there are around 20 million object allocations and 28 

million object accesses. Among all objects allocated, there were no accesses to 42% 
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of them recorded in the sampled data. We believe these objects are short-lived objects 

and accesses to them did not get sampled. In addition, about 52.4% of objects in the 

workload are accessed only once whereas 5.3% objects are accessed more than once. 

The maximum number of accesses to an object in the sampled workload is 39,358. 

Figure 18 presents the observed distribution of the object accesses in the partial 

workload and the Poison distribution to which we fitted the observed distribution. 

Figure 18 shows that we overestimate the density values for the classes that represent 

the short-lived objects to compensate for any potential under-sampling of accesses to 

these objects. Using the density measures of the fitted Poisson distribution, we scaled 

the initial partial workload by 16 and 32 times. 
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Figure 18: Observed and fitted distribution for object accesses 

To investigate the impact of scaling the partial workload on memory behavior, we 

calculated the percentage of object accesses by locality groups in the partial and 

scaled workloads. Table 13 presents the percentages of the object accesses by each 

locality group in the scaled workloads as well as in the partial workload. 
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Table 13 shows that percentage of object accesses by each locality group is the 

same for scaled workloads independent from the scale factor. This is due to fact that 

we use the same fitted distribution to populate object accesses in the scaled 

workloads. Table 13 also shows that there are minor differences between the 

percentages for the partial workload and the scaled workloads. This indicates that 

scaling the partial workload does not change the object access behavior of the original 

execution significantly. We believe the difference in the percentages for the scaled 

workloads is due to random distribution of object accesses to the infrequently 

accessed objects in the partial workload. 

Scaled Workloads Locality 
Group 

Original 
Workload by 16 by 32 

0 17.1 % 16.7 % 16.7 % 

1 16.7 % 16.3 % 16.3 % 

2 16.2 % 16.5 % 16.5 % 

3 16.5 % 16.7 % 16.7 % 

4 16.2 % 16.6 % 16.6 % 

5 17.3 % 17.3 % 17.3 % 

Table 13: Percentage of accesses by the locality groups 

To investigate how representative the generated memory workloads are of the 

original execution, we measured the number of objects accesses to the young and old 

generations during the actual run and the execution of the partial and scaled 

workloads. We measured the objects accesses to the young and old generations since 

the ratio of accesses to these two generations is a critical parameter and one that is 

dependent on having accurate extrapolated traces due to its sensitivity on short-lived 

objects. To accurately measure the percentages for the actual run, we used the 

accurate counters in the Sun Fire Link hardware monitors and tracked the generation 
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the memory accesses went to. While these monitors can only sample individual 

transactions, they precisely count transactions to designated address ranges. 

Table 14 presents the percentage of object accesses to young and old generations 

during the actual run and the execution of memory workloads using our hybrid 

execution simulator. Table 14 shows that the percentage of object accesses to old 

generations during the execution of partial workload differs by about 15% compared 

to the percentage during the actual run. This is due to fact that the partial workload 

only includes sampled accesses and accesses to short-lived objects are under sampled. 

Percentage of Object Accesses 
 Young 

Generation 
Old 

Generation 

Actual Run 51.2 % 48.8 % 

Partial Workload 43.5 % 56.5 % 

Workload scaled by 16 50.0 % 50.0 % 

Workload scaled by 32 50.6 % 49.4 % 

Table 14: Memory behavior in the young and old generations 

Table 14 also shows that for the scaled workloads the percentages of object 

accesses to young and old generations are similar to the percentages of the actual run 

which also shows that our workload scaling technique is effective in generating larger 

workloads that exhibit similar behavior to the actual run of the application. Overall, 

Table 14 shows that our workload generation approach is effective in generating 

larger representative memory workloads from a partial workload. 

6.4. NUMA-Aware Heaps Experiments 

We conducted experiments using the Workload Execution Machine by running the 

memory workload generated from an actual run of the SPECjbb2000 for 12 
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warehouses on the HotSpot Server VM. To investigate the impact of higher memory 

pressures on the effectiveness of the proposed heap configurations, we scaled the 

sampled set of objects accesses by 16 and 32 times. We chose two different scaling 

rates to investigate the impact of memory pressure increase on the effectiveness of the 

proposed heap configurations. 

We ran each workload generated under three heap configurations, Original, 

NUMA-Eden and NUMA-Eden+Old. For NUMA-Eden+Old configuration, we 

triggered dynamic object migration after every 3 minor collections. 

The number of garbage collections triggered for the Original, NUMA-Eden, and 

NUMA-Eden+Old is 10, 13 and 13 respectively, of which 2 are full collections. The 

full garbage collections are forced garbage collections requested by the SPECjbb2000 

rather than full collections triggered due to lack of heap space. The NUMA-aware 

heap configurations trigger more minor garbage collections compared to the original 

heap configuration since in these configurations, a minor collection is executed when 

a segment for a locality group in the young generation is full, even if the others still 

have available space. 

6.4.1. Reduction in the Number of Non-Local Memory Accesses 

We conducted a series of experiments where we ran the generated memory 

workloads. In these experiments we changed the underlying heap configuration and 

measured the percentage of the non-local memory accesses to the heap objects. 

Figure 19 presents the percentage of the non-local accesses to the objects allocated in 

young and old generations for each heap configuration compared to all accesses to the 

objects in each generation. It also presents the percentage of the non-local accesses to 
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all objects compared to all accesses. In addition, Table 15 gives the percent reduction 

in the number of non-local objects accesses for the NUMA-aware heaps with respect 

to the original heap layout. 

Figure 19 shows that the percentage of non-local object accesses for the original 

heap configuration is over 80% for all workloads. Moreover, it also shows that our 

NUMA-Eden heap configuration was able to reduce the number of non-local object 

accesses by around 28% compared to the original heap configuration whereas the 

NUMA-Eden+Old configuration reduced the number of non-local object accesses by 

39-41% for the workloads. Figure 19 also shows that unlike the NUMA-Eden 

configuration, using a NUMA-Eden+Old configuration reduces the number of non-

local object accesses in the old generation. This is due to the fact that NUMA-Eden 

uses the original old generation where as NUMA-Eden+Old uses NUMA-aware old 

generation with object migration. 
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Figure 19: Non-local accesses by heap configuration for scaled workloads 
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Figure 19 shows that even though NUMA-Eden and NUMA-Eden+Old use the 

same layout for the young generation, there is a slight difference in the percentage of 

non-local memory accesses in the young generation for these configurations. This is 

due to the differences in actual page placements in the survivor spaces where we do 

not use a NUMA-aware layout. 

Scale 
Factor 

Heap 
Configuration 

Young 
Generation 

Old 
Generation 

All 
Generations 

NUMA-Eden 57.6 % 0.3 % 28.1 % 
16 

NUMA-Eden+Old 55.3 % 27.5 % 41.0 % 

NUMA-Eden 50.9 % 1.2 % 27.3 % 
32 

NUMA-Eden+Old 48.0 % 30.2 % 39.5 % 

Table 15: Reduction in non-local memory accesses for each heap configuration 

Figure 19 and Table 15 show that NUMA-aware heap configurations are effective 

in reducing the total number of non-local objects accesses. They also show that using 

both NUMA-aware young and old generation is more effective in reducing the 

number of non-local object accesses for each workload compared to using only 

NUMA-aware young generation. Table 15 also shows that using both NUMA-aware 

young and old generations reduced the number of non-local object accesses in the 

workloads by about 40%. 

In addition, Figure 19 and Table 15 show that our hybrid simulator can easily be 

used to evaluate the performance of the applications under different levels of memory 

pressure as well as different heap management algorithms. That is, our simulation 

approach is flexible in adjusting the memory pressure for the application by scaling 

the partial workloads gathered during an actual run as well as in changing the 
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underlying memory management library. More importantly, this type of sensitivity 

analysis is difficult in a real system with a fixed workload. 

6.4.2. Execution Times of Memory Workloads 

For each experiment, we also measured the total time spent to execute each memory 

workload. Note that in the memory workloads we generate, we only include object 

allocations and accesses requested in the original execution (as described in Section 

6.2) to isolate the impact of NUMA-Aware heaps on the memory performance of the 

applications. Thus, the execution times of the memory workloads gathered from our 

simulator evaluate the potential of the NUMA-Aware heap layouts on the memory 

time of the applications rather than evaluating the potential of these layouts on the 

overall execution times of the applications. 

Figure 20 presents the normalized execution time of the memory workloads for 

each heap configuration with respect to the execution times of the memory workloads 

for original heap configuration. Figure 20 also presents the normalized time spent for 

garbage collection. The bottom segment of each bar is just the execution time spent to 

run each memory workload whereas the top segment of each bar is for the time spent 

to execute garbage collections. 

Figure 20 shows that the garbage collection times for NUMA-Eden and original 

heap configurations are comparable even though NUMA-Eden triggers more minor 

garbage collections. This is due to the fact that minor garbage collection is fairly 

cheap since it both is executed by multiple GC threads in parallel and does not copy 

many objects due to the high mortality rate of young objects. 



 

 121 
 

Figure 20 also shows that for each memory workload, both NUMA-Eden and 

NUMA-Eden+Old configurations outperform the original heap configuration in terms 

of the execution time of the workload. While the NUMA-Eden reduces the execution 

times of the memory workloads by up to 27%, the NUMA-Eden+Old reduces the 

execution times of the memory workloads by up to 40%. Moreover, it also shows that 

using both NUMA-aware young and old generation is more effective compared to 

using only NUMA-aware young generation. 
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Figure 20: Normalized execution times of the memory workloads 

More importantly, Figure 20 shows that as the workload size increases, the 

effectiveness of the NUMA-aware heap configurations increases. It shows that 

NUMA-aware heap configurations were able to reduce the execution time of the 

memory workload that is generated by scaling the original workload 16 times by 

around 20% compared to original heap configuration, whereas the reduction in the 

execution times of the memory workloads ranges by up to 40% for the workload 
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generated by a higher scaling rate of 32. Thus, Figure 20 shows that NUMA-aware 

heap configurations are effective in the presence of higher memory pressure. 

To further investigate the impact of our NUMA-Aware heap layouts on the 

execution times of the memory workloads generated, we also measured the memory 

contention during workload execution in our hybrid simulator. To quantify the 

memory contention, we executed the memory workload generated under the original 

and NUMA-Eden+Old heap layouts and measured the percentage of memory 

accesses to the memory units from each locality group. Moreover, to better compare 

the memory contention under NUMA-aware heap layouts to original heap layout, we 

measured the memory contention separately for each synchronization interval in the 

actual run of the SPECjbb2000 where its threads synchronize. 

Figure 21 illustrates the memory contention for each synchronization interval 

during the execution of the memory workload scaled by a factor of 32 using gray-

scale color coding (the darker color represents higher memory contention). Figure 21 

(a) presents the contention under the original heap layout whereas Figure 21 (b) 

presents the contention under our NUMA-Eden+Old layout. Moreover, for each 

interval in Figure 21 (a) and (b), the rows represent the locality groups where the 

columns represent the memory units in the system. Thus, each small rectangle cell 

illustrates the memory contention from a locality group to a memory unit during the 

interval and its color intensity indicates the significance of the memory contention. 

Figure 21 (a) shows a significant memory contention on the fourth memory unit 

throughout the workload execution under the original heap configuration. In addition, 

it shows some memory contention to the second and fifth memory units even though 
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it is not as high as to the fourth memory unit. Figure 21 (a) also shows that memory 

contention on other memory units are roughly distributed uniformly. Overall, Figure 

21 (a) shows that all locality groups often access the data in the same memory units, 

which results in higher memory contention to the memory units. 

Interval 1 

Interval 2 

Interval 3 

Interval 4 

Interval 5 

Interval 6 

Interval 7 

Interval 8 

Interval 9 

Interval 10 

Interval 11 

Interval 12 

Interval 13 

Interval 14 

Interval 15 

 
Interval 16 

 

(a) Original Heap Layout  (b) NUMA-Aware Heap Layout 

Figure 21: Memory contention during the execution of the memory workload 
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Figure 21 (b) shows that our NUMA-aware heap layout was able to reduce some 

of the memory contention to the fourth memory unit as well as to the other memory 

units. More importantly, the diagonal contention pattern for each interval in Figure 21 

(b) indicates that our NUMA-aware heap layout was able to distribute data to the 

memory units such that the majority of the accesses from each locality group is to the 

memory unit local to the group. Overall, Figure 21 (b) demonstrates that our NUMA-

aware heap layout was able to reduce the memory contention to the memory units 

during the execution of the memory workload. 

Figure 21 (a) and (b) also show that even with our NUMA-aware heap layout, 

there is still some contention on the fourth memory unit. We believe this is due to the 

long lived objects in the old generation that are uniformly accessed by all threads. We 

believe, these objects are placed by the virtual machine thread to the old generation 

during major garbage collection and are accessed uniformly by all threads throughout 

the execution. Therefore, these objects are not considered for dynamic object 

migration, which partially explains the fewer reductions in the number of non-local 

memory accesses in the old generation (Table 15). Moreover, Figure 21 (a) and 

(b)indicates that future optimization techniques should target to reduce memory 

contention in addition to reducing the number of non-local memory accesses in the 

applications.  

Our experiments described in Chapter 3 demonstrated that applications have a 

substantial performance improvement due to elimination of memory contention to 

memory units in the system. Thus, Figure 21 (a) and (b) show that some of the 
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improvement in the execution times of the memory workloads is due to elimination of 

memory contention to the memory units. 

To investigate the impact of our NUMA-aware heap layouts on the cache and 

TLB miss behavior of SPECjbb2000, we also measured the cache and TLB miss rates 

of the memory workload scaled by a factor of 32 under both the original and NUMA-

Eden+Old heap layouts. To measure the cache and TLB miss rates, we modified our 

simulator to access the on-chip CPU monitors of the UltraSPARC processors in the 

Sun Fire system via CPU performance counter library, libcpc[68]. 

Our experiments showed that our NUMA-aware heap layout reduced the number 

of data TLB misses by 12.2% (from 16M to 14M TLB misses) and the number of 

data cache misses by around 0.2% compared to the original heap layout. We believe 

the substantial reduction in the number of data TLB misses is due to co-allocation of 

heap objects that are mostly accessed by a processor in the same memory page. Since 

our approach allocates and moves objects in the memory units local to the processors 

accessing them most, our NUMA-aware heap layouts tend to allocate objects with 

similar access patterns in the same memory page. We also believe the minimal 

reduction in the number of cache misses is due to the reduction in the number of TLB 

misses. Since software TLB miss handler in UltraSPARC processors relies on the 

external cache to read page translation entries into the Translation Storage Buffer for 

faster TLB miss handling[68], additional cache misses can be caused by the TLB 

misses. Thus, by reducing the number of TLB misses, the number of cache misses 

was also reduced. However, since the percentage of data cache misses due to the TLB 

misses is generally very small compared to all caches misses, our experiments 
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showed minimal reduction in the number of cache misses when our NUMA-aware 

heap layouts are used. More importantly, our experiments indicate that some of the 

improvement in the execution times of the workloads is due to reduction in the 

number of TLB misses under our NUMA-aware heap layout (On the average, 90 

cycles is spent to handle each TLB miss in the UltraSPARC III processors, which is 

approximately 120ns). 

Overall, our experiments show that NUMA-aware heap configurations are 

effective in reducing the number of non-local memory accesses and execution times 

of Java server workloads. Our approach was able to reduce the number of non-local 

memory accesses in memory workloads generated from actual runs of SpecJBB2000 

by up to 41%, and also resulted in 40% reduction in the memory time of the 

workload. Moreover, our experiments also show that the reduction in the number of 

non-local memory accesses, elimination of the memory contention and the reduction 

in the number of data TLB misses contribute to the overall improvement in the 

execution times of the memory workloads under our NUMA-aware heap layouts. 

More importantly, previous research[38] has shown that 25% of overall execution 

time is memory stall time in the SpecJBB2000. Similarly, we measured the execution 

time of the memory workload as around 59 seconds whereas the overall execution 

time of SPECjbb2000 as 191 seconds, which indicates around 31% memory time in 

SPECjbb2000. Thus, we expect around 10% improvement in the overall execution 

time of SpecJBB2000 for our approach due to around 40% improvement in the 

memory time of the workload. 
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6.5. Summary 

In this chapter, we introduced new NUMA-aware Java heap layouts and dynamic 

object migration to optimize the memory access locality of Java server applications 

running on cc-NUMA servers and investigated the impact of these layouts on the 

memory performance of SPECjbb2000. We evaluated the effectiveness of our 

techniques using memory workloads generated from actual runs of SPECjbb2000. 

Our proposed Java NUMA-aware heap layouts always reduced the total number 

of non-local object accesses in SPECjbb2000 compared to the original Java heap 

layout used by the HotSpot VM by up to 41%. Moreover, our proposed NUMA-

aware heap layouts reduced the memory time of Java workloads derived from the 

SPECjbb2000 benchmark by up to 40% compared to original layout. 

We have shown that using both the NUMA-aware young and old generations 

combined with dynamic object migration is more effective in optimizing the memory 

performance of SPECjbb2000 compared to using only the NUMA-aware young 

generation. Moreover, we have shown that as the memory pressure increases in the 

Java server applications, our proposed NUMA-aware heap con-figurations are more 

effective in improving the memory performance of Java server applications. 

We also introduced a new approach to simulate memory behavior of parallel 

applications. Our approach gathers a partial trace of memory accesses from hardware 

performance monitors during an actual run of a parallel application and extrapolates it 

to a representative full trace. Our approach executes the generated workloads using 

the workload execution machine we implemented on a real multiprocessor system. 
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Our experiments showed that our approach generates representative workloads that 

exhibit similar memory behavior to the actual run. 

We measured the effectiveness of several heap management algorithms under 

different memory pressure. Our approach has proved to be flexible in adjusting the 

memory pressure of the workload as well as in testing the effectiveness of different 

underlying system software libraries. These types of studies would be difficult in a 

real system with a fixed workload. 
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Chapter 7: Conclusions 

In this thesis, we introduced several techniques to dynamically increase the locality of 

memory accesses in scientific and Java server applications running on cc-NUMA 

systems. These techniques place memory pages and heap allocated objects at their 

preferred memory locations identified at runtime using profiles gathered from 

hardware performance monitors. 

To evaluate the effectiveness of the techniques described in this thesis, we used a 

Sun Fire 6800 server which has only small differences between local and non-local 

memory access times (225ns vs. 300ns) as the target machine. We believe our 

techniques described will be even more effective in improving the performance of the 

applications running on larger cc-NUMA servers such as the Sun Fire 15K[14] and 

SGI Altix 3000[76]. In these larger cc-NUMA servers, the data transfer times differ 

significantly between local and non-local memory accesses. The overall conclusions 

of this thesis can be summarized as follows: 

Dynamic Page Migration 

Our dynamic page migration approach always reduced the total number of non-

local memory accesses in the applications we tested compared to their original 

executions. We achieved reductions up to 90%, which resulted in up to a 16% 

improvement in their execution times compared to their original executions. Our 

results demonstrated that the combinations of inexpensive plug-in monitors that 

sample interconnect transactions and a simple migration policy can be effectively 



 

 130 
 

used to improve the performance of real scientific applications even on systems with 

small remote to local memory latency ratios. 

The effectiveness of our page migration approach showed the advantage of 

putting the page migration policy at the user level while only relying on the operating 

system kernel to provide the actual migration mechanism. We demonstrated the 

importance of inexpensive hardware monitors in automatic performance tuning of the 

applications. We believe this type of hardware monitors combined with our page 

migration approach will be of increasing utility as memory systems become more 

complex. 

Dedicated Hardware Monitors for Dynamic Page Migration 

We conducted a simulation based study where we investigated the use of several 

different types of hardware monitors and compared their effectiveness in terms of the 

reduction in the number of non-local memory accesses, number of page migrations 

triggered and execution times. We also designed a hypothetical hardware feature to 

accurately gather page access frequencies specifically for dynamic page migration 

and compared its effectiveness to the other sources of profiles. 

Our experiments showed that the reduction in the number of non-local memory 

accesses in the applications ranges up to 87.3% compared to their original executions, 

which resulted in up to an 18.3% improvement in the execution time. Overall, our 

experiments showed that using interconnect transactions performs similar to using 

cache miss information, and using ATC information performs similar to using TLB 

content. Using TLB miss information however performs poorly compared to other 

sources of profiles. Moreover, our experiments showed that the effectiveness of using 
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profiles other than TLB miss information was comparable to the effectiveness of 

perfect profiles gathered from all actual memory accesses in the executions. 

More importantly, our experiments demonstrated that cache miss profiles 

gathered from on-chip hardware monitors, which are typically available in current 

micro-processors, can be effectively used to guide dynamic page migrations in an 

application. 

NUMA-Aware Java Heap Layouts 

We evaluated the potential of existing page-level locality optimization techniques 

on a Java server application and demonstrated that coarse-grain page-level 

optimization techniques are not as effective in reducing the number of non-local 

memory accesses in Java server applications. 

Instead, we introduced new object-centric optimization techniques that use several 

new NUMA-aware Java heap layouts and dynamic object migration for Java server 

applications. We also introduced a new approach to simulate memory behavior of 

parallel applications using profiles gathered from hardware monitors. We evaluated 

the effectiveness of our techniques using the memory workloads generated from 

actual runs of SPECjbb2000 and running these workloads on the workload execution 

simulator we implemented on a real multiprocessor system. 

Our NUMA-aware heap layouts always reduced the total number of non-local 

object accesses in SPECjbb2000 compared to the original Java heap layout used by 

the HotSpot VM. Reductions ranged up to 41%. Moreover, they reduced the 

execution times of Java memory workloads generated from actual runs of 

SPECjbb2000 by up to 40% compared to the original layout. Moreover, we have 

shown that as the memory pressure increases in the Java server applications, our 
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proposed NUMA-aware heap configurations are more effective in improving the 

memory performance of Java server applications. 

We also demonstrated that hardware monitors can also be used to generate 

representative parallel workloads to simulate the memory behavior of parallel 

applications by gathering partial trace of memory accesses during an actual run and 

extrapolating it to a full trace. Our approach has proved to be flexible in adjusting the 

memory pressure of the workload as well as in testing the effectiveness of different 

underlying system software libraries. 
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